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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
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refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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In this study we therefore subject this complex of three shell forms to a 
morphological and molecular analysis to reveal patterns of phylogenetic 
relatedness among them, and offer a scenario for their evolution. 
 
Material and Methods 
Study site  

The sampling was conducted at an isolated limestone hill, Mount Silabur, 
Serian, Sarawak, Malaysian Borneo (00°57.407’N, 110°30.276’E). Mount 
Silabur is approximately 350 metres high and measures roughly 500 by 300 
metres. The cave entrance is about 150 metres from the foot of the hill. The 
cave itself consists of a main chamber connecting the opposite sides of the hill. 
There are multiple high chambers (Wilford, 1964) that we excluded from our 
sampling for safety reasons. Our first fieldwork was on the 3rd of March 2017, 
when random sampling was carried out at two locations at the limestone 
outcrops and one location in the cave. The second sampling took place on the 
16th of April 2017, when we conducted systematic sampling and sketched a 
map of the cave system in which we also indicated the location of the plots 
(Figure 4.1). Populations of hydrocenids were collected at 19 different plots 
surrounding the outcrops and inside of the cave. 
 
Sampling method 

The sampling locations consist of 13 plots (plots SIE1-SIE6, SIO1-SIO6, and 
SO3) outside the cave and six plots (plots SIG1-SIG6) inside the cave of Mount 
Silabur. Apart from these plots, we also encountered 10 sites where no 
hydrocenids were found (Figure 4.1). The plots surrounding the hill were 
located approximately 5-10 metres away from the established trails. We 
generally selected humid, shaded limestone rocks covered with vegetation. The 
plots inside of the cave were mainly the vertical limestone walls of the main 
chamber. The distance between two plots was set to be at least 20 metres. We 
spent about 20 minutes at each (approximately circular) plot with two 
collectors searching on the limestone rocks and walls, vegetation and the 
surrounding areas, within an approximately five metres diameter. The 
collected living materials were directly stored in ~96% ethanol.  
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the shell periphery appeared at least seven times in the phylogeny. Although 
their study focused on the discordance between shell morphology and 
molecular phylogenetics which could impinge on taxonomic classification, 
their study also provides an important example of parallelism. 
 
Here, we investigate microgeographic patterns of molecular phylogeny and 
conchometric characters of sympatric species of Hydrocenidae Troschel, 1856 
(microsnails of the genus Georissa Blanford, 1864) inhabiting the above and 
below-ground areas of the limestone hill Mount Silabur in Sarawak, Malaysian 
Borneo. Due to the common occurrence and high abundance of hydrocenids in 
the region, we were able to conduct a systematic sampling design to understand 
the evolutionary patterns, specifically shell character changes inferred by 
molecular phylogeny. The above-ground limestone outcrop and the below-
ground cave systems are two microhabitats with extremely different 
environmental conditions. In general, the below-ground conditions are darker, 
with smaller temperature and humidity fluctuations, a less complex foodweb, 
and lower energy availability (Barr, 1967; Poulson and White, 1969). 
 
Thus, we attempt to reconstruct the phylogenetic relationships among three 
sympatric hydrocenid forms of the genus Georissa, originating from 19 
different populations sampled from the limestone outcrop and cave. Two 
sympatric Georissa species were previously known to occur at the Mount 
Silabur limestone hill, namely G. pyrrhoderma Thompson and Dance, 1983, 
inhabiting the limestone outcrops surrounding the hill, and G. silaburensis 
Khalik, Hendriks, Vermeulen, and Schilthuizen, 2018, inhabiting the cave 
interior (Chapter 2). Similarly to what was found for the troglobitic species 
G. filiasaulae Haase and Schilthuizen, 2007 from Sepulut, Sabah), the cave-
inhabiting G. silaburensis has a relatively large, broad shell, reduced shell 
sculpture, and is less pigmented compared to the sympatric epigean species 
inhabiting the outcrops, typical (and variant) G. pyrrhoderma (Figure 4.3A). 
Based on shell morphology, we found a third form, inhabiting the cave 
environment, Georissa “sp. Silabur” (Figure 4.3C), of which the shell shape 
is similar to the typical G. silaburensis whereas the scale characters are similar 
to the typical G. pyrrhoderma. 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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ground cave systems are two microhabitats with extremely different 
environmental conditions. In general, the below-ground conditions are darker, 
with smaller temperature and humidity fluctuations, a less complex foodweb, 
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inhabiting the outcrops, typical (and variant) G. pyrrhoderma (Figure 4.3A). 
Based on shell morphology, we found a third form, inhabiting the cave 
environment, Georissa “sp. Silabur” (Figure 4.3C), of which the shell shape 
is similar to the typical G. silaburensis whereas the scale characters are similar 
to the typical G. pyrrhoderma. 
 



172

Chapter 4 
 

168 
 

Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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A total of 274 adult shells of hydrocenids from all sampling plots were used in 
the morphometric analysis. We also included specimens of the closest relative 
of G. silaburensis, viz. G. bauensis Khalik, Hendriks, Vermeulen, and 
Schilthuizen, 2018 (17 adult shells) from Wind Cave Nature Reserve (WNCR), 
Bau, Sarawak (approximately 50 km from Mount Silabur). We made 
scatterplots of measured characters in RStudio (RStudio Team, 2016) to 
visualise the morphological variation of the measured adult shell forms 
(Supporting Information Table S1).  
 
