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1088 D. Holmes et al.

1 Introduction

Let g and n be fixed natural numbers with g, n > 1. Given a fixed nontrivial vector of
integers (k; ay, ..., ay) suchthatk(2—2g)+ > a; = 0, the (uncompactified, twisted)
double ramification cycle DR C My , is defined to be the closed locus of the moduli
space M, , of smooth n-pointed curves of genus g that consists of those pointed curves
(C, p1, ..., pn) that the line bundle w5®k (a1p1 + - - + aupy) is trivial. There are
several approaches to extending DR to a Chow class on W[g, » and then computing this
class.

Here we focus on approaches that use the universal Jacobian. Let Hg,n be the uni-
versal Jacobian parameterizing smooth n-pointed curves of genus g together with a
line bundle of degree zero. The morphism o : M, , — 32, ,, defined by

G([Cv P1, »pn]) = [Cs pP1, '-~7pnswg®k(alpl + +anpn)] (1)

is a section of the forgetful morphism 32’ » —> My, and the double ramification cycle
equals o ~!(E), for E the closed locus of Hg’n that corresponds to the trivial line bundle.
A natural generalization of this approach over ﬁg,n runs as follows. This time we

consider the multidegree zero universal Jacobian H%’ ,» (also known in the literature as
the generalized Jacobian), defined as the moduli stack parameterizing stable n-pointed
curves of arithmetic genus g together with a line bundle with trivial multidegree
(i.e. with degree zero on every irreducible component of every fiber). The stack H% n
still contains the closed locus E that parameterizes trivial line bundles and comes with
a forgetful morphism p to J\_/[g, n, butrule (1) in general fails to define a morphism and
only defines a rational map o : ﬁg,n -> H%’n.

Holmes proposed a way to resolve the indeterminacy of o by modifying the source
ﬁg,n. In [9, Corollary 4.6] he constructed a “minimal” morphism (see Sect. 2.1) of
normal Deligne-Mumford stacks 77 € : Mg n—> Mg,n such that 701 (Mg, ) is dense
in Mgn and the rational map o o ¢ extends (uniquely) to a morphism 0p: Mgn —
H%n. Whilst 77 © is (in general) not proper, Holmes observed that the scheme-theoretic
pullback oy ! (E) is proper, so it makes sense to consider the pushforward nf (o5 1ED),

which we will denote by [DR?]. When k = 0 he then proved the equality of Chow
classes [DRO] = [DRrgv], where the right hand side is the extension of the double
ramification cycle to ﬁg, n»duetoLi[14,15] and Graber—Vakil [4]. This latter extension
is obtained as the pushforward of a certain virtual class defined on a moduli stack
ﬁg,n(]P’l, a)” of rubber maps to PL and its class has been computed in terms of
standard tautological classes by Janda, Pandharipande, Pixton and Zvonkine, proving
an earlier conjecture by Pixton, see [10].

Kass and Pagani proposed another way of resolving the indeterminacy of the rational
map o by modifying the target 8%,,. In [13, Section 4] they constructed, for each
nondegenerate ¢ in a certain stability vector space Vé),n’ a compactified universal
Jacobian Eg’ 2 (¢) parameterizing ¢-stable rank 1 torsion-free sheaves on stable pointed
curves. They proposed extending E to Hg, » (@) as a Brill-Noether class w(¢) (a class
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wl, withd =r =0). This produces infinitely many extensions [DR (¢)], one for each
nondegenerate ¢ € V, g ,,» by pulling back w(¢) along the correspondence induced by

the rational map o (¢): M on > Hg,n (¢). See Sect. 2.2 for more details.
The main result of this paper is

Theorem 3.1 If¢ € Vg ,, is nondegenerate and such that the inclusion H% n C Eg, 2(®)
holds, we have [DR (¢)] = [DRO].

Recall that when £k = 0, we know by [9] that [DRQ] = [DRrgv], so all three
extensions of DR coincide.
We prove the main result in Sect. 3 by first showing the equality

(IDR®] =) 72 (g [E]) = p«([Z]-[E]) (= o*([ED) )

(for E the zero section and X the Zariski closure of the image of o) and then by
proving that, when ¢ satisfies the hypotheses of the theorem, the Brill-Noether class
w(¢) coincides with the class [ E]. Equation (2) gives a geometric description of the
double ramification cycle on Mg » analogous to the equality DR = o ~!(E) on Mg ns
see Remark 3.9.

