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Introduction

This thesis consists of three parts. The first part is devoted to the quadratic Chabauty
method, the second part to automorphisms of modular curves of Cartan type and the
third to the discrete logarithm problem over finite fields whose characteristic is small
compared to the cardinality.

The first two chapters are the result of a joint work with Bas Edixhoven and describe
a method that, in certain cases, determines the set of rational points on a curve C/Q
of genus at least 2. The finiteness of the set C(Q) is a special case of a theorem proved
by Faltings in [43], but computing this set for each curve C is still an unsolved problem.
In [24], Chabauty proposed a method to solve this problem when C(Q) contains at least
one point b and the rank r of the Mordell-Weil group of the jacobian of C is smaller
than the genus g of the curve. Denoting J the jacobian of C and jb : C → J the map
sending a point x to [x−b], Chabauty’s method is based on the following diagram, which
is commutative for every choice of a prime p

C(Q) J(Q)

C(Qp) J(Qp)

jb

jb

.

The commutativity of the diagram implies that C(Q), considered as a subset of J(Qp),
is contained in the intersection of C(Qp) and the closure J(Q) of J(Q). Up to computing
generators for J(Q), both the sets C(Qp) and J(Q) can be computed with arbitrarily
large precision inside J(Qp) and their intersection is finite when r is smaller than g.
Chabauty’s method is to compute such an intersection, so to determine a finite subset of
C(Qp) containing C(Q). Such an intersection can be larger than C(Q) but in practice
the Mordell-Weil sieve is usually enough to get rid of the undesired points.

In [62] and [63], Minhyong Kim proposes a non-abelian generalization of the Chabauty
method, using the Galois cohomology of the Qp-pro-unipotent fundamental group of C.
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INTRODUCTION

The most interesting application of Kim’s method is the so-called “quadratic Chabauty
method”, which is explicit and works when the rank ρ of the group Pic(J)/Pic0(J)
is larger than r−g+1. In [10] this method is applied to the so-called cursed curve
(r = g = 3).

In chapter 1 we aim to make the quadratic Chabauty method small and geometric
again: our generalization of Chabauty’s method works by substituting J with a product
of Gm-torsors over J and by extending the geometry over Z.

Let J∨ be the dual abelian variety of J and let P be the Poincaré bundle on J × J∨,
the universal translational-invariant line bundle on J . After removing the zero-section
of P we get a Gm-torsor P× → J × J∨, named Poincaré torsor of J , which is the main
actor in our method. For any Q-scheme S and any choice of points x, x1, x2 ∈ J(S) and
y, y1, y2 ∈ J∨(S), the theorem of the cube implies the existence of canonical isomorphisms
(x1, y)∗P ⊗ (x2, y)∗P = (x1 + x2, y)∗P and (x, y1)∗P ⊗ (x, y2)∗P = (x, y1 + y2)∗P . This
implies the existence of maps

+1 : (x1, y)∗P× ×S (x2, y)∗P× −→ (x1 + x2, y)∗P× ,
+2 : (x, y1)∗P× ×S (x, y2)∗P× −→ (x, y1 + y2)∗P× .

These partial operations +1,+2 give the Poincaré torsor a structure of biextension.
Moreover, the group of line bundles on J that arise as (id, g)∗P for some morphism

g : J → J∨ is a subgroup of Pic(J) of finite index: all the elements of Pic0(J) can be
obtained with g constant and, for any class [L] ∈ Pic(J)/Pic0(J), the class 2[L] can be
obtained choosing g : x 7→ tr∗xL⊗L−1, where trx is the translation by x on J . This implies
the existence of maps g1, . . . , gρ−1 : J → J∨ such that the line bundles Li := (id, gi)∗P
are linearly independent in Pic(J) and, for every i ∈ {1, . . . , ρ−1}, the line bundle j∗b (Li)
on C is the trivial. Let L×i be the Gm-torsor on J obtained removing the zero-section
from Li and let T be the Gρ−1

m -torsor on J obtained as the product of all the L×i . Then
j∗bT is a trivial Gρ−1

m -torsor on C, implying that the map jb : C → J can be lifted to a
map

j̃b : C −→ T .

This construction can be extended over Z. The abelian varieties J and J∨ admit Néron
models over Z and the Poincaré torsor uniquely extends, as a biextension, to a Gm-torsor
over the product of the Néron model of J and the scheme J∨0, defined as the fibrewise
connected component of 0 in the Néron model of J∨. Up to composing gi with a certain
multiplication map on J∨, we can suppose that the image of the Néron model of J under
gi is contained in J∨0. This gives the extension of Li and T as torsors over the Néron
model of J . The curve C/Q can be extended to a regular proper curve C/Z, but to apply
our method we need to restrict to certain open sub-schemes. Inside the smooth part of
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INTRODUCTION

C let U be an open sub-scheme obtained by removing, for each prime q of bad reduction,
all but one irreducible component of the fibre at Fq. The map jb extends to the smooth
part of C and the line bundles j∗bLi are trivial on U . Hence there exists a lift j̃b : U → T

of jb making the following diagram commutative for every prime p

U(Z) T (Z)

U(Zp) T (Zp)

j̃b

j̃b

.

For simplicity we suppose p > 2. Since T (Z) is a Gm(Z)ρ−1-torsor over J(Z) and since
Gm(Z)ρ−1 is a finite group, we expect the closure T (Z) of T (Z) inside T (Zp) to be a
p-adic variety of dimension at most r. This is a consequence of Theorem 1.4.10: the set
of points in T (Z) with a given reduction modulo p, when not empty, is the image of an
analytic map κ : Zrp → T (Zp), constructed using the biextension structure on P×. Since
U(Zp) is 1-dimensional and T (Zp) has dimension g+ρ−1, we expect the set T (Z)∩U(Zp)
to be finite when ρ is larger than r−g+1. This is proven in Section 1.9.2.

The geometric quadratic Chabauty method is to compute T (Z) ∩ U(Zp), so to de-
termine a finite subset of U(Zp) containing U(Z). Since C(Q) is the union of the sets
U(Z) for all possible U ’s and since there are finitely many U ’s, the method can be used
to prove that a certain list of points in C(Q) is complete. In Theorem 1.4.12 we ex-
plain how, sometimes, computations in T (Z/p2Z) imply a bound on the cardinality of
T (Z) ∩ U(Zp). In Sections 1.6 and 1.7 we explain how to make the method explicit. In
Section 1.8 we apply our method to a specific example, with g = r = ρ = 2. Chapter 2
is devoted to an alternative proof of Theorem 1.4.10, using formal biextensions.

A motivation to study modular curves associated to Cartan and Cartan-plus sub-
groups of GL2(Z/nZ), as we do in chapter 3, comes from Serre’s uniformity conjecture.
This conjecture states that, for p prime big enough, the natural Galois representation
GQ → GL(E[p]) is surjective for any elliptic curve E/Q. The conjecture would be
solved if we knew, for each prime p and each maximal subgroup H < GL2(Fp) such that
det(H) = F×p , the rational points on the modular curve associated with H. All the H’s
for which we do not know the answer are Cartan-plus subgroups, which are maximal for
p > 3. This also gives motivation to study the so-called cursed curve, which is a modular
curve associated to a Cartan-plus subgroup of GL2(F13).

Given a positive integer n, a Cartan subgroup of GL2(Z/nZ) is a subgroup arising
as A× ⊂ GL(A) ∼= GL2(Z/nZ) for some étale Z/nZ-algebra A of rank 2. We call
Cartan-plus subgroup of GL2(Z/nZ) a subgroup generated by A× and the group of ring
automorphisms of A, for some étale Z/nZ-algebra A of rank 2. For example, if n is prime
there are two Cartan subgroups and two Cartan-plus subgroups up to conjugacy: the split

vii



INTRODUCTION

Cartan, respectively Cartan-plus, if A ∼= Fn × Fn and the non-split Cartan, respectively
Cartan-plus, if A ∼= Fn2 . We notice that the term Cartan-plus is not common in the
literature: the most studied cases are the ones where n > 3 is prime and in these cases
Cartan-plus subgroups are just normalizers of Cartan subgroups. We also deal with
composite level and studying Cartan-plus subgroups allows us to state certain results
with more uniformity than we could have done if we had studied normalizers of Cartan
subgroups.

When a modular curve X is geometrically connected, the set Y (C), made of its
complex non-cuspidal points, is the quotient of H = {z ∈ C : Im(z) > 0} by the action of
a subgroup Γ < PSL2(Z). Every matrix m ∈ PSL2(R) defines a complex automorphism
of H, that descends to an automorphism of Y (C) if and only if the matrix m lies in the
normalizer of Γ. When this happens, the automorphism extends to the whole X(C).
We call modular automorphism of XC any such automorphism. We call Cartan curve
a modular curve associated to a Cartan or to a Cartan-plus subgroup of GL2(Z/nZ).
Using this terminology we state the main result of chapter 3.

Theorem. Let n be either an integer larger than 10400 or a prime power such that n > 11
and n /∈ {33, 24, 25, 26}. Then, over C, all the automorphisms of a Cartan curve of level
n are modular.

For each Cartan or Cartan-plus subgroup H < GL2(Z/nZ), the group of modular
automorphisms of the modular curve associated to H is easy to compute: it is either
isomorphic to N ′/H ′ × Z/2Z or to N ′/H ′, where N ′ < SL2(Z/nZ) is the normalizer
of H ′ := H ∩ SL2(Z/nZ). This is stated more precisely in Proposition 3.6.13. Remark
3.6.16 gives N ′/H ′ for each possible H.

In the proof of the main result of chapter 3, one of the steps is the following general-
ization of a result of Chen.

Theorem. Let n be a positive integer. Then the jacobian of a Cartan curve of level n
is a quotient of the jacobian of the modular curve X0(n2).

Using the last theorem and a result of Shimura characterizing the CM sub-abelian
varieties of J0(n2), we prove that, for all but finitely many n, a large part of the jacobian
of a Cartan curve does not contain any CM sub-abelian variety. This, using a result of
Ribet, implies that all the automorphisms of a Cartan curve of level n are defined over
a compositum of quadratic fields for all but finitely many n.

The main result of chapter 3 then follows from Abramovich’s lower bound of the
gonality of modular curves and the following criterion.

Lemma. Let n be a positive integer and let X be the base change to C of a modular
curve associated with a subgroup H < GL2(Z/nZ). Suppose that H contains the scalar
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INTRODUCTION

matrices, that det(H) is the whole (Z/nZ)× and that there are two primes `1 < `2 not
dividing n such that 5 ≤ `2 < 1

2gon(X)− 1, with gon(X) the gonality of X. Then every
automorphism of X which is defined over a compositum of quadratic fields is modular.

For an automorphism u : X → X to be modular it is necessary and sufficient that u
preserves the set of cusps, so that u restricts to an automorphism of the non-cuspidal
locus Y , and preserves the set of elliptic points, namely the branch points of the map
H→ Y (C).

In Section 3.3 we see how to distinguish cusps, elliptic points and all the other points
on X by looking at the action of Hecke operators Tl1 , Tl2 . More precisely, we look for
multiple points in the divisors Tli(x) for x ∈ X(C): if x is a cusp, then Tli(x) contains
a point of multiplicity at least li; if x = (E, φ) is an elliptic point such that j(E) = 0,
then Tli(x) contains a point of multiplicity 3; if x = (E, φ) is an elliptic point such that
j(E) = 1728, then Tli(x) contains b(li − 1)/2c points of multiplicity 2.

These characterizations help proving the Lemma because of the following commuta-
tion rule in the group of divisors of X

uTli = Tliu
σi ,

where σi ∈ GQ is a li-th Frobenius and u : X → X is supposed to be defined over a
compositum of quadratic fields. The Eichler-Shimura relations imply the above equality
in Pic0(X) and the hypothesis on the gonality implies that the equality extends to the
group of divisors of X.

In the last chapter we describe an algorithm to solve the discrete logarithm problem.
Given a group G with a generator g ∈ G, solving the discrete logarithm problem means,
for each element h ∈ G, computing an integer z such that gz = h. The security of certain
public-key cryptographic protocols depends on the hardness of this problem, depending
on the choice of G. We are concerned with the cases where G is the multiplicative group
of a finite field of small characteristic, which, for us, means a field of characteristic p and
cardinality pn for some integer n > p. The main result of the last chapter states that
the discrete logarithm problem on finite fields of small characteristic is quasi-polynomial,
hence not too hard.

Theorem. There exists a probabilistic algorithm, described in Section 4.4, that solves the
discrete logarithm problem in K× for all finite fields K of small characteristic (namely
the fields Fpn with n > p) in expected time

(log #K)O(log log#K) .

Our algorithm uses some ideas of the algorithm in [19], whose running time is only
heuristic, and adapts them to finite fields with a different type of presentation. Let Fq be

ix



INTRODUCTION

a finite field with q > 2 elements, let E/Fq be an elliptic curve and let P1 be a point on
E such that φ(P1)−P1 ∈ E(Fq), where φ : E → E is the q-th Frobenius. If K = Fq(P1),
then the coordinates of P1 are generators of the extension Fq ⊂ K on which the q-th
Frobenius acts “simply”. If this happens and if, moreover [K : Fq] > 2, the elliptic
curve E and the point P1 give an elliptic presentation of K. Given the abundance of
elliptic curves over Fq, for q big enough, it is easy to prove that every finite field of small
characteristic can be embedded in a slightly larger field admitting an elliptic presentation
such that q is small compared to #K. A more precise statement is given in Proposition
4.1.5.

Given a finite field K with an elliptic presentation, we represent elements in K× as
f(P1) with f varying among the rational functions in Fq(E) that are regular and non-
vanishing on P1. Hence, we extend the discrete logarithm to these rational functions
and, in a weak sense, to divisors on E. Notice that each divisor defined over Fq is a
linear combination of irreducible divisors, namely those divisors that are the sum, with
multiplicity 1, of all the GFq -conjugates of a point in E(Fq).

Our algorithm is an index calculus using divisors: the idea is looking for linear re-
lations among the discrete logarithm of h and the “discrete logarithms” of irreducible
divisors of small degree; when many relations are found, we compute the discrete loga-
rithm of h by solving a linear system.

We find relations using a descent procedure, which, given an irreducible divisor D of
degree 4d ≥ 320, computes irreducible divisors Di of degree dividing 2d such that the
“discrete logarithm” of D is a linear combination of the “discrete logarithms” of the Di’s.
Most of the last chapter is devoted to the description and the proof of the correctness of
this descent procedure. It mainly uses the following equalities

f(P1)q = fφ(φ(P1)) = fφ(P1 + P0) = fφ ◦ τP0(P1) ,

where f ∈ Fq(E) is a function regular and non vanishing in P1, the point P0 ∈ E(Fq) is
equal to φ(P1)−P1, the map f → fφ is the automorphism on Fq(E) that acts as the q-th
Frobenius on Fq and sends x and y to themselves. In Section 4.5 we see that, in order to
compute the divisors Di, it is sufficient to find a rational function f and a matrix

(
a b
c d

)
satisfying certain conditions. After parametrizing the possible f ’s, this problem boils
down to finding points in C(k), where k ⊂ Fq is the extension of Fq of degree d and C is
a variety of dimension at most 2 whose definition depends on D. We prove that C(k) is
large using Weil’s estimates. To prove that the geometrically irreducible components of
C are defined over k, we use a little bit of Galois theory, condensed in Proposition 4.6.1,
and some tedious computations, mostly contained in Proposition 4.6.3 and in the Claims
4.8.2.3, 4.8.2.6, 4.8.3.2.
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Chapter 1

Geometric quadratic Chabauty

This chapter is the result of a joint work with Bas Edixhoven. It will appear in Journal
de l’Institut de Mathematiques de Jussieu

Since Faltings proved Mordell’s conjecture (1983) we know that the sets of rational
points on curves of genus at least 2 are finite. Determining these sets, in individual
cases, is still an unsolved problem. Chabauty’s method (1941) is to intersect, for a prime
number p, in the p-adic Lie group of p-adic points of the jacobian, the closure of the
Mordell-Weil group with the p-adic points of the curve. If the Mordell-Weil rank is less
than the genus, and if one has generators for the Mordell-Weil group, and if one can
implement Chabauty’s method and the Mordell-Weil sieve, then, as far as we know, this
method has been applied successfully to determine all rational points in many cases.

Minhyong Kim’s non-abelian Chabauty programme aims to remove the condition on
the rank. The simplest case, called quadratic Chabauty, was developed by Balakrishnan,
Besser, Dogra, Müller, Tuitman and Vonk, and applied in a tour de force to the so-called
cursed curve (rank and genus both 3).

This article aims to make the quadratic Chabauty method small and geometric again,
by describing it in terms of only ‘simple algebraic geometry’ (line bundles over the jaco-
bian and models over the integers).

1.1 Introduction

Faltings proved in 1983, see [43], that for every number field K and every curve C over
K of genus at least 2, the set of K-rational points C(K) is finite. However, determin-
ing C(K), in individual cases, is still an unsolved problem. For simplicity, we restrict
ourselves in this article to the case K = Q.

1



1. GEOMETRIC QUADRATIC CHABAUTY

Chabauty’s method (1941) for determining C(Q) is to intersect, for a prime number p,
in the p-adic Lie group of p-adic points of the jacobian, the closure of the Mordell-Weil
group with the p-adic points of the curve. If the Mordell-Weil rank r satisfies r < g, and
if one has generators for the Mordell-Weil group, and if one can implement Chabauty’s
method and (if r = g − 1) the Mordell-Weil sieve, then, as far as we know, this method
has never failed.

For a general introduction to Chabauty’s method and Coleman’s effective version of
it, we highly recommend [78], and, for an implementation of it that is ‘geometric’ in the
sense of this article, to [44], in which equations for the curve embedded in the Jacobian
are pulled back via local parametrisations of the closure of the Mordell-Weil group.

Minhyong Kim’s non-abelian Chabauty programme aims to remove the condition that
r < g. The ‘non-abelian’ refers to fundamental groups; the fundamental group of the
jacobian of a curve is the abelianised fundamental group of the curve. The most striking
result in this direction is the so-called quadratic Chabauty method, applied in [10], a
technical tour de force, to the so-called cursed curve (r = g = 3). For more details we
recommend the introduction of [10].

This article aims to make the quadratic Chabauty method small and geometric again,
by describing it in terms of only ‘simple algebraic geometry’ (line bundles over the ja-
cobian, models over the integers, and biextension structures). The main result is Theo-
rem 1.4.12. It gives a criterion for a given list of rational points to be complete, in terms
of points with values in Z/p2Z only. Section 1.2 describes the geometric method in less
than 3 pages, Sections 1.3–1.5 give the necessary theory, Sections 1.6–1.7 give descrip-
tions that are suitable for computer calculations, and Section 1.8 treats an example with
r = g = 2 and 14 rational points. As explained in the remarks following Theorem 1.4.12,
we expect that this approach will make it possible to treat many more curves. Sec-
tion 1.9.1 gives some remarks on the fundamental groups of the objects we use. They are
subgroups of higher dimensional Heisenberg groups, where the commutator pairing is the
intersection pairing of the first cohomology group of the curve. Section 1.9.2 reproves the
finiteness of C(Q), for C with r < g+ρ− 1, with ρ the rank of the Z-module of symmet-
ric endomorphisms of the jacobian of C. It also shows that a version of Theorem 1.4.12
that uses higher p-adic precision will always give a finite upper bound for C(Q). Sec-
tion 1.9.3 gives, through an appropriate choice of coordinates that split the Poincaré
biextension, the relation between our geometric approach and the p-adic heights used in
the cohomological approach.

Already for the case of classical Chabauty (working with J instead of T , and under the
assumption that r < g), where everything is linear, the criterion of Theorem 1.4.12 can
be useful; this has been worked out and implemented in [98]. We recommend this work as

2



1. GEOMETRIC QUADRATIC CHABAUTY

a gentle introduction into the geometric approach taken in this article. A generalisation
from Q to number fields is given in [29]. For a generalisation of the cohomological
approach, see [6] (quadratic Chabauty) and [34] (non-abelian Chabauty).

Although this article is about geometry, it contains no pictures. Fortunately, many
pictures can be found in [51], and some in [40].

1.2 Algebraic geometry

Let C be a scheme over Z, proper, flat, regular, with CQ of dimension one and geometri-
cally connected. Let n be in Z≥1 such that the restriction of C to Z[1/n] is smooth. Let
g be the genus of CQ. We assume that g ≥ 2 and that we have a rational point b ∈ C(Q);
it extends uniquely to a b ∈ C(Z). We let J be the Néron model over Z of the jacobian
Pic0

CQ/Q. We denote by J∨ the Néron model over Z of the dual J∨Q of JQ, and λ : J → J∨

the isomorphism extending the canonical principal polarisation of JQ. We let PQ be the
Poincaré line bundle on JQ×J∨Q , trivialised on the union of {0}×J∨Q and JQ×{0}. Then
the Poincaré torsor is the Gm-torsor on JQ × J∨Q defined as

(1.2.1) P×Q = IsomJQ×J∨Q (OJQ×J∨Q , PQ) .

For every scheme S over JQ × J∨Q , P×Q (S) is the set of isomorphisms from OS to (PQ)S ,
with a free and transitive action of OS(S)×. Locally on S for the Zariski topology, (P×Q )S
is trivial, and P×Q is represented by a scheme over JQ × J∨Q .

The theorem of the cube gives P×Q the structure of a biextension of JQ and J∨Q by Gm,
a notion for the details of which we recommend Section I.2.5 of [77], Grothendieck’s
Exposés VII and VIII [91], and references therein. This means the following. For S a
Q-scheme, x1 and x2 in JQ(S), and y in J∨Q (S), the theorem of the cube gives a canonical
isomorphism of OS-modules

(1.2.2) (x1, y)∗PQ ⊗OS (x2, y)∗PQ = (x1 + x2, y)∗PQ .

This induces a morphism of schemes

(1.2.3) (x1, y)∗P×Q ×S (x2, y)∗P×Q −→ (x1 + x2, y)∗P×Q .

as follows. For any S-scheme T , and z1 in ((x1, y)∗P×Q )(T ) and z2 in ((x2, y)∗P×Q )(T ), we
view z1 and z2 as nowhere vanishing sections of the invertible OT -modules (x1, y)∗PQ and
(x2, y)∗PQ. The tensor product of these two then gives an element of ((x1+x2, y)∗P×Q )(T ).
This gives P×Q → J∨Q the structure of a commutative group scheme, which is an extension

3
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of JQ by Gm, over the base J∨Q . We denote this group law, and the one on JQ × J∨Q , as

(1.2.4)
(z1, z2) z1 +1 z2

((x1, y), (x2, y)) (x1, y) +1 (x2, y) (x1 + x2, y) .

In the same way, P×Q → JQ has a group law +2 that makes it an extension of J∨Q by
Gm over the base JQ. In this way, P×Q is both the universal extension of JQ by Gm and
the universal extension of J∨Q by Gm. The final ingredient of the notion of biextension
is that the two partial group laws are compatible in the following sense. For any Q-
scheme S, for x1 and x2 in JQ(S), y1 and y2 in J∨Q (S), and, for all i and j in {1, 2}, zi,j
in ((xi, yj)∗P×Q )(S), we have

(1.2.5)
(z1,1 +1 z2,1) +2 (z1,2 +1 z2,2) (z1,1 +2 z1,2) +1 (z2,1 +2 z2,2)

(x1 + x2, y1) +2 (x1 + x2, y2) (x1, y1 + y2) +1 (x2, y1 + y2)

with the equality in the upper line taking place in ((x1 + x2, y1 + y2)∗P×Q )(S).
Now we extend the geometry above over Z. We denote by J0 the fibrewise connected

component of 0 in J , which is an open subgroup scheme of J , and by Φ the quotient J/J0,
which is an étale (not necessarily separated) group scheme over Z, with finite fibres,
supported on Z/nZ. Similarly, we let J∨0 be the fibrewise connected component of J∨.
Theorem 7.1, in Exposé VIII of [91] gives that P×Q extends uniquely to a Gm-biextension

(1.2.6) P× −→ J × J∨0

(Grothendieck’s pairing on component groups is the obstruction to the existence of such
an extension). Note that in this case the existence and the uniqueness follow directly from
the requirement of extending the rigidification on JQ×{0}. For details see Section 1.6.7.

Our base point b ∈ C(Z) gives an embedding jb : CQ → JQ, which sends, functori-
ally in Q-schemes S, an element c ∈ CQ(S) to the class of the invertible OCS -module
OCS (c− b). Then jb extends uniquely to a morphism

(1.2.7) jb : Csm −→ J

where Csm is the open subscheme of C consisting of points at which C is smooth over Z.
Note that CQ(Q) = C(Z) = Csm(Z).

Our next step is to lift jb, at least on certain opens of Csm, to a morphism to a Gρ−1
m -

torsor over J , where ρ is the rank of the free Z-module Hom(JQ, J∨Q )+, the Z-module of

4
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self-dual morphisms from JQ to J∨Q . This torsor will be the product of pullbacks of P×

via morphisms

(1.2.8) (id,m· ◦ trc ◦ f) : J → J × J∨0 ,

with f : J → J∨ a morphism of group schemes, c ∈ J∨(Z), trc the translation by c, m
the least common multiple of the exponents of all Φ(Fp) with p ranging over all primes,
and m· the multiplication by m map on J∨. For such a map m·◦trc ◦f , jb : CQ → JQ can
be lifted to (id,m· ◦ trc ◦f)∗P×Q if and only if j∗b (id,m· ◦ trc ◦f)∗P×Q is trivial. The degree
of this Gm-torsor on CQ is minus the trace of λ−1 ◦m· ◦ (f + f∨) acting on H1(J(C),Z).
For example, for f = λ the degree is −4mg. Note that jb : CQ → JQ induces

(1.2.9) j∗b = −λ−1 : J∨Q → JQ ,

(see [76], Propositions 2.7.9 and 2.7.10). This implies that for f such that this degree is
zero, there is a unique c such that j∗b (id, trc ◦ f)∗P×Q is trivial on CQ, and hence also its
mth power j∗b (id,m· ◦ trc ◦ f)∗P×Q .

The map

(1.2.10) Hom(JQ, J∨Q ) −→ Pic(JQ) −→ NSJQ/Q(Q) = Hom(JQ, J∨Q )+

sending f to the class of (id, f)∗PQ sends f to f + f∨, hence its kernel is Hom(JQ, J∨Q )−,
the group of antisymmetric morphisms. But actually, for f antisymmetric, its image in
Pic(JQ) is already zero (see for example [16] and the references therein). Hence the image
of Hom(JQ, J∨Q ) in Pic(JQ) is free of rank ρ, and its subgroup of classes with degree zero
on CQ is free of rank ρ−1. Let f1, . . . , fρ−1 be elements of Hom(JQ, J∨Q ) whose images in
Pic(JQ) form a basis of this subgroup, and let c1, . . . , cρ−1 be the corresponding elements
of J∨(Z).

By construction, for each i, the morphism jb : CQ → JQ lifts to (id,m· ◦ trci ◦ fi)∗P×Q ,
unique up to Q×. Now we spread this out over Z, to open subschemes U of Csm obtained
by removing, for each q dividing n, all but one irreducible components of Csm

Fq , with the
remaining irreducible component geometrically irreducible. For such a U , the morphism
Pic(U)→ Pic(CQ) is an isomorphism, and OC(U) = Z, thus, for each i, there is a lift

(1.2.11)
(id,m· ◦ trci ◦ fi)∗P×

U J
jb

j̃b

unique up to Z× = {1,−1}.

5



1. GEOMETRIC QUADRATIC CHABAUTY

At this point we can explain the strategy of our approach to the quadratic Chabauty
method. Let T be the Gρ−1

m -torsor on J obtained by taking the product of all the
Gm-torsors Ti := (id,m· ◦ trci ◦ fi)∗P×:

(1.2.12)
T P×,ρ−1

U J J × (J∨0)ρ−1 .

j̃b

jb (id,m·◦trci◦fi)i

Then each c ∈ CQ(Q) = Csm(Z) lies in one of the finitely many U(Z)’s. For each U ,
we have a lift j̃b : U → T , and, for each prime number p, j̃b(U(Z)) is contained in the
intersection, in T (Zp), of j̃b(U(Zp)) and the closure T (Z) of T (Z) in T (Zp) with the p-adic
topology. Of course, one expects this closure to be of dimension at most r := rank(J(Q)),
and therefore one expects this method to be successful if r < g + ρ − 1, the dimension
of T (Zp). The next two sections make this strategy precise, giving first the necessary
p-adic formal and analytic geometry, and then the description of T (Z) as a finite disjoint
union of images of Zrp under maps constructed from the biextension structure.

1.3 From algebraic geometry to formal geometry

Let p be a prime number. Given X a smooth scheme of relative dimension d over Zp
and x ∈ X(Fp) let us describe the set X(Zp)x of elements of X(Zp) whose image in
X(Fp) is x. The smoothness implies that the maximal ideal of OX,x is generated by
p together with d other elements t1, . . . , td. In this case we call p, t1, . . . , td parameters
at x; if moreover y ∈ X(Zp)x is a lift of x such that t1(y) = . . . = td(y) = 0 then we say
that the ti’s are parameters at y. The ti can be evaluated on all the points in X(Zp)x,
inducing a bijection t := (t1, . . . , td) : X(Zp)x → (pZp)d. We get a bijection

(1.3.1) t̃ := (t̃1, . . . , t̃d) =
(
t1
p
, . . . ,

td
p

)
: X(Zp)x

∼−→ Zdp .

This bijection can be geometrically interpreted as follows. Let π : X̃x → X denote
the blow up of X in x. By shrinking X, X is affine and the ti are regular on X,
t : X → AdZp is etale, and t−1{0Fp} = {x}. Then π : X̃x → X is the pull back of the
blow up of AdZp at the origin over Fp. The affine open part X̃p

x of X̃x where p generates
the image of the ideal mx of x is the pullback of the corresponding open part of the
blow up of AdZp , which is the multiplication by p morphism AdZp → AdZp that corresponds
to Zp[t1, . . . , td] → Zp[t̃1, . . . , t̃d] with ti 7→ pt̃i. It follows that the p-adic completion
O(X̃p

x)∧p of O(X̃p
x) is the p-adic completion Zp〈t̃1, . . . , t̃d〉 of Zp[t̃1, . . . , t̃d]. Explicitly,
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we have

(1.3.2) Zp〈t̃1, . . . , t̃d〉 =

∑
I∈Nd

aI t̃
I ∈ Zp[[t̃1, . . . , t̃d]] : ∀n ≥ 0, ∀almostI, vp(aI) ≥ n

 .

With these definitions, we have

(1.3.3)
X(Zp)x = X̃p

x(Zp) = Hom(Zp〈t̃1, . . . , t̃d〉,Zp) = Ad(Zp) ,
(X̃p

x)Fp = Spec(Fp[t̃1, . . . , t̃d]).

The affine space (X̃p
x)Fp is canonically a torsor under the tangent space of XFp at x.

This construction is functorial. Let Y be a smooth Zp-scheme, f : X → Y a morphism
over Zp, and y := f(x) ∈ Y (Fp). Then the ideal in O

X̃px
generated by the image of mf(x)

is generated by p. That gives us a morphism X̃p
x → Ỹ pf(x), and then a morphism from

O(Ỹ pf(x))∧p to O(X̃p
x)∧p . Reduction mod p then gives a morphism (X̃p

x)Fp → (Ỹ pf(x))Fp ,
the tangent map of f at x, up to a translation.

If this tangent map is injective, and dx and dy denote the dimensions of XFp at x
and of YFp at y, then there are t1, . . . , tdy in OY,y such that p, t1, . . . , tdy are parame-
ters at y, and such that tdx+1, . . . , tdy generate the kernel of OY,y → OX,x. Then the
images in OX,x of p, t1, . . . , tdx are parameters at x, and O(Ỹ pf(x))∧p → O(X̃p

x)∧p is
Zp〈t̃1, . . . , t̃dy 〉 → Zp〈t̃1, . . . , t̃dx〉, with kernel generated by t̃dx+1, . . . , t̃dy .

1.4 Integral points, closure and finiteness

Let us now return to our original problem. The notation U, J, T , jb, j̃b, r, ρ is as at the end
of Section 1.2. Let c = (c1, . . . , cρ−1) ∈ J∨,ρ−1(Z), let f = (f1, . . . , fρ−1) : J → J∨,ρ−1.
We assume moreover that p does not divide n (n as in the start of Section 1.2) and that
p > 2 (for p = 2 everything that follows can probably be adapted by working with residue
polydiscs modulo 4).

Let u be in U(Fp), and t := j̃b(u). We want a description of the closure T (Z)t
of T (Z)t in T (Zp)t. Using the biextension structure of P×, we will produce, for each
element of J(Z)jb(u), an element of T (Z) over it. Not all of these points are in T (Z)t,
but we will then produce a subset of T (Z)t whose closure is T (Z)t.

If T (Z)t is empty then T (Z)t is empty, too. So we assume that we have an element t̃
in T (Z)t and we denote x

t̃
∈ J(Z) the projection of t̃. We denote by P×,ρ−1 the product

over J × (J∨0)ρ−1 of the ρ−1 Gm-torsors obtained by pullback of P× via the projections
to J×J∨0; it is a biextension of J and (J∨0)ρ−1 by Gρ−1

m , and T = (id,m·◦trc◦f)∗P×,ρ−1.
We choose a basis x1, . . . , xr of the free Z-module J(Z)0, the kernel of J(Z) → J(Fp).
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For each i, j ∈ {1, . . . , r} we choose Pi,j , Ri,̃t, and S
t̃,j

in P×,ρ−1(Z) whose images in
(J × (J∨0)ρ−1)(Z) are (xi, f(mxj)), (xi, (m· ◦ trc ◦ f)(x

t̃
)) and (x

t̃
, f(mxj)):

(1.4.1)
Pi,j R

i,̃t
S
t̃,j

P×,ρ−1

(xi, f(mxj)) (xi, (m· ◦ trc ◦ f)(x
t̃
)) (x

t̃
, f(mxj)) J × (J∨0)ρ−1 .

For each such choice there are 2ρ−1 possibilities.
For each ν ∈ Zr we use the biextension structure on P×,ρ−1 → J× (J∨0)ρ−1 to define

the following points in P×,ρ−1(Z), with specified images in (J × (J∨0)ρ−1)(Z):

(1.4.2)

A
t̃
(ν) =

r∑
2

j=1

νj ·2 St̃,j B
t̃
(ν) =

r∑
1

i=1

νi ·1 Ri,̃t

(
x
t̃
,

r∑
i=1

νif(mxi)
) (

r∑
i=1

νixi , (m· ◦ trc ◦ f)(x
t̃
)
)

(1.4.3)

C(ν) =
r∑

1
i=1

νi ·1

 r∑
2

j=1

νj ·2 Pi,j


(

r∑
i=1

νixi ,

r∑
i=1

νif(mxi)
)

where
∑

1 and ·1 denote iterations of the first partial group law +1 as in (1.2.4), and
analogously for the second group law. We define, for all ν ∈ Zr,

(1.4.4) D
t̃
(ν) :=

(
C(ν) +2 Bt̃(ν)

)
+1
(
A
t̃
(ν) +2 t̃

)
∈ P×,ρ−1(Z) ,

which is mapped to

(1.4.5)
(
x
t̃

+
r∑
i=1

νixi, (m· ◦ trc ◦ f)
(
x
t̃

+
r∑
i=1

νixi

))
∈
(
J × (J∨0)ρ−1) (Z) .

Hence D
t̃
(ν) is in T (Z), and its image in J(Fp) is jb(u). We do not know its image

in T (Fp).
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We claim that for ν in (p−1)Zr, D
t̃
(ν) is in T (Z)t. Let ν′ be in Zr and let ν = (p−1)ν′.

Then, in the trivial F×,ρ−1
p -torsor P×,ρ−1(jb(u), 0), on which +2 is the group law, we have:

(1.4.6) A
t̃
(ν) = (p−1)·2At̃(ν

′) = 1 in F×,ρ−1
p .

Similarly, in P×,ρ−1(0, (m· ◦ trc ◦ f)(jb(u))) = F×,ρ−1
p , we have B

t̃
(ν) = 1, and, similarly,

in P×,ρ−1(0, 0) = F×,ρ−1
p , we have C(ν) = 1. So, with apologies for the mix of additive

and multiplicative notations, in P×,ρ−1(Fp) we have

(1.4.7) D
t̃
(ν) = (1 +2 1) +1 (1 +2 t) = t ,

mapping to the following element in (J × J∨0,ρ−1)(Fp):
(1.4.8)

((0, 0) +2 ((0, (m· ◦ trc ◦ f)(jb(u))))) +1 ((jb(u), 0) +2 (jb(u), (m· ◦ trc ◦ f)(jb(u))))
= (jb(u), (m· ◦ trc ◦ f)(jb(u))) .

We have proved our claim that D
t̃
(ν) ∈ T (Z)t.

So we now have the map

(1.4.9) κZ : Zr → T (Z)t, ν 7→ D
t̃
((p− 1)ν) .

The following theorem will be proved in Section 1.5.

Theorem 1.4.10. Let w1, . . . , wg be in OJ,jb(u) such that together with p they form a
system of parameters of OJ,jb(u), and let v1, . . . , vρ−1 be in OT,t such that p, w1, . . . , wg,
v1, . . . , vρ−1 are parameters of OT,t. As in Section 1.3 these parameters, divided by p,
give a bijection

(1.4.10.1) T (Zp)t −→ Zg+ρ−1
p .

The composition of the map κZ with the map (1.4.10.1) is given by uniquely determined
κ1, . . . , κg+ρ−1 in O(ArZp)∧p = Zp〈z1, . . . , zr〉. The images in Fp[z1, . . . , zr] of κ1, . . . , κg

are of degree at most 1, and the images of κg+1, . . . , κg+ρ−1 are of degree at most 2. The
map κZ extends uniquely to the continuous map

(1.4.10.2) κ = (κ1, . . . , κg+ρ−1) : Ar(Zp) = Zrp −→ T (Zp)t .

and the image of κ is T (Z)t.

Now the moment has come to confront U(Zp)u with T (Z)t. We have j̃b : U → T ,
whose tangent map (mod p) at u is injective (here we use that CFp is smooth over Fp).

9
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Then, as at the end of Section 1.3, j̃b : Ũpu → T̃ pt is, after reduction mod p, an affine
linear embedding of codimension g+ρ−2, j̃b

∗ : O(T̃ pt )∧p → O(Ũpu)∧p is surjective and
its kernel is generated by elements F1, . . . , Fg+ρ−2, whose images in Fp ⊗ O(T̃ pt ) are of
degree at most 1, and such that F1, . . . , Fg−1 are in O(J̃pjb(u))∧p . The pullbacks κ∗fi are
in Zp〈z1, . . . , zr〉; let I be the ideal in Zp〈z1, . . . , zr〉 generated by them, and let

(1.4.11) A := Zp〈z1, . . . , zr〉/I .

Then the elements of Zrp whose image is in U(Zp)u are zeros of I, hence morphisms of
rings from A to Zp, and hence from the reduced quotient Ared to Zp.

Theorem 1.4.12. For i ∈ {1, . . . , g+ρ−2}, let κ∗Fi be the image of κ∗fi in Fp[z1, . . . , zr],
and let I be the ideal of Fp[z1, . . . , zr] generated by them. Then κ∗F1, . . . , κ

∗Fg−1 are
of degree at most 1, and κ∗Fg, . . . , κ

∗Fg+ρ−2 are of degree at most 2. Assume that
A := A/pA = Fp[z1, . . . , zr]/I is finite. Then A is the product of its localisations Am
at its finitely many maximal ideals m. The sum of the dimFp Am over the m such that
A/m = Fp is an upper bound for the number of elements of Zrp whose image under κ is
in U(Zp)u, and also an upper bound for the number of elements of U(Z) with image u
in U(Fp).

Proof. As every Fi is of degree at most 1 in w1, . . . , wg, v1, . . . , vρ−1, every κ∗Fi is an
Fp-linear combination of κ1, . . . , κg+ρ−1, hence of degree at most 2. For i < g, Fi is a
linear combination of w1, . . . , wg, and therefore κ∗Fi is of degree at most 1.

We claim that A is p-adically complete. More generally, let R be a noetherian ring
that is J-adically complete for an ideal J , and let I be an ideal in R. The map from R/I

to its J-adic completion (R/I)∧ is injective ([3, Thm.10.17]). As J-adic completion is
exact on finitely generated R-modules ([3, Prop.10.12]), it sends the surjection R→ R/I

to a surjection R = R∧ → (R/I)∧ (see [3, Prop.10.5] for the equality R = R∧). It follows
that R/I → (R/I)∧ is surjective.

Now we assume that A is finite. As A is p-adically complete, A is the limit of the
system of its quotients by powers of p. These quotients are finite: for every m ∈ Z≥1,
A/pm+1A is, as abelian group, an extension of A/pA by a quotient of A/pmA. As Zp-
module, A is generated by any lift of an Fp-basis of A. Hence A is finitely generated as
Zp-module.

The set of elements of Zrp whose image under κ is in U(Zp) is in bijection with the
set of Zp-algebra morphisms Hom(A,Zp). As A is the product of its localisations Am at
its maximal ideals, Hom(A,Zp) is the disjoint union of the Hom(Am,Zp). For each m,
Hom(Am,Zp) has at most rankZp(Am) elements, and is empty if Fp → A/m is not an
isomorphism. This establishes the upper bound for the number of elements of Zrp whose

10
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image under κ is in U(Zp). By Theorem 1.4.10, the elements of U(Z) with image u
in U(Fp) are in T (Z)t, and therefore of the form κ(x) with x ∈ Zrp such that κ(x) is
in U(Zp)u. This establishes the upper bound for the number of elements of U(Z) with
image u in U(Fp).

We include some remarks to explain how Theorem 1.4.12 can be used, and what we
hope that it can do.

Remark 1.4.13. The polynomials κ∗Fi in Theorem 1.4.12 can be computed from the
reduction Frp → T (Z/p2Z) of κZ and (to get the Fi) from j̃b : U(Z/p2Z)u → T (Z/p2Z)t.
For this, one does not need to treat T and J as schemes, one just computes with Z/p2Z-
valued points. Now assume that r ≤ g + ρ − 2. If, for some prime p, the criterion in
Theorem 1.4.12 fails (that is, A is not finite), then one can try the next prime. We hope
(but also expect) that one quickly finds a prime p such that A is finite for every U and
for every u in U(Fp) such that j̃b(u) is in the image of T (Z)→ T (Fp). By the way, note
that our notation in Theorem 1.4.12 does not show the dependence on U and u of j̃b,
κZ, κ and the Fi. Instead of varying p, one could also increase the p-adic precision, and
then the result of Section 1.9.2 proves that one gets an upper bound for the number of
elements of U(Z).

Remark 1.4.14. If r < g + ρ − 2 then we think that it is likely (when varying p), for
dimension reasons, unless something special happens as in [7] or Remark 8.9 of [8], that,
for all u ∈ U(Fp), the upper bound in Theorem 1.4.12 for the number of elements of U(Z)
with image u in U(Fp) is sharp. For a precise conjecture in the context of Chabauty’s
method, see the “Strong Chabauty” Conjecture in [99].

Remark 1.4.15. Suppose that r = g+ρ−2. Then we expect, for dimension reasons, that
it is likely (when varying p) that, for some u ∈ U(Fp), the upper bound in Theorem 1.4.12
for the number of elements of U(Z) with image u in U(Fp) is not sharp. Then, as in
the classical Chabauty method, one must combine the information gotten from several
primes, analogous to ‘Mordell-Weil sieving’; see [79]. In our situation, this amounts to the
following. Suppose that we are given a subset B of U(Z) that we want to prove to be equal
to U(Z). Let B′ be the complement in U(Z) of B. For every prime p > 2 not dividing n,
Theorem 1.4.12 gives, interpreting A as in the end of the proof of Theorem 1.4.12, a
subset Op of J(Z), that is a union of cosets for the subgroup p· ker(J(Z)→ J(Fp)), that
contains jb(B′). Then one hopes that, taking a large enough finite set S of primes, the
intersection of the Op for p in S is empty.

11
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1.5 Parametrisation of integral points, and power se-
ries

In this section we give a proof of Theorem 1.4.10. The main tools here are the formal
logarithm and formal exponential of a commutative smooth group scheme over a Q-
algebra ([54], Theorem 1): they give us identities like n·g = exp(n· log g) that allow us
to extend the multiplication to elements n of Zp.

The evaluation map from Zp〈z1, . . . , zn〉 to the set of maps Znp → Zp is injective
(induction on n, non-zero elements of Zp〈z〉 have only finitely many zeros in Zp).

We say that a map f : Znp → Zmp is given by integral convergent power series if its
coordinate functions are in Zp〈z1, . . . , zn〉 = O(AnZp)∧p . This property is stable under
composition: composition of polynomials over Z/pkZ gives polynomials.

1.5.1 Logarithm and exponential

Let p be a prime number, and let G be a commutative group scheme, smooth of relative
dimension d over a scheme S smooth over Zp, with unit section e in G(S). For any
s in S(Fp), G(Zp)e(s) is a group fibred over S(Zp)s. The fibres have a natural Zp-
module structure: G(Zp)e(s) is the limit of the G(Z/pnZ)e(s) (n ≥ 1), S(Zp)s is the limit
of the S(Z/pnZ)s, and for each n ≥ 1, the fibres of G(Z/pnZ)e(s) → S(Z/pnZ)s are
commutative groups annihilated by pn−1. Let TG/S be the relative (geometric) tangent
bundle of G over S. Then its pullback TG/S(e) by e is a vector bundle on S of rank d.

Lemma 1.5.1.1. In this situation, and with n the relative dimension of S over Zp, the
formal logarithm and exponential of G base changed to Q⊗OS,s converge to maps

log : G̃pe(s)(Zp) = G(Zp)e(s) → (TG/S(e))(Zp)0(s)

exp: T̃G/S(e)p0(s)(Zp) = (TG/S(e))(Zp)0(s) → G(Zp)e(s) ,

that are each other’s inverse and, after a choice of parameters for G → S at e(s) as
in (1.3.1), are given by n+d elements of O(G̃pe(s))∧p and n+d elements of O(T̃G/S(e)p0(s))∧p .

For a in Zp and g in G(Zp)e(s) we have a·g = exp(a· log g), and, after a choice of
parameters for G→ S at e(s), this map Zp×G(Zp)e(s) → G(Zp)e(s) is given by n+d ele-
ments of O(A1

Zp×Zp G̃
p
e(s))∧p . The induced morphism A1

Fp×(G̃pe(s))Fp → (G̃pe(s))Fp , where
(G̃pe(s))Fp is viewed as the product of TSFp

(s) and TG/S(e(s)), is a morphism over TSFp
(s),

bilinear in A1
Fp and TG/S(e(s)).

Proof. Let t1, . . . , tn be in OS,s such that p, t1, . . . , tn are parameters at s. Then we have

12
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a bijection

(1.5.1.2) t̃ : S(Zp)s → Znp , a 7→ p−1·(t1(a), . . . , tn(a)) .

Similarly, let x1, . . . , xd be generators for the ideal Ie(s) of e in OG,e(s). Then p, the ti
and the xj together are parameters for OG,e(s), and give the bijection

(1.5.1.3) (t, x)∼ : G(Zp)e(s) → Zn+d
p , b 7→ p−1·(t1(b), . . . , xd(b)) .

The dxi form an OS,s-basis of Ω1
G/S(e)s, and so give translation invariant differentials ωi

on GOS,s . As G is commutative, for all i, dωi = 0 ([54], Proposition 1.3). We also have
the dual OS,s-basis ∂i of TG/S(e) and the bijection
(1.5.1.4)
(t, x)∼ : (TG/S(e))(Zp)0(s) → Zn+d

p , (a,
∑
i

vi∂i) 7→ p−1·(t1(a), . . . , tn(a), v1, . . . , vd) .

Then log is given by elements logi in (Q ⊗ OS,s)[[x1, . . . , xd]] whose constant term is 0,
uniquely determined (Proposition 1.1 in [54]) by the equality

(1.5.1.5) d logi = ωi , in ⊕j OS,s[[x1, . . . , xd]]·dxj .

Hence the formula from calculus, logi(x)− logi(0) =
∫ 1

0 (t 7→ tx)∗ωi, gives us that, with

(1.5.1.6) logi =
∑
J 6=0

logi,J xJ and logi,J ∈ (Q⊗OS,s) ,

we have, for all i and J , with |J | denoting the total degree of xJ ,

(1.5.1.7) |J |· logi,J ∈ OS,s .

The claim about convergence and definition of log : G(Zp)e(s) → (TG/S(e))(Zp)0(s), is
now equivalent to having an analytic bijection Zn+d

p → Zn+d
p given by

(1.5.1.8)

G(Zp)e(s) (TG/S(e))(Zp)0(s)

Zn+d
p Zn+d

p

(a, b)
(
a, p−1·

(∑
J 6=0 logi,J(t̃−1(a))(pb)J

)
i

)
.

?

(t,x)∼ (t,x)∼

?

?

We have, for each i,

(1.5.1.9) p−1·
∑
J 6=0

logi,J(t̃−1(a))(pb)J =
∑
J 6=0

p|J|−1

|J |
(|J | logi,J)(t̃−1(a))bJ .

13
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For each i, this expression is an element of Zp〈t̃1, . . . , t̃n, x̃1, . . . , x̃d〉 = O(G̃pe(s))∧p , even
when p = 2, because for each J , |J | logi,J is in OS,s, which is contained in Zp〈t̃1, . . . , t̃n〉,
and the function Z≥1 → Qp, r 7→ pr−1/r has values in Zp and converges to 0. The
existence and analyticity of log is now proved (even for p = 2). As p > 2, the image of
(1.5.1.9) in Fp ⊗O(G̃pe(s))∧p is x̃i, and on the first n coordinates, log is the identity, so,
by applying Hensel modulo powers of p, log is invertible, and the inverse is also given by
n+ d elements of O(T̃G/S(e)p0(s))∧p .

The function Zp × G(Zp)e(s) → G(Zp)e(s), (a, g) 7→ exp(a· log g) is a composition of
maps given by integral convergent power series, hence it is also of that form.

1.5.2 Parametrisation by power series

The notation and assumptions are as in the beginning of Section 1.4, in particular, p > 2
and T is as defined in (1.2.12). We have a t in T (Fp), with image jb(u) in J(Fp), and
a t̃ in T (Z) lifting t. For every Q in T (Z) mapping to jb(u) in J(Fp) there are unique
ε ∈ Z×,ρ−1 and ν ∈ Zr such that Q = ε·Dt̃(ν): the image of Q in J(Z) is in J(Z)jb(u),
hence differs from the image xt̃ in J(Z) of t̃ by an element of J(Z)0 (with here 0 ∈ J(Fp)),∑
i νixi for a unique ν ∈ Zr, hence Dt̃(ν) and Q are in T (Z) and have the same image

in J(Z), and that gives the unique ε. So we have a bijection
(1.5.2.1)

Z×,ρ−1 × Zr −→ T (Z)jb(u) = {Q ∈ T (Z) : Q 7→ jb(u) ∈ J(Fp)} , (ε, ν) 7→ ε·Dt̃(ν) .

But a problem that we are facing is that the map Zr → T (Fp)jb(u) sending ν to the
image of Dt̃(ν) depends on the (unknown) images of the Pi,j , Ri,t̃ and St̃,j from (1.4.1)
in P×,ρ−1(Fp), and so we do not know for which ν and ε the point ε·Dt̃(ν) is in T (Z)t.
Luckily we have the Z×,ρ−1

p -action on T (Zp). Using that Z×p = F×p × (1 + pZp) we have
F×,ρ−1
p acting on T (Zp)jb(u), compatibly with the torsor structure on T (Fp)jb(u). So, for

every ν in Zr there is a unique ξ(ν) in F×,ρ−1
p such that ξ(ν)·Dt̃(ν) is in T (Zp)t. We

define

(1.5.2.2) D′(ν) := ξ(ν)·Dt̃(ν) .

Then for all ν in Zr,

(1.5.2.3) κZ(ν) = Dt̃((p− 1)·ν) = D′((p− 1)·ν) ,

because Dt̃((p − 1)·ν) maps to t in T (Fp). Moreover for every Q in T (Z)t there is a
unique ν ∈ Zr and a unique ε ∈ Z×,ρ−1 such that Q = ε·Dt̃(ν) = ξ(ν)·Dt̃(ν) = D′(ν).
Hence

(1.5.2.4) T (Z)t ⊂ D′(Zr) .

14
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The following lemma proves the existence and uniqueness of the κi of Theorem 1.4.10,
and the claims on the degrees of the κi.

Lemma 1.5.2.5. After any choice of parameters of OT,t as in Theorem 1.4.10, D′ is
given by elements κ′1, . . . , κ′g+ρ−1 of O(ArZp)∧p , and then κZ is given by κ1, . . . , κg+ρ−1

with, for all i ∈ {1, . . . , g + ρ− 1} and all a ∈ Zrp,

κi(a) = κ′i((p− 1)a) .

For all i in {1, . . . , g + ρ − 1} we let κ′i be the reduction mod p of κ′j. Then κ′1, . . . , κ
′
g

are of degree at most 1, and the remaining κ′j are of degree at most 2.

Proof. In order to get a formula for D′(ν), we introduce variants of the Pi,j , Ri,̃t, and
S
t̃,j

as follows. The images in (J × (J∨0)ρ−1)(Fp) of these points are of the form (0, ∗),
(0, ∗), and (∗, 0), respectively. Hence the fibers over them of P×,ρ−1 are rigidified, that
is, equal to F×,ρ−1

p . We define their variants P ′i,j , R′i,̃t, and S′
t̃,j

in P×,ρ−1(Zp) to be
the unique elements in their orbits under F×,ρ−1

p whose images in P×,ρ−1(Fp) are equal
to the element 1 in F×,ρ−1

p . Replacing, in (1.4.2) and (1.4.3), these Pi,j , Ri,̃t, and S
t̃,j

by P ′i,j , R′i,̃t, and S′
t̃,j

gives variants A′, B′ and C ′, and using these in (1.4.4) gives a
variant D′

t̃
(ν) of 1.5.2.2.

Then, for all ν in Zr, D′
t̃
(ν) and D′(ν) (as in (1.5.2.2)) are equal, because both are

in P×,ρ−1(Zp)t, and in the same F×,ρ−1
p -orbit. Hence we have, for all ν in Zr:

(1.5.2.6)

A′(ν) =
r∑

2
j=1

νj ·2 S′t̃,j , B′(ν) =
r∑

1
i=1

νi ·1 R′i,̃t ,

C ′(ν) =
r∑

1
i=1

νi ·1

 r∑
2

j=1

νj ·2 P ′i,j

 ,

D′(ν) = (C ′(ν) +2 B
′(ν)) +1

(
A′(ν) +2 t̃

)
.

This shows how the map ν 7→ D′(ν) is built up from the two partial group laws +1 and
+2 on P×,ρ−1, and the iterations ·1 and ·2. Lemma 1.5.1.1 gives that the iterations are
given by integral convergent power series. The functoriality in Section 1.3 gives that
the maps induced by +1 and +2 on residue polydisks are given by integral convergent
power series. Stability under composition then gives that ν 7→ D′(ν) is given by elements
κ′1, . . . , κ

′
g+ρ−1 of Zp〈z1, . . . , zr〉.