DNA extraction and amplification 

Genomic DNA of the snails was extracted with Qiagen DNeasy Blood and 
Tissue kit using the manufacturer’s protocol. Prior to the extraction, the shells 
were crushed and removed (partially). The entire soft tissue was used in the 
extraction. Three partial DNA regions were amplified, 16S ribosomal RNA 
(“16S”) and cytochrome c oxidase subunit I (“COI”) for mitochondrial 
markers, and 28S ribosomal RNA (“28S”) for a nuclear marker. A fragment of 
16S region was amplified using primer pair LR-J-12887 5’-
CCGGTCTGAACTCAGATCACGT-3’ (forward) and LR-N-13398 5’-
CGCCTGTTTAACAAAAAACAT-3’ (reverse) (Schilthuizen et al., 2005). 
For the COI region, we used primer pair LCO1490 5’-
GGTCAACAAATCATAAAGATATTGG-3’ (forward) and HCO2198 5’-
TAAACTTCAGGGTGACCAAAAAATCA-3’ (reverse) (Folmer et al., 1994) 
in the amplification process. We also amplified a partial 28S DNA nuclear 
region using primer set D23F 5’-GAGAGTTCAAGAGTACGTG-3’ 
(forward) and D6R 5’-CCAGCTATCCTGAGGGAAACTTCG-3’ (reverse) 
(Park and Ó Foighil, 2000). 
 
PCR were performed in 25.0 µL reaction volume containing 1.0 µL undiluted 
DNA template, which consist of: 12.5-17.0 µL ultrapure water milli-Q, 5.0 µL 
Qiagen Q-solution (only for 28S amplification), 2.5 µL Qiagen PCR chlorine 
buffer 10×, 1.0-2.5 µL Qiagen MgCl2 25.0 mM, 0.25-1.0 µL Promega BSA 
100 mM (only for 16S and COI amplification), 1.0 µL forward primer 10 pmol/ 
µL, 1.0 µL reverse primer 10 pmol/ µL, 0.5 µL dNTPs 2.5 mM, and 0.25 µL 
Qiagen Taq 5.0 U/ µL. The PCR program started with initial denaturation at 
95°C for 5 min, followed by 36-40 cycles of denaturation at 95°C for 15-45 s, 
annealing at 50-55°C for 30-40 s, extension at 72°C for 1-2 min, and a final 
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Figure 4.1 Sampling transect and plots at Mount Silabur outcrops and cave environments. 
Abbreviation used for each sampling plot during the fieldwork; S/SI = Silabur; E = before 
cave; G = inside cave; O = after cave. 

 
Shell measurement and scanning electron microscope (SEM) 

A composite 2D image of each individual shell was obtained from the focus-
stacked images captured with a Zeiss SteREO Discovery.V20 stereo-
microscope. The images were taken at 40× magnification and 100 µm layer 
thickness at constant light intensity. We used the apertural view of the 
individual shell to measure the shell height (SH), shell width (SW), aperture 
height (AH), and aperture width (AW). Details on the shell measurements are 
in Supporting Information (Table S1).  
 
For each shell form we determined the characters based on the shell shape and 
sculpture patterns. We performed scanning electron microscopy (SEM) using 
a JEOL JSM-6480LV to obtain detailed views of the sculptural patterns. All 
hydrocenid shells were grouped into shell form categories based on their 
detailed shell shape and surface characters. 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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Figure 4.1 Sampling transect and plots at Mount Silabur outcrops and cave environments. 
Abbreviation used for each sampling plot during the fieldwork; S/SI = Silabur; E = before 
cave; G = inside cave; O = after cave. 
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scatterplots of measured characters in RStudio (RStudio Team, 2016) to 
visualise the morphological variation of the measured adult shell forms 
(Supporting Information Table S1).  
 
DNA extraction and amplification 

Genomic DNA of the snails was extracted with Qiagen DNeasy Blood and 
Tissue kit using the manufacturer’s protocol. Prior to the extraction, the shells 
were crushed and removed (partially). The entire soft tissue was used in the 
extraction. Three partial DNA regions were amplified, 16S ribosomal RNA 
(“16S”) and cytochrome c oxidase subunit I (“COI”) for mitochondrial 
markers, and 28S ribosomal RNA (“28S”) for a nuclear marker. A fragment of 
16S region was amplified using primer pair LR-J-12887 5’-
CCGGTCTGAACTCAGATCACGT-3’ (forward) and LR-N-13398 5’-
CGCCTGTTTAACAAAAAACAT-3’ (reverse) (Schilthuizen et al., 2005). 
For the COI region, we used primer pair LCO1490 5’-
GGTCAACAAATCATAAAGATATTGG-3’ (forward) and HCO2198 5’-
TAAACTTCAGGGTGACCAAAAAATCA-3’ (reverse) (Folmer et al., 1994) 
in the amplification process. We also amplified a partial 28S DNA nuclear 
region using primer set D23F 5’-GAGAGTTCAAGAGTACGTG-3’ 
(forward) and D6R 5’-CCAGCTATCCTGAGGGAAACTTCG-3’ (reverse) 
(Park and Ó Foighil, 2000). 
 
PCR were performed in 25.0 µL reaction volume containing 1.0 µL undiluted 
DNA template, which consist of: 12.5-17.0 µL ultrapure water milli-Q, 5.0 µL 
Qiagen Q-solution (only for 28S amplification), 2.5 µL Qiagen PCR chlorine 
buffer 10×, 1.0-2.5 µL Qiagen MgCl2 25.0 mM, 0.25-1.0 µL Promega BSA 
100 mM (only for 16S and COI amplification), 1.0 µL forward primer 10 pmol/ 
µL, 1.0 µL reverse primer 10 pmol/ µL, 0.5 µL dNTPs 2.5 mM, and 0.25 µL 
Qiagen Taq 5.0 U/ µL. The PCR program started with initial denaturation at 
95°C for 5 min, followed by 36-40 cycles of denaturation at 95°C for 15-45 s, 
annealing at 50-55°C for 30-40 s, extension at 72°C for 1-2 min, and a final 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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mitochondrial and nuclear genes. Bayesian inference (BI) was performed with 
MrBayes 3.2.6 (Huelsenbeck and Ronquist, 2001) using the following MCMC 
settings: GTR+G+I nucleotide substitution model; 1,100,000 generations; tree 
subsampling for every 200 generation; a burn-in of 100,000; 4 heated chains 
with heated chain temperature at 0.2.  
 
