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Abstract
Kinases are frequently studied in the context of  anti-cancer drugs. Their involvement in cell 
responses such as proliferation, differentiation, and apoptosis, makes them interesting subjects in 
multi-target drug design. In this study a workflow is presented that models the bioactivity spectra 
for two panels of  kinases: 1) inhibition of  RET, BRAF, SRC, and S6K, while avoiding inhibition 
of  MKNK1, TTK, ERK8, PDK1, and PAK3; 2) inhibition of  AURKA, PAK1, FGFR1, and 
LKB1, while avoiding inhibition of  PAK3, TAK1, and PIK3CA. Both statistical and structure-
based models were included, which were thoroughly benchmarked and optimized. A virtual 
screening was performed to test the workflow for one of  the main targets, RET kinase. This 
resulted in 5 novel and chemically dissimilar RET inhibitors with remaining RET activity of  < 
60% (at a concentration of  10 μM) and similarities with known RET inhibitors from 0.18 to 0.29 
(Tanimoto, ECFP6). The four more potent inhibitors were assessed in a concentration range, 
and proved to be modestly active with a pIC50 value of  5.1 for the most active compound. The 
experimental validation of  inhibitors for RET strongly indicates that the multi-target workflow is 
able to detect novel inhibitors for kinases, and hence this workflow can potentially be applied in 
polypharmacology modeling. We conclude that this approach can identify new chemical matter 
for existing targets. Moreover, this workflow can easily be applied to other targets as well.
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Introduction
Compound promiscuity can be leveraged to develop multi-target drugs. Such multi-target drugs 
can replace existing multi-drug treatments, while maintaining the therapeutic effect.1 One of  
the advantages of  a multi-target drug, or single-drug treatment is that no drug-drug interactions 
occur, making the treatment less risky and harmful for the patient.2 However, since multi-target 
drugs are designed to bind to multiple proteins, they may tend to be more promiscuous as well. 
Therefore, when developing multi-target compounds, off-target binding and pathways should 
also be considered. 

Box 5.1 The Dialogue for Reverse Engineering 
Assessments and Methods (DREAM) challenge 
is a contest organized by a community of  
researchers and is open to participants worldwide. 
Starting from 2006, every year multiple challenges 
are organized aimed at a different subject within 
biological science and human health. A common 
motive throughout the challenges is that it is 
promoted to find a solution using computational 
models and techniques.  The “multi-targeting 
drug DREAM challenge”3 was part of  the 12th 
year edition of  DREAM challenges.

In the light of  the “Multi-Targeting Drug” DREAM 
challenge,3 bioactivities were computationally 
modeled for two panels of  kinases. The first 
panel was based on treatment of  medullary 
thyroid carcinoma, where kinases RET, BRAF, 
SRC, and S6K, should be inhibited and MKNK1, 
TTK, ERK8, PDK1, and PAK3, should not be 
affected.4,5 RET was considered the main on-target 
kinase in this panel and thus was prioritized over 
other kinases in the panel. The second panel was 
based on tauopathies in neurogenerative disease: 
compounds should inhibit AURKA, PAK1, FGFR1, and LKB1, and not bind to PAK3, TAK1, 
and PIK3CA.3 Since the main on-targets AURKA and PAK1, and additional on-targets FGFR1 
and LKB1, are targeted in the central nervous system, compounds for panel 2 kinases should 
additionally be able to pass the blood-brain barrier. 

This study describes a rigorous workflow to model the bioactivity spectra of  compounds in 
kinases (Figure 5.1) and identify novel inhibitors. Every step in the workflow was extensively 
benchmarked, and each model was validated prior to virtual screening. A consensus scoring 
approach was used to rank virtual screening compounds, and only compounds with a Tanimoto 
similarity (ECFP6 (extended-connectivity bit string, diameter 6))6 < 0.4 were considered to 
make sure that existing active molecules would not be ‘rediscovered’. This consensus approach 
encompassed statistical modeling techniques such as quantitative structure-activity relationship 
(QSAR) models and proteochemometric (PCM) modeling.7–9 Moreover, structure-based docking 
and pose metadynamics were applied.10 Next to compound ranking, this approach was also used 
to exclude inactive-predicted compounds from virtual screening along the way. Fast machine 
learning models were applied to discard compounds early in the workflow. Subsequently, slower, 
but information rich, structure-based models were applied that consequently only had to score 
a smaller fraction of  compounds compared to the entire initial virtual screening set. In this way, 
millions of  compounds were screened rapidly and scored accurately. 

In addition to the extensive benchmark validations, the workflow was also validated in vitro for 
one of  the main on-target kinases. Forty-six compounds were experimentally validated for RET, 
of  which 15 were selected based on the consensus approach,6 based on statistical models only, 
and 25 compounds based on structure-based modeling. This resulted in a total of  5 inhibitors 
causing RET activity < 60% at a concentration of  10 μM. The four most potent compounds 
were further inspected and their IC50 were determined. Although the most potent RET inhibitor 
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Figure 5.1. Virtual screening workflow for the two panels of  kinases. Statistical models (blue), structure-based models 
(green), and molecular dynamics (orange) were applied to rank the virtual screening compounds.

was modestly active with a pIC50 of  5.1 ±0.1, all compounds were chemically distinct from 
known RET inhibitors with Tanimoto (ECFP6) similarities smaller than 0.29. Therefore, the 
identified inhibitors in this study provide a new starting point for hit/lead optimization based 
on novel scaffolds. 

Results

Data curation and filtering

Compound bioactivity data was derived from different sources to increase data availability for 
the benchmark sets in model training and validation. Kinase compound data was retrieved from 
the following sources: ChEMBL database (version 23)11, publicly available sets from Eidogen12, 
and ExCAPE-DB13. The data was curated by standardizing chemical structures and bioactivity 
values (see Methods section for details). In this way a dataset was constituted that contained 
compound bioactivity information for 512 kinases.i This dataset was used for training and testing 
of  statistical models. Since validation was performed using cross-validation, the dataset was 
divided into subsets; five subsets were created based on chemical clustering of  the compounds 
per target (see Methods section for details). The biggest subset was used in training of  every 

i	 dataset available at doi: 10.4121/uuid:6af1d9de-281f-4221-b7e1-e7c01b90dfe0.
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model, whereas the remaining four subsets were used rotationally for testing. The subsets that 
were not used in testing in the specific iteration were added to the training set. 

Additionally, separate active/inactive/decoy datasets were constructed for validation of  
structure-based models. These benchmark sets were constructed for each panel kinase separately. 
Data for these benchmark sets were derived from ChEMBL (version 23), which was curated and 
filtered to construct a benchmark set for each kinase containing inactive and chemically diverse 
active compounds: only compounds with measured pChEMBL14 values were included in the 
benchmark sets and a restrain was set for the number of  active compounds. Up to a maximum 
of  100 actives per kinase were included, whereas the number of  inactive compounds was not 
limited. The 100 active compounds were selected based on chemical diversity by clustering the 
compounds with pChEMBL value > 6.5 into 100 clusters and selecting only the cluster centers. 
Additionally, DUD-E15 decoys were added to each benchmark set. These decoys have similar 
physicochemical properties as active ligands, but differ in chemical structure. The structure-
based benchmark sets were smaller than the training and test sets of  statistical models, but big 
enough to allow for validation of  the models. The smaller size of  the structure-based benchmark 
sets allowed for quicker model evaluation, resulting in validation of  many protein structures.

The virtual screening set that was screened using both statistical- and structure-based models 
was derived from the ZINC1516 database. All “in stock” compounds were filtered on drug-like 
properties by discarding compounds that did not adhere to 3 of  4 Lipinski rules.17 Furthermore, 
compounds were filtered on novelty: compounds with Tanimoto similarity (ECFP6) > 0.4 
compared to existing actives (pChEMBL > 5) on the kinases in the respective panel were 
excluded from the virtual screening set. The virtual screening set was additionally filtered for 
panel 2 kinases by including the likelihood of  compound passing the central nervous system by 
only keeping compounds with polar surface area < 75 Å2. This resulted in a virtual screening set 
for panel 1 of  11,168,736 compounds, and for panel 2 of  5,126,312 compounds.  

Statistical models

Separate quantitative structure-activity relationship (QSAR) models were constructed for the 
main on-targets RET, AURKA, and PAK1, as a first filter for bioactive compounds. The models 
were validated with 4-fold cross-validation using standardized benchmark sets (see Methods 
for details). The benchmark sets were constructed per target and were extracted from the main 
statistical benchmark set containing 512 kinases. Chemical descriptors were calculated for every 
compound: FCFP4 (feature-connectivity bit string, diameter 4) fingerprints and physicochemical 
descriptors (listed in table S5.1). These descriptors describe the compounds and were used in 
training the models. The RET, AURKA, and PAK1 QSAR models were predictive with ROC 
(receiver operating characteristic) scores higher than random (Table 1). The ROC of  the QSAR 
models was comparable between targets (ROC 0.76 ±0.01), whereas the Matthews correlation 
coefficient (MCC) varied slightly more (MCC 0.30 ±0.08). 