We call the κ′i the coordinate functions of the extension D′ : Zrp → T (Zp)t = Zg+ρ−1
p ,

and their images κ′1, . . . , κ′g+ρ−1 in Fp[z1, . . . , zr] the mod p coordinate functions, viewed
as a morphism D

′
Fp : ArFp → Ag+ρ−1

Fp .

15
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The mod p coordinate functions of A′ : Zrp → P×,ρ−1(Zp) = Zρg+ρ−1
p (after choosing

the necessary parameters) are all of degree at most 1. The same holds for B′. We define

(1.5.2.7) C ′2 : Zr × Zr −→ P×,ρ−1(Zp), C ′2(ν, µ) =
r∑

1
i=1

νi ·1

 r∑
2

j=1

µj ·2 P ′i,j

 .

Then the mod p coordinate functions of C ′2, elements of Fp[x1, . . . , xr, y1, . . . , yr], are
linear in the xi, and in the yj . Hence of degree at most 2, and the same follows for the
mod p coordinate functions of C ′. However, as the first ρg parameters for P×,ρ−1 come
from J × J∨ρ−1, and the 1st and 2nd partial group laws there act on different factors,
the first ρg mod p coordinate functions of C ′ are in fact linear. As D′ is obtained by
summing, using the partial group laws, the results of A′, B′ and C ′, we conclude that
κ′1, . . . , κ

′
g are of degree at most 1, and the remaining κj are of degree at most 2. The

same holds then for all κj .

1.5.3 The p-adic closure

We know from (1.5.2.3) that κZ(Zr) = D′((p − 1)Zr). From (1.4.9) we know that
κZ(Zr) ⊂ T (Z)t. From (1.5.2.4) we know that T (Z)t ⊂ D′(Zr). So together we have:

(1.5.3.1) D′((p− 1)Zr) = κZ(Zr) ⊂ T (Z)t ⊂ D′(Zr) .

We have extended D′ to a continuous map Zrp → T (Zp)t. As Zrp is compact, D′(Zrp)
is closed in T (Zp)t. As Zr and (p − 1)Zr are dense in Zrp, the closures of their images
under D′ are both equal to D′(Zrp), and equal to κ(Zrp). This finishes the proof of
Theorem 1.4.10.

1.6 Explicit description of the Poincaré torsor

The aim of this section is to give explicit descriptions of the Poincaré torsor P× on
J × J∨,0 and its partial group laws, to be used for doing computations when applying
Theorem 1.4.12. The main results are as follows. Proposition 1.6.3.2 describes the
fibre of P over a point of J × J∨,0, say with values in Z/p2Z with p not dividing n

or in Z[1/n], when the corresponding points of J and J∨,0 are given by a line bundle
on C (over Z/p2Z or Z[1/n], and rigidified at b) and an effective relative Cartier divisor
on C (over Z/p2Z or Z[1/n]). It also translates the partial group laws of P× in terms
of such data. Lemma 1.6.4.8 shows how to deal with linear equivalence of divisors.
Lemma 1.6.5.4 makes the symmetry of P× explicit. Lemma 1.6.6.8 gives parametrisations
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of residue polydisks of P×(Z/p2Z), and Lemma 1.6.6.13 gives partial group laws on these
residue polydisks. Proposition 1.6.8.7 describes the unique extension over J×J∨,0 of the
Poincaré torsor on (J × J∨,0)Z[1/n], in terms of line bundles and divisors on C. Finally,
Proposition 1.6.9.3 describes the fibres of P over Z-points of J × J∨,0.

In this article, we have chosen to use line bundles and divisors on curves for describing
the jacobian and the Poincaré torsor. Another option is to use line bundles on curves
and the determinant of coherent cohomology, as in Section 2 of [76]. We note that in
Section 2, only the restriction of P to J0 × J∨,0 is treated, and moreover, under the
assumption that C is nodal (that is, all fibres CFp are reduced and have only the mildest
possible singularities). Another choice we have made is to develop the basic theory of
norms of Gm-torsors under finite locally free morphisms in this article (Sections 1.6.1–
1.6.2) and not to refer, for example, to EGA or SGA, because we think this is easier for
the reader, and because this way we could adapt the definition directly to our use of it.

1.6.1 Norms

Let S be a scheme, f : S′ → S be finite and locally free, say of rank n. Then OS′ = f∗OS′
(we view OS′ as a sheaf on S) is an OS-algebra, locally free as OS-module of rank n,
and O×S′ is a subsheaf of groups of the sheaf GLOS (OS′) of OS-linear automorphisms of
OS′ . Then the norm morphism is the composition

(1.6.1.1) O×S′ GLOS (OS′) O×S

NormS′/S

det

For T an O×S′ -torsor (triviality locally on S and S′ are equivalent, from the equivalence
with invertible OS′ -modules), we let NormS′/S(T ) be the O×S -torsor

(1.6.1.2) NormS′/S(T ) := O×S ⊗O×
S′
T =

(
O×S × T

)
/O×S′ ,

with, for every open U of S, and every element u ∈ O×S′(U), the action of u given
by (v, t) 7→ (v·NormS′/S(u), u−1·t). This definition is functorial in T : a morphism
φ : T1 → T2 induces a morphism NormS′/S(φ). It is also functorial for cartesian dia-
grams (S′2 → S2)→ (S′1 → S1).

For U ⊂ S open, T an O×S′ -torsor, and t ∈ T (U), we have the isomorphism of O×S′ |U -
torsorsO×S′ |U → T |U sending 1 to t. Functoriality gives NormS′/S(t) in (NormS′/S(T ))(U),
also denoted 1⊗ t.

The norm functor (1.6.1.2) is multiplicative:

(1.6.1.3) NormS′/S(T1 ⊗OS′ T2) = NormS′/S(T1)⊗OS NormS′/S(T2) ,
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such that, if U ⊂ S is open and t1 and t2 are in T1(U) and T2(U), then

(1.6.1.4) NormS′/S(t1 ⊗ t2) 7→ NormS′/S(t1)⊗NormS′/S(t2) .

Let L be an invertible OS′ -module; locally on S, it is free of rank 1 as OS′ -module.
This gives us the O×S′-torsor (on S) IsomOS′ (OS′ ,L). We can get the invertible OS′ -
module L back as L = OS′ ⊗O×

S′
IsomOS′ (OS′ ,L). The norm of L via f : S′ → S is then

defined as

(1.6.1.5) NormS′/S(L) := OS ⊗O×
S

NormS′/S(IsomOS′ (OS′ ,L)) .

This construction is functorial for isomorphisms of invertible OS′ -modules.

1.6.2 Norms along finite relative Cartier divisors

This part is inspired by [59], section 1.1. Let S be a scheme, let f : X → S be an S-
scheme of finite presentation. A finite effective relative Cartier divisor on f : X → S is a
closed subscheme D of X that is finite and locally free over S, and whose ideal sheaf ID
is locally generated by a non-zero divisor (equivalently, ID is locally free of rank 1 as
OX -module). For such a D and an invertible OX -module L, the norm of L along D is
defined, using (1.6.1.5), as

(1.6.2.1) NormD/S(L) := NormD/S(L|D) .

Then NormD/S(L) is functorial for cartesian diagrams (X ′ → S′,L′)→ (X → S,L).

Lemma 1.6.2.2. Let f : X → S be a morphism of schemes that is of finite presenta-
tion. For D a finite effective relative Cartier divisor on f , the norm functor NormD/S

in (1.6.2.1) is multiplicative in L:

(1.6.2.3) NormD/S(L1 ⊗ L2) = NormD/S(L1)⊗OS NormD/S(L2) ,

with, for U ⊂ S open, V ⊂ X open, containing f−1U ∩ D and li ∈ Li(V ) generating
Li|V ,

(1.6.2.4) NormD/S(l1 ⊗ l2) = NormD/S(l1)⊗NormD/S(l2) .

Let D1 and D2 be finite effective relative Cartier divisors on f . Then the ideal sheaf
ID1ID2 ⊂ OX is locally free of rank 1, the closed subscheme D1 + D2 defined by it is a
finite effective relative Cartier divisor on f . The norm functor in (1.6.2.1) is additive
in D:

(1.6.2.5) Norm(D1+D2)/S(L) = NormD1/S(L)⊗OS NormD2/S(L) ,
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with, for U ⊂ S open, V ⊂ X open, containing f−1U∩(D1+D2) and l ∈ L(V ) generating
L|D1+D2 ,

(1.6.2.6) Norm(D1+D2)/S(l) = NormD1/S(l)⊗NormD2/S(l) .

Proof. Let D1 and D2 be as stated. If V ⊂ X is open, and fi generates IDi |V , then f1f2

generates (ID1ID2)|V , and this element of OX(V ) is not a zero-divisor because f1 and f2

are not. To show that D1 +D2 is finite over S, we replace S by an affine open of it, and
then reduce to the noetherian case, using the assumption that f is of finite presentation.
Then, (D1 +D2)red is the image of D1,red

∐
D2,red → X, and therefore is proper. Hence

D1 + D2 is proper over S, and quasi-finite over S, hence finite over S. The short exact
sequence

(1.6.2.7)
ID2/ID1+D2 OD1+D2 OD2

(ID2)|D1

shows that OD1+D2 is locally free as OS-module, of rank the sum of the ranks of the ODi .
So D1 +D2 is a finite effective relative Cartier divisor on X → S.

We prove (1.6.2.5), by proving the required statement about sheaves of groups. The
diagram
(1.6.2.8)

O×D1+D2
O×D1

×O×D2
O×S ×O

×
S O×S

u NormD1/S(u)NormD2/S(u)

Norm(D1+D2)/S

NormD1/S×NormD2/S ·

commutes because multiplication by u on OD1+D2 preserves the short exact sequence
(1.6.2.7), multiplying on the sub and quotient by its images in O×D1

and in O×D2
; note

that the sub is an invertible OD1-module.

1.6.3 Explicit description of the Poincaré torsor of a smooth
curve

Let g be in Z≥1, let S be a scheme, and π : C → S be a proper smooth curve, with
geometrically connected fibres of genus g, with a section b ∈ C(S). Let J → S be its
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jacobian. On C ×S J we have Luniv, the universal invertible O-module of degree zero
on C, rigidified at b.

Let d ≥ 0, and C(d) the dth symmetric power of C → S (we note that the quotient
Cd → C(d) is finite, locally free of rank d!, and commutes with base change on S). Then
on C×S C(d) we have D, the universal effective relative Cartier divisor on C of degree d.
Hence, on C ×S J ×S C(d) we have their pullbacks DJ and Luniv

C(d) , giving us

(1.6.3.1) Nd := NormDJ/(J×SC(d))(Luniv
C(d)) .

This invertible O-module Nd on J ×S C(d), rigidified at the zero-section of J , gives us
a morphism of S-schemes C(d) to PicJ/S . The point db (the divisor d times the base
point b) in C(d)(S) is mapped to 0, precisely because Luniv is rigidified at b, and 1.6.2.5.
Hence there is a unique morphism � : C(d) → J∨ = Pic0

J/S such that the pullback of the
Poincaré bundle P on J × J∨ by (id,�) : J × C(d) → J × J∨, with its rigidifications,
is the same as Nd. The following proposition tells us what the morphism � is, and the
next section tells us what the induced isomorphism is between the fibres of Nd at points
of J × C(d) with the same image in J ×S J .

Proposition 1.6.3.2. The pullback of P by (jb, j∗,−1
b ) : C×S J → J×S J∨ together with

its rigidifications at b and 0, is equal to Luniv.
Let d be in Z≥0. The morphism � : C(d) → J∨ = Pic0

J/S is the composition of first
Σ: C(d) → J , sending, for every S-scheme T , each point D in C(d)(T ) to the class
of OCT (D − db) twisted by the pullback from T that makes it rigidified at b, followed
by j∗,−1

b : J → J∨. Summarised in a diagram, withM := (id× j∗,−1
b )∗P :

(1.6.3.3)
Luniv P M Nd

C ×S J J ×S J∨ J ×S J J ×S C(d) .

ĩd×Σ

jb×j∗,−1
b

id×j∗,−1
b id×Σ

ThenM, with its rigidifications at {0}×S J and J ×S {0}, is symmetric. For T → S, x
in J(T ) given by an invertible O-module L on CT rigidified at b, and y = Σ(D) in J(T )
given by an effective relative divisor D of degree d on CT we have

(1.6.3.4) P
(
x, j∗,−1

b (y)
)

=M(x, y) = NormD/T (L) .

For c1 and c2 in C(S), we have

(1.6.3.5) M (jb(c1), jb(c2)) = c∗2 (OC(c1 − b))⊗ b∗ (OC(b− c1)) ,

and, as invertible O-modules on C ×S C, with ∆ the diagonal and pr∅ : C ×S C → S the
structure morphism, we have

(1.6.3.6) (jb × jb)∗M = O(∆)⊗ pr∗1O(−b)⊗ pr∗2O(−b)⊗ pr∗∅b∗TC/S .
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For d > 2g − 2, ĩd× Σ gives Nd a descent datum along id×Σ that givesM on J ×S J .
For T an S-scheme, x ∈ J(S) given by L on CT , rigidified at b, D1 and D2 in C(d1)(S)
and C(d2)(S), the isomorphism

(1.6.3.7) M(x,Σ(D1 +D2)) =M(x,Σ(D1))⊗M(x,Σ(D2))

corresponds, via ĩd× Σ, to

(1.6.3.8)
Nd1+d2(x,D1 +D2) = Norm(D1+D2)/T (L) = NormD1/T (L)⊗NormD2/T (L)

= Nd1(x,D1)⊗Nd2(x,D2) ,

using Lemma 1.6.2.2.
For T an S-scheme and x1 and x2 in J(T ) given by O-modules L1 and L2 on CT ,

rigidified at b, and D in C(d)(T ), the isomorphism

(1.6.3.9) M(x1 + x2,Σ(D)) =M(x1,Σ(D))⊗M(x2,Σ(D))

corresponds, via ĩd× Σ, to

(1.6.3.10)
Nd(x1 + x2, D) = NormD/T (L1 ⊗ L2) = NormD/T (L1)⊗NormD/T (L2)

= Nd(x1, D)⊗Nd(x2, D) ,

using Lemma 1.6.2.2.

Proof. Let T be an S-scheme, and x be in J(T ). Then x corresponds to the invertible O-
module (id×x)∗Luniv on CT , rigidified at b. Let z := j∗,−1

b (x) in J∨(T ). Then j∗b (z) = x,
meaning that the pullback of (id× z)∗P on JT rigidified at 0 by jb equals (id× x)∗Luniv

on CT rigidified at b. Taking T := J and x the tautological point gives the first claim of
the proposition.

The symmetry ofM with its rigidifications follows from [76], (2.7.1) and Lemma 2.7.5,
and (2.7.7), using 1.2.9.

Now we prove (1.6.3.4). So let T and x be as above, and y = Σ(D) in J(T ) given by
a relative divisor D of degree d on CT . As Cd → C(d) is finite and locally free of rank d!,
we may and do suppose that D is a sum of sections, say D =

∑d
i=1(ci), with ci ∈ C(T ).

Then we have, functorially:

(1.6.3.11)

P (x, j∗,−1
b (y)) = P (y, j∗,−1

b (x)) = P (Σ(D), j∗,−1
b (x))

= P

(∑
i

jb(ci), j∗,−1
b (x)

)
=
⊗
i

P (jb(ci), j∗,−1
b (x))

=
⊗
i

Luniv(ci, x) =
⊗
i

L(ci) = NormD/T (L) .
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Identities (1.6.3.5) and (1.6.3.6) follow directly from (1.6.3.4).
Now we prove the claimed compatibility between (1.6.3.9) and (1.6.3.10). We do

this by considering the case where L is universal, that is, base changing to JT and x

the universal point. Then, on JT , we have 2 isomorphisms from Norm(D1+D2)/JT (L) to
NormD1/JT (L)⊗NormD2/JT (L). These differ by an element of O(JT )× = O(T )×. Hence
it suffices to check that this element equals 1 at 0 ∈ J(T ). This amounts to checking that
the 2 isomorphisms are equal for L = OCT with the standard rigidification at b. Then,
both isomorphisms are the multiplication map OT ⊗OT OT → OT .

The compatibility between (1.6.3.7) and (1.6.3.8) is proved analogously.

Remark 1.6.3.12. From Proposition 1.6.3.2 one easily deduces, in that situation, for T an
S-scheme, x in J(T ) given by an invertible O-module L on CT , and D1 and D2 effective
relative Cartier divisors on CT , of the same degree, a canonical isomorphism

(1.6.3.13) M(x,Σ(D1)− Σ(D2)) = NormD1/T (L)⊗NormD2/T (L)−1 ,

satisfying the analogous compatibilities as in Proposition 1.6.3.2. No rigidification of L
at b is needed. In fact, for L0 an invertible OT -module, we have NormD1/T (π∗L0) = L⊗d0 ,
where π : CT → T is the structure morphism and d is the degree of D1. Hence the right
hand side of (1.6.3.13) is independent of the choice of L, given x.

1.6.4 Explicit isomorphism for norms along equivalent divisors

Let g be in Z≥1, let S be a scheme, and p : C → S be a proper smooth curve, with
geometrically connected fibres of genus g, with a section b ∈ C(S). LetD1, D2 be effective
relative Cartier divisors of degree d on C, that we also view as elements of C(d)(S). Recall
from Proposition 1.6.3.2 the morphism Σ: C(d) → J . Then Σ(D1) = Σ(D2) if and only
if D1, D2 are linearly equivalent in the following sense: locally on S, there exists an f in
OC(U)×, with U := C \ (D1 ∪D2), such that f · : OU → OU extends to an isomorphism
f · : OC(D1) → OC(D2). In this case, we define div(f) = D2 −D1. Proposition 1.6.3.2
gives us, for each invertible O-module L of degree 0 on C rigidified at b (viewed as an
element of J(S)) specific isomorphisms

(1.6.4.1)
NormD1/S(L) = Nd(L, D1) =M(L,Σ(D1)) =M(L,Σ(D2)) = Nd(L, D2)

= NormD2/S(L) .

Now we describe explicitly this isomorphism NormD1/S(L) → NormD2/S(L). To do so
we first describe an isomorphism

(1.6.4.2) φL,D1,D2 : NormD1/S(L) −→ NormD2/S(L)
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that is functorial for Cartesian diagrams (C ′ → S′,L′, D′1, D′2) → (C → S,L, D1, D2)
and then we prove that this isomorphism is the one in (1.6.4.1).

We construct φL,D1,D2 locally on S and the functoriality of the construction takes
care of making it global. So, suppose that f is as above: f ∈ OC(U)×, and f · : OU → OU
extends to an isomorphism f · : OC(D1)→ OC(D2). Let n ∈ Z with n > 2g−2+2d. Then
p∗(L(nb)) → p∗L(nb)|D1+D2 and p∗(OC(nb)) → p∗OC(nb)|D1+D2 are surjective, and
(still localising on S) p∗(L(nb)) and p∗(OC(nb)) are free OS-modules and L(nb)|D1+D2

and OC(nb)|D1+D2 are free OD1+D2-modules of rank 1. Then we have l0 in (L(nb))(C)
and l1 in (OC(nb))(C) restricting to generators on D1 + D2. Let D− := div(l1) and
D+ := div(l0), and let V := C \ (D+ + D−). Note that V contains D1 + D2 and
that U contains D+ + D−. Then, on V , l := l0/l1 is in L(V ), generates L|D1+D2 , and
multiplication by l is an isomorphism ·l : OC(D+−D−)→ L, that is, div(l) = D+−D−.
Let
(1.6.4.3)

f(div(l)) = f(D+ −D−) := NormD+/S(f |D+) ·NormD−/S(f |D−)−1 ∈ OS(S)× ,

and let φL,l,f be the isomorphism, given in terms of generators

(1.6.4.4)
φL,l,f : NormD1/S(L) −→ NormD2/S(L)

NormD1/S(l) 7−→ f(div(l))−1 ·NormD2/S(l) .

Now suppose that we made other choices n′, l′0, l′1. Then we get D−′, D+′, V ′, l′

and φL,l′,f . Then there is a unique function g ∈ OC(V ∩ V ′)× such that l′ = gl in
L(V ∩ V ′). Then

(1.6.4.5)

φL,l′,f (NormD1/S(l)) = φL,l′,f (NormD1/S(g−1l′))
= φL,l′,f (g−1(D1)NormD1/S(l′))
= g−1(D1)·φL,l′,f (NormD1/S(l′))
= g−1(D1)·f(div(l′))−1·NormD2/S(l′)
= g−1(D1)·f(div(gl))−1·NormD2/S(gl)
= g−1(D1)·f(div(g) + div(l))−1·g(D2)·NormD2/S(l)
= g−1(D1)·f(div(g))−1·g(D2)·f(div(l))−1·NormD2/S(l)
= g(div(f))·f(div(g))−1·φL,l,f (NormD1/S(l))
= φL,l,f (NormD1/S(l)) ,

where, in the last step, we used Weil reciprocity, in a generality for which we do not know
a reference. The truth in this generality is clear from the classical case by reduction to
the universal case, in which the base scheme is integral: take a suitable level structure
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on J , then consider the universal curve with this level structure, and the universal 4-tuple
of effective divisors with the necessary conditions. We conclude that φL,l,f = φL,l′,f .

Now suppose that f ′ is in OC(U)× with div(f ′) = div(f). Then there is a unique
u ∈ OS(S)× such that f ′ = u·f , and since L has degree 0 on C

(1.6.4.6)
φL,l,f ′

(
NormD1/S(l)

)
= (u·f)(div(l))−1·NormD2/S(l)
= u− deg(div(l))f(div(l))−1·NormD2/S(l)
= f(div(l))−1·NormD2/S(l) = φL,l,f

(
NormD1/S(l)

)
.

Hence φL,l,f ′ = φL,l,f . We define

(1.6.4.7) φD1,D2,L : NormD1/S(L) −→ NormD2/S(L)

as the isomorphism φL,l,f in (1.6.4.4) for any local choice of f and l.

Lemma 1.6.4.8. With the assumptions as in the beginning of Section 1.6.4, the isomor-
phism φL,D1,D2 in (1.6.4.7) is equal to the isomorphism in (1.6.4.1).

Proof. We do this, as in the proof of Proposition 1.6.3.2, by considering the case of the
universal L, that is, we base change via J → S, and then restricting to 0 ∈ J(S). This
amounts to checking that the 2 isomorphisms are equal for L = OC with the standard
rigidification at b. In this case, NormDi/S(OC) = OS , with NormDi/S(1) = 1. Hence
φD1,D2,OC = φOC ,1,f is the identity on OS (use (1.6.4.4)). The other isomorphism is the
identity on OS because of the rigidifications ofM and Nd on 0× J and 0× C(d).

1.6.5 Symmetry of the Norm for divisors on smooth curves

Let C → S be a proper and smooth curve with geometrically connected fibres. For D1,
D2 effective relative Cartier divisors on C we define an isomorphism

(1.6.5.1) φD1,D2 : NormD1/S(OC(D2)) −→ NormD2/S(OC(D1))

that is functorial for cartesian diagrams (C ′/S′, D′1, D′2)→ (C/S,D1, D2).
If suffices to define this isomorphism in the universal case, that is, over the scheme that

parametrises all D1 and D2. Let d1 and d2 be in Z≥0, and let U := C(d1) ×S C(d2), and
let D1 and D2 be the universal divisors on CU . Then we have the invertible OU -modules
NormD1/U (OC(D2)) and NormD2/U (OC(D1)). The image of D1 ∩D2 in U is closed, let
U0 be its complement. Then, over U0, D1 and D2 are disjoint, and the restrictions
of NormD1/U (OC(D2)) and NormD2/U (OC(D1)) are generated by NormD1/U (1) and
NormD2/U (1), and there is a unique isomorphism (φD1,D2)U0 that sends NormD1/U (1)
to NormD2/U (1).
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We claim that this isomorphism extends to an isomorphism over U . To see it, we
base change by U ′ → U , where U ′ = Cd1 ×S Cd2 , then U ′ → U is finite, locally free
of rank d1!·d2!. Then D1 = P1 + · · · + Pd1 and D2 = Q1 + · · · + Qd2 with the Pi and
Qj in C(U ′). The complement of the inverse image U ′0 in U ′ of U0 is the union of
the pullbacks Di,j under pri,j : U ′ → C ×S C of the diagonal, that is, the locus where
Pi = Qj . Each Di,j is an effective relative Cartier divisor on U ′, isomorphic as S-scheme
to Cd1+d2−1, hence smooth over S. Now

(1.6.5.2) NormD1/U ′(O(D2)) =
⊗
i,j

P ∗i O(Qj) , NormD2/U ′(O(D1)) =
⊗
i,j

Q∗jO(Pi) ,

and, on U ′0,

(1.6.5.3) NormD1/U ′(1) =
⊗
i,j

1 , NormD2/U ′(1) =
⊗
i,j

1 , in O(U ′0).

On the open U ′, the divisor of the tensor-factor 1 at (i, j), both in NormD1/U ′(1) and in
NormD2/U ′(1), is Di,j . Therefore, the isomorphism (φD1,D2)U0 extends, uniquely, to an
isomorphism φD1,D2 over U ′, which descends uniquely to U .

Our description of φD1,D2 allows us to compute it in the trivial case where D1 and D2

are disjoint. One should be a bit careful in other cases. For example, when d1 = d2 = 1
and P = Q, we have P ∗OC(Q) = P ∗OC(P ) is the tangent space of C → S at P , and
hence also at Q, but φP,Q is multiplication by −1 on that tangent space. The reason for
that is that the switch automorphism on C ×S C induces −1 on the normal bundle of
the diagonal.

Lemma 1.6.5.4. Let b be an S-point on C. Because of the symmetry in Proposi-
tion 1.6.3.2, using (1.6.3.13), for D1, D2 relative effective divisors on C of degree d1, d2

over S we have the following diagram of isomorphisms defining ψD1,D2

M(Σ(D2),Σ(D1)) NormD1/S(OC(D2 − d2b))⊗ b∗OC(D2 − d2b)−d1

M(Σ(D1),Σ(D2)) NormD2/S(OC(D1 − d1b))⊗ b∗OC(D1 − d1b)−d2 .

ψD1,D2

Then

(1.6.5.5) ψD1,D2 = φD1,D2 ⊗ φ−1
D1,d2b

⊗ φ−1
d1b,D2

⊗ φd1b,d2b .

Moreover the isomorphisms φD1,D2 , and consequently ψD1,D2 , are compatible with addi-
tion of divisors, that is, under (1.6.3.10) and (1.6.3.8), for every triple D1, D2, D3 of
relative Cartier divisors on C we have

(1.6.5.6) φD1+D2,D3 = φD1,D3 ⊗ φD2,D3 , φD1,D2+D3 = φD1,D2 ⊗ φD1,D3 .
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Proof. It is enough to prove it in the universal case, that is, when D1 and D2 are the
universal divisors on CU , and there we know that there exists a u in OU (U)× = OS(S)×

such that

(1.6.5.7) u · ψD1,D2 = φD1,D2⊗φ−1
D1,d2b

⊗φ−1
d1b,D2

⊗φd1b,d2b .

Since the symmetry in Proposition 1.6.3.2 is compatible with the rigidification at the
point (0, 0) ∈ (J × J)(S), then ψd1b,d2b is the identity on OU , as well as the right hand
side of (1.6.5.5) when Di = dib. Hence u = u(d1b, d2b) = 1, proving (1.6.5.5).

Now we prove (1.6.5.6). As for (1.6.5.5), it is enough to prove it in the universal case
and then we can reduce to the case where D1 = d1b, D2 = d2b and D3 = d3b for di
positive integers where we have

(1.6.5.8)
φd1b+d2b,d3b = φd1b,d3b ⊗ φd2b,d3b = (−1)(d1+d2)d3 ,

φd1b,d2b+d3b = φd1b,d2b ⊗ φd1b,d3b = (−1)d1(d2+d3) .

1.6.6 Explicit residue disks and partial group laws

Let C be a smooth, proper, geometrically connected curve over Z/p2, with a b ∈ C(Z/p2),
let g be the genus, and let M be as in Proposition 1.6.3.2. Let D = D+ − D− and
E = E+ − E− be relative Cartier divisors of degree 0 on C. For each α in M×(Fp)
whose image in (J × J)(Fp) is given by (D,E) we parametrise M×(Z/p2)α, under the
assumption that there exists a non-special split reduced divisor of degree g on CFp .

Let b1, . . . , bg be points in C(Z/p2) with distinct images bi in C(Fp) and such that
h0(CFp , b1 + · · · + bg) = 1, and let bg+1, . . . , b2g in C(Z/p2) be such that the bg+i are
distinct and h0(CFp , bg+1 + · · ·+ b2g) = 1. Then the maps
(1.6.6.1)

f1 : Cg −→ J , (c1, . . . , cg) 7−→ [OC(c1 + · · ·+ cg − (b1 + · · ·+ bg) +D)]
f2 : Cg −→ J , (c1, . . . , cg) 7−→ [OC(c1 + · · ·+ cg − (bg+1 + · · ·+ b2g) + E)] ,

are étale respectively in (b1, . . . , bg) ∈ Cg(Fp) and (bg+1, . . . , b2g) ∈ Cg(Fp), hence give
bijections Cg(Z/p2)(b1,...,bg) → J(Z/p2)D and Cg(Z/p2)(bg+1,...,b2g) → J(Z/p2)E . For
each point c ∈ C(Fp) we choose

(1.6.6.2)
xD,c ∈ OC(−D)c a generator ,
xc ∈ OC,c generating, together with p, the maximal ideal of OC,c.

For each i = 1, . . . , 2g we choose xbi so that xbi(bi) = 0. For each (Z/p2)-point
c ∈ C(Z/p2) with image c in C(Fp) and for each λ ∈ Fp let cλ be the unique point
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in C(Z/p2)c with xc(cλ) = λp. Then the map λ 7→ cλ is a bijection Fp → C(Z/p2)c
hence the maps f1, f2 induce bijections

(1.6.6.3)
Fgp −→ J(Z/p2)D , λ 7−→ Dλ := D + (b1,λ1 − b1) + · · ·+ (bg,λg − bg)
Fgp −→ J(Z/p2)E , µ 7−→ Eµ := E + (bg+1,µ1 − bg+1) + · · ·+ (b2g,µg − b2g) .

HenceM×(Z/p2)D,E is the union ofM×(Dλ, Eµ) as λ and µ vary in Fgp and by Propo-
sition 1.6.3.2 and Remark 1.6.3.12 we have

(1.6.6.4)
M(Dλ, Eµ) =NormE+/(Z/p2)(OC(Dλ))⊗NormE−/(Z/p2)(OC(Dλ))−1⊗

⊗
g⊗
i=1

(
b∗g+i,µiOC(Dλ)⊗ b∗g+iOC(Dλ)−1) .

For each i ∈ {1, . . . , g}, c ∈ C(Z/p2) and λ ∈ Fp we define xi(c, λ) := 1 if c 6= bi and
xi(c, λ) := xbi − λp if c = bi, so that c∗xi(c, λ)−1 generates c∗O(bi,λ). Then, for each
c ∈ C(Z/p2) and each λ ∈ Fgp,

(1.6.6.5) c∗

(
x−1
D,c ·

g∏
i=1

xi(c, 0)
xi(c, λi)

)
generates c∗OC(Dλ) .

We write E± = E0,± + · · · + Eg,± so that E0,± is disjoint from {b1, . . . , bg}, and Ei,±,
restricted to CFp , is supported on bi. Let xD,E be a generator of OC(−D) in a neighbor-
hood of E+ ∪ E−. Then, for each λ in Fgp,

(1.6.6.6) NormE0,±/(Z/p2)(x−1
D,E)⊗

g⊗
i=1

NormEi,±/(Z/p2)

(
x−1
D,E ·

xbi
xbi − λip

)
generates NormE±/(Z/p2)(OC(Dλ)). By (1.6.6.4), (1.6.6.5) and (1.6.6.6) we see that, for
λ and µ in Fgp,
(1.6.6.7)

sD,E(λ, µ) := NormE0,+/(Z/p2)(x−1
D,E)⊗

g⊗
i=1

NormEi,+/(Z/p2)

(
x−1
D,E ·

xbi
xbi − λip

)
⊗

⊗NormE0,−/(Z/p2)(x−1
D,E)−1 ⊗

g⊗
i=1

NormEi,−/(Z/p2)

(
x−1
D,E ·

xbi
xbi − λip

)−1
⊗

⊗
g⊗
i=1

b∗g+i,µi
x−1

D,bg+i
·
g∏
j=1

xj(bg+i,µi , 0)
xj(bg+i,µi , λj)

⊗ b∗g+i
x−1

D,bg+i
·
g∏
j=1

xj(bg+i, 0)
xj(bg+i, λj)

−1


generates the free rank one Z/p2-moduleM(Dλ, Eµ). The fibreM×(D,E) over (D,E)
in (J × J)(Fp) is an F×p -torsor, containing sD,E(0, 0), hence in bijection with F×p by
sending ξ in F×p to ξ·sD,E(0, 0). Using that (Z/p2)× = F×p × (1 + pFp), we conclude the
following lemma.
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Lemma 1.6.6.8. With the assumptions and definitions from the start of Section 1.6.6,
we have, for each ξ ∈ F×p , a parametrisation of the mod p2 residue polydisk of M× at
ξ·sD,E(0, 0) by the bijection

Fgp × Fgp × Fp −→M×(Z/p2)
ξ·sD,E(0,0) , (λ, µ, τ) 7−→ (1 + pτ)·ξ·sD,E(λ, µ) .

Using this parametrization it easy to describe the two partial group laws onM×(Z/p2)
when one of the two points we are summing lies over (D,E) and the other lies over (D, 0)
or (0, E). To compute the group law in J(Z/p2) we notice that for each c ∈ C(Z/p2)
such that xc(c) = 0 and for each λ, µ ∈ Fp we have

(1.6.6.9) x2
c

(xc−λp)(xc−µp)
= x2

c

x2
c − λpxc − µpxc

= xc
xc − (λ+µ)p

and since these rational functions generate OC(cλ − c + cµ − c) and OC(cλ+µ − c) in a
neighborhood of c, we have the equality of relative Cartier divisors on C

(1.6.6.10) (cλ − c) + (cµ − c) = cλ+µ − c .

Hence, under the definition for λ ∈ Fgp of
(1.6.6.11)
D0
λ := (b1,λ1 − b1) + · · ·+ (bg,λg − bg) , E0

λ := (bg+1,λ1 − bg+1) + · · ·+ (b2g,λg − b2g) ,

we have, for all λ, µ ∈ Fgp, that Dλ+D0
µ = Dλ+µ and Eλ+E0

µ = Eλ+µ. Definition 1.6.6.7,
applied with (D, 0) and (0, E), with x0,E = 1 and, for every c ∈ C(Fp), with x0,c = 1,
gives, for all λ, µ in Fgp, the elements

(1.6.6.12) sD,0(λ, µ) ∈M×(Dλ, E
0
µ) , s0,E(λ, µ) ∈M×(D0

λ, Eµ) .

With these definitions, we have the following lemma for the partial group laws ofM.

Lemma 1.6.6.13. With the assumptions and definitions from the start of Section 1.6.6,
we have, for all λ, λ1, λ2, µ, µ1, µ2 in Fgp, that

sD,0(λ, µ1) +2 sD,E(λ, µ2) = sD,0(λ, µ1)⊗ sD,E(λ, µ2) = sD,E(λ, µ1 + µ2)
s0,E(λ1, µ) +1 sD,E(λ2, µ) = sD,0(λ1, µ)⊗ sD,E(λ2, µ) = sD,E(λ1 + λ2, µ) ,

and, consequently, for all τ1, τ2 ∈ Fp and ξ1, ξ2 ∈ F×p , that
(1.6.6.14)
ξ1(1+τ1p)·sD,0(λ, µ1) +2 ξ2(1+τ2p)·sD,E(λ, µ2) = ξ1(1+τ1p)ξ2(1+τ2p)·sD,E(λ, µ1+µ2)

= ξ1ξ2(1+(τ1+τ2)p)·sD,E(λ, µ1+µ2) ,
ξ1(1+τ1p)·s0,E(λ1, µ) +1 ξ2(1+τ2p)·sD,E(λ2, µ) = ξ1ξ2(1+(τ1+τ2)p)·sD,E(λ1+λ2, µ) .
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Proof. This follows from (1.6.6.9) and (1.6.6.10), together with the equivalence of (1.6.3.7)
and (1.6.3.8) and the equivalence of (1.6.3.9) and (1.6.3.10) in Proposition 1.6.3.2.

We end this section with one more lemma.

Lemma 1.6.6.15. The parametrization in Lemma 1.6.6.8 is the inverse of a bijection
given by parameters onM× analogously to (1.3.1).

Proof. Let Q be the pullback ofM by f1×f2 with f1 and f2 as in (1.6.6.1). Then the lift
f̃1×f2 : Q× →M× is étale at any point β ∈ Q(Fp) lying over b = (b1, . . . , b2g) ∈ C2g(Fp)
and induces a bijection between Q×(Z/p2)b andM×(Z/p2)(D,E). In particular we can in-
terpret sD,E(λ, µ) as a section ofQ(b1,λ1 , . . . b2g,µg ) and we can interpret the parametriza-
tion in Lemma 1.6.6.8 as a parametrization of Q×(Z/p2)

ξsD,E(0,0). It is then enough to
prove that the parametrization in Lemma 1.6.6.8 is the inverse of a bijection given by
parameters on Q×. It comes from the definition of cν for c ∈ C(Z/p2) and ν ∈ Fp, that
the maps λi, µi : C2g(Z/p2)b → Fp are given by parameters in OC2g,b divided by p. In
order to see that also the coordinate τ : Q×(Z/p2)ξsD,E(0,0) → Fp is given by a parameter
divided by p it is enough to prove that there is an open subset U ⊂ C2g containing b and
a section s trivializing Q|U such that sD,E(λ, µ) = s(b1,λ1 , . . . , b2g,µg ). Remark 1.6.3.12
and (1.6.5.1) give that
(1.6.6.16)

Q =
g⊗

i,j=1

(
(πi, πg+j)∗OC×C(∆)

)
⊗

g⊗
i=1

(
π∗iOC(E − (bg+1 + · · ·+ b2g))⊗ π∗g+iOC(D − (b1 + · · ·+ bg))

)
⊗NormE/Z/p2(OC(D − (b1 + · · ·+ bg)))⊗

g⊗
i=1

b∗g+iOC(D − (b1 + · · ·+ bg))−1

where ∆ ⊂ C×C is the diagonal and πi is the i-th projection Cg × Cg → C. We
can prove that there is an open subset U ⊂ Cg×Cg containing b and a section s triv-
ializing Q|U such that sD,E(λ, µ) = s(b1,λ1 , . . . , b2g,µg ), by trivializing each factor of
the above tensor product in a neighborhood of b. Let us see it, for example, for the
pieces of the form (πi, πg+j)∗OC×C(∆). Let π1, π2 be the two projections C × C → C

and let us consider the divisor ∆: for each pair of points c1, c2 ∈ C(Fp) the invert-
ible O-module OC×C(−∆) is generated by the section x∆,c1,c2 := 1 in a neighborhood
of (c1, c2) if c1 6= c2, while it is generated by the section x∆,c1,c2 := π∗1xc1 − π∗2xc2

in a neighborhood of (c1, c2) if c1 = c2. If we now take c1 = bi, c2 = bg+j ∈ C(Fp)
we deduce there exists a neighborhood U of (bi, bg+j) such that x−1

∆,bi,bg+j
generates

OC×C(∆)|U . For each λ, µ ∈ Fgp the point (bi,λi , bg+j,µj ) lies in U(Z/p2) and the
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canonical isomorphism (bi,λi , bg+j,µj )∗OC×C(∆) = b∗g+j,µjOC(bi,λi) sends the generat-
ing section (bi,λi , bj,µj )∗x−1

∆,c1,c2
to b∗j,µjxi(bg+j , λi)

−1, which is a factor in (1.6.6.7).
This gives a section si,j trivializing

(
(πi, πg+j)∗OC×C(∆)

)
in a neighborhood of b.

With similar choices we can find sections trivializing the other factors in (1.6.6.16)
in a neighborhood of b and tensoring all such sections we get a section s such that
sD,E(λ, µ) = s(b1,λ1 , . . . , b2g,µg ).

1.6.7 Extension of the Poincaré biextension over Néron models

Let C over Z be a curve as in Section 1.2. Let q be a prime number that divides n. We
also write C for CZq . Let J be the Néron model over Zq of Pic0

C/Qq , and J
0 its fibre-wise

connected component of 0. On (J×Zq J)Qq we haveM as in Proposition 1.6.3.2, rigidified
at 0× JQq and at JQq × 0.

Proposition 1.6.7.1. The invertible O-module M on (J ×Zq J)Qq , with its rigidifica-
tions, extends uniquely to an invertible O-module M̃ with rigidifications on J ×Zq J0.
The biextension structure onM× extends uniquely to a biextension structure on M̃×.

Proof. First of all, J ×Zq J0 is regular, hence Weil divisors and Cartier divisors are the
same, and every invertible O-module on (J ×Zq J0)Qq has an extension to an invertible
O-module on J ×Zq J0. So let M′ be an extension of M. Any extension M′′ of M is
then of the form M′(D), with D a divisor on J ×Zq J0 with support in (J ×Zq J0)Fq .
Such D are Z-linear combinations of the irreducible components of the Di×Fq J0

Fq , where
the Di are the irreducible components of JFq . Now M′|J×0 extends M|JQq×0, hence
the rigidification ofM|JQq×0 is a rational section ofM′|J×0 whose divisor is a Z-linear
combination of the Di. It follows that there is exactly one D as above such that the
rigidification ofM extends to a rigidification ofM′(D) on J × 0. That rigidification is
compatible with a unique rigidification of M′(D) on 0 × J0. We denote this extension
M′(D) ofM to J ×Zq J0 by M̃.

Let us now prove that the Gm-torsor M̃× on J ×Zq J0 has a unique biextension
structure, extending that ofM×. Over J ×Zq J ×Zq J0 we have the invertible O-modules
whose fibres, at a point (x, y, z) (with values in some Zq-scheme) are M̃(x + y, z) and
M̃(x, z)⊗M̃(y, z). The biextension structure ofM× gives an isomorphism between the
restrictions of these over Qq, that differs from an isomorphism over Zq by a divisor with
support over Fq. The compatibility with the rigidification of M̃ over J ×Zq 0 proves that
this divisor is zero. The other partial group law, and the required properties of them
follow in the same way. We have now shown that M̃× extends the biextensionM×.
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1.6.8 Explicit description of the extended Poincaré bundle

Let C over Z be a curve as in Section 1.2. Let q be a prime number that divides n. We
also write C for CZq . By [68], Corollary 9.1.24, C is cohomologically flat over Zq, which
means that for all Zq-algebras A, O(CA) = A. Another reference for this is [86], (6.1.4),
(6.1.6) and (7.2.1).

The relative Picard functor PicC/Zq sends a Zq-scheme T to the set of isomorphism
classes of (L, rig) with L an invertible O-module on CT and rig a rigidification at b. By
cohomological flatness, such objects are rigid. But if the action of Gal(Fq/Fq) on the
set of irreducible components of CFq is non-trivial, then PicC/Zq is not representable by
a Zq-scheme, only by an algebraic space over Zq (see [86], Proposition 5.5). Therefore,
to not be annoyed by such inconveniences, we pass to S := Spec(Zunr

q ), the maximal
unramified extension of Zq. Then PicC/S is represented by a smooth S-scheme, and on
C ×S PicC/S there is a universal pair (Luniv, rig) ([86], Proposition 5.5, and Section 8.0).
We note that PicC/S → S is separated if and only if CFq is irreducible.

Let Pic[0]
C/S be the open part of PicC/S where Luniv is of total degree zero on the

fibres of C → S. It contains the open part Pic0
C/S where Luniv has degree zero on all

irreducible components of CFq .
Let E be the closure of the 0-section of PicC/S , as in [86]. It is contained in Pic[0]

C/S .
By [86], Proposition 5.2, E is represented by an S-group scheme, étale.

By [86], Theorem 8.1.4, or [22], Theorem 9.5.4, the tautological morphism Pic[0]
C/S → J

is surjective (for the étale topology) and its kernel is E, and so J = Pic[0]
C/S/E. Also, the

composition Pic0
C/S → Pic[0]

C/S → J induces an isomorphism Pic0
C/S → J0.

Let Ci, i ∈ I, be the irreducible components of CFq . Then, as divisors on C, we have

(1.6.8.1) CFq =
∑
i∈I

miCi .

For L an invertible O-module on CFq , its multidegree is defined as

(1.6.8.2) mdeg(L) : I → Z, i 7→ degCi(L|Ci) ,

and its total degree is then

(1.6.8.3) deg(L) =
∑
i∈I

mi degCi(L|Ci) .

The multidegree induces a surjective morphism of groups

(1.6.8.4) mdeg : PicC/S(S)→ ZI .
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Now let d ∈ ZI be a sufficiently large multidegree so that every invertible O-module L on
CFq with mdeg(L) = d satisfies H1(CFq ,L) = 0 and has a global section whose divisor is
finite. Let L0 be an invertible O-module on C, rigidified at b, with mdeg(L0) = d. Then
over C ×S J0 we have the invertible O-module Luniv ⊗L0, and its pushforward E to J0.
Then E is a locally free O-module on J0. Let E be the geometric vector bundle over J0

corresponding to E . Then over E, E has its universal section. Let U ⊂ E be the open
subscheme where the divisor of this universal section is finite over J0. The J0-group
scheme Gm acts freely on U . We define V := U/Gm. As the Gm-action preserves the
invertible O-module and its rigidification, the morphism U → J0 factors through U → V

and gives a morphism ΣL0 : V → J0. Then on C×S V we have the universal effective rel-
ative Cartier divisor Duniv on C×SV → V of multidegree d, and Luniv⊗L0 together with
its rigidification at b is (uniquely) isomorphic to OC×SV (Duniv)⊗OV b∗OC×SV (−Duniv)
with its tautological rigidification at b, in a diagram:

(1.6.8.5) Luniv ⊗ L0 OC×SV (Duniv)⊗OV b∗OC×SV (−Duniv) .

Then ΣL0 sends, for T an S-scheme, a T -point D on CT to the invertible O-module
OCT (D)⊗OT b∗OCT (−D)⊗OC L−1

0 with its rigidification at b. Let s0 be in L0(C) such
that its divisor D0 is finite over S, and let v0 ∈ V (S) be the corresponding point.

On Pic[0]
C/S ×S V ×S C we have the universal Luniv from Pic[0]

C/S with rigidification
at b, and the universal divisor Duniv. Then on Pic[0]

C/S ×S V we have the invertible O-
module Nq,d whose fibre at a T -point (L, rig, D) is NormD/T (L) ⊗OT NormD0/T (L)−1,
canonically trivial on Pic[0]

C/S ×S v0:
(1.6.8.6)

Nq,d :
(

Pic[0]
C/S ×S V

)
(T ) 3 (L, rig, D) NormD/T (L)⊗OT NormD0/T (L)−1 .

Any global regular function on the integral scheme Pic[0]
C/S×SV is constant on the generic

fibre, hence in Qunr
q , and restricting it to (0, v0) shows that it is in Zunr

q , and if it is 1 on
Pic[0]

C/S×S v0, it is equal to 1. Therefore trivialisations on Pic[0]
C/S×S v0 rigidify invertible

O-modules on Pic[0]
C/S ×S V .

The next proposition generalises [76], Corollary 2.8.6 and Lemma 2.7.11.2: there,
C → S is nodal (but not necessarily regular), and the restriction of M to J0 ×S J0 is
described.

Proposition 1.6.8.7. In the situation of Section 1.6.8, the pullback of the invertible
O-module M on J ×Zunr

q
J0 to Pic[0]

C/Zunr
q
×Zunr

q
V by the product of the quotient map

quot : Pic[0]
C/Zunr

q
→ J and the map ΣL0 : V → J0 is Nq,d, compatible with their rigidifica-
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tions at J × 0 and Pic[0]
C/Zunr

q
× v0. In a diagram:

(1.6.8.8)

P× M× N×q,d

J ×Zunr
q

J∨,0 J ×Zunr
q

J0 Pic[0]
C/Zunr

q
×Zunr

q
V .

id×j∗,−1
b

quot×ΣL0

For T any Zunr
q -scheme, for x in J(T ) given by an invertible O-module L on CT rigidified

at b, and y in J0(T ) = Pic0
C/Zunr

q
(T ) given by the difference D = D+ −D− of effective

relative Cartier divisors on CT of the same multidegree, we have

P (x, j∗,−1
b (y)) =M(x, y) = NormD+/T (L)⊗OT NormD−/T (L)−1 .

Proof. The scheme Pic[0]
C/Zunr

q
×Zunr

q
V is smooth over Zunr

q ad connected, hence regular and

integral, and since VFq is irreducible, the irreducible components of (Pic[0]
C/Zunr

q
×Zunr

q
V )Fq

are the P i ×Fq VFq , with P i the irreducible components of (Pic[0]
C/Zunr

q
)Fq , with i in

π0((Pic[0]
C/Zunr

q
)Fq ), which, by the way, equals the kernel of ZI → Z, x 7→

∑
j∈I mjxj .

We now prove the first claim. Both Nq,d and the pullback of M are rigidified on
Pic[0]

C/Zunr
q
× v0. Below we will give, after inverting q, an isomorphism α from Nq,d to

the pullback of M that is compatible with the rigidifications. Then there is a unique
divisor Dα on Pic[0]

C/Zunr
q
×Zunr

q
V , supported on (Pic[0]

C/Zunr
q
×Zunr

q
V )Fq , such that α is

an isomorphism from Nq,d(Dα) to the pullback of M. Let i be in π0((Pic[0]
C/Zunr

q
)Fq ),

and let x be in Pic[0]
C/Zunr

q
(Zunr
q ) specialising to an Fq-point of P i, then restricting α to

(xi, v0) and using the compatibility of α (over Qunr
q ) with the rigidifications, gives that

the multiplicity of P i × VFq in Dα is zero. Hence Dα is zero.
Let us now give, over (Pic[0]

C/Zunr
q
×Zunr

q
V )Qunr

q
, an isomorphism α from Nq,d to the

pullback of M. Note that (Pic[0]
C/Zunr

q
)Qunr

q
= JQunr

q
, and that VQunr

q
= C

(|d|)
Qunr
q

, where
|d| =

∑
imidi is the total degree given by the multidgree d. For T a Qunr

q -scheme,
x ∈ J(T ) given by L an invertible OCT -module rigidified at b, and v ∈ V (T ) given
by a relative Cartier divisor D of degree |d| on CT , we have, using Proposition 1.6.3.2
and (1.6.8.6), the following isomorphisms (functorial in T ), respecting the rigidifications
at v = v0:

(1.6.8.9)
M(x,ΣL0(v)) =M(x,Σ(v)− Σ(v0)) =M(x,Σ(v))⊗M(x,Σ(v0))−1

= NormD/T (L)⊗OT NormD0/T (L)−1 = Nq,d(x, v) .

This finishes the proof of the first claim of the Proposition. The second claim fol-
lows directly from the definition of Nq,d, plus the compatibility at the end of Propo-
sition 1.6.3.2.
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1.6.9 Integral points of the extended Poincaré torsor

Let C over Z be a curve as in Section 1.2. Given a point (x, y) ∈ (J ×J0)(Z) we want to
describe explicitly the free Z-moduleM(x, y) when x is given by an invertible O-module
L of total degree 0 on C rigidified at b and y is given as a relative Cartier divisor D
on C of total degree 0 with the property that there exists a unique divisor V whose
support is disjoint from b and contained in the bad fibres of C → Spec(Z) such that
O(D+V ) has degree zero when restricted to every irreducible component of any fibre
of C → Spec(Z). Since M(x, y) is a free Z-module of rank 1 then it is a submodule
of M(x, y)[1/n] and writing D = D+ − D− as a difference of relative effective Cartier
divisors, Proposition 1.6.3.2, with S = Spec(Z[1/n]), gives

(1.6.9.1) M(x, y)[1/n] =
(
NormD+/Z(L)⊗Z NormD−/Z(L)−1) [1/n]

and consequently there exist unique integers eq, for q varying among the primes divid-
ing n, such that, as submodules of

(
NormD+/Z(L)⊗Z NormD−/Z(L)−1) [1/n],

(1.6.9.2) M(x, y) =

∏
q|n

qeq

 · (NormD+/Z(L)⊗Z NormD−/Z(L)−1) .
We write V =

∑
q|n Vq where Vq is a divisor supported on CFq . For every prime q dividing

n let Ci,q, i ∈ Iq the irreducible components of CFq with multiplicity mi,q and let Vi,q be
the integers so that Vq =

∑
i∈Iq Vi,qCi,q.

Proposition 1.6.9.3. The integers in (1.6.9.2) are given by

eq = −
∑
i∈Iq

Vi,q degFq (L|Ci,q ) .

Proof. For every q dividing n let Hq be an effective relative Cartier divisor on CZq whose
complement Uq is affine (recall that C is projective over Z, take a high degree embedding
and a hyperplane section that avoids chosen closed points ci,q on the Ci,q). The Chinese
remainder theorem, applied to the OC(Uq)-module (OC(D + V ))(Uq) and the (distinct)
closed points ci,q, provides an element fq of (OC(D+V ))(Uq) that generates OC(D+V )
at all ci,q. Let Dq = D+

q − D−q be the divisor of fq as rational section of OC(D + V ).
Then D+

q and D−q are finite over Zq, and fq is a rational function on CZq with

(1.6.9.4) div(fq) = (D+
q −D−q )− (D + V ) = (D+

q +D−)− (D+ +D−q )− V .

This linear equivalence, restricted to Qq, gives the isomorphism (1.6.4.7)

(1.6.9.5) φ : Norm(D++D−q )/Qq (L) −→ Norm(D+
q +D−)/Qq (L) .
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Tensoring with Norm(D−+D−q )/Qq (L)−1 we obtain the isomorphism
(1.6.9.6)
φ⊗ id : NormD+/Qq (L)⊗NormD−/Qq (L)−1 NormD+

q /Qq (L)⊗NormD−q /Qq (L)−1

using the identifications
(1.6.9.7)
NormD+/Qq (L)⊗NormD−/Qq (L)−1 = Norm(D++D−q )/Qq (L)⊗Norm(D−+D−q )/Qq (L)−1

NormD+
q /Qq (L)⊗NormD−q /Qq (L)−1 = Norm(D+

q +D−)/Qq (L)⊗Norm(D−+D−q )/Qq (L)−1 .

Using the same method as for getting the rational section fq of OC(D + V ), we get
a rational section l of L with the support of div(l) finite over Zq and disjoint from
the supports of D and Dq, and from the intersections of different Ci,q and Cj,q. By
Proposition 1.6.8.7, and the choice of l,
(1.6.9.8)
M(x, y)Zq = NormD+

q /Zq (L)⊗NormD−q /Zq (L)−1 = Zq·NormD+
q /Zq (l)⊗NormD−q /Zq (l)

−1 ,

and

(1.6.9.9) NormD+/Zq (L)⊗NormD−/Zq (L)−1 = Zq·NormD+/Zq (l)⊗NormD−/Zq (l)−1 .