Haplotype network and genetic divergence 

A total of 112 COI sequences of hydrocenids including those of G. silaburensis 
and G. pyrrhoderma from Chapter 2 were used for the haplotype study. The 
sequences were aligned using MUSCLE (Edgar, 2004), and both ends were 
trimmed to give a set of 603 bp sequences, with no gaps. The haplotype groups 
were determined with DNAsp ver. 6.12.01 (Rozas et al., 2017) and the median 
joining network was calculated and constructed in Network ver. 5.0.1.1 
(Fluxus Technology Ltd, Kiel, Germany). 
 
To determine the genetic divergence among the sympatric conchologically 
distinguishable forms, we conducted genetic distance analysis in MEGA v. 
7.0.26 (Kumar et al., 2016) based on the same COI sequence alignment as used 
in the phylogenetic analysis above. We computed pairwise genetic distances 
between each pair of individuals and between different shell forms based on 
the Kimura 2-parameter nucleotide substitution model, selecting the transition 
+ transversion, uniform rates among sites, and 1000 bootstraps for variance 
estimation. 
 
Results 
Microhabitats and shell characteristics 

Our fieldwork resulted in a thorough population sampling of Georissa at 
Silabur. Initially, we made 29 plots comprising 10 plots in the cave and 19 
above-surface plots at the limestone outcrops. We were able to find and collect 
Georissa at six plots in the cave and 13 plots at the outcrops. Sampling started 
at the foot of the hill, plot SIE1 (00°57.407'N, 110°30.276'E) at approximately 
50 metres a.s.l., which was the lowest sampling point. The highest sampling 
plot was SIO2 (00°57.388'N, 110°30.161'E) at approximately 168 metres a.s.l. 
Our random survey of the higher levels of the hill failed to yield any living 
hydrocenids. This may have been due to the fact that the upper part of hill is 
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extension at 72°C for 5-10 min. DNA amplifications were performed on a BIO-
RAD C1000 TouchTM Thermal Cycler. The PCR products were then Sanger 
sequenced in both directions at BaseClear B.V. (Leiden, The Netherlands). The 
amplification length of each 16S, COI, and 28S genes are 530-532, 708-710, 
and 830-834 bp, respectively, including primers of both directions. The newly 
obtained sequences were assembled using the de novo Geneious 10.2.3 
assembler, manually checked and edited, and primer sequences at both ends 
were trimmed. The resulted sequence lengths of each 16S, COI, and 28S genes 
are 481-486, 602, and 700-788 bp, respectively. The new sequences were 
deposited in GenBank (https://www.ncbi.nlm.nih.gov/WebSub/) and BOLD 
(http://boldsystems.org/). Details of the specimens used in this study are listed 
in Supporting Information (Table S2). The accession number for 16S, CO1 and 
28S genes are MK775735-MK775820, MK811455-MK811541 and 
MK775829-MK775944, respectively. 
 
Phylogenetic analyses 

We used 16S and COI mtDNA sequences of other Bornean Georissa species, 
namely G. gomantonensis, G. hosei, G. sepulutensis, G. kinabatanganensis, 
and G. bauensis, and the outgroups Bathynerita naticoidea, Nerita maxima and 
Nerita patula. These sequences were obtained from our previous studies, 
Aktipis and Giribet (2010), and Frey and Vermeij (2008), respectively. Our 
previous study (see Chapters 2 and 3) have shown that G. bauensis is sister 
to G. silaburensis, while G. sepulutensis and G. kinabatanganensis are sister 
to G. pyrrhoderma. For these particular reasons, we included these three taxa 
in our current study. The sequences were aligned using default parameters of 
MUSCLE (Edgar, 2004). The alignment of COI mtDNA was set to 
invertebrate mitochondrial genetic code at the second reading frame. 
 
We performed a maximum likelihood (ML) analysis using the concatenated 
16S and COI mitochondrial and nuclear 28S genes, with 5000 rapid bootstrap 
replicates (Hoang et al., 2017) using IQ-TREE 1.6.3 (Nguyen et al., 2015). The 
best fit nucleotide substitution model for each gene was determined using 
ModelFinder (Kalyaanamoorthy et al., 2017) based on the corrected Akaike 
Information Criterion (AICc). The best fit nucleotide substitution models for 
28S, 16S, and COI were TIM3+F+G4, HKY+F+G4, and TIM+F+G4, 
respectively. In addition, we also conducted separate ML analyses of 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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mitochondrial and nuclear genes. Bayesian inference (BI) was performed with 
MrBayes 3.2.6 (Huelsenbeck and Ronquist, 2001) using the following MCMC 
settings: GTR+G+I nucleotide substitution model; 1,100,000 generations; tree 
subsampling for every 200 generation; a burn-in of 100,000; 4 heated chains 
with heated chain temperature at 0.2.  
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A total of 112 COI sequences of hydrocenids including those of G. silaburensis 
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subsampling for every 200 generation; a burn-in of 100,000; 4 heated chains 
with heated chain temperature at 0.2.  
 
