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1
I N T R O D U C T I O N

In the Oxford Dictionary the metabolome is defined as: the total number
of metabolites (the small molecules that are intermediates or products as a
result of a metabolic reaction) present within an organism, cell or tissue. This
definition covers the three key factors of metabolomics, the research field in-
vestigating the composition, role and function of the metabolome [140]. In the
analysis of the definition of the metabolome we first identify the biological
origin of the research field which can vary with regards to the type of biolog-
ical question, and therewith connected, the type of samples that are analyzed.
This can range from small individual cells to cells clusters to tissue slices to all
sorts of biofluids like blood, urine or cerebrospinal fluid. Secondly, the term
metabolite implies some form of identification of the chemical compounds be-
ing studied. Popular profiling and identification methods range from Nuclear
Magnetic Resonance (NMR) to Mass Spectrometry (MS). Recently in particu-
lar fragmentation trees obtained with the MSn [61, 106] approach are used to
assign identities to the data features obtained with MS-based profiling tech-
niques. The total number refers to the number of identified (and unidentified)
chemical (metabolic) features and their concentration levels that are detected
with the same analytical techniques mentioned before.

To obtain biological interpretable results these three important types of infor-
mation (identity, quantity, and biological relevance) on a metabolite (Figure 1)
are equally important and interact strongly. For a good understanding of the
biological context the identity of the metabolites must be known. Conversely,
identification of metabolites can be greatly improved by including biological in-
formation [58]. Furthermore proper (relative) quantification of the metabolites
in question [139, 91] is necessary for a better understanding and modeling of
the chemical processes of the biological system of interest, i.e. hypothesis gen-
erating metabolomics. Even though determination of the quantities of metabo-
lites is not a necessity in all metabolomics experiments, it is very helpful for
proper biological interpretation.
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introduction

Figure 1: The three key factors of metabolomics: Biological relevance, Identity
and Quantity and their interactions.

The word metabolome itself is a construct of the words metabolism and genome
[47] and hints to the hierarchy within cell biology: the metabolome is the re-
sult of a whole range of chemical and regulation processes that are the re-
sult of the interaction of other biochemical organization levels such as the
genome and their interaction with the environment. For example, changes
in a cells physiological state as a result of gene deletion or overexpression are
the complex result of processes at the transcriptome and the proteome and
ultimately metabolome level[65, 126, 55]. For example, hard to detect multi-
factorial changes in the genome resulting in a disease may be easier detected
by changes in the metabolite concentrations. This amplification of effects indi-
cates the strength of metabolomics.

Contrary to proteomics and genomics the chemical structures and, therefore,
physicochemical properties, observed within the metabolome are much more
diverse. The proteome and genome consist of well-defined structural build-
ing blocks (i.e. amino acids and nucleotides respectively, although possible
post-translational modification and epigenetics have to be taken into account).
The diversity in the metabolome combined with the fact that metabolites are
known to participate in many different biological pathways, reactions and pro-
cesses challenges determination and biological interpretation in metabolomics.
Without the proper biological knowledge there is no (bio-) logical explanation
even if discriminating metabolites are found. The ubiquitous presence of flu-
ids like for example blood at various places of possible biologically relevant
processes, complicates the interpretation of metabolic activity in isolation even
further[93] as they are not specific to any part of the body. To study a se-
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1.1 mass spectrometry

lected part of cellular metabolic networks in a targeted manner, more recently
tracer-based metabolomics has been developed as a new experimental data
acquisition approach[77].

1.1 mass spectrometry

Hyphenated mass-spectrometry (GC, CE or LC-MS) has become the pre-
dominant technology for determining metabolite abundances, mainly because
of its sensitivity allowing the measurement of low abundant metabolites in
small sample volumes. In Figure 2 the schematic of a time-of-flight (TOF)
mass spectrometer (MS) detector is shown. The analytes are ionized in the ion
source and separated by the applied electric field E (between grid A and B)
in which the ions are differentially accelerated depending on their mass and
charge. The time it takes to reach the detector (from B to C (length L)) is char-
acteristic for the mass/charge ratio of an ion. Ions with a lower mass (having
the same charge) are accelerated more and reach the detector earlier due to
E = 1

2 mv2 and consequently m = 2E
v2 . v is the velocity i.e. the measured time

(t) it takes for ions to travel the distance L.

Figure 2: Schematic of a linear Time of Flight (TOF) mass spectrometer, heavier
ions (with same charge) travel proportionally slower than lighter ions
in an electric field.

When all ions have reached the detector a mass spectrum can be generated
(Figure 3). The intensity on the y- axis corresponds to the number of ions that
were detected with a specific mass (the x-axis).

5



introduction

Figure 3: A typical (part of a) mass spectrum.

