
On products of linear error correcting codes
Mirandola, D.

Citation
Mirandola, D. (2017, December 6). On products of linear error correcting codes. Retrieved
from https://hdl.handle.net/1887/57796

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/57796

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/57796

Cover Page

The handle http://hdl.handle.net/1887/57796 holds various files of this Leiden University
dissertation

Author: Mirandola, Diego
Title: On products of linear error correcting codes
Date: 2017-12-06

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/57796

On Products
of Linear Error Correcting Codes

Proefschrift
ter verkrijging van

de graad van Doctor aan de Universiteit Leiden
op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties
te verdedigen op woensdag 6 december 2017

klokke 15:00 uur

door

Diego Mirandola
geboren te Verona, Italië,

in 1988

Promotores: Prof. dr. Ronald Cramer (CWI & Universiteit Leiden)
Prof. dr. Gilles Zémor (Université de Bordeaux)

Copromotor: Dr. Ignacio Cascudo (Aalborg University)

Samenstelling van de promotiecommissie:

Dr. Anne Canteaut (Inria Paris)

Dr. Ruud Pellikaan (Technische Universiteit Eindhoven)

Prof. dr. Bart de Smit (Universiteit Leiden)

Prof. dr. Aad van der Vaart (Universiteit Leiden)

Prof. dr. Qing Xiang (University of Delaware)

This work was funded by Erasmus Mundus Algant-Doc and was carried out
at Universiteit Leiden, Université de Bordeaux and CWI Amsterdam.

THÈSE EN COTUTELLE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ET DE L’UNIVERSITÉ DE LEYDE

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

INSTITUT DES MATHÉMATIQUES DE L’UNIVERSITÉ DE LEYDE

SPÉCIALITÉ Mathématiques Pures

Par Diego MIRANDOLA

Sur les Produits

de Codes Correcteurs d’Erreurs Linéaires

Sous la direction de Ronald CRAMER et Gilles ZÉMOR

Soutenue le : 6 decembre 2017 à Leyde

Rapporteurs :

Ruud PELLIKAAN Universitair Docent, TU Eindhoven
Qing XIANG Professeur, University of Delaware

Membres du jury :

Anne CANTEAUT Directrice de recherche, Inria Paris Examinatrice
Ruud PELLIKAAN Universitair Docent, TU Eindhoven Rapporteur
Bart DE SMIT Professeur, Universiteit Leiden Président
Aad VAN DER VAART Professeur, Universiteit Leiden Examinateur

Ai miei nonni

Contents

1 A Survey on Code Products 1
1.1 Codes and Code Products . 1
1.2 Error Locating Pairs . 6
1.3 Secret Sharing and Secure Multiparty Computation 8
1.4 Bilinear Multiplication Algorithms 11
1.5 Additive Combinatorics . 12
1.6 Cryptanalysis of McEliece Cryptosystem 13
1.7 Outline of the Thesis . 15

2 Preliminaries 17
2.1 Overview . 17
2.2 Notation . 18
2.3 Bilinear Algebra . 18
2.4 Quadratic Forms . 21

2.4.1 Classification in charK 6= 2 23
2.4.2 Classification in charK = 2 26
2.4.3 Number of Zeros of a Quadratic Form 28
2.4.4 Number of Quadratic Forms of Given Rank 30

2.5 Coding Theory . 38
2.5.1 MDS Codes and Reed-Solomon Codes 40
2.5.2 Code Products . 44
2.5.3 Error Correcting Pairs 48
2.5.4 Code Products and Bilinear Maps 50

2.6 Arithmetic Secret Sharing . 51
2.6.1 Composition of Secret Sharing Schemes 56
2.6.2 Threshold Schemes and Shamir’s Scheme 57
2.6.3 Connection between Coding Theory and Secret Sharing 58
2.6.4 From Secret Sharing to Multiparty Computation 61

3 Squares of Random Linear Codes 65
3.1 Overview . 65
3.2 Proof of Theorem 3.1.5 . 70

3.3 Quadratic Forms . 75
3.4 Proof of Main Theorem 3.1.2 76
3.5 Changing the Probabilistic Model 83

4 Critical Pairs for the Product Singleton Bound 85
4.1 Overview . 85
4.2 Kneser’s Theorem . 87
4.3 Vosper’s Theorem . 91

4.3.1 Consequences of Theorem 4.3.2 96
4.4 Classification of PMDS pairs 99
4.5 Concluding Comments . 103

5 On Secret Sharing with Non-linear Product Reconstruction 105
5.1 Overview . 105
5.2 Separating Quadratic Forms . 109
5.3 Finding “Exotic Schemes” . 111
5.4 Composition and Proof of the Main Result 114
5.5 The Smallest Examples . 116

Bibliography 123

Summary 131

Samenvatting 133

Résumé 135

Acknowledgments 137

Curriculum Vitae 139

Chapter 1

A Survey on Code
Products

1.1 Codes and Code Products

In this thesis we study products of linear error correcting codes. We show three
main results on such products and discuss applications to cryptography. Our
methods are typically algebraic-combinatorial in nature, though sometimes
probabilistic techniques will be involved. In this survey chapter we introduce
codes and code products, and motivate our interest by showing how code
products have appeared and are relevant in several topics. Finally, we will
conclude this chapter with an overview of our results and a discussion putting
their significance into perspective.

The following scenario, outlined by MacWilliams and Sloane in their hand-
book [48], may appear slightly old fashioned, but still helps introducing error
correcting codes, as a mean to correct the errors introduced by some noisy
communication channel.

Suppose there is a telegraph wire from Boston to New York down
which 0’s and 1’s can be sent. Usually when a 0 is sent it is received
as a 0, but occasionally a 0 will be received as a 1, or a 1 as a 0.
Let’s say that [. . .] for each symbol there is a probability p = 1/100
that the channel will make a mistake.

Modern settings in which error correcting codes are used are for instance deep
space communications, broadcasting and mass storage. These share a common

1

feature: retransmission of data is impossible, due to economic or practical
constraints. As an example, suppose that, ten years ago, we recorded our
favourite song on a disc, and now we want to listen to that song again. If
we had done it “naively”, that is if we saved one bit of the song (whatever it
means) as one bit of information in the disc (whatever it means), then we would
have no way to recover corrupted bits. Note that in this case retransmission,
i.e. asking our ten-years-ago self to record the disc again, is not an option.

Roughly speaking, an error correcting code is given by a pair of functions
Enc and Dec, standing for encode and decode respectively, with the following
property: if a message m is encoded as x = Enc(m), and x is turned into x̃ by
a “small” error e, then x̃ is correctly decoded as Dec(x̃) = m. This situation is
represented in Figure 1.1. Of course it shall be ensured that Dec(Enc(m)) = m,
i.e. decoding always works properly if no corruption occurred.

Enc Channel Decm x = Enc(m) x̃ = x+ e Dec(x̃)

e

Figure 1.1

Refraining again from a proper mathematical formalization, we give an intu-
ition of how encoding and decoding are possible. The encoding function Enc

embeds a setM of allowed messages into a larger set E which contains, beside
the set Enc(M) of all meaningful encodings, all their corrupted variants. In
addition, E is endowed with a metric structure, i.e. a notion of distance be-
tween any two elements of E is defined. In particular, this allows us to quantify
an error, by measuring the distance between an encoding x and its corrupted
version x̃. Now, assume that Enc maps the elements of M into elements of
E which are sufficiently far apart from each other, with respect to this notion
of distance. As above, assume that a message m is encoded as x = Enc(m)
and turned into x̃ by some error. If the error is sufficiently small, then x will
be uniquely identified as the closest-to-x̃ element of Enc(M), and the original
message computed as m = Enc−1(x). Figure 1.2 represents this situation.

We are finally ready to formalize this setting. Prominent notions are those of
linear code and Hamming distance, which model the copy of M in E contain-
ing all meaningful encodings and the metric structure of the ambient space E .
We will not be concerned with more general families of codes or with different
metrics in this work. A wider introduction to the theory of linear error cor-
recting codes is given in Section 2.5. Among the standard references on the
topic we cite [37, 48, 71].

2

M
m1 m2

m3 m4

Enc

E
x1

x3

x2

x4

x̃3

Figure 1.2: The message space is M = {m1,m2,m3,m4}, its image is
Enc(M) = {x1, x2, x3, x4} ⊆ E . The message m3 is encoded as x3 = Enc(m3)
and transmitted, then turned into x̃3 by some error. As x3 is the closest
element of Enc(M), Dec(x̃3) = Enc−1(x3) = m3 is decoded correctly.

Let F be a finite field and let q denote its size1. Let k ≤ n be two positive
integers. The encoding function Enc maps messages from the F-vector space
M := Fk into elements of the F-vector space E := Fn. It is required to be
injective, so that any encoded message can be unambiguously recovered. The
image C := Enc(M) ⊆ E is called a code, and it is linear if the encoding
function is F-linear. The elements of a code are called codewords. If this is the
case, we can associate a k×n matrix G, a generator matrix of C, to the linear
map Enc so that Enc(m) = mG and C = {mG : m ∈ Fk} ∼= Fk. Here we write
vectors in row form as it is customary in coding theory.

The (Hamming) distance between two vectors

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn

is
d(x, y) := |{i : xi 6= yi}|,

that is the number of positions in which x and y differ2. The weight of a vector
is its distance from the zero vector, i.e. the number of positions in which it has
a non-zero entry. The minimum distance of the code C is

dmin(C) := min{d(x, y) : x, y ∈ C, x 6= y} = min{wt(x) : x ∈ C, x 6= 0},

that is the minimal distance between any two distinct codewords, or equiva-
lently the minimal weight of any non-zero codeword.

The decoding function Dec, for all x ∈ Fn, is defined as follows: if there
exists a unique y ∈ C which minimizes d(x, y) then Dec(x) := Enc−1(y);

1It is a well-known fact that q is a prime power.
2The Hamming distance between two vectors is always a non-negative integer and is

indeed a distance in the usual mathematical sense: for any x, y, z ∈ Fn it holds that (i)
d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y, (ii) d(x, y) = d(y, x), (iii) d(x, y) ≤
d(x, z) + d(z, y).

3

otherwise Dec(x) := ⊥, an abort symbol. Observe that, even though such
a function is well defined3, it may be practically unfeasible to compute it by
exhaustive search as the definition seems to require. Efficient, specific decoding
algorithms are used instead in all applications: for instance, if a code has a
t-error correcting pair (see the next section) then it has a t-error correcting
algorithm with complexity O(n3). The minimum distance quantifies the error
tolerance of a code. Errors are modeled as vectors which are added to the
message: a vector x ∈ Fn, corrupted by e ∈ Fn, becomes x̃ = x+e, and in this
case we say that wt(e) errors occurred. It is easy to see that, for all m ∈ Fk
and e ∈ Fn with wt(e) < dmin(C)/2, we have

Dec(Enc(m) + e) = m,

i.e. a code can tolerate errors of weight up to half of its minimum distance.

We continue with a remark about the relevant parameters of a code, namely
length, dimension (as an F-vector space) and minimum distance. For fixed
length, it is of course desirable for dimension and minimum distance to be as
large as possible, as these measure the size of the messages that we can encode
and the amount of errors that we can tolerate. The trade-off between them
is quantified by several classical bounds. Among them, the Singleton Bound
claims that, for a code C of length n, it holds that

dimC + dmin(C) ≤ n+ 1.

If C attains this bound, i.e. if

dimC + dmin(C) = n+ 1,

then it is said to be maximum distance separable (MDS).

In order to define the product of two codes, we need to define some additional
structure on the ambient space. Observe that the n-fold cartesian product Fn
has a natural structure of F-algebra, with multiplication induced by compo-
nentwise application of multiplication in F, i.e. for all x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Fn we define

xy := (x1y1, . . . , xnyn).

We also define x2 := xx and higher powers in the obvious way.

Given two codes C,D ⊆ Fn, their product is the F-linear span of the set of all
products xy with x ∈ C and y ∈ D,

CD := 〈xy : x ∈ C, y ∈ D〉.
3As Enc is injective, Enc−1(y) is well defined for all y ∈ C.

4

Observe that the set of all products is not necessarily additively closed, so it
is strictly contained in the code product in general. We also define the square
C2 := CC of a code, and higher powers inductively. We are using the same
notation for set cartesian product and code componentwise product, but the
context will always help clarifying this ambiguity.

The product of two codes C,D ⊆ Fn, sometimes called the Schur product, has
usually been denoted by C ∗D, but we shall drop the star symbol to lighten
notation. Products of codes turn up in a variety of situations, such as alge-
braic error correction, secret sharing and multiparty computation, algebraic
complexity theory, additive combinatorics, and lately cryptanalysis. This sur-
vey will briefly encompass all these topics. A number of efforts have gone into
describing the code-theoretic structure of code products, see [28, Chapter 12]
and [65] for an extensive review of the current state of the art. In particular,
[65] collects several technical results which will be cited explicitly and used in
this thesis.

We can immediately state a trivial upper bound for the product dimension.
For any pair of codes C,D it holds that

dimCD ≤ dimC dimD and dimC2 ≤ dimC(dimC + 1)

2
.