Haplotype network and genetic divergence 

A total of 112 COI sequences of hydrocenids including those of G. silaburensis 
and G. pyrrhoderma from Chapter 2 were used for the haplotype study. The 
sequences were aligned using MUSCLE (Edgar, 2004), and both ends were 
trimmed to give a set of 603 bp sequences, with no gaps. The haplotype groups 
were determined with DNAsp ver. 6.12.01 (Rozas et al., 2017) and the median 
joining network was calculated and constructed in Network ver. 5.0.1.1 
(Fluxus Technology Ltd, Kiel, Germany). 
 
To determine the genetic divergence among the sympatric conchologically 
distinguishable forms, we conducted genetic distance analysis in MEGA v. 
7.0.26 (Kumar et al., 2016) based on the same COI sequence alignment as used 
in the phylogenetic analysis above. We computed pairwise genetic distances 
between each pair of individuals and between different shell forms based on 
the Kimura 2-parameter nucleotide substitution model, selecting the transition 
+ transversion, uniform rates among sites, and 1000 bootstraps for variance 
estimation. 
 
Results 
Microhabitats and shell characteristics 

Our fieldwork resulted in a thorough population sampling of Georissa at 
Silabur. Initially, we made 29 plots comprising 10 plots in the cave and 19 
above-surface plots at the limestone outcrops. We were able to find and collect 
Georissa at six plots in the cave and 13 plots at the outcrops. Sampling started 
at the foot of the hill, plot SIE1 (00°57.407'N, 110°30.276'E) at approximately 
50 metres a.s.l., which was the lowest sampling point. The highest sampling 
plot was SIO2 (00°57.388'N, 110°30.161'E) at approximately 168 metres a.s.l. 
Our random survey of the higher levels of the hill failed to yield any living 
hydrocenids. This may have been due to the fact that the upper part of hill is 
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extension at 72°C for 5-10 min. DNA amplifications were performed on a BIO-
RAD C1000 TouchTM Thermal Cycler. The PCR products were then Sanger 
sequenced in both directions at BaseClear B.V. (Leiden, The Netherlands). The 
amplification length of each 16S, COI, and 28S genes are 530-532, 708-710, 
and 830-834 bp, respectively, including primers of both directions. The newly 
obtained sequences were assembled using the de novo Geneious 10.2.3 
assembler, manually checked and edited, and primer sequences at both ends 
were trimmed. The resulted sequence lengths of each 16S, COI, and 28S genes 
are 481-486, 602, and 700-788 bp, respectively. The new sequences were 
deposited in GenBank (https://www.ncbi.nlm.nih.gov/WebSub/) and BOLD 
(http://boldsystems.org/). Details of the specimens used in this study are listed 
in Supporting Information (Table S2). The accession number for 16S, CO1 and 
28S genes are MK775735-MK775820, MK811455-MK811541 and 
MK775829-MK775944, respectively. 
 
Phylogenetic analyses 

We used 16S and COI mtDNA sequences of other Bornean Georissa species, 
namely G. gomantonensis, G. hosei, G. sepulutensis, G. kinabatanganensis, 
and G. bauensis, and the outgroups Bathynerita naticoidea, Nerita maxima and 
Nerita patula. These sequences were obtained from our previous studies, 
Aktipis and Giribet (2010), and Frey and Vermeij (2008), respectively. Our 
previous study (see Chapters 2 and 3) have shown that G. bauensis is sister 
to G. silaburensis, while G. sepulutensis and G. kinabatanganensis are sister 
to G. pyrrhoderma. For these particular reasons, we included these three taxa 
in our current study. The sequences were aligned using default parameters of 
MUSCLE (Edgar, 2004). The alignment of COI mtDNA was set to 
invertebrate mitochondrial genetic code at the second reading frame. 
 
We performed a maximum likelihood (ML) analysis using the concatenated 
16S and COI mitochondrial and nuclear 28S genes, with 5000 rapid bootstrap 
replicates (Hoang et al., 2017) using IQ-TREE 1.6.3 (Nguyen et al., 2015). The 
best fit nucleotide substitution model for each gene was determined using 
ModelFinder (Kalyaanamoorthy et al., 2017) based on the corrected Akaike 
Information Criterion (AICc). The best fit nucleotide substitution models for 
28S, 16S, and COI were TIM3+F+G4, HKY+F+G4, and TIM+F+G4, 
respectively. In addition, we also conducted separate ML analyses of 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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Figure 4.3 Scanning electron microscopy (SEM) images of detailed sculptural patterns of 
different forms of hydrocenids and their sculptural variation from Mount Silabur. A Typical 
G. pyrrhoderma. B Typical G. silaburensis. C. Georissa “sp. Silabur”. See Table 4.1 for 
explanations. Scale bar = 500 µm. 
 
Table 4.1 Main characters and microhabitat of different forms of Georissa. 

Shell forms Microhabitat Shell shape Scales Scale series 
Typical  
G. pyrrhoderma 

Outside of 
the cave 

More conical Wide and/or minute; 
reduced and/or raised 

One or two 

Typical  
G. silaburensis 

Cave More globular Minute and reduced  Multiple 

Georissa “sp. 
Silabur” 

Cave More globular Minute and/or wide; 
reduced and/or raised  

One or two 

 
We made two shell measurement plots of hydrocenids from Mount Silabur, 
including G. bauensis from WNCR (Figure 4.4). The plots show that, in the 
cave, shell width is always greater with reference to shell height compared to 
the above-ground sister species of relatively similar shell height. As a result, a 
more globular shell shape is observed in the cave-dwelling species. Similar 
shape changes in general shell form and aperture appear when each surface-
dwelling form is compared with the respective cave-dwelling sister form, 
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directly exposed to sunlight and consists of dry limestone rocks, which might 
not be suitable for these minute land snails. Examples of different 
microhabitats where we did encounter Georissa are shown in Figure 4.2. 
 

