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Introduction

Cells are the building blocks of life; the human body is composed of approximately 

100 trillion of them. It is not an unreasonable assumption that properties of the 

species should be reflected in properties of their cells. Cell turnover during life 

history, which is essential for tissue maintenance, might be a primary mechanism 

of organismal ageing (Hayflick, 1985). Very recently conducted studies support a 

model in which ageing may results of adult stem cell dysfunction and progressive 

deterioration of tissue functions (Scaffidi and Misteli, 2006, 2008). 

The most widely accepted interpretation for the biological function of cellular 

senescence is that it serves as a mechanism for restricting cancer progression 

(Sager, 1991; Cosme-Blanco et al., 2007; Ventura et al., 2007). The suppression of 

cancer acts as a beneficial trait, selected in reproductively active individuals, 

however, cellular senescence may have harmful effects later in life by altering

tissue structures and functions (Kirkwood and Austad, 2000). 

Two broad categories of cellular senescence can be distinguished. On the one 

hand, replicative capacity of many human cells is limited by telomere attrition that 

causes cells to undergo replicative senescence with short telomeres (Harley et al.,

1990); on the other hand, sustained effects after exposure to subcytotoxic stress 

induces irreversible growth arrest, known as stress-induced premature 

senescence (Toussaint et al., 2002).

Replicative senescence

Growth kinetics have been studied extensively using human diploid fibroblasts, 

which undergo irreversible cellular arrest after a finite number of divisions owing 

to the process called replicative senescence (Campisi, 1996), as was first described 

by Hayflick and Moorhead in 1961. As shown in Figure 1, the course of a 

fibroblast culture ex vivo can be distinguished into three phases (Swim and Parker, 

1957; Hayflick and Moorhead, 1961). Phase I consists of taking a skin biopsy and 

transferring the cells from the in vivo environment to in vitro conditions to initiate 
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Figure 1. Typical growth phases and phenotypes during the course of fibroblast in vitro

ageing.

the culture. Following the establishment of the culture, cells undergo a long period 

of steady proliferation (phase IIa). Hereafter, a period follows in which the growth 

speed of the culture, measured by the time required to reach confluence, 

significantly decreases (phase IIb). Cultures then degenerate and cell division 

ceases, resulting in growth arrest (phase III or senescence). 

Senescent fibroblasts have a characteristic phenotype; cells increase in overall 

size and lose their spindle shape appearance (Matsumura et al., 1979; Hayflick and 

Moorhead, 1961; Cristofalo and Kritchevsky, 1969). Senescent cells fail to respond 

to mitogenic stimuli, but maintain metabolic activity and can remain viable in 

culture essentially indefinitely (Matsumura et al, 1979; Pignolo et al., 1994) owing 

to resistance to apoptosis (Marcotte et al., 2004, Hampel et al., 2005). On a 

molecular level, changes occur in gene expression and protein processing during 

the course of cellular senescence (Cristofalo and Sharf, 1973; Matsumura et al., 

1979; Gonos et al., 1998; Trougakos et al., 2006; Cong et al., 2006) including an 

increased -galactosidase (Dimri et al., 1995). 
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It is generally accepted that fibroblasts senesce because of one or more short 

and dysfunctional telomeres (Harley et al., 1990; de Lange,  2001; Karlseder et al.,

2002; Levy et al., 1992). Telomeres, the ends of vertebrate chromosomes build up 

out of TTAGGG sequences, protect the ends of chromosomes from being 

recognized as broken DNA and provide a source of expendable DNA. Telomere 

shortening is the consequence of cell turn over by DNA replication in the absence 

of telomerase expression (Wright et al., 1996). Telomeres have been shown to 

shorten in tissues as a function of donor age (Lindsey et al., 1991) and in cultures 

as a function of the number of cell divisions (Harley et al., 1990). Furthermore, 

disrupted or dysfunctional telomeres trigger permanent cell cycle arrest, the 

hallmark of cellular senescence; p53, a pleiotropic tumor suppressor, plays a major 

role in senescence induced by telomere erosion (Chin et al., 1999; Saretzki et al.,

1999; Herbig et al., 2004). 