To see this, observe that if {x1, . . . , xk} and {y1, . . . , y`}, where k := dimC and
` := dimD, are F-bases of C and D respectively then the elements xiyj with
1 ≤ i ≤ k, 1 ≤ j ≤ ` generate CD and the elements xixj with 1 ≤ i ≤ j ≤ k
generate C2. In fact it holds that these bounds are achieved by most codes:
roughly speaking, code products typically fill the whole space. This is shown
in Chapter 3, which is based on [13], for the second inequality, while for the
first inequality the reader is referred to [64].

We conclude this section with an example. The codes we are going to de-
scribe not only have a nice mathematical structure, but are also widely used
in practical applications. Fix k ≤ n ≤ q and n pairwise distinct elements
α1, . . . , αn ∈ F. Let F[X]<k denote the vector space of all polynomials in the
indeterminate X, with coefficients in F, and degree less than k. The image of
the evaluation map

F[X]<k Fn
f (f(α1), . . . , f(αn))

is a linear space, called a Reed-Solomon code. This map is injective because
any polynomial of degree at most k−1 is uniquely determined by any k distinct
evaluations, hence the code has dimension k. Moreover, a polynomial of degree
at most k− 1 has at most k− 1 zeros, hence any codeword has weight at least

5

n − k + 1. It follows that the code has minimum distance at least n − k + 1,
hence it is an MDS code.

The image of the standard basis of F[X]<k is a basis of the code, and gives a
generator matrix in Vandermonde form, namely

1 · · · 1
α1 · · · αn
...

...

αk−11 · · · αk−1n

 .

Now let C and D be Reed-Solomon codes of length n with the same evaluation
points α1, . . . , αn ∈ F. It is easy to see that also CD is a Reed-Solomon code
with the same evaluation points and that

dimCD = dimC + dimD − 1,

provided that this quantity is smaller than n. Indeed, if C and D are the
images of F[X]<k and F[X]<` respectively, where k := dimC and ` := dimD,
then CD is the image of F[X]<k+`−1, because F[X]<k+`−1 is spanned by the
polynomials of the form fg with f ∈ F[X]<k, g ∈ F[X]<`. Observe that in
this case the dimension is significantly smaller than the general upper bound
obtained above4.

The rest of this survey is dedicated to motivating our systematic code-theoretic
study of code products, by showing a number of different contexts in which
questions related to their possible parameters arise. An outline of the structure
of this thesis concludes the chapter.

1.2 Error Locating Pairs

Possibly one of the earliest appearances of code products goes back to [57,
58, 59, 43] where it is relevant to the notion of error locating pairs used for
algebraic decoding. On a historical note, we mention earlier appearances of
code products in work on a proof of the Roos bound for cyclic codes [70] and
on secure multiparty computation [6, 18].

Throughout this section, let t denote a positive integer. According to [57, 58],
a t-error locating pair for a code C ⊆ Fn is a pair of codes A,B ⊆ Fn satisfying

(i) AB ⊆ C⊥,

4We are comparing dimC + dimD − 1 with dimC dimD.

6

(ii) dimA > t,

(iii) dmin(B⊥) > t.

Here the symbol “⊥” denotes the dual with respect to the standard inner
product in Fn. Observe that the product of A and B appears in the first
property. If in addition it holds that

(iv) dmin(A) + dmin(C) > n

then the pair is said to be t-error correcting. In [59, 60] this definition was
extended by allowing A and B to be defined over a finite extension of F.

As an example, consider a pair of Reed-Solomon codes A and B with the same
sequence of evaluation points. Assume that dimA = t + 1 and dimB = t.
Then (A,B) is a t-error correcting pair for C := (AB)⊥. Other constructions
of error correcting pairs can be found in [58, 60] for algebraic-geometric codes
and in [31] for cyclic codes.

These objects are relevant to the decoding problem. Suppose that the sum
x̃ = x + e of a codeword x ∈ C and of an error vector e ∈ Fn of weight t is
known. Is it possible to correct the t errors in x̃, i.e. recover x, efficiently? The
existence of error correcting pairs allows one to answer positively [57, 58]: given
a t-error correcting pair, it is possible to build a t-error correcting algorithm
with complexity O(n3), where n denotes the length of the code.

We show how this works in practice for a Reed-Solomon code C. Recall that in
this case a codeword is of the form x = (f(α1), . . . , f(αn)), where f ∈ F[X]<k
is a polynomial of degree less than k and α1, . . . , αn ∈ F are pairwise distinct.
Suppose that the vector

x̃ = (x̃1, . . . , x̃n) ∈ Fn

is received, and that wt(x̃−x) ≤ t, i.e. at most t errors occurred. Our purpose
is to recover the original codeword x, or equivalently the error vector e := x̃−x.
The key observation is the following: a polynomial ` ∈ F[X] of degree t which
is zero at all error positions, i.e. `(αi) = 0 for all i such that x̃i − f(αi) 6= 0,
satisfies

f(αi)`(αi) = x̃i`(αi)

for all i = 1, . . . , n. This is a system of n equations which is quadratic in
the coefficients of the polynomials f and `. Let A denote the Reed-Solomon
code corresponding to the polynomial space F[X]<t+1 with evaluation points
α, . . . , αn, so that (`(α1), . . . , `(αn)) ∈ A. Observe that at the left-hand side
we have the entries of the vector

(f(α1)`(α1), . . . , f(αn)`(αn)),

7

which belongs to the product code CA. We can transform this quadratic
system into a linear system by replacing the left-hand side with a polynomial
g ∈ F[X] of degree at most k + t which needs to satisfy

g(αi) = x̃i`(αi)

for all i = 1, . . . , n. Now the unknowns are the k + 2t coefficients of the
polynomials g and `. Finally, if a solution of the form g = f` is obtained, then
f = g/` can be recovered.

The codes C and A in our example correspond to C and A in the definition
of an error correcting pair. The code B in the definition corresponds to the
dual of the product code CA in our example, fulfilling the first requirement of
the definition. The other conditions ensure that the quadratic system above
has a solution, that such a solution is of the desired form and, finally, that it
is unique.

1.3 Secret Sharing
and Secure Multiparty Computation

“Products” and “squares” of codes are the primary focus of work on arith-
metic secret sharing [19, 11, 15, 16] and its application to secure multi-party
computation [27]. In this thesis we will not be concerned with notions of
secret sharing without arithmetic properties, and the interested reader is re-
ferred to [5, 56]. Secret sharing has as main motivation and application secure
multiparty computation (MPC). Secure multiparty computation studies the
problem of evaluating a function on inputs submitted by several players, while
guaranteeing privacy and correctness even in presence of dishonest players,
who may try to acquire more information than they are supposed to, possibly
deviating from the protocol.

Secret sharing deals with the problem of protecting a secret by distributing
shares among a number of players, in a way so that only some privileged
player coalitions are accepted, i.e. can recover the secret by putting together
their shares, while other player coalitions are rejected, i.e. any possible secret
is equally likely to them. An algebraic structure which implements this func-
tionality is called a secret sharing scheme. The family of all accepted set and
the family of all rejected set are called the access structure and the adver-
sary structure respectively. A scheme has t-privacy if the adversary structure
contains any set of (at most) t players, and has r-reconstruction if the access
structure contains any set of (at least) r players. Here t and r are positive
integers with 1 ≤ t < r ≤ n, where n denotes the number of players. A scheme
with (r − 1)-privacy and r-reconstruction is called r-threshold.

8

To share a secret s ∈ F among n players using a linear code C ⊆ Fn+1, one stan-
dardly chooses a random codeword whose 0-th coordinate equals s and define
the i-th share to be the i-th coordinate5 [50]. Then the privacy and reconstruc-
tion parameters of the scheme can be estimated from the parameters of the
code: precisely, the scheme has (dmin(C⊥)− 2)-privacy and (n− dmin(C) + 2)-
reconstruction6. Analogously, to share a secret vector s ∈ Fk among n players
using a linear code C ⊆ Fn+k, one standardly chooses a random codeword
with some fixed k-tuple of coordinates equal to s and distributes the other
coordinates as shares. Again, privacy and reconstruction of the scheme can
be estimated using the minimum distance of the dual and of the code itself
respectively.

When two secrets s and s′ are shared in this way, summing coordinatewise the
share vectors gives naturally a share vector of the coordinatewise sum s+s′ of
the secrets7. When one considers the product of the share vectors, one obtains
a share of the product ss′, but for a different secret sharing scheme, namely
that associated to the product code C2. We say that a secret sharing scheme
is arithmetic if it supports multiplication, i.e. if the product of two secrets
can be reconstructed from the product of the share vectors. To prevent a
common misunderstanding, we highlight here that, in practical applications,
the product reconstruction property is not used in the straightforward way, i.e.
to recover the secret product given the share products. Instead, it allows to
reduce a secure multiplication to a secure computation of a linear functional.

If C is a Reed-Solomon code, the above construction defines the well-known
Shamir scheme [67]. Let α1, . . . , αn be non-zero, pairwise distinct elements of
F. To share a secret s ∈ F, one picks uniformly at random a polynomial f of
degree less than a fixed parameter k, under the constraint that f(0) = s, and
defines the i-th share to be f(αi). It turns out that the scheme has (k − 1)-
privacy and k-reconstruction, hence in particular it is k-threshold. Assuming
that 2k − 1 ≤ n, we have that the code square C2 is also a Reed-Solomon
code, hence it defines a scheme with (2k − 1)-reconstruction. It follows that
Shamir’s scheme is arithmetic in this case.

The above operational definition of secret sharing can be formalized in several
equivalent ways. Among these we mention the notion of codex8, introduced
in [16] and extensively treated in [28]. For instance, using this definition, an
(n, t, 1, r)-codex for F over F is a secret sharing scheme among n players with
t-privacy and r-reconstruction, while an (n, 1, 2, n)-codex is an arithmetic se-
cret sharing scheme among n players. An (n, t, 2, n− t)-codex is an arithmetic
secret sharing scheme with t-privacy and (n − t)-product reconstruction, i.e.

5We index the coordinates of Fn+1 with {0, 1, . . . , n}.
6Here C⊥ denotes the dual of C with respect to the standard inner product in Fn+1.
7Because the code is linear.
8The plural of codex is codices.

9

the product of two secrets can be reconstructed from any set of n − t prod-
ucts of shares. Such a secret sharing scheme is called t-strongly multiplicative.
Roughly speaking, given an (n, t, d, r)-codex, n is the number of players, t is
the privacy threshold, d is the multiplicative depth and r is the product recon-
struction threshold. Moreover we can have codices for arbitrary F-algebras,
such as Fk or finite extension fields of F, meaning that the secret lies in this
algebra. The strength of this notion is that it encompasses all known relevant
variations on arithmetic secret sharing, and notions from other fields, such as
the one of bilinear multiplication algorithm introduced in Section 1.4, as well.
In addition, in [28, Section 12.5.4] codices are used to present a variation on
the decoding method based on error correcting pairs.

Since the parameters of a code are relevant to the associated secret sharing
scheme, studying the parameters of C2 becomes important. In order to be
useful for strongly multiplicative secret sharing, a code needs to have a dual
with good minimum distance (to control the privacy threshold) and a square
with good minimum distance as well (to control the product reconstruction
threshold). Hence interest is focused on families of linear codes (Ci)i∈N of
unbounded length, such that the families of the dual codes (C⊥i)i∈N and of the
squares (C2

i)i∈N are asymptotically good, i.e.

lim sup
i→∞

dmin(C⊥i)

ni
> 0, lim sup

i→∞

dmin(C2
i)

ni
> 0,

where, for all i ∈ N, ni denotes the length of Ci [11].

Such families were first constructed, over all finite fields of size q ≥ 49 with
q square, in [19] using techniques from algebraic geometry, namely asymptot-
ically good towers of algebraic function fields. In [11] these families of codes
were combined with a dedicated field descent technique to obtain arithmetic
secret sharing schemes with good parameters over any field9. This work was
subsequently extended in [15, 17], with the construction of asymptotically
good families of codes over fields of size q = 8, 9 and q ≥ 16, involving novel
algebraic-geometric ideas such as torsion limits and Riemann-Roch systems of
equations for function fields. We remark that no elementary construction of
such families of codes is known so far.

Besides its original application, the result of [19] played a central role in the
paper [40] on the “secure MPC in the head” paradigm: here secure MPC is
used as an abstract primitive for efficient two-party cryptography10. Among
other subsequent fundamental results, let us mention that asymptotically good
codes whose dual and square are also asymptotically good are an essential in-

9The corresponding codes may be bad.
10For an extensive treatment of the interplay between secure multiparty computation,

(arithmetic) secret sharing, codes and algebraic geometry, please consult [28].

10

gredient in the recent constructions of efficient unconditionally secure oblivious
transfer protocols from noisy channels [38].

Bilinear complexity theory, briefly discussed in Section 1.4, is concerned with
a similar problem, namely the construction of asymptotically good families of
codes whose squares are also asymptotically good. As opposed to the case
of secret sharing, in this setting no condition is imposed on the duals. Such
families have been shown to exist for all finite fields in [63]. This construction
carefully combines algebraic geometric codes that have asymptotically good
higher powers, which can be constructed over large enough finite fields, with
a field descent concatenation technique. Again, no elementary construction is
known in this case.