 
Figure 4.2 An overview of the different microhabitats of the studied hydrocenids. A Wet and 
shaded limestone rocks covered with lichen, a microhabitat of Georissa at the outcrops. B 
Close up image of the substrate showing Georissa foraging on the rock. C Vertical limestone 
cave wall with water slowly flowing from the cave ceiling. D Close up image of the cave wall 
showing Georissa foraging on the calcareous substrate. Georissa can be observed in B and D, 
which are minute, orange/red shells (circled in red). 
 
During our morphological assessment of the hydrocenid shell, we were able to 
determine the morphological variation in each shell form. Qualitatively 
different sets of shell forms and their variation are shown in Figure 4.3 and 
explained in Table 4.1.  
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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although the differences are stronger for the pair G. bauensis vs. G. 
silaburensis than for G. pyrrhoderma vs. Georissa “sp. Silabur” 
 

 

 
Figure 4.4 Shell measurement plots of a total 274 adult shells of different hydrocenid shell 
forms from Mount Silabur, including 17 adult shells of G. bauensis from WCNR. A Shell 
width vs. shell height. B Aperture width vs. aperture height. 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
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example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
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Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 

Morphological parallelism of Georissa 
 

179 
 

Phylogenetic analyses 

The maximum likelihood (ML) and Bayesian inference (BI) phylogenetic 
analyses result in slightly different tree topologies (Figure 4.5 and 4.6). 
Nonetheless, the results suggest that typical G. silaburensis and cryptic 
Georissa “sp. Silabur”, which inhabit the cave environment are unrelated, 
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sepulutensis and G. kinabatanganensis from Sabah, and paraphyletic with 
respect to Georissa “sp. Silabur”. 
 
Overall, we find the sympatric hydrocenids are divided into two major 
lineages, with typical G. silaburensis closely related to G. bauensis from 
WNCR, which is approximately 50 km away, and, typical G. pyrrhoderma and 
Georissa “sp. Silabur” phylogenetically close to G. sepulutensis and G. 
kinabatanganensis from Sabah, despite their geographical distance.  
 
The ML cladogram of mitochondrial genes (Supporting Information Figure 
S2) shows a similar topology to the phylogenetic analyses (Figures 4.5 and 
4.6). Additionally, we find the ML cladogram of the 28S gene (Supporting 
Information Figure S3) is also in concordance with the ML and BI trees, which 
might indicate hybridisation between below-ground Georissa “sp. Silabur” 
and above-ground G. pyrrhoderma. Neither in the mitochondrial nor in the 
nuclear tree do we see any indication of introgression between the sympatric 
cave species (G. silaburensis and Georissa “sp. Silabur”), although they were 
found next to each other in at least three different plots, namely, SIG1, SIG3, 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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Figure 4.5 Maximum likelihood tree inferred by partitioned data of partial 16S and COI 
mtDNA, and 28S nDNA. The analysis was conducted with ultrafast bootstrapping (5000 
replicates) with the respective nucleotide substitution models for each gene enforced in IQ-
TREE 1.6.3. The tree consists of 127 individuals of Bornean hydrocenids, including G. 
gomantonensis, G. hosei, G. bauensis, G. kinabatanganensis and G. sepulutensis from 
Malaysian Borneo, with three outgroups taxa, namely, Bathynerita naticoidea, Nerita patula 
and Nerita maxima. Different colors of the clades indicate different form of hydrocenids (blue 
= typical G. silaburensis; red = typical G. pyrrhoderma; purple = Georissa “sp. Silabur”; green 
= G. bauensis). 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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Haplotype and genetic divergence 

Sequence analysis of the partial COI gene resulted in a total of 32 unique 
haplotypes, with no insertions or deletions, differing only in base substitutions. 
From the median joining haplotype network (Figure 4.7), we are able to group 
the haplotypes into four major lineages, namely, H1 to H4, H17 to H28, H29 
to H32, and H5 to H16, as the first, second, third and fourth lineages, 
respectively.  
 
The haplotype network is consistent with our phylogenetic analyses, where 
organisms of different shell shape and size are grouped together in one clade. 
The shell form of typical G. pyrrhoderma, which is paraphyletic with respect 
to Georissa “sp. Silabur” in the phylogenetic trees, is divided into two major 
lineages in the haplotype study. 
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phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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Table 4.2 Genetic divergence of COI mtDNA between sympatric hydrocenids 
of Mount Silabur.  

 Within group 
divergence 

Number of 
specimens 

Typical  
G. silaburensis 

Georissa 
“sp. Silabur” 