Stress induced premature senescence

Various human proliferative cell types undergo stress induced premature 

senescence after exposure to many types of subcytotoxic stressors under in vitro

conditions. The senescence arrest depends on the p16 tumor suppressor, a cyclin-

dependent kinase inhibitor that keeps the pRB (retino blastoma) tumor suppressor 

cell cycle regulator in its unphosphorylated form (Ohtani et al., 2004). p16 has 

been shown to be upregulated in vivo with age and in response to cellular stress 

(Zindy et al., 1997; Schmitt et al., 2002; Krishnamurthy et al., 2004; Ressler et al., 

2006). However, premature senescence can also be achieved in a telomere 

dependent manner by exposure to mild oxidative stress (Duan et al., 2005; von 

Zglinicki et al., 1995) because of single strand breaks in telomere regions by 

oxidative stress which consequently cause accelerated telomere shortening (von 

Zglinicki et al., 2000, 2002). In fibroblasts, the phenotype of premature senescence 

often exhibits many features shared with replicative senescence, including distinct 

morphology and -galactosidase activity. 
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It has been suggested that the pathways of replicative senescence and stress 

induced premature senescence can intersect (Figure 2). Thus, while one pathway 

might predominate in the induction of cellular senescence under given 

circumstances, the pathways can also cooperate to prevent indefinite cell 

proliferation (Lin et al., 1998; Shapiro et al., 1998; Rheinwald et al., 2002; Schmitt 

et al., 2002; Itahana et al., 2003).

Figure 2. Mechanism of cellular senescence. 
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The Leiden 85-plus Study 

All studies presented in this thesis, except for the study described in chapter 7, 

were performed within the Leiden 85-plus Study. The Leiden 85-plus Study is a 

prospective population based follow-up study, in which all inhabitants of the city 

Leiden, the Netherlands, in the month after their 85th birthday were ask to 

participate. Of the 705 eligible subjects, 599 subjects (85%) were enrolled in the 

initial cohort (der Wiel et al., 2002) as outlined in Figure 3. There were no 

selection criteria related to health or demographic characteristics at baseline. After 

five years of follow-up, 68 well functioning relatively healthy community-dwelling 

nonagenarians were invited for sampling of skin biopsies (11.4% of baseline 

cohort).

Figure 3.  Flow chart of participants, Leiden 85-plus Study.

Aim and outline of the thesis

599 participants aged 85 years 
between 1997 and 1999

291 eligible participants in 2004

68 enrolled participants aged 90 
years

Died before April 2004 (n = 308)

Died before study took place (n = 1)

No informed consent (n = 33)

Mentally / physically unable to come 
to study center and to take skin 
biopsies (n = 189)

57 participants: fibroblasts strains 
did reach replicative senescence

11 participants: fibroblast strains did 
not reach replicative senescence
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Aim and outline of the thesis

The aim of the work described in this thesis was to study in vitro senescence of 

human cells, in particular the relation of cellular in vitro ageing and its relation to 

chronological ageing. Each chapter focuses on a different aspect of cellular in vitro

senescence.

Chapter 2 reports on our first study describing the interindividual variation in 

replicative capacity of human fibroblast strains obtained from 68 relatively healthy 

community-dwelling nonagenarians. In chapter 3, we studied the transitions

between the different growth phases in fibroblasts cultured up to the onset of 

senescence -galactosidase. The onset of replicative 

senescence in vitro may last up to several years; therefore, in chapter 4, we tested 

the colony formation assay as surrogate indicator for the onset of replicative 

senescence. In chapter 5, we tested the influence of p53 genotypes on cellular 

stress induced by X-irradiation. As body mass has been shown to be a better 

correlate for the replicative capacity across species than average longevity, in 

chapter 6 we studied the relation between individual’s body size and replicative 

capacity within humans. Chapter 7 addresses the difference between cellular 

mixed cultures and clonal cultures in myoblasts. Finally, in chapter 8 we discuss 

the use of replicative capacity of human fibroblasts as a model for in vitro ageing 

and its relation to chronological ageing.  

Framework

The research presented in this thesis was carried out within the framework of the 

“Innovative Oriented Research” (IOP) project entitled “Genetic determinants of 

longevity and disease in old age”, subsidized by the Dutch Ministry of Economic 

Affairs (grant number IGE0100114). This project brought together physicians, 

biologists and geneticists with the aim to identify mechanisms that determine 

longevity and disease in old age.
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