The performances of  the QSAR models were sufficient as a first filter for bioactive compounds, 
discarding the least active compounds and steering clear of  the decision boundary. Virtual 
screening set 1 was screened using the RET QSAR, and virtual screening set 2 was screened 
using the AURKA and PAK1 QSAR models separately. Using the active class probability score, 
the most promising compounds (250,000 compounds per RET/AURKA/PAK1) were selected 
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to be further processed in the structure-based approaches. This pre-screening of  compounds 
with a simple, but fast model decreased the number of  compounds effectively. As a result, 
subsequent screening and scoring steps proceeded quicker, since fewer compounds had to be 
screened. The subsequent steps, proteochemometrics (PCM)9 and structure-based modeling, 
were carried out in parallel. Additionally, QSAR models were constructed for the remaining 
kinases simultaneously. These QSAR models were compared to the more advanced PCM models 
to select the best approach for scoring. The performances of  these QSAR models are included 
in Table 1.

The PCM models that were created were applied solely for the purpose of  scoring and not as a 
filtering step. PIK3CA was excluded from modeling, as insufficient data was available to build 
and validate the models. The PCM models were constructed for each kinase separately and 
were based on the particular kinase and its L4 level family members as annotated in ChEMBL.18 

In addition to the compound descriptors used in QSAR modeling (FCFP4 fingerprints and 
physicochemical properties), the PCM models included protein descriptors that were based on a 
full kinome sequence alignment (see Methods for details). Initial PCM models were trained using 
default random forest settings: 300 trees, log2(m) features at every node in the tree, no maximum 
tree depth, a minimum of  2 samples to consider a node for splitting, and bootstrap enabled. This 
resulted in an overall performance of: MCC 0.22 and ROC 0.69 (average over all panel kinases). 
Since the PCM models were intended for scoring of  compounds, the models were optimized to 
enhance predictive performance. Optimal settings were explored by tuning hyperparameters with 
random search, a basic approach to automated machine learning.19 Approximately 500 random 
forest models were trained during optimization, resulting in the best model with performance 
MCC 0.25 and ROC 0.74, and following settings: 300 trees (fixed) with 43 features at every 
node in the tree, a maximum tree depth of  99, a minimum of  12 samples to consider a node 
for splitting, and bootstrapping disabled. The performance of  the QSAR and PCM models per 
kinase are shown in Table 5.1. 

Predictions for most kinases were comparable between QSAR and PCM modeling. However, for 
target PAK3, PCM clearly outperformed QSAR with MCC difference 0.18 and ROC difference 
0.20. MCC could not be calculated for ERK8 due to a small dataset and consequently a lack of  a 
predicted class (total number of  compounds for ERK8 is 332). Using QSAR, the MCC displays 
a negative correlation for ERK8 (-0.12), which is also reflected by the ROC score that is worse 
than random (ROC < 0.5). PDK1 has high early enrichment (BEDROC (Boltzmann-Enhanced 
Discrimination of  the Receiver Operating Characteristic)) with both QSAR and PCM. Although 
overall enrichment (ROC) for PDK1 is lower than the early enrichments, it is still good with 
ROC 0.71 (QSAR) and 0.72 (PCM). The average over all targets shows that PCM predicts 
slightly better than QSAR, with a similar MCC score of  0.25, but higher (BED)ROC scores: 
differences BEDROC = 0.06, and ROC = 0.06. Moreover, the nature of  PCM models allows 
for extrapolation of  bioactivities from related kinases to the target of  interest. Therefore, it was 
hypothesized that the PCM models will perform better than QSAR models when applied to a 
more diverse chemical dataset such as the virtual screening sets. The performances of  the PCM 
models of  the main on-targets AURKA and PAK1 were higher than the average performance 
over all targets. However, main on-target RET had a PCM MCC value (0.15) that was lower than 
average (0.25). Nevertheless, (BED)ROC scores were higher than the average: RET BEDROC 
0.64, RET ROC 0.76, average BEDROC 0.58, and average ROC 0.74. Moreover, all RET scores 
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were better than random indicating the predictive power of  the model. 
The settings that corresponded to the best performing model in 4-fold cross-validation were 
applied to train PCM models on the full dataset per kinase (including test set in training). The 
models were applied to score all the virtual screening compounds that passed the filtering step 
using QSAR models. 

Structure-based models

Structure-based scoring was performed in addition to scoring of  compounds using the PCM 
models. For many kinases,multiple crystal structures have been deposited in the PDB, and it is 
often not obvious which crystal structure should be used prospectively. Therefore we performed 
a rigorous benchmark to determine the best enriching crystal structure. The number of  validated 
crystal structures for all targets ranged from 1 to 135, excluding ERK8 and PAK3 for which no 
crystal structures were available at the time (December 2017). The crystal structures that were 
deemed suitable for virtual screening were X-ray protein structures that contained a co-crystalized 
orthosteric ligand. A total of  499 crystal structures were benchmarked using corresponding 
compound benchmark sets that were composed for each target separately. The benchmark sets 
containing active compounds, inactive compounds, and decoys, were docked into the orthosteric 
binding pockets, from which a docking score was derived for each compound. The decoys were 
considered as inactive compounds when calculating actives enrichment for each crystal structure. 
Enrichment was calculated based on best docking score per compound. It was observed that 
actives enrichment varied greatly between different structures of  the same kinase: ROC ranging 

Table 5.1. PCM performance per target (mean over 4-fold cross-validation).

PCM QSAR Number of  compounds

Target MCC BEDROC 
(α = 20)

ROC MCC BEDROC 
(α = 20)

ROC Active 
(pChEM-
BL ≥ 6.5)

I n a c t i v e 
(pChEM-
BL < 6.5)

RET 0.15 0.64 0.76 0.23 0.63 0.75 1492 416

BRAF 0.18 0.74 0.56 0.20 0.75 0.54 1119 1359

SRC 0.28 0.47 0.72 0.26 0.47 0.72 4642 2238

S6K 0.38 0.85 0.79 0.45 0.85 0.78 1662 685

MKNK1 0.09* 0.42 0.61 0.01 0.32 0.50 549 51

TTK1 0.22 0.45 0.78 0.26 0.44 0.75 663 276

ERK8 **** 0.05 0.48 -0.12 0.02 0.35 302 30

PDK1 0.27* 0.85 0.72 0.31 0.86 0.71 579 536

PAK3 0.25 0.72 0.91 0.07 0.27 0.71 1204 53

AURKA 0.37 0.65 0.78 0.38 0.47 0.77 3165 1674

PAK1 0.32 0.74 0.86 0.28 0.66 0.77 712 114

FGFR1 0.41 0.70 0.85 0.77 0.71 0.82 2477 928

LKB1 0.57** 0.53 0.76 0.26* 0.45 0.63 429 47

TAK1 0.15*** 0.27 0.68 0.12* 0.33 0.69 1204 53

Average 0.25 0.58 0.74 0.25 0.52 0.68 295 56

Asterisks indicate that no value could be determined due to lack of  predicted (positive/negative) classes: * = 1 cross-
validation failed, ** = 2 cross-validations failed, *** = 3 cross-validations failed, and **** = 4 cross-validations failed. 
Indicated in bold in each column is the best performing model for that given parameter.
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from 0.58 (PDB: 2IVS) to 0.77 (2IVU) for RET, 0.47 (5OSF) to 0.80 (2XNG and 4O0W) for 
AURKA, and 0.65 (3Q4Z and 4O0T) to 0.95 (5IME) for PAK1. The models per target were 
ranked based on the sum of  the overall (ROC) and early enrichment (BEDROC, α = 160.9). 
Models with a score ROC+BEDROC ≥ 1 (e.g. ROC 0.40 + BEDROC 0.60) were considered 
sufficient for prediction of  active compounds. 

Kinases LKB1 and MKNK1 only had a few crystal structures available (1 and 2 structures, 
respectively) of  which performance was low (ROC+BEDROC: 0.50 and 0.72 respectively). 
Moreover, kinase S6K of  which 18 structures were available, only reached maximum performance 
of  ROC+BEDROC 0.80. Therefore, additional protein structures were created for these kinases 
by application of  induced-fit docking. In contrast to docking, induced-fit docking accommodates 
the ligand and additionally re-orientates the side chains of  binding pocket residues. This allows 
the residues to change conformation in order for the ligand to fit into the binding pocket. Five 
ligands for each LKB1, MKNK1, and S6K, were docked with induced-fit docking into the 
respective binding pocket. Subsequently, the ligands were removed from the protein, keeping 
only the altered protein structures. This resulted in 95 additional protein structures for LKB1, 
44 for MKNK1, and 74 for S6K. These additional structures were validated using the same 
benchmark sets as used for the initial structures. The protein structures that were created using 
induced-fit docking varied in performance from ROC+BEDROC 0.27 to 1.07. For all three 
kinases, an induced-fit structure was generated that outperformed the initial crystal structure. 
The best performance for LKB1 was ROC+BEDROC 0.99, for MKNK1 it was 1.07, and for 
S6K it was 0.97.i

Based on the docking performances of  all models, five protein structures per target were 
selected for structural protein-ligand interaction fingerprints (SPLIF)20 calculations. With SPLIF, 
interactions between the binding pocket residues and (docked) ligand are calculated, resulting 
in a SPLIF score that indicates the similarity between the interactions of  the (docked) ligand 
compared to a reference compound. In this case, the reference compound consists of  the co-
crystalized ligand in the corresponding structure. The structures for SPLIF calculations were 
selected based on diversity of  the co-crystalized ligands per kinase. The diversity of  these 
ligands was assessed by clustering the ligands using affinity propagation clustering.21 The cluster 
centers of  the structures with highest ROC+BEDROC in docking were selected as reference. 
Consequently, the corresponding protein structures and docked benchmark set poses were thus 
used in SPLIF calculations. The SPLIF similarity scores for each benchmark compound were 
used to calculate actives enrichment based on SPLIFs. Especially for MKNK1 actives enrichment 
increased significantly compared to enrichment based on docking scores: ROC+BEDROC 
SPLIF 1.57 versus ROC+BEDROC docking 1.07. Based on early enrichment, BEDROC (α 
= 160.9), the performance using SPLIF scores increased for 9 of  13 kinases (Figure 5.2). 
However, for targets BRAF, PDK1, PAK1, and FGFR1 docking scores enriched (BEDROC (α 
= 160.9)) better than SPLIF scores. 
 