Inlight of our theorem, [9, Conjecture 1.4] can be reformulated as arelation between

the [DR (¢)]’s and Pixton’s k-twisted cycle ng’k(al +k,...,a,+k)[10, Section 1.1].

Conjecture If¢ € ng . 18 nondegenerate and such that the inclusion H% 2 C Eg,,, (@)
holds, then [DR(¢)] = 278- P§ (a1 +k, ..., ay+k).

This conjecture provides a geometric interpretation of Pixton’s cycle as the pullback
via the rational map o : ﬁg,n -> gg,n(d)) (for ¢ as in the theorem) of the class of the
zero section [E].

In Sect. 4 we explain our approach to computing all classes [DR(¢)] (and, in
particular, those mentioned in the theorem and in the conjecture). For ¢ € V; ,, hon

degenerate and such that the universal line bundle a)E®k (a1 p1+- - -+anpn) is p-stable,
the class [DR (¢)] is computed, by applying cohomology and base change combined
with the Grothendieck—Riemann—Roch formula applied to the universal curve, as the
top Chern class of a certain coherent sheaf on ﬁg,n. Computing all other [DR (¢)]’s
becomes then a matter of keeping track of how they get modified each time a stability
hyperplane of VO is crossed.

The double ramlﬁcatlon cycle was first computed on the moduli space of curves of
compact type by Hain in [7]. Grushevsky—Zakharov extended the calculation to the
moduli space of curves with at most one non-separating node in [5]. Extensions of
the double ramification cycle via log geometry were considered in the papers [6] and
[16]. The latter supersedes the preprint arXiv:1310.5981, which, for k = 0, proved the
equality of the double ramification cycles defined via Jacobians and via rubber maps
over the locus of curves of compact type. Another conjectural geometric interpretation
of Pixton’s k-twisted cycle was given in [2] in terms of k-twisted canonical divisors.

Throughout we work over the field C of complex numbers.
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2 Background
2.1 Review of Holmes’ work on extending the Abel-Jacobi section

Here we recall the definition of the universal o -extending stack Mg,n over ﬁg,n; note
that this space depends on the vector (k; ay, ..., a).

Definition 2.1 We call a morphism¢: T — ﬁg, » from a normal Deligne—-Mumford
stack o -extending if t_lMg, n 1s dense in 7', and if the induced rational map o7 : T -»

H% » extends (necessarily uniquely) to a morphism 7" — 3%, 1. We define the universal
o-extending stack J\/[gn to be the terminal object in the category of o-extending
morphisms to M, .

The existence of a terminal object 70 Mg’n — _g’n was established in [9, Theo-

rem 3.15], where 77 ¢ was also shown to be representable by algebraic spaces, separated
and birational (more precisely, an isomorphism over the locus of compact type curves).

Furthermore, Mg ,, 1s naturally equipped with a log structure making it log étale over

Mg,n (the latter comes with a natural log structure, called basic log structure, from
[11]).

From Definition 2.1 we deduce the existence of a morphism oy : J\/[z,),n — H%n
extending the rational section o : ﬁgy,, -> H%’n. Writing E for the schematic image of
ein 3%”, it was shown in [9, Section 5] that the closed subscheme o}, ! (E) of Mgn is

proper over ﬁg, n-
Now the class o[ E] is by definition a Chow class on o, ! (E) (cf. [3, Chapter 6]).

Since the latter is proper over ﬁg, n, we can then push this class forward to ﬁg, n- We
define
[DRO] = 0 (0§ [E]).

From [9, Theorem 1.3] we obtain when k = 0 the equality of Chow classes

[DR®] = [DRLGv]. 3)

2.2 Review of Kass—Pagani’s work on ¢-stability

We first review the definition of the stability space Vg ,, from [13, Definition 3.2] and
the notion of degenerate elements therein. An element ¢ € Vg ,, 1s an assignment,
for every stable n-pointed curve (C, pi, ..., p,) of genus g and every irreducible

component C’ C C, of areal number ¢ (C, p1, ..., pn)c’ such that

Z¢(C, p],...,pn)c/ =0

c'cc

and such that
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e ifa: (C, p1...., ps) = (C, p}. ..., p,)isahomeomorphism of pointed curves,

then ¢(C', py, ..., p) = ¢(@(C, p1, ..., pn));
e informally, the assignment ¢ is compatible with degenerations of pointed curves.