A drawback in MS is that each metabolite has its own response factor, i.e. the
signal depends on the number of molecules but also on the type of molecule.
For example two metabolites showing up in a mass spectrum with each of its
(e.g.) protonated molecule having an intensity of 106 do not necessarily have
the same concentration when they are introduced into the MS. This depends
on factors like solubility, ionizability, fragmentation, etc. [4], which are differ-
ent for the different metabolites. In addition, mass-dependent discrimination
can occur due to the mass spectrometer. Furthermore, the response factor for
a certain metabolite is matrix dependent, i.e. dependent on the composition
of the solvent (in which various compounds can be present) when introduced
into the MS, and consequently can vary over different samples creating dif-
ferences in measured responses for identical metabolite concentrations[6, 79].
With other words, in two different human plasma samples the same metabo-
lite with the same concentration can have different responses. The complex
interactions between analyte and the matrix, in which it was measured, can
have a significant effect on the response in the MS; this is often referred to
as ion suppression/enhancement effects. To compensate for these variations,
correction of the response using internal standards is needed. These internal
standards should have the same chemical behavior as the analyte but should
be detected separately from the analyte of interest. The best internal stan-
dard for a certain metabolite is the stable isotopically-labeled (D, 13C or 15N)
metabolite itself[78]. Once added to the sample the response of the (isotopi-
cally labeled) internal standard can be used for correction of different kinds of
chemical and instrumental variations like sample treatment differences, pipet-
ting errors, storage effects, ion suppression etc.. The ratio between the peak
intensities of the analyte and internal standard gives an indication of the rela-
tive (to the selected internal standard) concentration of the analyte. Absolute
quantification of the actual concentration levels (e.g. µmol

µl , g
kg etc.) in all samples

of the study can only be calculated if a calibration line for the metabolite of
interest was included during measurement. For increased separation the MS
is often hyphenated to a separation technique, e.g. gas chromatography (GC),
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liquid chromatography (LC) or capillary electrophoresis (CE). In addition to
an improved separation of analytes of interest, possible matrix effects and con-
sequently ion suppression effects may be significantly reduced this way.

1.2 quantification

To get reliable quantitation (preferably absolute) the observed differences
between the different analyzed samples should not be hampered by analytical
variation and should be attributed only to real biological differences of interest.
Consequently any further (data) analysis then solely can focus on interpreting
these differences. The quantifiable response for a metabolite is the product of
its concentration and a metabolite specific response factor. The response factor
however, is affected by matrix effects which necessarily need to be minimized.
The common ways to characterize these matrix effects are either by post col-
umn infusion methods or post-extraction spiking methods[23, 87]. Because the
first method only characterizes the matrix effects qualitatively, the quantitative
assessment using the second method is more common. With both methods
however, the characterisation is biased towards a set of known metabolites
only. In metabolomics where typically hundreds to thousands of (also uniden-
tified) metabolites are measured, it is very uncommon to measure (internal)
standards for each of these metabolites. This would be very laborious and
thus expensive. In addition, it is not known a priori, which metabolites are of
interest for the study at hand. As a consequence often platforms are used that
cover a wide range of metabolites whose identity is not known in advance (so
called untargeted platforms). In these cases usually at least one internal stan-
dard per class of metabolites is included to enable relative quantitation (e.g.
on lipid per lipid class in lipidomics[53]).

The choice of a proper internal standard influences the estimated (relative)
concentration of the compounds in question. Figure 4a shows the peak areas
of L-Leucine and two internal standards that were added in replicated (GC-
MS) measurements[8, 48] of over 100 identical reference samples (technical
replicates [32], i.e. the complete analytical process rather than repeat injections
of the same sample). Because the measurements concern the same sample,
the ratio between the analyte and the internal standard (IS) should remain
constant. The ratios of L-Leucine with the internal standards are plotted in
Figure 4b. It is clear that correction with Leucine-D3 generates an almost
constant value. However, it is also obvious that correction with a less suitable
internal standard (in this case Phenylalanine-D5) can have a dramatic effect on
the estimated relative concentration of L-Leucine.
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Figure 4: (a) The peak areas of L-Leucine and 2 internal standards for a series
repeated measurements (112 technical replicates) of a QC sample. (b)
The ratio plot of L-Leucine with each of the two internal standards.

