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Abstract: Phototherapeutic applications of carbon mon-

oxide (CO)-releasing molecules are limited because they
require harmful UV and blue light for activation. We de-

scribe two-photon excitation with NIR light (800 nm)-in-
duced CO-release from two MnI tricarbonyl complexes

bearing 1,8-naphthalimide units (1, 2). Complex 2 behaves

as a logic OR gate in solution, nonwovens, and in HeLa
cells. CO release, indicated by fluorescence enhancement,

was detected in solution, nonwoven, and HeLa cells by
single- (405 nm) and two-photon (800 nm) excitation. The

photophysical properties of 1 and 2 have been measured
and supported by DFT and TDDFT quantum chemical cal-

culations. Both photoCORMs are stable in the dark in solu-

tion and noncytotoxic, leading to promising applications
as phototherapeutics with NIR light.

The toxic effects of large amounts of carbon monoxide (CO)
cause the death of many people every year.[1] However, CO is

also known to be produced in small amounts naturally and in
healthy individuals, where it is involved in cell signaling. It is

also recognized as a potential therapeutic agent since it can
exhibit positive effects on wound healing and during heart[2, 3]

or kidney[4] transplantations. CO can finally act as an anticancer

or anti-inflammatory agent.[5] Practically, the delivery of CO for
therapeutic purposes requires careful control of dosage and lo-

calized delivery, which is very challenging. Therefore, gaseous
CO in therapy is not advisable. Instead, the delivery of CO from
CO-releasing materials and molecules (CORMs) is preferable, as
it is controllable, highly tissue specific, and can be triggered by
local light irradiation.[6, 7] The research groups of Motterlini, Ma-
scharak, Ford, or Schatzschneider, for example, thoroughly in-
vestigated the use of CORMs and photoCORMs based on tran-

sition-metal complexes.[2, 8–14] Most of these photoCORMs re-
quire UV or blue light for efficient CO release.[2, 15] Light in this

region is not only toxic to cells and tissues, but its penetration
length through human skin and tissues is limited.[16] This issue

prevents the development of most clinical applications of pho-
toCORMs, for which activation should occur preferentially in

the phototherapeutic window (600–950 nm).[17, 18] Researchers
have partially addressed this problem by extending the p

system of the ligands,[19] by conjugation of the photoCORM to

upconverting nanoparticles,[20] or by mixing the photoCORM
with a red-light-sensitive photosensitizer.[21] Another alternative
that does not require any molecular modification or physical
mixing of the photoCORM is to trigger CO release by two-

photon absorption (2PA).[22] 2PA processes involve the simulta-
neous absorption of two NIR photons; they can trigger effi-

cient photochemistry while minimizing photodamage and

maximizing tissue penetration.[23] 2PA is a nonlinear optical
process that finds applications in 3D microscopy,[24] fluores-

cence microscopy,[25] optical data storage, nanofabrication,[26]

and photodynamic therapy.[27] Herein, we propose to also ana-

lyze 2PA-induced CO release as a new form of molecular logic
gates. The optically activated, cancer-targeted CORMs present-

ed in this work display excellent properties as molecular logic

devices since they can process concomitantly electromagnetic,
chemical, and environmental information.[28–30]

Herein, photoCORMs compounds 1–2 (Scheme 1) combine a
[MnI(CO)3] CO-rich fragment with a potentially emissive dipico-

lylamine-1,8-naphthalimide ligand, while 2 also integrates a
biotin tether. The turn-on fluorescent chromophore 1,8-naph-

thalimide has a large 2PA cross-section[31–34] and can be excited
between lexc = 600–950 nm.[35–38] Biotin is required to sustain
the natural growth of eukaryotic cells.[36] Standard HeLa cancer

cells over-expressing biotin receptors to sustain their rapid pro-
liferation.[39] Biotin has been used as a tumor-targeting ligand

for tumor imaging and targeted drug delivery.[40] Compound 2
thus includes five features for processing concomitantly elec-

tromagnetic, chemical, and environmental information: It can

be excited at 400 (1PA) or 800 nm (2PA), increases fluorescence
intensity after CO-release, and targets biotin receptors.