An ensemble score was constituted, which combined docking and SPLIF scores. This ensemble 
score, the Z2 score,22 was based on only docking scores, only SPLIF scores, or a combination 
of  docking and SPLIF scores (see Methods for details). Prior to calculation of  Z2-scores, the 
docking and SPLIF scores were normalized to Z-scores (more negative Z-score means better 

i	 The protein structures resulting from induced-fit docking are available at doi: 10.4121/uuid:9e61b6a6-88e5-4a18-ba19-dbf1bbdd656a.
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binding). This normalization was done with respect to the actives from the benchmark set for 
a given kinase. The early enrichments of  active compounds based on Z2-scoring increased 
performance for 10 of  the 13 targets (Figure 5.2). The best (ensemble of) models per target are 
listed in Table S5.2. The best performances of  the main on-targets RET, AURKA, and PAK1 
were reached by Z2-scoring. The performance of  PAK1 was very good with BEDROC (α = 
160.9) 0.97. However, it should be noted that the number of  compounds in this benchmark set 
was low due to lack of  data (63 active compounds, 10 inactive compounds and 3886 decoys). 
Therefore, this model may not be representative when applied to a virtual screening set. The best 
BEDROC performances of  RET and AURKA were 0.56 and 0.52 respectively. Furthermore, 
the overall performance for these targets were good with ROC 0.85 for RET and ROC 0.82 for 
AURKA. 

Figure 5.2. Early enrichment of  actives, BEDROC (α = 160.9), per crystal structure for each target. Enrichment 
reached by docking scores (blue), SPLIF scores (orange), and Z2-scores (red), are shown for all 13 kinases that had a 
crystal structure available. Numbers on top indicate the number of  crystal structures for each kinase.
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Prospective structure-based docking

The virtual screening compounds resulting from QSAR filtering were docked into the protein 
structures that resulted in the best performances in benchmarking. Not the entire virtual screening 
set could be docked on all kinases because of  time constraints. Therefore the top 250,000 
compounds for RET, AURKA, and PAK1, with highest active-class probabilities, were selected 
for docking. This included all active-predicted compounds for RET and AURKA (167,828 
for RET and 315 for AURKA), and additional, consecutively ranked compounds that did not 
reach the QSAR activity threshold (active class probability > 0.5). For PAK1 the top 250,000 
compounds were selected from a total of  298,163 active-predicted compounds. Subsequently, 
the compounds were assigned a structure-based Z2-score, with the exception of  S6K, MKNK1, 
and PDK1 for which SPLIF or docking score gave the best BEDROC (α = 160.9) performance 
and thus Z2-scores were replaced with the respective score. The best scoring method for S6K 
underperformed with a BEDROC of  0.24. Although this model was not discarded immediately, 
the poor performance was taken into account later when reliability weights were assigned to the 
corresponding method and kinase. 

Binding pose metadynamics

Binding pose metadynamics23,24 was performed to re-score the docked poses and scores of  
compounds. Since binding pose metadynamics is a time-consuming modeling technique, only 
the main on-targets (RET, AURKA, and PAK1) were subjected to this method. Binding pose 
metadynamics measures the persistence of  ligand-protein interactions and the movements 
of  the ligand’s heavy atoms, which are sampled during variation of  the complex’s free energy 
states throughout the simulation. The result of  binding pose metadynamics is a metadynamics-
composition score. This composition score was calculated for the top 100 compounds (based 
on docking score) from the benchmark set of  each included kinase. The docking scores from 
which these top 100 compounds were chosen were derived from a single protein structure 
per target to allow for easy and direct comparison. The selected protein structures had the 
best actives enrichment based on docking and included 2IVU for RET, 2BMC for AURKA, 
and 4EQC for PAK1. The composition score was added to the docking score, resulting in 
a combined score. The actives enrichment for the targets was re-evaluated using this new 
score. It was observed that performance (based on the top 100 compounds) of  PAK1 did 
not increase (ROC+BEDROC difference 0.01). However, actives enrichment for RET and 
AURKA increased with performances (ROC+BEDROC) 1.27 for RET and 1.76 for AURKA, 
compared to initial (docking) performance of  1.26 for RET and 0.77 for AURKA. Therefore, 
for RET and AURKA the docking scores of  virtual screening compounds were re-scored with 
metadynamics-composition scores, resulting in an indirect re-ranking of  the top 100 virtual 
screening compounds, which was based on Z2-scores.

Polypharmacology ranking of  compounds

The virtual screening compounds were scored with both a statistical model score (PCM score) 
and structure-based score. A final compound rank per target was constituted by adding a weight 
to the predictions made by statistical models and structure-based models (Table 5.2). The 
ranking order of  compounds for off-targets, i.e. kinases compounds should not interact with, 
was reversed: ranking compounds with high predicted activity as lowest, and compounds with 
worst predicted activity as highest. The weights of  the statistical PCM model were based on the 
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ROC score corrected for the size of  the training dataset per target. The structure-based models 
were considered to be better suited to select novel chemistry and were therefore assigned higher 
weights than the PCM model weights: structure-based models were attributed more weight 
compared to equally performing PCM models (same ROC). The weights of  the structure-based 
models were calculated by taking the sum of  BEDROC+ROC. These weights were reduced 
by penalizing the models when induced-fit structures were used and when the numbers of  
compounds in the benchmark sets were insufficient (for details see Methods). The weights were 
subsequently used to rank the compounds per target: Structure-based Z2-scores were multiplied 
by the structure-based weight, PCM predicted class probability was multiplied by the statistical 
model weight, and as final step the derived scores were summed up to retrieve a final rank per 
target. 

Based on overall target weights (Table 5.2), predictions for kinases LKB1, ERK8, PAK3, TAK1, 
and PIK3CA, were not very reliable. However, predictions for the more important main on-
targets RET, AURKA, and PAK1 were considered to be reliable. The workflow was evaluated 
by the selection and experimental validation of  compounds for one of  the main on-targets: 
RET. The consensus approach was used to select 15 highly ranked virtual screening compounds 
for RET (all compounds had PCM score > 0.4 and structure-based score Z2 < 0), which were 
validated in vitro. Moreover, the performance of  the different approaches was compared on the 
RET models by additionally selecting compounds based on the predictions of  only statistical 
models, and only structure-based models. 

Table 5.2. Weights assigned to each target per modeling technique.

Model On-targets off-targets

Panel 1 
kinases

RET BRAF SRC S6K MKNK1 TTK ERK8 PDK1 PAK3

PCM 0.54 0.14 0.90 0.67 0.13 0.41 -0.02 0.35 0.70

Structure 
Based

1.44 1.66 1.56 0.48 1.42 1.79 n.a. 1.45 n.a.

Total 1.98 1.80 2.46 1.15 1.55 2.20 -0.02 1.80 0.70

Panel 2 
kinases

AURKA PAK1 FGFR1 LKB1 TAK1 PIK3CA PAK3

PCM 0.93 0.50 0.98 0.28 0.16 n.a. 0.70

Structure 
Based

1.34 1.23 1.62 0.04 0.46 0.97 n.a.

Total 2.27 1.73 2.60 0.32 0.62 0.97 0.70

Experimental validation 

The models were evaluated by experimental validation of  predicted actives for RET kinase. 
A total selection of  46 compounds was purchased and validated for RET inhibition. These 
compounds were selected by different criteria: 6 compounds based on predicted activity by 
QSAR and PCM modeling, 25 compounds based on structure-based docking (including re-
scoring by binding pose metadynamics) and SPLIF scoring, and 15 compounds based on 
consensus scoring of  statistical and structure-based models. 
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Compounds that were selected using only statistical models satisfied the set active-class threshold 
criteria of  both QSAR (active probability > 0.6 ) and PCM (active probability > 0.5). The structure-
based thresholds were docking score < -8 and SPLIF score > 0.25. Additionally, structure-based 
compounds with a docking score < -10 were selected that did not necessarily adhere to the 
SPLIF score criteria. Furthermore, compounds that were selected based on consensus scoring 
fitted the following thresholds: statistical predictions PCM > 0.4, and structure-based score Z2 
< 0. The compounds that were selected based on structure-based predictions or with consensus 
scoring were additionally inspected visually by checking the 3D docking pose and interaction 
with the hinge region. 