If the ideal internal standard is not available or used, there are four levels
of correction to consider to estimate the relative concentration: between ana-
lytes within one sample, between analytes over samples measured within one
batch and, when many samples need to be measured that cannot be processed
within one batch, between analytical batches of samples, and finally, when
there is also a substantial time difference between measurements of sample
sets, between studies correction. The common factor in all of these four levels
is (acquisition) time and in specific all kinds of instrumental and environmen-
tal variations like matrix differences, sample degradation, different apparatus
but also preprocessing/integration variation that have changed in this time.
The challenge in metabolomics is to minimize these variations for as many as
possible different metabolites. It is at this stage that metabolomics greatly ben-
efits from statistics (e.g. experimental design [67], data analysis) but of course
also from improved analytical sample preparation and analysis methods. With
regards to analytical methods, one could think of using a different analytical
setup (e.g. post-column infusion techniques [23]) that would quantify suppres-
sion effects for a whole range of metabolites but also other optimizations of
experimental conditions like concentration levels of the added internal stan-
dard [104, 105, 10] can be considered. Statistically, a (mathematical) solution
could be to construct virtual internal standards based on a (multivariate/lin-
ear) combination of internal standards to normalize the responses of unknown
compounds. Finally, to improve comparison over analytical batches of sam-
ples and between studies appropriate reference samples could be used[54].
The choice which samples to use as a reference would be a clear result of the
combined efforts in analytics and statistics.

1.3 integration

Even if all analytical and instrumental settings are optimized, one issue in
analyzing MS data that is often left untouched is the integration step itself.
The principle to translate the area under the (unimodal and non-overlapping)
curves to areas belonging to 2 different components as shown in Figure 5a is
evident.
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1.3 integration

Figure 5: (a) Unimodal extracted ion chromatogram (EIC). (b) Bimodal EIC,
(where) should the peaks be separated?

In case of bimodality or multi-modality curves (e.g. due to not fully separated
isomers) things get more complicated and arbitrary decisions have to be made
(Figure 5b); solutions are to calculate the sum of the total peak are under the
curve, split them in the middle or try to fit the signal by (two or more) sep-
arate peaks (i.e. by deconvoluting them). Once a choice has been made the
software has to be parameterized accordingly. Different (MS) vendors provide
own software packages for integration and it is at this point where the differ-
ent software packages show different outcomes for almost identical cases as
depicted in Figure 6 (a and b).

Figure 6: The unexpected behavior with automated integration software. (a)
The peak is split in three separate peaks. (b) The two right peaks are
combined.

In Figure 6 the same cases of multi-modal peaks are split in different ways
using slightly different integration settings. Arguably in cases like this one
option is to improve the chromatography but that is unfortunately not always
possible, and is anyway time consuming. However, are such overlapping peaks
really a problem? This depends on the type of research that is performed. If
the aim is to extract known compounds/peaks only, the integration results
can be validated by eye and manually adjusted if necessary, however, this is a
time-intensive, and therefore expensive, process. If the approach is an untar-
geted profiling of analytes then there is no bias towards any specific analytes
and consequently no (analyte) specific processing steps are there to configure.
Visual optimization of integration parameters therefore is very difficult and
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manual curation procedures as in targeted data processing is hardly feasible.

Despite the limited number of compounds reported and expensive manual
data curation, targeted approaches are widely used. Obvious reasons are that
the targeted metabolites/compounds are known which is very important for
the data interpretation, and the possibility to quantify them (using internal
standards and reference compounds) often with better precision and accuracy
then in untargeted modes. To a large extent this is also due to the lack of
appropriate software that would enable untargeted extraction and integration
without introducing artifacts and errors. As a result, integration is often lim-
ited to a set of known metabolites (targets) only and in most cases vendor
software is used for such targeted data processing.

1.4 statistics and data analysis

In metabolomics statistics are applied throughout the whole process of an-
alyzing samples, from method development to data analysis. Experimental
designs are applied to setup a study in such a way to minimize the number
of experiments while retaining the maximum amount of information[67]. Re-
peated measurements of samples are used to statistically indicate whether or
not the analytical platform functions within specification[37]. To this extent,
often, for each specific metabolomics study, a pooled sample (a so-called Qual-
ity Control sample) from all samples of that study is created and repeatedly
measured. As mentioned earlier, correction steps are necessary to compare
metabolites between and over samples. Depending on the type of sample,
the way it was measured etc., a whole range of statistically data pretreatment
(normalization) methods are offered to improve ultimately the biological inter-
pretation of the data[127]. Actually most, if not all, statistics (in metabolomics)
are performed to remove/indicate analytical variation in metabolites (features)
that are measured. Those features that do not meet the pre-defined criteria
are usually removed from the dataset and further data analysis/interpretation
is continued with a smaller set of reliable metabolites. This removal does not
necessarily improve biological interpretation but the complexity of follow-up
(data) analysis can be reduced considerably.