By (1.6.4.4), we have that φ⊗ id maps

NormD+/Qq (l)⊗NormD−/Qq (l)−1

to

(1.6.9.10) fq(div(l))−1 ·NormD+
q /Qq (l)⊗NormD−q /Qq (l)

−1 .

Comparing with (1.6.9.2), we conclude that

(1.6.9.11) eq = vq(fq(div(l))) .

We write div(l) =
∑
j njDj as a sum of prime divisors. These Dj are finite over Zq,

disjoint from the support of the horizontal part of div(fq), that is of Dq −D, and each
of them meets only one of the Ci,q, say Cs(j),q. Then, for each j, fms(j),q

q and q−Vs(j),q

have the same multiplicity along Cs(j),q, and consequently they differ multiplicatively by
a unit on a neighborhood of Dj . Then we have
(1.6.9.12)

vq(fq(Dj)) = vq(f
ms(j),q
q (Dj))
ms(j),q

= vq(q−Vs(j),q (Dj))
ms(j),q

=
vq
(
NormDj/Zq (q−Vs(j),q )

)
ms(j),q

=
−Vs(j),q degZq (Dj)

ms(j),q
=
−Vs(j),q·(Dj · CFq )

ms(j),q
=
−Vs(j),q·(Dj ·ms(j),qCs(j),q)

ms(j),q

= −Vs(j),q(Dj · Cs(j)) = −Vq ·Dj .
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We get

(1.6.9.13)

eq = vq(fq(div(l))) = −Vq · div(l) = −
∑
i∈Iq

Vi,q(Ci · div(l))

= −
∑
i∈Iq

Vi,q degFq (L|Ci,q ) .

1.7 Description of the map from the curve to the tor-
sor

The situation is as in Section 1.2. The aim of this section is to give descriptions of
all morphisms in the diagram (1.2.12), in terms of invertible O-modules on (C × C)Q
and extensions of them over C × U , to be used for doing computations when applying
Theorem 1.4.12. The main point is that each trci ◦ fi is described in (1.7.4) as a mor-
phism (of schemes) αLi : JQ → JQ with Li an invertible O-module on C × U , and that
Proposition 1.7.8 describes (j̃b)i : CZ[1/n] → Ti.

We describe the morphism j̃b : U → T in terms of invertible O-modules on C ×Csm.
Since T is the product, over J , of the Gm-torsors Ti := (id,m·◦trci ◦fi)∗P× this amounts
to describing, for each i, the morphism (j̃b)i : U → Ti. Note that trci ◦ fi : JQ → JQ is
a morphism of groupschemes composed with a translation, and that all morphisms of
schemes α : JQ → JQ are of this form. From now on we fix one such i and omit it from
our notation.

Let α : JQ → JQ be a morphism of schemes, let Lα be the pullback ofM (see (1.6.3.3))
to CQ × CQ via jb × (α ◦ jb), and let Tα := (id, α)∗M× on JQ:

(1.7.1)

Tα M×

CQ JQ (J × J)Q

(C × C)Q (C × J)Q (C × J)Q

L×α Luniv,× .

jb

diag

(id,α)

id×jb id×α

jb×id

Then (b, id)∗Lα = OCQ , Lα is of degree zero on the fibres of pr2 : (C × C)Q → CQ, and:
j∗bTα is trivial if and only if diag∗Lα is trivial. Note that diagram (1.7.1) without the
Gm-torsors is commutative.
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Conversely, let L be an invertible O-module on (C ×C)Q, rigidified on {b}×CQ, and
of degree 0 on the fibres of pr2 : (C × C)Q → CQ. The universal property of Luniv gives
a unique βL : CQ → JQ such that (id × βL)∗Luniv = L (compatible with rigidification
at b). The Albanese property of jb : CQ → JQ then gives that βL extends to a unique
αL : JQ → JQ such that αL ◦ jb = βL. Then j∗bTαL is trivial if and only if diag∗L is
trivial. We have proved the following proposition.

Proposition 1.7.2. In the situation of Section 1.2, the above maps α 7→ Lα and L 7→ αL

are inverse maps between the sets

{scheme morphisms α : JQ → JQ such that j∗b (id, α)∗M is trivial}

and

{invertible O-modules L on (C × C)Q, rigidified on {b} × CQ, of degree 0 on
the fibres of pr2 : (C × C)Q → CQ, and such that diag∗L is trivial}.

Now let L be in the second set of Proposition 1.7.2. Then diag∗L = OCQ , compatible
with rigidifications at b. Let

(1.7.3) ` ∈ (diag∗L×)(CQ)

correspond to 1. Then m· ◦ αL extends over Z to m· ◦ αL : J → J0, and the restriction
of j∗b (m· ◦ αL)∗M on Csm to U is trivial, giving a lift j̃b, unique up to sign:

(1.7.4)
Tm·◦αL M×

U Csm J J × J0 .

j̃b

jb (id,m·◦αL)

The invertible O-module L on (C × C)Q with its rigidification of (b, id)∗L, extends
uniquely to an invertible O-module on (C × C)Z[1/n], still denoted L.

Proposition 1.7.5. Let S be a Z[1/n]-scheme, let d and e be in Z≥0, and let D ∈ C(d)(S)
and E ∈ C(e)(S). Then we have:

M(Σ(D), αL(Σ(E))) =
(
NormD/S(id, b)∗L

)⊗(1−e) ⊗Norm(D×E)/S(L) .

For x ∈ C(S) we have

Tm·◦αL(jb(x)) =M×(jb(x),m·αL(jb(x))) = L⊗m(x, x)× = (Gm)S .
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Proof. We may and do assume (finite locally free base change on S) that we have xi and
yj in C(S), such that D =

∑
i xi and E =

∑
j yj . Recall that, for c ∈ C(S), βL(c) in

J(S) is (id, c)∗L on CS , with its rigidification at b. Then we have:

(1.7.5.1)

M(Σ(D), αL(Σ(E))) =M(αL(Σ(E)),Σ(D))

=M

βL(b) +
∑
j

(βL(yj)− βL(b)),
∑
i

jb(xi)


=
(⊗

i

L(xi, b)⊗(1−e)

)
⊗
⊗
i,j

L(xi, yj) .

from which the desired equality follows.
Now we prove the second claim. Let x be in C(S). The first equality holds by

definition. Taking D = E = x in what we just proved, gives the second equality, and the
third comes from the rigidification at b.

Now let L be any extension of L with its rigidification of (b, id)∗L from (C ×C)Z[1/n]

to C×U . For q dividing n, let Wq be the valuation along UFq of the rational section ` of
diag∗L on U . Then `, multiplied by the product, over the primes q dividing n, of q−Wq ,
generates diag∗L on U :

(1.7.6)

∏
q|n

q−Wq

 ·` ∈ (diag∗L×)(U) .

There is a unique divisor V on C × U with support disjoint from (b, id)U and contained
in the (C × U)Fq with q dividing n, such that

(1.7.7) Lm := L⊗m(V ) on C × U

has multidegree 0 on the fibres of pr2 : C × U → U . Then Lm is the pullback of Luniv

via id× (m· ◦ αL ◦ jb) : C × U → C × J0. Its restriction Lm|Csm×U is then the pullback
ofM via jb × (m· ◦ αL ◦ jb) : Csm ×U → J × J0, because on Csm × J0 the restriction of
Luniv and (jb × id)∗M are equal (both are rigidified after (b, id)∗ and equal over Z[1/n];
here we use that, for all q|n, J0

Fq is geometrically connected). Hence, on U we have
j∗bTm·◦αL = diag∗(L⊗m(V )×), compatible with rigidifications at b ∈ U(Z[1/n]). Our
trivialisation j̃b on U of Tm·◦αL is therefore a generating section of L⊗m, multiplied by
the product over the q dividing n, of the factors q−Vq , where Vq is the multiplicity in V of
the prime divisor (U ×U)Fq . This means that we have proved the following proposition.
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Proposition 1.7.8. For x and S as in Proposition 1.7.5, we have the following descrip-
tion of j̃b:

j̃b(x) =

∏
q|n

q−mWq−Vq

 ·`⊗m in (Tm·◦αL(jb(x)))(S) = L⊗m(x, x)×(S).

1.8 An example with genus 2, rank 2, and 14 points

The example that we are going to treat is the quotient of the modular curve X0(129) by
the action of the group of order 4 generated by the Atkin-Lehner involutions w3 and w43.
An equation for this quotient is given in the table in [53], and Magma has shown that
that equation and the equations below give isomorphic curves over Q.

Let C0 be the curve over Z obtained from the following closed subschemes of A2
Z

V1 : y2 + y = x6 − 3x5 + x4 + 3x3 − x2 − x ,

V2 : w2 + z3w = 1− 3z + z2 + 3z3 − z4 − z5

by glueing the open subset of V1 where x is invertible with the open subset of V2 where
z is invertible using the identifications z = 1/x, w = y/x3. The scheme C0 can be
also described as a subscheme of the line bundle L3 associated to the invertible O-
module OP1

Z
(3) on P1

Z with homogeneous coordinates X,Z: the map OP1
Z
(3) → OP1

Z
(6)

sending a section Y to Y ⊗ Y + Z3 ⊗ Y induces a map φ from L3 to the line bundle
L6 associated to O(6); then C0 is isomorphic to the inverse image by φ of the section
s := X6−3X5Z+X4Z2+3X3Z3−X2Z4−XZ5 of L6 and since the map φ is finite of
degree 2 then C0 is finite of degree 2 over P1

Z. Hence C0 is proper over Z and it is
moreover smooth over Z[1/n] with n = 3 · 43. The generic fiber of C0 is a curve of genus
g = 2, labeled 5547.b.16641.1 on www.lmfdb.org. The only point where C0 is not regular
is the point P0 = (3, x−2, y−1) contained in V1 and the blow up C of C0 in P0 is regular.

In the rest of the article we apply our geometric method to the curve C and we prove
that C(Z) contains exactly 14 elements. We use the same notation as in Sections 1.2
and 1.4.

The fiber CF43 is absolutely irreducible while CF3 is the union of two geometrically
irreducible curves, a curve of genus 0 that lies above the point P0 and that we call K0,
and a curve of genus 1 that we call K1. We define U0 := C \K1 and U1 := C \K0 so
that C(Z) = Csm(Z) = U0(Z) ∪ U1(Z) and both U0 and U1 satisfy the hypothesis on U
in Section 1.2. We have K0 ·K1 = 2 and consequently the self-intersections of K0 and
K1 are both equal to −2. We deduce that all the fibers of J over Z are connected except
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for JF3 which has group of connected components equal to Z/2Z. Hence,

(1.8.0.1) m = 2 .

The automorphism group of C is isomorphic to (Z/2Z)2, generated by the automorphisms
ι and η lifting the extension to C0 of

ι, η : V1 −→ V1 , ι : (x, y) 7−→ (x,−1− y) , η : (x, y) 7−→ (1− x,−1− y) .

The quotients E1 := CQ/η and E2 := CQ/(ι ◦ η) are curves of genus 1 and the two
projections C → Ei induce an isogeny J → Pic0(E1) × Pic0(E2). The elliptic curves
Pic0(Ei) are not isogenous and ρ = 2.

1.8.1 The torsor on the jacobian

Let ∞,∞− ∈ C(Z) be the lifts of (0, 1), (0,−1) ∈ V2(Z) ⊂ C0(Z) and let us fix the base
point b = ∞ in C(Z). Following Section 1.7 we describe a Gm-torsor T → J and maps
j̃b,i : Ui → T using invertible O-modules on C × Csm. The torsor T = (id,m· ◦ α)∗M×

only depends on the scheme morphism α : JQ → JQ, which, by Proposition 1.7.2, is
uniquely determined by an invertible O-module L on (C × C)Q, rigidified on {b} × CQ,
of degree 0 on the fibres of pr2 : (C × C)Q → CQ, and such that diag∗L is trivial.

We now look for a non-trivial O-module L with these properties using the homo-
morphism η∗ : JQ → JQ, which does not belong to Z ⊂ End(JQ). We can take α

of the form trc[◦](n1·η∗+n2·id), where id : JQ → JQ is the identity map, ni are in-
tegers and c lies in J(Q). Using the map α 7→ Lα := (jb × (jb◦α))∗M in Proposi-
tion 1.7.2, the O-module Ltrc is isomorphic to OCQ×CQ(pr∗1D), the O-module Lη∗ is
isomorphic to OCQ×CQ(Γη,Q−pr∗1η∗(b)−pr∗2η(b)) and the O-module Lid is isomorphic to
OCQ×CQ(diag(CQ)−pr∗1(b)−pr∗2(b)), where D is a divisor on CQ representing c, the maps
pri are the projections CQ×CQ → CQ and Γη is the graph of the map η : C → C. Hence,
we can take L of the form OCQ×CQ(n1Γη,Q + n2diag(CQ) + pr∗1D1 + pr∗2D2) for some
integers ni and some divisors Di on CQ. Among the O-modules of this form satisfying
the needed properties, we choose

L := OCQ×CQ(Γη,Q − pr∗1(∞−)− pr∗2(∞)) = OCQ×CQ(Γη,Q −∞− × CQ − CQ ×∞)

trivialised on b× CQ through the section

lb := 2 in ((b, id)∗L)(CQ) = OCQ(η(b)− b)(CQ) = OCQ(CQ) .

For every Q-point Q on CQ the OCQ
-module (id, Q)∗L is isomorphic to OCQ

(η(Q)−∞−),
hence

αL = trc ◦ f , with f = η∗ and c = [D0] , D0 :=∞−∞− .
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When restricted to the diagonal L is trivial since, compatibly with the trivialisation at
(b, b),

diag∗L = OCQ(∞− +∞−∞− −∞) = OCQ .

In particular, the global section l := 1 of OCQ gives a rigidification of diag∗L that we
write as

diag∗L = l · OCQ .

Following Proposition 1.7.8 and the discussion preceding it, we choose the extension of
L over C × Csm

L := OC×Csm(Γη|C×Csm −∞− × Csm − C ×∞) ,

trivialised along b×Csm through the section lb = 2 (the points ∞− and b have a simple
intersection over the prime 2). By Proposition 1.7.5, the torsor T := Tm·◦αL on J , with
m = 2 as explained before Equation (1.8.0.1), satisfies, for S a Z[1/n]-scheme and x in
C(S), using the trivialisation given by l and lb

(1.8.1.1)
T (jb(x)) =M×(jb(x),m·αL(jb(x))) =M×(jb(x), (id, x)∗L⊗m)

= x∗(id, x)∗L⊗m,× ⊗ b∗(id, x)∗L⊗−m,×

= L⊗m,×(x, x)⊗ L⊗m,×(b, x)−1 = L⊗m,×(x, x) = O×S .

Using Proposition 1.7.8 we now compute j̃b,0 and j̃b,1. Since l generates diag∗(L) on the
whole Csm, we have W3 = W43 = 0. The invertible O-module L⊗m has multidegree 0
over all the fibers C × U1 → U1, hence in order to compute j̃b,1 we must take V = 0
in (1.7.7), giving V3 = V43 = 0. Hence for S and x as in (1.8.1.1), assuming moreover
that 2 is invertible on S,

(1.8.1.2) j̃b,1(x) = l2 ⊗ l−2
b = 1

4(x∗1)⊗ (b∗1)−1 in

T (jb(x)) = x∗(id, x)∗L⊗m,×⊗b∗(id, x)∗L⊗−m,×= x∗OCS (η x−∞−)×⊗b∗OCS (η x−∞−)×,

where the last equality in (1.8.1.2) makes sense if the image of x is disjoint from ∞,∞−
in CS .

The restriction L⊗m to C × U0 has multidegree 0 over all the fibers C × U0 → U0 of
characteristic not 3, while if we consider a fiber of characteristic 3 it has degree 2 over K0

and degree −2 over K1. Hence for computing j̃b,0 we take V = K0× (K0 ∩U0) in (1.7.7)
giving V43 = 0, V3 = 1. Hence for S and x as in (1.8.1.1), assuming moreover that 2 is
invertible on S,

(1.8.1.3) j̃b,0(x) = 1
3 l

2 ⊗ l−2
b = 1

12(x∗1)⊗ (b∗1)−1 in

41



1. GEOMETRIC QUADRATIC CHABAUTY

T (jb(x)) = x∗(id, x)∗L⊗m,×⊗b∗(id, x)∗L⊗−m,×= x∗OCS (η x−∞−)×⊗b∗OCS (η x−∞−)×,

where the last equality in (1.8.1.3) makes sense if the image of x is disjoint from ∞,∞−
in CS .

1.8.2 Some integral points on the biextension

On C0 we have the following integral points that lift uniquely to elements of C(Z)

∞ = (0, 1) , ∞− := (0,−1) in V2(Z) ,
α := (1, 0) , β := η(α) = (0,−1) , γ := (2, 1) , δ := η(γ) = (−1,−2) in V1(Z) .

Computations in Magma confirm that J(Z) is a free Z-module of rank r = 2 generated
by

G1 := γ − α , G2 := α+∞− − 2∞ .

The points in T (Z) are a subset of points of M×(Z) that can be constructed, using
the two group laws, from the points in M×(Gi,m·f(Gj))(Z) and M×(Gi,m·D0)(Z)
for i, j ∈ {1, 2}. Let us compute in detail M×(G1,m · f(G1))(Z). As explained in
Proposition 1.6.9.3, we have

M(G1,m·f(G1))× =M×(γ − α, 2δ − 2β)
= 3e343e43 ·Norm(2δ)/Z(OC(γ−α))⊗Norm(2β)/Z(OC(γ−α))−1

= 3e343e43 · (2δ − 2β)∗OC(γ − α)

where, given a scheme S, an invertibleO-module L on CS and a divisorD+−D− =
∑
i niPi

on CS that is sum of S-points, we define the invertible OS-module(∑
i

niPi

)∗
L :=

⊗
i

P ∗i Lni = NormD+/S(L)⊗NormD−/S(L)−1 .

Since CF43 is irreducible then 2f(G1) has already multidegree 0 over 43, hence e43 = 0.
If we look at CF3 then 2f(G1) does not have multidegree 0, while 2f(G1) + K0 has
multidegree 0; hence, by Proposition 1.6.9.3,

e3 = −degF3 OC(γ − α)|K0 = −1 .

Notice that over Z[ 1
2 ] the divisor G1 is disjoint from β and δ (to see that it is disjoint

from δ = (−1,−2, 1) over the prime 3 one needs to look at local equations of the blow
up) thus β∗OC(γ − α) and δ∗OC(γ − α) are generated by β∗1 and δ∗1 over Z[ 1

2 ]. Thus
there are integers eβ , eδ such that β∗OC(γ−α) and δ∗OC(γ−α) are generated by β∗2eβ
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and δ∗2eδ over Z. Looking at the intersections between β, γ, α and δ we compute that
eβ = −1 and eδ = 1 hence

M(G1,m · f(G1)) = 3−1·(δ∗2)2 ⊗ (β∗2−1)−2 · Z = 24·3−1·(δ∗1)2 ⊗ (β∗1) · Z and
Q1,1 := ±24·3−1·(δ∗1)2 ⊗ (β∗1)−2 ∈M×G1,m·f(G1)(Z) .

With analogous computations we see that

Q2,1 := 2−2·(δ∗1)2⊗(β∗1)−2 generatesMG2,m·f(G1)

Q1,2 := 2−2·(β∗1)2⊗(∞∗−1)2⊗(∞∗1)−4 generatesMG1,m·f(G2)

Q2,2 := 218·(β∗1)2⊗(∞∗−x)2⊗(∞∗z2)−4 generatesMG2,m·f(G2)

Q1,2 := (∞∗1)2⊗(∞∗−1)−2 generatesMG1,m·D0

Q2,0 := 2−12·(∞∗z2)2⊗(∞∗−x)−2 generatesMG2,m·D0 .

1.8.3 Some residue disks of the biextension

Let p be a prime of good reduction for C. Given the divisors

D := α−∞ , E := 2β − 2∞− = (m· ◦ trc ◦ η∗)(D) in Div(CZ/p2)

we use Lemma 1.6.6.8 to give parameters on the residue disks in M×(Z/p2)D,E and
T (Z/p2)D, with D,E the images of D,E in Div(CFp).

We choose the “base points” b1 = α, b2 = ∞, b3 = β, b4 = ∞, so that b1 6= b2,
b3 6= b4 and h0(CFp , b1 + b2) = h0(CFp , b3 + b4) = 1. As in Equation (1.6.6.2), we define
xα = x−1, x∞ = z, xβ = x and xD,β = xD,∞− = 1, xD,∞ = z−1. For Q in {∞, β, α}
and a ∈ Fp let Qa be the unique Z/p2-point of C that is congruent to Q modulo p and
such that xQ(Qa) = ap ∈ Z/p2. We have the bijections

F2
p −→ J(Z/p2)D , λ 7−→ Dλ := D + αλ1 − α+∞λ2 −∞ = αλ1 +∞λ2 − 2∞

F2
p −→ J(Z/p2)E , µ 7−→ Eµ := E + βµ1 − β +∞µ2 −∞ = β + βµ1 +∞µ2 −∞− 2∞− .

Following (1.6.6.7) for λ, µ ∈ F2
p we define

sD,E(λ, µ) := (β∗1)⊗ (β∗µ1
1)⊗ (∞∗µ2

z2

z − λ2p
)⊗ (∞∗ z2

z − λ2p
)−1 ⊗ (∞∗−1)−2

that, by Proposition 1.6.3.2 and Remark 1.6.3.12, generates E∗µOCZ/p2 (Dλ) = MDλ,Eµ .
The points in M×(Fp) projecting to (D,E) are in bijection with the elements ξ in F×p
and are exactly the points ξ ·sD,E(0, 0). Using (Z/p2)× = F×p × (1+pFp), for each ξ ∈ F×p
we parametrise the residue disk of ξ · sD,E(0, 0) using bijection in Lemma 1.6.6.8

F5
p −→M×(Z/p2)ξ·sD,E(0,0) , (λ1, λ2, µ1, µ2, τ) 7−→ (1 + pτ)ξ·sD,E((λ1, λ2), (µ1, µ2)) .

43



1. GEOMETRIC QUADRATIC CHABAUTY

Since (m· ◦ trc ◦ f)(Dλ) = E−2λ then we have

T (Z/p2)D =
⋃
λ∈F2

p

TDλ(Z/p2) =
⋃
λ∈F2

p

M×Dλ,E−2λ
(Z/p2) .

As ξ varies in F×p the point ξ·sD,E(0, 0) varies in all the points inM×(Fp) projecting to
(D,E) and we have the following bijection induced by parameters in ξ·sD,E(0, 0)
(1.8.3.1)

F3
p −→ T (Zp)ξsD,E(0,0) , (λ1, λ2, τ) 7−→ (1 + τp)·ξ·sD,E((λ1, λ2), (−2λ1,−2λ2)) .

If we apply (1.8.1.2) and (1.8.1.3) to Q = αλ and we use the symmetry of the Poincaré
torsor explained in Proposition 1.6.3.2 and made explicit in Lemma 1.6.5.4 we obtain the
following description of j̃b,i on C(Z/p2)αFp

when p 6= 2

j̃b,1(αλ) = (1/4) · sD,E((λ, 0), (−2λ, 0)) , j̃b,0(Q) = (1/12) · sD,E((λ, 0), (−2λ, 0)) .

If p = 5 then 18 and −1 are (p− 1)-th roots of unity in (Z/p2)×, thus 1/4 = (−1)(1 + p)
and 1/12 = 3(1 + 2p) in (Z/p2)× = F×p × (1+pFp), hence
(1.8.3.2)
j̃b,1(αλ) = −(1+p)·sD,E((λ, 0), (−2λ, 0)) , j̃b,0(Q) = 18·(1+2p)·sD,E((λ, 0), (−2λ, 0)) .

Since it is useful for computing the map κZ in the residue disks of T (Z/p2) projecting
to D, we also apply Lemma 1.6.6.8 to the residue disks ofM×(Z/p2) lying over (D, 0),
(0, E) and (0, 0). Hence for λ, µ ∈ F2

p we define the divisors on CZ/p2

D0
λ := αλ1 − α+∞λ2 −∞ , E0

µ := βµ1 − β +∞µ2 −∞

and the sections

sD,0(λ,µ) :=(β∗µ1
1)⊗(∞∗µ2

z2

z−λ2p
)⊗(β∗1)−1⊗(∞∗ z2

z−λ2p
)−1 ∈M×(Dλ,E

0
µ)(Z/p2)

s0,E(λ,µ) :=(β∗1)⊗(β∗µ1
1)⊗(∞∗µ2

z

z−λ2p
)⊗(∞∗ z

z−λ2p
)−1⊗(∞∗

−
1)−2 ∈M×(D0

λ,Eµ)(Z/p2)

s0,0(λ,µ) :=(β∗µ1
1)⊗(∞∗µ2

z

z−λ2p
)⊗(β∗1)−1⊗(∞∗ z

z−λ2p
)−1 ∈M×(D0

λ,E
0
µ)(Z/p2) .

1.8.4 Geometry mod p2 of integral points

From now on p = 5. Let α ∈ C(Z/p2) be the image of α ∈ C(Z). In this subsection
we compute the composition κ : Z2 → T (Z/p2)

j̃b,1(α) of the map κZ : Z2 → T (Zp)j̃b,1(α)
in (1.4.9) and the reduction map T (Zp)j̃b,1(α) → T (Z/p2)

j̃b,1(α). With a suitable choice
of parameters in O

T,j̃b,1(α), the map κZ is described by integral convergent power series
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κ1, κ2, κ3 ∈ Zp〈z1, z2〉 and κ, composed with the inverse of the parametrization (1.8.3.1),
is given by the images κ1, κ2, κ3 of κ1, κ2, κ3 in Fp[z1, z2].

The divisor jb(α) is equal to the image of

G̃t := e0,1G1 + e0,2G2 with e0,1 := 6 , e0,2 := 3

in J(Fp) and

t̃ := Q
6

1,0 ⊗Q
3

2,0 ⊗Q
6·6

1,1 ⊗Q
6·3

1,2 ⊗Q
3·6

2,1 ⊗Q
3·3

2,2 inM×(D̃1 ,m·(D0 + η∗G̃t))(Z)

is a lift of j̃b,1(α). The kernel of J(Z)→ J(Fp) is a free Z-module generated by

G̃1:=e1,1G1 + e1,2G2 , G̃2:=e2,1G1 + e2,2G2 , with e1,1:=16 , e1,2:=2 , e2,1:=0 , e2,2:=5 .

Let G̃t,2 be the divisor m(D0+η∗(G̃t)) representing (m·◦trc◦f)(G̃t) ∈ J0(Z). Following
(1.4.1) for i, j ∈ {1, 2} we define

Pi,j :=
2⊗

m,l=1
Q
ei,l·ej,m
l,m

Ri,t̃ :=
2⊗
l=1

Q
ei,l

l,0 ⊗
2⊗

m,l=1
Q
ei,l·e0,m

l,m
St̃,j :=

2⊗
m,l=1

Q
e0,l·ej,m
l,m

(G̃i, f(mG̃j)) (G̃i, G̃t,2)) (G̃t, f(mG̃j)) .

Computations in CZ/p2 show the following linear equivalences of divisors

G̃t ∼ D0,3 , G̃1 ∼ D0
4,0 , G̃2 ∼ D0

0,3

and applying Lemma 1.6.4.8 and the functoriality of the norm we compute
(1.8.4.1)
P1,1 = (1 + 4p)·s0,0((4, 0), (2, 0)) ∈M×(G̃1,G̃1)(Z/p2)=M×(D0

4,0, E
0
2,0)(Z/p2),

P1,2 = (1 + 4p)·s0,0((4, 0), (0, 4)) ∈M×(G̃1,G̃2)(Z/p2)=M×(D0
4,0, E

0
0,4)(Z/p2),

P2,1 = (1 + 4p)·s0,0((0, 3), (2, 0)) ∈M×(G̃2,G̃1)(Z/p2)=M×(D0
0,3, E

0
2,0)(Z/p2),

P2,2 = (−1)·(1 + 2p)·s0,0((0, 3), (0, 4)) ∈M×(G̃2,G̃2)(Z/p2)=M×(D0
0,3, E

0
0,4)(Z/p2),

R1,t̃ = s0,E((4, 0), (0, 4)) ∈M×(G̃1,G̃t,2)(Z/p2)=M×(D0
4,0, E0,4)(Z/p2),

R2,t̃ = (1 + 4p)·s0,E((0, 3), (0, 4)) ∈M×(G̃2,G̃t,2)(Z/p2)=M×(D0
0,3, E0,4)(Z/p2),

St̃,1 = sD,0((0, 3), (2, 0)) ∈M×(G̃t,G̃1)(Z/p2)=M×(D0,3, E
0
2,0)(Z/p2),

St̃,2 = (−1)(1 + 4p)·sD,0((0, 3), (0, 4)) ∈M×(G̃t,G̃2)(Z/p2)=M×(D0,3, E
0
0,4)(Z/p2),

t̃ = (−1)·(1 + 2p)·sD,E((0, 3), (0, 4)) ∈M×(G̃t,G̃t,2)(Z/p2)=M×(D0,3, E0,4)(Z/p2).
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We now show these computations in the cases of G̃t and t̃. The Riemann-Roch space
relative to the divisor G̃t+∞+α−D on CZ/p2 is generated by the inverse of the rational
function

h1 := x9 − 5x8 − 2x7 + 7x6 − 9x5 − 5x4 + 14x3 + 7x2 + 13x+ 1
15x5 − x4 + 4x3 + 19x2 + 4x+ 9 +

+ x6 + 9x5 − 5x4 + 15x3 − 5x2 + 4x+ 14
15x5 − x4 + 4x3 + 19x2 + 4x+ 9 y

and indeed

div(h1) = G̃t −D0,3 = (6γ + 3∞− − 3α− 6∞)− (α+∞3 − 2∞) in Div(CZ/p2) .

Hence multiplication by h1 gives an isomorphism OCZ/p2 (G̃t) → OCZ/p2 (D0,3) and by
functoriality of the norm we get

δ∗OC(G̃t)→ δ∗OCZ/p2 (D0,3), δ∗1 7→ δ∗(h1) = h1(δ)·δ∗1 = 12·δ∗1,

β∗OC(G̃t)→ β∗OCZ/p2 (D0,3), β∗1 7→ β∗(h1) = h1(β)·β∗1 = 18·β∗1,

∞∗OC(G̃t)→∞∗OCZ/p2 (D0,3), ∞∗z6 7→ ∞∗(z6h1) = 13·∞∗ z2

z − 3p ,

∞∗−OC(G̃t)→∞∗−OCZ/p2 (D0,3), ∞∗−z−3 7→ ∞∗−(z−3h1) = h1
z3 (∞−)·∞∗−1 = 6·∞∗−1 .

Since G̃t,2 = 12δ+4∞−−6β−10∞, the above isomorphisms, tensored with the exponents,
give the canonical isomorphism

(1.8.4.2) M(G̃t, G̃t,2) = G̃t,2
∗
OCZ/p2 (G̃t)→ G̃t,2

∗
OCZ/p2 (D0,3) =M(D0,3, G̃t,2)

t̃=14·(δ∗1)12⊗(β∗1)−6⊗(∞∗z6)−10⊗(∞∗−z−3)4 7→

7→ 14·(δ∗1)12⊗(β∗1)−6⊗(∞∗ z2

z−3p )−10⊗(∞∗−1)4 .

The Riemann-Roch space relative to the divisor G̃t,2+∞+α−E on CZ/p2 is generated by
the inverse of the rational function

h2 :=x17 − 8x16 + x15 − 4x14 + 7x13 + 4x12 + 12x11 + x10 + 2x9 − 5x8 + x7 + 3x6 + 12x5

20x8 − 6x7

+ 6x4 − 6x3 + 4x2 + 10x− 6 + +(x15 + 6x14 − 5x13 − x12 − 2x11 + 14x10 − 4x9)y
20x8 − 6x7

+ (14x8 + 3x7 + 8x6 − 6x5 − 3x4 + 4x3 + 13x2 − x− 7)y
20x9 − 6x8

and indeed

div(h2) = G̃t,2−E0,4 = (12δ+4∞−−6β−10∞)−(2β+∞4−∞−∞−) in Div(CZ/p2) .
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Following the recipe in Section 1.6.4 that describes the map (1.6.4.4), we consider the
following rational section of OCZ/p2 (D0,3)

l := 10x4 + x3 + 17x+ 14 + (15x+ 9)y
10x4 + 16x3 + 7x2 + 7x+ 10 .

since it generates OCZ/p2 (D0,3) in a neighborhood of the supports of G̃t,2 and E0,4. Then

div(l) = 3·(−1,1)+(17,23)+(15,10)−2·(12,23)−2·(5,20)−(0,1) ∈ Div(V1,Z/p2)⊂Div(CZ/p2).

Hence by Lemma 1.6.4.8 the canonical isomorphism

M(D0,3, G̃t,2) = G̃t,2
∗
OCZ/p2 (D0,3) −→ E∗0,4OCZ/p2 (D0,3) =M(D0,3, E0,4)

described in Equation (1.6.4.1) sends

(1.8.4.3) G̃t,2
∗
l 7−→ h2(div(l)) · E∗0,4l = 14 · E∗0,4l .

where

G̃t,2
∗
l := (δ∗l)12 ⊗ (β∗l)−6 ⊗ (∞∗l)−10 ⊗ (∞∗−l)4

= − (δ∗1)12 ⊗ (β∗1)−6 ⊗ (∞∗ z2

z−3p )−10 ⊗ (∞∗−1)4 ,

E∗0,4l := (β∗l)2 ⊗ (∞∗4l)⊗ (∞∗l)−1 ⊗ (∞∗−l)−2

= 16·(β∗1)2 ⊗ (∞∗4
z2

z−3p )⊗ (∞∗ z2

z−3p )−1 ⊗ (∞∗−1)−2 .

Equations (1.8.4.2) and (1.8.4.3) imply that t̃ = −(1 + 2p)·sD,E((0, 3), (0, 4)).
Let At̃, Bt̃, C and Dt̃ be the compositions of the reduction mapM×(Zp)→M(Z/p2)

and respectively At̃, Bt̃, C and Dt̃, defined in (1.4.2), (1.4.3) and (1.4.4). Using (1.6.6.14)
and (1.8.4.1) we get, for n in Z2,
(1.8.4.4)
At̃(n) = (−1)n2(1 + (4n2)t) · sD,0((0, 3), (2n1, 4n2)) ,
Bt̃(n) = (1 + (4n2)p)s0,E((4n1, 3n2), (0, 4)) ,

C(n) = (−1)n
2
2(1 + (4n2

1 + (4 + 4)n1n2 + 2n2
2)p) · s0,0((4n1, 3n2), (2n1, 4n2)) ,

Dt̃(n) = −(1 + (4n2
1 + 3n1n2 + 2n2

2 + 3n2 + 2)p) · sD,E((4n1, 3 + 3n2), (2n1, 4 + 4n2)),
κ(n) = −(1 + (4n2

1 + 3n1n2 + 2n2
2 + 2n2 + 2)p) · sD,E((n1, 3 + 2n2), (3n1, 4 + n2)) ,

hence, using the bijection (1.8.3.1),

(1.8.4.5) κ1 = z1 , κ2 = 3 + 2z2 , κ3 = 4z2
1 + 3z1z2 + 2z2

2 + 2z2 + 2 .
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1.8.5 The rational points with a specific image mod 5.

By (1.8.4.4) the image in T (Fp) of a point ±Dt̃(n) for n ∈ Z2 is always of the form
±sD,E(0, 0), hence, looking at (1.8.1.3) we see that there is no point T (Z) with reduction
j̃b,0(α) ∈ T (Fp). Hence C(Z)α = U1(Z)α.

Let F1, F2 ∈ O(T̃ pt )∧p be generators of the kernel of j̃b,1
∗

: O(T̃ pt )∧p → O(Ũpu)∧p as
in Section 1.4. The bijection (1.8.3.1) gives an isomorphism Fp ⊗ O(T̃ pt ) = Fp[λ1, λ2, τ ]
and since the images F1, F2 of F1, F2 in Fp ⊗ O(T̃ pt ) are generators of the kernel of
j̃b,1
∗

: Fp ⊗O(T̃ pt )∧p → Fp ⊗O(Ũpu)∧p we can suppose that

F1 = λ2 , F2 = τ − 1 .

By (1.8.4.5) we have

κ∗F1 = κ2 = 3 + 2z2 , κ∗F2 = κ3 − 1 = 4z2
1 + 3z1z2 + 2z2

2 + 2z2 + 1 .

Let A be Zp〈z1, z2〉/(κ∗F1, κ
∗F2). Then the ring

(1.8.5.1) A := A/pA = Fp[z1, z2]/(κ∗F1, κ
∗F1) = Fp[z1, z2]/(z2 − 1 , 4z2

1 + 3z1)

has dimension 2 over Fp, hence by Theorem 1.4.12 U(Z)α contains at most 2 points.
Since both

α and (12/7, 20/7) ∈ V1(Z[1/7])

reduce to α we deduce that C(Z)α = U1(Z)α is made of the these two points.

1.8.6 Determination of all rational points

Denoting (3,−1) ∈ V1(Fp) ⊂ C(Fp) as ε we have

C(Fp) = {∞ ,∞− , α , ι(α) , η(α) , (ι ◦ η)(α) , γ , ι(γ) , η(γ) , (ι ◦ η)(γ) , ε , ι(ε)} .

Using that for any point Q in C(Fp) the condition T (Z)
j̃b,i(Q) = ∅ implies Ui(Z)Q = ∅

we get

U0(Z)∞=U0(Z)∞−=U1(Z)ε=U1(Z)ι(ε)=U1(Z)γ=U1(Z)η(γ)=U1(Z)η(γ)=U1(Z)ιη(γ)=∅ .

Applying our method to ∞ we discover that U1(Z)∞ contains at most 2 points and the
same holds for U1(Z)∞− . Moreover the action of 〈η, ι〉 on C(Z) tells that U1(Z)ι(α),
U1(Z)η(α) and U1(Z)ηι(α) are sets containing exactly 2 elements. Hence

U1(Z) = U1(Z)α ∪ U1(Z)ι(α) ∪ U1(Z)η(α) ∪ U1(Z)ηι(α) ∪ U1(Z)∞− ∪ U1(Z)∞
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contains at most 12 elements. Looking at the orbits of the action of 〈η, ι〉 on U1(Z) we
see that #U1(Z) ≡ 2 (mod 4), hence #U1(Z) ≤ 10. Since U1(Z) contains∞,∞− and all
the images by 〈η, ι〉 of U1(Z)α we conclude that #U1(Z) = 10.

Applying our method to the point γ we see that U0(Z)γ contains at most two points,
one of them being γ. Moreover solving the equations κ∗Fi = 0 we see that if there is
another point γ′ in U0(Z)γ then there exist n1, n2 ∈ Z such that

jb(γ′) = 39G1 + 17G2 + 5n1G̃1 + 5n2G̃2 .

Using the Mordell-Weil sieve (see [79]) we derive a contradiction: for all integers n1, n2,
the image in J(F7) of 39G1+17G2+5n1G̃1+5n2G̃2 is not contained in jb(C(F7)). We
deduce that

U0(Z)γ = {γ} .

Applying our method to to ε we see that U0(Z)ε contains at most 2 points corre-
sponding to two different solutions to the equations κ∗Fi = 0. We can see that one of
the two solutions does not lift to a point in U0(Z)ε in the same way we excluded the
existence of γ′ ∈ U0(Z)γ . Hence U0(Z)ε has cardinality at most 1. Using that for every
Q ∈ C(Fp) and every automorphism ω of C we have #U0(Z)Q = #U0(Z)ω(Q), we deduce
that

U0(Z) = U0(Z)γ ∪ U0(Z)ι(γ) ∪ U0(Z)η(γ) ∪ U0(Z)ηι(γ) ∪ U0(Z)ε ∪ U0(Z)ι(ε)

contains at most 6 points. Looking at the orbits of the action of 〈η, ι〉 on U0(Z) we see
that #U0(Z) ≡ 0 (mod 4), hence #U4(Z) ≤ 4, and since U0(Z) contains the orbit of γ
we conclude that #U0(Z) = 4. Finally

#C(Z) = #U0(Z) + #U1(Z) = 4 + 10 = 14 .

1.9 Some further remarks

1.9.1 Complex uniformisations of some of the objects involved

Let C be a projective curve over Q, smooth, and geometrically irreducible, and let g be
its genus. The universal cover of P×(C) is described in [16], Propositions 4.5 and 4.6.
The covering space, denoted Dτ , is M1,g(C) ×Mg,1(C) × C, hence a C-vector space of
dimension 2g + 1. The biextension structure on M1,g(C) ×Mg,1(C) × C is trivial, that
is, for all x, x1, x2 in M1,g(C), all y, y1, y2 in Mg,1(C), and all z1, z2 in C, we have:

(1.9.1.1)
(x1, y, z1) +1 (x2, y, z2) = (x1 + x2, y, z1 + z2) ,
(x, y1, z1) +2 (x, y2, z2) = (x, y1 + y2, z1 + z2) .
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The fundamental group π1(P×(C), 1) is

(1.9.1.2) Qu(Z) :=


1 x z

0 12g y

0 0 1

 : x ∈ M1,2g(Z), y ∈ M2g,1(Z), z ∈ Z

 ,

also known as a Heisenberg group. Its action on Dτ is given in [16, (4.5.3)].
Now recall the definition of T in (1.2.12). As M2g,1(Z) is the lattice of J(C), and

M1,2g(Z) the lattice of J∨(C), each fi is given by an antisymmetric matrix fi,Z in
M2g,2g(Z) such that for all y in M2g,1(Z) we have fi(y) = yt·fi,Z, and by a complex
matrix fi,C in Mg,g(C) such that for all v in Mg,1(C), for each i we have fi(v) = vt·fi,C
in M1,g(C). For more details about this description of the fi see the beginning of [16,
P4.7]. Then we have

(1.9.1.3) π1(T (C)) =


1ρ−1 m·f(y) z

0 12g y

0 0 1

 : y ∈ M2g,1(Z), z ∈ Mρ−1,1(Z)

 ,

with m·f(y) ∈ Mρ−1,2g(Z) with rows the m·yt·fi,Z. So, π1(T (C)) is a central extension
of M2g,1(Z) by Mρ−1,1(Z), with commutator pairing sending (y, y′) to (2myt·fi,Z·y′)i.

The universal covering T̃ (C) is given by

(1.9.1.4)
T̃ (C) = {(m·(c+ f(v)), v, w) : v ∈ Mg,1(C), w ∈ Mρ−1,1(C)}

⊂ Mρ−1,g(C)×M1,g(C)×Mρ−1,1(C) ,

withm·(c+f(v)) ∈ Mρ−1,g(C) with rows them·(c̃i+vt·fi,C) with c̃i a lift of ci in M1,g(C).
The action of π1(T (C), 1) on T̃ (C) is given again, with the necessary changes, by [16,
(4.5.3)].

Now that we know π1(T (C), 1) we investigate which quotient of π1(C(C), b) it is, via
j̃b : C(C)→ T (C). We consider the long exact sequence of homotopy groups induced by
the C×,ρ−1-torsor T (C)→ J(C), taking into account that C×,ρ−1 is connected and that
π2(J(C)) = 0:

(1.9.1.5) π1(C×,ρ−1, 1) π1(T (C), 1) π1(J(C), 0) .

Again, π1(T (C), 1) is a central extension of the free abelian group π1(J(C), 0) by Zρ−1,
and from the matrix description we deduce that the ith coordinate of the commutator
pairing is given by mfi : H1(J(C),Z)→ H1(J∨(C),Z) = H1(J(C),Z)∨. The Z-module of
antisymmetric Z-valued pairings on H1(J∨(C),Z) is

∧2 H1(J(C),Z) = H2(J(C),Z), and
mfi is the cohomology class (first Chern class) of the C×-torsor Ti:

(1.9.1.6) mfi = c1(Ti) in H2(J(C),Z).
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There is a central extension

(1.9.1.7) H2(J(C),Z) E π1(J(C), 0)

that is universal in the sense that every central extension of π1(J(C), 0) by a free abelian
group arises by pushout from H2(J(C),Z). We denote

(1.9.1.8) G := π1(C(C), b) .

The map jb : C → J gives G → π1(J(C), 0), and this is the maximal abelian quotient.
The second quotient in the descending central series of G gives the central extension:
(1.9.1.9)

[G,G]/[G, [G,G]] G/[G, [G,G]] G/[G,G] = Gab = π1(J(C), 0) .

This extension (1.9.1.9) arises from (1.9.1.7) by pushout via a morphism from H2(J(C),Z)
to [G,G]/[G, [G,G]]:

(1.9.1.10)
H2(J(C),Z) E Gab

[G,G]/[G, [G,G]] G/[G, [G,G]] Gab .

The left vertical arrow is surjective because commutators of lifts in E of elements of
Gab are mapped to the commutators of lifts in G/[G, [G,G]], and so give generators of
[G,G]/[G, [G,G]].

From the usual presentation of G with generators α1, β1, . . . , αg, βg, with the only
relation [α1, β1] · · · [αg, βg] = 1, we see that the obstruction in lifting G→ Gab to G→ E

in the top row of (1.9.1.10) is the image of [α1, β1] · · · [αg, βg] in H2(J(C),Z). This image
is a generator of the image of H2(C(C),Z) under jb. So the pushout in (1.9.1.10) factors
through the pushout by the quotient of H2(J(C),Z) by H2(C(C),Z):

(1.9.1.11)
H2(J(C),Z)/H2(C(C),Z) E′ Gab

[G,G]/[G, [G,G]] G/[G, [G,G]] Gab .

Using again the presentation of G we can split this morphism of extensions, and, using
that H2(J(C),Z)/H2(C(C),Z) is generated by commutators of lifts of elements of Gab,
conclude that all vertical arrows in (1.9.1.11) are isomorphisms.

In particular, we have that [G,G]/[G, [G,G]] is the same as H2(J(C),Z)/H2(C(C),Z).
From (1.9.1.6) we see that the sub-Z-module of H2(J(C),Z(1)) (note the Tate twist, now
we take the Hodge structures into account) spanned by the mfi is obtained in 4 steps:
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take the kernel of H2(J(C),Z(1))→ H2(C(C),Z(1)), take the (0, 0)-part, then Gal(Q/Q)
acts, through the Galois group of a finite extension of Q, take the invariants, then take
the image of the multiplication by m on that.

Dually, this means that π1(T (C), 1) arises as the pushout
(1.9.1.12)

H2(J(C),Z(−1))/H2(C(C),Z(−1)) G/[G, [G,G]] Gab

(
(H2(J(C),Z(−1))/H2(C(C),Z(−1)))(0,0)

)
Gal(Q/Q) π1(T (C), 1) Gab ,

where the subscript (0, 0) means the largest quotient of type (0, 0), where the subscript
Gal(Q/Q) means co-invariants modulo torsion, and where the left vertical map ism times
the quotient map. We repeat that the morphism from π1(C(C)) = G to π1(T (C), 1) given
by the middle vertical map is induced by j̃b : C(C)→ J(C).

1.9.2 Finiteness of rational points

In this section we reprove Faltings’s finiteness result [43] in the special case where
r < g + ρ − 1. This was already done in [8], Lemma 3.2 (where the base field is ei-
ther Q or imaginary quadratic). We begin by collecting some ingredients on good formal
coordinates of the Gm-biextension P×,ρ−1 → J × J∨,ρ−1 over Q, and on what C looks
like in such coordinates.

Formal trivialisations

Let A, B and G be connected smooth commutative group schemes over a field k ⊃ Q,
and let E → A × B be a commutative G-biextension. Let a be in A(k), b ∈ B(k) and
e ∈ E(k). For n ∈ N, let Aa,n be the nth infinitesimal neighborhood of a in A, hence
its coordinate ring is OA,a/mn+1

a . We use similar notation for B with b, and E with e,
and also for the points 0 of A, B and E, and, similarly, the formal completion of A at
a is denoted by Aa,∞, etc. We also use such notation in a relative context, for example,
for the group schemes E → B and E → A. We view completions as Aa,∞ as set-valued
functors on the category of local k-algebras with residue field k such that every element
of the maximal ideal is nilpotent. For such a k-algebra R, Aa,∞(R) is the inverse image
of a under A(R)→ A(k). Then A0,∞ is the formal group of A.

We now want to show that the formal G0,∞-biextension E0,∞ → A0,∞×B0,∞ is iso-
morphic to the trivial biextension (the object G0,∞×A0,∞×B0,∞ with +1 given by addi-
tion on the 1st and 2nd coordinate, and +2 by addition on the 1st and 3rd coordinate). As
exp for A0,∞ gives a functorial isomorphism TA/k(0)⊗kGa

0,∞
k → A0,∞, and similarly for
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B and G, it suffices to prove this triviality for G0,∞
a -biextensions of G0,∞

a ×G0,∞
a over k.

One easily checks that the group of automorphisms of the trivial G0,∞
a -biextension of

G0,∞
a × G0,∞

a over k that induce the identity on all three G0,∞
a ’s is (k,+), with c ∈ k

acting as (g, a, b) 7→ (g + cab, a, b). As this group is commutative, it then follows that
the group of automorphisms of the G0,∞-biextension E0,∞ → A0,∞ × B0,∞ that in-
duce identity on G0,∞, A0,∞,and B0,∞, is equal to the k-vector space of k-bilinear maps
TA/k(0) × TB/k(0) → TG/k(0). This indicates how to trivialise E0,∞. We choose a
section ẽ of the G-torsor E → A×B over the closed subscheme A0,1 ×B0,1 of A×B:

E

A0,1 ×B0,1 A×B ,

ẽ with ẽ(0, 0) = e in E(k).

Note that

O(A0,1 ×B0,1) = (k ⊕mA0,1)⊗ (k ⊕mB0,1) = k ⊕mA0,1 ⊕mB0,1 ⊕ (mA0,1 ⊗mB0,1) .

Hence two such ẽ differ by a k-algebra morphism from k⊕mG0,2 = k⊕mG0,1⊕Sym2mG0,1

(use the exponential map) to k ⊕ mA0,1 ⊕ mB0,1 ⊕ (mA0,1 ⊗ mB0,1), hence by a triple
of k-linear maps from mG0,1 to mA0,1 , mB0,1 , and mA0,1 ⊗ mB0,1 . The linear maps
mG0,1 → mA0,1 and mG0,1 → mB0,1 correspond to the differences on A0,1 × B0,0 and
on A0,0 × B0,1, respectively. There are unique such linear maps such that the ad-
justed ẽ is compatible with the given trivialisations of E → A × B over A0,1 × B0,0

and over A0,0 ×B0,1. In geometric terms, ẽ, assumed to be adjusted, is then a splitting
of TG(0)B ↪→ TE/B(0) � TA(0)B over B0,1 that is compatible with the already given
splitting over 0 ∈ B(k), and it is also a splitting of TG(0)A ↪→ TE/A(0) � TB(0)A over
A0,1 that is compatible with the already given splitting over 0 ∈ A(k). The splitting over
B0,1 gives an isomorphism from (TG(0) ⊕ TA(0))B0,1 to (TE/B)B0,1 . So the exponential
map, for +1, for the pullback to B0,1 of E → B, gives an isomorphism of formal groups
over B0,1: (

(TG(0)⊕ TA(0))⊗k G0,∞
a
)
B0,1 E0,∞

B0,1 .

Viewing E0,∞
B0,1 as the tangent space at the zero section of the pullback to A0,∞ of E → A,

this isomorphism gives a splitting of TG(0)A ↪→ TE/A(0) � TB(0)A over A0,∞. The
exponential map for +2 for the pulback to A0,∞ of E → A then gives an isomorphism of
formal groups over A0,∞:

G0,∞ ×B0,∞ ×A0,∞ (G0,∞ ×B0,∞)A0,∞ E0,∞
A0,∞/A0,∞ E0,∞ ,

where E0,∞
A0,∞/A0,∞ denotes the completion along the zero section of the pullback via

A0,∞ → A of E → A. The compatibility between +1 and +2 on E ensures that this
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isomorphism is an isomorphism of biextensions, with the trivial biextension structure on
the left.

Now that we know what good formal coordinates at 0 in E(k) are, we look at the
point e in E(k), over (a, b) in (A × B)(k). We produce an isomorphism E0,∞ → Ee,∞,
using the partial group laws. Let Eb be the fibre over b of E → B. We choose a section

Eb

Aa,1 × {b} A× {b}

ẽ1 with ẽ1(a, b) = e in E(k).

The exponentials for the group laws of Eb and A then give a section

Eb

Aa,∞ × {b} A× {b} ,

ẽ∞1

that we view as an Aa,∞-valued point of Eb, and as a section of the group scheme
EAa,∞ → Aa,∞, with group law +2. The translation by ẽ∞1 on this group scheme in-
duces translation by b on BAa,∞ , and maps (a, 0), the 0 element of Ea, to e. Hence it
induces an isomorphism of formal schemes E(a,0),∞ → Ee,∞. In order to get an iso-
morphism E0,∞ → E(a,0),∞, we repeat the process above, but with the roles of A and
B exchanged. We choose a section 0̃2 : {a} × B0,1 → Ea of Ea → {a} × B. Then the
exponential for +2 gives us a section 0̃∞2 : {a} ×B0,∞ → Ea of Ea → {a} ×B. This 0̃∞2
is a section of the group scheme EB0,∞ → B0,∞, and the translation on it by 0̃∞2 sends
0 in E(k) to (a, 0), hence gives an isomorphism of formal schemes E0,∞ → E(a,0),∞.
Composition then gives us an isomorphism E0,∞ → Ee,∞, and the good formal coordi-
nates on E at 0 ∈ E(k) give what we call good formal coordinates at e. Similarly, we
get a section 0̃∞1 of EA0,∞ → A0,∞ and a section ẽ∞2 of EBb,∞ → Bb,∞ giving isomor-
phisms E0,∞ → E(0,b),∞ and E(0,b),∞ → Ee,∞, hence by composition a 2nd isomorphism
E0,∞ → Ee,∞. These isomorphisms are equal for a unique choice of 0̃1 and ẽ2 (given the
choices of 0̃2 and ẽ1).

In Section 1.9.2 we will use that these isomorphisms transport all additions that occur
in (1.4.4) to additions in E0,∞ and therefore to additions in the trivial formal biextension.

Zariski density of the curve in formally trivial coordinates

Let C be as in the beginning of Section 1.2. Let C̃(C) be the inverse image of C(C)
under the universal cover T̃ (C)→ T (C). Then C̃(C) is connected since j̃b : C → T gives
a surjection on complex fundamental groups. Now we consider the complex analytic
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variety T̃ (C) as a complex algebraic variety via the bijection T̃ (C) = Cg+ρ−1 as given
in (1.9.1.4). The analytic subset C̃(C) contains the orbit of 0 under π1(T (C), 1). This
orbit surjects to the lattice of J(C) in Mg,1(C), and over each lattice point, its fibre
in Mρ−1,1(C) contains a translate of 2πiMρ−1,1(Z). Hence this orbit is Zariski dense
in Cg+ρ−1. It follows that the formal completion of C̃(C) at any of its points is Zariski
dense in Cg+ρ−1: if a polynomial function on Cg+ρ−1 is zero on such a completion, then
it vanishes on the connected component of C̃(C) of that point, hence on T̃ (C).