The notion of ¢-(semi)stability was introduced in [13, Definitions 4.1, 4.2]:

Definition 2.2 Given ¢ € V; > we say that a family F of rank 1 torsion-free sheaves

of degree 0 on a family of stable curves is ¢-(semi)stable if the inequality

8co(F)| ~ #(CoNC) — 8¢,y (F)

degey(F) = ) ¢(C.p1....pwer + —5—| &, 5 “)
C'CCo
holds for every stable n-pointed curve (C, p1, ..., p,) of genus g of the family, and

for every subcurve (i.e. a union of irreducible components) & C Co C C.Here ¢, (F)
denotes the number of nodes p € Co N C_(C) such that the stalk of F' at p fails to be
locally free.

A stability parameter ¢ € Vg , 1s nondegenerate when there is no F, no
(C, p1, ..., pp)andno @ C Co C C as above where equality occurs in equation (4).

Forall ¢ € Vg ,, there exists a moduli stack Eg, » () of ¢-semistable sheaves on stable

curves, which comes with a forgetful map p to ﬁg,n. When ¢ is nondegenerate, by

[13, Corollary 4.4] the stack E_Jg,n(qS) is Deligne-Mumford and C-smooth, and the
morphism P is representable, proper and flat.

2.3 Compactified universal Jacobians containing Hg, n

For some stability parameters ¢ € V!g ,, the corresponding compactified universal

Jacobian Eg, n(¢) contains the multidegree zero universal Jacobian H% ne

Definition 2.3 A nondegenerate stability parameter ¢ € Vg ,, 1s a small perturbation
of O when the inclusion 3%,, C jg,n(@ holds.

Following Definition 2.2 we explicitly characterize the small perturbations of 0 in
Vo,
g.n

Corollary 2.4 A nondegenerate ¢ € V(,g . I8 a small perturbation of Q if and only
if for every stable n-pointed curve (C, p1, ..., pn) of genus g and every subcurve

& C Co C C, the inequality

#CoNC§
2

Z¢(C’ P1, "'7pn)C’ <

C'CCy
holds.

Proof This follows from Definition 2.2 after observing that ¢ is a nondegenerate small
perturbation of O if and only if the trivial line bundle is ¢-stable. O

@ Springer
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By [13, Section 5] the degenerate locus of Vé?, ,, 1s a locally finite hyperplane arrange-
ment (because we are assuming n > 1 throughout). By applying Corollary 2.4, we
deduce that the nondegenerate small perturbations of 0 form a nonempty open subset
of VO .

g.n

2.4 Extensions of the double ramification cycle as a pullback of wg

First we extend the Brill-Noether locus Wg , defined inside 32, >

on gg,n(qb). Because we are assuming n > 1, by combining [13, Corollary 4.3] and
[12, Lemma 3.35] we deduce the existence of a tautological family Fi,, of rank 1
torsion-free sheaves on the total space of the universal curve

as a Chow class w8

G+ Jon (@) %57, ,Con = Tgn(®).
We define the Brill-Noether class w(¢) as
w(p) = wy(9) = g (—RG: (Fau())). Q)

We will later see in Lemma 3.2 that the class w(¢) is supported on the Brill-Noether
locus

W) = W) = {(C, p1,..., pu, F) : h°(C, F) > 0} C J4.0().

Then, for each nondegenerate ¢ € Vg ,, we define the double ramification cycle to be
the pullback of w(¢) via the correspondence induced by the rational map o : ﬁg, n >
.1 (¢). More explicitly

[DR(¢)] := o™ (w(9)) = P, (IZ(@)]-w(9)), (6)

where f(q&) is the closure in Eg, 2 (@) of the image of the section o and p is the forgetful
morphism.

3 Main result

When ¢ is a nondegenerate small perturbation of 0 the approaches of Holmes and of
Kass—Pagani can be directly compared. This will produce the main result of this paper.

Theorem 3.1 For ¢ € ng , a nondegenerate small perturbation of 0, we have the
equality of classes [DR(¢)] = [DR?].

Before proving the main result we prove some preparatory lemmas.