Typical G. silaburensis 1.13 × 10-3 29   

Georissa “sp. Silabur” 1.40 × 10-2 21 0.13  

Typical G. pyrrhoderma 4.71 × 10-2 66 0.14 0.05 

 
Discussion 

Our results on phylogenetic analyses inferred by mitochondrial and nuclear 
genes show clear separation between each sympatric taxon and between each 
shell form (Figures 4.5 and 4.6). A combination of conchometric and 
phylogenetic analysis has provided a clear distinction among sympatric taxa, 
typical G. silaburensis, G. “sp. Silabur”, and G. pyrrhoderma. Moreover, the 
phylogenetic analyses (Figures 4.5 and 4.6) indicate reproductive isolation 
between two morphologically very similar hydrocenid forms (typical G. 
silaburensis and Georissa “sp. Silabur”) inhabiting the cave habitat. 
Additionally, G. silaburensis and G. “sp. Silabur” populations inside the cave 
habitat are completely mix. Based on our phylogenetic analysis, it shows 
population structuring between these two hydrocenid forms. The inferred 
phylogenies therefore provide evidence of parallelism in the shell size and 
shape of taxa of different lineages that independently have invaded the same 
cave habitat. In this case, we find a broader and more globular shell form with 
reduced sculpture in the troglobitic taxa, having evolved from the presumed 
ancestral state, a more conical, strongly sculptured shell form in the epigean 
taxa. Although we could not specifically address the selective pressures 
underlying this morphological parallelism, the fact that a similar kind of 
morphological divergence was found in the species pair G. saulae and G. 
filiasaulae in a different cave in northern Borneo (Haase and Schilthuizen, 
2007; Schilthuizen et al., 2012), makes it very likely that a general broadening 
of the shell, relatively bigger shell size and a reduction in sculpture are a 
predictable response, at least in hydrocenids, to one or more ecological factors 
characteristic of the tropical cave environment. As in other environments, these 
factors may include the abiotic environment (Baur, 1988; Cameron and Cook, 
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Figure 4.7 Median-joining haplotype network of 112 individuals of three major shell forms of 
Georissa of Mount Silabur based on COI mtDNA. Each haplotype is represented by a circle 
which is proportionate to the number of individuals bearing this haplotype. The colors 
represent different shell forms, namely, typical G. silaburensis (four haplotypes, blue), typical 
G. pyrrhoderma (24 haplotypes, red), and Georissa “sp. Silabur” (four haplotypes, purple). 
Details of the haplotype group of each individual are included in Supporting Information 
(Table S3). 

 
COI genetic divergence  

Our phylogenetic reconstructions and haplotype network have shown 
significant molecular divergences among all hydrocenid forms at Mount 
Silabur. Despite the similarity in morphological forms, the COI genetic 
divergences between sympatric cave species are high (distance of typical G. 
silaburensis to Georissa “sp. Silabur” = 13%), as shown in Table 4.2. The 
divergences between typical G. silaburensis (from the cave) to all other forms 
are 13% or more, whereas between typical G. pyrrhoderma (above-ground 
species) and Georissa “sp. Silabur” is lower (distance of G. pyrrhoderma to 
Georissa “sp. Silabur” = 5%). 
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phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
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between two morphologically very similar hydrocenid forms (typical G. 
silaburensis and Georissa “sp. Silabur”) inhabiting the cave habitat. 
Additionally, G. silaburensis and G. “sp. Silabur” populations inside the cave 
habitat are completely mix. Based on our phylogenetic analysis, it shows 
population structuring between these two hydrocenid forms. The inferred 
phylogenies therefore provide evidence of parallelism in the shell size and 
shape of taxa of different lineages that independently have invaded the same 
cave habitat. In this case, we find a broader and more globular shell form with 
reduced sculpture in the troglobitic taxa, having evolved from the presumed 
ancestral state, a more conical, strongly sculptured shell form in the epigean 
taxa. Although we could not specifically address the selective pressures 
underlying this morphological parallelism, the fact that a similar kind of 
morphological divergence was found in the species pair G. saulae and G. 
filiasaulae in a different cave in northern Borneo (Haase and Schilthuizen, 
2007; Schilthuizen et al., 2012), makes it very likely that a general broadening 
of the shell, relatively bigger shell size and a reduction in sculpture are a 
predictable response, at least in hydrocenids, to one or more ecological factors 
characteristic of the tropical cave environment. As in other environments, these 
factors may include the abiotic environment (Baur, 1988; Cameron and Cook, 
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Figure 4.7 Median-joining haplotype network of 112 individuals of three major shell forms of 
Georissa of Mount Silabur based on COI mtDNA. Each haplotype is represented by a circle 
which is proportionate to the number of individuals bearing this haplotype. The colors 
represent different shell forms, namely, typical G. silaburensis (four haplotypes, blue), typical 
G. pyrrhoderma (24 haplotypes, red), and Georissa “sp. Silabur” (four haplotypes, purple). 
Details of the haplotype group of each individual are included in Supporting Information 
(Table S3). 

 
COI genetic divergence  

Our phylogenetic reconstructions and haplotype network have shown 
significant molecular divergences among all hydrocenid forms at Mount 
Silabur. Despite the similarity in morphological forms, the COI genetic 
divergences between sympatric cave species are high (distance of typical G. 
silaburensis to Georissa “sp. Silabur” = 13%), as shown in Table 4.2. The 
divergences between typical G. silaburensis (from the cave) to all other forms 
are 13% or more, whereas between typical G. pyrrhoderma (above-ground 
species) and Georissa “sp. Silabur” is lower (distance of G. pyrrhoderma to 
Georissa “sp. Silabur” = 5%). 
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Table 4.2 Genetic divergence of COI mtDNA between sympatric hydrocenids 
of Mount Silabur.  
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divergence 

Number of 
specimens 

Typical  
G. silaburensis 

Georissa 
“sp. Silabur” 

Typical G. silaburensis 1.13 × 10-3 29   
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Typical G. pyrrhoderma 4.71 × 10-2 66 0.14 0.05 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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phylogenetic and conchometric analyses. We could not find the shell forms of 
G. silaburensis and Georissa “sp. Silabur” in the populations of G. 
pyrrhoderma, or the other way around, despite the variation in shell shape and 
sculptures of the sympatric species. The similar morphologies in spite of their 
genetic distinctness between the cave species (G. silaburensis and Georissa 
“sp. Silabur”) provide evidence for parallelism and cryptic diversity of cave 
hydrocenids. The cave hydrocenids were collected on the cave walls with 
continuous slow-flowing water from the cave ceiling which indicates a 
constant level of moisture, whereas the availability of water or moisture in the 
external outcrop environment probably fluctuate more strongly. Also, the 
different food availability of the cave and external outcrop habitats suggest 
different diet compositions of epigean and hypogean hydrocenids, with green 
plants available outside, but lacking inside the cave environment. These might 
be two of many abiotic and biotic factors that lead toward evolving a larger 
and broader shell morphology in hydrocenids of Mount Silabur. 
 