We express our conclusion in more algebraic terms: for c ∈ C(C), with images
t ∈ T (C) and in P×,ρ−1(C), each polynomial in good formal coordinates at t of the
biextension P×,ρ−1 → J × J∨ over C that vanishes on j̃b(Cc,∞C ), vanishes on T t,∞C . This
statement then also holds with C replaced by any subfield, or even any subring of the
form Z(p) with p a prime number, or the localisation of Z (the integral closure of Z in C)
at a maximal ideal.

The p-adic closure in good formal coordinates

We stay in the situation of Section 1.2, but we denote G := Gρ−1
m , A := J and

B := J∨,0ρ−1, and E := P×,ρ−1. Let dG, dA, and dB be their dimensions: dG = ρ − 1,
dA = g and dB = (ρ− 1)g.

Let p > 2 be a prime number. From Section 1.9.2 and Lemma 1.5.1.1 we conclude
that we can choose formal parameters for E at 0, over Z(p), such that they converge on
the residue polydisk E(Zp)0, and such that they induce the trivial biextension structure
on ZdGp × ZdAp × ZdBp . We keep the notation of Section 1.9.2, for e in E(Zp), lying over
(a, b) in (A × B)(Zp). This e plays the role that t̃ has at the beginning of Section 1.4.
As explained at the end of Section 1.9.2, we may and do assume that e is in E(Zp)0, and
hence a ∈ A(Zp)0 and b ∈ B(Zp)0.

Assume now that, as in Section 1.4, for i, j ∈ {1, . . . , r}, we have xi in A(Zp)0 and
yj in B(Zp)0, and ei,j in E(Zp)0 over (xi, yj), and ri in E(Zp)0 over (xi, b) and sj in
E(Zp)0 over (a, yj). We denote the images of all these elements under the bijection

E(Zp)0 −→ ZdGp × ZdAp × ZdBp

as follows:

xi 7→ (0, xi, 0) , yj 7→ (0, 0, yj) , ei,j 7→ (gi,j , xi, yj)
ri 7→ (r′i, xi, b) , sj 7→ (s′j , a, yj) , e 7→ (e′, a, b) .

Then, by a straightforward computation, the image of D(n) as defined in (1.4.4) ise′ +∑
i

nir
′
i +
∑
j

njs
′
j +

∑
i,j

ninjgi,j , a+
∑
i

nixi, b+
∑
j

njyj

 ZdGp ×ZdAp ×ZdBp .
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The conclusion is that in these coordinates, the map

κ : Zrp −→ ZdGp × ZdAp × ZdBp

is a polynomial map, hence the Zariski closure of its image is an algebraic variety of
dimension at most r.

Proof of finiteness

The proof is by contradiction. So assume that r < g + ρ− 1, and that C(Q) is infinite.
Let p > 2 be a prime number. Then there is a u ∈ C(Fp) such that the residue disk
C(Zp)u contains infinitely many elements of C(Q), hence infinitely many elements in
the image of κ of Section 1.4.10. By construction, κ(Zrp) is contained in T (Zp)t. The
image of T (Zp)t in ZdGp ×ZdAp ×ZdBp is Zρ−1

p ×Zgp, with Zgp embedded in ZdAp ×ZdBp as a
sub-Zp-module. By the previous section, the Zariski closure of κ(Zrp) in ZdGp ×ZdAp ×ZdBp
is of dimension at most r. Hence there are non-zero polynomial functions on Zρ−1

p × Zgp
that are zero on infinitely many points of C(Zp)u, and hence are zero on a non-empty
open smaller disk. This contradicts, via a ring morphism Zp → C, the conclusion of
Section 1.9.2.

1.9.3 The relation with p-adic heights

We want to compare the approach to quadratic Chabauty in this article to the one in [8],
by answering the question: which local analytic coordinates on T (Zp) and C(Qp) lead to
the equations, in terms of p-adic heights, for the quadratic Chabauty set C(Qp)2 in [8]?
Before we do this, we note that the Poincaré biextension has played a role in Arakelov
theory, and in the theory of p-adic heights, since a long time: see [101], [73] and [76].
Moreover, [21] gives a detailed description how Kim’s cohomological approach relates to
p-adic heights in the context of Gm-torsors on abelian varieties.

Let p > 2 be a prime number of good reduction for C. We consider the Poincaré torsor
asM× on (J × J)Qp via (1.6.3.3), and we use the description ofM× given in (1.6.3.13).

Let D be the subset Div0(CQp)×Div0(CQp) made of pairs of divisors (D1, D2) having
disjoint support. Let W be an isotropic complement of Ω1

CQp/Qp
(CQp) in H1

dR(CQp/Qp)
and let log : Q×p → Qp be a group morphism extending the formal logarithm on 1 + pZp.
With these choices made, Coleman and Gross ([28, (5.1)]) define the function (there
denoted 〈·, ·〉)

hp : D → Qp ,

the p-part of the p-adic height pairing. We define the function

ψ : M×(Qp) −→ Qp
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by demanding that for every effective D1 and D2 in Div(CQp) of the same degree and
every E in Div0(CQp), and every λ in Q×p , the element

λ·NormD1/Qp(1)⊗NormD2/Qp(1)−1

in

M×(OCQp
(E),Σ(D1)− Σ(D2)) =

(
NormD1/QpOCQp

(E)⊗NormD2/QpOCQp
(−E)

)×
is sent to

ψ(λ·NormD1/Qp(1)⊗NormD2/Qp(1)−1) := hp(D1 −D2, E) + log λ .

That this depends only on the linear equivalence classes of D1−D2 and E follows
from (1.6.4.4), plus (see [28, Proposition 5.2]) the fact that hp is biadditive, symmet-
ric and, for any non-zero rational function f on CQp and any D in Div0(CQp) with
support disjoint from that of div(f), we have hp(D,div(f)) = log(f(D)). Moreover,
expressing hp in terms of a Green function G as in [20, Theorem 7.3], we deduce that,
in each residue disk ofM×(Zp), ψ is given by a power series. Let ω1, . . . , ωg be a basis
of Ω1

CQp/Qp
(CQp). This basis gives a unique morphism of groups logJ : J(Qp)→ Qgp that

extends the logarithm of Lemma 1.5.1.1. We define

Ψ := (logJ ◦prJ,1, logJ ◦prJ,2, ψ) : M×(Qp) −→ Qgp ×Qgp ×Qp .

By the biadditivity of hp, Ψ is a morphism of biextensions, with the trivial biextension
structure on Qgp×Qgp×Qp as in (1.9.1.1). As p > 2, Ψ induces, from each residue polydisk
to its image, a homeomorphism given by power series. Pulling back the coordinate
functions on Q2g+1

p gives, for every x ∈M×(Fp), coordinates onM×(Zp)x.
We describe j̃b and κ in these coordinates. It is sufficient to describe, for each

i = 1, . . . , ρ−1, the map j̃b,i : C → Ti, and from now on we omit the dependence on i.
For each c ∈ C(Fp), on T (Zp)j̃b(x) we use the coordinates x1 := f∗t1, . . . , xg := f∗tg,
z := f∗t2g+1 where f is the map T → M× and t1, . . . , t2g+1 are the coordinates on
M×(Zp)j̃b(c) we just defined. Since the map Ψ is a morphism of biextensions, for j
in {1, . . . , g}, xj ◦ κ is a polynomial of degree at most 1, and z ◦ κ is a polynomial of
degree at most 2. As explained in Section 1.7, over Zp, j̃b is given by a line bundle L
over (C × C)Zp rigidified along (C × {b})Zp and along the diagonal with two sections lb
and l. Choosing a section that trivializes L on an open subset of (C × C)Zp containing
(b, b), (c, b), and (c, c) in (C ×C)(Fp) we get a divisor D on (C ×C)Zp whose support is
disjoint from (c, b) and (c, c), and an isomorphism between L and O(D) on (C × C)Zp .
After modifying D with a principal horizontal divisor and a principal vertical divisor
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D|C×{b} and diag∗D are both equal to the the zero divisor on CZp , hence lb and l are the
extensions of elements of Qp, interpreted as rational sections of O(D) on (C ×C)Zp . By
Propositions 1.7.5 and 1.7.8, there exists a unique λ ∈ Q×p such that, for each d ∈ C(Zp)c,

j̃b(d) = λ ·Normd/Zp(1)⊗Normb/Zp(1)−1 ∈M×(jb(d), D|{d}×C) .

Since xj is the j-th coordinate of logJ and since z is the pullback of ψ, we deduce that

x1(j̃b(d)) =
∫ d

b

ω1, . . . , xg(j̃b(d)) =
∫ d

b

ωg, z(j̃b(d)) = hp(d− b,D|{d}×C) + log λ .

By [8, Proof of Theorem 1.2] and [10, Lemma 5.5], the function d 7→ hp(d−b,D|{d}×C)
is a sum of double Coleman integrals.

It should now be easy to exactly interpret geometrically the cohomological approach,
showing that in the coordinates used here, the equations for C(Qp)2 are precisely equa-
tions for the intersection of C(Qp) and the p-adic closure of T (Z). For doing computa-
tions, one can do them in the geometric context of this article, or, as in [10], in terms of
the étale fundamental group of C. The connection between these is then given by p-adic
local systems on T .
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Chapter 2

Formal biextensions and quadratic Chabauty

The proof of Theorem 1.4.10 in the previous chapter uses the formal logarithm of the
two formal group laws associated to the biextension P×,ρ−1 → J × J∨,ρ−1. Hence it
uses that both laws are trivializable, that is they are both isomorphic to the additive law
(over different bases).

In this chapter we study formal biextension laws and the main result implies that it
is possible to trivialize both group laws of P×,ρ−1 simultaneously. We also prove that
the power series defining the trivialization converge on the residue disk of the neutral
element of P×,ρ−1(Zp) if p > 2. This leads to another proof of Theorem 1.4.10. Notice
that the triviality of commutative formal biextensions in characteristic zero was already
treated in Section 1.9.2, but here we give a different proof, working directly with rings
of power series.

2.1 Recap on formal group laws

Given a ring R, a formal group law of dimension d over R is a system F = (F1, . . . Fd)
of power series in 2d indeterminates x′ = {x′1, . . . , x′d}, x′′ = {x′′1 , . . . , x′′d} such that

(I) F (x′, 0) = x′ and F (0, x′′) = x′′;

(II) F (x′, F (x′′, x′′′)) = F (F (x′, x′′), x′′′).

The first property implies that

(2.1.1) Fi ≡ x′i + x′′i mod terms of degree ≥ 2 ,

hence the substitution in the second property makes sense.
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Let us rephrase this definition. Given a system of indeterminates t = {t1, . . . , tn}, the
ring of formal power series R[[t]] = R[[t1, . . . , tn]] is complete and separated with respect
to the (t1, . . . , tn)-adic topology. Denoting ⊗̂R the completed tensor product of linearly
topologized R-modules (we give R the discrete topology), we have a unique continuous
isomorphism of R-algebras

(2.1.2) R[[x′1, . . . , x′d, x′′1 , . . . x′′d ]] = R[[x1, . . . , xd]] ⊗̂RR[[x1, . . . , xd]]

sending x′i to xi⊗1 and x′′i to 1⊗xi. Hence, the choice of elements F1, . . . , Fd in the
ring R[[x1, . . . , x

′
d, x
′′
1 , . . . , x

′′
d ]] is equivalent to the choice of a morphism of R-algebras

R[x1, . . . , xd] → R[[x1, . . . , xd]]⊗̂RR[[x1, . . . , xd]]. Such a map extends to a continuous
morphism of R-algebras

A : R[[x1, . . . , xd]] −→ R[[x1, . . . , xd]]⊗̂RR[[x1, . . . , xd]]

if and only if for each i we have Fi(0, 0) = 0, which is the case for formal group laws.
We can also reformulate properties (I) and (II) in terms of A: denoting x the system of
indeterminates {x1, . . . , xd} and e : R[[x]]→ R the homomorphism evaluating power series
at x1= . . .=xd=0, they are equivalent to the commutation of the following diagrams
(2.1.3)

R[[x]] R[[x]] ⊗̂RR[[x]] R[[x]] R[[x]] ⊗̂RR[[x]]

R[[x]]⊗̂RR[[x]] R[[x]] R[[x]] ⊗̂RR[[x]] R[[x]] ⊗̂RR[[x]] ⊗̂RR[[x]]

A

A
id id ⊗̂Re

A

A id ⊗̂RA

e ⊗̂Rid A ⊗̂Rid

.

Hence, by formal group law of dimension d, we also mean a continuous homomorphism of
R-algebras A : R[[x1, . . . , xd]] → R[[x1, . . . , xd]] ⊗̂RR[[x1, . . . , xd]] such that the above dia-
grams commute. Given two formal group laws A,B of dimensions a, b, a homomorphism
between A and B is a continuous homomorphism φ : R[[x1, . . . , xa]]→ R[[x1, . . . , xb]] such
that (φ ⊗̂Rφ) ◦A = B ◦ φ.

We notice that the above diagrams say that Spf(R[[x]]), with multiplication given by
Spf(A) and neutral element Spf(e), is a formal group scheme over R (the existence of
the “inverse” morphism Spf(R[[x]])→ Spf(R[[x]]) is proven in [45, P3, Proposition 1]).

Let S : R[[x]] ⊗̂RR[[x]] → R[[x]] ⊗̂RR[[x]] be the “symmetry” homomorphism. We say
that a formal group law A is commutative if S ◦A = A. Equivalently a formal group law
F = (F1, . . . , Fd) is commutative if F (x′, x′′) = F (x′′, x′). An example of commutative
formal group law is the additive formal group law AD of dimension d, defined by

AD(xi) = xi⊗̂1 + 1⊗̂xi = x′i + x′′i .

As proved in [54, Theorem 1], when Q ⊂ R the additive formal group law is the funda-
mental example of commutative formal group law: given a commutative formal group law
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A of dimension d over a Q-algebra R, there exists an isomorphism logA : R[[x]] → R[[x]]
between the additive formal group law of dimension d and A. Moreover by [54, Proposi-
tion 1.6], such an isomorphism is unique when we require that it reduces to the identity
modulo the ideal (x1, . . . , xd)2 ⊂ R[[x]] and we refer to it as formal logarithm of A.

Given an R-algebra R′, considered with the discrete topology, and a formal group law
A : R[[x]] → R[[x]] ⊗̂RR[[x]] over R, we denote AR′ the formal group law over R′ defined
as R′⊗̂RA : R′[[x]]→ R′[[x]] ⊗̂R′R′[[x]].

Finally, we recall that, given a formal group A : R[[x]] → R[[x]]⊗̂RR[[x]] of dimension
a, we can talk about “points on A”. Given an adic R-algebra S, namely an R-algebra
which is also a separated and complete topological ring whose topology is induced by
some ideal I ⊂ S, we define the set of S-valued points of A to be

A(S) := Homcont(R[[x]], S) = (NS)a ,

where NS denotes the ideal of topologically nilpotent elements in S. Since

Homcont(R[[x]], S)×Homcont(R[[x]], S) = Homcont(R[[x]]⊗̂RR[[x]], S) ,

the formal group law A defines a group structure on A(S) with neutral element (0, . . . , 0).
Hence A defines a covariant functor from the category of topological R-algebras to the
category of groups. Vice versa suppose that A is a covariant functor from the category of
adic R-algebras to the category of groups and suppose that there exists a positive integer
a such that, functorially in S, we have a bijection A(S) = (NS)a sending the neutral
element to (0, . . . , 0); then, by Yoneda’s lemma, A is the functor of points of a formal
group law. We call formal groups such functors.

We notice that a formal group law A is commutative if and only if for every S the
group A(S) is commutative. Moreover, given two formal group laws A and B, Yoneda’s
lemma tells us that giving a morphism between A and B is the same as giving a natural
transformation between their functors of points, but going in the opposite direction.
Remark 2.1.4. One could give a more general notion of formal group by substituting
R[[x]] with any admissible ring, (see Definition 7.1.2 in [41]), so that the relative tangent
space of the formal group is not forced to be free. Anyway, we do not need this generality
for our purposes.

2.2 Commutative formal biextension laws
One way to define a formal biextensions is by using the functorial point of view, as done
in [80]. Given three formal groups

A,B,C : Adic R-Algebras −→ Groups
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a biextension of A and B by C is a functor

D : Adic R-Algebras −→ Sets

such that functorially in S, the set D(S) is a biextension of A(S) × B(S) by C(S), in
the sense of Section 1.2. Given three other formal groups F,G,H and a bi-extension
K of F,G by H, a morphism between D and K is a triple of natural transformations
(A→F,B→G,D→K) that commute with the (partial) group laws and with the natural
transformations D → A×B and K → F ×G.

We can also give a “dual” definition, using rings of power series, which is more cum-
bersome, but useful in our proof of Theorem 2.2.3. Suppose we are given a ring R and
three formal group laws

A : R[[x]]→ R[[x]] ⊗̂RR[[x]] , B : R[[y]]→ R[[y]] ⊗̂RR[[y]] , C : R[[z]]→ R[[z]] ⊗̂RR[[z]] ,

with x = {x1, . . . , xa}, y = {y1, . . . , yb}, z = {z1, . . . , zc} being system of indeterminates.
A biextension of A and B by C is a pair of formal group laws

A : R[[x, y, z]] −→ R[[x, y, z]] ⊗̂R[[y]]R[[x, y, z]] = R[[x′, x′′, y, z′, z′′]] over R[[y]] ,
B : R[[x, y, z]] −→ R[[x, y, z]] ⊗̂R[[x]]R[[x, y, z]] = R[[x, y′, y′′, z′, z′′]] over R[[x]] ,

such that A is an extension of A⊗̂RR[[y]] by C⊗̂RR[[y]], B is an extension of B⊗̂RR[[x]] by
C⊗̂RR[[x]], and moreover A and B are compatible in the “dual sense” of (1.2.5). More
explicitly we require that:

(i) the inclusion R[[x, y]] → R[[x, y, z]] is both a homomorphism between AR[[y]] and A
and also an homomorphism between BR[[x]] and B;

(ii) the continuous homomorphism of R-algebras R[[x, y, z]]→ R[[y, z]] evaluating power
series at x1= . . .=xa=0 is a homomorphism between A and CR[[y]] and the contin-
uous homomorphism of R-algebras R[[x, y, z]]→ R[[x, z]] evaluating power series at
y1= . . .=yb=0 is a homomorphism between B and CR[[x]];

(iii) using the isomorphism (2.1.2), the following diagram commutes

(2.2.1)
R[[x, y, z]] R[[x′, x′, y, z′, z′′]]

R[[x, y′, y′′, z′, z′′]] R[[x′, x′, y′, y′′, z′, z′′z′′′, z(iv)]] ,

A

B B ⊗̂B

A ⊗̂A

where both the (R[[x, y, z]] ⊗̂R[[x]]R[[x, y, z]]) ⊗̂R[[y]] ⊗̂RR[[y]](R[[x, y, z]] ⊗̂R[[x]]R[[x, y, z]])
and (R[[x, y, z]] ⊗̂R[[y]]R[[x, y, z]]) ⊗̂R[[x]] ⊗̂RR[[x]](R[[x, y, z]] ⊗̂R[[y]]R[[x, y, z]]) are identi-
fied with R[[x′, x′, y′, y′′, z′, z′′z′′′, z(iv)]], in the first case with (z⊗1)⊗(1⊗1) ↔ z′,
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(1⊗z)⊗(1⊗1) ↔ z′′, (1⊗1)⊗(z⊗1) ↔ z′′′, (1⊗1)⊗(1⊗z) ↔ z(iv) and in the sec-
ond case with (z⊗1)⊗(1⊗1) ↔ z′, (1⊗z)⊗(1⊗1) ↔ z′′′, (1⊗1)⊗(z⊗1) ↔ z′′,
(1⊗1)⊗(1⊗z)↔ z(iv).

We call such an object (A,B) a formal biextension law. Now suppose we are given
three other formal group laws

H : R[[u]]→ R[[u]] ⊗̂RR[[u]] , J : R[[v]]→ R[[v]] ⊗̂RR[[v]] , K : R[[w]]→ R[[w]] ⊗̂RR[[w]] ,

and a biextension (H,J ) of H and J by K. Then a morphism between (A,B) and (H,J )
is a morphism φ : R[[x, y, z]]→ R[[u, v, w]] such that

• φ restricts to maps φx : R[[x]] → R[[u]] and φy : R[[y]] → R[[v]] such that φx is a
morphism between A and H and φy is a morphism between B and J ;

• the following diagrams are commutative

R[[x,y,z]] R[[x,y,z]]⊗̂R[[y]]R[[x,y,z]] R[[x,y,z]] R[[x,y,z]]⊗̂R[[x]]R[[x,y,z]]

R[[u,v,w]] R[[u,v,w]]⊗̂R[[v]]R[[u,v,w]] R[[u,v,w]] R[[u,v,w]]⊗̂R[[u]]R[[u,v,w]]

φ

A

φ ⊗̂φyφ φ

B

φ ⊗̂φxφ

H J

In this setting the functor D=(A,B) going from topological R-algebras to sets defined
as

(A,B)(S) = Homcont(R[[x, y, z]], S) = Na+b+c
S

has two partial group laws induced by A and B that make D a biextension of the functors
of groups A and B by C. Vice versa if D is a biextension of the functors of groups A and
B by C, then one can show that D is representable by R[[x, y, z]] in such a way that the
natural transformation D → A×B is induced by the inclusion R[[x, y]]→ R[[x, y, z]] and
the natural transformations A×C,B×C → D describing the kernels of D → A×B are
induced by the maps R[[x, y, z]]→ R[[x, z]], R[[y, z]] sending y or x to zero. This is enough
to prove that every formal biextension is induced by a formal biextension law.

We say that a formal biextension law (A,B) is commutative if both A and B are com-
mutative group laws. Given additive formal group laws AD1, AD2, AD3 of dimensions
d1, d2, d3, the additive formal biextension law of dimensions (d1, d2, d3) is the commuta-
tive formal biextension law (AD1,AD2) of AD1 and AD2 by AD3 given by

(2.2.2)
AD1(xi) = xi ⊗ 1 + 1⊗ xi = x′i + x′′i , AD2(yi) = yi ⊗ 1 + 1⊗ yi = y′i + y′′i ,

AD1(zi) = zi ⊗ 1 + 1⊗ zi = z′i + z′′i , AD2(zi) = zi ⊗ 1 + 1⊗ zi = z′i + z′′i .

In the next theorem we prove that every commutative biextension overR is isomorphic
to an additive biextension, if Q ⊂ R.
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Theorem 2.2.3. Let R be a Q-algebra, let x = {x1, . . . , xa}, y = {y1, . . . , yb} and
z = {z1, . . . , zc} be systems of indeterminates, let

A : R[[x]]→ R[[x]] ⊗̂RR[[x]] , B : R[[y]]→ R[[y]] ⊗̂RR[[y]] , C : R[[z]]→ R[[z]] ⊗̂RR[[z]] ,

be three formal group laws over R and let (A,B) be a commutative formal biextension of
A,B by C. Let I ⊂ R[[x, y, z]] be the ideal (x1, . . . , xa, z1, . . . , zc)2+(y1, . . . , yb, z1, . . . , zc)2.

Then there is a unique isomorphism ψ : R[[x, y, z]] → R[[x, y, z]] between the addi-
tive formal biextension law of dimensions (a, b, c) and (A,B) such that ψ reduces to the
identity modulo I. Moreover such a ψ restricts to ψ|R[[x]] = logA : R[[x]] → R[[x]] and
ψ|R[[y]] = logB : R[[y]]→ R[[y]].

Proof. We first prove the uniqueness. Since two isomorphisms between the additive for-
mal biextension (AD1,AD2) of dimensions (a, b, c) and (A,B) differ by automorphisms
of (AD1,AD2), it is enough to prove uniqueness in the case (A,B) = (AD1,AD2). Let
ψ be an automorphism of (AD1,AD2) reducing to the identity modulo I. By defi-
nition of homomorphism of formal biextension laws, ψ restricts to an automorphism
ψx : R[[x]]→ R[[x]] of the additive formal group law A and, by the hypothesis on ψ mod I,
ψx reduces to the identity modulo (x1, . . . , xa)2. Then, by uniqueness of the formal log-
arithm,

ψx = idR[[x]],

hence ψ : R[[x]][[y, z]] → R[[x]][[y, z]] is a morphism of R[[x]]-algebras. This, together with
the definition of homomorphism of formal biextension, implies that ψ is an automorphism
of the additive biextension law AD2. Symmetrically ψy := ψ|R[[y]] = idR[[y]] and ψ is an
automorphism of the additive biextension law AD1. Since all the homomorphisms of
additive groups are linear, there exist power series λi,j , µi,k ∈ R[[x]] and σi,j , τi,l ∈ R[[y]]
such that

ψ(zi) = zi +
c∑
j=1

λi,j(x)zj +
b∑

k=1
µi,k(x)yk = zi +

c∑
j=1

σi,j(y)zj +
a∑
l=1

τi,l(y)xl.

We deduce that λi,j(x) = σi,j(y) is constant, and since ψ(zi) ≡ zi modulo I, we deduce
that λi,j(x) = σi,j(y) = 0. The above equation also implies that power series µi,j(x) are
linear polynomials in the xl’s. Hence ψ(zi)−zi is a linear combination of the monomials
ykxl and, since it belongs to I, we deduce that ψ(zi)−zi = 0.

We have proved that ψ and the identity agree when evaluated on all the xl’s, yk’s
and zj ’s, hence, by continuity, ψ is the identity, which proves the uniqueness.

For the existence of ψ we proceed in four steps, that is we define automorphisms
ψ1, ψ2, ψ3, ψ4 of R[[x, y, z]] whose composition ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 is the ψ we are looking
for.
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Let ψ1 be the formal logarithm of B. By definition we have ψx1 := ψ1|R[[x]] = idR[[x]]

and, by the explicit formulas for the formal logarithm in [54, Proposition 1.1 and Theorem
1] and the fact that B|R[[y]] = B, the map ψy1 := ψ1|R[[y]] is equal to the formal logarithm
of B. In particular ψ1 restricts to an automorphism of both R[[x]] and R[[y]], hence it
makes sense to define the “pullback” (A1,B1) of (A,B) by ψ1: we define A1 and B1 to
be the unique maps making the following diagrams commute
(2.2.3.1)

R[[x, y, z]] R[[x′, x′′, y, z′, z′′]] R[[x, y, z]] R[[x, y′, y′′, z′, z′′]]

R[[x, y, z]] R[[x′, x′′, y, z′, z′′]] R[[x, y, z]] R[[x, y′, y′′, z′, z′′]]

A1

ψ1 ψ1⊗̂ψy1
ψ1

B1

ψ1 ψ1⊗̂ψx1 ψ1

A B

.

Then (A1,B1) is a biextension of certain formal group laws A1, B1 by C1: indeed we define
A1 := A1|R[[x]], B1 := A1|R[[y]] and we define C1 functorially by imposing that, for every
adic R-algebra S, C1(S) is the set of points inNa+b+c

S that project to (0, 0) ∈ (A1×B1)(S)
with the group law given by A1; it is easy to check, sometimes using the functorial point
of view and sometimes using the ring theoretic point of view, that A1 and B1 are formal
groups, that they are compatible in the sense of (2.2.1), that A1 is an extension of
(A1)R[[y]] by (C1)R[[y]] and that B1 is an extension of (B1)R[[x]] by (C1)R[[x]].

The definition of ψ1 as formal logarithm implies that B1 = AD2 as in (2.2.2) and
consequently both B1 and C1 are additive. Since ψx1 = idR[[x]], then A1 = A.

Now we define ψ2 : R[[x, y, z]] → R[[x, y, z]] to be the unique continuous morphism
being equal to the identity when restricted to R[[y, z]] and equal to the formal logarithm
of A1 = A when restricted to R[[x]]. Since ψ2 restricts to automorphisms ψx2 , ψ

y
2 of

R[[x]], R[[y]], we can define the pullback (A2,B2) of (A1,B1) by the map ψ2, in the same
way we defined the pullback (A1,B1) of (A,B). Again (A2,B2) is a biextension of certain
formal group laws A2, B2 by C2.

Since ψ2 acts as the identity on R[[y, z]] we check that B1 = AD2 = B2, hence both
B2 and C2 are additive. The map ψx2 = logA is an isomorphism between A2 and A1,
hence A2 is an additive formal group law. For each i = 1, . . . , c let us now look at the
power series

A2(zi) =
∑

I′,I′′,J,K′,K′′

λI′,I′′,J,K′,K′′(x′)I
′
(x′′)I

′′
yJ(z′)K

′
(z′′)K

′′
.

The compatibility (2.2.1) between B2 = AD2 and A2 implies that

A2(zi)(x′, x′′, y′+y′′, z′+z′′, z′′′+z(iv)) = A2(zi)(x′, x′′, y′, z′, z′′′)+A2(zi)(x′, x′′, y′′, z′′, z(iv)).

Since in the R.H.S of this equation there is no monomial multiple of y′iy′′j , by expanding
the series on the L.H.S we see that λI′,I′′,J,K′,K′′ = 0 if |J | ≥ 2. Analogously by looking
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at monomials multiple of z′iz′′j or multiple of z′iz
(iv)
j or multiple of z′′′i z

(iv)
j , we infer that

λI′,I′′,J,K′,K′′ = 0 if |K ′+K ′′| ≥ 2. By looking at monomials multiple of z′iy′′j or multiple
of z′′i y′j we infer that λI′,I′′,J,K′,K′′ = 0 if |J+K ′′+K ′| ≥ 2. The term (x′)I′(x′′)I′′ appears
with coefficient λI′,I′′,0,0,0 on the left and with coefficient 2λI′,I′′,0,0,0 the right, thus we
must have λI′,I′′,0,0,0 = 0. We have proved that the only coefficients λI′,I′′,J,K′,K′′ 6= 0
are the ones with |J +K ′ +K ′′| = 1, hence

(2.2.3.2) A2(zi) =
b∑
j=1

di,j(x′, x′′)yj +
c∑
j=1

fi,j(x′, x′′)z′j +
c∑
j=1

ei,j(x′, x′′)z′′j .

with appropriate di,jfi,j , ei,j ∈ R[[x]]. By the commutativity of A2, for each j ∈ {1, . . . , c}
we have fi,j(x′, x′′) = ei,j(x′′, x′). Let f(x′, x′′) be the matrix with (i, j)-entry equal to
fi,j , let d(x′, x′′) be the matrix with (i, j)-entry equal to di,j and let A2(z) be the column
vector (A2(z1), . . . ,A2(zd))t. Looking at x, y, z, z′, z′′ as column vectors, we can rewrite
equation (2.2.3.2) as

(2.2.3.3) A2(z) = d(x′, x′′) · y + f(x′, x′′) · z′ + f(x′′, x′) · z′′ .

The property (2.1.1) of formal group laws implies that f is congruent to the identity
matrix modulo the ideal (x′1, x′′1 , . . . , x′a, x′′a).In particular the determinant of f is invert-
ible in R[[x′, x′′]], hence f has an inverse with coefficients in R[[x′, x′′]]. Writing down the
associativity of A2 (the right diagram in Equation (2.1.3)), we find the identity

f(x′, x′′ + x′′′) = f(x′ + x′′, x′′′) · f(x′, x′′).

If we plug in the values x′ ← 0, x′′ ← x′ and x′′′ ← x′′ we immediately see that

(2.2.3.4) f(x′, x′′) = g(x′ + x′′) · g(x′)−1

where g(x) := f(0, x) ∈ R[[x]]c×c, which is invertible because f is invertible. We now
define the continuous automorphism

ψ3 : R[[x, y, z]] −→ R[[x, y, z]] , x 7−→ x , y 7−→ y , z 7−→ g(x) · z .

Again let (A3,B3) be the formal biextension law obtained pulling back (A2,B2) by ψ3.
We now prove that B3 = AD2 and that A3 is “almost equal” to AD1. Using that ψ3 acts
as the identity on R[[x, y]], we check that B3(yi) = AD2(yi) and that A3(xi) = AD1(xi).
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Using the isomorphism (2.1.2) and Equation (2.2.3.4) we get

B3(z) = (ψ3⊗̂R[[x]]ψ3) ◦ B2 ◦ ψ−1
3 (z) = (ψ3⊗̂R[[x]]ψ3) ◦ B2(g(x)−1·z)

= (ψ3⊗̂R[[x]]ψ3)
(
g(x)−1·(z′ + z′′)

)
= g(x)−1·

(
g(x)·z′ + g(x)·z′′

)
= z′ + z′′ = AD2(z).

A3(z) = (ψ3⊗̂R[[x]]ψ3) ◦ A2 ◦ ψ−1
3 (z) = (ψ3⊗̂R[[x]]ψ3) ◦ A2(g(x)−1·z)

= (ψ3⊗̂R[[x]]ψ3)
(
g(x′ + x′′)−1·

(
d(x′, x′′)·y + f(x′, x′′)·z′ + f(x′′, x′)·z′′

))
= g(x′ + x′′)−1·

(
d(x′, x′′)·y + f(x′, x′′)·g(x′)·z′ + f(x′′, x′)·g(x′′)·z′′

)
= z′ + z′′ + g(x′ + x′′)−1·d(x′, x′′)·y = AD1(z) + g(x′ + x′′)−1·d(x′, x′′)y.

By the associativity and commutativity of A3 we can prove the following claim.

Claim 2.2.4. There exists a unique matrix of power series h(x) ∈ R[[x]]c×b such that

g(x′ + x′′)−1 · d(x′, x′′) = h(x′ + x′′)− h(x′)− h(x′′) and (2.2.4.1)
h(0) ≡ 0 (mod (x1, . . . , xa)2). (2.2.4.2)

Proof. We define m(x′, x′′) := g(x′ + x′′)−1d(x′, x′′). When proving the claim, we can
work separately on each entry mi,j and hi,j , hence we can consider m as an element in
R[[x′, x′′]] and h as an element in R[[x]], instead of considering them as matrices on the
same rings.

Notice that two solutions of (2.2.4.1) differ by a (matrix of) linear polynomial(s) in
the xi’s, hence the congruence (2.2.4.2) ensures uniqueness. We now prove existence.

We know that a power series S ∈ R[[x′, x′′]] = R[[x′′]][[x′]] is zero if and only if
S(0, x′′) = 0 and ∂S/∂x′i = 0 for each i ∈ {0, . . . , a}: applying this principle to our
claim we get that, for any h, Equation (2.2.4.1) holds if and only if

m(0, x′′) = −h(0) and (2.2.4.3)
∂m

∂x′i
(x′, x′′) = ∂h

∂xi
(x′ + x′′)− ∂h

∂xi
(x′) ∀i = 1, . . . , a. (2.2.4.4)

Equation (2.2.4.3) is equivalent to h(0) = 0: indeed m(0, x′′) = 0 because the evaluation
of A3(z) at x′ = z′ = 0 is equal to z′′, as implied by the first property in the definition of
formal group laws (the one saying that “the point 0” is the neutral element). Moreover
if h(0) = 0, then, up to adding a (matrix of) linear polynomial(s) in the xi’s, we can
suppose that h is congruent to 0 modulo (x1, . . . , xa)2. Hence proving our claim is
equivalent solving Equation (2.2.4.4) and h(0) = 0, which is in turn equivalent to finding

67



2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

n1, . . . , na being (matrices with coefficients) in R[[x]] such that

n :=
a∑
i=1

ni(x)dxi is a closed form and (2.2.4.5)

∂m

∂x′i
(x′, x′′) = ni(x′ + x′′)− ni(x′) ∀i = 1, . . . , a. (2.2.4.6)

Indeed, given h as in Equations (2.2.4.3), (2.2.4.4) we can take ni = ∂h/∂xi and given
n1, . . . , na as above, since all closed forms in R[[x]] are exact, there exists a unique
h ∈ R[[x]] such that h(0) = 0 and ∂h/∂xi = ni. We now look for such ni’s.

Associativity of the formal group law A3 tells us that

m(x′ + x′′, x′′′) +m(x′, x′′) = m(x′, x′′ + x′′′) +m(x′′, x′′′).

Taking the partial derivative with respect to x′i, we get

(2.2.4.7) ∂m

∂x′i
(x′ + x′′, x′′′) + ∂m

∂x′i
(x′, x′′) = ∂m

∂x′i
(x′, x′′ + x′′′).

Plugging the values x′ ← 0, x′′ ← x′ and x′′′ ← x′′ in the above equation we see that

ni(x) := ∂m

∂x′i
(0, x) ,

automatically satisfy Equation (2.2.4.6). It remains to show that, with the above defi-
nition of the ni’s, Equation (2.2.4.5) is also satisfied. Taking the derivative of Equation
(2.2.4.7) with respect to x′′′j we find

(2.2.4.8) ∂2m

∂x′′j ∂x
′
i

(x′ + x′′, x′′′) = ∂2m

∂x′′j ∂x
′
i

(x′, x′′ + x′′′).

The commutativity of A3 implies m(x′, x′′) = m(x′′, x′), and taking two derivatives we
get

(2.2.4.9) ∂2m

∂x′′i ∂x
′
j

(x′, x′′) = ∂2m

∂x′′j ∂x
′
i

(x′′, x′).

Deriving the definition of ni and specializing Equations (2.2.4.8) and (2.2.4.9) in x′ ← 0,
x′′ ← x, x′′′ ← 0, we find that for every i, j = 1, . . . , a

∂ni
∂xj

= ∂2m

∂x′′j ∂x
′
i

(0, x) = ∂2m

∂x′′j ∂x
′
i

(x, 0) = ∂2m

∂x′′i ∂x
′
j

(0, x) = ∂nj
∂xi

,

proving that the form n in Equation (2.2.4.5) is closed.
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Taking h as in the claim we define the continuous automorphism

ψ4 : R[[x, y, z]] −→ R[[x, y, z]] , x 7−→ x , y 7−→ y , z 7−→ z + h(x) · y ,

and we define (A4,B4) to be the pullback of the formal biextension law (A4,B4) by ψ4.
We easily check that B4 = AD2 and A4(yi) = AD1(yi). Moreover, using the definition
of A4, the formula for A3(z) we previously found and the definition of h, we get

A4(z) = (ψ4⊗̂R[[x]]ψ4) ◦ A3 ◦ ψ−1
4 (z) = (ψ4⊗̂R[[x]]ψ4) ◦ A3

(
z − h(x) · y

)
= (ψ4⊗̂R[[x]]ψ4)

(
z′ + z′′ + g(x′ + x′′)−1 · d(x′, x′′) · y − h(x′ + x′′) · y

)
= (ψ4⊗̂R[[x]]ψ4)

(
z′ + z′′ − h(x′) · y − h(x′′) · y

)
= z′ + h(x′) · y + z′′ + h(x′′) · y − h(x′) · y − h(x′′)
= z′ + z′′ = AD1(z) .

Hence A4 = AD1 and (A4,B4) is the additive formal biextension law of dimensions
(a, b, c).

For each i = 1, 2, 3, 4 we have defined (Ai,Bi) as the pullback of (Ai−1,Bi−1) by ψi
(here (A0,B0) = (A,B)) hence, by the definition of pullback in (2.2.3.1), the map ψi is
an isomorphism between (Ai,Bi) and (Ai−1,Bi−1). Consequently ψ := ψ4 ◦ψ3 ◦ψ2 ◦ψ1 is
an isomorphism between (A4,B4) = (AD1,AD2) and (A0,B0) = (A,B). Moreover ψ is
the identity when reduced modulo I since the same is true for ψ1, ψ2, ψ3, ψ4: for ψ1 and
ψ2 it is true by the definition of formal logarithms, for ψ3 it is true because g(x) = f(0, x)
is congruent to the identity matrix modulo the ideal (x1, . . . , xa) and for ψ4 it is true
because h is congruent to the zero matrix modulo the ideal (x1, . . . , xa)2. Finally we
notice that the subrings R[[x]], R[[y]] ⊂ R[[x, y, z]] are stable under ψ1, ψ2, ψ3, ψ4 so they
are also stable under φ, that restricts to isomorphisms

ψx := ψ|R[[x]] = ψx4 ◦ ψx3 ◦ ψx2 ◦ ψx1 = idR[[x]] ◦ idR[[x]] ◦ logA ◦idR[[x]] = logA ,
ψy := ψ|R[[y]] = ψy4 ◦ ψ

y
3 ◦ ψ

y
2 ◦ ψ

y
1 = idR[[y]] ◦ idR[[y]] ◦ idR[[y]] ◦ logB = logB .

2.3 Biextensions over the p-adics and convergence

Given a commutative algebraic group G/Zp, the formal logarithm is useful to describe
the group G(Zp) in a neighbourhood of its neutral element. Analogously we want to use
the map ψ of Theorem 2.2.3 to describe biextensions over Zp, hence we are interested in
the convergence and integrality of the power series determining ψ.
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Let R be a Z(p)-algebra of characteristic zero equipped with a positive discrete valu-
ation v extending the p-adic valuation on Z(p) and such that the ideal {r ∈ R : v(r) > 0}
is generated by an element π. Examples of such rings are R = Z(p)[[x1, . . . , xd]] equipped
with the p-adic valuations or the discrete valuation rings contained in finite extensions
of Qp.

For any formal group A : R[[x]]→ R[[x]]⊗̂R[[x]] of dimension a we have

A(R) = Homcont(R[[x]], R) = (πR)a ,

where R[[x]] is endowed with the (x1, . . . , xa)-adic topology and R with the v-adic topol-
ogy. Then the elements x̃i := xi

π ∈ (R⊗Q)[[x]] define a bijection

(2.3.1) x̃ = (x̃1, . . . , x̃a) : A(R) −→ Ra ,

that suggests the definition of the following ring of “integral converging power series”

R〈x̃〉 = R〈x̃1, . . . , x̃a〉 :=
{∑
I∈Na

λI x̃
I ∈ R[[x̃]] : ∀n ≥ 0, ∀almostI, v(λI) ≥ n

}
⊂ (R⊗Q)[[x]]

This ring resembles the one in Equation (1.3.2) and, when R is complete with respect to
v, each element of R〈x̃〉 defines a continuous function A(R)→ R.

If A is commutative, the formal logarithm logA := logAR⊗Q
: (R⊗Q)[[x]]→ (R⊗Q)[[x]]

helps us understanding the group A(R): if πp−2 is a multiple of p (when R is the discrete
valuation ring contained in finite extensions of Qp this is equivalent to the ramification
being strictly smaller than p−1), then for each i ∈ {1, . . . , a} we have

(2.3.2) logA(x̃i) ∈ R〈x̃〉 , logA(x̃i) ≡ xi mod π .

Hence, if R is v-adically complete, we get an isomorphism of groups

(2.3.3) (logA(x̃1), . . . , logA(x̃a)) : A(R) −→ (Ra,+) ,

that is given by integral converging power series and that, using the isomorphism (2.3.1),
reduces to the identity modulo v. This fact can be proven with the same arguments in
the proof of Lemma 1.5.1.1, replacing OS,s with R.

We give an analogous statement for biextensions. In such context the biextension
analogous to the additive group is the biextension (Ra×Rb×Rc,+1,+2) of the additive
groups (Ra,+), (Rb,+) by (Rc,+), with partial group operations

(2.3.4)
(r′A, rB , r′C) +1 (r′′A, rB , r′′C)=(r′A + r′′A, rB , r

′
C + r′′C),

(rA, r′B , r′C) +2 (rA, r′′B , r′′C)=(rA, r′B + r′′B , r
′
C + r′′C).
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Proposition 2.3.5. Let R be a Z(p)-algebra of characteristic zero equipped with a pos-
itive discrete valuation v extending the p-adic valuation on Z(p). Suppose that the ideal
{r ∈ R : v(r) > 0} is generated by an element π such that πp−2 is a multiple of p. Let

A : R[[x]]→ R[[x]] ⊗̂RR[[x]] , B : R[[y]]→ R[[y]] ⊗̂RR[[y]] , C : R[[z]]→ R[[z]] ⊗̂RR[[z]] ,

be formal group laws of dimensions a, b, c, let (A,B) be a commutative formal biextension
of A,B by C and let ψ : (R⊗Q)[[x, y, z]]→ (R⊗Q)[[x, y, z]] be the map in Theorem 2.2.3.

Using the definitions x̃i := xi/π, ỹj := yj/π, z̃k := zk/π, we have

ψ(x̃i) , ψ(ỹj) , ψ(z̃k) , ψ−1(x̃i) , ψ−1(ỹj) , ψ−1(z̃k) ∈ R〈x̃, ỹ, z̃〉 and

ψ(x̃i) ≡ ψ−1(x̃i) ≡ x̃i , ψ(ỹi) ≡ ψ−1(ỹj) ≡ ỹj , ψ(z̃k) ≡ ψ−1(z̃k) ≡ z̃k modulo π .

Moreover, if R is v-adically complete, the power series ψ(x̃i), ψ(ỹj), ψ(z̃k) give an iso-
morphism of biextensions

(A,B)(R) −→ (Ra ×Rb ×Rc,+1,+2) ,

where (Ra ×Rb ×Rc,+1,+2) is the additive biextension given by (2.3.4).

Proof. For an additive formal biextension law (AD1,AD2) of dimensions (a, b, c), the
set of R-points (AD1,AD2)(R) is exactly (Ra ×Rb ×Rc,+1,+2), hence it is enough to
prove that the power series ψ(x̃i), ψ(ỹj), ψ(z̃k), ψ−1(x̃i), ψ−1(ỹj), ψ−1(z̃k) are contained
in R〈x̃, ỹ, z̃〉 and proving the congruences. This is equivalent to proving that ψ and
ψ−1 restrict to maps R〈x̃, ỹ, z̃〉 → R〈x̃, ỹ, z̃〉 that modulo π reduce to the identity of
(R/π)[x̃, ỹ, z̃]. Moreover once it is proven for ψ it is automatically true for ψ−1.

We can write ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1, where the ψi’s are the ones defined in the proof
of Theorem 2.2.3, hence it is enough to prove that both ψ1 and ψ4◦ψ3◦ψ2 restrict to
maps R〈x̃, ỹ, z̃〉 → R〈x̃, ỹ, z̃〉 that modulo π reduce to the identity of (R/π)[x̃, ỹ, z̃]. In
other words it is enough to prove that the power series ψ1(x̃i), ψ4◦ψ3◦ψ2(x̃i), ψ1(ỹj),
ψ4◦ψ3◦ψ2(ỹj), ψ1(z̃k) and ψ4◦ψ3◦ψ2(z̃k) lie in R〈x̃, ỹ, z̃〉 and that they are congruent
respectively to x̃i, x̃i, ỹj , ỹj , z̃k and z̃k modulo π. We know that ψ1 = logB, hence, using
Equation (2.3.2),

ψ1(x̃i) = x̃i , ψ1(ỹj) , ψ1(z̃k) ∈ R[[x]]〈ỹ, z̃〉 ⊂ R〈x̃, ỹ, z̃〉 and
ψ1(x̃i) ≡ x̃i(modπ) , ψ1(ỹi) ≡ ỹi(modπ) , ψ1(ỹi) ≡ ỹi(modπ) ,

where R[[x]]〈ỹ, z̃〉 is defined with respect to the π-adic valuation on R[[x]]. We notice that
ψ2◦ψ3◦ψ4 is the identity when restricted toR[[y]], hence ψ2◦ψ3◦ψ4 : R[[y]][[x, z]]→R[[y]][[x, z]]
is an isomorphism between the additive formal group law of dimension a+c over R[[y]]
and the formal group law A1 which is defined in the proof of Theorem 2.2.3; moreover
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ψ2◦ψ3◦ψ4 reduces to the identity modulo (x1, . . . , xa, z1, . . . , xc)2. By the uniqueness of
the formal logarithm, ψ2◦ψ3◦ψ4 = logA1 , hence, using Equation (2.3.2),

ψ2◦ψ3◦ψ4(x̃i) = x̃i , ψ2◦ψ3◦ψ4(ỹj) , ψ2◦ψ3◦ψ4(z̃k) ∈ R[[y]]〈x̃, z̃〉 ⊂ R〈x̃, ỹ, z̃〉 and
ψ2◦ψ3◦ψ4(x̃i) ≡ x̃i(modπ) , ψ2◦ψ3◦ψ4(ỹi) ≡ ỹi(modπ) , ψ2◦ψ3◦ψ4(ỹi) ≡ ỹi(modπ) ,

where R[[y]]〈x̃, z̃〉 is defined with respect to the π-adic valuation on R[[y]].

2.4 Another proof of Theorem 1.4.10

We now use Theorem 2.2.3 and Proposition 2.3.5 to give another proof of Theorem
1.4.10. Our strategy is constructing a chart Φ: Zρg+ρ−1

p → P×,ρ−1(Zp)t, such that the
map Φ−1 ◦ κ is given by linear and quadratic polynomials. In order to construct Φ we
first establish coordinates to define a formal biextension law associated to P×,ρ−1, then
we use the map of Theorem 2.2.3 to describe more easily the partial group operations
of P×,ρ−1(Zp) in a neighbourhood of the neutral element, then we make translations to
work in the residue disk of t.

Let J, (J∨0)ρ−1, P×,ρ−1 and T be as in Section 1.2 and let πJ and π(J∨0)ρ−1 be the two
projections P×,ρ−1 → J and P×,ρ−1 → (J∨0)ρ−1. Letting 0, 0 be the neutral elements
of J(Zp), J(Fp), we choose y1, . . . , yg ∈ OJ,0 that vanish on 0 and that, together with p,
generate the maximal ideal m ⊂ OJ,0. The embedding Z[y1, . . . , yg] → OJ,0 induces an
isomorphism

Zp[[y]] = Zp[[y1, . . . , yg]]
∼−→ O∧m

J,0 .

The group operation MJ : J × J → J induces a morphism of rings OJ,0 → OJ,0 ⊗ OJ,0
and taking completions we get a formal group law over Zp

M∗J : Zp[[y]] = O∧m

J,0 −→ (OJ,0 ⊗OJ,0)∧m⊗O
J,0+O

J,0⊗m = Zp[[y]]⊗̂ZpZp[[y]] .

Then we have an isomorphism of groups given by the composition

J(Zp)0 = Homloc(OJ,0,Zp) = Homcont(O∧m

J,0 ,Zp) = Homcont(Zp[[y]],Zp) = M∗J (Zp) .

Analogously we choose z1, . . . , zρg−g ∈ O(J∨0)ρ−1,0 that vanish on 0 and that, together
with p, generate the maximal ideal of O(J∨0)ρ−1,0. The group operation on (J∨0)ρ−1

induces a formal group law

M∗(J∨0)ρ−1 : Zp[[z1, . . . , zρg−g]] = Zp[[z]] −→ Zp[[z]]⊗̂ZpZp[[z]] ,

that describes the group (J∨0)ρ−1(Zp)0.
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The rigidification of P×,ρ−1 along J × {0} gives an element 1 ∈ P×,ρ−1(0, 0)(Zp)
that is the neutral element of both the groups π−1

J (0)(Zp) and π−1
J∨0,ρ−1(0)(Zp). We call

such an element the neutral element of P×,ρ−1(Zp) and we denote by 1 its image in
P×,ρ−1(Fp). We choose w1, . . . , wρ−1 ∈ OP×,ρ−1,1 that vanish on 1 and that, together
with x1, . . . , xg,z1, . . . , zρg−g and p generate the maximal ideal m ⊂ OP×,ρ−1,1. As before
we have an isomorphism

Zp[[y, z, w]] = Zp[[y1, . . . , yg, z1, . . . , zρg−g, w1, . . . , wρ−1]] ∼−→ O∧m

P×,ρ−1,1

and the two partial group laws

+1 : P×,ρ−1 ×(J∨0)ρ−1 P×,ρ−1 −→ P×,ρ−1 , +2 : P×,ρ−1 ×J P×,ρ−1 −→ P×,ρ−1 ,

and induce a biextension

M∗J : Zp[[y, z, w]] −→ Zp[[y, z, w]]⊗̂Zp[[z]]Zp[[y, z, w]] ,
M∗J∨0,ρ−1 : Zp[[y, z, w]] −→ Zp[[y, z, w]]⊗̂Zp[[y]]Zp[[y, z, w]] ,

of the formal group laws M∗J and M∗J∨0,ρ−1 by the formal group law induced by the alge-
braic groupGρ−1

m . In particular P×,ρ−1(Zp)1 is a biextension of J(Zp)0 and (J∨0)ρ−1(Zp)0
by Gρ−1

m (Zp)1, and it is isomorphic to (MJ ,MJ0∨,ρ−1)(Zp). Applying Theorem 2.2.3 and
Proposition 2.3.5 we get an isomorphism of biextensions

Ψ: (P×,ρ−1(Zp)1,+1,+2) −→ (Zgp × Zρg−gp × Zρ−1
p ,+1,+2) ,

given by power series in O((P̃×,ρ−1)px)∧p , that modulo p give a linear map between the
tangent space of P×,ρ−1 at 1 and Fρg+ρ−1

p .
We now take care of translating Ψ. Let f and m be as in Section 1.2 and let

x
t̃
∈ J(Z), t̃ ∈ T (Z) ⊂ P×,ρ−1(Z) be as in Section 1.4. By Equations (2.3.2) and

(2.3.3), the formal logarithms of (the formal group laws associated to) the algebraic
groups π−1

(J∨0)ρ−1(m·◦trc◦f(x
t̃
)) and π−1

J (x
t̃
) give isomorphisms of groups

Ψ1 :
(
π−1
J∨0,ρ−1(m· ◦ trc ◦ f(x

t̃
))(Zp)1,+1

)
−→ (Zgp × Zρ−1

p ,+) ,
Ψ2 :

(
π−1
J (x

t̃
)(Zp)1,+2

)
−→ (Zρg−gp × Zρ−1

p ,+) ,

where we denote by 1 the reduction modulo p of the neutral elements of the respec-
tive groups. Since π−1

J (x
t̃
) is an extension of (J∨0)ρ−1, the first ρg−g coordinates

of Ψ2 are given by the composition of the projection π−1
J (x

t̃
)(Zp)1 → (J∨0)ρ−1(Zp)0

with the formal logarithm of (J∨0)ρ−1. Analogously the first g coordinates of Ψ1 are
given by the composition of π−1

(J∨0)ρ−1(m·◦trc◦f(x
t̃
))(Zp)1 → J(Zp)0 with the formal
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logarithm of J . By Theorem 2.2.3, analogous statements are true for the first g coor-
dinates of Ψ and the subsequent ρg−g coordinates of Ψ. This implies that for every
(α, β, γ) ∈ Zgp × Zρg−gp × Zρ−1

p we have

(2.4.1)
πJ
(
Ψ−1(α, β, γ)

)
= πJ

(
Ψ−1

1 (α, γ)
)

= πJ
(
Ψ−1

1 (α, 0)
)
,

π(J∨0)ρ−1
(
Ψ−1(α, β, γ)

)
= π(J∨0)ρ−1

(
Ψ−1

2 (β, γ)
)

= π(J∨0)ρ−1
(
Ψ−1

2 (β, 0)
)
.