Lemma 3.2 For ¢ € Vg , hondegenerate, the class w(@) is supported on the locus
W (¢). If we additionally assume that W (@) is irreducible, then w(¢) = [W(¢p)].
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Proof This follows from a description of w(¢) as a degeneracy class together with
general results about determinental subschemes (as developedine.g. [3, Section 14.4]).
Fix a 2-term complex d: £y — & of vector bundles that represents R gy (Fiay). (Such
a complex can be constructed in an elementary manner using a fixed divisor H on

Jg.n(P) X N C,.n that is sufficiently g-relatively ample. The sheaf Fi,u(¢) fits into

a short exact sequence 0 — Fiau(¢) — Fiau(@) ® O(H) = Fiau(9) @0y (H) — 0.
The (nonderived) direct image

G5 Fau(@) ® O(H) — ¢4 Fau(9) @Oy (H)

is a complex with the desired properties.) We have w(¢) = ¢4 (€1 — &p) by definition
(the 2-term complex represents the derived pushforward appearing in equation (5)),
and this Chern class equals the degeneracy class of d (or rather its image in the Chow
group of gg,n(qb)) by [3, Theorem 14.4 (a)].

Since the complex d: £y — & represents Rgy (Fau), it computes the cohomology
of Fiay, and this property persists after making an arbitrary base change T — ﬁg, nbya
C-morphism out of a C-scheme 7. Taking T — Eg, 2 (@) to be the inclusion of a closed
point (C, p1, ..., pn, F), we see that hO(C, F) # 0if and only if the maximal minors
of d vanish. In other words, the top degeneracy subscheme D(¢p) of d: Eg — & has
support equal to W (¢). Being the degeneracy Chow class, w(¢) is supported on D (¢)
by construction.

To complete the proof, we assume W (¢) is irreducible and then prove w(¢) =
[W(¢)]. The closure of {(C, p1,..., pn, Oc) : C is smooth} is an irreducible com-
ponent of W (¢), so by assumption, it must equal W (¢). An elementary computation
shows that this locus has the expected codimension of g, so we conclude by [3, The-
orem 14.4(c)] that D(¢) is Cohen—Macaulay with fundamental class equal to w(¢).
Furthermore, the fiber of D(¢) over a point of M, , C ﬁg, n 18 a single reduced point
(by e.g. [1, Proposition 4.4] as the fiber is a Brill-Noether locus). Taking the point to
be the generic point, we conclude that D(¢) is generically reduced and hence, by the
Cohen—Macaulay condition, reduced. Since D(¢) and W (¢) have the same support,
we must have D(¢) = W(¢) and w(¢p) = [W(P)]. O

Remark 3.3 For ¢ € V; ,, the Brill-Noether locus W (¢) can fail to be irreducible.
Arguing as in the proof of Lemma 3.2, the closure of {(C, pi,..., pn, Oc)

C issmooth} is an irreducible component of W (¢) of the expected dimension. Let
A; s denote the locus of curves having a genus i component with the marked points
indexed by S. We claim that for each boundary divisor A; s C ﬁg,n, there exists a
nondegenerate ¢ € Vgn such that W(¢) contains the preimage of A; g in ﬁg,n(@.
Because this preimage has codimension 1 and is supported on the boundary, we deduce
that W (¢) fails to be irreducible for this ¢.

We now prove the claim. By applying [13, Proposition 3.10] we deduce that, for
each boundary divisor A; s C Mg,n and for each ¢ € Z, there exists a nondegenerate
¢ such that, on a pointed curve (C, p1, ..., p,) that represents a point in the interior
of A; g, all line bundles of bidegree (¢, —t) are ¢-stable. Taking t > i 4 1, we argue
that a bidegree (¢, —¢) line bundle L admits a nonzero global section as follows. The
restriction L|c, admits a nonzero section vanishing at the node by the Riemann—Roch
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1094 D. Holmes et al.

formula (as C the component of C of genus 7). Prolonging this section to zero on the
component C, of C genus g — i, we produce a nonzero global section of L on C.

We continue with more preparatory lemmas.

Lemma 3.4 For ¢ € V,, a nondegenerate small perturbation of 0 € 'V, g . we have
0
W(o) < Jgn-

Proof Let (C, p1, ..., pn, F) be in W(¢). Assume that the multidegree of F' is dif-
ferent from 0 and consider s € H°(C, F). We aim to prove that s = 0.