Finally, recent work [1], inspired by [53], exploited combinatorial properties
of codes and code products to prove that, among all t-strongly multiplicative
secret sharing schemes on n players, only Shamir’s scheme can achieve the
optimal t = (n− 1)/3.

1.4 Bilinear Multiplication Algorithms

Code products also appear in algebraic complexity theory [21]. There one
wishes to express multiplication in some finite extension field L/F through
a bilinear algorithm involving a small number of multiplications in F: given
x, y ∈ L, instead of computing their product directly, one wants to map them
into Fn using a linear map σ, componentwise multiply σ(x) and σ(y), and then
map their product back to L using another linear map ρ. The requirement is
that

xy = ρ(σ(x)σ(y))

for all x, y ∈ L, where the multiplication at the left-hand side is in L while the
multiplication at the right-hand side is in Fn. In other words, the following
diagram has to be commutative.

L × L L

C × C

⊆ ⊆

Fn Fn

σ σ

C2

⊆

Fn

ρ

To better highlight how this topic is related to code squares, we remark that
the image C of L via σ is a linear subspace of Fn, i.e. a code, and that the

11

image of C via the componentwise multiplication in Fn spans C2.

The pair (σ, ρ) is called a bilinear multiplication algorithm for L over F, and n is
its expansion. The minimal among the expansions of all bilinear multiplication
algorithms for L over F is called the bilinear complexity of L over F. If a
bilinear multiplication algorithm for L over F with expansion n exists, then
we can reduce multiplication in L to n multiplications in F (and application
of two linear maps).

As an example, textbook multiplication in L, which consists of identifying ele-
ments of L with univariate polynomials with coefficients in F and multiplying
them as such, is a bilinear multiplication algorithm with expansion n =

(
k+1
2

)
,

where k denotes the degree of the field extension.

As anticipated in the previous section, this notion is encompassed by the codex
definition: a bilinear multiplication algorithm for L over F is an (n, 0, 2, n)-
codex for L over F. Recall that an (n, 0, 2, n)-codex is a secret sharing scheme
among n players with 0-privacy and n-product reconstruction. In order to
obtain a bilinear multiplication algorithm from such a scheme, it suffices to
define σ to be the map which assigns to a secret a set of valid shares, and ρ the
map which reconstructs the product of two secrets from the products of the
shares. In addition, we require that the dimension of σ(L) as an F-vector space
equals the degree of L as an extension field of F. This prevents redundancies
in the bilinear multiplication algorithm.

Among the first results on the topic, we mention [74] and [46]. In [74] it is
proved that any bilinear multiplication algorithm has expansion n ≥ 2k − 1,
where k denotes the degree of the field extension. In [46] it is proved that the
bilinear complexity is a quasi-linear function of the extension degree k, i.e. it
is bounded by f(k)k where f satisfies

f(k) < log log · · · log k

for any number of applications of the logarithm function. For recent develop-
ments, we refer to [3, 14, 61, 17].

1.5 Additive Combinatorics

Additive combinatorics [69] investigates the additive structure of sets. Given
an abelian group G and two non-empty subsets A,B ⊆ G, additive combina-
torics studies, for instance, the size of the sum set

A+B := {a+ b : a ∈ A, b ∈ B}

12

and the necessary conditions so that the sum set size is minimal. This problem
is the object of the classical theorems of Kneser [42] and Vosper [72]. For
background on and proofs of Kneser and Vosper’s Theorems we refer to [69].
Kneser’s Theorem implies in particular that if A,B are subsets of an abelian
group such that

|A+B| < |A|+ |B| − 1

then A + B must be periodic, i.e. there exists a non-zero element g of the
abelian group that stabilizes A + B so that we have A + B + g = A + B.
Vosper’s Theorem is a characterization of pairs of subsets A,B of the integers
modulo a prime p with the property that |A + B| = |A| + |B| − 1. It states
that, excluding some degenerate cases, A,B must be arithmetic progressions
with the same difference.

The purpose of some recent works [36, 2, 4, 53] is to translate questions from
classical additive combinatorics to different contexts. As an example, one can
take a field extension L/K instead of an abelian group as ambient space. In
this context, we can consider two K-vector spaces S, T contained in L and
study the dimension of the product vector space

ST := 〈st : s ∈ S, t ∈ T 〉,

where the product is the field multiplication in L and the brackets 〈·〉 mean
that the linear span is taken. It was proved in [36] that an analogue of Kneser’s
Theorem carries over to this case11.

A subsequent step is to translate additive combinatorics into the context of
coding theory: consider Fn, where F is finite field, as ambient space, and let
C,D ⊆ Fn be two F-vector spaces, i.e. two codes. In this setting, the natural
counterpart of the sum set size is the dimension of the code product CD. An
even more general context is considered in [4], where Fn is replaced by an
arbitrary algebra over the base field.

1.6 Cryptanalysis of McEliece Cryptosystem

As a last motivation, there has been some recent use of code squares in the
cryptanalysis of variants of the McEliece cryptosystem. McEliece cryptosys-
tem [52] is a code-based public-key cryptosystem which relies on the hardness
of the general decoding problem [8].

Let C be a code, with encoding and decoding algorithm Enc and Dec, and
assume that Dec can correct efficiently t errors. For instance, one may think
that C admits a t-error correcting pair. Then a secret message m can be

11Under the additional assumption that the field extension is separable.

13

encrypted as c := Enc(m) + e, where e is a random vector of weight t. Due
to the error correcting property of the algorithm, it is possible to recover the
original message as

m = Dec(c) = Dec(Enc(m) + e).

An external adversary (who does not know Dec, or in our example a t-error
correcting pair for C), in order to recover m, is required to solve the general
decoding problem, which is known to be hard.

Concretely, the private key consists of C and Dec, while the public key is a
generator matrix G of C together with the decoding capability t of Dec. The
matrix G is “scrambled” in a way so that the original structure of the code is
hidden12, and consequently the efficient decoding algorithm as well,. To build
this cryptosystem, Goppa codes [48, Chapter 12] are standardly used. One
immediately notices that the public key, being a matrix, is huge: this is the
main disadvantage of this cryptosystem.

The main advantage is the reliance on the general decoding problem, which
makes this cryptosystem resistant even in a post-quantum scenario. On the
other hand, recent attacks aim to recover the “hidden” structure of the code
from the “scrambled” matrix, hence the efficient decoding algorithm, rather
than the original message directly via general decoding algorithms. The idea
exploited in [34, 23, 25, 26] is that Goppa codes have a square that has a
substantially smaller dimension than typical random linear codes: this allows
to build a distinguisher which can be used to attack the cryptosystem.

As an example, we quickly sketch how code squares were used in [24] to attack
Wieschebrink’s encryption scheme [73]. To give a bit of context, we recall that
McEliece cryptosystem based on Reed-Solomon codes, as proposed in [55],
was proved to be insecure in [68]: here it was shown that, in the case of a
Reed-Solomon code, a generator matrix in standard form can be recovered
efficiently from any scrambled one. To fix this, Wieschebrink [73] proposed
to insert in the generator matrix some random columns: this suffices to make
the algorithm [68] fail, while preserving the decryption capability of the code.
This variant was broken in [24], using arguments based on code squares. The
idea that is exploited is that the dimension of the square of a Reed-Solomon
code C is

dimC2 = 2 dimC − 1,

while in the general, random case the square of a code tends to fill the full
space13. Let C be a code obtained by inserting in a Reed-Solomon code some
random columns. Let i be a coordinate and let Cı be the code obtained

12To obtain such a matrix, one can take any generator matrix G′ and define G := HG′P
where H is invertible and P is a permutation matrix.

13This is formalized and proved in Chapter 3, which is based on [13].

14

by puncturing C at i, i.e. the code obtained from C by removing the i-th
coordinate of all its codewords. Now compare the dimension of the squares of
C and Cı: if the square dimension decreased after puncturing, i.e. if

dimC2
ı < dimC2,

then the i coordinate corresponds to a random column. Iterating this argu-
ment, one can remove all random columns, and finally be able to apply [68] to
recover the original Reed-Solomon code.

1.7 Outline of the Thesis

The main body of this thesis consists of three chapters, dedicated to the fol-
lowing three different published works.

[13] I. Cascudo, R. Cramer, D. Mirandola, and G. Zémor. Squares of Random
Linear Codes. IEEE Transactions on Information Theory, 61(3):1159–
1173, March 2015.

[53] D. Mirandola and G. Zémor. Critical Pairs for the Product Singleton
Bound. IEEE Transactions on Information Theory, 61(9):4928–4937,
Sept. 2015.

[12] I. Cascudo, R. Cramer, D. Mirandola, C. Padró, and C. Xing. On se-
cret sharing with nonlinear product reconstruction. SIAM Journal on
Discrete Mathematics, 29(2):1114–1131, 2015.

This is preceded by a preliminary chapter where all the mathematical back-
ground necessary to read and understand the discussed topics is introduced.

The purpose of Chapter 3, which is based on [13], is to answer the following
question: does the square of a code “typically” fill the whole space? We give a
positive answer, for codes of dimension k and length roughly k2/2 or smaller.
Moreover, the convergence speed is exponential if the difference k(k + 1)/2−
n is at least linear in k. The proof uses random coding and combinatorial
arguments, together with algebraic tools involving the precise computation of
the number of quadratic forms of a given rank, and the number of their zeros.
As a consequence of this work, it is impossible to rely on random codes in
situations where properties of the code square are required, as it will be the
full space, hence trivial, with high probability. This impacts for instance secret
sharing: it is known [20] that linear, non-multiplicative secret sharing schemes
with optimal privacy and reconstruction parameters can be constructed using

15

random codes; however, due to the results of Chapter 3, such schemes will
most likely not be arithmetic14.

In Chapter 4, based on [53], we characterize Product-MDS pairs of linear codes,
i.e. pairs of codes C,D whose product under coordinatewise multiplication has
maximum possible minimum distance as a function of the code length and the
dimensions dimC,dimD. We prove in particular, for C = D, that if the square
of the code C has minimum distance at least 2, and (C,C) is a Product-MDS
pair, then either C is a generalized Reed-Solomon code, or C is a direct sum of
self-dual codes. The proof is based on new coding-theory analogues of classical
theorems of additive combinatorics, namely Kneser’s and Vosper’s Theorems.
More recently [1], these techniques have been used to prove that, among all
t-strongly multiplicative secret sharing schemes on n players, only Shamir’s
scheme can achieve the optimal t = (n− 1)/3.

Chapter 5, based on [12] focuses on a foundational question which is novel to
the best of our knowledge. Multiplicative linear secret sharing is a fundamental
notion in the area of secure multiparty computation and, since recently, in the
area of two-party cryptography as well. In a nutshell, this notion guarantees
that “the product of two secrets is obtained as a linear function of the vector
consisting of the coordinatewise product of two respective share-vectors”. Sup-
pose we abandon the linearity condition and instead require that this product
is obtained by some, not-necessarily-linear “product reconstruction function”.
Is the resulting notion equivalent to multiplicative linear secret sharing? We
show the (perhaps somewhat counter-intuitive) result that this relaxed notion
is strictly more general. Concretely, fix a finite field as the base field over which
linear secret sharing is considered. Then we show there exists an (exotic) linear
secret sharing scheme with an unbounded number of players n such that it has
t-privacy with t = Ω(n) and such that it does admit a product reconstruction
function, yet this function is necessarily nonlinear. In addition, we determine
the minimum number of players for which those exotic schemes exist. Our
proof is based on combinatorial arguments involving quadratic forms. It ex-
tends to similar separation results for important variations, such as strongly
multiplicative secret sharing.

The first section of each chapter is an overview of the contents of the chapter
itself.

14For completeness, we mention that [20] points out that also random self-dual codes yield
secret sharing schemes with optimal privacy and reconstruction parameters. In addition, this
schemes are trivially multiplicative: as the inner product of any two codewords is zero, any
coordinate of the product word can be expressed as a linear function of the others. However,
this construction does not support more general notions of secret sharing, such as those that
require larger secrets or that can tolerate an adversary who deviates from the protocol.

16

Chapter 2

Preliminaries

2.1 Overview

In this preliminary chapter we introduce all the mathematical background
necessary to read and understand the discussed topics.

Section 2.2 introduces the notation used throughout the whole thesis.

Section 2.3 refreshes some basic notions from the theory of bilinear forms and
establish a correspondence between bilinear forms and tensor products that
will be useful in the future. Most of the material can be found in textbooks
like [45].

Section 2.4 introduces the basic theory of quadratic forms, we outline their
classification, and we prove some combinatorial results that will be useful later
on in this work. Our main reference is [44]. More specific references will be
given throughout the section.

Section 2.5 expands the discussion started in Section 1.1 on the theory of linear
error correcting codes by giving a better formalization of the definitions and
results that we have already mentioned, and by introducing new results as
well. Standard references are [37, 48, 71]. We will be especially focused on the
theory of code products, to which Section 2.5.2 is dedicated. The literature
concerning this topic is quite limited, we cite [65].