Moreover, using the Gρ−1
m -structure of P×,ρ−1 and the fact that both the groups π−1

J (0)
and π−1

J∨0,ρ−1(0) are base changes of Gρ−1
m , for every (α, β, γ) ∈ Zgp × Zρg−gp × Zρ−1

p we
have

Ψ−1(α, β, γ) = Ψ−1(0, β, γ) +1 Ψ−1(α, β, 0) = expρ−1(γ) ·Ψ−1(α, β, 0) ,
Ψ−1

1 (α, γ) = Ψ−1
1 (0, γ) +1 Ψ−1

1 (α, 0) = expρ−1(γ) ·Ψ−1
1 (α, 0) ,

Ψ−1
2 (β, γ) = Ψ−1

2 (β, γ) +2 Ψ−1
2 (β, 0) = expρ−1(γ) ·Ψ−1

2 (β, 0) ,

where expρ−1 : Zρ−1
p → Z×,ρ−1

p is obtained taking the (ρ−1)-th power of

exp: Zp −→ Gm(Zp)1 = 1 + pZp ,

which is the inverse of the map (2.3.3) induced by the formal logarithm of Gm. By
(2.4.1), we can “translate” the map Ψ by Ψ1 and Ψ2, obtaining the following map

Φ: Zgp × Zρg−gp × Zρ−1
p −→P×,ρ−1(Zp)t

(α, β, γ) 7−→
(
Ψ−1(α, β, γ) +2 Ψ−1

1 (α, 0)
)

+1
(
Ψ−1

2 (β, 0) +2 t̃
)

= expρ−1(γ)·
((

Ψ−1(α, β, 0) +2 Ψ−1
1 (α, 0)

)
+1
(
Ψ−1

2 (β, 0) +2 t̃
))
.

Let us fix coordinates to study Φ. Let u1, . . . , uρg−g be elements ofO(J∨0)ρ−1,m·◦trc◦f(jb(u))

such that together with p they form a system of parameters of O(J∨0)ρ−1,m·◦trc◦f(jb(u)),
and let us lift v1, . . . , vρ−1 to elements in OP×,ρ−1,t. Then u1, . . . , uρg−g, v1, . . . , vρ−1 and
p, together with x1, . . . , xg defined in the statement of Theorem 1.4.10, form a a system
of parameters of OP×,ρ−1,t. The functions x̃i := xi

p , ũi := ui
p and ṽi := vi

p give bijections
with powers of Zp that make the following diagram commute

P×,ρ−1(Zp)t Zgp × Zρg−gp × Zρ−1
p

T (Zp)t Zgp × Zρg−gp × Zρ−1
p

(x̃,ũ,̃v) = (x̃1,...,x̃g,ũ1,...,ũρg−g ,̃v1,...,̃vρ−1)

(x̃1,...,x̃g ,̃v1,...,̃vρ−1)

.

The biextension structure on P×,ρ−1 implies that Φ is a bijection and, since it is de-
fined composing maps given by integral power series that reduce to linear polynomials
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modulo p, then (x̃, ũ, ṽ) ◦ Φ is given by power series that reduce to linear polynomials
modulo p. Hence the same is true for the inverse of (x̃, ũ, ṽ) ◦Φ. This and the commuta-
tivity of the above diagram imply that, in order to prove Theorem 1.4.10, it is enough to
prove that the map Φ−1 ◦κZ is given by g+(ρg−g) linear polynomials and ρ−1 quadratic
polynomials in the ni and also proving that Φ−1(T (Z)t) is the image of such a polyno-
mial map. To do so we give names to the coordinates of the relevant points: for each
i, j ∈ {1, . . . , r} let Pi,j , Ri,̃t, St̃,j ∈ P

×,ρ−1(Z) be as in Equation (1.4.1) and let αi ∈ Zgp,
βj ∈ Zρg−gp , γi,j , γi,̃t, γt̃,j ∈ Zρ−1

p and ξi,j , ξi,̃t, ξt̃,j ∈ F×,ρ−1
p ⊂ Z×,ρ−1

p be such that

Pi,j = ξi,j ·Ψ−1(αi, βj , γi,j) , R
i,̃t

= ξ
i,̃t
·Ψ−1

1 (αi, γi,̃t) , S
t̃,j

= ξ
t̃,j
·Ψ−1

2 (βj , γt̃,j) .

The maps Ψ,Ψ1 and Ψ2 are formal logarithms, hence they allow us to write very easily
the two partial group laws, and in particular we can describe the maps A,B,C,D in
Equations (1.4.2), (1.4.3) and (1.4.4) as follows

A
t̃
(n) =

r∑
2

j=1

nj ·2 St̃,j =

 r∏
j=1

ξ
nj

t̃,j

 · Ψ−1
2

 r∑
j=1

njβj ,

r∑
j=1

njγt̃,j

 ,

B
t̃
(n) =

r∑
1

i=1

ni ·1 Ri,̃t =
(

r∏
i=1

ξni
i,̃t

)
· Ψ−1

1

(
r∑
i=1

niαi ,

r∑
i=1

niγi,̃t

)
,

C(n) =
r∑

1
i=1

ni ·1
( r∑

2
j=1

nj ·2 Pi,j
)

=

 r∏
i,j=1

ξ
ninj
i,j

 · Ψ−1

 r∑
i=1

niαi ,

r∑
j=1

njβj ,

r∑
i,j=1

ninjγi,j

 ,

D
t̃
(n) =

(
C(n) +2 Bt̃(n)

)
+1
(
A
t̃
(n) +2 t̃

)
= ξ (n) · Φ

 r∑
i=1

niαi ,

r∑
j=1

njβj ,

r∑
i,j=1

ninjγi,j +
r∑
j=1

njγt̃,j +
r∑
i=1

niγi,̃t

 ,

with ξ(n) :=
r∏

i,j=1
ξ
ninj
i,j ·

r∏
i=1

ξni
i,̃t
·
r∏
j=1

ξ
nj

t̃,j
∈ F×,ρ−1

p .

For any n ∈ Zr we have ξ((p−1)n) = 1, hence

Φ−1◦κZ(n) = Φ−1(D
t̃
((p− 1)n))

=

(p−1)
r∑
i=1

niαi , (p−1)
r∑
j=1

njβj , (p−1)2
r∑

i,j=1
ninjγi,j + (p−1)

r∑
i=1

ni(γi,̃t + γ
t̃,i

)


is described by linear and quadratic polynomial in ni and extends continuously to

Φ−1 ◦ κ : Zrp −→ Zgp × Zρg−gp × Zρ−1
p .
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Finally,

κ(Zr) ⊂ T (Z)t ⊂
(
F×,ρ−1
p ·D

t̃
(Zr)

)
∩ P×,ρ−1(Zp)t = κ

(
1
p−1Z

r
)
,

hence
κ(Zrp) ⊂ T (Z)t ⊂ κ(Zrp) .
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Chapter 3

Automorphisms of Cartan curves

This chapter is the result of a joint work with Valerio Dose and Pietro Mercuri
We study the automorphisms of modular curves associated to Cartan subgroups of

GL2(Z/nZ) and certain subgroups of their normalizers. We prove that if n is large
enough, all the automorphisms are induced by the ramified covering of the complex
upper half-plane. We get new results for non-split curves of prime level p ≥ 13: the
curve X+

ns(p) has no non-trivial automorphisms, whereas the curve Xns(p) has exactly
one non-trivial automorphism. Moreover, as an immediate consequence of our results
we compute the automorphism group of X∗0 (n) := X0(n)/W , where W is the group
generated by the Atkin-Lehner involutions of X0(n) and n is a large enough square.

3.1 Introduction

Since the 1970s many efforts have been made to determine automorphisms of modular
curves and in particular to establish whether a modular curve has other automorphisms
besides the expected ones. Indeed, infinitely many automorphisms naturally arise when
the curve has genus zero or one. Moreover, since the components of modular curves
over C can be seen as compactification of quotients of the complex upper half-plane H,
some automorphisms of H induce automorphisms of the quotient modular curve. Such
automorphisms are called modular and their determination is a purely group theoretic
problem.

The focus has been classically placed on the modular curves X0(n) associated to a
Borel subgroup of GL2(Z/nZ) (e.g., upper triangular matrices), with n a positive integer.
For these curves, modular automorphisms played an important role in the development
of the theory of modular curves. They were determined in the seminal paper [4], with a
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small gap which was later filled in a couple of different ways (see [2], [14]). Meanwhile, a
complete picture about the remaining automorphisms of X0(n) has been painted through
the decades by the works [83], [85], [60], [42], [52]. Also some works in this century (e.g.,
[5], [74], [47]) took on the case of the modular curves X0(p)/〈wp〉 and X0(p2)/〈wp2〉,
where wp and wp2 are the Atkin-Lehner involutions of the respective modular curve.

More recently, great interest has been generated in modular curves associated to
different subgroups of GL2(Z/nZ), in particular to normalizers of Cartan subgroups for
n = p prime. This is mainly due to the fact that rational points on these curves help
classifying rational elliptic curves whose associated Galois representation modulo p is
not surjective. This is directly linked to a question formulated by Serre (also known
as uniformity conjecture) in the 1970s ([92]). After the works [72], on the Borel case,
and [17], [18], on the split Cartan case, the only part of this problem left to understand
nowadays is equivalent to asking whether, for almost every prime p, the modular curve
X+

ns(p) associated to the normalizer of a non-split Cartan subgroup of GL2(Z/pZ) has
other rational points besides the expected ones, namely the CM points of class number
one. Such equivalence led to a certain amount of research driven towards computing
equations and finding rational points of modular curves associated to non-split Cartan
subgroups and their normalizers (see for example [12], [13], [10], [35], [36], [75]).

A curious connection between the problem of determining rational points and the one
of determining automorphisms in a modular curve is given by the fact that in the case
of the Borel modular curves X0(p) of genus at least 2, the sole occurrence of unexpected
rational points (p = 37) in the setting of Serre’s uniformity conjecture, happens in the
presence of an unexpected automorphism of the corresponding modular curve. A further
connection is made in [37], where is proven that, for almost every prime p, the absence of
unexpected rational points of the curve X+

ns(p) implies the absence of unexpected rational
automorphisms of the modular curve Xns(p) associated to a non-split Cartan subgroup
of GL2(Z/pZ).

The first work centered on automorphisms of non-split Cartan modular curves has
been [35], in which the existence of an unexpected automorphism of Xns(11) is proven.
Some partial results on the automorphisms of Xns(p) and X+

ns(p), for almost every prime
p, were proven in [37], while in [48] the full determination of the automorphism group is
obtained for low primes (p ≤ 31).

In the present work we complete the results in [37] about the prime level case. More-
over, we extend the analysis to every composite level n, where we can define Cartan
subgroups of mixed split/non-split type. The scope of our study concerns Cartan sub-
groups and also a specific subgroup of their normalizer in GL2(Z/nZ) which we call
Cartan-plus subgroup. However, in most cases, for example when n is odd, a Cartan-
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plus subgroup actually coincides with the normalizer of the relative Cartan subgroup.
We prove the following result:

Theorem 3.6.15. Let n ≥ 10400 be an integer and let H < GL2(Z/nZ) be either a
Cartan or a Cartan-plus subgroup. Then every automorphism of XH is modular, hence
we have

Aut(XH) ∼=

N ′/H ′ × Z/2Z, if n ≡ 2 mod 4 and H is a Cartan-plus split at 2,
N ′/H ′, otherwise,

where N ′ < SL2(Z/nZ) is the normalizer of H ′ := H ∩ SL2(Z/nZ).

It may be interesting to note that the modular curve associated to a Cartan-plus
subgroup of GL2(Z/nZ) which is split at every prime dividing n is isomorphic to the
modular curve X∗0 (n2) := X0(n2)/W , where W is the group generated by Atkin-Lehner
involutions of the Borel curve X0(n2).

In the case n = pe, where p is a prime number, we can refine the techniques developed
and obtain a more complete result:

Theorem 3.6.17. Let p be a prime number and let e be a positive integer. If pe > 11 and
pe /∈ {33, 24, 25, 26}, then all the automorphisms of Xns(pe), X+

ns(pe), Xs(pe) and X+
s (pe)

are modular and

Aut(Xns(pe)) ∼= Z/2Z, Aut(X+
ns(pe)) ∼= {1},

Aut(Xs(pe)) ∼=


(Z/8Z)2 o (Z/2Z), if p = 2,
Z/3Z× S3, if p = 3,
Z/2Z, if p > 3,

Aut(X+
s (pe)) ∼=


Z/8Z, if p = 2,
Z/3Z, if p = 3,
{1}, if p > 3,

where the above semidirect product (Z/8Z)2 o Z/2Z is described in Remark 3.6.16.

Corollary 3.6.18. Let p ≥ 13 be a prime number. Then the group of automorphisms of
X+

ns(p) is trivial and the group of automorphisms of Xns(p) has order 2.

The main technical novelty of our proofs is a thorough analysis of the action of
Hecke operators on very general modular curves. This allows us to prove results about
automorphisms without exploiting and worrying about the field of definition of the cusps
and CM points which has been instead instrumental for determining automorphisms of
modular curves throughout the literature in the past. We also give à la Chen results
to describe jacobians of Cartan modular curves in terms of jacobians of Borel modular
curves and we give an explicit upper bound on the dimension of the CM part of the
jacobian of Borel modular curves. The structure of the paper is the following.
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In Section 3.2 we define modular curves associated to general subgroups of GL2(Z/nZ)
and we give an equivalent condition to the fact that a point of a modular curves branches
in the covering of the curve by H.

In Section 3.3 we study the action of Hecke operators on modular curves. In particular
we focus on the action on the cusps and the other points which could branch in the
covering by H. Such points are associated to elliptic curves with j-invariant equal to 0
or 1728.

In Section 3.4 we define Cartan and Cartan-plus subgroups of GL2(Z/nZ) for every
positive integer n. We also define the relative modular curves of composite level. Then
we prove that the jacobian of a Cartan modular curve is a quotient of the jacobian of
some Borel modular curve. When n = pe, this is done applying the techniques of [26]
and [39] to a previously unexplored case, and for n general we combine these results. We
also extend the results of [26] to the case of even level.

In Section 3.5 we prove that all the automorphisms of Cartan modular curves must
be defined on a compositum of quadratic fields when the level n is large enough. To do
this, we use a geometrical criterion that we can apply by bounding the dimension of the
CM part of the jacobian of Cartan modular curves. This last step is obtained using the
isogenies of Section 3.4 and computing explicit bounds for the CM part of the jacobians
of Borel modular curves. Furthermore, we refine the results in the case n = pe, with p
prime.

Finally, in Section 3.6 we prove the results stated above about automorphisms. The
main idea is to show that each automorphism must preserve the cusps and the set of
branching points of the covering by H. This implies that there are no non-modular
automorphisms. Thus, we compute the modular automorphisms to complete the analysis.
We first concentrate on Cartan modular curves of general level n. Then we adapt the
strategy to the case n = pe, with p prime, giving the complete result for Xns(p) and
X+

ns(p), and improving the result we obtained for the general level in the cases of X+
s (pe),

Xns(pe) and X+
ns(pe). To treat some of the small level cases, we use the criterion of [48]

which we verify through an algorithm implemented in MAGMA ([69]) which is available
at [70].

As we did for the case of level n = pe, with p prime, the result on Cartan modular
curves of composite level can be sharpened, with our techniques, for levels with a specific
type of factorization. However, certain cases remain out of the reach of the strategy
described in this work, for example when we are not able to apply the criterion of [48]
and either the curve has low gonality (e.g., Xns(16), X+

ns(16), X+
ns(27)) or its jacobian

has a large CM part relative to its dimension (see Remark 3.5.11 for the example with
the lowest level).
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3.2 Modular curves
Let n be a positive integer. We denote by Y (n) the (coarse if n < 3) moduli space
that parametrizes pairs (E, φ) where E is an elliptic curve over a Q-scheme S and
φ : (Z/nZ)2

S → E[n] is an isomorphism of S-group schemes. We denote by X(n) the
compactification of Y (n) and we call X(n) the modular curve of full level n.

Every matrix γ ∈ GL2(Z/nZ) gives an automorphism of the constant group scheme
(Z/nZ)2

S , hence γ acts on Y (n) sending (E, φ) to (E, φ ◦ γ). This defines an action of
GL2(Z/nZ) on Y (n) that extends uniquely toX(n). For each subgroupH of GL2(Z/nZ),
let XH be the quotient X(n)/H. By [32, IV.6.7], XH has good reduction over each prime
that does not divide n and the smooth model of YH = Y (n)/H over Z[1/n] is a coarse
moduli space for elliptic curves with H-structure, i.e., the equivalence classes of pairs
(E, φ) where E is an elliptic curve over a Z[1/n]-scheme S and φ : (Z/nZ)2

S → E[n] is an
isomorphism of S-group schemes, and the equivalence relation is given by:

(3.2.1) (E, φ) ∼H (E′, φ′) ⇐⇒ (φ′)−1 ◦ ι|E[n] ◦φ = h, for some h ∈ H and ι : E ∼→ E′.

In particular, for every algebraically closed field K of characteristic p - n, we have a
bijection between YH(K) and the set of elliptic curves over K with H-structure.
Remark 3.2.2. Since −1 is an automorphism of every elliptic curve, then for every H,
the curve XH is isomorphic to X±H , where ±H := {±Id}·H < GL2(Z/nZ). Hence, the
equivalence relation (3.2.1) can be written as follows

(E, φ) ∼H (E′, φ′) ⇐⇒ (φ′)−1 ◦ ι|E[n] ◦ φ = h, for some h ∈ ±H and ι : E ∼→ E′.

Let H be the complex upper half-plane {τ ∈ C : Im(τ) > 0}, let H± = C − R and
moreover let H = H ∪ P1(Q) and H± = H± ∪ P1(Q) be their “compactifications”. The
group GL2(Z) acts on H, H±, H and H± by Möbius transformations. Moreover, every
g in GL2(Z) acts on pairs (z, γH) ∈ H± × (GL2(Z/nZ)/H) as (g(z), ḡγH), where g(z)
is the image of z under the Möbius transformation given by g and ḡ is the reduction of
g mod n. This action gives canonical isomorphisms of Riemann surfaces

GL2(Z)\
(
H± × (GL2(Z/nZ)/H)

)
−→ YH(C), (3.2.2.1)

GL2(Z)\
(
H± × (GL2(Z/nZ)/H)

)
−→ XH(C). (3.2.2.2)

The isomorphism (3.2.2.1) is equivalent to that one described in [32, IV.5.3] and is
given by GL2(Z)(τ, γH) 7→ (Eτ , φτ ◦ γ), where Eτ is the elliptic curve C/(Z+Zτ) and
φτ : (Z/nZ)2

C → Eτ [n] is the unique isomorphism such that

φτ

(
1
0

)
= 1
n
, φτ

(
0
1

)
= τ

n
.
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The isomorphism (3.2.2.2) is just the extension of the previous one to the compactifica-
tions. For each subgroup H of GL2(Z/nZ), we define

ΓH := {γ ∈ SL2(Z) : γ (mod n) lies in H}.

If detH 6= (Z/nZ)×, then XH(C) is not connected: the number of connected components
is [(Z/nZ)× : det(H)] and, for each connected componentXcc

H (C), there are isomorphisms
of Riemann surfaces

(3.2.3) ΓgHg−1\H −→ Xcc
H (C), ΓgHg−1\H −→ Y ccH (C),

for some g in GL2(Z/nZ). In particular, if detH = (Z/nZ)×, then YH and XH are
geometrically connected curves defined over Q.

The following proposition about the morphisms (3.2.3) is used in Section 3.6. We say
that an automorphism of an elliptic curve is non-trivial if it is different from ±Id.

Proposition 3.2.4. Let n be a positive integer, let H be a subgroup of GL2(Z/nZ), let
g be in GL2(Z/nZ) and consider the composition

H ΓgHg−1\H YH(C),

where the left map is the natural projection and the right map is in (3.2.3). Then a point
(E, φ) ∈ YH(C) is a branch point for such composition if and only if there is a non-trivial
automorphism u of E such that φ−1◦u|E[n]◦φ ∈ ±H. If this happens, then each point
τ ∈ H projecting to (E, φ) has ramification index #Aut(E)/2.

Proof. By Remark 3.2.2 we can suppose that H contains −Id. Instead of looking at
a map H → YH(C) parametrizing a single component of YH , we can work with the
canonical map

H± ×GL2(Z/nZ) Y (n)(C) YH(C).π πH

Up to substituting n with 3n andH with its preimage under GL2(Z/3nZ)→ GL2(Z/nZ),
we can suppose that n ≥ 3. This implies that π is an (unramified) covering map, hence
the ramification index of the πH ◦π in a point (τ, γ) is equal to the ramification index of
πH in the point π(τ, γ). Hence, we only need to look at the ramification points of πH .
A point (E, φ) ∈ YH(C) is a branch point for πH if and only if the fiber π−1

H (E, φ) has
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cardinality smaller than deg πH = #H/2. The modular interpretation of YH and Y (n)
implies that

(3.2.5) π−1
H (E, φ) =

{
(E, u|E[n]◦φ◦h) : h ∈ H,u ∈ Aut(E)

}
/Aut(E),

where v ∈ Aut(E) acts sending (E,ψ) to (E, v|E[n]◦ψ). Since n ≥ 3, the map that sends
u to φ−1◦u|E[n]◦φ gives an inclusion Aut(E) ↪→ GL2(Z/nZ), hence, by (3.2.5), we have

#π−1
H (E, φ) = #

(
(H·Aut(E))/Aut(E)

)
= #

(
H/(H∩Aut(E))

)
.

The group Aut(E) always contains the multiplication by −1 and is cyclic of order 2, 4
or 6. Finally, there are two options for Aut(E)∩H:

• Aut(E)∩H only contains ±Id and (E, φ) is not a branch point;

• Aut(E)∩H has order equal to #Aut(E) > 2, in this case (E, φ) is a branch point
and, since the map πH is Galois, every point in π−1

H (E, φ) has ramification index
equal to deg(πH)/#π−1

H (E, φ) = #Aut(E)/2.

3.3 Hecke operators
Let n be a positive integer and let H be a subgroup of GL2(Z/nZ). For every prime
` - n, there is a divisor D` ⊂ XH ×XH inducing the `-th Hecke operator

T` : Div(XH)→ Div(XH), T` : Jac(XH)→ Jac(XH).

On YH(C), it is described by

(3.3.1) T`(E, φ) =
∑

0�C�E[`]

(E/C, πC ◦ φ),

where πC : E → E/C is the natural projection. Now we recall the definition of T`. Let H`

be the subgroup of GL2(Z/n`Z) containing the matrices whose reduction modulo n lies
in H and whose reduction modulo ` is an upper triangular matrix. Given a Z[ 1

n` ]-scheme
S and an elliptic curve E/S with H`-structure φ : (Z/n`Z)2 → E[n`], we have two ways
of constructing an elliptic curve over S with H-structure:

• The n-torsion subgroup of (Z/n`Z)2 is canonically isomorphic, via the Chinese
Remainder Theorem, to (Z/nZ)2 and the restriction of φ to this subgroup gives
an isomorphism φ|(Z/nZ)2 : (Z/nZ)2 → E[n]. One can check that the class of
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(E, φ|(Z/nZ)2) modulo ∼H does not depend on the choice of the representative
(E, φ) in the equivalence class defined by ∼H` , hence

pr(E, φ) := (E, φ|(Z/nZ)2)

is a well defined elliptic curve over S with H-structure.

• The subgroup C ⊂ E[`] generated by φ( n0 ) is a subgroup of E of order ` and E/C
is an elliptic curve over S. Denoting by πC : E → E/C the natural projection, we
have that

qt(E, φ) := (E/C, πC ◦ φ|(Z/nZ)2)

is a well defined elliptic curve over S with H-structure.

These two constructions define natural transformations between the functor of elliptic
curves with H`-structure and the functor of elliptic curves with H-structure restricted to
schemes over Z[ 1

n` ]. We get induced morphisms between the coarse moduli spaces YH`
and (YH)Z[ 1

n` ] that can be extended by smoothness to the compactifications:

pr, qt : XH` −→ (XH)Z[ 1
n` ].

The image of XH` under the map (pr, qt) defines a divisor inside (XH)Z[ 1
n` ]×(XH)Z[ 1

n` ].
Since XH is smooth over Z[ 1

n ], this divisor extends uniquely to D` ⊂ XH×XH whose
irreducible components project surjectively on each factor XH . This correspondence
induces the operator T` = qt∗ ◦ pr∗ and the definitions of qt and pr imply the equality
(3.3.1).

The reduction of T` modulo ` is described by a celebrated theorem of Eichler and
Shimura. To state this theorem in the full generality, we recall the definition of diamond
operators. Let a ∈ (Z/nZ)×, then the matrix ( a 0

0 a ) normalizes H, hence

〈a〉(E, φ) := (E, φ ◦ ( a 0
0 a ))

defines an automorphism of the functor of elliptic curves withH-structure. So 〈a〉 induces
an automorphism of the coarse moduli space YH and it extends to an automorphism of
the compactification XH . Eichler-Shimura Relation is nowadays a common knowledge,
but in the literature is often stated in a different form than we need. The proof of [38,
Theorem 8.7.2] can be directly adapted to our case, and another proof is in [94, Theorem
7.9 and Corollary 7.10]. We use the result in the following form.

Theorem (Eichler-Shimura Relation). Let n be a positive integer, let H be a sub-
group of GL2(Z/nZ), let ` be a prime number not dividing n, let XH be the reduction of
XH modulo `, let T `, 〈`〉 : Div(XH)→ Div(XH) be the reduction of the Hecke operator T`
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and of the diamond operator 〈`〉 and let Frob` : XH → XH be the Frobenius morphism.
Then

T ` = (Frob`)∗ + 〈`〉∗ ◦ (Frob`)∗.

Notice that in general XH is not geometrically connected and if X ′ is a component
of XH , the Frobenius morphism XH → XH may not restrict to a morphishm X ′ → X ′.
Analogously, if x is a point on X ′, the divisor T`(x) may be not supported on X ′. We are
interested in Eichler-Shimura Relation because, as already pointed out in [60, Lemma
2.6], it implies that, in certain cases, Hecke operators commute with automorphisms of
modular curves.

Proposition 3.3.2. Let n be a positive integer, let H < GL2(Z/nZ) be a subgroup con-
taining the scalar matrices and such that detH = (Z/nZ)×. Let ` be a prime not dividing
n and let σ ∈ Gal(Q/Q) be a Frobenius element at `. Then, for any automorphism u of
XH defined over a compositum of quadratic fields, in End(Jac(XH)) we have

(3.3.3) T` ◦ u = uσ ◦ T`,

where we identify u and uσ with their pushforward on Jac(XH). Moreover, if the gonality
of XH(C) is greater than 2(`+ 1), then (3.3.3) holds at level of divisors.

Proof. Let J := Jac(XH), let Frob` : XH → XH be the Frobenius morphism and let φ`
be the Frobenius generator of Gal(F`/F`). Let D ∈ Div(XH) and let ū be the reduction
of u modulo `. Using Eichler-Shimura Relation, we have

T ` ◦ ū(D) = ((Frob`)∗ + (Frob`)∗) ◦ ū(D) = (Frob`)∗ū(D) + (Frob`)∗ū(D) =

=ūφ`(Frob`)∗(D) + ūφ
−1
` (Frob`)∗(D) = uσ(Frob`)∗(D) + uσ−1(Frob`)∗(D).

Now, since u is defined over a compositum of quadratic fields, the Galois automorphisms
σ and σ−1 act in the same way on u. This implies that the last term in the previous
chain of equalities is equal to uσ ◦ T `(D) obtaining T ` ◦ ū = uσ ◦ T ` in End(JF`).

Since J has good reduction at `, the natural map End(J) → End(JF`) is injective,
hence (3.3.3) holds in End(J). This means that, for any two points P and Q in XH(C),
the divisor D := (T`u− uσT`)(P −Q) is principal. Hence, either D is the zero divisor or
is the divisor of a non-constant rational function on XH of degree at most 2(`+ 1).

Now we suppose that the gonality of XH exceeds 2(`+ 1). In this case, there are no
non-constant rational functions on XH of degree at most 2(` + 1), hence D is the zero
divisor. This gives the following equality of divisors:

T`u(P ) + uσT`(Q) = uσT`(P ) + T`u(Q).
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For every point P , we can choose Q such that the supports of T`u(P ) and T`u(Q) are
disjoint, and, therefore, last equality implies T`u(P ) = uσT`(P ) as divisors. Up to a base
change to C, each divisor on XH is a sum of points with integer coefficients, hence we
conclude that (3.3.3) holds at level of divisors.

Multiple points in the image of Hecke operators

In the proofs of Section 3.6 we look at points P ∈ XH(C) and primes ` such that T`(P )
is not a sum of distinct points. In this subsection we study this phenomenon. When P
is a cusp, we have the following result.

Proposition 3.3.4. Let n be a positive integer and let H be a subgroup of GL2(Z/nZ).
Let ` be a prime number not dividing n, let σ ∈ Gal(Q/Q) be a Frobenius element at `
and let C ∈ XH(Q) be a cusp. Then

T`(C) = Cσ + ` 〈`〉(Cσ
−1

).

Proof. The divisor T`(C) = qt∗pr∗(C) is supported on the cusps because both the maps
pr, qt : XH` → XH send non-cuspidal points to non-cuspidal points and cusps to cusps.
If we fix a prime ideal l in the algebraic integers such that l | `, then, by [32, IV.3.4], each
cusp in XH(Q) reduces to a different point modulo l. Thus, it is enough to prove that
T`(C) is congruent to Cσ + ` 〈`〉(Cσ−1) modulo l, and this is true by Eichler-Shimura
Relation.

We need a criterion to characterize the points (E, φ) ∈ YH(C) such that their image
via T` contains a point with multiplicity at least 2. It is given by the following lemma.

Lemma 3.3.5. Let n be a positive integer, let H be a subgroup of GL2(Z/nZ) and let `
be a prime not dividing n. For all points (E, φ), (E, φ′) ∈ YH(C) and all positive integers
m ≥ 2, the following are equivalent:

1. T`(E, φ) contains (E′, φ′) with multiplicity m;

2. there are m isogenies α1, . . . , αm : E → E′ of degree ` with distinct kernels such
that (φ′)−1◦αj |E[n]◦φ lies in ±H, for every j = 1, . . . ,m;

3. there are m endomorphisms β1 = `, β2, . . . , βm of E′ of degree `2 and an isogeny
α : E′ → E of degree ` such that:

P1 βi 6= u ◦ βj, for i, j = 1, . . . ,m, such that i 6= j and for each u ∈ Aut(E′);

P2 kerα ⊂ kerβj, for every j in {1, . . . ,m};
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P3 the matrices `−1φ−1◦α|E′[n]◦φ′ and `−1(φ′)−1◦βj |E′[n]◦φ′ lie in ±H, for every j in
{1, . . . ,m}, where `−1 is the inverse of the scalar matrix ` mod n.

Proof. The equivalence between (1) and (2) follows by definition of Hecke operator. Now
we prove the equivalence between (2) and (3). Let α1, . . . , αm be isogenies of degree `
with distinct kernels, then it is enough to take α equal to the dual of α1 and βj = αj◦α,
for j = 1, . . . ,m. Conversely, if β1, . . . , βm respect the three properties above, then, for
every j = 1, . . . ,m, we can take αj to be the unique isogeny such that βj = αj◦α.

From now on we denote by ρ = e
2πi

3 the primitive third root of unity contained in
H. Moreover, for every τ ∈ H, we denote by Eτ the elliptic curve C/(Z+Zτ). The
following result proves that if T`(E, φ) shows certain multiplicities, then E has complex
multiplication by Q(i) or Q(ρ).

Proposition 3.3.6. Let n be a positive integer, let H be a subgroup of GL2(Z/nZ), let
` be a prime not dividing n and let (E, φ) be a C-point of YH . Then:

1. the points in the image T`(E, φ) have multiplicity at most 3;

2. if T`(E, φ) contains a point with multiplicity 3, then End(E) contains Z[`2ρ];

3. if ` ≥ 5 and

T`(E, φ) = 2(P1 + . . .+ P `+1
2

) or T`(E, φ) = 2(P1 + . . .+ P `−1
2

) + P `+1
2

+ P `+3
2
,

for P1, . . . , P `+3
2
∈ YH(C) distinct points, then End(E) contains Z[`2i].

Proof. Parts (1) and (2).
First we prove that if T`(E, φ) contains a point with multiplicity at least 3, then

End(E) contains Z[`2ρ]. Let (E′, φ′) ∈ YH(C) such that T`(E, φ) ≥ 3(E′, φ′), then
there are isogenies α : E′ → E and β1 = `, β2, β3 : E′ → E′ as in Lemma 3.3.5 and,
consequently, End(E′) and End(E) are orders in a quadratic field K, with ring of integers
OK . Since ker(α) is non-trivial and it is contained in ker(βj), for every j = 1, 2, 3, the
ideal of End(E′) generated by β1, β2, β3 is non-trivial. Using that End(E′) ⊂ OK is
a finite extension of rings, we deduce that the ideal of OK generated by β1, β2, β3 is
non-trivial as well. The ideals β1OK , β2OK and β3OK of OK have norm `2 and if they
are three distinct ideals, then there are two distinct primes l1, l2 ⊂ `OK such that, up
to reordering, β1OK = l1l2, β2OK = l22, β3OK = l21, implying that the ideal of OK
generated by β1, β2, β3 is the whole OK , contradiction. Hence the ideals β1OK , β2OK
and β3OK cannot be distinct.

If K /∈ {Q(i),Q(ρ)}, then O×K = {±1}, hence βkOK = βjOK implies βk = ±βj ,
which is absurd by condition P1 in Lemma 3.3.5. Hence either K = Q(i) or K = Q(ρ).
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Then OK = Z[u] with u ∈ {i, ρ} and End(E′) = Z[mu] for some positive integer m > 0.
Condition P1 in Lemma 3.3.5 implies that the ideals of End(E′) generated by β1, β2 and
β3 are distinct and we have just proven that their extensions to Z[u] are not distinct. We
know that ideal extension gives a bijection between ideals in Z[mu] with index coprime to
m and ideals in Z[u] with index coprime to m, hence `2 = [OK : βjOK ] is not coprime to
m. Therefore ` | m and End(E′) ⊂ Z[`u]. Hence β2 and β3 are elements of Z[`u] having
norm equal to `2 and the only elements of this kind are {±`,±`u,±`u2}. If K = Q(i),
then β1, β2, β3 ∈ {±`,±`i}, contradicting βk 6= ±βj , for k 6= j. If K = Q(ρ), the only
possibility, up to reordering, is β2 = ±ρ` and β3 = ±ρ2` and consequently m = `.
Finally, since there is an isogeny E′ → E of degree `, we have Z[`2ρ] ⊂ End(E).

Finally, we suppose that (E, φ) ∈ YH(C) and (E′, φ′) appears in T`(E, φ) with mul-
tiplicity at least 4. Then, by what we have just proven, End(E′) = Z[`ρ]. Hence, there
are exactly 3 elements in End(E′), up to sign, with norm equal to `2 and we cannot
find elements β1, . . . , β4 satisfying the properties of Lemma 3.3.5. This contradiction
concludes the proof of Parts (1) and (2).

Part (3).
Let τ be an element of H such that E = Eτ . Then

T`(E, φ) = (E τ
`
, φ0) + (E τ+1

`
, φ1) + . . .+ (E τ+`−1

`
, φ`−1) + (E`τ , φ`),

for suitable φ0, . . . , φ`. The hypothesis on T`(E, φ) implies that we can find three distinct
integers r1, r2, r3 ∈ {0, . . . , `−1}, with corresponding

(3.3.7) τ1 := (τ + r1)/`, τ2 := (τ + r2)/`, τ3 := (τ + r3)/`,

such that (Eτ1 , φr1), (Eτ2 , φr2) and (Eτ3 , φr3) appear in T`(E, φ) with multiplicity at
least 2. In particular by Lemma 3.3.5 we see that End(Eτk) contains a non-trivial element
of degree `2, for k = 1, 2, 3, hence Eτk and E have CM over some quadratic imaginary
field K ⊂ C. Therefore τ ∈ K and there are a, b ∈ Q such that

(3.3.8) τ2 = aτ + b.

Hence End(Eτ1), End(Eτ2) and End(Eτ3) are naturally subrings ofOK the ring of integers
of K. We denote by I their intersection.

Now, we prove that I ⊂ Z + `OK . Let λ ∈ I. We know that λ defines an element in
the endomorphism ring of Eτ1 , Eτ2 and Eτ3 if and only if the lattices

(3.3.9) Z + Zτ1, Z + Zτ2 and Z + Zτ3

are stable under the multiplication by λ. In particular λ = λ · 1 lies in all these lattices
and in their intersection Z+Zτ , hence λ = x+ yτ , for x, y ∈ Z. Then, all the lattices in
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(3.3.9) are stable also under the multiplication by µ := yτ and consequently

µτ1 ∈ Z + Zτ1, µτ2 ∈ Z + Zτ2, µτ3 ∈ Z + Zτ3.

Then, using (3.3.7) and (3.3.8), we deduce that ay and by lie in Z and that the polynomial

p(t) := −yt2 − yat+ yb ∈ Z[t]

has the property p(r1) ≡ p(r2) ≡ p(r3) ≡ 0 mod `. Since r1, r2 and r3 are pairwise
distinct modulo `, we deduce that y, ay and by are divisible by ` and consequently

µ2 = (yτ)2 = ay2τ + by2 = ayµ+ by2 ∈ ayOK + byOK ⊂ `OK .

If y = 0 or if the ideal `OK is radical, we deduce that µ lies in `OK and consequently
λ = x + µ lies in Z + `OK . If y 6= 0 and `OK factors as l2, for a prime ideal l | `, then
the norm of µ is equal to by2 which is a multiple of `2, hence µ lies in l2 = `OK and, as
before, λ lies in Z + `OK .

Let a1, a2, a3 be positive integers such that End(Eτk) = Z + akOK , for k = 1, 2, 3.
Then Z + lcm(a1, a2, a3)OK = I ⊂ Z + `OK . Hence ` | lcm(a1, a2, a3), i.e., we can
suppose, up to renaming τ1, τ2, τ3, that End(Eτ1) is contained in Z+`OK . Let β1 = `, β2

be endomorphisms of Eτ1 satisfying the properties of Lemma 3.3.5. We write OK = Z[γ],
for a suitable γ, and β2 = z + wγ. Since End(Eτ1) ⊂ Z + `OK , then w is multiple of `
and, since the norm of β2 is `2, we deduce that z is multiple of ` as well. Hence β2 ∈ `OK
and β2 = u` for some u ∈ O×K . Since β2 6= ±β1 = ±`, we deduce that OK has non-trivial
units, hence either K = Q(i) or K = Q(ρ).

We suppose by contradiction that K = Q(ρ). Then we have that u ∈ {±ρ,±ρ2} and
Z[β2] = Z[`ρ] ⊂ End(Eτ1). Since β2 /∈ `End(Eτ1)× by property P1 of Lemma 3.3.5, we
deduce that End(Eτ1) 6= Z[ρ], hence End(Eτ1) = Z[`ρ]. In particular u2` ∈ End(Eτ1)
and the third condition in Lemma 3.3.5 is satisfied by (E, φ), (Eτ1 , φr1), α, β1, β2 together
with β3 := u2`. Hence the point (Eτ1 , φr1) appears with multiplicity 3 in T`(E, φ) which
is impossible. Thus, K = Q(i) and β2 = ±`i. Hence End(Eτ1) contains Z[`i] and, since
there is an isogeny of degree ` between E and Eτ1 , then End(E) contains Z[`2i].

The following proposition characterizes when φ−1◦τ |Eτ [n]◦φ belongs to±H, for τ = ρ, i,
in terms of the multiplicities shown in the divisor T`(Eτ , φ).

Proposition 3.3.10. Let n be a positive integer, let H be a subgroup of GL2(Z/nZ) and
let ` be a prime not dividing n.

1. Let (Eρ, φ) ∈ YH(C). The matrix φ−1◦ρ|Eρ[n]◦φ lies in ±H if and only if the divisor
T`(Eρ, φ) contains a point with multiplicity 3.
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2. Let (Ei, φ) ∈ YH(C). If ` > 2: The matrix φ−1◦i|Ei[n]◦φ lies in ±H if and only if
there are distinct points P1, . . . , P `+3

2
∈ YH(C) such that

(3.3.11)

T`(Ei, φ) = 2(P1 + . . .+ P `+1
2

)

or

T`(Ei, φ) = 2(P1 + . . .+ P `−1
2

) + P `+1
2

+ P `+3
2
.

If ` = 2: The matrix φ−1◦i|Ei[n]◦φ lies in ±H if and only if there are two distinct
points P1, P2 ∈ YH(C) such that

T2(Ei, φ) = 2P1 + P2.

Proof. Part (1).
If C ⊂ Eρ[`] is a subgroup of order `, then ρC and ρ2C are subgroups of order `

as well and there are two unique isomorphisms u, v that make the following diagrams
commutative:

Eρ Eρ , Eρ Eρ

Eρ/C Eρ/ρC, Eρ/C Eρ/ρ
2C.

πC

ρ

πρC πC

ρ2

πρ2C

u v

We have that ρC = C if and only if ρ is an endomorphism of Eρ/C, which is in turn equiv-
alent to Aut(Eρ/C) 6= {±1} or End(Eρ/C) = Z[ρ] and, since the class number of Z[ρ] is
equal to 1, this is equivalent to Eρ/C ∼= Eρ. Hence, if ρC 6= C, then Aut(Eρ/C) = {±1}
and, using that πC and πρC are bijections on the n-torsion subgroups, we have

(Eρ/C, πC◦φ) = (Eρ/ρC, πρC◦φ) ⇐⇒ (πρC |Eρ[n]◦φ)−1◦u|(Eρ/C)[n]◦(πC |Eρ[n]◦φ) ∈ ±H
⇐⇒ φ−1◦ρ|Eρ[n]◦φ ∈ ±H. (3.3.11.1)

Analogously, ρ2C 6= C if and only if Aut(Eρ/C) = {±1} and when this happens

(3.3.12) (Eρ/C, πC◦φ) = (Eρ/ρ2C, πρ2C◦φ) ⇐⇒ φ−1◦ρ|Eρ[n]◦φ ∈ ±H.

Since the endomorphism ρ does not act as a scalar on Eρ[`], there are at most two
non-trivial subgroups of Eρ[`] that are ρ-stable. In particular we can take a non-trivial
subgroup C0 such that C0, ρC0 and ρ2C0 are pairwise distinct.

If φ−1◦ρ|Eρ[n]◦φ lies in ±H, then, by (3.3.11.1) and (3.3.12),

T`(Eρ, φ) ≥ (Eρ/C0, πC0◦φ)+(Eρ/ρC0, πρC0◦φ)+(Eρ/ρ2C0, πρ2C0◦φ) = 3(Eρ/C0, πC0◦φ).
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Conversely, if T`(Eρ, φ) contains a point with multiplicity 3, there are three pairwise
distinct subgroups C1, C2, C3 ⊂ Eρ[`] of order ` such that

(Eρ/C1, πC1◦φ) = (Eρ/C2, πC2◦φ) = (Eρ/C3, πC3◦φ).

If one of the Cj is ρ-stable, then Eρ/C1 ∼= Eρ/C2 ∼= Eρ/C3 ∼= Eρ, and C1, C2, C3 are
all ρ-stable, contradicting that there are at most two non-trivial ρ-stable subgroups of
Eρ[`]. In particular Z[ρ] ) End(Eρ/C1) and since E/C1 is `-isogenous to Eρ we deduce
that End(Eρ/C1) = Z[`ρ]. Hence, the only endomorphisms of Eρ/C1 having degree `2

are ±`,±ρ`,±ρ2` and so there are at most three subgroups C ⊂ Eρ[`] of order ` such
that Eρ/C is isomorphic to Eρ/C1, namely: C1, ρC1 and ρ2C1. We deduce that, up to
reordering, C2 = ρC1 hence, by (3.3.11.1), φ−1◦ρ|Eρ[n]◦φ lies in ±H.

Part (2).
If C ⊂ Ei[`] is a subgroup of order `, then iC is another subgroup of order ` and

there is a unique isomorphism u that makes the following diagram commutative:

Ei Ei

Ei/C Ei/iC.

πC

i

πiC

u

We have that iC = C if and only if End(Ei/C) = Z[i] if and only if Aut(Ei/C) 6= {±1}.
Hence, if iC 6= C, then Aut(Ei/C) = {±1} and, using that πC and πiC are bijections on
the n-torsion subgroups, we have
(3.3.13)

(Ei/C, πC◦φ) = (Ei/iC, πiC◦φ) ⇐⇒ (πiC◦φ)−1◦u|(Ei/C)[n]◦(πC◦φ) ∈ ±H
⇐⇒ φ−1◦i|Ei[n]◦φ ∈ ±H.

The endomorphism i does not act as multiplication by a scalar on Ei[`]. For each
subgroup C ⊂ Ei[`] of order `, except at most two, we have C 6= iC. Hence, there are
subgroups C1, . . . , C `+3

2
⊂ Ei of order ` such that {C1, iC1, . . . , C `−1

2
, iC `−1

2
, C `+1

2
, C `+3

2
}

is the set of all the `+ 1 subgroups of order ` of Ei.
If φ−1◦i|Ei[n]◦φ lies in ±H, then, by (3.3.13), we have

T`(Ei, φ) =
`−1

2∑
k=1

2(Ei/Ck, πCk◦φ) + (Ei/C `+1
2
, πC `+1

2
◦φ) + (Ei/C `+3

2
, πC `+3

2
◦φ),

and no point appears with multiplicity greater than 2 because of Proposition 3.3.6.
Now we assume that (3.3.11) holds. If ` = 3, there are C1, C2 ⊂ Ei subgroups of order

3 such that Ei/C1 is not isomorphic to Ei/C2 and C1, iC1, C2, iC2 are all the subgroups
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of Ei of order 3. Hence Equation (3.3.11) implies that, up to renaming,

(Ei/C1, πC1◦φ) = (Ei/iC1, πiC1◦φ),

and by (3.3.13), we have that φ−1◦i|Ei[n]◦φ lies in ±H. The case ` = 2 is similar to ` = 3.
We now suppose ` ≥ 5, so there are more repetitions in Equation (3.3.11). There are at
most two possible subgroups C such that iC = C. Hence Equation (3.3.11) implies the ex-
istence of a subgroup C0 ⊂ Ei[`] such that (Ei/C0, πC0◦φ) has multiplicity 2 in T`(Ei, φ)
and C0 6= iC0. It follows that Ei/C0 is not isomorphic to Ei, thus End(Ei/C0) = Z[`i],
and this implies that ±` and ±`i are the only elements of End(Ei/C0) having degree `2.
Hence, if C is a subgroup of Ei[`] of order ` such that Ei/C is isomorphic to Ei/C0, then
C ∈ {C0, iC0}. Since (Ei/C0, πC0◦φ) has multiplicity 2, we have

(Ei/C0, πC0◦φ) = (Ei/iC0, πiC0◦φ),

and by (3.3.13), we have that φ−1◦i|Ei[n]◦φ lies in ±H.

3.4 Cartan modular curves and their jacobians
We give the definition of Cartan modular curves following [93, Appendix A.5]. Let n>1
be an integer and let A be a free commutative étale Z/nZ-algebra of rank 2. For each
prime p | n, we have that A/pA is isomorphic either to Fp × Fp or to Fp2 : in the former
case we say that A is split at p, in the latter we say that A is non-split at p. Moreover,
for every assignment of each prime p|n to split or non-split, there is a unique, up to
isomorphism, algebra A which is split or non-split at every p | n accordingly to the
assignment.

We fix a Z/nZ-basis of A and, consequently, we identify the automorphism group of
A, as Z/nZ-module, with GL2(Z/nZ). The group A× of the units of A acts on A by
multiplication, giving an embedding of A× inside GL2(Z/nZ). A subgroup of GL2(Z/nZ)
which is the image of such an embedding is called a Cartan subgroup. The normalizer
of A× inside GL2(Z/nZ) contains all the matrices representing automorphisms of the
ring A, hence H := 〈A×,AutRing(A)〉 is a subgroup of GL2(Z/nZ) that contains A× as
normal subgroup. We call every such an H a Cartan-plus subgroup of GL2(Z/nZ). The
natural map AutRing(A)→

∏
p|n AutRing(A⊗Fp) is an isomorphism, hence AutRing(A) is

isomorphic to (Z/2Z)ω(n), where ω(n) is the number of prime divisors of n. In particular,
given A, the Cartan subgroup has index 2ω(n) inside the Cartan-plus subgroup. Moreover,
if n is odd, the Cartan-plus is equal to the normalizer of the Cartan subgroup inside
GL2(Z/nZ). We call Cartan modular curves the modular curves associated to Cartan
subgroups or to Cartan-plus subgroups of GL2(Z/nZ).

When n = pe is a prime power, we use the following notation:
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• X+
ns(pe) := XH , if H is a Cartan-plus subgroup non-split at p;

• Xns(pe) := XH , if H is a Cartan subgroup non-split at p;

• X+
s (pe) := XH , if H is a Cartan-plus subgroup split at p;

• Xs(pe) := XH , if H is a Cartan subgroup split at p.

Remark 3.4.1. If H1 and H2 are two conjugate subgroups of GL2(Z/nZ), then the corre-
sponding modular curves XH1 and XH2 are isomorphic. Moreover, given two Cartan or
two Cartan-plus subgroups C1 and C2 of GL2(Z/nZ) with the same assignment of each
prime p | n to split or non-split, then C1 and C2 are conjugate, so XC1

∼= XC2 . This
implies that the above definitions are unambiguous.

We want to understand the structure, up to isogeny, of the jacobian of the Cartan
modular curves. This is achieved using Chen’s isogenies (see [25], [39],[26]). Let p be a
prime and let e be a positive integer. We give an analogue of [26, Theorem 1.1] involving
the jacobian of Xns(pe) for every p, and, to do this, we extend the analysis in [26] to the
case p = 2. In order to state our result, we choose a non-square element ξ ∈ (Z/peZ)×

when p is odd and define the following subgroups of GL2(Z/peZ) for every prime p:

Cs(pe) :=
{(

a 0
0 d

)
, a, d ∈ (Z/peZ)×

}
;

C+
s (pe) := Cs ∪

{(
0 b

c 0

)
, b, c ∈ (Z/peZ)×

}
;

Cns(2e) :=
{(

a b

b a+ b

)
, a, b ∈ Z/2eZ, (a, b) 6≡ (0, 0) mod 2

}
;

C+
ns(2e) := Cns(2e) ∪

{(
a a− b
b −a

)
, a, b ∈ Z/2eZ, (a, b) 6≡ (0, 0) mod 2

}
;

Cns(pe) :=
{(

a bξ

b a

)
, a, b ∈ Z/peZ, (a, b) 6≡ (0, 0) mod p

}
, if p is odd;

C+
ns(pe) := Cns(pe) ∪

{(
a bξ

−b −a

)
, a, b ∈ Z/peZ, (a, b) 6≡ (0, 0) mod p

}
, if p is odd;

Br(pe) :=
{(

a bpr

cpr+1 d

)
, a, b, c, d ∈ Z/peZ, ad 6≡ 0 mod p

}
, for r = 0, 1, . . . , e−1;

Tr(pe) :=
{(

a bpr

cpr d

)
, a, b, c, d ∈ Z/peZ, ad− bcp2r ∈ (Z/peZ)×

}
, for r = 0, 1, . . . , e.
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We remark that Te(pe) = Cs(pe) and that Cs(pe), Cns(pe) are respectively a split and
a non-split Cartan subgroup of GL2(Z/peZ) and C+

s (pe), C+
ns(pe) are the corresponding

Cartan-plus subgroups.

Proposition 3.4.2. Let p be a prime, let e be a positive integer and let G = GL2(Z/peZ).
We have the following isomorphism of Q-representations of G:

(3.4.3) Q[G/Cns(pe)]⊕
e−1⊕
r=0

2Q[G/Br(pe)] ∼= Q[G/Cs(pe)]⊕
e−1⊕
r=0

2Q[G/Tr(pe)].

Proof. We follow the same strategy as in [26]. It is enough to prove that the representa-
tion on the right hand side has the same character as the representation on the left hand
side. For every subgroup H ⊂ G, let χH be the character of the representation Q[G/H].
If p = 2, the character χH for the groups appearing in the statement is computed in the
Appendix of this article. If p is odd and H has the form Br, Tr or Cs, the character χH
is given in [26, Tables 3 and 4]; if p is odd and H = Cns(pe), then

χH(g) =



(p−1)p2e−1, if g is a scalar matrix (type I in [26, Tables 3, 4]),
2p2µ, if g is a conjugate of

(
α ξβpµ

βpµ α

)
, with β ∈ (Z/peZ)×

and 0 ≤ µ < e− 1 (types RI ′µ and T ′ in [26, Tables 3, 4]),
0, otherwise.

The characters of the representations in Equation (3.4.3) are sums of the previous char-
acters. A straightforward computation proves the proposition.

As explained in [39, Théorème 2 and the discussion below it], the representation
theoretic result in Proposition 3.4.2, together with the isomorphisms of modular curves
XBr(pe) ∼= X0(p2r+1) andXTr(pe) ∼= XCs(pr) ∼= X0(p2r), implies the following proposition
on jacobians of modular curves.

Proposition 3.4.4. Let p be a prime, let e be a positive integer and let Jns(pe) be the
jacobian of Xns(pe). We have the following isogenies over Q:

Jns(pe)×
e−1∏
r=0

J0(p2r+1)2 ∼ J0(p2e)×
e−1∏
r=0

J0(p2r)2, Jns(pe) ∼
e∏
r=1

Jnew
0 (p2r).

For jacobians of Cartan curves of composite level we have the following theorem.

Theorem 3.4.5. Let n > 1 be an integer and let H < GL2(Z/nZ) be a Cartan or a
Cartan-plus subgroup. Then the jacobian of XH is a quotient of J0(n2).
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Proof. Since all the Cartan-plus subgroups contain a Cartan subgroup, we can suppose
that H is a Cartan subgroup. Let a, b be positive integers such that n = ab and such
that H is split at all primes dividing a and non-split at all the primes dividing b. If
b = 1, then XH(n) ∼= X0(n2). Thus, we suppose that b > 1. Let b = pe1

1 · · · p
ek
k be

the prime factorization of b and for each j = 1, . . . , k, we set Gj := GL2(Z/pejj Z) and
Hj := Cns(pejj ) < Gj . Moreover we set G := GL2(Z/nZ) and Gs := GL2(Z/aZ), and we
choose a totally split Cartan subgroup Hs < Gs. Chinese Remainder Theorem gives an
identification between G and Gs ×

∏k
j=1Gj sending H to a conjugate of Hs ×

∏k
j=1Hj .