While it is widely known that rock-dwelling microsnails of Southeast Asia 
region possess great allopatric divergence in shell shape (for example in the 
genera Diplommatina, Georissa, Gyliotrachela, Hungerfordiana, 
Opisthostoma, and Plectostoma; Liew et al., 2014; Rundell, 2008; Schilthuizen 
et al., 2006; Schilthuizen et al., 2012; Tongkerd et al., 2004; Chapters 2 and 
3; Yamazaki, Yamazaki, and Ueshima, 2013), our findings provide evidence 
that morphological convergence may also occur. 
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1989; Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 
2009), predation pressure (Moreno-Rueda, 2009; Schilthuizen et al., 2006) and 
physical restrictions (Okajima and Chiba, 2009).  
 
The maintenance of a distinct morphology in a radically different habitat 
despite (presumably) gene-flow near the cave entrance, is the hallmark of 
incipient parapatric species. Under this scenario, the split of the daughter 
species from only a selection of lineages of the parental species renders the 
latter paraphyletic (Schilthuizen and Gittenberger, 1996). In a previous paper 
(Schilthuizen et al., 2005), we followed this reasoning to assign species status 
to G. filiasaulae, and we prefer to do the same here. Therefore, Georissa “sp. 
Silabur” should, in the future, be described as a separate species. (This 
discovery was made after finalising the taxonomic treatments in Ch. 2 and 3, 
which is why Georissa “sp. Silabur” was not formally described and named 
yet.) 
 
The non-monophyletic relationship inferred by mitochondrial and nuclear 
DNA between hydrocenids of Mount Silabur indicates the multiple origins of 
the hydrocenid fauna here. Both ML and BI topologies (Figures 4.5 and 4.6) 
suggest that typical G. pyrrhoderma is sister to G. sepulutensis and G. 
kinabatanganensis, Georissa “sp. Silabur” is monophyletic, branching off 
from within the above-ground species G. pyrrhoderma (which is thereby 
rendered paraphyletic), while typical G. silaburensis derives from an entirely 
different ancestral lineage, and is sister to G. bauensis. Our ML analyses on 
separate mitochondrial and nuclear genes show some indications of occasional 
hybridisation between troglobitic Georissa “sp. Silabur” with epigean G. 
pyrrhoderma (see Supporting Information Figures S2 and S3). This is similar 
to the case of a zone of hybridization between G. saulae and G. filiasaulae in 
a cave near Sepulut, Sabah (Schilthuizen et al., 2012). During our sampling, 
we found only one individual of Georissa near the cave entrance, which 
belongs to the Georissa “sp. Silabur” haplotype. So, we suggest that 
hybridisation between Georissa “sp. Silabur” and G. pyrrhoderma at Mount 
Silabur is probably best explained by the rainwater flowing from the upper 
chambers of the cave to the deep cave habitat.  
 
The haplotype network suggests the hydrocenids of Mount Silabur are 
clustered based on their shell morphologies, which is in concordance with our 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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phylogenetic and conchometric analyses. We could not find the shell forms of 
G. silaburensis and Georissa “sp. Silabur” in the populations of G. 
pyrrhoderma, or the other way around, despite the variation in shell shape and 
sculptures of the sympatric species. The similar morphologies in spite of their 
genetic distinctness between the cave species (G. silaburensis and Georissa 
“sp. Silabur”) provide evidence for parallelism and cryptic diversity of cave 
hydrocenids. The cave hydrocenids were collected on the cave walls with 
continuous slow-flowing water from the cave ceiling which indicates a 
constant level of moisture, whereas the availability of water or moisture in the 
external outcrop environment probably fluctuate more strongly. Also, the 
different food availability of the cave and external outcrop habitats suggest 
different diet compositions of epigean and hypogean hydrocenids, with green 
plants available outside, but lacking inside the cave environment. These might 
be two of many abiotic and biotic factors that lead toward evolving a larger 
and broader shell morphology in hydrocenids of Mount Silabur. 
 
While it is widely known that rock-dwelling microsnails of Southeast Asia 
region possess great allopatric divergence in shell shape (for example in the 
genera Diplommatina, Georissa, Gyliotrachela, Hungerfordiana, 
Opisthostoma, and Plectostoma; Liew et al., 2014; Rundell, 2008; Schilthuizen 
et al., 2006; Schilthuizen et al., 2012; Tongkerd et al., 2004; Chapters 2 and 
3; Yamazaki, Yamazaki, and Ueshima, 2013), our findings provide evidence 
that morphological convergence may also occur. 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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phylogenetic and conchometric analyses. We could not find the shell forms of 
G. silaburensis and Georissa “sp. Silabur” in the populations of G. 
pyrrhoderma, or the other way around, despite the variation in shell shape and 
sculptures of the sympatric species. The similar morphologies in spite of their 
genetic distinctness between the cave species (G. silaburensis and Georissa 
“sp. Silabur”) provide evidence for parallelism and cryptic diversity of cave 
hydrocenids. The cave hydrocenids were collected on the cave walls with 
continuous slow-flowing water from the cave ceiling which indicates a 
constant level of moisture, whereas the availability of water or moisture in the 
external outcrop environment probably fluctuate more strongly. Also, the 
different food availability of the cave and external outcrop habitats suggest 
different diet compositions of epigean and hypogean hydrocenids, with green 
plants available outside, but lacking inside the cave environment. These might 
be two of many abiotic and biotic factors that lead toward evolving a larger 
and broader shell morphology in hydrocenids of Mount Silabur. 
 