The synthesis and characterization of photoCORMs 1[41] and
2 was achieved by standard synthetic methods (see the Sup-

porting Information).[19, 42] Compound 3, a known analogue de-
prived of chromophore and biotin tether, was used as a nega-
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Scheme 1. Structures of complexes 1, 2, and 3 used in this study.
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tive control.[42] Initially, single-photon excitation experiments

were performed. The alterations of the absorption and emis-
sion spectra were recorded upon irradiation at lexc = 405 nm

(10 mW cm@2, Figure 1). For both 1 and 2 the initial absorption
band at 340 nm—assigned by TD-DFT calculations to S7, a local

excitation of the naphthalimide moiety—gradually decreased,
to be replaced by a new absorption band at 420 nm. A subse-

quent color change from colorless to yellow was observed.

The prominent isosbestic point at 370 nm indicates the forma-
tion of a single photoproduct species.[19] Concomitantly to irra-

diation, the emission intensity for 1 (Figure S15b, Supporting
Information) and for 2 (Figure 1 b) gradually increased. Under

dark conditions, no changes in the absorption or emission
spectra were observed, thus confirming the dark stability of 1
and 2 (Figure S16, Supporting Information).

Secondly, since the naphthalimide unit possesses a large
2PA cross-section, we investigated the two-photon-induced

CO-releasing properties of 1 and 2. Acetonitrile solutions of 1
or 2 were photolyzed with a two-photon laser beam (800 nm,

50 mW cm@2) as described in Figure S17, Supporting Informa-
tion. The amount of CO release was measured using a portable
CO gas sensor (Drager Pac 7000) in a closed desiccator.[15]

From the graph shown in Figure S18, Supporting Information,
one could observe that the nonbiotin conjugated photoCORM
1 released a higher amount of CO (220 ppm) than 2
(145 ppm), while none of the compounds released any CO in

the dark. Of fundamental importance for the light-induced CO
release is the initial absorption. The present experiments were

performed upon excitation at 400 (1PA) and 800 nm (2PA), re-

spectively. As evident from the measured and simulated ab-
sorption spectra, the absorption profiles of 1 and 2 feature dis-

tinct differences between 400 and 450 nm. In particular, the
red-sided shoulder of the main absorption feature in the UV-

region features is more prominent for complex 2. This band is
associated with intraligand states, thus the population of the

desired metal-centered states of Mn–associated with CO re-

lease—compete with the population of undesired intraligand
states. These intraligand states do not contribute to CO release

as the electronic environment around the manganese center is
unchanged, thus decreasing the CO release of 2 in comparison

to 1. To the best of our knowledge, compounds 1 and 2 are
the first described 2PA photoCORMs without the involvement

of an external stimuli like H2O2. The release of CO at the given

excitation wavelength is accounted for the low-lying ligand
field states S1 and S2 found between approximately 465 and

335 nm by TDDFT. These states feature—in contrast to the
ground state—anti-bonding interactions between the manga-

nese d-orbitals and CO ligands, thus leading to CO release. De-
tails on the simulated photophysical properties of 1 and 2 are

collected in Figure S30, Supporting Information, as well as in

Tables S4 and S5, Supporting Information.
Next, the myoglobin assay was used to detect CO release

upon two-photon irradiation of 1 and 2 in aqueous solution.[43]

Changes in the Q-band of the myoglobin absorption spectrum

at 540 nm was followed upon irradiation (Figure S19, Support-
ing Information). The decreased intensity of the absorption

band of myoglobin at 556 nm and two increased bands at

541 nm and 578 nm demonstrated the formation of carboxy-
myoglobin and thus CO-release from 1 and 2. Furthermore, a

small but visible band at 628 nm was also found due to the
formation of metmyoglobin for which conversion of FeII to FeIII

takes place.[43] The one-photon irradiation of the myoglobin so-
lution in the presence of both the photoCORMs 1 and 2 also
resulted in similar changes when photolyzed at 405 nm light.

As the sodium dithionite present in the solution may also ini-
tiate CO release, dark controls were recorded for 30 min; they
showed no spectroscopic changes (Figure S20, Supporting In-
formation), demonstrating that CO release was solely photo-

chemical. The known photoCORM 3—lacking the naphthali-
mide unit—was used as a control[42] and showed no changes

in the myoglobin absorption spectrum upon irradiation for
30 min (Figure S21, Supporting Information) under similar con-
ditions to 1 and 2. This experiment establishes that the two-

photon-induced CO-release in 1 and 2 is due to the presence
of the naphthalimide chromophore unit.