Section 2.6 introduces arithmetic secret sharing, which is the main motivation
for our study of code products. In particular, Section 2.6.3 is dedicated to
showing how codes and secret sharing schemes are closely related. We con-
clude this section with a quick sketch of how a secure multiparty computation

17

protocol can be built from a secret sharing scheme. The main reference on
this topic is [28]. Among the possible equivalent definitions of secret sharing
scheme, we pick the one which best suits our needs.

2.2 Notation

We introduce the notation that will be used throughout the whole thesis.

We denote by N the set of natural numbers, with R the field of real numbers
and with R>0 the set of positive real numbers. We write K to denote an
arbitrary field, or F in the case of a finite field. If the field size needs to be
highlighted, we write Fq instead of F, where q is the field size. If we need to
introduce an additional field, e.g. an extension, we use L. We denote by K[X]
the ring of polynomials in the indeterminate X, with coefficients in the field
K. The subspace of K[X] containing only the polynomials of degree less than
k, where k is a positive integer, is denoted by K[X]<k.

We also use some standard notation to describe the asymptotic behavior of
some functions. Let f and g be functions and assume that it makes sense to
consider their limit at x→ +∞, for instance one may think that f and g are
defined over R>0 or over N. Then we say that

• f = o(g) if f(x)/g(x)→ 0 as x→ +∞,

• f = O(g) if |f(x)| ≤ α|g(x)| as x→ +∞, for some α ∈ R>0,

• f = Ω(g) if f(x) ≥ βg(x) as x→ +∞, for some β ∈ R>0.

2.3 Bilinear Algebra

In this section we refresh some basic notions from the theory of bilinear forms
and establish a correspondence between bilinear forms and tensor products
that will be useful in the future. Most of the material can be found in textbooks
like [45].

Throughout this section, let K be an arbitrary field. Let V1, V2 and W be
K-vector spaces. Recall that a map B : V1 × V2 → W is bilinear if, for all
v1 ∈ V1 and v2 ∈ V2, the maps

B(v1, ·) : V2 W
y B(v1, y)

B(·, v2) : V1 W
x B(x, v2)

18

are linear. We recall the fundamental notion of tensor product.

Theorem 2.3.1. There exists a unique pair (T, ι), where T is a K-vector space
and ι : V1 × V2 → T is a bilinear map, with the following property: for all K-
vector spaces W and for all bilinear maps B : V1 × V2 → W there exists a
unique linear map L : T → W such that B = L ◦ ι, i.e. the following diagram
commutes.

V1 × V2
B

W

ι

T

L

Here uniqueness means that if (T ′, ι′) is another pair with the same property
then there exists a unique isomorphism j : T → T ′ such that j ◦ ι = ι′, i.e. the
following diagram commutes.

V1 × V2
ι′

T ′

ι

T
j

Definition 2.3.2. We call the unique vector space given by the previous
theorem the tensor product of V1 and V2 and we denote it by V1 ⊗ V2.

The tensor product of two K-vector spaces V1 and V2 is a K-vector space as
well. If {x1, . . . , xk} and {y1, . . . , y`} are K-bases of V1 and V2 respectively
then {xi⊗ yj : 1 ≤ i ≤ k, 1 ≤ j ≤ `} is a K-basis of V1⊗ V2 and dimV1⊗ V2 =
dimV1 dimV2. The elements of V1 ⊗ V2 are (finite) formal sums of simple
tensors x⊗ y, with x ∈ V1, y ∈ V2, under the conditions:

1. (x+ x′)⊗ y = x⊗ y + x′ ⊗ y for all x, x′ ∈ V1 and y ∈ V2;

2. x⊗ (y + y′) = x⊗ y + x⊗ y′ for all x ∈ V1 and y, y′ ∈ V2;

3. (λx)⊗ y = λ(x⊗ y) = x⊗ (λy) for all x ∈ V1, y ∈ V2 and λ ∈ K.

Let V be a K-vector space of finite dimension k.

Definition 2.3.3. We call a bilinear map B : V × V → K a bilinear form on
V . We say that B is

a. non-degenerate if B(x, y) = 0 for all y ∈ V implies x = 0,

19

b. symmetric B(x, y) = B(y, x) for all x, y ∈ V ,

c. alternating if B(x, x) = 0 for all x ∈ V .

We denote by Bil(V) the K-vector space of all bilinear forms on V . Its sub-
spaces of all symmetric and alternating forms are denoted by Sym(V) and
Alt(V) respectively.

Given B ∈ Bil(V), its transpose is the bilinear map BT : V × V → K defined
by BT (y, x) := B(x, y) for all x, y ∈ V . So by definition B is symmetric if
and only if B = BT . Also note that if B is alternating then B = −BT , i.e.
B(x, y) = −B(y, x) for all x, y ∈ V : this follows by the identityB(x+y, x+y) =
B(x, x) +B(x, y) +B(y, x) +B(y, y) and by the definition of alternating form.
If charK 6= 2 then the converse also holds, as in this case B(x, x) = −B(x, x)
implies that B(x, x) = 0.

Observe that Bil(V) = Sym(V)⊕ Alt(V) if charK 6= 2. Indeed, we can write
any B ∈ Bil(V) as

B :=
1

2
(B +BT) +

1

2
(B −BT),

where the first summand is in Sym(V) and the second summand is in Alt(V).
As charK 6= 2, Sym(V) ∩ Alt(V) = 0 follows from the previous observation.
On the other hand, if charK = 2 then we have Alt(V) ⊆ Sym(V).

Let V ∗ denote the dual space of V , i.e. the vector space of all linear forms on V .
By the universal property of the tensor product, there exists an isomorphism
V ∗ ⊗ V ∗ ∼= Bil(V) which maps, for all π, τ ∈ V ∗, π ⊗ τ into the bilinear form
on V defined by π⊗τ(x, y) := π(x)τ(y) for all x, y ∈ V . We will freely identify
the tensor product of two linear forms with the corresponding bilinear form.
If {πi : 1 ≤ i ≤ k} is a basis of V ∗, then {πi ⊗ πj : 1 ≤ i, j ≤ k} is a basis of
Bil(V) and in particular this implies that dim Bil(V) = k2.

The subspace of V ∗ ⊗ V ∗ corresponding to Sym(V) ⊆ Bil(V) via the above
isomorphism is the span of all forms π⊗π with π ∈ V ∗. If {πi : 1 ≤ i ≤ k} is a
basis of V ∗, then the forms πi⊗πi with 1 ≤ i ≤ k and (πi+πj)⊗(πi+πj) with
1 ≤ i < j ≤ k constitute a basis of Sym(V), hence in particular dim Sym(V) =
k(k + 1)/2.

Definition 2.3.4. We define the rank of a bilinear form B ∈ Bil(V) to be the
minimum number of simple tensors needed to express its image in V ∗ ⊗ V ∗,
and we denote it by rkB. In other words, rkB is the minumum non-negative
integer r such that there exist linear forms π1, . . . , πr, τ1, . . . , τr ∈ V ∗ with
B =

∑r
i=1 πi ⊗ τi.

It will be useful to write bilinear forms as matrices. Fixing a K-basis of V allows
us to identify V ∼= Kk ∼= V ∗ and Bil(V) ∼= Kk×k in a way so that π(x) = πTx

20

and B(x, y) = xTBy, for all x, y ∈ V , π ∈ V ∗ and B ∈ Bil(V). Here vectors
and bilinear forms are identified with the corresponding coordinate vectors and
matrices, and coordinate vectors are written as column vectors. We identify
V ∗⊗V ∗ ∼= Kk×k via π⊗τ 7→ πτT for all π, τ ∈ V ∗. Under these identifications,
isomorphic elements in V ∗ ⊗ V ∗ ∼= Bil(V) are mapped into the same matrix.
In particular, we remark the following property of the rank.

Lemma 2.3.5. Let B ∈ Bil(V). Then its rank as a bilinear form (Defini-
tion 2.3.4) is equal to its rank as a matrix.

Proof. We denote by r the rank of B as a bilinear form and with r′ its rank
as a matrix. If B =

∑r
i=1 πi⊗ τi then {π1, . . . , πr} is a K-generator set for the

columns of B, hence r ≥ r′. Conversely, if {π1, . . . , πr′} is a K-basis for the
columns of B, then we can express every column of B as a linear combination
of the πi’s, and the coefficients of these linear combinations give τi’s such that

B =
∑r′

i=1 πi ⊗ τi, hence r ≤ r′.

2.4 Quadratic Forms

In this section we introduce the basic theory of quadratic forms, we outline
their classification, and we prove some combinatorial results that will be useful
later on in this work. Our main reference is [44]. More specific references will
be given throughout the section.

Let K be a finite field and let V be a finite-dimensional K-vector space.

Definition 2.4.1. A quadratic form on V is a map Q : V → K such that

(i) Q(λx) = λ2Q(x) for all x ∈ V, λ ∈ K,

(ii) the map (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is a bilinear form on V .

We denote by Quad(V) the K-vector space of all quadratic forms on V . The
vector space V , endowed with a quadratic form Q on V , is called a K-quadratic
space.

Every quadratic form Q ∈ Quad(V) defines a bilinear form B̃Q ∈ Bil(V) by

B̃Q(x, y) := Q(x+ y)−Q(x)−Q(y)

for all x, y ∈ V . If charK 6= 2 we also define the symmetric bilinear form
BQ := 1

2 B̃Q, which satisfies BQ(x, x) = Q(x) for all x ∈ V . If charK = 2 note

21

that B̃Q is alternating. Conversely, every bilinear form B ∈ Bil(V) defines a
quadratic form QB ∈ Quad(V) by QB(x) := B(x, x) for every x ∈ V . This
induces an isomorphism Bil(V)/Alt(V) ∼= Quad(V). If charK 6= 2 this induces
an isomorphism Sym(V) ∼= Quad(V) as well, namely the map B 7→ QB with
inverse Q 7→ BQ. In particular, using these isomorphisms, we can always
associate to a quadratic form an upper triangular matrix and, in the case of
charK 6= 2, a symmetric matrix.

Lemma 2.4.2. There exists an isomorphism φ : Quad(V ∗) → Sym(V)∗ such
that φ(Q)(π ⊗ π) = Q(π) for all Q ∈ Quad(V ∗) and all π ∈ V ∗.

Proof. By the universal property of the tensor product, we have an iso-
morphism Bil(V ∗) ∼= Bil(V)

∗
that maps B ∈ Bil(V ∗) into the linear form

on Bil(V) ∼= V ∗ ⊗ V ∗ determined by π ⊗ τ 7→ B(π, τ). Composing it with
the restriction map Bil(V)∗ → Sym(V)∗, we obtain a surjective linear map
Bil(V ∗) → Sym(V)∗ whose kernel is Alt(V ∗). Indeed, B ∈ Bil(V ∗) is in the
kernel if and only if B(π, π) = 0 for every π ∈ V ∗. This gives an isomorphism
Bil(V ∗)/Alt(V ∗) ∼= Sym(V)∗, and the lemma follows composing it with the
isomorphism Quad(V ∗) ∼= Bil(V ∗)/Alt(V ∗) considered above.

Fix now Q ∈ Quad(V), so V has a structure of K-quadratic space. Any
subspace of V inherits a natural structure of quadratic space, defined by the
restriction of Q. The symmetric bilinear form B̃Q defines a scalar product on
V , thus notions as radical, non degeneracy, orthogonality and isotropy. As
a shorthand, if there is no ambiguity we write x · y instead of B̃Q(x, y) for
x, y ∈ V .

Definition 2.4.3. The radical of the quadratic space V is the K-vector space

RadV := {x ∈ V : x · y = 0 for all y ∈ V }.

We say that V is non-degenerate (as a quadratic space) if B̃Q is non-degenerate
(as a bilinear form), i.e. if RadV = 0.

The radical is indeed a K-vector space, as B̃Q is bilinear.

Definition 2.4.4. Let Rad0 V := {x ∈ RadV : Q(x) = 0}. We define the
rank of Q to be

rkQ := dimV − dim Rad0 V.

A remark concerning the definitions of radical and rank follows. If charK 6=
2 then Q vanishes on RadV : indeed, for all x ∈ RadV we have Q(x) =
BQ(x, x) = 1

2x · x = 0 by definition of the radical. Therefore Rad0 V = RadV
and in this case the rank of a quadratic form equals the rank of the associated
bilinear form. If charK = 2 this is not always the case: for example, consider

22

the quadratic form on F2 defined by Q(x) := x2; note that B̃Q is identically
zero, hence the radical is the whole space, but Q does not vanish at x = 1. So
in the characteristic 2 case Rad0 V , the zero locus of the restriction of Q to
RadV , is not necessarily trivial. Following [29], we have defined the rank of a
quadratic form to be the codimension of this zero locus.

In the characteristic 2 case, under the additional assumption that K is perfect,
i.e. squaring is an automorphism of K (which is always the case if K is a
finite field), one can prove that the difference between the rank of Q and the
codimension of the radical of V is either zero or one.

We define orthogonality and isotropy with respect to B̃Q, as follows.