Instead of working with G-representations up to isomorphism, it is easier to work
inside the representation ring of G, namely the Grothendieck ring of the category of
finite-dimensional G-representations, where we can take differences of representations.
By Proposition 3.4.2 we have the following equality in the representation ring of Gj over
Q:

Q
[
Gj/Hj

]
= Q

[
Gj/Kj(p2ej

j )
]

+ 2
2ej−1∑
i=0

(−1)iQ
[
Gj/Kj(pij)

]
,

whereKj(p2r
j ) := Tr(pejj ) for r = 0, . . . , ej , andKj(p2r+1

j ) := Br(pejj ) for r = 0, . . . , ej−1.
Interpreting Gj-representations as G-representations via the reduction modulo pejj map,
the above equality also holds in the representation ring of G over Q. We now get in-
formation about the representation Q[G/H] by taking the tensor product of the above
identities, for j = 1, . . . , k, and using that, for all the groups G1,G2 and all the subgroups
Hi < Gi, we have the isomorphisms of (G1×G2)-representations

Q[G1/H1]⊗Q[G2/H2] ∼= Q[(G1×G2)/(H1×H2)].

Denoting by ⊗ the product in the representation ring of G over Q, we have

(3.4.6)

Q
[
G/H

]
= Q

[
Gs/Hs

]
⊗

k⊗
j=1

Q
[
Gj/Hj

]
= Q

[
Gs/Hs

]
⊗

k⊗
j=1

(
Q
[
Gj/Kj(p2ej

j )
]

+ 2
2ej−1∑
i=0

(−1)iQ
[
Gj/Kj(pij)

])
=
∑
d|b2

ε(d)m(d)Q
[
G/K(d)

]
,

where, for every d = pf1
1 · · · p

fk
k dividing b2, we have

ε(d) := (−1)f1+...+fk , m(d) := 2#{j:fj 6=2ej}, K(d) := Hs ×
k∏
j=1

Kj(pfjj ) < G.
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As explained in [39], Equation (3.4.6) implies the following equality in the Grothendieck
group of the category of abelian varieties over Q up to isogeny:

Jac(XH) ∼
∏
d|b2

Jac(XK(d))ε(d)m(d).

Denoting by U(m) the Borel subgroup {( ∗ ∗0 ∗ )} < GL2(Z/mZ), we notice that a Kj(pij)-
structure on an elliptic curve E is equivalent to a U(pij)-structure on E and aHs-structure
is equivalent to a U(a2)-structure. Therefore, a K(d)-structure on an elliptic curve E is
equivalent to a U(a2d)-structure on E. Hence the modular curve XK(d) is isomorphic to
X0(a2d) and consequently

Jac(XH) ∼
∏
d|b2

J0(a2d)ε(d)m(d).

Using J0(a2d) ∼
∏
m|a2d J

new
0 (m)σ0

(
a2d
m

)
, where σ0(n) is the number of divisors of n, one

can compute that

(3.4.7) Jac(XH) ∼
∏
d|b2

J0(a2d)ε(d)m(d) ∼
∏
c|a2

d|b

Jnew
0 (cd2)σ0

(
a2
c

)
.

Hence, in the Grothendieck group of the category of abelian varieties over Q up to isogeny,
Jac(XH) is equal to an abelian subvariety of J0(n2). This proves the theorem.

Remark 3.4.8. In [26], Chen deals with Cartan curves and Cartan subroups whose level
is an odd prime power. Using the computations in our Appendix, Theorem 1.1 in [26]
(and therefore all the results contained in the paper), can be extended to the cases of
level 2e, for e a positive integer. Notice that C+

s (2e) is different from the normalizer of
Cs(2e) and that, substituting C+

s (pe) with the normalizer of Cs(pe), Theorem 1.1 in [26]
wouldn’t extend to the case of level 2e.

Now we give a lower bound for the genus of Cartan modular curves: we show that
for every ε > 0 the genus of a Cartan modular curve of level n big enough is larger than
n2−ε.

Proposition 3.4.9. Let n ≥ 105 be an integer and let H < GL2(Z/nZ) be either a
Cartan or a Cartan-plus subgroup. Denoting by g(ΓH) the genus of XH we have

g(ΓH) > 0.01n
2− 0.96

log logn

log logn .

Proof. Since det(H) = (Z/nZ)×, then XH = ΓH\H. Given a congruence subgroup Γ of
SL2(Z) containing −Id, we denote by d(Γ) the index [SL2(Z) : Γ]. Moreover, we denote
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by ε∞(Γ) the number of cusps of Γ\H and by ε2(Γ), respectively ε3(Γ), the number of
elliptic points of period 2, respectively 3, of Γ\H. Then, by [38, Theorem 3.1.1], the
genus of Γ\H is

(3.4.10) g(Γ) = 1 + d(Γ)
12 −

ε2(Γ)
4 − ε3(Γ)

3 − ε∞(Γ)
2 .

The numbers d(Γ), ε∞(Γ), ε2(Γ) and ε3(Γ) are multiplicative with the following meaning:
Given two coprime integers n1, n2 and two congruence subgroups Γ1,Γ2 < SL2(Z) of level
n1 and n2 respectively, both containing −Id, then

(3.4.11)
d(Γ1 ∩ Γ2) = d(Γ1)d(Γ2), ε∞(Γ1 ∩ Γ2) = ε∞(Γ1)ε∞(Γ2),
ε2(Γ1 ∩ Γ2) = ε2(Γ1)ε2(Γ2), ε3(Γ1 ∩ Γ2) = ε3(Γ1)ε3(Γ2).

Let n = pe1
1 · · · p

ek
k the prime factorization of n and we denote by Hj the reduction of H

modulo pejj . Then each Hj is either a Cartan or a Cartan-plus subgroup and, under the
isomorphism GL2(Z/nZ) ∼=

∏k
j=1 GL2(Z/pejj Z), we have H ∼=

∏k
j=1Hj and therefore

ΓH =
⋂k
j=1 ΓHj . Last equation, together with the multiplicativity and (3.4.10), implies

that we can estimate the genus of XH estimating the quantities d(ΓH), ε∞(ΓH), ε2(ΓH)
and ε3(ΓH) for n = pe. We write these values in Table 3.1 (see [38] and [36] for the split
case and [11] for the non-split case).

Table 3.1: Degree, elliptic points and cusps for prime power levels.

H d(ΓH) ε2(ΓH) ε3(ΓH) ε∞(ΓH)

Cs(pe) p2e−1(p+1)
2 if p ≡ 1 (4)
0 if p 6≡ 1 (4)

2 if p ≡ 1 (3)
0 if p 6≡ 1 (3)

pe−1(p+1)

C+
s (pe) p2e−1(p+1)

2

2e−1 if p = 2
1+pe−1(p−1)

2 if p ≡ 1 (4)
pe−1(p+1)

2 if p ≡ 3 (4)

1 if p ≡ 1 (3)
0 if p 6≡ 1 (3)

2 if pe = 2
pe−1(p+1)

2

Cns(pe) p2e−1(p−1)
0 if p 6≡ 3 (4)
2 if p ≡ 3 (4)

0 if p 6≡ 2 (3)
2 if p ≡ 2 (3)

pe−1(p−1)

C+
ns(pe)

p2e−1(p−1)
2

2e−1 if p = 2
pe−1(p−1)

2 if p ≡ 1 (4)
1+pe−1(p+1)

2 if p ≡ 3 (4)

0 if p 6≡ 2 (3)
1 if p ≡ 2 (3)

1 if pe = 2
pe−1(p−1)

2
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The table implies that for every prime pj dividing n with exponent ej we have

d(ΓHj ) ≥ 1
2p

2ej
j (1− 1

pj
), ε2(ΓHj ) ≤ p

ej
j , ε3(ΓHj ) ≤ 2, ε∞(ΓHj ) ≤ p

ej
j (1 + 1

pj
).

These inequalities and the multiplicativity (3.4.11) imply the following estimates for
n ≥ 15:

d(ΓH) ≥ nφ(n)
2ω(n) >

n2

4.4 log log(n)2ω(n) ≥
n2

4.4 log log(n)21.3841 logn
log logn

>
n2− 0.96

log logn

4.4 log logn,

ε2(ΓH) ≤ n, ε3(ΓH) ≤ 2ω(n) ≤ n, ε∞(ΓH) ≤ n
k∏
j=1

(1 + 1
pj

) ≤ σ1(n) ≤ 2.59n log logn,

where φ(n) is Euler’s totient function which is estimated using [89, Theorem 15], ω(n) = k

is the number of prime divisors of n which is estimated as in [87, Théorème 11], and σ1(n)
is the sum of positive divisors of n which is estimated as in [55, Theorem 1]. For n ≥ 105,
substituting in (3.4.10), we get

g(ΓH) > 1 + n2− 0.96
log logn

52.8 log logn −
n

3 −
n

4 − 1.3n log logn ≥ 0.01n
2− 0.96

log logn

log logn .

3.5 Field of definition of automorphisms
In this section we prove that, when the level is large enough, every automorphism of
the modular curve XH associated to a subgroup H of GL2(Z/nZ) is defined over the
compositum of some quadratic fields, and in some cases we find explicitly this field.

Whenever K is a field, X is a variety over K, and F is an extension of K, we
write AutF (X) for the set of automorphisms of X defined over F ; analogously we use
the notations EndF (X) and HomF (X,Y ) for X and Y being abelian varieties over K.
Whenever we omit the dependency on the field, we mean automorphisms (or endomor-
phisms) defined over the algebraic closure of K; in particular when X is a modular curve
the “group of the automorphisms of X” is AutQ(X) or equivalently AutC(X). We start
with a straightforward generalization of [60, Lemma 1.4].

Lemma 3.5.1. Let K be a perfect field with algebraic closure K, let X be a smooth
projective and geometrically connected curve defined over K of genus g(X) and let Jac(X)
be its jacobian variety. We suppose that there are two abelian varieties A1 and A2 over
K such that HomK(A1, A2) = 0 and such that Jac(X) is isogenous to A1×KA2. If

g(X) > 2 dim(A2) + 1,
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and if F ⊂ K is an extension of K such that EndK(A1) = EndF (A1), then every
automorphism of X over K can be defined over F .

Proof. We fix isogenies ϕ : Jac(X) → A1×KA2 and ϕ̃ : A1×KA2 → Jac(X) whose com-
positions are multiplications by an integer. Let u ∈ AutK(X) and σ ∈ Gal(K/F ) and
consider the automorphism v := uσ ◦ u−1. Let Y be the quotient of X by the sub-
group of automorphisms generated by v (which is finite since g(X) ≥ 2) and let Jac(Y )
be the jacobian of Y . Using ϕ and the equality HomK(A1, A2) = 0, we can identify
u∗, u

σ
∗ ∈ AutK(Jac(X)) respectively with

(u1, u2), (uσ1 , uσ2 ) ∈
(
EndK(A1×KA2)⊗Q

)× ∼= (EndK(A1)⊗Q
)×× (EndK(A2)⊗Q

)×
.

Since EndK(A1) = EndF (A1), then u1 = uσ1 , and v∗ = (id, v2). This implies that there is
a morphism of abelian varieties A1 → Jac(Y ) with finite kernel, namely the composition
of the natural inclusion A1 → A1×KA2, the isogeny ϕ̃ and the map Jac(X) → Jac(Y ).
In particular, denoting by g(Y ) the genus of Y , we have

g(X)− dim(A2) = dim(A1) ≤ g(Y ).

Hence, by the Riemann-Hurwitz formula applied to the projection X → Y , we have

dim(A1) + dim(A2)− 1 ≥ d(g(Y )− 1) ≥ ddim(A1)− d,

where d is the order of v. If d > 1, we get dim(A1) ≤ dim(A2) + 1, which is impossible
by hypothesis. Hence d = 1 and v is the identity. This implies that uσ = u, for every
σ ∈ Gal(K/F ), i.e., since K is perfect, u ∈ AutF (X).

Every abelian variety A over a number field K, is isogenous over C to a product of
geometrically simple abelian varieties. We denote by AC the CM part of A that is the
product, with multiplicities, of the simple abelian varieties in the decomposition of A with
complex multiplication and we denote by AN the non-CM part of A defined analogously.
The CM part and the non-CM part of A are unique only up to isogeny and are defined
over K. We want to apply Lemma 3.5.1 to the case A1 = Jac(X)N and A2 = Jac(X)C.
Hence, we are interested in an upper bound on the dimension of the CM part of the
jacobian of Cartan modular curves. By Theorem 3.4.5, it is enough to know an upper
bound in the case X = X0(n).

Proposition 3.5.2. For every integer n > 1, the dimension gC
0 (n) of the CM part of

J0(n) satisfies
gC

0 (n) ≤ 9 log(n)2n
1
2 + 2.816

log logn .
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Proof. For every positive integer k, let Jnew
0 (k) be the new part of J0(k) and let σ0(k)

be the number of positive divisors of k. Then we have a canonical isogeny

J0(n) ∼
∏
d|n

Jnew
0 (d)σ0(n/d).

Denoting by gnew,C
0 (d) the dimension of the CM part of Jnew

0 (d), we also have

(3.5.3) gC
0 (n) =

∑
d|n

σ0(n/d)gnew,C
0 (d).

We know that Jnew
0 (d) is isogenous over Q to

∏
[f ]Af , where [f ] is the Galois orbit of the

newform f (see [38, Chapter 6]). By [95, Proposition 1.6], Af has non-trivial CM part
if and only if Af is isogenous over C to the product of finitely many copies of an elliptic
curve with CM by an imaginary quadratic field K, which is in turn equivalent to the
existence of an ideal m of OK and a primitive Grössencharacter λ of K defined modulo
m such that f = fλ (see [96, Section 4] for the definition of Grössencharacter and the
definition of the modular form associated to a Grössencharacter), the nebentypus ελ is
trivial (see [96, Lemma 3]) and d = |∆K ||m|, where ∆K is the discriminant of K and |m|
is the norm of the ideal m. This implies that gnew,C

0 (d) is equal to the number of such
triples (K,m, λ). For every choice of K and m, the set of primitive Grössencharacters
of K defined modulo m is a subset of the set of Grössencharacters of K defined modulo
m. If this set is not empty, then there is at least one Grössencharacter λ0 and all other
Grössencharacters are given by λ0χ, for χ a character of the group

C̃lm(K) := {fractional ideals of OK coprime to m}
{(α) : ∃a ∈ Z coprime to m such that α ≡ a mod m}

.

Thus, for given K and m, the cardinality of C̃lm(K) is larger than the number of triples
(K,m, λ) we are interested in, hence

(3.5.4) gnew,C
0 (d) ≤

∑
|∆K ||m|=d

#C̃lm(K) .

To give a bound on C̃lm(K) we look at the following short exact sequence

1 −→ (OK/m)×

O×K · (Z/(Z∩m))×
−→ C̃lm(K) −→ Cl(K) −→ 0,

where Cl(K) is the class group of K and we write O×K and (Z/(Z∩m))× in place of their
natural image inside (OK/m)×. We write m =

∏
pmp for p varying in the set of rational

primes and mp being a product of primes of OK dividing p. Thus the above short exact
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sequence gives

#C̃lm(K) ≤ #Cl(K)·#
(

(OK/m)×
(Z/(Z∩m))×

)
=#Cl(K)

∏
p | |m|

#
(

(OK/mp)×
(Z/(Z∩mp))×

)
≤

≤ 3 log(|∆K |)
√
|∆K |

∏
p | |m|

(
(1 + 1

p )|mp|1/2
)

=3 log(|∆K |)
√
|∆K ||m|

∏
p | |m|

(1+ 1
p ),

where the class number of K is estimated using [81, Theorem 8.10 and Lemma 8.16] and
the bound on the cardinality of (OK/mp)×/(Z/(Z∩mp))× is trivial after factoring mp.
Substituting in (3.5.4), we have

gnew,C
0 (d) ≤

∑
|∆K ||m|=d

(
3
√
d log(|∆K |)

∏
p| |m|

(1 + 1
p )
)
.

Let Md := #
{

(K,m) : |∆K ||m| = d
}

and for m ∈ Z≥1, we denote by σ1(m) the sum
of the positive divisors of m. We have σ1(m) < 3m logm, for each m ≥ 2 (see [55,
Theorem 1] if m ≥ 7, it is trivial in the remaining cases). Then

gnew,C
0 (d) ≤ 3Md

√
d log(d)

∏
p|d

(1 + 1
p ) ≤ 3Md

√
d log(d)σ1(d)

d ≤ 9Md

√
d log(d)2.

Substituting in (3.5.3), we get

(3.5.5)
gC

0 (n) ≤ 9
∑
d|n

σ0(n/d)Md

√
d log(d)2 ≤ 9

√
n log(n)2

∑
d|n

Mdσ0(n/d) ≤

≤ 9
√
n log(n)2#

{
(K,m, d) : |∆K ||m|d divides n

}
.

Writing the prime factorization n =
∏r
i=1 p

ei
i , we know that an imaginary quadratic field

K with discriminant dividing n must be K = Q(
√
−
∏r
i=1 p

εi
i ), with ε ∈ {0, 1}r. Hence

#
{

(K,m, d) : |∆K ||m|d divides n
}
≤

∑
ε∈{0,1}r

#
{

(m, d) : |∆K ||m|d divides n
}
≤

≤
∑

ε∈{0,1}r
m∈Z>0

#
{
m ⊂ OK : |m| = m

}
·#
{
d ∈ Z>0 : dm

r∏
i=1

pεii divides n
}
.

We have the factorizations m =
∏r
i=1 p

fi
i and d =

∏r
i=1 p

ci
i , where fi, ci ∈ {0, 1, . . . , ei},

for i = 1, . . . , r, and we denote by f the r-tuple whose components are the fi’s and
similarly we define c. Then the number of ideals m in OK having norm m is less than∏r
i=1(fi+1) which is equal to the number of pairs (a, b) of elements of Zr≥0 such that
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a+ b = f . Hence we get

#
{
(K,m, d):|∆K||m|d divides n

}
≤#

{
(ε, a, b, c) ∈ {0, 1}r×(Zr≥0)3: εi+ai+bi+ci ≤ ei

}
≤

≤
r∏
i=1

(
#
{
(ai, bi, ci)∈Z3

≥0 : ai+bi+ci ≤ ei
}

+ #
{

(ai, bi, ci)∈Z3
≥0 : ai+bi+ci ≤ ei−1

})
≤

≤
r∏
i=1

((ei + 3
3

)
+
(
ei + 2

3

))
≤

r∏
i=1

(ei + 2)(ei + 1)2

2 .

Notice that σ0(n) =
∏r
i=1(ei+1) is the number of positive divisors of n and that the

product
∏r
i=1

(ei+2)(ei+1)
2 is the number of triples (d1, d2, d3) of positive integers such

that d1d2d3 = n. Using the upper bounds, contained in [82] and [88], for these two
quantities, we get

#
{

(K,m, d) : |∆K ||m|d divides n
}
≤ n

1.538 log 2
log logn n

1.592 log 3
log logn ≤ n

2.816
log logn .

Substituting in (3.5.5) we find

gC
0 (n) ≤ 9

√
n log(n)2n

2.816
log logn = 9 log(n)2n

1
2 + 2.816

log logn .

When the level is a prime power, the previous upper bound is easier and smaller.

Proposition 3.5.6. For every prime p and positive integer e, the dimension gC
0 (pe) of

the CM part of J0(pe) satisfies

gC
0 (pe) ≤


13
√

2e if p = 2,
0 if p ≡ 1 mod 4,
5.5√pe log p if p ≡ 3 mod 4.

The proof follows the same steps of the previous proposition and is simplified by the
fact that there are few quadratic imaginary fields K whose discriminant divides pe. More
precisely: there are two fields when p = 2, there are no fields if p ≡ 1 mod 4 and there is
only one field if p ≡ 3 mod 4. We now give an upper bound for the field of definition of
the automorphisms of a Cartan modular curve of large enough level.

Proposition 3.5.7. Let n ≥ 10400 be an integer and let H < GL2(Z/nZ) be either a
Cartan or a Cartan-plus subgroup. Then every automorphism of XH is defined over the
compositum of all the quadratic fields whose discriminant divides n.
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Proof. Let JH be the jacobian of XH and let JC
H and JN

H be the CM part and the non-
CM part of JH respectively. By Lemma 3.5.1, it is enough to prove that 2 dim(JC

H)+1
is smaller than the genus of XH and that every endomorphism of JN

H is defined over
the compositum of all the quadratic fields whose discriminant divides n. The latter is
true because, by Theorem 3.4.5, JN

H is a quotient of J0(n2)N and by [60, Proposition
1.3] every endomorphism of J0(n2)N is defined over the compositum of all the quadratic
fields whose discriminant divides n. By Theorem 3.4.5 JC

H is a quotient of J0(n2)C hence
we can use Proposition 3.5.2 to bound the dim(JC

H); this, together with the bound for
the genus g(XH) of XH given in Proposition 3.4.9, implies the inequality we need when
n ≥ 10400:

2 dim(JC
H) + 1 ≤ 2 dim(J0(n2)C) + 1 ≤ 73 log(n)2n1+ 5.632

log logn <
n2− 0.96

log logn

100 log logn < g(XH).

Proposition 3.5.7 can be made sharper when n is a prime power.

Proposition 3.5.8. Let p be a prime and e a positive integer and let X be a curve
associated to a Cartan or a Cartan-plus subgroup of level pe. If the genus of X is at least
2, then every automorphism of X is defined over the field

Kp =


Q(i,
√

2), if p = 2,
Q
(√
p
)
, if p ≡ 1 mod 4,

Q (√−p) , if p ≡ 3 mod 4.

A strategy of proof is the same of Proposition 3.5.7:

(I) give an upper bound for dim(Jac(X)C);

(II) give a lower bound for the genus;

(III) apply [60, Proposition 1.3] and Theorem 3.4.5 to deduce that the endomorphisms
of Jac(X)N are defined over Kp;

(IV) apply Lemma 3.5.1.

In particular in the case of Xns(pe) and X+
ns(pe), when pe > 600, the propositions 3.4.4

and 3.5.6 and Table 3.1 give bounds in ((I)) and ((II)) that are sharp enough for ((IV)).
If pe ≤ 600, the bounds in Proposition 3.5.6 are sometimes not sharp enough. In these
cases we can compute explicitly the CM part and notice that only a factor of it of low
dimension has endomorphisms defined over a field bigger than Kp: whenever a CM factor

103



3. AUTOMORPHISMS OF CARTAN CURVES

is a rational elliptic curve, we know by CM theory that its endomorphisms are defined
over Kp and it can be discarded from the count. This is done in the MAGMA script
available at [70]. The case Xs(pe) ∼= X0(p2e) follows from [60, Corollary 1.14] and the
case X+

s (pe) ∼= X0(p2e) follows from the following proposition.

Proposition 3.5.9. Let p be a prime and e a positive integer. If the genus of X∗0 (pe) is
at least 2, then every automorphism of X∗0 (pe) is defined over the field

Kp =


Q(i,
√

2), if p = 2,
Q
(√
p
)
, if p ≡ 1 mod 4,

Q (√−p) , if p ≡ 3 mod 4.

Again, one can apply the same strategy used for Propositions 3.5.7 and 3.5.8, together
with the MAGMA script available at [70]. In particular we need a lower bound for the
genus of X∗0 (pe). Since we do not know an explicit reference giving a formula for this
genus, we write it in the following remark.
Remark 3.5.10. Given a positive integer n, let X+

0 (n) be the quotient of X0(n) by the
n-th Atkin-Lehner operator. This curve is equal to X∗0 (n) when n is the power of a
prime.

In [84, Equation 9] there is a formula for the genus g+
0 (n) of X+

0 (n) when n is prime.
When n = p2e with p prime, we can compute g+

0 (n) using Table 3.1 since X+
0 (n) is iso-

morphic to a split Cartan curve. For general n, [84, Equation 9] can be easily generalized
applying Riemann-Hurwitz formula to the natural map X0(n) → X+

0 (n) and counting
the number of fixed points of the n-th Atkin-Lehner operator. This gives

g+
0 (n) =


0, if n ∈ {1, 2, 3, 4},
1+g0(n)

2 − h(−n)+h(−4n)
4 , if n ≥ 5 is odd,

1+g0(n)
2 − h(−4n)

4 , if n ≥ 5 is even,

where g0(n) is the genus of X0(n) and h(D) is the class number of the quadratic order
with discriminant D, with the convention h(D) = 0 if D is a square or if D ≡ 2, 3 mod 4.
Remark 3.5.11. We are not always able to prove that every automorphism of a Cartan
modular curve is defined over a compositum of quadratic fields. For example, an analogue
of Section 3.4.7 for Cartan-plus curves, proved using Chen’s isogeny in [26], implies that
the jacobian of the totally non-split Cartan-plus curve X of level 48 contains Jnew,∗

0 (482).
Since there are two CM (weight 2) newforms of level 482 of degree 2 and invariant under
the action of both the Atkin-Lehner operators w9 and w256, then the jacobian Jnew,∗

0 (482)
has a CM part of dimension at least 4 whose endomorphisms could be defined over a
field bigger than the compositum of quadratic fields. This prevents us from applying
Lemma 3.5.1 in ((IV)) of the strategy above, because the genus of X is 9 (see Table 3.1).
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3.6 Automorphisms
In this section we treat our main problem, namely to determine the automorphisms of
certain modular curves XH over C for a subgroup H of GL2(Z/nZ). We restrict our
attention to XH geometrically connected, i.e., det(H) = (Z/nZ)×. Every automorphism
we are interested in induces an automorphism of the Riemann surface XH(C) = ΓH\H
and, since it is compact, each of these automorphisms comes from an automorphism of the
algebraic curve (XH)C. Let P : GL+

2 (Q) → PGL+
2 (Q) be the natural map. Each matrix

m ∈ PGL+
2 (Q) defines a Möbius transformation m : H → H and such an automorphism

of the Riemann surface H pushes down to an automorphism of ΓH\H if and only if m
normalizes P(ΓH).

Definition 3.6.1. Let H be a subgroup of GL2(Z/nZ) such that det(H) = (Z/nZ)×.
An automorphism of XH defined over C is modular if its action on XH(C) = ΓH\H is
described by a Möbius transformation associated to a matrix m ∈ PGL+

2 (Q) normalizing
P(ΓH).

When H has surjective determinant, Aut(XH) contains the subgroup of modular
automorphisms which is isomorphic to N/P(ΓH), where N is the normalizer of P(ΓH)
inside PGL+

2 (Q).

Remark 3.6.2. Notice that we can define modular automorphisms of YH looking at
PGL+

2 (R), instead of PGL+
2 (Q), as follows: an automorphism ι of YH(C) = ΓH\H is

modular if there is a matrix m ∈ PGL+
2 (R) that normalizes the image of ΓH in PGL+

2 (R)
and hence defines a Möbius transformation m : H → H that pushes down to ι. This is
equivalent to the previous definition. Indeed if m̃ ∈ GL+

2 (R) is a lift of m, then m̃ nor-
malizes Γ±H = (R×ΓH) ∩ SL2(R), hence conjugation by m̃ preserves the set of Q-linear
combinations of matrices in Γ±H , which is equal to the set of matrices with entries in
Q. Looking at the conjugates by m̃ of the matrices ( 1 0

0 0 ), ( 0 1
0 0 ), ( 0 0

1 0 ) and ( 0 0
0 1 ), we

easily deduce that m̃ is a real multiple of a matrix in GL2(Q), and consequently m lies
in PGL+

2 (Q).
In other words: every modular automorphism of YH(C) extends to a modular auto-

morphism of XH and, conversely, every modular automorphism of XH preserves the set
of cusps, hence restricts to a modular automorphism of YH(C).

If an automorphism is modular, then it preserves the set of cusps and also the set of
branch points for the map H→ ΓH\H. The converse is also true.

Lemma 3.6.3. Let n be a positive integer and let H be a subgroup of GL2(Z/nZ) such
that det(H) = (Z/nZ)×. An automorphism of XH defined over C is modular if and only if
it preserves the set of cusps and the set of branch points for the map H→ ΓH\H = YH(C).
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Proof. We prove that an automorphism u of XH is modular if it preserves the set of
cusps and the set of branch points for the map H→ ΓH\H = YH(C). Since u preserves
the set of the cusps, then it restricts to an automorphism of YH(C). Moreover, since u
preserves B, then it induces an automorphism ũ of YH(C)−B. Since det(H) = (Z/nZ)×,
the map

π̃ : H−π−1(B) −→ YH(C)−B

is a covering map and the pushforward π̃∗ sends the fundamental group π1(H− π−1(B))
to the subgroup of π1(YH(C)− B) generated by the loops running around a point in B.
Since ũ extends to u : YH(C)→ YH(C), the image, under ũ, of a loop running around a
point in B is still a loop running around a point in B. Hence, ũ∗ sends π̃∗(π1(H−π−1(B)))
into itself and consequently ũ lifts to an automorphism ṽ of H− π−1(B). Again, since ũ
extends to u : YH(C)→ YH(C), then ṽ extends to an automorphism v : H→ H as well.

We know that Aut(H) = PGL+
2 (R), hence v is a Möbius transformation given by a

matrix m ∈ PGL+
2 (R) and, since it passes to the quotient, m belongs to the normalizer

of the image of ΓH in PGL+
2 (R). Hence the restriction of u to YH is modular and, by

Remark 3.6.2, u itself is modular.

In the following two propositions, we give sufficient conditions for an automorphism
to preserve the set of cusps and the set of branch points.

Proposition 3.6.4. Let n be a positive integer and let H be a subgroup of GL2(Z/nZ)
containing the scalar matrices and such that det(H) = (Z/nZ)×. Let gon(XH) be the
gonality of XH . If there is a prime ` not dividing n such that 5 ≤ ` < 1

2gon(XH) − 1,
then every automorphism of XH defined over a compositum of quadratic fields preserves
the set of cusps.

Proof. Let u be an automorphism ofXH defined over the compositum L of some quadratic
fields and let C ∈ XH(C) be a cusp. Then the propositions 3.3.2 and 3.3.4 imply

T`u(C) = uσT`(C) = `uσ〈`〉(Cσ
−1

) + uσ(Cσ),

where σ ∈ Gal(L/Q) is a Frobenius element at `. Since ` ≥ 5, then T`u(C) contains a
point of multiplicity at least 4 and, by Part (1) of Proposition 3.3.6, this implies that
u(C) must be a cusp.

Proposition 3.6.5. Let n be a positive integer and let H be a subgroup of GL2(Z/nZ)
containing the scalar matrices and such that det(H) = (Z/nZ)×. Let gon(XH) be the
gonality of XH . If there are two prime numbers `1 < `2 not dividing n and such that
5 ≤ `2 <

1
2gon(XH)− 1, then every automorphism of XH defined over a compositum of

quadratic fields preserves the set of branch points of the map H→ ΓH\H = YH(C).
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Proof. Let L be a compositum of quadratic fields and let σ1, σ2 ∈ Gal(L/Q) be Frobenius
elements at the primes `1 and `2 respectively. Let u be an automorphism of XH defined
over L and let P = (E, φ) ∈ YH(C) be a branch point for the map H→ ΓH\H = YH(C).
Applying Proposition 3.6.4 with ` = `2 ≥ 5, we deduce that u sends non-cuspidal points
to non-cuspidal points, hence we can write u(P ) = (E′, φ′) for some elliptic curve E′/C.
Proposition 3.3.2 implies that

(3.6.6) T`1u(P ) = uσ1T`1(P ) and T`2u(P ) = uσ2T`2(P ).

Since, up to isomorphism, the only elliptic curves over C with non-trivial automorphisms
are Ei and Eρ, Proposition 3.2.4 implies that there are only two possibilities: E = Ei or
E = Eρ.

Firstly we treat the case P = (Eρ, φ). Since P is a branch point, by Proposition 3.2.4,
we know that φ−1◦ρ|Eρ[n]◦φ ∈ H. Hence, we can apply Part (1) of Proposition 3.3.10,
for each k ∈ {1, 2}, which gives

(3.6.7) T`k(E′, φ′) = T`ku(P ) = uσkT`k(P ) ≥ 3P1,

for some point P1 ∈ YH(C). Because of last inequality, we can apply Proposition 3.3.6
Part (2) to obtain that Z[`21ρ] and Z[`22ρ] are both contained in End(E′) which implies
End(E′) = Z[ρ]. Since the class group of Z[ρ] is trivial, we have E′ ∼= Eρ. Again
by Inequality (3.6.7), Proposition 3.3.10 Part (1) implies that φ′−1◦ρ|Eρ[n]◦φ′ ∈ H. By
Proposition 3.2.4, we conclude that u(P ) is a branch point associated to the elliptic curve
Eρ.

Now, we consider P = (Ei, φ). Since P is a branch point, by Proposition 3.2.4, we
know that φ−1◦i|Ei[n]◦φ ∈ H. Hence, by Proposition 3.3.10 Part (2), one of the following
two possibilities happens

(3.6.8)
T`2u(P ) = uσ2T`2(P ) = 2(P1 + . . .+ P `2+1

2
) or

T`2u(P ) = uσ2T`2(P ) = 2(P1 + . . .+ P `2−1
2

) + P `2+1
2

+ P `2+3
2
,

with P1, . . . , P `2+3
2

being distinct points in YH(C). This equation implies that the hy-
potheses of Proposition 3.3.6 Part (3) are satisfied, hence Z[`22i] is contained in End(E′).
We now prove, distinguishing three cases, that Z[`21i] is contained in End(E′). If `1 ≥ 5,
we can apply the same argument used for `2. If `1 = 2 or `1 = 3, by Proposition 3.3.10
Part (2) and Equation (3.6.6), there is a point (E′′, φ′′) ∈ YH(C) such that

(3.6.9) T`1(E′, φ′) = T`1u(P ) = uσ1T`1(P ) ≥ 2(E′′, φ′′).

If `1 = 3, Lemma 3.3.5 implies that E′′ has an endomorphism β 6= ±3 having degree 9.
Since E′′ is isogenous to E′, we know that End(E′′) ⊂ Z[i], hence β = ±3i. Using that
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E′ and E′′ are 3-isogenous, we see that

End(E′) ⊃ Z + 3End(E′′) ⊃ Z + 3Z[β] = Z[9i].

If `1 = 2, Inequality (3.6.9) and Lemma 3.3.5 imply that E′′ has an endomorphism
β 6= ±2 having degree 4. Since E′′ is isogenous to E′, we know that End(E′′) ⊂ Z[i],
hence β = ±2i or β = ±1± i. Using that E′ and E′′ are 2-isogenous, we see that

End(E′) ⊃ Z + 2End(E′′) ⊃ Z + 2Z[β] ⊃ Z[4i].

We proved that both Z[`21i] and Z[`22i] are contained in End(E′), hence End(E′) = Z[i]
and, since the class group of Z[i] is trivial, we deduce that E′ ∼= Ei. By Equation (3.6.8),
the hypotheses of Proposition 3.3.10 Part (2) are satisfied, hence φ′−1◦i|Ei[n]◦φ′ ∈ H

and, by Proposition 3.2.4, we conclude that u(P ) is a branch point.

Propositions 3.6.4 and 3.6.5, together with Lemma 3.6.3, imply the following Corol-
lary, which gives a concise sufficient condition to exclude the presence of non-modular
automorphisms.

Corollary 3.6.10. Let n be a positive integer let H be a subgroup of GL2(Z/nZ) contain-
ing the scalar matrices and such that det(H) = (Z/nZ)× and let gon(XH) be the gonality
of XH . If there are two primes `1 < `2 not dividing n such that 5 ≤ `2 < 1

2gon(XH)− 1,
then every automorphism of XH defined over a compositum of quadratic fields is modular.

We still need to determine which are the modular automorphisms of a modular curve
XH for Cartan and Cartan-plus subgroups H of GL2(Z/nZ). Since in these cases we have
det(H) = (Z/nZ)×, then YH also parametrizes pairs [E, φ] such that the Weil pairing of
(φ ( 1

0 ) , φ ( 0
1 )) is fixed, up to the action of H∩SL2(Z/nZ). With this interpretation, every

matrix γ ∈ SL2(Z/nZ) that normalizes H∩SL2(Z/nZ) defines an automorphism of YH
sending [E, φ] 7→ [E, φ ◦ γ]: such an automorphism is modular, induced by a lift of γ in
SL2(Z). Next proposition implies that these are all the modular automorphisms except
when n ≡ 2 mod 4 and H is a Cartan-plus which is split at 2. We now suppose we are
in this last case and we construct another modular automorphism. Letting n = 2n′, we
have

H = H2 ×Hn′ ⊂ GL2(Z/2Z)×GL2(Z/n′Z) = GL2(Z/nZ),

whereH2 andHn′ are the images ofH in GL2(Z/2Z) and GL2(Z/n′Z) respectively. Since
we are assuming that H2 is a split Cartan-plus subgroup, there are three possibilities for
H2 (all conjugated) and, depending on them, we define

(3.6.11) γ0 :=


( 3 1

1 1 ) , if H2 = {Id, ( 0 1
1 0 )},

( 2 1
2 2 ) , if H2 = {Id, ( 1 1

0 1 )},
( 2 2

1 2 ) , if H2 = {Id, ( 1 0
1 1 )}.
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Since the projection SL2(Z)→ SL2(Z/2nZ) = SL2(Z/4Z)×SL2(Z/n′Z) is surjective and
since det(Hn′) = (Z/n′Z)×, there exists

(3.6.12) γ1 ∈ SL2(Z) such that γ1 ≡ ( 1 0
0 1 ) (mod 4) and γ0γ1 (mod n

2 ) ∈ Hn
2
.

The matrix P(γ0γ1) lies in the normalizer N of P(ΓH) inside PGL+
2 (Q) and we have

that P(γ0γ1)2 ∈ P(ΓH), hence P(γ0γ1) induces an involution on XH . Since P(γ0γ1)
is not in P(SL2(Z)), the modular automorphism defined by γ0γ1 is not of the form
[E, φ] 7→ [E, φ ◦ γ] with γ ∈ SL2(Z/nZ).

Proposition 3.6.13. Let n be a positive integer and let H < GL2(Z/nZ) be either a
Cartan subgroup or a Cartan-plus subgroup. Let N ′ < SL2(Z/nZ) be the normalizer of
the group H ′ := H∩SL2(Z/nZ) and let N be the normalizer of P(ΓH) in PGL+

2 (Q). If
n ≡ 2 mod 4 and H is a Cartan-plus split at 2, then, for every choice of γ0 and γ1 as in
(3.6.11) and (3.6.12), N is generated by P(ΓN ′) and P(γ0γ1). Otherwise N is P(ΓN ′).

Proof. Let Ñ < GL+
2 (Q) be the normalizer of Q×ΓH , or, equivalently, the normalizer of

ΓH (each matrix normalizing Q×ΓH also normalizes (Q×ΓH) ∩ SL2(Q) = ΓH , and since
scalar matrices commute with everything, each matrix normalizing ΓH also normalizes
Q×ΓH). The statement of the proposition is equivalent to

Ñ = Q×ΓN ′ or Ñ = Q×〈γ0γ1,ΓN ′〉,

depending on the case. The inclusions ⊇ are trivial, hence we prove the other inclusions.
Since the normalizer of ΓH inside SL2(Z) is ΓN ′ , it is enough to show that

Ñ ⊆ Q×SL2(Z) or Ñ ⊆ Q×SL2(Z) ∪ γ0γ1Q×SL2(Z),

depending on the case. We suppose that Ñ contains a matrix m =
(
a b
c d

)
not lying in

Q×SL2(Z): it is enough to prove, with this assumption, that n ≡ 2 mod 4 and H is a
Cartan-plus subgroup split at 2 and m ∈ γ0γ1Q×SL2(Z).

Up to multiplication by a scalar matrix, we can suppose that a, b, c, d ∈ Z and that
gcd(a, b, c, d) = 1. Since m /∈ Q×SL2(Z), then det(m) 6= 1. Let p be a prime dividing
det(m), let λ1 = ( ac ) , λ2 =

(
b
d

)
∈ Z2 and let Λ ⊂ Z2 be the lattice generated by λ1, λ2.

By definition of Ñ , for every γ ∈ ΓH there is γ′ = ( x y
z w ) ∈ ΓH such that γm = mγ′.

Hence, looking at the columns of γm, we get γλ1 = xλ1+zλ2 and γλ2 = yλ1+wλ2. Since
γ is arbitrary and γ′ ∈ SL2(Z), we have

ΓHΛ = Λ.

Let Λ be the image of Λ under the quotient map Z2 → F2
p. Since at least one of a, b, c, d

is not multiple of p, we know that Λ 6= {0} and since det(m) is multiple of p, we know
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that Λ 6= F2
p. Hence Λ is a line inside F2

p which is left invariant by every matrix in the
image ΓH of ΓH in GL2(Fp). This implies that ΓH is contained in a Borel subgroup of
GL2(Fp), thus p divides the level n and ΓH = H∩SL2(Z/pZ), where H is the image of
H in GL2(Fp). We deduce that either H is a Cartan group split at p or p = 2 and H is
a Cartan-plus group split at p.

First we suppose that H is a Cartan group split at p. Let pe be the maximum power
of p dividing n. Up to conjugacy, the image of H in GL2(Z/peZ) is {( ∗ 0

0 ∗ )}, hence, for
every γ ∈ ΓH , we have

m−1γm = 1
det(m)

(
d −b
−c a

)
γ
(
a b
c d

)
≡ ( ∗ 0

0 ∗ ) (mod pe).

Applying this to γ = ( 1 n
0 1 ) and γ = ( 1 0

n 1 ), we see that since det(m) is multiple of p, then
a, b, c, d are all multiples of p, which is a contradiction.

This contradiction implies that the only prime dividing det(m) is 2 andH is a Cartan-
plus group split at 2. Let 2e be the maximum power of 2 dividing n. Up to conjugacy, the
image of H in GL2(Z/2eZ) is {( ∗ 0

0 ∗ ) , ( 0 ∗
∗ 0 )}. In particular the image of H in GL2(Z/2Z)

is {( 1 0
0 1 ) , ( 0 1

1 0 )}, hence Λ = 〈( 1
1 )〉 is the only ΓH -invariant line. In other words the

columns ( ac ) ,
(
b
d

)
of m span 〈( 1

1 )〉 in F2
2 and with a similar argument we see that the

rows (a b), (c d) of m span 〈(1 1)〉 in F2
2. Hence m ≡ ( 1 1

1 1 ) (mod 2). For every γ ∈ ΓH ,
we have

(3.6.14) m−1γm (mod 2e) ∈ {( ∗ 0
0 ∗ ) , ( 0 ∗

∗ 0 )} .

When γ = ( 1 n
0 1 ), we see that m−1γm ≡ ( ∗ 0

0 ∗ ) (mod 2e) is not possible because both c
and d are odd, hencem−1γm ≡ ( 0 ∗

∗ 0 ) (mod 2e) and, by explicit computations, we deduce
that det(m) = 2 and n ≡ 2 mod 4. Finally, since m ≡ ( 1 1

1 1 ) (mod 2) and det(m) = 2,
we see that (γ0γ1)−1m ∈ SL2(Z).

We now prove the main results of this paper.

Theorem 3.6.15. Let n ≥ 10400 be an integer and let H < GL2(Z/nZ) be either a
Cartan or a Cartan-plus subgroup. Then every automorphism of XH is modular, hence
we have

Aut(XH) ∼=

N ′/H ′ × Z/2Z, if n ≡ 2 mod 4 and H is a Cartan-plus split at 2,
N ′/H ′, otherwise,

where N ′ < SL2(Z/nZ) is the normalizer of H ′ := H ∩ SL2(Z/nZ).

Proof. Let N be the normalizer of P(ΓH) inside PGL+
2 (Q). By Proposition 3.6.13 we
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have

N/P(ΓH)∼=

P(ΓN ′)/P(ΓH)×Z/2Z, if n ≡ 2 mod 4 and H is a Cartan-plus split at 2,
P(ΓN ′)/P(ΓH), otherwise,

where the first case is true because P(γ0γ1ΓH) has order 2 in N/P(ΓH) and commutes
with every element in P(ΓN ′)/P(ΓH). Since P(ΓN ′)/P(ΓH) ∼= P(ΓN ′)/P(ΓH′) ∼= N ′/H ′,
it is enough to prove that every automorphism of XH is modular. For n ≥ 10400 every
automorphism is defined over the compositum of some quadratic fields by Proposition
3.5.7. We can bound the gonality gon(XH) of XH using [1] and, with the same estimates
used in the proof of Proposition 3.4.9, we have

gon(XH) ≥ 7
800 [SL2(Z) : ΓH ] ≥ 7n2

800(ω(n)+1)2ω(n) > 10n.

So, there are at least two primes `1 < `2 not dividing n with 5 ≤ `2 < 1
2gon(XH)−1. By

Corollary 3.6.10, we can conclude that every automorphism is modular.

Remark 3.6.16. One can determine the groupsN ′/H ′ in all cases. Indeed, let n =
∏r
i=1 p

ei
i

be any positive integer with its prime factorization, let H < GL2(Z/nZ) be either a Car-
tan or a Cartan-plus subgroup and let N ′ < SL2(Z/nZ) be the normalizer of the group
H ′ := H ∩ SL2(Z/nZ). By Chinese Remainder Theorem we have

H ′ ∼=
r∏
i=1

H ′i and N ′ ∼=
r∏
i=1

N ′i inside SL2(Z/nZ) ∼=
r∏
i=1

SL2(Z/peiZ),

where H ′i is the image of H ′ in SL2(Z/peiZ) and N ′i < SL2(Z/peiZ) is the normalizer of
H ′i. Hence the knowledge of N ′/H ′ for H ∈ {Cns(pe), Cns(pe), Cs(pe), C+

s (pe)} allows to
compute the group N ′/H ′ for every Cartan or Cartan-plus subgroup H of level n not
necessarily a prime power. Explicit computations give the following:

• if H = Cns(pe), then N ′/H ′ ∼= Z/2Z, since N ′ = C+
ns(pe) ∩ SL2(Z/peZ);

• if pe 6= 3 and H = C+
ns(pe), then N ′/H ′ ∼= {1};

• if H = C+
ns(3), then N ′/H ′ ∼= 〈( 1 1

0 1 )〉 ∼= Z/3Z;

• if p 6= 2, 3 and H = Cs(pe), then N ′/H ′ ∼= 〈
( 0 −1

1 0
)
〉 ∼= Z/2Z;

• if e ≥ 2 and H = Cs(3e), then

N ′/H ′ ∼=
〈(

1 3e−1

−3e−1 1

)〉
×
〈( 0 −1

1 0
)
,
(

1 3e−1

3e−1 1

)〉
∼= Z/3Z× S3,

where S3 is the symmetric group acting on three elements;
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• if e ≥ 5 and H = Cs(2e), then

N ′/H ′ ∼=
〈(

1 2e−3

0 1
)
,
( 1 0
−2e−3 1

)〉
o
〈( 0 −1

1 0
)〉 ∼= (Z/8Z)2 oϕ (Z/2Z),

where (ϕ(1)) (x, y) = (y, x); this group is labeled as (128, 67) in MAGMA, [50];

• if pe ∈ {3, 2, 22, 23} and H = Cs(pe), then N ′/H ′ ∼= PSL2(Z/peZ), since we have
N ′ = SL2(Z/peZ);

• ifH = Cs(24), then N ′/H ′ ∼=
〈(−1 6

6 −5
)
,
( 4 9

7 −4
)〉
o
〈( 1 −2

0 1
)〉 ∼= D8oϕ(Z/8Z), where

D8 ∼= Z/8Z o Z/2Z is the dihedral group of order 16 and (ϕ(1)) (1, 0) = (5, 0) and
(ϕ(1)) (0, 1) = (3, 1); moreover N ′/H ′ is labeled as (128, 68) in MAGMA, [50];

• if p 6= 2, 3 and pe 6= 5 and H = C+
s (pe) then N ′/H ′ ∼= {1};

• if H = C+
s (5), then N ′/H ′ ∼= 〈( 1 2

1 3 )〉 ∼= Z/3Z;

• if e ≥ 2 and H = C+
s (3e), then N ′/H ′ ∼= 〈

(
1 −3e−1

3e−1 1

)
〉 ∼= Z/3Z;

• if H = C+
s (3), then N ′/H ′ ∼= 〈

( 1 1
1 −1

)
〉 ∼= Z/2Z;

• if e ≥ 6 and H = C+
s (2e), then N ′/H ′ ∼= 〈

(
1 −2e−3

2e−3 1

)
〉 ∼= Z/8Z;

• if H = C+
s (2), then N ′/H ′ ∼= {1};

• if H = C+
s (22), then N ′/H ′ ∼= 〈( 1 2

2 1 )〉 ∼= Z/2Z;

• if H = C+
s (23), then N ′/H ′ ∼= 〈

( 1 −2
2 −3

)
〉 ∼= Z/4Z;

• if H = C+
s (24), then N ′/H ′ ∼= 〈

( 1 6
2 −3

)
〉 ∼= Z/8Z;

• if H = C+
s (25), then N ′/H ′ ∼= 〈

( 1 −4
4 −15

)
〉 ∼= Z/8Z.

Recall that the groups N ′/H ′ computed for H = Cs(pe) are the same determined in [4],
[2], [14], in the setting of Borel modular curves.

For Cartan modular curves of prime power level we make Theorem 3.6.15 more precise.

Theorem 3.6.17. Let p be a prime number and let e be a positive integer. If pe > 11 and
pe /∈ {33, 24, 25, 26}, then all the automorphisms of Xns(pe), X+

ns(pe), Xs(pe) and X+
s (pe)

are modular and

Aut(Xns(pe)) ∼= Z/2Z, Aut(X+
ns(pe)) ∼= {1},

Aut(Xs(pe)) ∼=


(Z/8Z)2 o (Z/2Z), if p = 2,
Z/3Z× S3, if p = 3,
Z/2Z, if p > 3,

Aut(X+
s (pe)) ∼=


Z/8Z, if p = 2,
Z/3Z, if p = 3,
{1}, if p > 3,

where the above semidirect product (Z/8Z)2 o Z/2Z is described in Remark 3.6.16.
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Proof. We first treat the case pe > 49 with pe 6= 26 = 64. Up to conjugacy we can assume
that H ∈ {Cs(pe), C+

s (pe), Cns(pe), C+
ns(pe)} where these groups are the subgroups of

GL2(Z/peZ) defined in Chapter 3.4 and XH ∈ {Xns(pe), X+
ns(pe), Xs(pe), X+

s (pe)} is the
corresponding associated modular curve. By [1, Theorem 0.1] and Table 3.1, for pe > 87,
we have the following lower bounds for the gonality of XH :

gon(XH) ≥ 7
800 [SL2(Z) : ΓH ] ≥ 7

800
p2e(1− 1

p )
2 >

7 · 872

3200 > 16.

Hence there are two primes `1 < `2, different from p, such that 5 ≤ `2 < 1
2gon(XH)− 1:

we can take `1 = 3, `2 = 7 if p ∈ {2, 5} and `1 = 2, `2 = 5 otherwise. With a similar
computation one can show that gon(XH) > 12, for 49 < pe ≤ 87, if pe 6= 64 and we can
take `1 ∈ {2, 3}, `2 = 5. Applying Corollary 3.6.10 we deduce that all the automorphisms
of XH defined over a compositum of quadratic fields are modular, hence, by Proposition
3.5.8, all the automorphisms of XH are modular. Finally, we can use Proposition 3.6.13
and Remark 3.6.16 to obtain the group of modular automorphisms.

We now assume 11 < pe ≤ 49. All the cases Xs(pe) ∼= X0(p2e) are treated in [60],
all the cases X+

s (p) are treated in [47] and the cases Xns(p), X+
ns(p), for 13 ≤ p ≤ 31,

are treated in [48]. The remaining cases X+
s (25), X+

s (49) and Xns(pe), X+
ns(pe), for

pe = 25, 37, 41, 43, 47, 49, are treated in the MAGMA script available at [70].

Last theorem can be specialized to the prime level case, obtaining new results for
non-split Cartan curves. The split cases are treated in [47] and [60].

Corollary 3.6.18. Let p ≥ 13 be a prime number. Then the group of automorphisms of
X+

ns(p) is trivial and the group of automorphisms of Xns(p) has order 2.

Remark 3.6.19. Theorem 3.6.17 implies that, for p2e big enough, all the automorphisms
of X∗0 (p2e) ∼= X+

s (pe) are modular, extending [5] and [47] that treat the cases X∗0 (p) and
X∗0 (p2). Our techniques (in particular Lemma 3.6.5) cannot be generalized to the case
X∗0 (pe) with e odd, because some of the branch points of the natural map H→ Y +

0 (pe)
have the form {(E,C), (E/C,E[pe]/C)} with E 6= Ei, Eρ. Anyway, the techniques used in
[47, Lemmas 4, 5, 6], together with Proposition 3.5.9, can be used to prove the modularity
of all elements in Aut(X∗0 (pe)), without restrictions on e, for all but finitely many cases.

3.7 Appendix
Let G := GL2(Z/2eZ). For each H < G, let χH : G → Q be the character of the repre-
sentation Q[G/H]. The entry (γ,H) of the table below is χH(γ). Every element of G is
conjugated to a unique element appearing in the first column, hence the table determines
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the characters χH forH appearing in Proposition 3.4.2 or in [26, Theorem 1.1]. In the first
column we have λ, a ∈ (Z/2eZ)×, b ∈ (Z/2eZ), k ∈ {1, . . . , e−1}, and u ∈ (Z/2e−kZ)×.

Proving that the first column contains every conjugacy class of GL2(Z/2eZ) exactly
once is rather easy, yet cumbersome, using the following lemma.

Lemma 3.7.1. Let M ∈ M2×2(Z/2eZ). If M ≡ ( 0 ∗
1 ∗ ) mod 2 or M ≡ ( ∗ 1

∗ 0 ) mod 2,
then there are unique elements a, b ∈ Z/2eZ such that M is conjugated to ( 0 a

1 b ). If
M ≡ ( 1 0

0 0 ) mod 2 or M ≡ ( 0 0
0 1 ) mod 2, then there are unique elements λ1, λ2 ∈ Z/2eZ,

the first odd and the second even, such that M is conjugated to
(
λ1 0
0 λ2

)
Proof. The cases M ≡ ( 0 0

0 1 ) mod 2 and M ≡ ( ∗ 1
∗ 0 ) mod 2 can be reduced to the remain-

ing cases by considering ( 0 1
1 0 )−1

M ( 0 1
1 0 ). Let V be the module made of column vectors

in (Z/2eZ)2 with standard basis e1, e2 and let FM : V → V be the multiplication by M .
IfM ≡ ( 0 ∗

1 ∗ ) mod 2 we notice that e1, FM (e1) are a basis of V when we reduce modulo
2, hence they are a basis of V . In the basis B = (e1, FM (e1)) we have

M ∼ FBM = ( 0 a
1 b )

for some a, b, that are unique since a = −det(M) and b = tr(M).
Finally the case M ≡ ( 1 0

0 0 ) mod 2. The uniqueness result is motivated by the fact
that λ1, λ2 are the only roots of det(M −λId). The existence part is a Hensel argument.
Let M =

(
a b
c d

)
and let us lift for example e1 to an eigenvector:

FM (e1 + λ) = (a+ λb)e1 + (c+ λd)e2 ∈ 〈e1 + λe2〉 ⇐⇒

λ(a+ λb) = c+ λd ⇐⇒ bλ2 + (a− d)λ− c = 0

and last equation has a unique zero because the polynomial p(λ) = bλ2 + (a − d)λ − c
satisfies p(0) ≡ 0, p′(0) 6≡ 0 modulo 2. With the same argument we can lift e2 to an
eigenvector.