As both complexes, 1 and 2 hold a 1,8-naphthalicanhydide
moiety that increases two-photon absorption, the relative 2PA

cross-sections (ss) were determined for 1 (0.2 GM) and 2
(4.5 GM) by the two-photon excited fluorescence measurement
technique in methanol by taking rhodamine B as a reference

compound.[44] As shown in Figure S22, Supporting Information,
both 1 and 2 could be excited with NIR light (two-photon exci-

tation between 760–810 nm). The peak positions and spectral
shapes of spectra with two-photon excitation are in agreement

Figure 1. Changes in the absorption and emission spectra of 2 upon photochemical release of CO using 405 nm light (10 mW cm@2) in acetonitrile. Spectra of
3 mL solution of [2] = 10 mm were measured at 10 seconds intervals. Inset : absorbance at 405 nm or emission at 514 nm as a function of irradiation time.
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with the fluorescence detected upon one photon excitation

(Figure S23, Supporting Information). These ss values suggest-
ed that both 1 and 2 could serve as two-photon CORMs.

As photoCORMs may also be used in the scope of photoacti-
vated chemotherapy, the cytotoxicity of both compounds was
evaluated in LX-2 and HeLa (Figure S24a, Supporting Informa-
tion) cancer cell lines. After 24 h incubation, both 1 and 2 were
found to be nontoxic even at high concentrations (Table 1).

Further, confocal laser scanning microscopy (CLSM) imaging

studies were conducted to investigate the cellular uptake and
compartmentalization of both photoCORMs (Figure 2). The

confocal images of HeLa cells treated with 1 or 2 were cap-
tured by one-photon excitation as well as two-photon excita-

tion. As anticipated from previous reports,[45] the presence of
long aliphatic chain in biotin structure could increase the over-

all lipophilicity of 2 when compared to nonbiotin conjugated 1
(Table 1). The lipophilicity (logP) values for both the photo-
CORMs were calculated using octanol/water shake flask

method.[46] It is not just noticeable that the biotin-conjugate 2
shows higher uptake with brighter emission, but also reveals

the characteristic feature of a biotin-receptor-mediated endo-
cytosis in the form of additional clearly visible intracellular vesi-

cle-like particles (Figure 2 c). These observations suggest, that

the enhanced uptake of 2 compared to its pendant 1 is not

simply caused by higher lipophilicity of biotin’s aliphatic chain

of compound 2 (Figure 2 a).[47] As photoCORM 2 has a higher
lipophilicity than 1 (logP = + 1.5 and @0.5, respectively), one
could anticipate that 2 has higher cellular uptake. From the
one-photon fluorescence images in Figure 2 c, it is clear that 2
localized not only in the cell membrane,[48] but also in the cyto-

plasm. The fluorescence intensity profile plot (Figure 2 d) sug-
gested that the emission intensity for 2 was increased after

2PA irradiation in HeLa cells.

Based on these results, we proposed an innovative approach
to construct a second layer in logical gates to this biological

aspect. We used one and two-photon excitations as inputs and
the concomitant fluorescence enhancement upon CO release

as an output for 2 in HeLa cells. Considering the fluorescence
enhancement from cells treated with 2 upon one and two

photon irradiations, we constructed the logical co-registered

OR gate (Figure 4 a). Due to the poor cellular uptake with
almost no fluorescence enhancement, compound 1 (Figure 2 b)

could not be used for the construction of such an OR gate in
HeLa cells.

In this present contribution, we did not study in-depth the
post-irradiation products generated upon CO release, as the

main focus of this work was to thoroughly investigate the

(quantitative) release of CO upon two-photon excitation. How-
ever, according to the literature addressing the irradiation of

structurally analogous complexes, the vacant coordination
sites at the manganese center are coordinated by solvent mol-

ecules after irradiation.[42] To determine whether all carbonyls
were released upon two-photon-irradiation, 1 and 2 were pho-
tolyzed in the solid state while following the changes of CO

stretch vibrational modes between 1800 and 2200 cm@1 using
IR spectroscopy (Figure 3 and Figure S25, Supporting Informa-
tion). Within the first 15 min of irradiation, the typical signals
of CO stretch at 2047 and 1938 cm@1 vanished, thus confirming
the quantitative release of CO from both photoCORMs.