In univariate statistics the focus is on one variable at a time and the results
are relatively easy to interpret from a statistical point of view (e.g. the effect of
the variable is significant or not using T-tests[89]). As a consequence univari-
ate statistics methods -are widely accepted, especially in clinical settings[147,
100]. Because changes in biological samples are often multifactorial[147, 100],
metabolomics data should be analyzed using multivariate statistics as well. In
contrast to univariate statistics multivariate statistics focusses on simultane-
ously analyzing a set of variables. The (relative) importance of the individual
variables in answering the biological question is not always that straightfor-
ward and easy to determine but the multivariate profiles however, often do
reveal important variables that would have not appeared relevant based on
univariate statistics only. After proper quantification, principal component
analysis (PCA) is often used to do pattern recognition and visualize observed
group differences[86] and methods like partial least squares − discriminant
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analysis (PLS-DA)[142] are commonly used to relate these differences to spe-
cific metabolites. Using statistical modeling of properly quantified metabolites,
(multivariate) metabolic networks can even be inferred[44]. Because of the lim-
ited number of samples in comparison to the huge amount of variables (e.g.
metabolites) that are measured, multivariate models easily lead to overfitted
results (i.e. perfect fits are found, but the predictive power of the model is
limited). The results are hugely aided by variable selection methods to se-
lect the important from the less important variables and cross-validation and
permutation[142] procedures to prevent this overfitting when building predic-
tive multivariate models.

1.5 scope and outline of this thesis

In the previous paragraphs some typical challenges were discussed that re-
searchers are faced with when handling data from metabolomics studies using
untargeted mass spectrometry based data. The aim of this thesis was to de-
velop concepts and methods to extract qualitative and quantitative information
about metabolites from untargeted mass spectrometric data. For this, different
methods were developed to obtain quantitative metabolite data in large stud-
ies using GC-MS, LC-high resolution MS (HR-MS) and direct infusion high
resolution mass spectrometry. The different methods address different parts
in the metabolomics workflow, i.e. data -acquisition, data pre-processing up to
data-analysis.

As the performance of analytical systems can vary, different methods of
normalization to improve quantification for known and unknown compounds
were developed. In Chapter 2 it is demonstrated that for (relative) quantifica-
tion of metabolites in GC-MS metabolomics studies, in the absence of matched
stable isotopes, per metabolite normalization based on a single internal stan-
dard is not enough to correct for analytical batch-to-batch differences. This
is especially troublesome in large scale metabolomics studies where many
samples need to be measured and consequently many analytical batches are
needed. Furthermore, even within a single analytical batch a clear trend in the
response for specific metabolites was observed. A statistical procedure based
on repetitive measurements of identical samples (i.e. technical replicates) is
suggested that corrects for these batch-to-batch differences even for metabo-
lites without a proper internal standard.

In the search for biomarkers for Diabetic Kidney Disease (DKD) in Chapter
3 LC-MS data of urine samples of an epidemiological study were analyzed.
Data acquisition was for that data set unfortunately suboptimal, and various
variations in the data were present making (relative) quantification of this un-
targeted data set difficult. Still, after extensive data preprocessing, a clean data
set was obtained suitable for data analysis. It was shown that multivariate sta-
tistical modeling was advantageous over univariate modeling for the discovery
of biomarkers for this data set. Penalized logistic regression models were used
to create a predictive model. Double-cross validation was used to reveal poten-
tial new biomarkers.
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In Chapter 4 a method has been developed and demonstrated for the pro-
cessing of another type of very complex metabolomics data, i.e. metabolomics
data obtained by direct infusion mass spectrometry. It was demonstrated that
with the preprocessing method that was developed, biological relevant results,
i.e. the characterization of different development stages of zebrafish embryos,
could be extracted from these very complex metabolomics data. Feature iden-
tification was solely based on accurate mass and therefore the samples were
recorded with a very high mass resolution. The method developed was based
on the binning tools developed for LC-MS (Chapter 5) by aligning the masses
over samples which enabled further automated data analysis. Internal stan-
dard correction for the unknown features was based on the same strategy as
described in Chapter 2. In the absence of quality control samples however,
the relative standard deviation (RSD) was calculated using replicated measure-
ments.

The integration problems that were observed during pre-processing of un-
targeted LC-MS data from earlier experiments (including those reported in
Chapter 3), led to the awareness of the lack of good software to integrate peaks
in such data sets. The freely available software options required much exper-
tise to configure and were not robust enough to quantify metabolites present
at low intensities with good precision and accuracy. In Chapter 5 therefore a
new approach was introduced to integrate samples acquired using LC-time-of-
flight-MS. The samples were automatically processed one-by-one to facilitate
(future) parallel processing. With only a few parameters that need to be set the
user interaction is kept to a minimum, but at the same time obtaining reliable
quantitative data on peak areas of known and unknown metabolites.
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