In order to fill Table 3.2 we use that

Q[G/H] =
⊕

gH ·Q and ∀γ ∈ G : ρH(γ)(gH) = γgH

hence, in basis {gH} the matrix ρH(γ) is a permutation matrix and consequently

χH(γ) = tr(ρH(γ)) = #{gH : γgH = gH} = #{g : γg ∈ gH}
#H = #{g : g−1γg ∈ H}

#H .

Table 3.2: Character table.
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Br, r ≥ 0 T0 Tr, r > 0 Cs C+
s Cns C+

ns

λId 3·22r 1 3·22r−1 3·22e−1 3·22e−2 22e−1 22e−2

( 0 a
1 b )

b odd
0 1 0 0 0 2 1

( 0 a
1 b )

b even

1 if r=0

0 if r>0
1 0 0

2e−1 if b=0

0 if b 6=0
0

2e−1 if b=0

0 if b 6=0(
λ 0
0 λ+2ku

) 3·22r if r<k

22k+1 if r≥k
1

3·22r−1 if r≤k

22k+1 if r>k
22k+1 22k 0 0

(
λ 2ku
2k λ

) 3·22r if r<k

22r if r=k

0 if r>k

1
3·22r−1 if r≤k

0 if r>k
0 0 0 0

(
λ 2ku
2k λ+2k

) 3·22r if r<k

0 if r≥k
1

3·22r−1 if r≤k

0 if r>k
0 0 22k+1 22k

(
λ 2ku
2k λ+2k+1

) 3·22r if r<k

22r if r=k

0 if r>k

1
3·22r−1 if r≤k

0 if r>k
0 0 0 0
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Chapter 4

Discrete logarithms in small characteristic

Solving the discrete logarithm problem means the following: given a group G, a generator
g ∈ G and another element h ∈ G, find an integer z such that gz = h. The hardness of
this problem, which depends on the choice of G, has had implications in cryptography
since the very beginning [33] of public-key cryptography. We are concerned with the
cases where G is the multiplicative group of a finite field of small characteristic, which,
for us, means a field of characteristic p and cardinality pn for some integer n > p. Our
main result is the following.

Theorem 4.0.1. There exists a probabilistic algorithm, described in Section 4.4, that
solves the discrete logarithm problem in K× for all finite fields K of small characteristic
in expected time

(log #K)O(log log#K) .

An algorithm whose complexity is as above is called quasi-polynomial. In 2013 Bar-
bulescu, Gaudry, Joux and Thomé presented in [19] the first heuristic quasi-polynomial
algorithm solving the discrete logarithm in finite fields of small characteristic. One of
their main ideas, originally in [56], was looking for a “simple” description of the Frobe-
nius automorphism φ : K → K and, if one can find such a simple description, using it in
an index calculus algorithm to find relations among the elements of the factor base more
easily.

In [49] a new algorithm was then presented, based on similar ideas, that was proven
to terminate in quasi-polynomial expected time when it is possible to find a “simple”
description of the Frobenius automorphism φ : K → K. In particular, we could deduce
Theorem 4.0.1 if we knew that all finite fields of small characteristic K can be embedded
in a slightly larger field K ′ admitting a presentation as in [49]. Unfortunately, the author
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4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

is not aware of any proof of this fact, even though computations like [56, Table 1] support
it.

Our algorithm is based on the same approach as [49], adapted to fields admitting
a different kind of presentation in terms of elliptic curves. Since over a finite field Fq
there are many non-isomorphic elliptic curves, it is easy to prove that all finite fields of
small characteristic can be embedded in a slightly larger field admitting such an elliptic
presentation.

Elliptic presentations were firstly introduced in [30], as we have learnt after our first
(incomplete) attempt to prove Theorem 4.0.1 using elliptic presentations (see the au-
thor’s master’s thesis [67]). In [65] Kleinjung and Wesolowski have independently proved
Theorem 4.0.1, also using elliptic presentations of finite fields. One of the main differ-
ences between the present approach and the one in [65] is the proof of the correctness
of the algorithms. In both cases it is a matter of showing the irreducibility of certain
curves: the approach in [65] is based on the ideas in [64], while we mostly rely on a
little bit of Galois theory over function fields; both approaches use some cumbersome
computations and in our case these computations are mostly contained in Proposition
4.6.3 and in the Claims 4.8.2.3, 4.8.2.6, 4.8.3.2. The practical feasibility of algorithms
using elliptic presentations has been studied by Joux and Pierrot in [57].

In Section 4.1 we define elliptic presentations and we prove that all finite fields of small
characteristic can be embedded in a slightly larger field admitting an elliptic presentation.
Section 4.2 has technical importance: given an elliptic presentation, we define a finite and
small set of points on the associated elliptic curve that we call “traps” since they interfere
with our algorithm. In Section 4.3 we describe the general setup of our algorithm and
we explain how to pass from a factor base made of irreducible polynomials in Fq[x] to
a factor base made of irreducible divisors on an elliptic curve E/Fq. In Section 4.4 we
give our algorithm, stated in terms of a descent procedure that is described in Section
4.5. A more precise statement about the complexity of the main algorithm is given in
Theorem 4.4.4. Our descent procedure consists of two steps, presented and analysed in
Section 4.5 under an assumption on the number of points of certain varieties that are
used in these steps. These assumptions are proven in Section 4.8 for the first step and
in Section 4.7 for the second and easier step. In Section 4.6 we prove a lemma, mainly
using some Galois theory over function fields, that is useful in Sections 4.7 and 4.8.

Acknowledgements I thank René Schoof for introducing me to this research problem
in 2016 and for the useful ideas that lead to substantial simplifications.
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4.1 Elliptic presentations
One of the main ideas in [56] and in the original quasi-polynomial algorithm [19], is to
present a field K using two subfields Fq ( FQ ⊆ K of order q,Q (both “small” compared
to #K) and an element x1 ∈ K generating the extension FQ ⊂ K such that the q-th
Frobenius acts on x1 in a simple way, namely xq1 = f(x1) for some f ∈ Fq(x) of degree at
most 2. We now define a presentation based on a similar idea: describing K as Fq(x1, y1)
where Fq is a finite field of order q “small” compared to #K and x1, y1 are two elements
of K on which the q-th Frobenius acts in a “simple” way.

Let q be a prime power, let n be a positive integer and letK be a field of cardinality qn.
Let Fq be a finite field of cardinality q and let Fq be its algebraic closure. Suppose there
exists an elliptic curve E/Fq defined by a Weierstrass equation and a point P0 ∈ E(Fq)
of order n. Denoting by φ be the q-th Frobenius on the elliptic curve E, the map E → E

given by P 7→ φ(P )−P is surjective. Therefore there is a point P1 = (x1, y1) ∈ E(Fq)
such that φ(P1) = P1 + P0. Hence

(4.1.1) (xq
i

1 , y
qi

1 ) = φi(P1) = P1 + i · P0 for every i ∈ Z ,

implying that the field extension Fq ⊂ Fq(x1, y1) has degree n. Hence Fq(x1, y1) is isomor-
phic to K. Moreover, using the addition formulas on E, we see that the q-th Frobenius
acts on the pair (x1, y1) in a “simple” way: there are polynomials f1, f2, f3 ∈ Fq(x, y) of
small degree such that

xq1 = f1(x1, y1)/f3(x1, y1) , yq1 = f2(x1, y1)/f3(x1, y1) .

With this heuristic in mind, we give the following definition.

Definition 4.1.2. Let E/Fq be an elliptic curve defined by a Weierstrass polynomial in
Fq[x, y] and let P0 be a Fq-point on E. An (E/Fq, P0)-presentation of a finite field K is
an ideal m ⊂ Fq[x, y] such that

(i) K is isomorphic to Fq[x, y]/m with a chosen isomorphism;

(ii) denoting φ : E → E the q-th Frobenius, there exists a point P1 = (x1, y1) in E(Fq)
such that φ(P1) = P1 + P0 and m = {f ∈ Fq[x, y] : f(x1, y1) = 0};

(iii) q > 2 and, under the isomorphism (i), we have [K : Fq] > 2.

Sometimes we omit the dependence on (E/Fq, P0) and we simply write “elliptic pre-
sentation”. The technical hypothesis q > 2 is used in the proof of Claim 4.8.2.3.

Remark 4.1.3. Any elliptic presentation m is a maximal ideal, since Fq[x, y]/m is a field.
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Remark 4.1.4. If m is an elliptic presentation, then the inclusion Fq[x]→ Fq[x, y] induces
an isomorphism Fq[x]/µ ∼= Fq[x, y]/m for a certain µ ∈ Fq[x].

Proving this is equivalent to proving that x generates the extension Fq ⊂ Fq[x, y]/m.
Using the notation in Definition 4.1.2, this is equivalent to proving that Fq(x1) is equal
to Fq(x1, y1). If, for the sake of contradiction, this is not the case, then the Weierstrass
equation satisfied by x1 and y1 implies that the extension Fq(x1) ⊂ Fq(x1, y1) has degree
2, hence [Fq(x1) : Fq] = n

2 , where n := [Fq(x1, y1) : Fq] = [K : Fq]. Using Equation 4.1.1,
we deduce that

x(P1) = x1 = xq
n/2

1 = x(φn/2P1) = x(P1 + n
2P0) =⇒ P1 + n

2P0 = ±P1 .

Since, by Equation 4.1.1, the order of P0 is equal to n, we have P1+ n
2P0 = −P1, implying

that 2P1 lies E(Fq). Therefore P0 has order 2, contradicting n = [K : Fq] > 2 in (iii).

We now show that any finite field K of small characteristic can be embedded in a
“slightly larger” field admitting an elliptic presentation with q “small” compared to #K.

Proposition 4.1.5. For any finite field K of small characteristic there exists an exten-
sion K ⊂ K ′ having a elliptic presentation m ⊂ Fq[x, y] of K ′ such that

log(#K ′) ≤ 13 log(#K) log log(#K) and q ≤ log(#K ′)4 .

Moreover such K ′ and its presentation can be computed in polynomial time in log(#K).

Proof. Let #K = pn for a prime p and an integer n > p. Put k0 := dlogp ne and q := p2k0 ,
so that n has a multiple n1 in the interval [q −√q + 1, q + 1]. If n1 ≡ 1 mod p we define
n2 := n1 +n, otherwise we define n2 := n1. Since n2 in an integer contained in the Hasse
interval [q− 2√q+ 1; q+ 2√q+ 1] that is not congruent to 1 modulo p, by [90, Theorems
1a, 3] we can choose an elliptic curve E/Fq whose group of rational points E(Fq) is cyclic
of order n2. Since n divides n2, we can choose a point P0 ∈ E(Fq) of order n.

We can assume E is defined by aWeierstrass polynomial. Since the map P 7→ φ(P )−P
is surjective, we can choose a point (x1, y1) = P1 ∈ E(Fq) such that φ(P1) = P1 + P0.
We define

m := {f ∈ Fq[x, y] : f(x1, y1) = 0} , K ′ := Fq(x1, y1) ⊂ Fq .

The map Fq[x, y]→ K sending x 7→ x1, y 7→ y1 induces an isomorphism Fq[x, y]/m ∼= K ′.
To prove that m is an elliptic presentation of K ′ it remains to show that both q and
[K ′ : Fq] are larger than 2: in the first case it is true because k0 > 1, in the second case
it is true because, by (4.1.1), the degree of Fq ⊂ K ′ is equal to the order n of P0, and
n > p ≥ 2.
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Since [K ′ : Fq] = n divides [K ′ : Fp], the field K ′ has a subfield with pn elements. In
other words K can be embedded in K ′. Moreover we have

log(#K ′) = n log q < 2n log(p)(logp(n)+1) ≤ 4 log(p) log(n) ≤ 13 log(#K) log log(#K),
2 < p2 ≤ q = p2dlogp ne < p2+2 logp n = (pn)2 ≤ n4 < log(qn)4 = log(#K ′)4 .

We now prove that it is possible to compute such K ′ and m in polynomial time in
log(#K). We describe a procedure following the abstract part of the proof. Computing
k0, q, n1 is easy. We can construct a field Fq by testing the primality of all polynomials
of degree 2k0 over Fp until an irreducible ν is found and define Fq = Fp[T ]/ν; since
there are less than n2 polynomials of this type, this takes polynomial time. Similarly
we can find an elliptic curve E with an Fq-point P0 of order n in polynomial time, by
listing all possible Weierstrass equations (there are less than q6), testing if they define an
elliptic curve and, when they do, enumerate all their Fq-points. Then, using the addition
formula on E, we write down the ideal I ⊂ Fq[x, y] whose vanishing locus inside A2 is
the set of points P = (x, y) ∈ E(Fq) such that φ(P ) = P + P0. As we showed before,
the set of such points is non-empty, hence I is a proper ideal and we can find a maximal
ideal m containing I. We don’t need general algorithms for primary decomposition since
we can take m = (µ(x), λ(x, y)), with (µ) being an irreducible factor of the generator of
the ideal J∩Fq[x] and λ(x, y) being an irreducible factor of the image of the Weierstrass
equation of E inside (Fq[x]/µ)[y]. Since the Weiestrass polynomial is monic in y, we can
assume that λ is monic in y too. Hence there is a point P1 = (x1, y1) in the vanishing
locus of (µ(x), λ(x, y)) = m. Since m contains I, the point P1 lies on E and satisfies
φ(P1) = P1 + P0. The maximality of m implies that Fq[x, y](m) = Fq(x1, y1) = K ′.
Hence m is the elliptic presentation we want.

Notation 4.1.6. For the rest of the article Fq is a finite field with q elements, Fq is its
algebraic closure, K is a finite extension of Fq, the ideal m ⊂ Fq[x, y] is a (E/Fq, P0)-
presentation of K, the map φ : E → E is the q-th Frobenius and P1 = (x1, y1) ∈ E(Fq)
is a point such that m = {f ∈ Fq[x, y] : f(x1, y1) = 0}. By OE we denote the neutral
element of E(Fq).

4.2 Traps

As first pointed out in [27], there are certain polynomials, called “traps” for which the
descent procedure in [19] does not work. In [19] such traps are dealt with differently
than the other polynomials. In [49] the notion of “trap” is extended: it includes not only
polynomials for which the descent procedure is proven not to work, but also polynomials

121



4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

for which the authors do not give proof of the descent’s correctness. In [49] traps are
avoided by the algorithm.

We describe a descent procedure stated in terms of points and divisors on E and there
are certain points in E(Fq) that play the role of “traps”, as in [49]. The definition of this
subset of E(Fq) is rather cumbersome, but it is easy to deduce that we have less than
15q4 traps. In particular, in contrast to [49], we can include them in the factor base.

Definition 4.2.1. A point P ∈ E(Fq) is a trap if it satisfies one of the following conditions:

2P = 0 , or (2φ− Id)(φ2 − φ+ Id)(P ) = P0 , or (2φ− Id)(φ+ Id)(P ) = 2P0

or (φ4 − Id)(P ) = 4P0 , or 2(φ3 − Id)(P ) = 6P0 , or (2φ+ Id)(φ− Id)(P ) = 2P0 .

We explain why these points interfere with our strategy of proof in (4.7.2.2) and at
the beginning of the proof of Claim 4.8.2.3.

4.3 Divisors and discrete logarithm

For us a divisor on E is a formal sum

D =
∑

P∈E(Fq)

nPP ,

where the nP ’s are integers and nP = 0 for all but a finite number of P ’s. The Galois
group of Fq acts on the group of divisors by the formula

σ

 ∑
P∈E(Fq)

nPP

 =
∑

P∈E(Fq)

nP σ(P ) .

For any algebraic extension Fq ⊂ k we define the set of divisors defined over k, denoted
Divk(E), to be the set of divisors D such that σD = D for all σ ∈ Gal(Fq/k). We
say that a divisor is irreducible over k if it is the sum, with multiplicity 1, of all the
Gal(Fq/k)-conjugates of some point P ∈ E(Fq). Every divisor defined over k is a Z-
combination of irreducible divisors over k. We refer to [97, Chapter 2] for the definitions
of principal divisor and support of a divisor.

We need two quantities to describe the “complexity” of a divisor. The first one is the
absolute degree of a divisor, defined as as

absdeg

 ∑
P∈E(Fq)

nP (P )

 :=
∑

P∈E(Fq)

|nP | .
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The second quantity is analogous to the degree of the splitting field of a polynomial, but
we decide to “ignore” trap points. We say that a point is good if it is not a trap point,
we say that a divisor on E is good if it is supported outside the set of traps. Given an
algebraic extension Fq ⊂ k and a divisor D ∈ Divk(E), there is a unique good divisor
Dgood, defined over k, such that D −Dgood is supported on the set of trap points. We
define the essential degree of D over k to be the least common multiple of the degrees of
the irreducible divisors appearing in the support of Dgood. In other words, if we denote as
k(Dgood) the minimal algebraic extension k̃ ⊃ k such that the support of D is contained
in E(k̃), then

essdegk(D) := [k(Dgood) : k] .

If Dgood = 0 we take essdegk(D) = 1.
Now consider the discrete logarithm problem in a field having an elliptic presentation

m. First of all, if q is small compared to #K, for example q ≤ (logK)4 as in Proposition
4.1.5, and if we are able to compute discrete logarithms in K×/F×q in quasi-polynomial
time, then we can also compute discrete logarithms in K× in quasi-polynomial time.
Hence in the rest of the article we are concerned with computing discrete logarithms in
K×/F×q .

Denoting Fq[x, y]m the localization of Fq[x, y] at the maximal ideal m, we have

K ∼= Fq[x, y]/m ∼= Fq[x, y]m/mm .

An element f of (Fq[x, y]m)× defines a rational function on E which is defined over Fq
and regular and non-vanishing in P1. We represent elements in K×/F×q with elements of
Fq(E) that are regular and non-vanishing on P1.

Let g, h be elements of Fq(E) both regular and non-vanishing on P1 and let us suppose
that g generates the group K×/F×q . Then the logarithm of h in base g is a well defined
integer modulo #K−1

q−1 that we denote logm,g(h) or simply log h. Since we are working
modulo F×q , the logarithm of h only depends on the divisor of zeroes and poles of h: if
h′ ∈ Fq(E) satisfies div(h) = div(h′), then h/h′ ∈ F×q and consequently log(h) = log(h′).
Hence, putting

log(div(h)) := log(h) ,

we define the discrete logarithm as homomorphism whose domain is the subgroup of
DivFq (E) made of principal divisors, supported outside P1 and whose image is Z/(#K−1

q−1 )Z.
The kernel of this morphism is a subgroup of DivFq (E), hence it defines the following
equivalence relation on DivFq (E)

(4.3.1)
D1 ∼ D2 ⇐⇒ D1 −D2 ∈ Ker(log)

⇐⇒ ∃f ∈ Fq(E) such that f(P1) = 1 and div(f) = D1 −D2 .
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We notice that this equivalence relation does not depend on g and that, given rational
functions h1, h2 ∈ Fq(E) regular and non-vanishing on P1, we have log h1 = log h2 if and
only if div(h1) ∼ div(h2). Motivated by this, for all divisors D1, D2 ∈ DivFq (E) we use
the notation

logmD1 = logmD2 ⇐⇒ D1 ∼ D2 .

Notice that we do not define the expression logm(D) or logm,g(D) for any D in DivFq (E),
since the function log might not extend to a morphism DivFq (E) → Z/(#K−1

q−1 )Z. In
our algorithm we use the equivalence relation (4.3.1) to recover equalities of the form
log h1 = log h2.

4.4 The main algorithm
As in [49] our algorithm is based on a descent procedure, stated in terms of divisors on
E.

Theorem 4.4.1. There exists an algorithm, described in the proof, that takes as input
an (E/Fq, P0)-presentation m and a divisor D ∈ DivFq (E) such that essdegFq (D) = 2m

for some integer m ≥ 7 and computes a divisor D′ ∈ DivFq (E) such that

logmD = logmD
′ , (essdegFqD

′) | 2m−1 , absdeg(D′) ≤ 4q2absdegD .

This algorithm is probabilistic and runs in expected polynomial time in qabsdeg(D).

Applying repeatedly the algorithm of the above theorem we deduce the following
result.

Corollary 4.4.2. There exists an algorithm, described in the proof, that takes as input
an (E/Fq, P0)-presentation and a divisor D ∈ DivFq (E) such that essdegFqD = 2m for
some integer m and computes a divisor D′ ∈ DivFq (E) such that

logmD = logmD
′ , essdegFqD

′ | 64 , absdeg(D′) ≤ (2q)2mabsdeg(D) .

This algorithm is probabilistic and runs in expected polynomial time in qmabsdeg(D).

The algorithm in [49] is based on the descent procedure [49, Theorem 3]. Using the
same ideas we use the descent procedure of the last corollary to describe our main algo-
rithm, which computes discrete logarithms in finite fields with an elliptic presentation.

The idea is setting up an index calculus with factor base the irreducible divisors
whose essential degree divides 64. To collect relations we use a “zig-zag descent”: for
every f = gahb, we first use the polynomial µ determined in Remark 4.1.4 to find
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f ′ ≡ f mod m such that the essential degree of div(f ′) is a power of 2, and we then apply
the descent procedure to express log(f) = log(f ′) as the logarithm of sums of elements
in the factor base.

Main Algorithm Input: an (E/Fq, P0)-epresentation m ⊂ Fq[x, y] of a field K and
two polynomials g, h ∈ Fq[x, y] \m such that g generates the group (Fq[x, y]/m)× /F×q .

Output: an integer z such that

gz ≡ γ · h (mod m) for some γ ∈ F×q ,

which is equivalent to gz = h in the group K×/F×q .

1. Preparation: Compute the monic polynomial µ ∈ Fq[x] generating the idealm∩Fq[x].
Compute polynomials g̃, h̃ ∈ Fq[x] such that g̃ ≡ g and h̃ ≡ h modulo m. Put
c := #E(Fq), n := degµ and m := dlogne+ 3.

2. Factor base: List the irreducible divisorsD1, . . . , Dt ∈ DivFq (E) that do not contain
P1 and either have degree dividing 64 or are supported on the trap points.

3. Collecting relations: For j = 1, . . . , t+1 do the following:

Pick random integers αj , βj ∈ {1, . . . , q
n−1
q−1 } and compute g̃αj h̃βj . Pick random

polynomials f(x) of degree 2m such that f ≡ g̃αj h̃βj (mod µ) until f is irreducible.
Apply the descent procedure in Corollary 4.4.2 to find vj = (vj,1, . . . , vj,t) ∈ Zt such
that

logm (div(f)) = logm (vj,1D1 + . . .+ vj,tDt) .

4. Linear algebra: Compute d1, . . . , dt+1 ∈ Z such that gcd(d1, . . . , dt+1) = 1 and

d1v1 + . . .+ dt+1vt+1 ≡ (0, . . . , 0) (mod qn−1
q−1 c) .

Put a := d1α1 + . . .+ dt+1αt+1 and b := d1β1 + . . .+ dt+1βt+1.

5. Finished?: If b is not invertible modulo qn−1
q−1 go back to step 3, otherwise output

z := −ab−1
(

mod qn−1
q−1

)
Analysis of the main algorithm We first prove, assuming Theorem 4.4.1, that

the algorithm, when it terminates, gives correct output. First of all we notice that, as
explained in Remark 4.1.4, the polynomials µ, g̃ and h̃ exist and that g̃ and h̃ define
the same element as g, respectively h, in K ∼= Fq[x, y]/m. Let dj , αj , βj and vj be the
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integers and vectors of integers stored at the beginning of the fourth step the last time
it is executed. By definition of dj , we have

t+1∑
j=1

t∑
i=1

djvj,iDi = qn−1
q−1 c ·D ,

for a certain D ∈ DivFq (E). The divisor cD is principal because c = #Pic0(E/Fq) and,
since for all j the divisor

∑
i vj,iDi is principal, D has degree 0. Choosing λ in Fq(E)

such that div(λ) = cD, we have

(4.4.3)
t+1∑
j=1

t∑
i=1

djvj,iDi = div(λ
qn−1
q−1 ) .

Writing log for logm,g, by definition of vj we have

log(gαjhβj ) = log
(

t∑
i=1

vj,iDi

)
.

This, together with Equation (4.4.3), imply the following equalities in Z/ q
n−1
q−1 Z

a+ b log(h) =
t+1∑
j=1

dj(αj + βj log(h)) =
t+1∑
j=1

dj log(gαjhβj ) =
t+1∑
j=1

dj log
(

t∑
i=1

vj,iDi

)

= log

t+1∑
j=1

t∑
i=1

djvj,iDi

 = log
(

div(λ
qn−1
q−1 )

)
= qn−1

q−1 log(λ) = 0 ,

implying that the output z of the algorithm is correct.
We now estimate the running time step by step. The first step can be performed

with easy Groebner basis computations. Now the second step. We represent irreducible
divisors D not supported on OE in the following way: either D is the vanishing locus
of a prime ideal (a(x),W (x, y)) with a monic and irreducible and W the Weierstrass
polynomial defining E, or D is the vanishing locus of a prime ideal (a(x), y − b(x)) for
some polynomials a, b ∈ Fq[x] and a monic irreducible; in the first case degD = 2 deg a,
in the second case degD = deg a. We can list all the irreducible divisors with degree
dividing 64 by listing all monic irreducible polynomials µ1, . . . , µr ∈ Fq[x] of degree
dividing 64 and, for each i compute the prime ideals containing (µi,W ), which amounts
to factoring W as a polynomial in y, considered over the field Fq[x]/µi. Listing all the
divisors supported on the trap points can be done case by case. For example we can list
the irreducible divisors supported on the set S := {P ∈ E(Fq) : φ4(P ) − P = 4P0} by
writing down, with the addition formula on E, an ideal J ⊂ Fq[x, y] whose vanishing
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locus is S ⊂ A2(Fq) and computing all the prime ideals containing J . The divisor
OE appears among D1, . . . , Ds because OE is a trap point. Since there are q64 monic
polynomials of degree 64 and at most 15q4 trap points and since, using [15], factoring a
polynomial of degree d in Fq[x] takes on average O(log(q)d3) operations, the second step
takes polynomial time in q. Moreover, we have t ≤ 2q64.

Now the third step. By [100, Theorem 5.1], if f(x) is a random polynomial of de-
gree 2m congruent to g̃αj h̃βj modulo µ, then the probability of f being irreducible is at
least 2−m−1. Therefore finding a good f requires on average O(2m) = O(n) primality
tests, hence O(n4 log q) operations. By assumption finding the vector vj requires poly-
nomial time in qm2m+1. We deduce that the third step has probabilistic complexity
tqO(logn) = qO(logn).

The fourth step can be can be performed by computing a Hermite normal form of the
matrix having the vj ’s as columns. Since c ≤ q+2√q+1, the entries of the vj are at most
as big as 4qn+1. Therefore the fourth step is polynomial in t log(qn), hence polynomial
in n.

The last step only requires arithmetic modulo (qn−1)/(q−1).
To understand how many times each step is repeated on average, we need to estimate

the probability that, in the last step, b is invertible modulo (qn−1)/(q−1) and to do so
we look at the quantities in the algorithms as if they were random variables. The vector
(d1, . . . , dt+1) only depends on the elements hαjgβj ’s and on the randomness contained
in the descent procedure and in step 2. Since the αj ’s and βj ’s are independent vari-
ables and since g is a generator, we deduce that the vector (β1, . . . , βt+1) is independent
of (gα1hβ1 , . . . , gαt+1hβt∗1), hence also independent of the vector (d1, . . . , dt+1). Since
(β1, . . . , βt+1) takes on all values in {0, . . . , qn − 1}t+1 with the same probability and
gcd(d1, . . . , dt+1) = 1, then

b = d1β1 + . . . dt+1βt+1

takes all values in Z/(qn − 1)Z with the same probability. Hence(
probability that b is coprime to qn−1

q−1

)
= φ

(
qn−1
q−1

)
/ q

n−1
q−1 �

1
log log qn

When running the algorithm, the first and the second step get executed once and the
other steps get executed the same number of times, say r, whose expected value is the
inverse of the above probability. Since r is O(log log(qn)) on average and each step
has average complexity at most qO(logn), the average complexity of the algorithm is
O(qO(logn)). Hence, assuming Theorem 4.4.1 we have proved the following theorem.

Theorem 4.4.4. The above Main Algorithm solves the discrete logarithm problem in the
group K×/F×q for all finite fields K having an elliptic presentation m ⊂ Fq[x, y]. It runs
in expected time qO(log[K:Fq ]).
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Theorem 4.0.1 follows from Theorem 4.4.4 and Proposition 4.1.5: the latter states
that any finite field of small characteristic K can be embedded in a slightly larger field
K ′ having an elliptic presentation m ⊂ Fq[x, y] such that q ≤ log(#K ′)4 and Theorem
4.0.1 implies that the discrete logarithm problem is at most quasi-polynomial for such a
K ′. Moreover, by Proposition 4.1.5, such a K ′, together with its elliptic presentation,
can be found in polynomial time in log(#K), by [66] we can compute an embedding
K ↪→ K ′ in polynomial time in log(#K) and by [89, Theorem 15] a random element
g′ ∈ K ′ has probability φ(#K ′)/#K ′ � 1/ log log #K ′ of being a generator of K ′: hence,
given elements g, h ∈ K, we can compute logg(h) by embedding K inside K ′ and trying
to compute the pair (logg′ g, logg′ h) for different random values of g′ ∈ K ′.

Proposition 4.1.5 is proven, while Theorem 4.4.4 relies on the the existence of a
descent procedure as described in Theorem 4.4.1. In the rest of the article, we describe
this descent procedure.

4.5 Strategy of proof of Theorem 4.4.1: the descent
procedure

Since the descent is trivial for divisors supported on the trap points, it is enough to
prove Theorem 4.4.1 and describe the descent procedure for divisors D that are good
and irreducible over Fq. In other words, if we write 2m = 4l, we can suppose that

D = Q+ σQ+ . . .+ σ4l−1Q ,

where Q is a good point on E such that [Fq(Q) : Fq] = 4l = 2m and σ is a generator of
Gal(Fq(Q)/Fq). Let k be the unique subfield of Fq(Q) such that [k : Fq] = l and let us
define

D̃ := Q+ σlQ+ σ2lQ+ σ3lQ ∈ Divk(E) .

We can do a sort of “base change to k” and work with D̃. Suppose we have an algorithm
to find a divisor D̃′ ∈ Divk(E) such that

absdegD̃′ ≤ 16q2 , essdegkD̃′ | 2 ,

and a function g ∈ k(E) such that

(4.5.1) div(g) = D̃ − D̃′ , g(τ(P1)) = 1 for all τ ∈ Gal(Fq/Fq) .

Then the divisor
D′ := D̃′ + σ(D̃′) + . . . σl−1(D̃′) ,
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satisfies the conditions in Theorem 4.4.1: the absolute and essential degree of D′ are easy
to estimate and we have logmD = logmD

′ because the rational function f := ggσ · · · gσl−1

satisfies f(P1) = 1 and div(f) = D −D′.
Hence, in order to prove Theorem 4.4.1, it is enough to describe a probabilistic al-

gorithm that takes k and D̃ as input and, in expected polynomial time in ql, computes
a good divisor D̃′ with the properties above. We do it in two steps and we replace the
second part of Equation (4.5.1) with a stronger requirement: we ask that g(P ) = 1 for
all the points P ∈ E(Fq) such that φ(P ) = P+P0. Moreover, the hypothesis that l is a
power of 2 is not necessary.

Proposition 4.5.2. There is an algorithm, described in the proof, with the following
property

• it takes as input an (E/Fq, P0)-presentation, a finite field extension Fq ⊂ k of
degree l ≥ 80 and a divisor D ∈ Divk(E) such that essdegkD = 4

• it computes a rational function g ∈ k(E) and a divisor D′ = D1 + D2 ∈ Divk(E)
such that

D −D′ = div(g) , g(P ) = 1 for all P ∈ E(Fq) such that φ(P ) = P + P0 ,

essdegk(D1) | 3 , essdegk(D2) | 2 , absdegD1 + absdegD2 ≤ 2qabsdegD ;

• it is probabilistic and runs in expected polynomial time in q· log(#k)·absdeg(D).

Proposition 4.5.3. There is an algorithm, described in the proof, with the following
property

• it takes as input an (E/Fq, P0)-presentation, an extension of finite fields Fq ⊂ k of
degree at least 80 and a divisor D ∈ Divk(E) such that essdegkD = 3;

• it computes a rational function g ∈ k(E) and a divisor D′ ∈ Divk(E) such that

D −D′ = div(g) , g(P ) = 1 for all P ∈ E(Fq) such that φ(P ) = P + P0 ,

essdegk(D′) | 2 , absdeg(D′) ≤ 2qabsdeg(D) ;

• it is probabilistic and runs in expected polynomial time in q· log(#k)·absdeg(D).

We now describe our strategy to prove the above two propositions. Let D ∈ Divk(E)
be a divisor such that ε := essdegk(D) is either equal to 3 (the case of Proposition 4.5.3)
or 4 (the case of Proposition 4.5.2). Let x, y be the usual coordinates on E and let
h → hφ be the automorphism of k(E) such that xφ = x, yφ = y and αφ = αq for all

129



4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

α ∈ k. As before we can suppose that D is good and irreducible over k. In other words,
we suppose

D = Q+ . . .+ σε−1Q ,

where Q is a good point on E defined over an extension of k of degree ε and σ is a
generator of Gal(k(Q)/k). For every point P ∈ E(Fq) such that φ(P ) = P + P0 and for
every function f ∈ k(E) regular on P we have

(4.5.4) f(P )q = fφ(φ(P )) = fφ(P + P0) = (fφ ◦ τP0)(P ) ,

where τP0 is the translation by P0 on E. Hence, for any choice of a, b, c, d ∈ k such that
cfq+1+dfq+af+b does not vanish on P , we have

(cf + d)(fφ ◦ τP0) + af + b

cfq+1 + dfq + af + b
(P ) = 1 .

Hence we look for a function g as in Propositions 4.5.2 or 4.5.3 having the shape

(4.5.5) g = (cf + d)(fφ ◦ τP0) + af + b

cfq+1 + dfq + af + b
,

for some a, b, c, d ∈ k and f ∈ k(E). Heuristically, the advantage of such a g, is that, if
f has few poles, then the numerator in the above expression also has few poles and the
denominator has a probability about 1/q3 of splitting into linear polynomials in f .

We now look for conditions on f and a, b, c, d implying that the function g and the
divisor

(4.5.6) D′ := D − div(g) ,

have the desired properties. If P is a pole of g, then P is either a pole of f , a pole of
fφ ◦ τP0 or a zero of cfq+1+dfq+af+b. Since all poles P of g appear in the support of
D′, we want all these poles to satisfy the inequality [k(P ) : k] ≤ ε − 1. This happens if
the following conditions are satisfied:

(I) the function f has at most ε−1 poles counted with multiplicity;

(II) the polynomial cT q+1 + dT q + aT + b splits into linear factors in k[T ].

We want Q and all its conjugates to be zeroes of g. If the matrix
(
a b
c d

)
has rank 0 or

1, then g = (a′fφ+b′)/(a′fq+b′) for some a′, b′ ∈ k and this, together with condition (I),
prevents Q from being a zero of g. We deduce that the matrix

(
a b
c d

)
must be invertible.

Moreover we notice that the definition of g only depends on the class of
(
a b
c d

)
in PGL2(k).

Assuming (I) and (II), the point Q is neither a pole of f nor a zero of the denominator
in (4.5.5). Hence Q and all its conjugates are zeroes of g if and only if they are zeroes of
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the numerator of (4.5.5). Assuming (I) and (II), the function cf+d never vanishes on Q
or its conjugates. Hence, using the natural action of PGL2 on P1, we see that Q and its
conjugates are zeroes of g if and only if

(III)
(
a b
c d

)
· f(σiQ) = −fφ(σiQ+ P0) for i = 0, 1, . . . , ε−1.

Assuming (I), the numerator of 4.5.5 has at most 2(ε−1) poles and 2(ε−1) zeroes counted
with multiplicity. Assuming also (III), the numerator of 4.5.5 has at most ε−2 zeroes
that are different from σiQ and this set of points is stable under the action of Gal(k/k).
We deduce that all the zeros P 6= σiQ of g satisfy the inequality [k(P ) : k] ≤ ε−1. Hence
the same inequality is satisfied by all the points in the support of D′ . As noticed when
defining g, we want that

(IV) for every point P on E such that φ(P ) = P + P0, the function f is regular on P
and cfq+1+dfq+af+b does not vanish on P .

Condition (I) implies that absdeg(D′) is at most 2qε.
We showed that the conditions (I), (II), (III), (IV) imply that the function g in

(4.5.5) and the divisor D′ = D−div(g) satisfy the requirements of Proposition 4.5.2 or
Proposition 4.5.3.

Remark 4.5.7. If Q /∈ Gal(Fq/Fq) ·P1 is a point such that φ(Q) = Q+P0, then Equation
4.5.4 implies that conditions (III) and (IV) exclude each other. This explains why such
points Q create problems to our strategy and need to be marked as traps.

In Section 4.7 and Section 4.8 we prove that there are many such pairs (f,
(
a b
c d

)
) and

we give a procedure to find them when ε = 3, ε = 4 respectively:

• We choose a family of functions f satisfying (I) and we parametrize them with
k-points on a variety F .

• We impose some conditions slightly stronger than (II), (III), (IV), describing a vari-
ety C ⊂ F×PGL2×A1 with the following property: for any point (f,

(
a b
c d

)
, z) ∈ C(k),

the pair (f,
(
a b
c d

)
) satisfies (I), (II), (III), (IV).

In particular, C is a curve in the case ε = 3, a surface in the case ε = 4

• We prove that the geometrically irreducible components of C are defined over k
and we deduce that C(k) has cardinality at least 1

2 (#k)dim C ; this is the point in the
proof where we use the technical hypothesis [k : Fq] ≥ 80 (details after Equations
(4.7.3.3) and 4.8.4.3).

Using C we can easily describe the algorithms of Proposition 4.5.2 and Proposi-
tion 4.5.3, when D is an irreducible divisor defined over k: one first looks for a point
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(f,
(
a b
c d

)
, z) in C(k) and then computes g and D using the formulas (4.5.5) and (4.5.6).

This procedure takes average polynomial time in q log(#k) because, as explained in Sec-
tions 4.7.3 and 4.8.4, the variety C is a closed subvariety of A9 with degree O(q9).

4.6 A technical lemma
In this section we take a break from our main topic and we prove Lemma 4.6.6. This
lemma is useful to study the variety C used in the algorithms of Propositions 4.5.2 and
4.5.3. We split the proof into two propositions.

Because of condition (II), we are interested in the splitting field over a finite extension
Fq ⊂ k of polynomials of the form c′T q+1+d′T q+a′T+b′ ∈ k[T ]. In particular, in Sections
4.7 and 4.8 the matrix

(
a′ b′

c′ d′

)
varies in an algebraic family: we have a variety B and(

a′ b′

c′ d′

)
=
(
a b
c d

)
(P ) where a, b, c, d ∈ k(B) and P is a point varying in B(k). We are

interested in studying the splitting field of polynomials cT q+1+dT q+aT+b over function
fields, as in the next proposition.

For any extension of fields k ⊂ K, its field of constants is the subfield of K containing
all the elements that are algebraic over k. For any irreducible variety C/k we have that
C is geometrically irreducible if and only if k is the field of constants of the extension
k ⊂ k(C).

Proposition 4.6.1. Let Fq ⊂ k be an extension of finite fields and let k ⊂ K be a field
extension with field of constants k. Let v : K× → Z be a valuation with ring of integral
elements Ov ⊂ K and generator πv of the maximal ideal of Ov. Let a, b, c, d be elements
of Ov such that

(4.6.1.1)
v(ad− bc) = 1, v(dqc− acq) = 0 and

cλq − cq(ad− bc)λ−1 6≡ dqc− acq (mod π2
v) ∀λ ∈ O×v .

Then the splitting field of the polynomial

F (T ) := cT q+1 + dT q + aT + b ∈ K[T ] ,

is an extension of k having field of constants equal to k.

Proof. For any field extension K ⊂ K̃, we denote K̃(F ) the splitting field of F over K̃,
which is a separable extension of K̃ because the discriminant of F is a power of ad−bc
and ad−bc 6= 0. Since the field of constants of k ⊂ K is equal to k, then K′ := K⊗k k is
a field and the statement of the proposition is equivalent to the equality

Gal(K(F )/K) = Gal(K′(F )/K′) .
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By [23, Theorems 2.5 and 3.2] there exists a bijection between the roots of F and P1(Fq)
that identifies the action of Gal(K(F )/K) on the roots with the action of a subgroup of
G := PGL2(Fq) on P1(Fq). We choose such a bijection and we identify Gal(K(F )/K)
and Gal(K′(F )/K′) with two subgroups of G. If we prove that Gal(K′(F )/K′) contains a
Borel subgroup B of G the proposition follows: the only subgroups of PGL2 containing
B are the whole G and B itself and, since B is not normal inside G, we deduce that
either Gal(K(F )/K) = Gal(K(F )/K′) = B or Gal(K(F )/K) = Gal(K′(F )/K′) = G.

In the rest of the proof we show that Gal(K′(F )/K′) contains a Borel subgroup
working locally at v. We choose an extension of v to K′ and consider the completion
K′v of K′. Since Gal(K′v(F )/K′v) is a subgroup of Gal(K′(F )/K′), it is enough to show
that Gal(K′v(F )/K′v) is a Borel subgroup to prove the proposition. Since ad−bc ≡ 0 and
c 6≡ 0 modulo πv, we have

F (T ) ≡ c
(
T q + a

c

)(
T + d

c

)
(mod πv) ,

and, since dqc 6= acq mod πv, we deduce that −dc is a simple root of F mod πv. By
Hensel’s Lemma, there exists a root r0 ∈ K′v of F that is v-integral and congruent
to −dc modulo πv. The group Gal(K′v(F )/K′v) ⊂ G stabilizes the element of P1(Fq)
corresponding to r0, hence it is contained in a Borel subgroup of G. Since Borel subgroups
have cardinality q(q−1), in order to prove the proposition it is enough showing that
[K′(F ) : K′] is at least q(q−1). We show that the inertia degree of K′ ⊂ K′(F ) is at least
q(q−1).

Since a
c is a q-th power modulo πv, then there exists a v-integral element γ ∈ K′v

such that F (T ) ≡ c(T + γ)q(T + d/c) mod πv. Up to the substitution F (T ) 7→ F (T − γ),
which does not change K′v(F ) nor the quantities c, ad−bc and dqc−acq, we can suppose
that

F (T ) ≡ c T q
(
T + d

c

)
(mod πv) .

This implies that v(d/c) = 0, v(a) ≥ 1 and v(b) ≥ 1. If we had v(b) ≥ 2, then the choice
λ := d would contradict the last congruence in (4.6.1.1). Hence we have v(b) = 1. The
Newton polygon of F tells us that the roots r0, . . . , rq of F in the algebraic closure K′v
of K′v satisfy

(4.6.2) v(r0) = 0 , v(r1) = . . . = v(rq) = 1
q
.

We now consider the polynomial

F1(T ) := F (T + r1) = c1T
q+1 + d1T

q + a1T + b1 = cT q+1 + d1T
q + a1T ∈ K′v[T ] .

The roots of F1 are ri−r1. Using Equation (4.6.2), we deduce v(c1) = v(d1) = 0 and
v(a1) > 0. Using a1d1−b1c1 = ad−bc, we see that v(a1) = v(a1d1−c1b1) = v(ad−bc) = 1.
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The Newton polygon of F1 tells us that

v(r2 − r1) = . . . = v(rq − r1) = 1
q − 1 .

This, together with Equation (4.6.2) and the fact that K ⊂ K′ is unramified, imply
that the inertia degree of K′v ⊂ K′v(F ) is a multiple of q(q−1) and consequently that
Gal(K′v(F )/K′) is a Borel subgroup of G.

We now prove that, for certain choices of a, b, c, d ∈ K, Equation (4.6.1.1) is satisfied.

Proposition 4.6.3. Let K be a field extension of Fq, let u1, u2, u3, w1, w2, w3 be distinct
elements of K and let a, b, c, d ∈ K be the elements defined by the following equality in
GL2(K)a b

c d

 =

wq3 wq1

1 1

wq1 − wq2 0

0 wq2 − w
q
3

u2 − u3 0

0 u1 − u2

 1 −u1

−1 u3

 .

Then
(
a b
c d

)
sends the three elements u1, u2, u3 ∈ P1(K) to wq1, w

q
2, w

q
3 ∈ P1(K) respec-

tively.
Suppose, moreover, that K is equipped with a discrete valuation v : K× → Z, that

ui, wi are v-integral, that v(wi−wj) = v(w3+ui) = v(u2−u3) = 0 for i 6= j and that
v(u1−u2) = 1. Then a, b, c, d satisfy (4.6.1.1).

Proof. To prove first part we notice that, given distinct elements x, y, z ∈ K, the matrix

Nx,y,z :=

z x

1 1

x− y 0

0 y − z


is invertible and acts on P1(K) sending 0, 1,∞ = [ 1

0 ] to x, y, z respectively. Using this
definition we have

(
a b
c d

)
= det(Nu1,u2,u3)Nwq1 ,wq2 ,wq3N

−1
u1,u2,u3

, hence
(
a b
c d

)
acts on P1(K)

sending
u1 7→ 0 7→ wq1 , u2 7→ 1 7→ wq2 , u3 7→ ∞ 7→ wq3 .

Now the second part of the lemma. Computing det(Nu1,u2,u3) and det(Nwq1 ,wq2 ,wq3 ) we
see that

ad− bc = (u1 − u2)(u2 − u3)(u1 − u3)(w1 − w2)q(w2 − w3)q(w1 − w3)q

hence v(ad−bc) = v(u1−u2) + v(u3 − u1) = 1 (the element u3−u1 has valuation zero
because it is the sum of u3−u2 and u2−u1 that have valuation 0, respectively 1. Writing
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a, b, c, d as polynomials in the ui’s and the wi’s, we check that there is a multivariate
polynomial f such that

(4.6.4)

dqc− acq =f(u1, u2, u3, w1, w2, w3) ·
(
u1 − u2

)q
+ (u1 − u3)q(w1 − w2)q

2
(w1 − w3)q(u2 + w2)q ·

(
u1 − u2

)
− (w1 − w2)q

2+q(u1 − u3)q+1(u1 + w3)q .

Since v(w2−w1) = v(u3−u1) = v(w3+u1) = 0, we have v(dqc−acq) = 0. Let Ov be the
integral subring of K, let πv := u1−u2, which is a generator of the maximal ideal of Ov.
Now suppose by contradiction that there exists λ ∈ O×v such that

(4.6.5) cλq − aq(ad− bc)λ−1 ≡ dqc− acq (mod π2
v) .

Using ad−bc ≡ 0 mod πv and the equality c = (w1−w2)q(u1−u3) − πv(w1−w3)q, we
deduce

λq ≡ dqc− acq

c
≡
(
− (u1 − u3)(u1 + w3)(w1 − w2)q

)q
(mod πv) ,

If we replace λ by some λ′ ≡ λ modulo πv, then the congruences (4.6.1.1) are still
satisfied, hence we may suppose λ = −(u1−u3)(u1+w3)(w1−w2)q. Substituting λ and
(4.6.4) in (4.6.5) we get

0 ≡ cq(ad− bc) + (dqc− acq)λ− cλq+1

≡ −πv(w1−w2)q
2+q(w1−w3)q(u1−u3)q+1(w2−w3)q(w3+u3) (mod π2

v)

which is absurd because v(wi−wj) = v(u1−u3) = v(w3+u3) = 0.

We now prove the main result of this section. Varieties like C in the following lemma
arise in Sections 4.7 and 4.8 when imposing conditions (II) and (III). Proving that the
components of such curves are defined over k is useful to prove that such varieties have
“many” k-rational points and consequently that conditions (II) and (III) are “often” true.

Lemma 4.6.6. Let Fq ⊂ k be an extension of finite fields and let B/k be a geometrically
irreducible variety. Let u1, u2, u3, w1, w2, w3 be distinct elements of k(B) and suppose
there exists an irreducible divisor Z ⊂ Bk, generically contained in the smooth locus of
B, such that ui, wi are defined on the generic point of Z and such that

Z is a zero of order 1 of u1−u2 and it is not a zero of w3+ui, u2−u3, wi−wj for i6=j.

Let C ⊂ B × PGL2 ×A1 be the variety whose the points are the tuples (R,
(
a b
c d

)
, z) such

that
ui(R) are defined and distinct, wi(R) are defined and distinct, dqc− acq 6= 0,(

a b
c d

)
· ui(R) = wqi (R) for i = 1, 2, 3 and

(dqc− acq)q+1(zq − z)q
2−q = cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
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If C is defined over k, then its geometrically irreducible components are defined over k
and pairwise disjoint.

Proof. We first look at the variety B0 ⊂ B × PGL2 whose points are the pairs (R,A)
such that

ui(R) are defined and distinct, wi(R) are defined and distinct,
A · ui(R) = wqi (R) for i = 1, 2, 3 .

Since an element PGL2 is uniquely determined by its action on three distinct points of
P1, the projection B0 → B is a birational equivalence, whose inverse, by the first part of
Proposition 4.6.3, is given by R 7→

(
a1 b1
c1 d1

)
(R), where a1, b1, c1, d1 ∈ k(B) are defined by

the following equality in GL2(k(B))a1 b1

c1 d1

 =

wq3 wq1

1 1

wq1 − wq2 0

0 wq2 − w
q
3

u2 − u3 0

0 u1 − u2

 1 −u1

−1 u3

 .

Let v : k(B)× → Z be the valuation that determines the order of vanishing in Z of a
rational function. The second part of Proposition 4.6.3 implies that a1, b1, c1, d1 satisfy
(4.6.1.1), over the field k(B). In particular we have c1 6= 0 and v(c1) = 0. Hence we can
define the following rational functions on C

a2 := a1/c1 , b2 := b1/c1 , c2 := 1 , d2 := d1/c1

which again satisfy (4.6.1.1) over the field k(B). The advantage of a2, b2, c2, d2 is that,
as we now show, they are defined over k. Let B1 be the projection of C inside B×PGL2:
since C is defined over k, the variety B1 is defined over k and, since B1 is a dense
open subvariety of B0, the variety B1 is birational equivalent to B through the natural
projection. Since a/c is a rational function on B1 defined over k, we deduce that a2 = a/c

lies in k(B1) = k(B) and analogously b2, c2, d2 ∈ k(B). A fortiori a2, b2, c2, d2 satisfy
(4.6.1.1) inside the field K = k(B). By Proposition 4.6.1, k is the field of constants of
the extension k ⊂ Σ, where Σ is the splitting field of

F (T ) := c2T
q+1 + d2T

q + a2T + b2 ,

over k(B). We deduce that there exists a geometrically irreducible variety E/k having
field of rational functions Σ. Let π : E 99K B be the rational map induced by k(B) ⊂ Σ
and let r0, . . . , rq ∈ Σ be the roots of F , interpreted as rational functions on E . Using
[23, Lemma 2.3] we see that, for any choice of integers 0 ≤ i < j < m ≤ q,

z = zi,j,k := ri − rj
ri − rk

∈ Σ = k(E) satisfies

(dq2c2 − a2c
q
2)q+1(zq − z)q

2−q = Cq
2+1

2 (a2d2 − b2c2)q
(

(zq
2
− z)/(zq − z)

)q+1
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Hence, for each 0 ≤ i < j < m ≤ q we get a map

φi,j,m : E 99K C, S 7−→
(
π(S),

(
a2 b2
c2 d2

)
(S), zi,j,m(S)

)
.

Since all the zi,j,m are different, the union of all the images φi,j,m(E) is dense inside
C. Hence, up to shrinking C, every geometrically irreducible component of C is also a
geometrically irreducible component of φi,j,m(E) for some (i, j,m). Since E is defined
over k and geometrically irreducible, the variety φi,j,m(E) is also defined over k and
geometrically irreducible. We deduce that the irreducible components of C are defined
over k.

Finally, we prove that the components of C are pairwise disjoint. The projection
π : C → B1 has finite fibers whose number of k-points counted with multiplicity is q3−q
, that is the degree, in z, of the polynomial

(dqc− acq)q+1(zq − z)q
2−q − cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
.

If, by contradiction, there is a point (R′,
(
a′ b′

c′ d′

)
, z′) lying in the intersection of two

components of C, then the fiber π−1(R′,
(
a′ b′

c′ d′

)
) has cardinality smaller than q3−q. In

other words the polynomial

G(z) := (d′qc′−a′c′q)q+1(zq−z)q
2−q−c′q

2+1(a′d′−b′c′)q
(

(zq
2
− z)/(zq − z)

)q+1
∈ Fq[z]

has less than q3−q roots. Since a′d′−b′c′ 6= 0 and dqc′−a′c′q 6= 0, there is no root of
G that is also a root of zq−z or zq

2
−z

zq−z . In other words, G has no root lying in the
finite field Fq2 ⊂ Fq with q2 elements. Since z′ is a root of G and since G is a Fq-linear
combination of powers of zq−z and zq

2
−z

zq−z , for any matrix A ∈ PGL2(Fq), the number
A · z′ is also a root of G. Since #PGL2(Fq) = q3−q is larger than the set of roots of G,
there exists a matrix A ∈ PGL2(Fq) such that A · z′ = z′, implying that z′ lies in F2

q,
which is absurd.

Remark 4.6.7. Let Fq ⊂ k be a field extension and let F (T ) = cT q+1 + dT q + aT + b

be a polynomial with coefficients in k such that, ad−bc 6= 0 and aqc−dcq 6= 0. By [23,
Theorem 4.3 and Lemma 2.3], the polynomial F splits in linear factors over k if and only
if there exists an element z ∈ k such that

(dqc− acq)q+1(zq − z)q
2−q = cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
.

In particular, in the notation of the proof of Lemma 4.6.6, we have Σ = k(B)(zi,j,m) for
any choice of integers 0 ≤ i < j < m ≤ q. In particular, the map φi,j,m is injective, hence
it is a birational equivalence between E and an irreducible component of C. In other
words the field of rational functions of an irreducible component of C is the splitting field
of F over k(B).
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4.7 Descent 3-to-2
In this section we prove Proposition 4.5.3 for a good irreducible divisor D. Following the
notation of Section 4.5 when ε = 3, let k be a finite extension of Fq of degree at least
80, let Q be a good point on E such that [k(Q) : k] = 3, and let σ be a generator of
Gal(k(Q)/k). Then, we look for a function f ∈ k(E) and a matrix

(
a b
c d

)
∈ PGL2(k)

satisfying properties (I), (II), (III), (IV): we describe a curve C whose k-points give such
pairs (f,

(
a b
c d

)
), and we prove that there are many k-points on C.

4.7.1 The definition of C

Property (I) requires that f ∈ k(E) has at most two poles: we look for f of the form

(4.7.1.1) fP := y − y(P )
x− x(P )

for some P in E(k) \ {OE}, since such fP has exactly two simple poles, namely OE

and −P . As explained in Remark 4.6.7, in order to ensure condition (II), it is sufficient
imposing that dqc 6= acq and that there exists z in k such that

(4.7.1.2) (dqc− acq)q+1(zq − z)q
2−q = cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
.