While it is widely known that rock-dwelling microsnails of Southeast Asia 
region possess great allopatric divergence in shell shape (for example in the 
genera Diplommatina, Georissa, Gyliotrachela, Hungerfordiana, 
Opisthostoma, and Plectostoma; Liew et al., 2014; Rundell, 2008; Schilthuizen 
et al., 2006; Schilthuizen et al., 2012; Tongkerd et al., 2004; Chapters 2 and 
3; Yamazaki, Yamazaki, and Ueshima, 2013), our findings provide evidence 
that morphological convergence may also occur. 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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and broader shell morphology in hydrocenids of Mount Silabur. 
 
While it is widely known that rock-dwelling microsnails of Southeast Asia 
region possess great allopatric divergence in shell shape (for example in the 
genera Diplommatina, Georissa, Gyliotrachela, Hungerfordiana, 
Opisthostoma, and Plectostoma; Liew et al., 2014; Rundell, 2008; Schilthuizen 
et al., 2006; Schilthuizen et al., 2012; Tongkerd et al., 2004; Chapters 2 and 
3; Yamazaki, Yamazaki, and Ueshima, 2013), our findings provide evidence 
that morphological convergence may also occur. 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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pressure, etc.). For example, Kaeuffer et al. (2010) studied the intraspecific 
phenotypic diversity of threespine stickleback fish from different aquatic 
environments and concluded that morphological characters such as body depth 
and gill raker numbers show strong morphological convergence. In a different 
study, Lindgren et al. (2012) investigated the interspecific morphological 
divergence and convergence of Cephalopoda; they found convergent evolution 
in cephalopods of similar habitat types, even in distantly related taxa. For 
example, taxa with an autogenic photophore were always associated with a 
pelagic habitat, while the benthic habitat harboured taxa characterised by the 
presence of corneas and accessory nidamental glands. Both these studies 
employed detailed study of morphological characters and molecular data to 
reconstruct the evolutionary relationship among different taxa, and interpreted 
these in the context of the ecological factors that drive the evolution of similar 
morphological traits. 
 
Rock-dwelling land snails of Southeast Asia often show high allopatric and 
sympatric diversity with many species endemic to small geographic regions 
(Liew et al., 2014; Rundell, 2008; Tongkerd et al., 2004), especially species 
inhabiting karstic environments. This can sometimes make it difficult to decide 
on the taxonomic status of similar-shelled forms. Usually, these are considered 
as conspecific based on shared shell characters (Chapters 2 and 3; Foon and 
Liew, 2017; Liew et al. 2014; Thompson and Dance, 1983; Vermeulen et al., 
2015). Furthermore, phylogenetic analyses often reveal that the detailed 
conchology follows the patterns of phylogenetic relatedness (Chapters 2 and 
3; Schilthuizen et al., 2005; Schilthuizen et al., 2012). Nonetheless, possible 
cases of morphological parallelism due to ecological similarity may be 
overlooked.  
 
Shell variation in a single land snail species has often been shown to be 
correlated with variation in habitat (Baur, 1988; Cameron and Cook, 1989; 
Chiba, 2004; Chiu et al., 2002; Goodfriend, 1986; Haase and Misof, 2009). 
This means that different ecological systems provide different selective 
pressures and induce adaptive changes in a population’s morphological 
characters. Eventually, this may lead to speciation (Chazot et al., 2016; 
Danowitz et al., 2015; Price et al., 2003). Hirano et al. (2014) recently showed 
that a molecular phylogenetic and morphological analysis revealed parallelism 
in multiple lineages of camaenid land snails. They found that an angularity of 
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Abstract 

Parallel evolution in phenotype may result when closely related taxa are 
adapting in the face of similar ecological pressures. Here, we discuss possible 
parallelism in shell morphology in the context of the microgeographic 
phylogeography of two conchologically distinct sympatric hydrocenid snails 
inhabiting a limestone outcrop and its cave system, Georissa pyrrhoderma and 
Georissa silaburensis, respectively, at Mount Silabur in Sarawak, Malaysian 
Borneo. Our results show a certain degree of morphological parallelism 
between G. silaburensis and a third, possibly new, cryptic Georissa species 
within the same cave that diverged from its above-ground sister species, G. 
pyrrhoderma. We found that both sympatric cave species have shifted from a 
more sculptured, conical shell towards a broader, less sculptured form.  
 
Introduction 

Convergent evolution and parallelism have been a subject of studies related to 
genotype and phenotype evolution in a wide range of taxa, including mammals 
(Madsen et al., 2001), reptiles (Revell et al., 2007; Stayton, 2006), birds (Fain 
and Houde, 2004; Grenier and Greenberg, 2005), and fishes (Rüber and 
Adams, 2001; Hulsey et al., 2008; Qi et al., 2012). Convergence and 
parallelism are the outcomes of evolutionary processes in which different 
species independently converge towards similar, adaptive phenotypes. 
Usually, the term convergence is reserved for superficially similar but non-
homologous traits that evolve in distantly related taxa, whereas parallelism 
refers to similar morphologies involving homologous structures in more 
closely related taxa (Alejandrino et al., 2011). To address and understand the 
processes involved, researchers often investigate the evolutionary patterns in 
organisms that respond to similar environmental changes and concomitant 
selection (Houle, 1991; Rundle and Nosil, 2005). Using molecular-
phylogenetic reconstruction, detailed phenotype changes in multiple species 
make further analysis and interpretation of selected taxa possible, allowing an 
understanding of their evolutionary diversification. 
 
Studies on convergent evolution and morphological parallelism have 
demonstrated that similar phenotypic traits often result when taxa are facing 
similar ecological pressures (in, e.g., microhabitat, climate, diet, predator 
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