Two vectors x, y ∈ V are orthogonal if x · y = 0. A set of vectors, and in
particular a basis of V , is orthogonal if its elements are pairwise orthogonal.
Two subspaces V1, V2 ⊆ V are orthogonal if x ·y = 0 for all x ∈ V1, y ∈ V2. We
use the symbol ⊥ for the orthogonality relation. The orthogonal of a subspace
V1 ⊆ V is

V ⊥1 := {x ∈ V : x · y = 0 for all y ∈ V1}.

Note that V1 ∩ V ⊥1 = RadV1, so RadV1 = 0 implies V1 ∩ V ⊥1 = 0. Moreover,
by basic linear algebra dimV1 + dimV ⊥1 = dimV . Hence in this case V ⊥1
is a complement of V1, called the orthogonal complement of V1. Finally, a
decomposition of V is orthogonal if the components are pairwise orthogonal.

A non-zero vector x ∈ V is isotropic if x ·x = 0. A subspace of V is isotropic if
it contains an isotropic vector, anisotropic otherwise. Note that if charK = 2
then every vector is isotropic, as B̃Q is alternating, hence it does not make
sense to use this notion.

In the next sections, first we outline the classification of quadratic spaces, then
we use this classification to prove some combinatorial results about quadratic
forms.

2.4.1 Classification in charK 6= 2

Quadratic forms are classified according to the decomposition they induce on
the quadratic space. If this happens, i.e. if there exists an automorphism ψ of
V such that Q1 = Q2 ◦ψ, we say that Q1 and Q2 are equivalent. The first step
is the following theorem, which actually works in any characteristic. This will
allow us to always assume that V is non-degenerate.

Theorem 2.4.5. Any quadratic space V admits an orthogonal decomposition
V = RadV ⊕ V0, for some non-degenerate subspace V0 ⊆ V .

23

Proof. Clearly there exists a subspace V0 ⊆ V such that V = RadV ⊕ V0
and this decomposition is orthogonal, so we only have to prove that such a V0
is necessarily non degenerate. Let x ∈ RadV0, then x · y = 0 for all y ∈ V0.
Also, x · y = 0 for all y ∈ RadV . As V = RadV ⊕ V0, it follows that x · y = 0
for all y ∈ V , i.e. x ∈ RadV . Hence x ∈ RadV ∩ V0 = 0 and this proves that
V0 is non-degenerate.

From here on we assume that charK 6= 2 and set x · y := BQ(x, y) for all
x, y ∈ V . We first show that any quadratic space admits an orthogonal basis
and then Witt’s decomposition into hyperbolic planes.

Theorem 2.4.6. Any quadratic space over an odd characteristic field admits
an orthogonal basis.

Proof. By Theorem 2.4.5 we may assume that the quadratic space V is non-
degenerate. We argue by induction on dimV . If dimV = 1 then the statement
is trivial. If dimV > 1 then, as V is non-degenerate, there exists x ∈ V such
that x ·x 6= 0, hence we have V = 〈x〉⊕〈x〉⊥ and we can conclude by induction
hypothesis.

Remark 2.4.7. In the characteristic 2 case this argument fails, even replacing
BQ with B̃Q, as this map is alternating.

Remark 2.4.8. The matrix associated to Q with respect to an orthogonal
basis of V is a diagonal matrix, and the number of non-zero entries equals the
rank of Q.

We now introduce Witt’s decomposition, which uses hyperbolic planes as
“building blocks”.

Definition 2.4.9. A hyperbolic plane is a non-degenerate 2-dimensional sub-
space which admits a basis of isotropic vectors.

Note that any hyperbolic plane H admits a basis {x1, x2} of isotropic vectors
such that x1 ·x2 = 1. Indeed, for any basis {x1, y}, with x1, y isotropic, it holds
that α := x1 · y 6= 0 as H is non-degenerate, hence {x1, x2} with x2 := α−1y
satisfies the property.

Theorem 2.4.10 (Witt’s decomposition). The quadratic space V orthogonally
decomposes as

V = RadV ⊕
m⊕
i=1

Hi ⊕W,

where the Hi’s are hyperbolic planes and W is anisotropic.

24

Proof. By Theorem 2.4.5 we may assume that V is non-degenerate. If V
is anisotropic we are done, with m = 0 and V = W . Otherwise there exists
an isotropic vector v1 ∈ V , hence x ∈ V such that α := v1 · x 6= 0, as V is
non-degenerate. Now take

v2 :=
1

α
x− x · x

2α2
v1,

H1 := 〈v1, v2〉 and apply induction.

Remark 2.4.11. A stronger result actually holds. The decomposition above
is unique, in the sense that the number m of hyperbolic planes is unique while
the anisotropic space W is unique up to “isometry”. For details, see [44, 66].
However, this stronger result is not needed here.

If we assume that K = F is a finite field, this classification can be further
improved. The notion of discriminant will be relevant.

Definition 2.4.12. The discriminant discQ of a full-rank quadratic form Q
is defined to be the class in the group F∗/(F∗)2 ∼= {1,−1} of the determinant
of any matrix associated to Q. The discriminant of a non-full-rank quadratic
form is defined to be the discriminant of its restriction to the non-degenerate
component V0 of V in the decomposition V = RadV ⊕ V0.

The discriminant is well-defined: if M1 and M2 are two different matrices
associated to Q, then M1 = PM2P

T for some invertible matrix P , hence
detM1 = detM2 (detP)2.

Theorem 2.4.13. Any non-degenerate quadratic space over a finite field with
odd characteristic admits an orthogonal basis {x1, . . . , xk} such that xi ·xi = 1
for all i = 1, . . . , k − 1 and xk · xk = discQ.

Proof. It follows by Theorem 2.4.5 and Lemma 2.4.14 below, using induction.

Lemma 2.4.14. Assume that rkQ ≥ 2. Then for all γ ∈ F, γ 6= 0 there exists
x ∈ V such that x · x = γ.

Proof. This can be viewed as a consequence of the Chevalley-Warning The-
orem, see for example [66], or directly proved as follows. By Theorem 2.4.6,
V admits an orthogonal basis. Let x1, x2 ∈ V be two elements of this basis
such that α := x1 · x1 6= 0 and β := x2 · x2 6= 0. They exist as rkQ ≥ 2. Let
γ ∈ F, γ 6= 0, consider the two sets

A := {γ − αa2 : a ∈ F} ⊆ F and B := {βb2 : b ∈ F} ⊆ F.

25

As |A| = (q+ 1)/2 = |B|, where q denotes the size of F, A and B cannot have
empty intersection, hence there exist a, b ∈ F such that αa2 + βb2 = γ. Now
x := ax1 + bx2 satisfies the required property.

Theorem 2.4.13 proves that quadratic forms over odd-characteristic finite fields
are equivalent if they have the same rank and discriminant. Moreover, as the
discriminant is an element of F∗/(F∗)2 ∼= {1,−1}, for any given rank there
exists only two different quadratic forms, up to equivalence.

2.4.2 Classification in charK = 2

Assume now that charK = 2, and x · y := B̃Q(x, y) for all x, y ∈ V . In this
case, the “building blocks” in the decomposition are symplectic planes.

Definition 2.4.15. A symplectic plane is a subspace which admits a basis
{x1, x2} such that x1 · x2 = 1.

Observe that non-degeneracy is implied by this definition.

Theorem 2.4.16. The quadratic space V orthogonally decomposes as

V = RadV ⊕
m⊕
i=1

Si,

where the Si’s are symplectic planes.

Proof. Again, we may assume that V is non-degenerate. Let x1 ∈ V , let
y ∈ V be such that α := x1 · y 6= 0. Take x2 := 1

αy, S1 := 〈x1, x2〉 and argue
by induction.

From here on, we will not give any proof of our statement, but we refer to [29,
32]. Recall that in the characteristic 2 case the rank of the quadratic form may
differ from the codimension of the radical. If this happens, i.e. if there exists
x ∈ RadV with Q(x) 6= 0, then rkQ = 2m + 1, otherwise rkQ = 2m, where
m is as in the previous theorem. It holds that all quadratic forms of odd rank
induce the same decomposition on V , as stated by the following theorem.

Theorem 2.4.17. If rkQ is odd, the quadratic space V orthogonally decom-
poses as

V = RadV0 ⊕ 〈x〉 ⊕
m⊕
i=1

Si,

where RadV0 is defined in Definition 2.4.4, x ∈ RadV , and the Si’s are sym-
plectic planes satisfying the following additional property: for all i = 1, . . . ,m,
Si has a basis {xi,1, xi,2} such that xi,1 · xi,2 = 1 and Q(xi,1) = Q(xi,2) = 0.

26

If rkQ is even, a new parameter has to be taken into account, namely the Arf
invariant.

Definition 2.4.18. The Arf invariant Arf Q of a rank-2 quadratic form Q on
a space V of dimension 2 is defined to be the class of

Q(x1)Q(x2)

x1 · x2

in K/L, where L := {λ2 + λ : λ ∈ K} and {x1, x2} is any basis of V . The
Arf invariant of an even-rank quadratic form Q on a space which orthogonally
decomposes as

V = RadV ⊕
m⊕
i=1

Si,

where the Si’s are symplectic planes, is

Arf(Q) :=

m∑
i=1

Arf(Qi) ∈ K/L,

where, for all i = 1, . . . ,m, Qi denotes the restriction of Q to Si.

Theorem 2.4.19. If rkQ is even, the quadratic space V orthogonally decom-
poses as

V = RadV ⊕
m⊕
i=1

Si,

where the Si’s are symplectic planes satisfying the following additional proper-
ties:

(i) for all i = 1, . . . ,m− 1, Si has a basis {xi,1, xi,2} such that xi,1 ·xi,2 = 1
and Q(xi,1) = Q(xi,2) = 0, and in particular the restriction of Q to Si
has Arf invariant zero;

(ii) Sm has a basis {xm,1, xm,2} such that xm,1 · xm,2 = 1, Q(xm,1) = 0 and
Q(xm,2) = Arf(Q), and in particular the restriction of Q to Sm has Arf
invariant equal to the Arf invariant of Q.

To sum up, in the characteristic 2 case, it holds that two quadratic forms
having the same, odd rank are equivalent, while two quadratic forms having
the same, even rank are equivalent if and only if they have the same Arf
invariant.

If K = F is a finite field, observe that L is the kernel of the trace map Tr: F→
F2, hence F/L ∼= F2 and this means that for any given even rank there exists
only two different quadratic forms, up to equivalence.

27

2.4.3 Number of Zeros of a Quadratic Form

From here on, we assume that K = F is a finite field of size q. In this section
we compute the number of zeros in V of the quadratic form Q, as a function
of the dimension k of V , the rank r of Q and the cardinality q of the base
field. Even though the definition of rank is essentially dependent on charF,
the formula we give is characteristic-free.

Theorem 2.4.20. The number of vectors x ∈ V such that Q(x) = 0 is

a. qk−1 if r is odd,

b. either qk−1 − (q − 1)qk−
r
2−1 or qk−1 + (q − 1)qk−

r
2−1 if r is even.

Remark 2.4.21. The “±” in claim b of Theorem 2.4.20 (and of the forthcoming
Theorem 2.4.23) only depends on the “last component” in the orthogonal
decomposition of V given by Theorem 2.4.10 and Theorem 2.4.16.

In [47, Chapter 6, Section 2] the number of vectors x ∈ V such that Q(x) =
b, for any full-rank quadratic form Q on V and any b ∈ F, is computed.
Theorem 2.4.23 below, whence Theorem 2.4.20 easily follows, is an instance
of this result. However, for completeness, and to show an application of the
classification theorems, we include a full proof of Theorem 2.4.23.

Here, it is convenient to view quadratic forms as polynomials, as follows. This
correspondence holds over an arbitrary field K (so we abandon for a moment
the assumption that the base field is finite). Fixing a K-basis {x1, . . . , xk}
of V we can associate to Q a homogeneous quadratic k-variate polynomial
fQ ∈ K[X1, . . . , Xk] such that, for all (α1, . . . , αk) ∈ Kk,

Q(α1x1 + · · ·+ αkxk) = fQ(α1, . . . , αk),

namely

fQ :=
∑

1≤i≤k

Q(vi)X
2
i +

∑
1≤i<j≤k

B̃Q(xi, xj)XiXj .

Clearly there is a one-to-one correspondence between zeros of Q and zeros of
fQ, independently of the basis choice. We remark that the rank of Q can
be equivalently defined as the minimal number of variables appearing in the
polynomial fQ associated to Q, where minimality is taken over all possible
basis choices.

Back to the case of K = F, we have the following straightforward consequence
of the classification theorems.

Corollary 2.4.22. Assume that r ≥ 3. Then the polynomial fQ associated
to Q in some suitable basis can be written as

fQ = gQ +Xk−1Xk, with gQ ∈ F[X1, . . . , Xk−2].

28

Proof. As r ≥ 3, the classification theorems give an F-basis {x1, . . . , xk} of
V such that B̃Q(xk−1, xk) = 1, Q(xk−1) = Q(xk) = 0 and 〈x1, . . . , xk−2〉 ⊥
〈xk−1, xk〉. The polynomial fQ associated to Q with respect to this basis has
the desired form.