The 46 compounds were first tested using single point measurements at two concentrations: 10 
μM and 0.1 μM (Table S5.3). The top ten compounds showing RET inhibition (RET activity < 
80%, concentration 10 μM), were based on either consensus scoring or structure-based scoring. 
None of  these compounds was from statistical scoring only. Five compounds showed inhibitory 
activity (RET activity < 60%) for RET at a concentration of  10 μM, of  which one compound also 
showed slight RET inhibition at concentration 0.1 μM (RET activity < 100%). The activities of  
the four most potent hits were assessed more accurately by a potency determination in triplicate, 
yielding pIC50 values. The inhibitors were modestly active. ZINC33008650 was the best inhibitor 
with a pIC50 of  5.1 ±0.1, followed by ZINC72312837 (pIC50 4.6 ±0.2), ZINC12324934 (pIC50 

Figure 5.3.  ZINC12324934 (green) docked into the orthosteric binding pocket of  RET (orange) (PDB:2IVU). 
Hydrogen bonds are displayed as yellow dotted lines.
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4.6 ±0.2), and ZINC9518200 (pIC50 4.0 ±0.2). The docked pose of  ZINC12324934 in RET 
suggests that the compound is an orthosteric binder with potential to bind to the hinge region, as 
evidenced by a hydrogen bond interaction with the backbone of  Ala807 (Figure 5.3). Additional 
hydrogen bonds are observed between the ligand and Glu775, Ser891, and Lys728.  Although the 
inhibitors showed modest activity, their chemical diversity compared to known RET inhibitors 
was high since the compounds were pre-filtered on novelty by selecting on Tanimoto similarity 
< 0.4 (compared to inhibitors with pChEMBL value ≥ 5).

Bioactivity spectra prediction

The bioactivity profile of  the five most active inhibitors for RET was predicted for all kinases 
in the panel. The bioactivity spectra for both on- and off-targets are shown in Table 5.3, where 
positive values indicate binding and values below and including zero indicate no binding. Based 
on the entire predicted bioactivity spectra, the most potent RET inhibitors comply better 
with inactivity on off-targets than activity on on-targets. However, the predictions are not 
equally reliable for each kinase (based on the previously assessed weights shown in Table 5.2). 
Nevertheless, assuming that the predictions of  the kinases that scored equally well or better 
compared to RET (weight 1.98) are the most accurate, conclusions can be drawn for on-target 
SRC and off-target TTK (weights 2.46 and 2.20, respectively). Although the RET inhibitors were 
not predicted active for SRC, inactivity was predicted for off-target TTK. The compounds were 
selected based on bioactivity for RET, and as a result may not show optimal bioactivity spectra. 
However, the novelty filter to which the compounds were subjected prior to virtual screening 
included all of  the kinases in the panel (as opposed to only RET). Therefore, all predicted 
interactions might indicate novel starting points for future research. 

Table 5.3. Predicted bioactivity spectra for the panel 1 kinases of  the five most potent RET inhibitors. 

Compound On-targets Off-targets

RET BRAF SRC S6K MKNK1 TTK ERK8* PDK1 PAK3*

ZINC33008650 1 0 0 0 -2 -2 0 -2 0

ZINC12324934§ 0 0 0 0 0 0 0 0 0

ZINC9518200 2 0 0 0 -1 -1 0 -1 0

ZINC72312837 2 0 0 0 -1 -1 0 -2 0

ZINC65184824 1 -1 0 0 -2 -1 0 -2 0

*Predictions based on limited structure-based data (no crystal structure available). §Compound was selected on RET 
docking score only, therefore no Z2-score was available for this compound and no structure-based weight could be 
assigned.

Manual inspection of  hits

The four most potent hit compounds resulting from virtual screening and experimental validation 
were inspected based on their novelty and patentability. Novelty was re-evaluated by similarity 
searching (Tanimoto ECFP6) on a more strict threshold for RET compounds (pChEMBL 
≥ 4) in the most recent version of  ChEMBL (version 25) and patentability was checked in 
SureChEMBL25 (similarity > 0.9). The most similar RET actives were: CHEMBL1979093 for 
ZINC33008650 (similarity 0.24, RET pChEMBL 7.2), CHEMBL1983715 for ZINC12324934 
(similarity 0.18, RET pChEMBL 6.9), CHEMBL1977134 for ZINC9518200 (similarity 0.20, 
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Table 5.4. Novel RET inhibitors and their most similar RET actives in ChEMBL based on Tanimoto (ECFP6).

Compound Closest similar 
(pChEMBL ≥ 4)

Similarity
(Tanimoto 

ECFP6)

ZINC33008650
pIC50 5.1 ±0.1

CHEMBL1979093
RET pChEMBL 7.2

0.24

ZINC72312837
pIC50 4.6 ±0.2

CHEMBL1965570
RET pChEMBL 7.6

0.29

ZINC12324934
pIC50 4.6 ±0.2

CHEMBL1983715
RET pChEMBL 6.9

0.18

ZINC9518200
pIC50 4.0 ±0.2

CHEMBL1977134
RET pChEMBL 8.4

0.20
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RET pChEMBL 8.4), and CHEMBL1965570 for ZINC72312837 (similarity 0.29, RET 
pChEMBL 7.6) (Table 5.4). None of  the compounds was listed as patented in SureChEMBL.

Additionally, novelty of  the chemical scaffolds was checked, which were compared based on 
Bemis-Murcko26 scaffold trees with known active compounds for RET in ChEMBL. None of  
the four hit compounds was clustered in the same scaffold cluster as a known active, supporting 
the novelty of  the inhibitors. Although the hit compounds were identified as modestly active 
binders, further SAR around these inhibitors may yield more potent derivatives. The novel 
scaffolds may be explored along different vectors to enhance affinity of  the ligands and may 
reveal a new chemical space for RET inhibitors. 

Discussion
An elaborate virtual screening process was constituted in which both statistical and structure-
based models were applied that were all carefully tuned and validated. Statistical models were 
validated using as many compound data as possible, with attention paid to chemical diversity of  
the subsets in cross-validation. Structure-based models were slower than the statistical models 
and therefore smaller benchmark sets were used for validation of  these models. These benchmark 
sets were composed of  diverse actives to cover a large chemical space, irrespective of  the smaller 
size of  the dataset. By application of  statistical QSAR models and structure-based docking 
successively, computational time was used efficiently in virtual screening: compounds that had 
the least predicted activity probability for the main on-targets based on the QSAR models were 
excluded from docking. The consensus scoring approach, in which statistical PCM scores were 
combined with structure-based predictions, resulted in sets of  active-predicted compounds per 
kinase. However, compounds were excluded from bioactivity modeling if  the respective kinase 
had a poor reliability weight. This reliability weight was based on the performances per model 
per target derived from the benchmarking steps. 

It was observed that the lack of  compound data resulted in lower performance of  statistical 
models in particular, as seen for kinase ERK8. Although structure-based models also performed 
worse for targets with less compound data and less crystal structures, this could partially be 
resolved by creation of  additional protein structures using induced-fit docking and alternative 
scoring with SPLIF and Z2. However, alternate structures may also have been created using 
more elaborate ligand-protein sampling methods such as molecular dynamics.27 Interestingly, 
performance between different structures of  the same kinase varied greatly, rendering the 
benchmarking of  multiple protein structures necessary. 

Based on the final reliability scores, kinases RET, BRAF, SRC, MKNK1, TTK, PDK1, AURKA, 
PAK1, and FGFR1, are best used in bioactivity modeling, whereas predictions for kinases S6K, 
ERK8, PAK3, LKB1, TAK1, and PIK3CA, may not be accurate enough and thus should be 
excluded for now. Although the models of  the first kinases are considered reliable, identification 
of  compounds that fit the desired bioactivity profiles on these targets remains challenging. Since 
hit rates are rarely 100%, compounds with a well-predicted profile would need experimental 
validation. The hit rate for the experimental validation for RET in this study was 11% over 46 
compounds, using pIC50 ≥ 4 (or RET activity < 60% at a concentration of  10 μM) as a threshold 
for active compounds. On the hypothesis that similar hit rates will be achieved for the other 
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kinases, the probability of  a compound being active on a number of  kinases thus decreases with 
every additional target. Therefore, the number of  experimentally validated compounds should 
be expanded, to increase the chance of  finding a compound that fully fits the desired bioactivity 
profile. 

The five hits that proved active on RET kinase were found with either consensus scoring or 
structure-based modeling. Although the number of  compounds validated using statistical 
models is smaller, it is plausible that statistical modeling by itself  is not a strong enough predictor 
to identify really novel compounds.28 Since the virtual screening compounds were pre-filtered 
on novelty (Tanimoto ECFP6 < 0.4) with known actives, the models were challenged with 
identification of  chemical dissimilar actives.29 This is a difficult task for statistical models as 
they rely on chemical patterns of  known actives, and therefore dissimilar compounds may lie 
outside the applicability domain of  these models.29 To resolve this issue, the chemical space can 
be expanded by addition of  chemical diversity.8 Although this requires biological experiments 
to validate (in)activity of  new compounds, an iterative screening approach may be applied to 
expand the chemical space efficiently and cost-effectively.30 Nevertheless, identification of  novel 
chemistry without the need for addition of  much experimental data may be achieved through 
structure-based modeling, as these models are not particularly biased towards known chemistry. 
However, bias in structure-based models may indirectly be present, as the best performing 
protein structures were based on enrichment of  known actives. Nevertheless, this is a minor 
issue compared to the limited scope and bias of  chemical space of  statistical models. 