Many potential therapeutic applications of photoCORMs re-

quire immobilization on a carrying material. Nonwovens repre-
sent exciting new materials for tissue bioengineering and
nanotechnology.[49] Embedding photoCORMs into nonwoven

materials represents one way to prevent the release of toxic
metal fragments after CO release.[21] Hence, 1 and 2 were em-

bedded in poly(l-lactide-co-d/l-lactide) (PLA) nonwoven fabric
material by electrospinning techniques.[5, 15, 21] The resulting ma-

terials were named as PLA-1 and PLA-2. The CO-releasing

properties of both PLA-1 and PLA-2 were studied by irradia-
tion with the two-photon laser at 800 nm, and simultaneous

recording of the IR spectral changes. PLA-1 released higher
amounts of CO (&22 ppm) than PLA-2 (&10 ppm) as evident

from Figure 3 c. Approximately the same amount of CO was re-
leased upon one-photon irradiation experiments performed

Table 1. CO release, cell viability, and logP values of photoCORMs 1 and 2.

photoCORM LogP IC50 [mmol] CO release in acetonitrile [ppm] CO release from PLA fabric [ppm]

1 @0.5:0.2 +500 200 20
2 1.5:0.1 +250 145 10

Figure 2. CLSM images of HeLa cells treated with a) 1 and b) 2 (50 mm,
60 min) shows the fluorescence enhancement change upon irradiation with
one- and two-photon excitation. Fluorescence intensity measured before
and after two-photon irradiation for b) 1 and d) 2. The intensity was mea-
sured using ImageJ software from the yellow color rectangular boxes.

Chem. Eur. J. 2019, 25, 8453 – 8458 www.chemeurj.org T 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim8456

Communication

http://www.chemeurj.org


with PLA-1, PLA-2 at 405 nm (Figure S26). To test their stability,

PLA-1 and PLA-2 were stored under dark conditions at low

temperature (+ 8 8C) for one month. The CO stretching bands
were still observed between 1950 and 2050 cm@1 (Figure S27,

Supporting Information), which demonstrated the good dark
stability of 1 and 2 when embedded in PLA fabric. To closely

investigate the morphological changes of PLA-1, PLA-2 fibers
upon two-photon laser irradiation, SEM images were captured

(Figure S28, Supporting Information). Notably, the fibers have a

smooth surface and no porosity was observed due to the re-
lease of CO during the electrospinning process which proved

the stability of 1 and 2 under the electrospinning conditions.
These SEM images also revealed that there was no damage or

morphological alterations to the PLA fiber at the laser power
used for the two-photon excitation and consequent CO-releas-

ing studies.

On the other hand, logic gates can be used to selectively
screen a particular analyte in a certain region of the body/cell

by processing the information related to the analyte of inter-
est.[50] The first application of molecular logic gates in biologi-

cal media was biosensing.[51] This type of sensing allows the
screening of more than one analyte simultaneously and using

the multiple outputs of a gate and can exclude false results by
taking multiple diagnostic parameter at once, hence, improv-
ing the accuracy of the diagnosis.[52] Considering the overall re-

sults, we have constructed a molecular “OR” gate for photo-
CORMs 1 and 2 (Figure 4 a). We assigned one- and two-photon

excitations as two inputs and the associated fluorescence and
CO release as outputs. The truth table shown in Figure 4 b dis-

closes the necessary combinations of an “OR” gate. “OR” gates

are logic functions in full adders for the construction of com-
puters.[53, 54] Both the photoCORMs 1 and 2 upon excitation

with 1PA and 2PA can be used as co-registered “OR” gate; fluo-
rescence enhancement indicates a visible output, whereas the

simultaneous output CO-release can be used as an input for a
concatenated chemical logic gate.[42] Logic gate behavior was

also demonstrated in HeLa cancer cell lines as shown in Fig-

ure 4 a. Overall the photoCORMs displayed the behavior of two
OR gates in the solutions, nonwovens as well as in the HeLa

cells.

In conclusion, we proposed a novel method for CO release
using two-photon excitation of photoCORMs 1 and 2. Com-

pared to one-photon excitation, the ambitious approach of
two-photon excitation signifies a dramatic improvement in the

field of CORMs. As of our knowledge, the direct two-photon in-
duced CO-release without the involvement of any external

stimuli like H2O2 in the literature is scarce. The two-photon in-

duced CO-release from 1 and 2 occurred not only in solution
state but also in the electrospun polymeric nonwoven fabric

and found to be stable up to(at least) one month. These NIR
photoCORMs feature potentially low cytotoxicity and allowed

CO-release monitoring by confocal microscopy in HeLa cells
through fluorescence enhancement. Furthermore, we devel-

oped different co-registered OR gates with structural modifica-

tions in the ligands and also expanded the logic gate concept
into the biological context. Due to the lower cytotoxicity levels

of 1 and 2, they may enable CO delivery for anti-inflammatory
and wound healing therapeutic applications.
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lease.
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