We are ready to proceed. We start with the case of full-rank forms, and then
we show how the general case easily follows.

Theorem 2.4.23. Assume that r = k, i.e. that Q has full rank. Then the
number of vectors x ∈ V such that Q(x) = 0 is

a. qk−1 if k is odd,

b. either qk−1 − (q − 1)q
k
2−1 or qk−1 + (q − 1)q

k
2−1 if k is even.

Proof. Denote by Zk(f) the number of zeros in Fk of a polynomial f ∈
F[X1, . . . , Xk]. The proof is by induction on k. If k = 1 (case a) then in some
basis fQ = αX2

1 and its only zero is the zero vector. If k = 2 (case b) then, by
classification theorems, we have two possible situations: either the only zero
of fQ is the zero vector or fQ = X1X2 has 2q − 1 zeros.

Now let k ≥ 3. By Corollary 2.4.22 we can write

fQ = gQ +Xk−1Xk, with gQ ∈ F[X1, . . . , Xk−2].

Note that the zeros of fQ are exactly all k-tuples (x, α1, α2) with x ∈ Fk−2,
α1, α2 ∈ F such that

• x is a zero of gQ and α1α2 = 0 or

• x is not a zero of gQ, α1 6= 0 and α2 = −α−11 gQ(x).

Hence we get the recursion formula

Zk(fQ) = (2q − 1)Zk−2(gQ)+

+ (q − 1)(qk−2 − Zk−2(gQ)) =

= qk−1 − qk−2 + qZk−2(gQ)

for k ≥ 3. This gives the result.

Proof of Theorem 2.4.20. In a suitable basis, the polynomial associated
to Q is r-variate, i.e. fQ ∈ F[X1, . . . , Xr]. This defines a full-rank quadratic
form on Fr, hence Theorem 2.4.23 applies. The conclusion now follows as any
zero of fQ in Fr gives qk−r zeros of fQ in Fk by padding.

29

2.4.4 Number of Quadratic Forms of Given Rank

In this section we compute the number N(k, r) of rank r quadratic forms on
any F-vector space of dimension k, where k, r are non-negative integers with
k ≥ r. First we deal with the case k = r, i.e. of full-rank quadratic forms,
then we address the general case. In the full-rank case we write N(k) instead
of N(k, k), as a shorthand. We now state the results: Theorem 2.4.24 for the
first case, Theorem 2.4.25 for the latter.

Theorem 2.4.24. For all non-negative integers k, the number of full-rank
quadratic forms on an F-vector space of dimension k is

N(k) = qb
k
2 c(b k2 c+1)

d k2 e∏
i=1

(q2i−1 − 1) =

=

{
q
k−1
2

k+1
2

∏ k+1
2

i=1 (q2i−1 − 1) if k is odd,

q
k
2 (k2+1)∏ k

2
i=1(q2i−1 − 1) if k is even.

Theorem 2.4.25. For all non-negative integers k ≥ r, the number of rank r
quadratic forms on an F-vector space of dimension k is

N(k, r) =

[
k

r

]
q

N(r),

where [
k

r

]
q

:=

r∏
i=1

qk−r+i − 1

qi − 1

denotes the q-ary Gaussian binomial coefficient.

Remark 2.4.26. By convention, we define a product with no factors to be
equal to 1. This is the case if r = 0. As q is assumed to be fixed, it will be
suppressed from the notation from here on. It is well-known that the Gaussian
binomial coefficient

[
k
r

]
equals the number of r-dimensional subspaces of any

F-vector space of dimension k.

Our proofs of Theorems 2.4.24 and 2.4.25 follow. Our strategy consists of
constructing all quadratic forms on a given space as “combinations” (in the
sense of Definition 2.4.27 and Construction 2.4.28 below) of quadratic forms
on subspaces. Counting recursively the number of forms constructed in this
way and dividing by the number of repetitions will give the required quantity.

Towards a proof of Theorem 2.4.24, we fix a non-negative integer k and an
F-vector space V of dimension k. We define the following “sum” of quadratic
forms.

30

Definition 2.4.27. Let V1, V2 ≤ V be subspaces such that V1 ∩ V2 = 0, let
Q1 be a quadratic form on V1 and Q2 a quadratic form on V2. We define
Q := Q1 ⊕ Q2 to be the unique quadratic form on V1 ⊕ V2 defined by the
conditions Q|V1

= Q1, Q|V2
= Q2 and V1 ⊥ V2.

In other words, for v ∈ V1 ⊕ V2, we define Q(v) := Q1(v1) + Q2(v2), where
v1 ∈ V1 and v2 ∈ V2 are the unique vectors such that v1 + v2 = v. Also note
that Rad(V1 ⊕ V2) = RadV1 ⊕RadV2. So we construct quadratic forms on V
as follows.

Construction 2.4.28. Let h ≤ k be a non-negative integer. Let (V1, V2, Q1,
Q2) be a 4-tuple consisting of a subspace V1 ≤ V of dimension h, a complement
V2 ≤ V of V1, a full-rank quadratic form Q1 on V1 and a full-rank quadratic
form Q2 on V2. Define Q := Q(V1,V2,Q1,Q2) := Q1 ⊕Q2 ∈ Quad(V).

The choice of the parameter h is determined by the characteristic of F and the
parity of the dimension k of V , as follows:

1. h = 1 if k is odd and charF 6= 2,

2. h = 2 if k is even and charF 6= 2,

3. h = 2 if charF = 2.

We prove that, with this choice of h, all full-rank quadratic forms on V are
obtained by Construction 2.4.28 and, conversely, all forms defined using Con-
struction 2.4.28 have full rank.

Lemma 2.4.29. Any full-rank quadratic form on V is an instance of Construc-
tion 2.4.28 with h chosen as above.

Proof. First assume that charF 6= 2. If Q is a full-rank quadratic form on
V then by Theorem 2.4.10 we have an orthogonal decomposition

V =

m⊕
i=1

Hi ⊕W,

with dimHi = 2 for all i = 1, . . . ,m and dimW ≤ 2. If k is odd then dimW
is also odd, hence it must equal 1. Let V1 := W , V2 :=

⊕m
i=1Hi, Q1 := Q|V1

and Q2 := Q|V2
, then Q = Q(V1,V2,Q1,Q2) with h = dimW = 1. If k is even, let

V1 := H1, V2 :=
⊕m

i=2Hi⊕W,Q1 := Q|V1
, Q2 := Q|V2

, thenQ = Q(V1,V2,Q1,Q2)

with h = dimH1 = 2.

Now assume charF = 2. If Q is a full-rank quadratic form on V then by
Theorem 2.4.16 we have an orthogonal decomposition

V = RadV ⊕
m⊕
i=1

Si

31

with dim RadV = 0 or 1. Let V1 := S1, V2 := RadV ⊕
⊕m

i=2 Si, Q1 :=
Q|V1

, Q2 := Q|V2
, then Q = Q(V1,V2,Q1,Q2) with h = dimS1 = 2.

Lemma 2.4.30. Any instance of Construction 2.4.28, with h chosen as above,
is a full-rank quadratic form on V .

Proof. Let V1, V2, Q1, Q2 be as required in Construction 2.4.28, and let
Q := Q(V1,V2,Q1,Q2). The statement is obvious if charF is odd: in this case
both RadV1 = RadV2 = 0, hence Rad(V1⊕V2) = 0 as well. The same happens
in the characteristic 2 case if both h and k are even.

The only non trivial case is the one of charF = 2 and k odd. We have chosen
h to be even, hence RadV1 = 0 while RadV2 = 〈w〉 for some w ∈ V2 such that
Q(w) 6= 0. Then Rad(V1 ⊕ V2) = 〈w〉 and Q(w) = Q2(w) 6= 0, hence Q has
full rank.

It follows that the number of full-rank quadratic forms on V is given by the
number of suitable 4-tuples (V1, V2, Q1, Q2) divided by the number of repeti-
tions. The number of possible choices for V1 is given by a Gaussian binomial
coefficient. The following combinatorial lemma computes the number of pos-
sible choices for V2.

Lemma 2.4.31. Let h ≤ k be a non-negative integer. The number of comple-
ments of an h-dimensional subspace of V is qh(k−h).

Proof. Let W be an h-dimensional subspace of V , with basis {v1, . . . , vh}.
This can be completed to a basis of V in (qk − qh)(qk − qh+1) · · · (qk − qk−1)
ways. Any complement of W has dimension k − h, hence (qk−h − 1)(qk−h −
q) · · · (qk−h − qk−h−1) different bases. Hence the number of complements of
W is

qk − qh

qk−h − 1
· q

k − qh+1

qk−h − q
· · · qk − qk−1

qk−h − qk−h−1
= qh(k−h).

Finally, we count how many times a quadratic form is repeated.

Lemma 2.4.32. Let Q be a full-rank quadratic form on V . For any non-
degenerate h-dimensional subspace V1 of V , with h chosen as above, we have
a unique complement V2 of V1 and unique full-rank quadratic forms Q1 and
Q2 on V1 and V2 respectively such that Q = Q(V1,V2,Q1,Q2).

Proof. Let V1 be a non-degenerate h-dimensional subspace of V . We want
to define V2, Q1, Q2 such that Q(V1,V2,Q1,Q2) = Q. Clearly we have to take
Q1 := Q|V1

. The choice of h implies that RadV1 = 0, hence V1 has an

32

orthogonal complement. So take V2 := V ⊥1 and Q2 := Q|V2
. Note that these

are the only possible choices, hence this proves the lemma.

For all full-rank quadratic forms Q on V and all non-negative integers h we
denote by R(Q, h) the number of non-degenerate h-dimensional subspaces of
V . A priori, this number depends on Q, but we will see that under our choice
of h it only depends on k and h. In those cases we denote it by R(k, h).

All lemmas above together prove the following.

Lemma 2.4.33. Let h be chosen as above, assume that R(k, h) = R(Q, h) is
independent of the choice of a quadratic form Q. Then

N(k) =

[
k
h

]
qh(k−h)

R(k, h)
N(h)N(k − h).

Remark 2.4.34. By classification theorems, any quadratic form can be ob-
tained by Construction 2.4.28 with h = 2, independently of the rank parity.
So it is natural to ask why, in the odd characteristic case, we are dealing sep-
arately with odd rank and even rank quadratic forms, using h = 1 in the first
case and h = 2 in the second. The reason is that if rkQ is odd then R(Q, 2)
depends on Q, yielding a formula more complicated than the one given by
Lemma 2.4.33, involving terms which also depend on Q. So our strategy al-
lows a simpler proof.

Computing the number R(k, h) is the last non trivial step towards the com-
putation of N(k). We are going to do that in the next two sections, obtaining
the following recursion formula.

Theorem 2.4.35. For k ≥ 1,

N(k) =

{
(qk − 1)N(k − 1) if k is odd,

qkN(k − 1) if k is even.

Theorem 2.4.35 will be proved in the next two sections, dealing with the odd
characteristic case and with the characteristic 2 case separately. We now use it
to prove the closed-form expression for N(k) stated by Theorem 2.4.24. Then
we will conclude this section with the proof of Theorem 2.4.25.

Proof of Theorem 2.4.24. We argue by induction on k. First note that
N(0) = 1 and N(1) = q − 1. Now let k > 1 and assume that the statement is
true for k − 1. We use the recursion formula given by Theorem 2.4.35. If k is

33

odd then

N(k) = (qk − 1)N(k − 1) =

= (qk − 1)q
k−1
2 (k−1

2 +1)

k−1
2∏
i=1

(q2i−1 − 1) =

= q
k−1
2

k+1
2

k+1
2∏
i=1

(q2i−1 − 1).

If k is even then

N(k) = qkN(k − 1) =

= qkq
k
2 (k2−1)

k
2∏
i=1

(q2i−1 − 1) =

= q
k
2 (k2+1)

k
2∏
i=1

(q2i−1 − 1).

Proof of Theorem 2.4.25. Consider the following construction. For any
choice of a subspace V0 of dimension r, a full-rank quadratic form Q0 on V0
and a direct complement R of V0 we can define the quadratic form Q :=
Q(V0,Q0,R) := Q0 ⊕ 0 ∈ Quad(V) of rank r, i.e. the unique quadratic form on
V defined by the conditions Q|V0

= Q0, Q|R = 0 and V0 ⊥ R. By classification
of quadratic forms, any rank r quadratic form is given by Q(V0,Q0,R) for some
triple (V0, Q0, R).

So we only need to compute the number of times each form is repeated, i.e.
the number of triples (V ′0 , Q

′
0, R

′) such that Q(V ′0 ,Q
′
0,R
′) = Q(V0,Q0,R) =: Q,

where (V0, Q0, R) is a fixed triple. First note that

R′ = {x ∈ RadV : Q(x) = 0} = R,

hence V ′0 has to be a direct complement of R. But for any direct complement
V ′0 of R we have that the triple (V ′0 , Q|V ′0 , R) defines the form Q. So, for any

triple (V0, Q0, R), the number of triples (V ′0 , Q
′
0, R

′) such that Q(V ′0 ,Q
′
0,R
′) =

Q(V0,Q0,R) is equal to the number of direct complements of R.