The applied workflow in this study employs a filtering step through which compounds are 
discarded that were categorized as inactive by statistical QSAR models. Based on the previous 
statement on applicability domain, it is assumed good inhibitors can be wrongly categorized 
as “inactive” and neglected by the statistical model. One might reason that docking of  all 
compounds may be a more effective method to identify novel inhibitors, as docking of  170 
million compounds in proteins AmpC β-lactamase and the D4 dopamine receptor resulted in 
novel chemical scaffolds.31 However, docking of  millions of  compounds on multiple proteins 
is a very time consuming task (~170,000 compounds per day for 1 RET crystal structure (24 
cores)), which is unfeasible without the required computational resources. Thus, considering the 
scope of  the task, the possibility that the QSAR models discard ‘good’ compounds is accepted, 
as the QSAR models decrease the runtime of  the workflow and make the task comprehensive. 
As a final remark, it should be mentioned that the workflow applied to kinases did not implement 
orthosteric or allosteric binding of  compounds. Therefore, inhibitors were not tuned to bind to 
the DFG-in or DFG-out kinase conformation, a conformational change that influences inhibitor 
binding greatly.32 Although structure-based docking was focused on the ATP-binding pocket, the 
most optimal crystal structures were selected based on benchmark sets that were not filtered for 
DFG-out and allosteric binders. As a consequence, crystal structures may have been selected that 
enriched DFG-out binders better than DFG-in binders. Moreover, since the statistical models 
were trained on sets that were not filtered for DFG-out binders, these models were also not able 
to distinguish DFG-in from DFG-out binders. As a result, it is undetermined whether the five 
hits from the screening workflow bind to the DFG-in conformation of  RET. The docked poses 
of  the hits do not constitute optimal hinge-binding, suggesting that it is plausible that they may 
be DFG-out binders. Moreover, two of  the five most potent hit compounds contained a urea-
motif, a motif  that is often associated with DFG-out binders.32,33 To capture the binding type of  
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compounds, machine learning models could have been used to predict the type of  compound as 
an additional score, something that will be considered for future work.34,35

Conclusion
An extensive workflow was designed to predict compound activity in kinases and to model 
the compounds’ bioactivity spectra in kinases. The workflow can easily be expanded to other 
targets as well. By combining statistical and structure-based modeling, processing speed was 
optimized, while the accuracy of  predictions was preserved. Every single kinase target was 
validated separately, which enabled reliability weights to be assigned to the predictions for every 
target. The workflow was experimentally validated by testing predictions made for RET kinase, 
a target with a good reliability score. A selection of  46 compounds was tested in vitro, of  which 
5 compounds showed RET inhibition (activity < 60%) at a concentration of  10 μM. The four 
most potent inhibitors had pIC50 values ranging from 4.0 to 5.1. The Tanimoto similarities 
(ECFP6) of  these inhibitors with known RET actives was ≤ 0.29. Moreover, the compounds 
contained unique chemical scaffolds, underscoring the true novelty of  these inhibitors. 

Methods

Dataset statistical models

Training and validation sets for statistical models were constituted from compound information 
derived from ChEMBL (version 23)11, publicly available sets from Eidogen12, and ExCAPE-DB13. 
The compounds with experimental bioactivity for any kinase were filtered on molecular weight 
< 700, duplicates were removed, and compounds were standardized using BIOVIA Pipeline 
Pilot 201636: salts were removed, largest fragment was kept, stereochemistry and π-systems were 
standardized, and charges were neutralized. The resulting set contained 512 kinases and 123,246 
bioactivities. For training and validation of  the classification models the threshold for ‘active’ 
compounds was set at pChEMBL/pKi/pIC50/pEC50 ≥ 6.5 as we did previously.37 Compounds 
that did not reach this threshold were termed ‘inactive’. All compounds per target were divided 
into five subsets using clustering with the Cluster Molecules component (FCFP4 clustering) in 
Pipeline Pilot 2016. Compounds were clustered into five clusters per each kinase family (same L2 
level in ChEMBL). First, compounds were separated based on activity (active when pChEMBL 
> 6.5) and then clustered into five clusters, after which active and inactive compounds were 
combined again. To ensure that every panel kinase was represented in each cluster, clustering 
into five clusters was done in two steps: the panel kinase was clustered first, followed by co-
clustering of  compounds from related kinases into the same cluster. The biggest cluster, or 
subset, was used as fixed training set, while the other four subsets were rotationally used as 
test or training set in 4-fold cross-validation. Datasets used in QSAR modeling only contained 
information of  the respective kinase. In PCM modeling, additionally data of  related kinases was 
included based on L4 classification in ChEMBL.

Dataset structure-based docking

For each kinase target, with the exception of  PAK3 and ERK8 because of  lack of  a crystal 
structure, a benchmark set was created to validate structure-based docking for each target. 
The benchmarking set for structure-based docking included active compounds, inactive 
compounds, and decoy compounds, which were derived from ChEMBL (version 23) and the 
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DUD-e webserver15. Compounds with reported pChEMBL value for the challenge kinases, with 
confidence score 9, assay type B, and molecular weight < 550, were standardized using BIOVIA 
Pipeline Pilot 201636 by removing salts and keeping the largest fragment. An activity gap was 
realized to better distinguish active and inactive compounds: compounds with a pChEMBL 
value > 6.5 were assigned the label ‘active’, and compounds with a pChEMBL value > 4 and 
< 5.5 were labeled ‘inactive’. Compounds with pChEMBL value ≤ 4 were excluded as inactive 
compounds to limit the number of  inactives. Exceptions in the thresholds were made for activity 
labeling of  compounds for targets RET and MKNK1: for RET compounds were labeled as 
inactive when pChEMBL value > 4.5 and < 6.5, and for MKNK1 compounds were defined as 
active when pChEMBL value > 6 to increase the fraction of  active compounds. The thresholds 
used for RET were not intended to alter the number of  (in)active compounds; RET was used 
as exploratory case and therefore for this kinase ‘initial’ thresholds were used. However, the 
‘general’ threshold for all kinases was adapted since this yielded increased performance.
 
Scaffold trees were generated for the compounds based on Bemis-Murcko scaffolds26 and the 
compound with the highest pChEMBL value per scaffold class, per activity class, per kinase, 
was kept. Compounds labeled as active were clustered into 100 clusters using the Cluster 
Molecules component (k-means) in BIOVIA Pipeline Pilot 2016. From the resulting clusters, 
only the cluster centers were kept. Kinases that had less than 100 active compounds available 
were excluded from this clustering step. The resulting active compound sets of  maximum 100 
compounds per kinase were used to generate decoys for each target kinase using the DUD-e 
webserver. For target PIK3CA decoys were generated based on only 80% of  the active molecules 
as DUD-e decoy generation failed for the remaining fraction. The decoys were considered as 
inactive compounds when used in model validation. The collected actives, inactives, and decoys 
were prepared for docking using LigPrep from Schrödinger23. 

Screening dataset

Compounds for virtual screening were extracted from the ZINC15 compound library16. These 
compounds were selected based on “in stock” status and were filtered on a maximum of  one 
Lipinski’s rule of  five violation. Additionally, the screening set was filtered on novelty by only 
including compounds with Tanimoto similarity (ECFP6) < 0.4 compared to known ‘active’ 
compounds (pChEMBL value ≥ 5) in ChEMBL (version 23) for the kinases of  the respective 
panel. For panel 2, covering AURKA, PAK1, FGFR1, and LKB1, PAK3, TAK1, and PIK3CA, 
the screening set was additionally filtered on PSA < 75 to allow permeability of  the blood-brain 
barrier. The compounds in the screening dataset were additionally prepared for structure-based 
docking by using LigPrep.

Statistical modeling - QSAR

Single target QSAR models were constructed for the main on-target kinases RET, AURKA, and 
PAK1. QSARs were built using BIOVIA Pipeline Pilot 2016 (version 18.0.1.1604). Models were 
trained on compound descriptors FCFP4 (3000 most frequent bits) and 86 physicochemical 
descriptors (S1). The following settings were applied in training categorical Random Forest 
QSAR models: 1000 trees, log2(m) number of  descriptors, equalized class sizes and seed 12345. 
The classification threshold for active compounds was set at pChEMBL > 6.5. 
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Statistical modeling - PCM

PCM modeling was performed on all 512 kinases in the statistical modeling dataset. A multi-
target PCM model was constructed using a random forest classifier in scikit-learn38. Compound 
descriptors were the same as used in QSAR modeling. Protein descriptors were calculated 
based on full sequence alignment derived from kinase.com (with a total of  1567 alignment 
positions including gaps).39,40 The residues in the alignment were converted to three z-scales and 
an additional mean value for each of  the three z-scales was added per sequence, resulting in a 
total of  4704 protein descriptors per kinase. Gaps were included in these descriptors, and were 
assigned a value of  “0” for all three z-scales as was done previously.41,42

The random forest model was of  high complexity due to the high dimensionality of  the data, 
which includes the compounds’ physiochemical properties, FCFP4 descriptors, and protein 
descriptors. The complexity of  the random forest models was reduced by imposing constraints on 
parameters, such as the number of  trees and maximum depth of  the trees. The hyperparameters 
of  the random forest model were optimized by utilizing random search, which evaluates the 
performance of  the algorithm using different and randomly chosen configurations with cross-
validation. Random search can be considered a simple form of  Automated Machine Learning19,43 
and has shown to outperform other basic methods of  hyperparameter optimization, such as grid 
search.44 Approximately 500 random configurations were evaluated, resulting in an improvement 
of  on average 7% AUROC over the default configuration (300 trees, log2(m) features at every 
node in the tree, no maximum tree depth, a minimum of  2 samples to consider a node for 
splitting, and bootstrap enabled) in 4-fold cross-validation. The settings that corresponded with 
the best model in random parameter optimization were applied in model training on the full data 
set, which was used in virtual screening. The final model consisted of  300 trees (fixed) with 43 
features at every node in the tree, a maximum tree depth of  99, a minimum of  12 samples to 
consider a node for splitting, and bootstrapping disabled.