Because the total degree of F is 0 and the multidegree of F is nontrivial, the
section s vanishes identically on some irreducible component of C. Let Cy # C be
the (possibly empty) complement of the support of s. Because the number of zeroes
of a nonzero section is a lower bound on the degree of the corresponding sheaf, we
deduce the inequality -

deg F > #CoNCy. @)

On the other hand, if Cy is nonempty, inequality (4) for F (the ¢-stability inequality
for F)on (C, p1, ..., py) and Cp C C reads

#CoNC§ — 8¢, (F)

Yo ( )
dege, F+—4—= =Y " ¢(C.p1,.... p)c’| < 5 ®)
C'CCy
Combining (8) with Corollary 2.4 produces
dege, F < #CoNCG — ¢, (F). 9)

Since it is not possible for (7) and (9) to be simultaneously true (because 8¢, (F) is a
natural number), we deduce that Cyp = & or, equivalently, that s = 0 on C. O

The following is probably a well-known fact, but we provide a proof for the sake of
completeness.

Lemma 3.5 A line bundle L of multidegree zero on a nodal curve C has a nonzero
global section if and only if L is isomorphic to Oc.

Proof The interesting part is the only if. Let s be a nonzero global section and Cy the
(nonempty) support of s. Consider the short exact sequence

5|
0 — Oc¢, ﬁ) L|c, — Coker — 0 (10)

defining the sheaf Coker. Taking Euler characteristics in (10), we deduce x (Coker) =
0 and since Coker is supported on points, we deduce that Coker is trivial. Because s
vanishes identically on Cfj, we deduce that Cop = C and that multiplication by s gives
an isomorphism O¢c — L. O

The following is an immediate consequence of the three lemmas we have proved so
far.
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Corollary 3.6 For ¢ € ng n a nondegenerate small perturbation of 0, we have
w(¢p) = [E] for E the image of the zero section in gg,n(qﬁ).

Proof By Lemmas 3.4 and 3.5 we deduce W (¢) = E. Because E is irreducible, the
claim is obtained by applying Lemma 3.2. O

We set up some notation which we will need in the proof of Theorem 3.1. Recall from

Sect. 2.1 that the Abel-Jacobi section o is only a rational map, and Mgn — ﬁg,n

is defined so that the pullback of o to Mgn extends. These morphisms fit into the

following pullback square defining Hg‘n:

=0
T 0
38, —— g

4

g
MS,

Mg .

Denote by E the scheme-theoretic image of e and similarly with E¢ and £ 9. Denote
by ¥ the Zariski closure of the scheme-theoretic image of o (on the largest open
substack of M, , where it extends to a well-defined morphism).

Lemma 3.7 The restriction of T 0 to £ is the normalization £° — .

Proof Let % be the normalization of . Note that 7 is an isomorphism over Mg ,,
s0 0@ and oo ¥ coincide there. Since My , is schematically dense in Mgn we see
that the map 0 — Hg‘ » factors through X. Hence by the normality of Mg ,, and the
universal property of the normalization we get a map £ — T

Conversely, the projection map ¢ : T - ﬁg,n is o-extending as in Definition 2.1;
in other words, ¥ is normal and the rational map o : T - 3%,,, evidently extends to a
morphism. By the universal property of Mgn we obtain a map T - ngn, and this
map factors via the closed immersion £¢ — Mg’n because My ,, is schematically

dense in ¥ and the spaces coincide over Mg .

We thus have maps £9 - $and £ — =°. Moreover, both spaces are separated
over Mg’n , and the maps are mutual inverses over the schematically dense open M ,,,
hence they are mutual inverses everywhere. O

Lemma 3.8 The schematic intersection of the sections £° and E© in Hg ,, IS proper

over Mg .

Proof As aconsequence of Lemma 3.7, the restriction of 7 © induces an isomorphism
from the scheme-theoretic intersection of the sections % and E€ in Hg,n to the fiber

product over 32, » of E and of the normalization of X. The claim follows from the fact
that E is proper over ﬁg,n. O
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We are now ready for the proof of the main result.

Proof of Theorem 3.1 To prove the theorem we pushforward the Chow class
[ZO1[EC] along morphisms that are, in general, not proper. However, this class is sup-
ported on a proper cycle (as shown in Lemma 3.8), so this can be justified by choosing
compatible compactifications of the various spaces involved, possibly after blowing
up the boundaries to avoid extra intersections (apply [8, Exercise I1.7.12]) and then
observing that the resulting cycles are independent of the chosen compactifications.