We are ready to conclude. We have
[
k
r

]
choices for V0, N(r) choices for Q0 by

definition, qr(k−r) choices for R by Lemma 2.4.31 and any form occurs qr(k−r)

times. Hence N(k, r) =
[
k
r

]
N(r), as claimed.

The next two sections constitute the proof of Theorem 2.4.35. They share a
similar structure: first we compute R(k, h) in some interesting cases, then we

34

use it, together with Lemma 2.4.33, to prove Theorem 2.4.35. The first deals
with the odd characteristic case, the second deals with the characteristic 2
case.

Odd Characteristic Case

In this section, assume that charF is odd.

Lemma 2.4.36. We have that

1. R(k, 1) = qk−1 if k is odd,

2. R(k, 2) = qk−2 q
k−1
q2−1 if k is even.

These numbers are independent of the choice of a full-rank quadratic form Q.

Proof. Let Q be a full-rank quadratic form on V . All 1-dimensional sub-
spaces V1 ≤ V such that Q|V1

has full rank are given by V1 = 〈v1〉 for some

vector v1 ∈ V such that Q(v1) 6= 0. As Q has odd rank, it has qk−1 zeros, hence
we have qk−qk−1 possible choices for v1. But 〈λv1〉 = 〈v1〉 for any λ ∈ F, λ 6= 0,

hence each subspace is counted q− 1 times. So R(k, 1) = qk−qk−1

q−1 = qk−1, and
this proves the first claim.

We now prove the second claim. We can choose any non zero v1 ∈ V as first
basis vector of V1 and we want to count the number of vectors v2 ∈ V \ 〈v〉
such that Q|〈v1,v2〉 has full rank. This holds if and only if

det

(
B̃Q(v1, v1) B̃Q(v1, v2)

B̃Q(v1, v2) B̃Q(v2, v2)

)
6= 0,

i.e. if and only if v2 is not a zero of the quadratic form on V defined by

Q′(x) := B̃Q(v1, v1)B̃Q(x, x)− B̃Q(v1, x)
2

for x ∈ V . One can easily verify that this is indeed a quadratic form and that
the associated bilinear form is defined by

B̃Q′(x, y) = 2B̃Q(v1, v1)B̃Q(x, y)− 2B̃Q(v1, x)B̃Q(v1, y)

for x, y ∈ V . We distinguish two cases. If B̃Q(v1, v1) = 0 then Q′(x) =

−B̃Q(v1, x)
2

is the square of a non zero linear form, hence it has rank 1. If

B̃Q(v1, v1) 6= 0 then the radical of V with respect to B̃Q′ is exactly the span

35

of v1, hence rkQ′ = rkQ− 1 is odd as rkQ is even. In order to prove this, let
w ∈ RadV (with respect to B̃Q′), i.e. B̃Q′(w, y) = 0 for all y ∈ V . Then

B̃Q′(w, y) = 2B̃Q(v1, v1)B̃Q(w, y)− 2B̃Q(v1, w)B̃Q(v1, y) =

= 2B̃Q(B̃Q(v1, v1)w − B̃Q(v1, w)v1, y) = 0

for all y ∈ V . But B̃Q is non-degenerate, hence this implies that B̃Q(v1, v1)w =

B̃Q(v1, w)v1, therefore w ∈ 〈v1〉 as B̃Q(v1, v1) 6= 0. This proves that RadV ⊆
〈v1〉, and the converse inclusion is obvious. So in any case rkQ′ is odd, hence
Q′ has qk−1 zeros. We can finally conclude. We have qk− 1 choices for v1 and
qk− qk−1 choices for v2, and any subspace is given by (q2−1)(q2− q) different
choices of v1, v2 (corresponding to the number of bases of 〈v1, v2〉). So we have

R(k, 2) = (qk−1)(qk−qk−1)
(q2−1)(q2−q) = qk−2 q

k−1
q2−1 . This concludes the proof.

The following theorem implies Theorem 2.4.35 in the odd characteristic case.
First we need two remarks. Full-rank quadratic forms on F correspond to non
zero elements of F, hence N(1) = q − 1. Full-rank quadratic forms on F2

correspond to triples (x, y, z) ⊆ F3 such that xy− z2 6= 0, which is a quadratic
form of rank 3, hence N(2) = q3 − q2 = q2(q − 1).

Theorem 2.4.37. For k ≥ 1,

N(k) =

{
(qk − 1)N(k − 1) if k is odd,

qk(qk−1 − 1)N(k − 2) if k is even.

Proof. If k is odd then we apply Construction 2.4.28 with h = 1. By
Lemma 2.4.33 and the first claim of Lemma 2.4.36 we have

N(k) =

[
k
1

]
qk−1

R(k, 1)
N(1)N(k − 1) =

=
qk − 1

q − 1

qk−1

qk−1
(q − 1)N(k − 1) =

= (qk − 1)N(k − 1).

If k is even then we apply Construction 2.4.28 with h = 2. By Lemma 2.4.33
and the second claim of Lemma 2.4.36 we have

N(k) =

[
k
2

]
q2(k−2)

R(k, 2)
N(2)N(k − 2) =

=
(qk − 1)(qk−1 − 1)

(q2 − 1)(q − 1)
q2(k−2)×

× 1

qk−2
q2 − 1

qk − 1
q2(q − 1)N(k − 2) =

= qk(qk−1 − 1)N(k − 2).

36

Characteristic 2 Case

In this section, assume that charF = 2.

Lemma 2.4.38. We have that

1. R(k, 2) = qk−2 q
k−q
q2−1 if k is odd,

2. R(k, 2) = qk−2 q
k−1
q2−1 if k is even.

These numbers are independent of the choice of a full-rank quadratic form Q.

Proof. The proof is similar to the proof of the second claim of Lemma 2.4.36.
Let Q be a full-rank quadratic form on V . In order to obtain a plane 〈v1, v2〉 ≤
V such that Q|〈v1,v2〉 has full rank, we can choose any v1 ∈ V \RadV and any

v2 ∈ V \ 〈v1〉 which is not a zero of the quadratic form defined by

Q′(x) := B̃Q(v1, v1)B̃Q(x, x)− B̃Q(v1, x)
2

= B̃Q(v1, x)
2

for x ∈ V . In the characteristic 2 case this form always has rank 1, hence it has
qk−1 zeros. So we have qk−|RadV | choices for v1 and qk−qk−1 choices for v2,
and any subspace is given by (q2 − 1)(q2 − q) different choices of v1, v2, hence

R(k, 2) = (qk−|RadV |)(qk−qk−1)
(q2−1)(q2−q) = qk−2 q

k−|RadV |
q2−1 . Now note that |RadV | = q

if k is odd and |RadV | = 1 if k is even, hence both claims follow at once.

We are going to conclude the proof of Theorem 2.4.35. Again, we use the fact
that N(2) = q2(q − 1).

Theorem 2.4.39. For k ≥ 1,

N(k) =

{
qk−1(qk − 1)N(k − 2) if k is odd,

qk(qk−1 − 1)N(k − 2) if k is even.

Proof. Recall that in this case we use Construction 2.4.28 with h = 2. By
Lemma 2.4.33 we have

N(k) =

[
k
2

]
q2(k−2)

R(k, 2)
N(2)N(k − 2) =

=
1

R(k, 2)
q2(k−2)q2(q − 1)×

× (qk − 1)(qk−1 − 1)

(q2 − 1)(q − 1)
N(k − 2).

37

If k is odd then by claim 1 of Lemma 2.4.38 we have

N(k) =
q2 − 1

qk − q
1

qk−2
q2(k−2)q2(q − 1)×

× (qk − 1)(qk−1 − 1)

(q2 − 1)(q − 1)
N(k − 2) =

= qk−1(qk − 1)N(k − 2).

If k is even then by claim 2 of Lemma 2.4.38 we have

N(k) =
q2 − 1

qk − 1

1

qk−2
q2(k−2)q2(q − 1)×

× (qk − 1)(qk−1 − 1)

(q2 − 1)(q − 1)
N(k − 2) =

= qk(qk−1 − 1)N(k − 2).

2.5 Coding Theory

In this section we expand the discussion started in Section 1.1 on the theory of
linear error correcting codes by giving a better formalization of the definitions
and results that we have already mentioned, and by introducing new results as
well. Standard references are [37, 48, 71]. We will be especially focused on the
theory of code products, to which Section 2.5.2 is dedicated. The literature
concerning this topic is quite limited, we cite [65].

Let F be a finite field of size q and let n be a positive integer. The natural
setting of coding theory is the vector space Fn endowed with the Hamming
metric, i.e. the notion of distance defined below. In coding theory, it is cus-
tomary to write vectors in row form, and we will stick to this convention here.

Definition 2.5.1. For all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn, we define

d(x, y) := |{i : xi 6= yi}|,

the (Hamming) distance between x and y.

One can readily check that the distance between two vectors is always a non-
negative integer and is indeed a distance in the usual mathematical sense: for
any x, y, z ∈ Fn it holds that

(i) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

38

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y).

Given a vector x = (x1, . . . , xn) ∈ Fn, we define its support suppx := {i : xi 6=
0} and its weight wt(x) := | suppx|. The support of a subset of Fn is defined
as the union of the supports of all its elements, and we shall say that a subset
of Fn has full support if its support is {1, . . . , n}.

The space Fn is also equipped with the standard inner product, defined by

(x | y) :=

n∑
i=1

xiyi

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn. Orthogonality is defined with
respect to this notion of product.

Definition 2.5.2. A (q-ary, linear) code of length n is a linear subspace C ⊆
Fn. Its elements are called codewords. The dimension of C is its dimension as
an F-vector space and is denoted by dimC. The minimum distance of C is

dmin(C) := min{d(x, y) : x, y ∈ C, x 6= y} = min{wt(x) : x ∈ C, x 6= 0}.

A generator matrix of a code C ⊆ Fn is a matrix whose rows are an F-basis
of C. Set k := dimC, then a generator matrix G of C is a full-rank k × n
matrix with coefficients in F, and it defines in a natural way a linear embedding
Fk → Fn whose image is C. We say that G is in systematic form if its first k
columns form a k × k identity matrix. An information set for C is a subset
I ⊆ {1, . . . , n} of size k such that the columns of G indexed by I are linearly
independent. By definition any code admits an information set, hence, possibly
after renumbering the coordinates, any code admits a generator matrix in
systematic form.

The dual of a code C ⊆ Fn is

C⊥ := {x ∈ Fn : (x | y) = 0 for all y ∈ C},

which is a code of length n and dimension n − dimC. We say that C is
self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.

It will be convenient to allow coordinate sets, such as the index set of the
n-fold cartesian product Kn of a field K, to be arbitrary: if I is an arbitrary
set then KI is the set of all vectors (xi)i∈I with all entries in K. Equivalently,
we can view KI as the set of all functions I → K. If J is a subset of I then
the projection of a subset S of KI onto KJ is the set of restrictions to J of all
functions in S.

39

This convention is particularly useful to define some standard constructions
which allow to construct new codes from a given one. Fixed a coordinate
i ∈ {1, . . . , n}, we can puncture or shorten a given code C ⊆ Fn at i. The
punctured code is

Cı := {(xj)j 6=i : x = (x1, . . . , xn) ∈ C},

the code obtained from C by removing the i-th coordinate of all its codewords,
or equivalently the projection of C onto {1, . . . , n} \ {i}. The shortened code
is

Cı := {(xj)j 6=i : x = (x1, . . . , xn) ∈ C and xi = 0}.
In other words, it is the code obtained by puncturing at i the intersection of C
with the hyperplane {x ∈ Fn : xi = 0}. These definitions can be extended, in
a natural way, so that we can puncture and shorten codes at coordinate sets,
instead of a single coordinate. The bar in the above notation signifies that
the coordinate i is being excluded. In some situations, it will be convenient
to highlight the coordinates which are preserved, and in these cases we will
denote by CI and CI the codes obtained by puncturing and shortening C at
the complement of I ⊆ {1, . . . , n}.

Given two codes C ⊆ Fn1 and D ⊆ Fn2 , their cartesian product can be viewed
as a code in Fn1+n2 , and it is called the direct sum of C and D and denoted
by C ⊕ D. It holds that dimC ⊕ D = dimC + dimD and dmin(C ⊕ D) =
min{dmin(C), dmin(D)}.

The last construction is somewhat less standard, and harder to find in the
literature. A reference is [22, Section 4.1]. Given two codes C ⊆ Fn1 and
D ⊆ Fn2 , their amalgamated direct sum is defined as

C
.
⊕D := {(x, z, y) : (x, z) ∈ C and (z, y) ∈ D}.

To lighten the above definition, we omitted that x ∈ Fn1−1, y ∈ Fn2−1, z ∈ F
and consequently (x, z, y) ∈ Fn1+n2−1. This is a linear subspace of Fn1+n2−1.

Equivalently, we can obtain C
.
⊕D as the kernel of the linear map

C ⊕D F
(x, y) xn1

− y1

punctured at n1. In particular it follows immediately that dimC
.
⊕ D =

dimC + dimD − 1.

2.5.1 MDS Codes and Reed-Solomon Codes

Length, dimension and minimum distance of a code are related by several
classical results, the most important for us being the following.