Structure-based docking

X-ray structures of  all challenge proteins were extracted from the PDB45 (except for ERK8 
and PAK3 as no structure was available at the time). Crystal structures lacking co-crystalized 
orthosteric small-molecule ligands were discarded. The remaining structures were prepared for 
docking with the Protein Preparation tool from the Schrödinger 2017-4 suite after removing any 
other components than the protein, orthosteric ligand, and binding pocket ions. The ‘add missing 
side chains’ option was used, waters were removed, hydrogens were added, and disulphide bonds 
were created. The crystal structures were superposed per target and co-crystalized ligands were 
removed from the binding site. The grid for docking was determined for each target by the 
center of  one of  the co-crystalized ligands (box size xyz = 35 Å). Compounds were docked 
into the binding pocket using the Schrödinger 2017-4 suite23 and the OPLS3 force field46 with 
standard precision (SP) and standard settings. A maximum of  ten poses per compound (per 
target) was generated. 

Induced-fit docking

Induced-fit docking, as implemented in the Schrödinger 2017-4 suite,23 was applied to kinases 
LKB1, S6K, and MKNK1. These kinases showed poor enrichment of  actives when docked 
into the available crystal structures (sum of  ROC and BEDROC < 1). For S6K five active 
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compounds, for MKNK1 ten active compounds, and for LKB1 six active compounds were 
docked using induced-fit docking (see Table S5.4 for list of  compounds). The crystal structures 
selected for induced-fit docking were 2HW6 for MKNK1, 2WTK for LKB1, and 3WF5, 3A62, 
and 4RLO for S6K. The resulting protein conformations were used as alternative protein 
structures in addition to the original crystal structures. 

Structural protein-ligand interaction fingerprints (SPLIFs)

Structural protein-ligand interaction fingerprints (SPLIFs)47 were calculated for a maximum 
of  ten poses per compound that were retrieved from structure-based docking. The co-
crystalized ligands of  the protein structures were used as reference in SPLIF calculations to 
derive Tanimoto-like SPLIF scores. Five protein structures per kinase were selected for SPLIF 
generation. These structures were selected based on diversity of  their co-crystalized ligands and 
best active-enrichment based on docking scores. The diversity of  the co-crystalized ligands was 
assessed using affinity propagation clustering based on FCFP6 similarity6. One protein structure 
was selected from every corresponding cluster based on best docking score performance until 
a maximum of  five protein structures was reached. Subsequently, Tanimoto-like SPLIF scores 
were calculated for the compounds in the benchmark sets for each of  the selected protein 
structures. For each compound (maximum 10 poses) the best SPLIF score was used to calculate 
actives enrichment based on SPLIF scores. 

For RET and PIK3CA exceptions were made in the selection of  benchmark proteins for 
SPLIF because only four and three clusters were generated, respectively. Therefore, similar co-
crystalized ligands and their corresponding proteins were also selected to get a total of  five 
protein structures per target. Furthermore, for RET structure 2IVV instead of  the co-crystalized 
ligand, CHEMBL3775169 was used as a reference.

Binding pose metadynamics

A metadynamics-composition score10 was calculated with the binding pose metadynamics tool 
in the Schrödinger 2017-4 suite,23 for compounds and poses derived from structure-based 
docking. The top 100 compounds for RET (PDB: 2IVU) and AURKA (PDB: 2BMC) were 
selected, based on best docking scores. The protein structures were prepared for metadynamics 
simulations by capping the termini and the run time of  each simulation was set at 10 ns. The 
resulting metadynamics-composition scores were added to the existing docking scores to re-rank 
the top 100 compounds in the benchmark set, and to re-rank the top 100 compounds in the 
screening set. 

Ensemble scoring in structure-based modeling

For every target, protein models for virtual screening were selected based on ensemble scoring 
of  docking and SPLIF scores. The combination, or ensemble, of  protein models that resulted in 
the best actives enrichment was used in virtual screening. The validated ensembles were based on 
docking scores of  the top five enriching models and all five SPLIF models per target. Different 
ensembles were tested for each target including: docking scores only, SPLIF scores only, and 
docking and SPLIF scores combined. The performances of  the ensembles were evaluated using 
Z2-scoring by averaging over the top two Z-scores.47 Prior to ensembling, the Z-scores per 
compound were normalized towards the actives from the respective benchmark set. Docking 
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scores were normalized to Z-scores by subtracting the mean docking score (mean over docking 
scores from all actives in the benchmark set) from the docking score of  the test compound, and 
subsequently dividing by the standard deviation of  the (benchmark) actives’ docking scores. The 
same approach was used in normalization of  SPLIF scores to Z-scores. However, the SPLIF 
scores were first multiplied by -1 to change the vector into the same direction as the docking 
scores (better binder, more negative score).

Compound ranking per target

The compounds in virtual screening were ranked for ensembles of  targets based on the scores 
derived from PCM modeling and structure-based ensemble score. The PCM predictions were 
given a confidence weight between 0 and 1 based on the prediction performance per target (with 
0 being no confidence, and 1 being highest confidence). The confidence score for the PCM 
model could be calculated using the following equation:

The PCM confidence score was based on the number of  compounds (of  the corresponding 
target) in training and the ROC score derived from 4-fold cross-validation: ROC * 2 - 1 (to 
normalize that 0.5 corresponds with a weight of  0 and 1 corresponds with a weight of  1), 
multiplied by the weight based on the number of  samples for the target in the training data 
(calculated as sqrt(number of  samples)/sqrt(maximum number of  samples). 

The weights of  the structure-based predictions were calculated by taking the total sum of  ROC 
and BEDROC per target48, consequently giving the structure-based predictions more weight 
than the statistical PCM model predictions. However, structure-based models were penalized (by 
multiplying with 0.5) when induced-fit models were created for the kinase. Moreover, kinases 
containing less than 100 actives in the benchmark set were penalized by multiplying the structure-
based weight with the fraction of  number of  actives (with a fraction of  1 being 100 actives, and 
a fraction of  0.1 being 10 actives). 

Finally, the obtained weights for PCM and structure-based models were applied in calculating 
the compound rank per kinase. 

Compound predictions were multiplied by the subtotal weights and summed up (statistical 
model weight * statistical PCM prediction + structure-based model weight * structure-based Z2 
score), resulting in a final compound rank per target. 
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Protein kinase assay

A selection of  46 compounds was experimentally validated for inhibitory activity against RET. 
The compounds were ordered via Mcule Inc.49, (Budapest) and purchased from ChemBridge, 
ChemDiv, ChemScene, Enamine, Life Chemicals, and Vitas M Chemical Limited. The assays were 
performed by ProQinase GmbH50, Germany. First, the compounds were tested (n=1) at final 
assay concentrations 10 μM and 0.1 μM. The five resulting hits (< 60% remaining RET activity 
at concentration 10 μM) were re-evaluated by determination of  IC50 values (n=3). RET WT 
activity was measured using a radiometric protein kinase assay (33PanQinase® Activity Assay). All 
kinase assays were performed in 96-well FlashPlatesTM from PerkinElmer (Boston, MA, USA) 
in a 50 ml reaction volume. The reaction cocktail was pipetted in 4 steps in the following order: 
1) 20 ml of  assay buffer. 2) 5 ml of  ATP solution (in H2O). 3) 5 ml of  test compound (in 10 % 
DMSO), and 4) 20 μl enzyme/substrate mix. The assay for all protein kinases contained 70 mM 
HEPES-NaOH pH 7.5, 3 mM MgCl2, 3 mM MnCl2, 3 mM Na-orthovanadate, 1.2 mM DTT, 
50 μg/ml PEG20000, 1 μM ATP, [γ -33P]-ATP (approx. 1.91 x 1005 cpm per well), 40 ng/50 
μl protein kinase, and 0.125 μg/50μl poly(Glu, Tyr)4:1 substrate. The reaction cocktails were 
incubated at 30ºC for 60 minutes. The reaction was stopped with 50 ml of  2 % (v/v) H3PO4, 
plates were aspirated and washed two times with 200 ml 0.9 % (w/v) NaCl. Incorporation of  33Pi 
was determined with a microplate scintillation counter (Microbeta, Wallac).
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Supporting Information

Table S5.1. List of  86 physicochemical descriptors.