The push—pull formula applied to 7, together with the fact that [E®] = 7O E]
and Lemma 3.7, produces the equality of classes

72 (=91 1E9)) = [Z1-[E]. (11
Taking the pushforward along p of the left hand side of (11) we obtain

(r? (1=°1-1E°1))

peo T ([Z01-1ECY) = 20
=70 (0 ¥*[E®)) = x0 (o5 [E]) = [DRO].

12)

The first equality is functoriality of the pushforward, the second equality is the push—
pull formula for the section o ¥, the third equality follows from og := 7 06069 and the
last equality is formula (3).

Taking the pushforward along p of the right hand side of (11) we obtain

p((Z1-ED) = D, ([Z(@®)]-[E]) = D.([Z@)]-w(®)) = [DR(p)]  (13)

where ¢ is anondegenerate small perturbation of 0, p : Eg,n () — J\_/[g,n is the forgetful
morphism and X (¢) is the closure in ﬁg,n () of . C 3%,,. The first equality follows
from the fact that E is closed in gg,n(cb). The second equality is Corollary 3.6. The
last equality is the definition of [DR (¢)], see formula (6).

By combining equations (11), (12) and (13) we conclude [DR (¢)] = [DRO]. O

Remark 3.9 As an interesting by-product of the proof of Theorem 3.1 we also obtain
a simple description of [DRQ] (and hence, when k = 0, of the Li—Graber—Vakil
extension of the double ramification cycle) as

[DR®] = p.([Z]-[E]) = e*([Z]) (14
for p: 3%,, — ﬁg’n the natural forgetful morphism. By the definition of pullback

along the rational map o (see equation (6)), the common class in (14) can also be
described as o *([E]).

4 Consequences

In [13, Section 6.1] the authors characterized the set of nondegenerate ¢ € VE?, ,, With
the property that the universal line bundle a)E®k (arp1+ -+ aypn) is ¢-stable. For
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such ¢’s, formula (6) reduces to the usual pullback o*(w(¢)) by the Ici morphism o
and the corresponding extension of the double ramification cycle is computed as

[DR($)] = (—D¥cg(Rgu(we® (arpr + - + anpn))). (15)

The computation is derived by using the definition of w(¢) in formula (5), invoking
cohomology and base change, and then applying the Grothendieck—Riemann—Roch
formula to the universal curve ¢ : ég,n — ﬁg,n as in [17, Part II].

All other classes [DR (¢)] can in principle be computed by applying wall-crossing
formulae (as carried outin [12, Theorem 4.1] by Kass—Pagani in the similar but simpler
case of the theta divisor, the Brill-Noether class wf, withr =0andd = g — 1). As
we mentioned in the introduction, this gives a new approach to computing the class of
the double ramification cycle—either [DRy gv] when k = 0, or for general & the cycle
[DR?], which conjecturally agrees with Pixton’s formula, see [9, Conjecture 1.4].

A natural question at this point is whether it is possible for some universal line bundle
a)E@k (a1 p1+- - -+an pp) to be p-stable for some nondegenerate small perturbation of
0. This happens only when the vector (k; ay, ..., a,) is trivial, i.e. when k(2 — 2g) =
a; = --- = ap = 0. Indeed, if ¢ is nondegenerate, then on curves with one separating
node there is a unique ¢-stable bidegree of line bundles by Definition 2.2. If ¢ is a small
perturbation of 0, this bidegree must be (0, 0). Therefore to be ¢-stable, the universal
line bundle a)E@k (a1 p1 + - - - + a, pn) must have trivial bidegree on all curves with
one separating node, which implies that it is trivial.

A better question is to ask if it is possible that, for some nontrivial vector (k; ay,
..., ay), the corresponding Abel-Jacobi section 0 = 0j.q,,....q, €Xtends to a well-
defined morphism ﬁg,n — Eg,n@) for some nondegenerate small perturbation ¢ of
0. This happens only for the vectors (k; ay, ..., a,) that are very close to 0, in a sense
that we make precise in the following proposition.