Notice that definition (4.7.1.1) makes sense for P ∈ E(Fq) \ {OE} and that we have the
following symmetry: for any P, P ′ ∈ E(Fq) \ OE , we have fP (P ′) = fP ′(P ). Using this
and the fact that hφ(φ(P )) = h(P )q for all h ∈ Fq(E) and P ∈ E(Fq), we have

fP (σiQ) = fσiQ(P ) , fφP (σiQ+P0) = fφP (φ(σiR)) = fP (σiR)q = fσiR(P )q ,

where R is the unique point on E such that φ(R) = Q+P0. Hence (III) is equivalent to

(4.7.1.3)
(
a b
c d

)
· fσiQ(P ) = −fσiR(P )q for each i = 0, 1, 2 .

We now impose (IV). Let B be a point on E such that φ(B) = B + P0. If the rational
function cfq+1

P +dfqP+afP+b vanishes on B, then
(
a b
c d

)
· fB(P ) = −fB(P )q. This and

Equation (4.7.1.3), when fσiQ are distinct, imply that the cross ratio of fQ(P ), fσQ(P ),
fσ2Q(P ), fB(P ) equals the cross ratio of fR(P )q, fσR(P )q, fσ2R(P )q, fB(P )q. The poles
of fP are OE and −P . Hence, assuming (4.7.1.3) and the distinctness of fσiQ(P ), con-
dition (IV) is implied by
(4.7.1.4)
for all B such that φ(B) = B + P0 : P 6= −B and
CrRat

(
fQ(P ), fσQ(P ), fσ2Q(P ), fB(P )) 6= CrRat(fR(P )q, fσR(P )q, fσ2R(P )q, fB(P )q) ,
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where, given four elements λ1, λ2, λ3, λ4 ∈ P1(Fq), we write

CrRat(λ1, λ2, λ3, λ4) = (λ3 − λ1)(λ4 − λ2)
(λ2 − λ1)(λ4 − λ3) ∈ P1(Fq) ,

for their cross-ratio, which is defined unless three of the λi’s are equal.
Finally we define E′ := E \ {OE ,−Q,−R, . . . ,−σ2Q,−σ2R}, so that fσiR and

fσiQ are regular on E′, and we define C ⊂ E′ × PGL2 × A1 as the curve made of
points (P,

(
a b
c d

)
, z) that satisfy Equations (4.7.1.3), (4.7.1.2) and (4.7.1.4), and such

that dqc−acq 6= 0 and the fσiQ(P ) are distinct.
Notice that C is defined over k: even though the equations

(
a b
c d

)
fσiQ(P ) = −fqσR(P )

on E′×PGL2 have coefficients in the field k(Q), the Galois group of k ⊂ k(Q) permutes
these equations. We constructed C so that, for any point (P,

(
a b
c d

)
, z) ∈ C(k), the pair

(fP ,
(
a b
c d

)
) satisfies properties (I), (II), (III) and (IV).

4.7.2 The irreducible components of C

In this subsection we prove that all the geometrically irreducible components of C are
defined over k. We can leave out (4.7.1.4) from the definition of C. Our strategy is
applying Lemma 4.6.6 to the variety B = E′, using the rational functions ui = fσi−1Q,
wi = −fσi−1R and the irreducible divisor Z equals to the point−Q−σQ ∈ B(Fq) ⊂ E(Fq).

Notice that, given distinct points P ′, P ′′ ∈ E(Fq) \ {OE}, the function fP ′−fP ′′ is
regular at OE and moreover (fP ′−fP ′′)(OE) = 0. Since the sum of zeroes and poles of
a rational function is equal to OE in the group E(Fq), we deduce that, given distinct
points P ′, P ′′ ∈ E(Fq) \ {OE},
(4.7.2.1)
fP ′−fP ′′ has two simple poles, namely −P ′ and −P ′′

and two zeroes counted with multiplicity, namely OE and −P ′−P ′′.

Let Z := −Q−σQ. By (4.7.2.1) and the fact that Q is not a trap, the point Q is not a
pole of any of the ui and the wi and it is not a zero of any of the functions u2−u3, w3+ui
and wi−wj for i 6= j: if, for example, −fσR is not regular on Z, then Z = −R. Hence,
using that σ acts as φl on E(Fq) for l := [k : Fq], we have

Q+ P0 = φ(R) = φ(−Z) = φl+1(Q) + φ(Q) =⇒ φl+1(Q) = (1− φ)(Q) + P0 ,

hence
(4.7.2.2)
φ3(Q) = φ3l+3(Q) = φ2l+2 ((1− φ)(Q) + P0) = ((1− φ)◦φ2l+2)(Q) + P0

= ((1− φ)◦φl+1) ((1− φ)(Q) + P0) + P0 = ((1− φ)◦(1− φ))(φl+1(Q)) + P0

= (1− φ)2 ((1− φ)(Q) + P0) + P0 = (1− φ)3(Q) + P0 ,
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implying that

((2φ− 1)◦(φ2 − φ+ 1))(Q) = (φ3 + (φ− 1)3)(Q) = P0 ,

which contradicts the hypothesis that Q was not a trap point. Moreover, by (4.7.2.1), the
function fQ−fσQ has a simple zero in Z. Hence, by Lemma 4.6.6, all the geometrically
irreducible components of C are defined over k and disjoint.

4.7.3 k-rational points on C

We now prove that #C(k) is larger than 1
2#k. The curve C is contained in the open subset

of (E \ {OE})×PGL2 ×A1 made of points ((x, y),
(
a b
c d

)
, z) such that c 6= 0. Hence C is

contained in A6, with variables x, y, a, b, d, z and it is defined by the following equations:

• 0 = p1 := W (x, y), the Weierstrass equation defining E;

• 0 = p2 := (dq−a)q+1(zq−z)q2−q − (ad−b)q( zq
2
−z

zq−z )q+1, the dehomogenization of
(4.7.1.2) in c;

• 0 = pi(x, y, a, b, d) for i = 3, 4, 5, obtained by (4.7.1.3) after dehomogenizing in c,
substituting fσiQ(P ) and fσiR(P ) by their expressions in x, y and clearing denom-
inators;

• a number of conditions 0 6= qj ensuring that P 6= −σiQ, P 6= −σiR, dq−a 6= 0,
ad− b 6= 0, that fσiQ(P ) are pairwise distinct and that (4.7.1.4) is satisfied.

In particular, C can be seen as a closed subvariety of A7, with variables x, y, a, b, d, z and
t defined by the equations p1 = 0, . . . , p5 = 0 and 0 = p6 := tq1 · · · qr − 1.

Let C1, . . . , Cs be the irreducible components of C. By [46, Remark 11.3], we have

(4.7.3.1) #C(k) ≥ #C1(k) ≥ #k − (δ − 1)(δ − 2)(#k) 1
2 −K(C1) ,

where δ is the degree of C1 and K(C1) is the sum of the Betti numbers of C relative to
the compact `-adic cohomology. Since C1 is a component of C then

(4.7.3.2) δ ≤ deg(p1) · · · deg(p6) .

Since C is the disjoint union of the Ci, the Betti numbers of C are the sums of the Betti
numbers of the Ci and using [58, Corollary of Theorem 1] we deduce that

(4.7.3.3) K(C1) ≤ K(C) ≤ 6 · 26 ·
(

3 + 7 max
i=1,...,6

{deg(pi)}
)8

.

Since deg p1 ≤ 3, deg p2 ≤ q3+q, deg p3, . . . ,deg p5 ≤ q+2, deg p7 ≤ 8q2 + 29q+ 29 , then
Equations (4.7.3.1), (4.7.3.2) and (4.7.3.3) imply that #C(k) > 1

2 (#k) when #k ≥ q80 and
q ≥ 3.
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4.8 Descent 4-to-3
In this section we prove Proposition 4.5.2 for a good irreducible divisor D. Following the
notation of section 4.5 when ε = 4, let k be a finite extension of Fq of degree at least
80, let Q be a good point on E such that [k(Q) : k] = 4, and let σ be a generator of
Gal(k(Q)/k). Then, we look for a function f ∈ k(E) and a matrix

(
a b
c d

)
∈ PGL2(k)

satisfying properties (I), (II), (III), (IV): we describe a surface C whose k-points give such
pairs (f,

(
a b
c d

)
), and we prove that there are many k-points on C.

4.8.1 The definition of C

Property (I) requires that f ∈ k(E) has at most 3 poles: we look for f of the form

(4.8.1.1) f = fα,β,P := fP + α

f
P̃

+ β
.

where α, β are elements of k, the points P, P̃ lie in E(k) \ {OE} and fP is the rational
function defined in (4.7.1.1). For the rest of the article we let α, β and P vary and we
fix P̃ so that

fQ(P̃ ), fσQ(P̃ ), fσ2Q(P̃ ), fσ3Q(P̃ ), fR(P̃ ), fσR(P̃ ), fσ2R(P̃ ), fσ3R(P̃ ) are pairwise distinct.

There is at least one such point P̃ because #(E(k) \ {OE}) >
(8

2
)
and by (4.7.2.1) for

each P ′ 6= P ′′ ∈ E(Fq) \ {OE} there is at most one point P̃ ∈ (E(k) \ {OE}) such that
fP ′(P ) = fP ′′(P ). Notice that the above definition makes sense for any P ∈ E(Fq) and
α, β ∈ Fq and that, for any such choice, the function fα,β,P has at most three poles
counted with multiplicity, namely −P and the zeroes of f

P̃
+β. Hence condition (I) is

automatically satisfied. We write f for fα,β,P , unless we want to stress the dependence
on α, β, P , like in the equations defining C.

As explained in Remark 4.6.7, when dqc−acq 6= 0, condition (II), is satisfied if and
only if there exists z ∈ k such that

(4.8.1.2) (dqc− acq)q+1(zq − z)q
2−q = cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
.

Since hφ(φ(P )) = h(P )q for all h ∈ Fq(E) and P ∈ E(Fq), we have

−fφ(σiQ+P0) = −fφ(φ(σiR)) = −f(σiR)q ,

where R ∈ E(Fq) is the unique point such that φ(R) = Q+ P0. Hence property (III) is
equivalent to

(4.8.1.3)
(
a b
c d

)
· fα,β,P (σiQ) = −fα,β,P (σiR)q for i = 0, 1, 2, 3 .
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Since cross-ratio is invariant under the action of PGL2 on P1, the above equation implies
that either the cross-ratio of f(σ0Q), . . . , f(σ3Q) is equal to the cross ratio of f(σ0R), . . .,
f(σ3R), or one of the two cross-ratios is not defined. Hence, assuming that f(σiQ) are
distinct and that f(σiR) are distinct, Equation (4.8.1.3) implies
(4.8.1.4)

CrRat
(
fα,β,P (σ0Q), . . . , fα,β,P (σ3Q)

)
= CrRat

(
fα,β,P (σ0R)q, . . . , fα,β,P (σ3R)q

)
.

Moreover, supposing that f(σiQ) and f(σiR) are distinct, the properties of cross-ratio
imply that Equation (4.8.1.3) is equivalent to Equation (4.8.1.4) together with

(4.8.1.5)
(
a b
c d

)
· fα,β,P (σiQ) = −fα,β,P (σiR)q for i = 0, 1, 2 .

We now impose (IV). Let B be a point on E such that φ(B) = B+P0. If the rational
function cfq+1+dfq+af+b vanishes on B, then

(
a b
c d

)
f(B) = −f(B)q. This, together

with Equation (4.8.1.5) and the fact that f(σiQ) are all distinct, implies that the cross-
ratio of f(Q), f(σQ), f(σ2Q), f(B) is equal to the cross-ratio of fq(R), fq(σR), fq(σ2R),
fq(B). A pole of fα,β,P is either equal to −P or to a zero of f

P̃
+β ∈ Fq(E). Hence,

assuming Equation (4.8.1.5) and the distinctness of f(σiQ), condition (IV) is implied by

(4.8.1.6)
for all B such that φ(B) = B + P0 : P 6= −B , β + f

P̃
(B) 6= 0 and

CrRat
(
f(Q), f(σQ), f(σ2Q), f(B)

)
6= CrRat

(
f(R)q, f(σR)q, f(σ2R)q, f(B)q

)
.

Let E′ := E \{OE ,−σ0Q,−σ0R, . . . ,−σ3Q,−σ3R} and let C ⊂ A2×E′×PGL2×A1 be
the surface made of points (α, β, P,

(
a b
c d

)
, z) that satisfy Equations (4.8.1.4), (4.8.1.5),

(4.8.1.2) and (4.8.1.6), and such that β + f
P̃

(σiQ) 6= 0, β + f
P̃

(σiR) 6= 0, dqc− acq 6= 0,
the f(σiQ) are distinct and the f(σiR) are distinct.

The definition of E′ and the conditions β + f
P̃

(σiQ) 6= 0, β + f
P̃

(σiR) 6= 0, ensure
that f(σiQ) and f(σiR) are well defined. As in subsection 4.7.1, the surface C is defined
over k. If (α, β, P,

(
a b
c d

)
, z) is a k-point on C, then (fα,β,P

(
a b
c d

)
) satisfies (I), (II) and

(III) and (IV).

4.8.2 Irreducibility of a projection of C

Before studying the irreducible components of C, we study the closure in P2 × E of the
projection of C in A2 × E. Let B′ ⊂ A2×E′ be the surface whose points are the tuples
(α, β, P ) such that

fα,β,P (σiQ) are pairwise distinct , fα,β,P (σiR) are pairwise distinct,
f
P̃

(σiQ) + β 6= 0 , f
P̃

(σiR) + β 6= 0 ,
CrRat

(
fα,β,P (σ0Q), . . . , fα,β,P (σ3Q)

)
= CrRat

(
fα,β,P (σ0R)q, . . . , fα,β,P (σ3R)q

)
,
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and let B be the closure of B′ inside P2 × E. Since the action of PGL2 on P1 is triply
transitive, the projection A2 × E × PGL2 × A1 → A2 × E gives a dominant morphism
C → B (this is the same argument used in the proof of Lemma 4.6.6 to show that
B0 → B is dominant). Since C is defined over k, the variety B is defined over k. In
the rest of the subsection we prove that for all but a few choices of P ∈ E(k) the curve
BP := B ∩ ({P}×P2) is reduced and geometrically irreducible. In other words, we think
of P as fixed and we let α and β vary.

We first write an equation for BP in P2. Using the definition of fα,β,P we get

fα,β,P (σiQ)−fα,β,p(σjQ) = Li,j(α, β, 1)(
li+β

)(
lj+β

) , fα,β,P (σiR)−fα,β,P (σjR) = Ri,j(α, β, 1)(
ri+β

)(
rj+β

) ,
where li := f

P̃
(σiQ), ri := f

P̃
(σiR) and Li,j , Ri,j ∈ Fq[α, β, γ] are the linear polynomials

(4.8.2.1)
Li,j :=

(
lj−li

)
α+

(
fσiQ(P )−fσjQ(P )

)
β +

(
fσiQ(P )lj−fσjQ(P )li

)
γ,

Ri,j :=
(
rj−ri

)
α+

(
fσiR(P )−fσjR(P )

)
β +

(
fσiR(P )rj−fσjR(P )ri

)
γ .

Then, for a fixed P , Equation (4.8.1.4) is equivalent to

(L0,2L1,3R
q
0,1R

q
2,3)(α, β, 1) = (L0,1L2,3R

q
0,2R

q
1,3)(α, β, 1) ,

and BP is the vanishing locus of the homogenous polynomial

(4.8.2.2) M(α, β, γ) := L0,2L1,3R
q
0,1R

q
2,3 − L0,1L2,3R

q
0,2R

q
1,3 ∈ Fq[α, β, γ] .

Notice that for each pair (i, j) ∈ {(0, 1), (0, 2), (1, 3), (2, 3)} the varieties {Li,j = 0}
and {Ri,j = 0} are lines inside P2 and that it is easy to determine the intersections
BP ∩ {Li,j=0} and BP ∩ {Ri,j=0}: such divisors are linear combinations of the points
Xk’s defined in Figure 4.1 as intersections between lines in P2. The following proposition
says that the points Xk are well-defined and distinct.

Claim 4.8.2.3. We consider the lines {Li,j = 0} and {Ri,j = 0} for (i, j) in the set
{(0, 1), (2, 3), (0, 2), (1, 3)} and the points Xi defined in Figure 4.1 as intersections of
some of these lines. For all but at most 450 choices of P ∈ E(k), this lines are distinct
and the points Xi are distinct.

Proof. Since Q is not a trap, we have φ4(Q) 6= Q+ 4P0. Hence the points σ0Q, σ0R, . . .,
σ3Q, σ4R are pairwise distinct: clearly σ0Q, . . ., σ3Q are distinct and σ0R, . . . , σ3R are
distinct and if we had σiQ = σjR, then, for l := [k : Fq] and m := i−j, we would have

Q+ P0 = φ(R) =φ(σi−jQ) = φ(φl(i−j)Q) = φlm+1(Q)
=⇒ φ4(Q) = φ4(lm+1)(Q) = Q+ 4P0 .
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Figure 4.1: The intersections Xi of the curve BP with certain lines Li,j , Ri,j .

This implies that for any point P ∈ {σ0Q, σ0R, . . . , σ3Q, σ4R} there is exactly one of the
rational functions fσ0Q, fσ0R, . . . , fσ3Q, fσ4R that has a pole in −P , namely fP .

If the lines {L0,2 = 0} and {L1,3 = 0} are equal, then the matrix of their coefficients

n(P ) =

l2−l0 (fQ−fσ2Q)(P ) (l2fQ−l0fσ2Q)(P )

l3−l1 (fσQ−fσ3Q)(P ) (l3fσQ−l1fσ3Q)(P )



has rank 1 hence, computing the deteminant of a submatrix of n, P is a zero of the
rational function (l0 − l2)(fσ3Q−fσQ) − (l1−l3)(fσ2Q−fQ). We have chosen P̃ so that
l0 6= l2 and l1 6= l3 hence this rational function is non-zero and has five poles counted
with multiplicity. So it has at most five zeroes. Hence for all but at most five choices
of P ∈ E(k), the matrix n(P ) has rank 2 and consequently the lines {L0,2 = 0} and
{L1,3 = 0} are distinct.

For any other pair of lines Λ,Λ′ in Figure 4.1, one can prove with similar arguments
that Λ 6= Λ′ for all but at most five choices of P ∈ E(k). We prove that, for all i 6= j, we
have Xi 6= Xj , for all but six choices of P ∈ E(k). We treat only a couple of cases here.

If X9 = X12, then the lines {R1,3 = 0}, {R2,3 = 0} and {L0,2 = 0} are concurrent,

144



4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

hence the following matrix, that contains their coefficients, is not invertible

M = M(P ) =


r2−r0 (fR−fσ2R)(P ) (r2fR−r0fσ2R)(P )

r3−r2 (fσ2R−fσ3R)(P ) (r3fσ2R−r2fσ3R)(P )

l2−l0 (fQ−fσ2Q)(P ) (l2fQ−l0fσ2Q)(P )

 ,

implying that P is a zero of the rational function det(M). Writing out the det(M) we
see that there is a rational function g, regular in −σ2R, such that

det(M) = (l2−l0)(r0−r3)f2
σ2R + fσ2R g ,

and since l0 6= l2 and r0 6= r3 we deduce that det(M) has a pole of order 2 in −σ2R and
in particular det(M) is a non-zero rational function with at most 6 poles counted with
multiplicity. Hence det(M) has at most 6 zeroes, implying that X9 6= X12, for all but 6
choices of P ∈ E(k).

If X3 = X4, then the lines {L0,1 = 0}, {L2,3 = 0} and {R0,1 = 0} are concurrent,
hence the following matrix, that contains the coefficients of L0,1, L2,3 and R0,1, is not
invertible

N = N(P ) =


l1−l0 (fQ−fσQ)(P ) (l1fQ−l0fσQ)(P )

l3−l2 (fσ2Q−fσ3Q)(P ) (l3fσ2Q−l2fσ3Q)(P )

r1−r0 (fR−fσR)(P ) (r1fR−r0fσR)(P )

 .

As before, in order to prove thatX3 6= X4 for all but at most 6 choices of P ∈ E(k)\{OE}
it is enough proving that det(N(P )), considered as a rational function of P , is not
identically zero. We suppose by contradiction that det(N) is identically zero and for
each i, j ∈ {1, 2, 3} we denote Ni,j the (i, j)-minor of N(P ), considered as a rational
function. Since l1 6= l0, then N3,3 has a simple pole in σ3Q and consequently N3,3 6= 0.
Analogously N1,3 6= 0 and N2,3 6= 0, hence there are rational functions A,B ∈ Fq(E)
such that

(4.8.2.4)


(
l1−l0

)
·A+

(
fQ−fσQ

)
·B = l1fQ−l0fσQ(

l3−l2
)
·A+

(
fσ2Q−fσ3Q

)
·B = l3fσ2Q−l2fσ3Q(

r1−r0
)
·A+

(
fR−fσR

)
·B = r1fR−r0fσR

and, using Cramer’s rule, we have

B = N1,2

N1,3
= N2,2

N2,3
= N3,2

N3,3
.
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Using the same argument we used for N3,3, we see that N1,2, N2,2, N3,2 6= 0. Moreover it
is easy to compute the poles of N1,2, N2,2, N3,2, N1,3, N2,3, N3,3 and check that they all
vanish in P̃ and OE , using that for each P ∈ E(Fq) \ {OE} we have (fP− yx )(OE) = 0.
Hence there are positive divisors Dl,m of degree 2 on E such that, for each j = 2, 3

div(N1,j) = D1,j + P̃ +OE − (−R)− (−σR)− (−σ2Q)− (−σ3Q) ,
div(N2,k) = D2,j + P̃ +OE − (−Q)− (−σQ)− (−R)− (−σR) ,
div(N3,j) = D3,j + P̃ +OE − (−Q)− (−σQ)− (−σ2Q)− (−σ3Q) ,

and consequently

div(B) = D1,2 −D1,3 = D2,2 −D2,3 = D3,2 −D3,3 .

The functions fQ, fσQ, fσ2Q and fσ3Q are Fq-linearly independent, hence N1,2 and N1,3

are not Fq-multiples. Hence B is not constant. Since every non-constant rational function
on E has at least two poles, we deduce that D1,3 = D2,3 = D3,3 is the divisor of poles
of B. This implies that the sum, in the group E(Fq), of the poles of N1,3 is equal to the
sum of the poles of N2,3 and is also equal to the sum of the poles of N3,3. This implies
that, in the group E(Fq), we have

Q+ σQ = σ2Q+ σ3Q = R+ σR .

Hence, using (4.7.2.1), −Q−σQ is a zero of N3,3 and consequently the two poles of B
are −Q−σQ and −Q−σQ−P̃ . By looking at (4.8.2.4) we deduce that A has exactly one
simple pole, namely −Q−σQ−P̃ , which is absurd. Hence det(N(P )) is not identically
zero.

We now study the geometrically irreducible components of BP assuming the conclu-
sions of Claim 4.8.2.3. In other words, we avoid the small (compared to q) number of
points P ∈ E(k) such that the lines Li,j , Ri,j or the points Xi in Figure 4.1 are not
distinct.

Using the equation defining BP , we can compute the divisor-theoretic intersection

(4.8.2.5) BP ∩ {L0,2 = 0} = X1 +X5 + qX9 + qX13 .

This intersection contains the point X1 with multiplicity 1, hence X1 is a smooth point of
BP . With analogous arguments we can prove that all the points Xi in the figure except
the ones of the shape {Ri,j = 0}∩{Rl,m = 0} are smooth points. This helps us studying
the geometrically irreducible components of BP , as in the following Claim.

Claim 4.8.2.6. Assume the conclusions of Claim 4.8.2.3 hold. The curve BP does not
contain any conic defined over k.
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Proof. Suppose F ∈ k[α, β, γ] is a quadratic equation defining a conic contained in BP .
Since X9 is a smooth point of BP , if the conic {F = 0} contains X9, then {F = 0} is the
only component of BP passing through X9, hence X9 appears in BP ∩ {L0,2 = 0} with
multiplicity at most 2 < q, contradicting Equation (4.8.2.5). Hence {F = 0} does not
contain X9 nor, by a similar argument, X13.

This, together with Equation (4.8.2.5), implies that X1 and X5 belong to {F = 0}.
Analogously X2 and X6 belong to {F = 0}. Both the conics {L0,1L2,3 = 0} and
{L0,2L1,3 = 0} pass through the points X1, X2, X5, X6, hence, using that X1, X2, X5, X6

are in general position, there are λ0, λ1 ∈ Fq such that

F = λ0L0,1L2,3 + λ1L0,2L1,3 .

We extend σ to an element in Gal(Fq/k) and we look at the action of σ on Fq[α, β, γ].
For each i, j ∈ {0, 1, 2, 3} we have σLi,j = Li+1,j+1 = −Lj+1,i+1, considering the indices
modulo 4, hence

λ0L0,1L2,3 + λ1L0,2L1,3 = F = σF = σ(λ0)L2,3L3,0 + σ(λ1)L0,2L1,3 .

Some cumbersome computations imply that the line {L1,2 = 0} is the line through X2

and X5 and the line {L3,0 = 0} is the line through X1 and X6. In particular the lines
{Li,j = 0} appearing in the above equation are pairwise distinct. Hence λ0 = σ(λ0) = 0,
and consequently {F = 0} = {L0,2L1,3 = 0}, which is not contained in BP . Contradic-
tion.

Claim 4.8.2.6 implies that BP does not contain a line of P2. Suppose that Λ is a line
contained in BP . Neither X9 nor X13 are contained in Λ since they are smooth points of
BP and, by Equation (4.8.2.5, the unique components of BP passing through them must
have degree at least q inside P2. Hence Λ ∩ {L0,2 = 0} ∈ {X1, X5} and consequently

(4.8.2.7) (Λ ∪ σ2Λ) ∩ {L0,2 = 0} = X1 +X5 .

This implies that σ2Λ 6= Λ and that σ2Λ and Λ are all the Gal(Fq/k)-conjugates of
Λ: since BP is defined over k, then all the Gal(Fq/k)-conjugates of Λ are components
of BP and if Λ has a conjugate Λ′ 6= Λ, σ2Λ, then, by the same argument as before,
Λ′ ∩ {L0,2 = 0} ∈ {X1, X5} and this, together with Equation (4.8.2.7) contradicts the
smoothness of X1 and X5. We deduce that Λ∪σ2Λ is a conic defined over k and contained
in BP , contradicting Claim 4.8.2.6.

By a similar argument, no conic Q is a component of BP : if this happens, since conics
have degree 2 < q in P2, then X9, X13 do not belong to any of the Gal(Fq/k)-conjugates
of Q, thus, by Equation (4.8.2.5), for all τ ∈ Gal(Fq/k) we have

τ(Q) ∩ {L0,2 = 0} = X1 +X5 = Q∩ {L0,2 = 0}
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hence, by the smoothness of X1 and X5, Q is defined over k, contradicting Claim 4.8.2.6.
We now suppose that BP is not geometrically irreducible. Let B1, . . . ,Br be the

geometrically irreducible components of BP . As we already proved, each Bi has degree
at least 3, hence the intersection Bi ∩ {L0,2 = 0} is a sum of at least 3 points counted
with multiplicity. By Equation (4.8.2.5), this implies that Bi is passing through X9 or
X13 hence each Bi has degree at least q. Since the sum of the degrees of the Bi’s is equal
to 2q+2 < 3q, we deduce that r = 2 and that either deg(B1) = deg(B2) = q+ 1 or, up to
reordering, deg(B1) = q and deg(B2) = q + 2.

If deg(B1) = deg(B2) = q + 1, Equation (4.8.2.5) implies that, up to reordering,
X1 ∈ B1(Fq) and X5 ∈ B2(Fq). Since BP is defined over k, then Gal(Fq/k) acts on
{B1,B2} and because of the cardinality of such a set, then σ2 acts trivially. In particular
X5 = σ2X1 belongs to σ2B1(Fq) = B1(Fq), hence X5 ∈ B1(Fq) ∩ B2(Fq), contradicting
the smoothness of X5. This contradiction implies that

deg(B1) = q, deg(B2) = q + 2 .

For each linear polynomial L = lαα+ lββ+ lγγ such that lα 6= 0 and for each polynomial
F (α, β, γ) ∈ Fq[α, β, γ] we define

F |L = F

(
− lββ + lγγ

lα
, β, γ

)
,

so that F |L is the unique element of Fq[β, γ] such that F ≡ F |L mod L. If F is ho-
mogenous, then F |L is also homogenous. Notice that the hypothesis lα 6= 0 is true for
L = Li,j when i 6= j, because, by the definition (4.8.2.1), the coefficient of α in Li,j is
fσiQ(P̃ )−fσjQ(P̃ ) and we have chosen P̃ so that fσiQ(P̃ ) 6= fσjQ(P̃ ).

For each i ∈ {1, 2} let Mi ∈ Fq[α, β, γ] be a homogeneous polynomial defining Bi.

Claim 4.8.2.8. There exists homogenous polynomials F1, F2, G2, N1, N2 ∈ Fq[α, β, γ] of
respective degree 1, 1, 1, q − 4, q − 2 such that

M1 = F q1 + L0,1L2,3L0,2L1,3N1, (4.8.2.9)
M2 = F q2L0,1L2,3 +Gq2L0,2L1,3 + L0,1L2,3L0,2L1,3N2 (4.8.2.10)

Proof. We start from the first part. Since degB1 = q and since X1, X5, X9 and X13 are
smooth, Equation (4.8.2.5 implies that B1 ∩ {L0,2 = 0} is either qX13 or qX9, hence
M1|L0,2 is the q-th power of a linear polynomial. We deduce the existence of polynomials
A1, B1 ∈ Fq[α, β, γ] such that A1 is linear homogenous and

M1 = Aq1 +B1L0,2 .
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Similarly to B1 ∩ {L0,2 = 0}, we have that B1 ∩ {L1,3 = 0} is either qX14 or qX10, hence
there exists a linear polynomial A2 ∈ Fq[β, γ] such that

Aq2 = M1|L1,3 = A1|qL1,3
+B1|L1,3L0,2|L1,3 =⇒ B1|L1,3L0,2|L1,3 = (A2 −A1|L1,3)q.

In the last equation either both sides are zero or the right hand side gives the prime
factorization of the left hand side (we use that A2−A1 has degree at most 1 and that
Fq[β, γ] is a UFD). In both cases there exists λ1 ∈ Fq such that B1|L1,3 = λ1L0,2|q−1

L1,3
,

hence

B1 = λ1L
q−1
0,2 +B2L1,3 =⇒ M1 = (A1 + λ1L0,2)q +B2L0,2L0,3 = Aq3 +B2L0,2L0,3

for certain homogenous polynomials A3, B2 ∈ Fq[α, β, γ], with A3 linear. Similarly to
B1 ∩ {L0,2 = 0}, we have that B1 ∩ {L0,1 = 0} is either qX3 or qX4. Hence, using the
piece of notation l = L0,1, there exists a linear polynomial A4 ∈ Fq[β, γ] such that

Aq4 = M1|l = A3|ql +B2|l L0,2|l L1,3|l =⇒ B2|l L0,2|l L1,3|l = (A4 −A3|l)q.

Again, in the last equation either both sides are zero or the right hand side gives the
prime factorization of the left hand side. The latter is not possible, since the points
X1 = {L0,1 = 0} ∩ {L0,2 = 0} and X2 = {L0,1 = 0} ∩ {L1,3 = 0} are distinct and
consequently L0,2|l and L1,3|l are relatively prime. We deduce that B2|l = 0, or equiva-
lently B2 is divisible by L0,1. A similar argument proves that B2 is also divisible by L2,3,
implying Equation (4.8.2.9).

Since degB2 = q + 2 and since X1, X5, X9 and X13 are smooth, Equation (4.8.2.5)
implies that B2 ∩ {L0,2} is either X1+X5+qX13 or X1+X5+qX9, hence

M1|L0,2 = L0,1|L0,2L2,3|L0,2A
q
5 =⇒ M2 = Aq5L0,1L2,3 +B3L0,2,

for some homogenous polynomials A5, B3 ∈ Fq[α, β, γ], with A5 linear. In a similar
fashion we have B2 ∩ {L1,3} is either X2+X6+qX14 or X2+X6+qX10, hence, using the
piece of notation r = L1,3, we have

L0,1|rL2,3|rAq6 = M1|r = L0,1|rL2,3|rA5|qr +B3|rL0,2|r
=⇒ B3|rL0,2|r = L0,1|rL2,3|r(A6 −A5)|qr

Again, in the last equation either both sides are zero or the right hand side gives the
prime factorization of the left hand side. In both cases B3|L1,3 is a scalar multiple of
L0,1|rL2,3|rL0,2|q−1

r : in the last case this is obvious, in the first case we use that, since
X1, X2, X5 and X6 are distinct, the polynomials L0,1|r, L2,3|r and L0,2|r are relatively
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prime. Hence there exist homogenous polynomials A7, B4 ∈ Fq[α, β, γ] such that A7 is
linear and

M2 = Aq7L0,2L1,3 +B4L0,1L2,3.

Iterating similar arguments we prove Equation 4.8.2.10.

Let F1, F2, G1, N1 and N2 as in Claim 4.8.2.8. Up to multiplyingM1 with an element
of Fq

×, we can suppose that M = M1M2. Reducing this equality modulo L0,2L1,3 we
see that

L0,2L1,3 divides L0,1L2,3(F1F2 +R0,2R1,3)q.

The linear polynomials Li,j in the above equation are coprime since they define distinct
lines. Hence L0,2L1,3 divides F1F2+R0,2R1,3. Since F1F2+R0,2R1,3 is homogenous of
degree at most 2, then it is a scalar multiple of L0,2L1,3. Using a similar argument with
L0,1L2,3 we prove that there exist λ, µ ∈ Fq such that

F1F2 +R0,2R1,3 = λL0,2L1,3, F1G2 −R0,1R2,3 = µL0,1L2,3 . (4.8.2.11)

We have λ 6= 0, otherwise F1 would be a scalar multiple of either R0,2 or R1,3: in the first
case Equation 4.8.2.9 would imply that B1 contains X9 but not X14 = τ(X9), implying
that τ(B1) is a component of B different from B1, that is τ(B1) = B2 which contradicts
the inequality deg(B2) > deg(B1); in the second case Equation 4.8.2.9 would imply that
B1 contains X13 but not X10 = τ(X13), leading to the same contradiction.

Using Equations (4.8.2.9), (4.8.2.10) and (4.8.2.11) and the equality M1M2=M , we
see that

0 = M1M2 −M
L0,1L2,3L0,2L1,3

=

= µqLq−1
0,1 L

q−1
2,3 +λqLq−1

0,2 L
q−1
1,3 +F q1N2+F q2N1L0,1L2,3+Gq2N1L0,2L1,3+N1N2L0,1L2,3L0,2L1,3

≡ λq(L0,2L1,3)q−1 + F q1N2 +Gq2N1L0,2L1,3 (mod L0,1).

For any F ∈ Fq[α, β, γ] we define F̃ := FL0,1 and we rewrite the above congruence as

λqL̃q−1
0,2 L̃

q−1
1,3 + F̃ q1 Ñ2 + G̃q2Ñ1L̃0,2L̃1,3 = 0. (4.8.2.12)

Since then B1 ∩ L0,1 does not contain the point X1 = {L0,2=0} ∩ {L0,1=0} nor the
point X3 = {L1,3=0} ∩ {L0,1=0}, then F̃1 is relatively prime with both L̃0,2 and
L̃1,3. Hence both L̃0,2 and L̃1,3 divide Ñ2. Since X1 = {L0,2=0} ∩ {L0,1=0} and
X3 = {L1,3=0} ∩ {L0,1=0} are distinct, then L̃0,2 is relatively prime with L̃1,2 and we
can write Ñ2 = L̃0,2L̃1,3N3 for some homogenous polynomial N3 ∈ Fq[β, γ]. Substituting
in Equation 4.8.2.12 we have

λqL̃q−2
0,2 L̃

q−2
1,3 + F̃ q1N3 + G̃q2Ñ1 = 0.
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Since λ 6= 0, since all the polynomials of the form F̃ are contained in Fq[β, γ] and since
L̃0,2 is relatively prime with L̃1,2, the above equation contradicts Lemma 4.8.2.13 below.

In particular the assumption of the reducibility of B led to contradiction, together
with the conclusions of Claim 4.8.2.3. We deduce that for all but at most 450 choices of
P ∈ E(k) the curve BP is geometrically irreducible. Since #E(k) > 450 and since all the
components of B project surjectively to E, we deduce that B is reduced and geometrically
irreducible.

Lemma 4.8.2.13. Let L1, L2 ∈ Fq[β, γ] be relatively prime homogenous linear polyno-
mials. Then there exist no homogenous polynomial A,B,C,D ∈ Fq[β, γ] such that

Lq−2
1 Lq−2

2 = AqB + CqD.

Proof. The zeroes of L1 and L2 in P1 are distinct, hence, up to a linear transformation
we can suppose that their zeroes are 0 and ∞. In particular, up to scalar multiples we
can suppose L1 = β and L2 = γ, implying that AqB +CqD = βq−2γq−2. This is absurd
because any monomial appearing in Aq or in Bq is either a multiple of βq of a multiple
of γq, hence the same is true for all the monomials appearing in AqB + CqD.

4.8.3 The irreducible components of C

In this subsection we prove that all the geometrically irreducible components of C are
defined over k. To do so, we can ignore (4.8.1.6) in the definition of C. The strategy is
applying Lemma 4.6.6 to the variety B, using the rational functions

u1, u2, u3 : B 99K P1 , ui(α, β, 1, P ) = fα,β,P (σi−1Q) ,
w1, w2, w3 : B 99K P1 , wi(α, β, 1, P ) = −fα,β,P (σi−1R) ,

and the irreducible divisor Z ⊂ B being the Zariski closure of
(4.8.3.1)(α, β, P ) ∈ (A2×E′)(Fq) :

P = −Q− σQ− σ3Q− P̃ ,

α =
(
(fQ(P )−fσQ(P ))β + l1fQ(P )−l0fσQ(P )

)
/(l0−l1)

 .

Claim 4.8.3.2. The variety Z is generically contained in the smooth locus of B and the
rational function u1−u2 vanishes on Z with multiplicity 1.

Proof. We restrict to an open subset U ⊂ P2 ×E containing the generic point of Z. Up
to shrinking U , the rational functions ui, wi can be extended to regular functions on U
using the definition (4.8.1.1) of fα,β,P , and we have

u1 − u2 = L0,1(α, β, 1, P )(
l0 + β

)(
l1 + β

) ,
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where Li,j(α, β, γ, P ) ∈ Fq[U ] is defined as in (4.8.2.1), as well as Ri,j(α, β, γ, P ). Since
we can assume that l0+β, l1+β are invertible on U and since Z is generically smooth, it
is enough showing that Z ∩U is a component of (B∩U)∩{L0,1 = 0} having multiplicity
one. Up to shrinking U , the closed B ∩ U ⊂ U is the vanishing locus of

M(α, β, P ) := (L0,2L1,3R
q
0,1R

q
2,3 − L0,1L2,3R

q
0,2R

q
1,3)(α, β, 1, P ) ∈ Fq[U ] .

Since the restriction ofM to {L0,1 = 0} is equal to the restriction of L0,2L1,3R
q
0,1R

q
2,3, it is

enough showing that L0,2, R0,1, R2,3 do not vanish on Z and that {L1,3 = 0}∩{L0,1 = 0}
contains Z ∩U with multiplicity 1. We start from the latter. Eliminating the variable α
we see that, up to shrinking U , {L1,3 = 0} ∩ {L0,1 = 0} is defined by the equations

(4.8.3.3) λ(P ) = 0 and (l1 − l0)α+ (fQ(P )− fσQ(P ))β + l1fQ(P )− l0fσQ(P ) = 0 ,

where

λ(P ) := (l1−l0)fσ3Q(P ) + (l3−l1)fQ(P ) + (l0−l3)fσQ(P ) ∈ Fq(E) .

The function λ has three simple poles, namely −Q,−σQ,−σ3Q, and we easily verify
that λ(P̃ ) = λ(OE) = 0. We deduce that P = −Q−σQ−σ3Q−P0 is a simple zero of λ.
This, together with the fact that the second equation in (4.8.3.3) is equal to the second
equation in the definition (4.8.3.1) of Z, implies that {L1,3 = 0} ∩ {L0,1 = 0} contains
Z ∩ U with multiplicity 1.

We now suppose by contradiction that R0,1 vanishes on Z ∩ U . Substituting α and
P in R0,1 as in the definition (4.8.3.1) of Z, we see that

R0,1(α, β, 1, P )|Z∩U = λ0(−Q−σQ−σ3Q−P̃ )
l0 − l1

β + λ1(−Q−σQ−σ3Q−P̃ )
l0 − l1

,

where

λ0(P ) :=(r1 − r0)(fQ − fσQ)(P )− (l1 − l0)(fR − fσR)(P ) ,
λ1(P ) :=(r1 − r0)(l1fQ(P )− l0fσQ(P ))− (l1 − l0)(r1fR(P )− r0fσR(P )) ,

and we deduce that both λ0 and λ1 vanish on P = −Q−σQ−σ3Q−P̃ . Both λ0 and
λ1 have 4 poles and 4 zeroes counted with multiplicity: they have the same poles they
share three zeroes, namely OE , P̃ and −Q−σQ−σ3Q−P̃ . Since, in the group on E(Fq),
the sum of the zeroes of an element of Fq(E)× is equal to the sum of the poles, then λ0

and λ1 also share the fourth zero, hence λ0 and λ1 differ by a multiplicative constant
in Fq. This is absurd because l0 6= l1 and because the functions fQ, fσQ, fR, fσR are
Fq-independent.

152



4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

A similar argument implies that R2,3 does not vanish on Z ∩U , while the case of L0,2

is easier. Substituting α and P in L0,2(α, β, 1, P ) as in the definition (4.8.3.1) of Z we
get

L0,2(α, β, 1, P )|Z∩U = (β + l0)λ2(−Q−σQ−σ3Q−P̃ )
l0 − l1

,

where

λ2(P ) := (l2−l1)fQ(P ) + (l0−l2)fσQ(P ) + (l1−l0)fσ2Q(P ) ∈ Fq(E) .

Analogously to λ, we see that the zeroes of λ2 are P̃ , OE and −Q−σQ−σ2Q−P0, hence λ2

does not vanish on −Q−σQ−σ3Q−P0, implying that L0,2 does not vanish on Z ∩U .

We can show that u2−u3, w3+u3, w3+u1 and wi−wj do not vanish on Z ∩ U with
similar arguments to the ones used to prove that R0,1 and L0,2 do not vanish on Z.
Hence we can apply Lemma 4.6.6 and deduce that all the components of C are defined
over k.

4.8.4 k-rational points on C

Finally we prove that #C(k) is larger than 1
2 (#k)2. The surface C is contained in the open

subset of A2 × (E\{OE}) × PGL2 × A1 made of points (α, β, (x, y),
(
a b
c d

)
, z) such that

c 6= 0. Hence C is contained in A8, with variables α, β, x, y, a, b, d, z and it is defined by
the following equations:.

• 0 = p1 := W (x, y), the Weierstrass equation defining E;

• 0 = p2 := (dq−a)q+1(zq−z)q2−q − (ad−b)q( zq
2
−z

zq−z )q+1, the dehomogenization of
(4.8.1.2) in c;

• 0 = pi(α, β, x, y, a, b, d) for i = 3, 4, 5, 6, obtained by (4.8.1.3) after dehomogenizing
in c, substituting fσiQ, fσiR by their expressions in α, β, x, y and clearing denomi-
nators;

• a number of conditions 0 6= qj ensuring that P 6= −σiQ,P 6= −σiR, β+f
P̃

(σiQ) 6= 0,
β+f

P̃
(σiR) 6= 0, dq−a 6= 0, ad− b 6= 0, that (4.8.1.6) is satisfied, that fα,β,P (σiQ)

are distinct and that fα,β,P (σiR) are distinct.

In particular, C can be seen as a closed subvariety of A9, with variables α, β, x, y, b, c, d, z
and t defined by the seven equations p1 = 0, . . . , p6 = 0 and 0 = p7 := tq1 · · · qr − 1. Let
C1, . . . , Cs be the geometrically irreducible components of C. By [46, Remark 11.3], we
have

(4.8.4.1) #C(k) ≥ #C1(k) ≥ (#k)2 − (δ − 1)(δ − 2)(#k) 3
2 −K(C1)(#k) ,
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where δ is the degree of C1 and K(C1) is the sum of the Betti numbers of C relative to
the compact `-adic cohomology. Since C1 is a component of C then

(4.8.4.2) δ ≤ deg(p1) · · · deg(p7) .

Since C is the disjoint union of the Ci, the Betti numbers of C are the sums of the Betti
numbers of the Ci. Hence, using [58, Corollary of Theorem 1]

(4.8.4.3) K(C1) ≤ K(C) ≤ 6 · 27 ·
(

3 + 7 max
i=1,...,7

{deg(pi)}
)10

.

Combining Equations (4.8.4.1), (4.8.4.2) and (4.8.4.3) and the inequalities deg p1 ≤ 3,
deg p2 ≤ q3+q, deg p3, . . . ,deg p6 ≤ 2q+3, deg p7 ≤ 16q2+37q+75, we deduce that
#C(k) > 1

2 (#k)2 when #k ≥ q80 and q ≥ 3.
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Summary

Geometric quadratic Chabauty and other top-
ics in number theory

This thesis consists of three parts.
In the first part we describe a generalization of Chabauty’s method which, in certain

cases, computes the set of rational points on a curve C of genus g > 1. Chabauty’s
method is to intersect, for a prime number p, in the p-adic Lie group of p-adic points
of the jacobian J , the closure of the Mordell-Weil group with the p-adic points of the
curve. If the Mordell-Weil rank r is less than the genus, this method produces a finite
subset of C(Qp) containing C(Q). In our method, we substitute J with a product T of
Gm-torsors over it. We take these torsors to be pull backs of the Poincaré torsor of the
jacobian, and we use the biextension structure on it to parametrize the integral points
on T . When r−g+1 is smaller than the rank of the Néron-Severi group of the jacobian,
our method produces a finite subset of C(Qp) containing C(Q).

The second part of this thesis is devoted to the study of automorphisms of Cartan
modular curves. In the literature we usually hit Cartan curves of prime level p, because
their non-cuspidal points give elliptic curves E such that the natural Galois representation
on the p-torsion of E is not surjective. We also study Cartan curves of composite level
and we prove that, if the level is large enough, these curves only have the “expected”
automorphisms, namely those automorphisms that lift to the upper half plane H. In
particular, we show that, when the level p is prime, this result holds for p > 11. The
main novelty of our proof is a thorough study, for a wide class of modular curves, of
the action of Hecke operators on elliptic points and cuspidal points. Then, we generalize
classical methods to bound the field of definition of an automorphism u and we deduce
that the u almost commutes with the Hecke operators. We conclude that u preserves
both the set of elliptic points and the set of cuspidal points. Basic topological properties
of covers imply that u lifts to the upper half plane H.
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The last part deals with the discrete logarithm problem in finite fields of small char-
acteristic: given a finite field K of characteristic p and order larger than pp, given a
generator g of the group K× and given another element h ∈ K×, the problem is to
determine an integer z such that h = gz. In the last chapter of our thesis we de-
scribe a probabilistic algorithm that solves this problem in quasi-polynomial time, that
is log(#K)O(log log#K). A heuristically quasi-polynomial algorithm was already proposed
by Joux, Barbulescu, Gaudry and Thomé, whose main idea is to look for an element of
K on which the Frobenius automorphism acts in a “simple” way. We use this idea but we
look for two elements of K on which the Frobenius acts in a “simple” way. In particular,
we want these two elements to be the coordinates of a point on an elliptic curve E and
we define “simple” using the group structure on E. Because of the abundance of elliptic
curves, it is easy to prove that each finite field of small characteristic can be embedded in
a slightly larger field containing two such elements. This makes our approach rigorous.



Samenvatting

Geometric quadratic Chabauty and other top-
ics in number theory

Dit proefschrift bestaat uit drie delen.
Het eerste gedeelte betreft een methode van Chabauty die het mogelijk maakt om in

bepaalde gevallen de rationale punten van een algebraische kromme C van geslacht g > 1
te vinden. Chabauty’s methode bestaat eruit om voor een priemgetal p de doorsnede
van de Mordell-Weil groep van de Jacobiaan met de p-adische punten van de kromme C
te bestuderen. Als de rang r van de Mordell-Weil groep kleiner is dan het geslacht, dan
leidt de methode tot een eindige deelverzameling van C(Qp) die C(Q) bevat. In onze
benadering vervangen we J door een product T van Gm-torsoren over J . Om precies te
zijn, T is een product van pullbacks van de Poincaré-torsor en we maken gebruik van
de biextensiestructuur om de gehele punten van T te parametriseren. Wanneer r−g+1
kleiner is dan de rang van de Néron-Severi-groep van J , dan stelt onze methode ons in
staat om een eindige verzameling van Qp-punten van C te bepalen die C(Q) bevat.

Het tweede gedeelte van dit proefschrift gaat over automorfismen van Cartan modu-
laire krommen. De meeste literatuur over Cartan modulaire krommen betreft krommen
van priem niveau p. De niet-cuspidale rationale punten van deze krommen correspon-
deren met elliptische krommen waarvoor de Galoisrepresentatie op de p-torsiepunten niet
surjectief is. Ons resultaat betreft ook Cartan-krommen die niet noodzakelijk priem-
niveau hebben. We bewijzen dat als het niveau voldoende hoog is, deze krommen alleen
maar de voor de hand liggende, naar het bovenhalfvlak liftbare automorfismen toelaten.
Voor Cartan-krommen van priemniveau p is dit al het geval voor p > 11. Het belangri-
jkste nieuwe ingrediënt in ons bewijs is een diepgaande studie, voor een grote klasse van
modulaire krommen, van de actie van de Hecke-operatoren op de elliptische punten en
de spitsen. We generaliseren een klassieke methode om de graad van het definitielichaam
van een automorfisme u te begrenzen. Tenslotte bewijzen we dat u in essentie met de
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Hecke-operatoren commuteert. Hieruit volgt dat u zowel de spitsen als de elliptische
punten behoudt. Standaard topologische eigenschappen van afdekkingen impliceren dan
dat u naar het bovenhalfvlak H lift.

Het laatste gedeelte van dit proefschrift betreft de discrete logaritme in eindige
lichamen van kleine karakteristiek. Het probleem is om, gegeven een eindig lichaam K

van karakteristiek p en kardinaliteit > pp en gegeven een voortbrenger g van K∗ en een
element h ∈ K∗, een exponent z te bepalen zodat h = gz. We geven een probabilistische
algoritme om dit probleem op te lossen in quasi-polynomiale tijd: log(#K)O(log log#K).
Een heuristisch polynomiaal algoritme was al eerder gegeven door Joux, Barbulescu,
Gaudry en Thomé. Hun voornaamste idee bestond eruit een element in K aan te geven
waarop het Frobeniusautomorfisme op een “eenvoudige” manier werkt. Ons idee is om
niet één maar twee elementen inK te geven. Deze twee elementen zijn de coördinaten van
een punt op een elliptische kromme. Dankzij de groepsstructuur is de actie van Frobe-
nius “eenvoudig”. Omdat er zoveel keus is voor de elliptische kromme, is het makkelijk
in te zien dat elk eindig lichaam van kleine karakteristiek ingebed kan worden in een iets
groter lichaam dat twee zulke elementen bevat. Op deze manier kunnen we de heuristieke
benadering vervangen door een bewijs dat ons algoritme quasi-polyniomiaal is.



Riassunto

Geometric quadratic Chabauty and other top-
ics in number theory

Questa tesi si compone di tre parti.
Nella prima parte mostriamo una generalizzazione del metodo di Chabauty che, in

alcuni casi, permette di calcolare l’insieme dei punti razionali di una curva C di genere
g > 1. Dato un numero primo p, il metodo di Chabauty consiste nell’intersecare,
all’interno del gruppo p-adico di Lie formato dai Qp-punti della jacobiana J , la chiusura
del gruppo di Mordell-Weil con i Qp-punti della curva. Se il rango di Mordell-Weil r è mi-
nore del genere, questo metodo permette di determinare un sottoinsieme finito di C(Qp)
contenente C(Q). Nel nostro metodo sostituiamo J con un prodotto di Gm-torsori su di
esso, che denotiamo T . I Gm-torsori che usiamo sono pull-back del torsore di Poincaré
della jacobiana. Questo ci permette di parametrizzare i punti interi su T usando la strut-
tura di biestensione presente sul torsore di Poincaré. Quando r+g−1 è minore del rango
del gruppo di Néron-Severi della jacobiana, il nostro metodo permette di determinare un
sottoinsieme finito di C(Qp) contenente C(Q).

La seconda parte della tesi è dedicata allo studio degli automorfismi delle curve mod-
ulari di tipo Cartan. In letteratura è comune incontrare curve di Cartan di livello primo
p, in quanto i loro punti non-cuspidali corrispondono a curve ellittiche la cui rappresen-
tazione di Galois associata alla p-torsione non è surgettiva. Noi studiamo anche curve
di Cartan di livello composto e dimostramo che, se il livello è sufficientemente alto, gli
unici automorfismi di queste curve sono quelli “attesi”, ovvero quegli automorfismi che
sollevano ad automorfismi del semipiano superiore H. Quando il livello p è primo, di-
mostriamo che questo risultato vale per p > 11. Nella nostra dimostrazione, la maggiore
novità è uno studio accurato, per una classe molto estesa di curve modulari, dell’azione
degli operatori di Hecke sui punti cuspidali ed ellittici di una curva modulare. Inoltre,
generalizziamo metodi classici per dare un bound sul campo di definizione di un automor-
fismo u e per dedurre che u commuta, o quasi, con gli operatori di Hecke. Ne concludiamo
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che u preserva sia l’insieme delle cuspidi che l’insieme dei punti ellittici. Dimostriamo
infine che u si solleva al semipiano superiore H utilizzando propriet‘a topologiche di base
dei rivestimenti.

L’ultima parte della tesi riguarda il problema del logaritmo discreto su campi finiti
di piccola caratteristica: dato un campo finito K di caratteristica p e ordine maggiore di
pp, dato un generatore g del gruppo K× e dato un altro elemento h ∈ K×, il problema
è determinare un intero z tale che gz = h. Nell’ultimo capitolo della tesi descriviamo un
algoritmo probabilistico che risolve questo problema in tempo quasi-polinomiale, ovvero
in log(#K)O(log log#K) operazioni. Un algoritmo euristicamente quasi-polinomiale era già
stato proposto da Joux, Barbulescu, Gaudry and Thomé, la cui idea principale è cercare
un elemento di K su cui l’automorfismo di Frobenius agisce in un modo “semplice”.
Noi utilizziamo un’idea simile e cerchiamo due elementi x, y ∈ K su cui l’automorfismo
di Frobenius agisce in un modo “semplice”. In particolare, richiediamo che questi due
elementi siano coordinate di un punto su una curva ellittica E e definiamo “semplice”
utilizzando la struttura di gruppo di E. Data l’abbondanza di curve ellittiche, è facile
dimostrare che ogni campo finito di caratteristica piccola è contenuto in un’altro campo
finito, leggermente più grande, in cui si trovano tali elementi x, y. Questo rende il nostro
approccio rigoroso.
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