 Physicochemical descriptors

CMP_ATOMCOUNT_C CMP_NUM_CHAINASSEM-
BLIES

CMP_ATOMCOUNT_I CMP_ATOMS_O_FRAC

CMP_ATOMCOUNT_C_sp3 CMP_ATOMCOUNT_META-
LATOMS

CMP_Molecular_solubility CMP_ATOMS_HETEROATOM_
FRAC

CMP_ATOMCOUNT_C_sp2 CMP_BONDS_PIBONDS CMP_LogP CMP_ATOMS_S_FRAC

CMP_ATOMCOUNT_C_sp CMP_BONDS_STEREOATOMS CMP_MOLECULAR_SUR-
FACEAREA

CMP_ATOMS_P_FRAC

CMP_ATOMS_C_sp3_FRAC CMP_BONDS_STEREOBONDS CMP_MOLECULAR_SASA CMP_ATOMS_HALOGEN_
FRAC

CMP_ATOMS_C_sp2_FRAC CMP_BONDS_SINGLEBONDS CMP_MOLECULAR_POLAR-
SASA

CMP_ATOMS_OTHER_FRAC

CMP_ATOMS_C_sp_FRAC CMP_BONDS_DOUBLEBONDS CMP_NUM_ALIPHATICRINGS CMP_ATOMS_STEROATOM_
FRAC

CMP_FORMALCHARGE CMP_BONDS_TRIPLEBONDS CMP_BONDS_HEAVYATOMS CMP_ATOMS_POSITIVE_FRAC

CMP_ATOMCOUNT_HEAVY CMP_NUM_ALIPHATICSIN-
GLEBONDS

CMP_BONDS_HYDROGENS CMP_ATOMS_NEGATIVE_
FRAC

CMP_BONDS_TOTAL CMP_NUM_ALIPHATICDOU-
BLEBONDS

CMP_BONDS_SINGLE_FRAC CMP_ATOMS_H_ACCEP-
TOR_FRAC

CMP_ATOMCOUNT_HYDRO-
GENS

CMP_NUM_HYDROGENBONS CMP_BONDS_DOUBLE_FRAC CMP_ATOMS_H_DONOR_
FRAC

CMP_BONDS_EXPLICIT CMP_NUM_TERMINAL-
ROTOMERS

CMP_BONDS_TRIPLE_FRAC CMP_RIGIDITY_INDEX

CMP_ATOMCOUNT_POSITIVE CMP_ATOMCOUNT_H_AC-
CEPTORS

CMP_BONDS_AROMATIC_
FRAC

CMP_MOLECULAR_WEIGHT

CMP_ATOMCOUNT_NEGA-
TIVE

CMP_ATOMCOUNT_H_DO-
NORS

CMP_BONDS_BRIDGE_FRAC CMP_CLASS_LIPINSKI_PASS

CMP_BONDS_RING CMP_ATOMCOUNT_H CMP_BONDS_STEREO_FRAC CMP_NUM_Ro5_Violations

CMP_BONDS_ROTATABLE CMP_ATOMCOUNT_N CMP_BONDS_RING_FRAC CMP_RO3_PASS

CMP_BONDS_AROMATIC CMP_ATOMCOUNT_O CMP_BONDS_ALIPHATIC_
FRAC

CMP_MOLECULAR_POLAR_
SURFACEAREA

CMP_BONDS_BRIDGE CMP_ATOMCOUNT_F CMP_BONDS_ROTATABLE_
FRAC

CMP_MOLECULAR_POLAR_
SURFACEAREA_FRAC

CMP_NUM_RINGS CMP_ATOMCOUNT_P CMP_ATOMCOUNT_HALO-
GENS

CMP_FULL_MWT

CMP_NUM_AROMATICRINGS CMP_ATOMCOUNT_S CMP_ATOMS_C_FRAC CMP_INORGANIC_FLAG

CMP_NUM_RINGASSEMBLIES CMP_ATOMCOUNT_Cl CMP_ATOMS_H_FRAC

CMP_NUM_CHAINS CMP_ATOMCOUNT_Br CMP_ATOMS_N_FRAC
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Table S5.2. Selected structure-based models per target.

Protein PDB Model B E D R O C 
(α=160.9)

ROC Sum

Challenge 1

RET 2IVU Docking+SPLIF 0.56 0.85 1.41

5FM2 Docking

2IVV* Docking+SPLIF

5FM3 Docking

2X2K Docking

BRAF 5HID Docking+SPLIF 0.75 0.9 1.66

1UWH Docking

4DBN Docking

4G9R SPLIF

SRC 4MXX Docking+SPLIF 0.64 0.92 1.56

2BDJ Docking

1YOL Docking

2H8H SPLIF

S6K 3A62 IFD #74 SPLIF 0.24 0.72 0.96

MKNK1 2HW6 IFD #25 SPLIF 0.71 0.86 1.57

PDK1 3QD0 Docking 0.66 0.87 1.53

TTK 4C4I Docking 0.81 0.98 1.79

5N84 Docking

5N87 SPLIF

5NA0 SPLIF

Challenge 2

AURKA 2BMC Docking 0.52 0.82 1.34

4B0G SPLIF

PAK1 4EQC Docking+SPLIF 0.97 0.98 1.95

6B16 SPLIF

FGFR1 3GQL Docking 0.68 0.94 1.62

4RWL Docking

3TT0 Docking

4NKA Docking

LKB1 2WTK IFD #83 Docking+SPLIF 0.67 0.81 1.48

2WTK IFD #34 Docking+SPLIF

TAK1 4L53 Docking+SPLIF 0.64 0.76 1.40

4L3P Docking

5JGB SPLIF

PIK3CA 4JPS Docking 0.99 0.62 1.61

5DXH SPLIF
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Table S5.3. Bioactivities of  46 compounds validated for RET activity.

ZINC ID Smiles Selec-
tion 
meth-
od

Remain-
ing RET 
a c t i v -
ity with 
c o m -
p o u n d 
concen -
t r a t i o n  

10-7

Rema in -
ing RET 
a c t i v i t y 
with com-
p o u n d 
c o n c e n -
t r a t i o n  

10-5

IC50 (M) 
n1

IC50 (M) 
n2

IC50 (M) 
n3

ZINC33008650 COc1cc(NC(=O)
Nc2ccc(C)c(F)c2)
cc3sc(NC(=O)c4ccccc4)
nc13

Con-
sensus

107 16 5.16E-06 9.12E-06 7.87E-06

ZINC12324934 CCN1C=C(C(=O)
Nc2cccc(O)c2)
C(=O)c3cc(F)c(cc13)
N4CCN(CC4)C(=O)C

Struc-
ture-
based

91 25 1.65E-05 4.06E-05 1.81E-05

ZINC9518200 NC1=C(NC(=O)
c2ccc(F)c(F)c2)C(=O)
NC(=N1)SCC(=O)
Nc3ccc4OCOc4c3

Struc-
ture-
based

109 28 5.85E-05 7.30E-05 1.71E-04

ZINC72312837 COc1ccc(NC(=O)
Nc2ccccc2c3nc(n[nH]3)
c4cocc4)cc1

Con-
sensus

103 54 1.99E-05 1.74E-05 3.67E-05

ZINC ID Smiles Se l ec t ion 
method

Remaining 
RET ac-
tivity with 
compound 
concentra-

tion  10-7

Remaining 
RET ac-
tivity with 
compound 
concentra-

tion  10-5

ZINC65184824 COc1cccc(Nc2nc(C)c(s2)C(=O)Nc3ccc4OCOc4c3)
c1

Structure-
based

129 55

ZINC101094323 Cc1cc(NC(=O)NC2=C(NC3CCCC3)
c4ccccc4OC2=O)ccc1Br

Structure-
based

97 68

ZINC72119413 Cc1ccc(NC(=O)Nc2ccc(Nc3cc(nc(C)n3)n4ccnc4)
cc2)c(C)c1

Consensus 95 68

ZINC33008371 Cc1cc(NC(=O)Nc2ccc(F)cc2)cc3sc(NC(=O)
c4ccccc4)nc13

Consensus 146 79

ZINC49407610 COC1=CC(=O)C(=NN1c2ccc(OC)c(OC)c2)C(=O)
Nc3ccc4OCOc4c3

Structure-
based

120 79

ZINC65250057 Cc1cccc(c1)n2ncc3C(=C(C(=O)Nc4ccc(C)cc4F)
C(=O)Nc23)O

Structure-
based

134 79

ZINC33008195 COc1ccccc1NC(=O)Nc2ccc3nc(NC(=O)c4ccccc4)
sc3c2

Consensus 113 84

ZINC33008629 CCOc1ccc(NC(=O)Nc2cc(OC)c3nc(NC(=O)
c4ccccc4)sc3c2)cc1

Consensus 115 85

ZINC101332769 Fc1ccc(NC(=O)CN2C(=O)N(CC3CCCO3)C(=O)
c4ccc(cc24)C(=O)NCCc5ccccc5)cc1Cl

Structure-
based

116 85
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ZINC ID Smiles Se l ec t ion 
method