Proposition 4.1 Let g,n > 1 and assume (k; ay, ..., ay,) is not trivial. The corre-
sponding Abel-Jacobi section o extends to a well-defined morphism ﬁg,n — Eg, 2(®)
for some nondegenerate small perturbation ¢ of Q if and only if k(2 — 2g) = 0 and
a=(0,...,£1,....,FL,...,0).

Proof For simplicity we only discuss the case g > 2 (the case g = 1 is similar and
simpler).

To prove our claim we invoke [13, Corollary 6.5], which implies that 0 = 0%.4,.... 4,
extends to a well-defined morphism ﬁg,n — jg,n((p) if and only if the univer-
sal line bundle a)E®k (a1p1 + -+ + aypp) is ¢-stable on all stable pointed curves
(C, p1, ..., pn) that consist of two smooth irreducible components meeting in at least
two nodes.

Assume k =0anda = (0,...,a; =1,...,a; =—1,...,0) and define ¢ € Vgn
using [13, Isomorphism (11)] to be the unique stability parameter that is trivial over
all stable curves with one separating node (in the notation of [13], its projection to
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Cy p is trivial) and such that

1 1 1 1
¢’(F)—< +6u—5—6i>, ¢(Fj)=<_§_fj:§+€j>,
& Lrzi,j) = (€x, —€k)

for some perturbation 0 < ||(€q, ..., €,)|| < 1 making the parameter ¢ nondegen-
erate. (Here I'; for t = 1, ..., n is any curve with a smooth component of genus 0
carrying the marking p;, connected by two nodes to a smooth component of genus
g — 1 with all other markings). To check that ¢ is a small perturbation of 0, by [13,
Corollary 5.9] it is enough to show that the trivial line bundle is ¢-stable over all
curves with two smooth irreducible components, which is achieved by applying [13,
Formula (29)]. To conclude we prove that Oc(aip; + - -+ + a, p,) is ¢-stable on
every stable pointed curve (C, p1, ..., py) that consists of two smooth irreducible
components and at least two nodes. By applying [13, Formula (29)] we deduce the
inequality

‘ D ai—¢(C.pi..., per| < w,

irpieC’
where C’ denotes either of the components of C. By Definition 2.2, we have that
Oc(aip1+---+anpy)is¢-stableon (C, pi, ..., p,) and we conclude that o extends
to a well-defined morphism on ﬁg’ n-

For the other implication we use the following criterion. By Definition 2.2, if
(C, p1, ..., pn) is a stable curve that consists of two smooth irreducible components
meeting in two nodes and ¢ is a nondegenerate small perturbation of 0, then a line
bundle of bidegree (¢, —t) is ¢-stable if and only if t+ = £1 (because the ¢-stable
bidegrees are two consecutive bidegrees and one of them is (0, 0)).

The universal line bundle @ *(a;pi + - -+ + a,p,) has bidegree (—2k, 2k) on
the stable curve that consists of a smooth component of genus 1 without markings
connected by two nodes to a smooth component of genus g — 2 with all markings
and by the criterion we explained above the universal line bundle cannot be ¢-stable
unless k = 0. Assuming now k = 0,if 0 #a # (0,...,£1,...,FI,...,0) there
are 1 <i < j <nsuchthata; +a; =t > 2. The universal line bundle has bidegree
(t, —1t) on the stable curve that consists of a smooth component of genus 0 with the
markings p; and p;, connected by two nodes to a smooth component of genus g — 1
with all other markings. By applying the criterion again, the universal line bundle is
not ¢-stable and the proof is concluded. O

The proposition makes it possible, when (k; ay, ..., a,) is nontrivial and very close
to 0, to describe the class [DR gv] as adegree-g Chern class similar to formula ( 15).By
[13, Proposition 6.4] the map o extends to a well-defined morphism Mg ] g (@)
if and only if the universal line bundle O(D(¢)) is ¢-stable. Here O(D(¢)) is the
unique universal line bundle satisfying the following two conditions:

e the line bundles o * (a1 p1 + - - - + an py) and O(D(¢)) coincide on My , and

o the line bundle O(D(¢)) is ¢-stable on J\/[g n» the moduli stack of stable curves
with at most one node.
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For (g, n) and (k; ay,...,a,) and ¢ € Vgo‘n as in Proposition 4.1, by arguing along
the lines of (15), we obtain

[DRrgv] = (—=D*c(Rg:(O(D(9)))).
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