Remaining 
RET ac-
tivity with 
compound 
concentra-

tion  10-7

Remaining 
RET ac-
tivity with 
compound 
concentra-

tion  10-5

ZINC12584529 Cc1cccc(NC(=O)CNC(=O)c2ccccc2NS(=O)(=O)
c3ccc4NC(=O)Nc4c3)c1C

Structure-
based

114 86

ZINC33008381 COc1cc(NC(=O)Nc2cc(C)c3nc(NC(=O)c4ccccc4)
sc3c2)cc(OC)c1

Consensus 123 88

ZINC6864637 O=C1Nc2ccc(NC=C3C(=O)NC(=O)N(C3=O)
c4ccccc4)cc2N1

Structure-
based

107 91

ZINC67956408 O=C(NCc1cccnc1n2cnc3ccccc23)c4ccc5NC(=O)
Nc5c4

Structure-
based

102 91

ZINC83815577 CC(=O)Nc1cccc2CN(CCc12)C(=O)CCNC(=O)
c3ccsc3

Structure-
based

104 91

ZINC21806194 CCc1cccc(NC(=O)c2cc([nH]n2)c3ccc(OC)c(c3)
S(=O)(=O)N)c1

Structure-
based

120 93

ZINC9784888 CC(=O)c1cccc(NC(=O)Cc2csc(NC(=O)
Nc3cccc(Cl)c3)n2)c1

Structure-
based

116 93

ZINC33008624 COc1cc(NC(=O)Nc2ccccc2Br)cc3sc(NC(=O)
c4ccccc4)nc13

Statistical 
modelling

106 93

ZINC33008616 COc1ccc(OC)c(NC(=O)Nc2cc(OC)c3nc(NC(=O)
c4ccccc4)sc3c2)c1

Consensus 114 94

ZINC49002135 Cc1ccc2C(=O)C(=CN(CC(=O)NC3CCCC3)c2n1)
C(=O)Nc4ccc(C)c(C)c4

Structure-
based

114 96

ZINC35868136 COc1cccc(NC(=O)Nc2c(N)n(nc2c3ccc(Cl)cc3)
c4ccc(F)cc4)c1

Statistical 
modelling

110 96

ZINC33008380 COc1ccc(NC(=O)Nc2cc(C)c3nc(NC(=O)c4ccccc4)
sc3c2)c(OC)c1

Consensus 133 99

ZINC1430237 NC1=Nc2nc3ccccc3n2C(N1)c4c[nH]nc4c5cccc(O)
c5

Structure-
based

117 99

ZINC46009367 CN1C(=O)N(C)c2cc(Oc3ccccc3)c(NC(=O)
Nc4cccc(c4)C(=O)C)cc12

Consensus 104 100

ZINC23135952 C1(N2CCN(CC2)C(=O)C2=CC=CO2)
N=C2NN=CC2=C(NC2=CC=C(C=C2)C)N=1

Structure-
based

130 100

ZINC12155670 COCC(=O)Nc1cc(cc2ncn(CCc3ccccc3)c12)C(=O)
NCc4ccc(C)c(F)c4

Structure-
based

133 100

ZINC103927245 FC(F)(F)c1cc(NC(=O)c2cocc2)ccc1NC(=O)
Nc3ccc(NC(=O)c4cocc4)cc3C(F)(F)F

Statistical 
modelling

113 101

ZINC33008656 COc1cc(NC(=O)Nc2cc(OC)c3nc(NC(=O)c4ccccc4)
sc3c2)cc(OC)c1

Consensus 112 101

ZINC33008626 CCOc1ccccc1NC(=O)Nc2cc(OC)c3nc(NC(=O)
c4ccccc4)sc3c2

Consensus 118 101

ZINC2955974 CC(=O)OCc1cnc(C)c2OC(=Nc3ccc(F)cc3)
C(=Cc12)C(=O)Nc4ccc5OCOc5c4

Structure-
based

121 101

ZINC33008219 COc1ccc(Cl)cc1NC(=O)Nc2ccc3nc(NC(=O)
c4ccccc4)sc3c2

Consensus 141 103
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ZINC ID Smiles Se l ec t ion 
method

Remaining 
RET ac-
tivity with 
compound 
concentra-

tion  10-7

Remaining 
RET ac-
tivity with 
compound 
concentra-

tion  10-5

ZINC33008399 COC(=O)c1cccc(NC(=O)Nc2cc(C)c3nc(NC(=O)
c4ccccc4)sc3c2)c1

Consensus 109 103

ZINC103832769 FC(F)(F)c1cc(NC(=O)c2occc2)ccc1NC(=O)
Nc3ccc(NC(=O)c4occc4)cc3C(F)(F)F

Statistical 
modelling

123 103

ZINC32996009 Cc1ccc(cc1)C2=NN3C(=O)C=C(CNC(=O)
Nc4ccc(C)c(Cl)c4)N=C3S2

Structure-
based

116 105

ZINC33008637 COc1cc(NC(=O)Nc2ccc(Br)cc2)cc3sc(NC(=O)
c4ccccc4)nc13

Statistical 
modelling

120 106

ZINC12243694 COCC(=O)Nc1cc(cc2ncn(CCc3ccccc3)c12)C(=O)
NCCc4cnn(C)c4

Structure-
based

118 109

ZINC1211467 O=C(Cn1cc(C=C2C(=O)NC(=O)NC2=O)
c3ccccc13)Nc4ccccc4

Structure-
based

131 110

ZINC10279818 Clc1ccc(c(NC(=O)COc2ccc(Cl)cc2C(=O)
Nc3ccccc3)c1)n4cncn4

Structure-
based

107 111

ZINC72429138 COc1ccc(C2=Cn3cc(nc3C(=O)N2C)C(=O)
N4CC(O)C4)c(F)c1

Structure-
based

117 111

ZINC11966082 COCC(=O)Nc1cc(C(=O)N(C)CCc2c(C)n[nH]c2C)
c3c(c1)ncn3Cc4ccc(F)cc4

Structure-
based

118 117

ZINC33008631 COc1cc(NC(=O)Nc2cccc(Br)c2)cc3sc(NC(=O)
c4ccccc4)nc13

Statistical 
modelling

153 127

ZINC46009379 CN1C(=O)N(C)c2cc(Oc3ccccc3)c(NC(=O)
Nc4ccc(C)c(C)c4)cc12

Consensus 112 128

ZINC62022653 C1(N2CCN(CC2)C(OCC)=O)
N=C(NC2C=CC(=CC=2)C)C2=C(NN=N2)N=1

Structure-
based

128 154
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Table S5.4. List of  compounds used to generate structures for S6K, MKNK1, and LKB1, with induced-fit docking.

Target 
kinase

Compound ID Compound SMILES

S6K CHEMBL6291 Cn1cc(C2=C(C(=O)NC2=O)c3cn(CCCSC(=N)N)c4ccccc34)c5ccccc15

S6K CHEMBL3685220 NC(=O)c1cccc2c(NCc3cccc(c3)N4C(=O)Nc5ccccc5C4=O)ncnc12

S6K CHEMBL3680430 COCCC(Nc1ncnc2c(cccc12)C(=O)N)c3cccc(NC(=O)c4cc(n[nH]4)C5CC5)c3

S6K CHEMBL3685220 NC(=O)c1cccc2c(NCc3cccc(c3)N4C(=O)Nc5ccccc5C4=O)ncnc12

S6K CHEMBL3675398 CNCC(Nc1ncnc2c(cccc12)C(=O)N)c3cccc(NC(=O)c4ccc(F)c(F)c4)c3

MKNK1 CHEMBL3355002 CC(C)Oc1cc2[nH]ncc2cc1Nc3ncnc4[nH]c5CCC(Cc5c34)C(=O)NCCCS(=O)
(=O)C

MKNK1 CHEMBL3355000 COc1cc2[nH]ncc2cc1Nc3ncnc4[nH]c5CCC(Cc5c34)C(=O)NCc6ccccc6

MKNK1 CHEMBL3354998 CC(C)Oc1cc2[nH]ncc2cc1Nc3ncnc4[nH]c5CCCCc5c34

MKNK1 CHEMBL223360 Cc1ccc(F)c(NC(=O)Nc2ccc(cc2)c3cccc4[nH]nc(N)c34)c1

MKNK1 CHEMBL3659492 Cc1c(sc2ncnc(Nc3ccc(F)cc3OC4CCN(CC(=O)N5CCOCC5)CC4)c12)C(=O)
N

MKNK1 CHEMBL3417208 CN1C=C(Nc2ncnc3sc(C(=O)N)c(C)c23)C=CC1=O

MKNK1 CHEMBL1721885 Cc1[nH]c(\C=C\2/C(=O)Nc3ccc(F)cc23)c(C)c1C(=O)NC[C@H](O)
CN4CCOCC4

MKNK1 CHEMBL226403 O=C1NCCc2[nH]c(cc12)c3ccnc(c3)c4cnc5ccccc5c4

MKNK1 CHEMBL3632739 COC(=O)c1sc2ncnc(Nc3ccc(F)cc3OC(C)C)c2c1C

MKNK1 CHEMBL3805029 FC(F)(F)c1cc(NC(=O)COc2ccc(cc2)c3cccnc3)ccc1CN4CCNCC4

LKB1 CHEMBL502835 COC(=O)c1ccc2\C(=C(\Nc3ccc(cc3)N(C)C(=O)CN4CCN(C)CC4)/
c5ccccc5)\C(=O)Nc2c1

LKB1 CHEMBL603469 C[C@]12O[C@H](C[C@]1(O)CO)n3c4ccccc4c5c6C(=O)
NCc6c7c8ccccc8n2c7c35

LKB1 CHEMBL1908397 O=C(N1CCNCC1)c2ccc(\C=C\c3n[nH]c4ccccc34)cc2

LKB1 CHEMBL535 CCN(CC)CCNC(=O)c1c(C)[nH]c(\C=C\2/C(=O)Nc3ccc(F)cc23)c1C

LKB1 CHEMBL1287853 Cc1cnc(Nc2ccc(OCCN3CCCC3)cc2)nc1Nc4cccc(c4)S(=O)(=O)NC(C)(C)C

LKB1 CHEMBL388978 CN[C@@H]1C[C@H]2O[C@@](C)([C@@H]1OC)
n3c4ccccc4c5c6CNC(=O)c6c7c8ccccc8n2c7c35