40

Theorem 2.5.3 (Singleton Bound reference!). Let C be a code of length n.
Then

dimC + dmin(C) ≤ n+ 1.

Definition 2.5.4. A code C of length n is maximum distance separable (MDS)
if

dimC + dmin(C) = n+ 1.

We recall the following well-known properties and characterizations of MDS
codes [48].

Lemma 2.5.5. Given a code C ⊆ Fn, the following statements are equivalent:

1. C is MDS,

2. C⊥ is MDS,

3. any coordinate set of size dimC is an information set for C,

4. for any coordinate set I of size n+ 1−dimC, there is a codeword whose
support equals I.

The following property is somewhat less standard.

Lemma 2.5.6. Let C ⊆ Fn be a code. It is MDS if and only if any systematic
generator matrix of C has all its rows of weight n+ 1− dimC.

Proof. It is clear that if C is MDS the property must hold. The converse
implication is an immediate consequence of the following claim: if C ⊆ Fn is
any code and x ∈ C is a codeword of minimal weight, then there is a systematic
generator matrix of C whose first row is x.

We now prove this claim. Renumbering the coordinates, we may assume that
suppx = {1, 2 + n− wt(x), . . . , n} and that

x = (1, 0, . . . , 0, ∗, . . . , ∗),

where the stars denote non-zero entries. Let {x1 = x, x2, . . . , xk} be an F-basis
of C containing x, where k := dimC, and let G be the generator matrix of C
whose rows are the xi’s. If G can be made systematic in the first 1+n−wt(x)
positions then we are done. Otherwise, we obtain a contradiction as follows.
We have that wt(x) > 1 and the rank of the matrix G restricted to its first
1 + n− wt(x) columns is < k. There exists therefore a linear combination

x̃ =

k∑
i=2

αixi,

41

with α2, . . . , αk ∈ F, which has zeros in positions {2, . . . , 1 + n − wt(x)}, but
with x̃ 6= 0. Now a suitable combination of x and x̃ yields a non-zero word of
weight smaller than wt(x), contradicting the minimality of wt(x).

Punctured and shortened MDS codes are still MDS codes, provided that the
set of excluded coordinates is not too big. More precisely, if C ⊆ Fn is an
MDS code and I ⊆ {1, . . . , n} has size at least dimC then the codes CI
and CI obtained by puncturing and shortening C at the complement of I
are MDS codes of length |I| and dimensions dimCI = dimC and dimCI =
dimC − (n− |I|).

We introduce now a well-known family of MDS codes, namely Reed-Solomon
codes. Fix a positive integer k and n pairwise distinct elements α1, . . . , αn ∈ F.
This in particular implies that we additionally require n ≤ q. Let F[X]<k
denote the vector space of all polynomials in the indeterminate X, with coef-
ficients in F, and degree less than k. The image of the evaluation map

F[X]<k Fn
f (f(α1), . . . , f(αn))

is a linear space, called a Reed-Solomon code. This map is injective because
any polynomial of degree at most k−1 is uniquely determined by any k distinct
evaluations, hence the code has dimension k. Moreover, a polynomial of degree
at most k− 1 has at most k− 1 zeros, hence any codeword has weight at least
n − k + 1. It follows that the code has minimum distance at least n − k + 1,
hence it is an MDS code.

The image of the standard basis of F[X]<k is a basis of the code, and gives a
generator matrix in Vandermonde form, namely

1 · · · 1
α1 · · · αn
...

...

αk−11 · · · αk−1n

 .

One can notice that the third property of Lemma 2.5.6 is satisfied, and this
gives an alternative proof that the code is MDS.

To better fit our needs, we generalize this notion in two senses. First, we allow
one of the αi’s to be a “special” element ∞, with the convention that, for any
f ∈ F[X]<k, f(∞) equals the coefficient of Xk−1 in f . Observe that f(∞) = 0
if deg f < k− 1. Second, we allow each coordinate of the code to be scaled by
a non-zero factor. This leads to the following definition.

Definition 2.5.7. A Reed-Solomon code of dimension k and length n is a code

42

of the form
{(g1f(α1), . . . , gnf(αn)) : f ∈ F[X]<k},

where α1, . . . , αn ∈ F ∪ {∞} are pairwise distinct and g1, . . . , gn ∈ F are non-
zero. We shall call (α1, . . . , αn) an evaluation-point sequence for the Reed-
Solomon code.

The codes called generalized, extended, and doubly-extended Reed-Solomon
codes are included in this family. From the geometric point of view, they may
be thought of as the projective version of Reed-Solomon codes. In [30] they
are named “Cauchy codes” and have also been called “Cauchy Reed-Solomon
codes”. We shall simply refer to them as “Reed-Solomon codes”.

The above observations concerning generator matrix and minimum distance
can easily be extended as well: the code

{(g1f(α1), . . . , gnf(αn)) : f ∈ F[X]<k},

with pairwise distinct α1, . . . , αn ∈ F ∪ {∞} and non-zero g1, . . . , gn ∈ F, is
generated by the k × n matrix whose i-th column is gi(1, αi, . . . , α

k−1
i)T if

αi 6= ∞, (0, . . . , 0, gi)
T otherwise. Again, the code is MDS as it satisfies the

third property of Lemma 2.5.6.

All results concerning Reed-Solomon codes are consequences of Lagrange’s
Interpolation Theorem, which we include for future reference.

Theorem 2.5.8 (Lagrange Interpolation). Let K be a field and k a positive
integer. Let α1, . . . , αk ∈ K be pairwise distinct. Then the evaluation map

K[X]<k Kk
f (f(α1), . . . , f(αk))

is an isomorphism of K-vector spaces. Its inverse maps (y1, . . . , yk) ∈ Kk into∑k
i=1 yiδi ∈ K[X]<k, where for all i = 1, . . . , k

δi :=
∏

j=1,...,k
j 6=i

X − αj
αi − αj

.

Proof. We need to prove that, for all f ∈ K[X]<k,

f =

k∑
i=1

f(αi)δi, (2.1)

where the δi’s are defined as above. Observe that, for all i = 1, . . . , k,

43

(i) deg δi = k − 1,

(ii) δi(αi) = 1,

(iii) δi(αj) = 0 for all j = 1, . . . , k, j 6= i.

From these properties it follows immediately that the two sides of (2.1) are
polynomials of degree less than k which coincide at k points, namely the αi’s,
hence the polynomials themselves must coincide.

Also this theorem can be extended to include the special element∞. For more
details on this subject, and alternative proofs as well, we refer to [28].

Finally, we remark that the evaluation-point sequence of a Reed-Solomon code
is not unique, but it is unique up to the action of the general linear group on
(F∪{∞})n, which is defined as follows. We can identify the set F∪{∞} with
the projective line P1(F), mapping α ∈ F into the class of (1, α) and ∞ into
the class of (0, 1). The general linear group

GL2(F) :=

{(
a b
c d

)
: a, b, c, d ∈ F, ad− bc 6= 0

}
acts on P1(F) by multiplication, and on (P1(F))n by coordinatewise application
of the action. Moreover, as the action of GL2(F) on P1(F) is triply transitive1,
we can always fix three points on any evaluation-point sequence. For instance,
we can always assume that an evaluation-point sequence starts with 0, 1,∞.
For a fully detailed explanation, the reader is referred to [30].

2.5.2 Code Products

For an arbitrary field K, the space Kn is, with the coordinatewise product, a
commutative unitary K-algebra: for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Kn, we define

xy := (x1y1, . . . , xnyn).

Its unit element is the all-one vector, denoted by 1. The multiplicative group
of its invertible elements is (Kn)× = (K×)n, meaning that x ∈ Kn is invertible
if and only if all entries of x are non-zero. Given x ∈ (Kn)×, its inverse is
denoted by x−1.

We use this notion of product to multiply spaces as well. Given two vector
spaces V,W ⊆ Kn, we define their product VW to be the K-linear span of the
set of all products xy, with x ∈ V and y ∈ W . Note that, in general, this set

1I.e. for any pair of triples (α1, α2, α3), (β1, β2, β3) ∈ F3 there exists σ ∈ GL2(F) such
that σ(αi) = βi for i = 1, 2, 3.

44

is not additively closed, hence it is strictly contained in its span. Likewise we
shall denote the square of a space V by V 2. Context should prevent confusion
with cartesian products.

We will be particularly interested in products of codes, i.e. in the case of a
finite base field F. The product of two codes C,D ⊆ Fn, sometimes called the
Schur product, has usually been denoted by C ∗D, but we shall drop the star
symbol to lighten notation. For an exhaustive discussion on why our study of
code products is well-motivated, the reader is referred to Chapter 1. We can
immediately state a trivial upper bound for the product dimension.

Theorem 2.5.9. Let C,D ⊆ Fn be two codes. Then

dimCD ≤ dimC dimD and dimC2 ≤ dimC(dimC + 1)

2
.

Proof. Let {x1, . . . , xk} and {y1, . . . , y`} be bases of C and D respectively,
where we set k := dimC and ` := dimD. Then the products xiyj with
1 ≤ i ≤ k and 1 ≤ j ≤ ` span CD and the products xixj with 1 ≤ i ≤ j ≤ k
span C2.

In fact it holds that these bounds are achieved by most codes. This is shown
in Chapter 3 for the second inequality, while for the first inequality the reader
is referred to [64].

The following simple observation will be freely used later.

Lemma 2.5.10. Let x ∈ (Kn)×. For any vector space V ⊆ Kn, we have
dimV = dimxV .

Lemma 2.5.11 below classifies all subalgebras of Kn. For all i = 1, . . . , n, let
ei denote the i-th unit vector in Kn. We call a vector of the form

∑
i∈I ei for

some I ⊆ {1, . . . , n} a projector2. In particular, 1 is the projector with support
{1, . . . , n}. A family of projectors is disjoint if the projectors have pairwise
disjoint supports.

Lemma 2.5.11. Any K-subalgebra of Kn admits a K-basis of disjoint projec-
tors.

Proof. Let A ⊆ Kn be a K-subalgebra. We argue by induction on k := dimA.
If k = 1 then A is generated by a vector x whose non-zero coordinates must be
all equal, otherwise x2 is not a K-multiple of x. If k > 1, pick x ∈ A, x 6= 0 of
minimal support with one of its coordinates equal to 1, and let {x1 = x, . . . , xk}

2To justify our terminology, note that if V ⊆ Kn is a vector space and and x ∈ Kn is a
projector, then xV can be viewed as the projection of V onto the support of x.

45

be a K-basis of A containing x. Then x is a projector, otherwise x2 − x 6= 0
would have smaller support. For all i = 2, . . . , k, if suppxi and suppx intersect,
say in position j, then we can choose λi ∈ K so that xi + λix has a zero
in position j, hence x(xi + λix) ∈ A has support strictly smaller than x.
By minimality of suppx, x(xi + λix) = 0, i.e. x and xi + λix have disjoint
support. Replacing if need be xi by xi +λix, we obtain that A is a direct sum
A = 〈x〉 ⊕ 〈x2, . . . , xk〉 and the conclusion follows by applying the induction
hypothesis to the second summand.

Remark 2.5.12. Lemma 2.5.11 implies in particular that the number of sub-
algebras of Kn is finite.

Let V ⊆ Kn be a K-vector space. We define St(V) := {x ∈ Kn : xV ⊆ V }, the
stabilizer of V in Kn. As V is linear, St(V) is a K-algebra, hence Lemma 2.5.11
applies. In particular, as St(V) has a basis of vectors whose entries are all 0’s
and 1’s, it is invariant under base-field extension3, i.e. the following lemma
holds.

Lemma 2.5.13. Let K′/K be a field extension. Let V ⊆ Kn be a K-vector
space. Then

St(V ⊗K′) = St(V)⊗K′.

Let C ⊆ Fn be a code. As in the vector-space case, we can define its stabilizer
and apply Lemma 2.5.11, which yields an F-basis {π1, . . . , πh} of St(C) of
disjoint projectors, where h := dim St(C). When h = 1 we say that C has
trivial stabilizer, or that it is indecomposable. We have the following lemma,
whose proof is straightforward.

Lemma 2.5.14. Any full-support code C ⊆ Fn decomposes as

C = π1C ⊕ · · · ⊕ πhC

where {π1, . . . , πh} is an F-basis of disjoint projectors of St(C). Moreover,
each summand πiC, viewed as a code in Fwt(πi), is indecomposable and has
full support.

Facts on stabilizers, including Lemmas 2.5.13 and 2.5.14, can be found in [65,
from §2.6 onwards].

Lemma 2.5.14 states in particular that a full-support code has non-trivial sta-
bilizer if and only if it decomposes as a direct sum of codes, and the dimension
of the stabilizer equals the number of indecomposable components. It follows
that all MDS codes, except the trivial code Fn, have trivial stabilizer.

3If K′/K is a field extension, the base-field extension V ⊗ K′, where the tensor product
is taken over K, of V is the K′-span of V .

46

We continue this section with two refinements of the classical Singleton Bound,
involving the dimension of St(C) beside the usual parameters. They naturally
reduce to the classical Singleton Bound when the code C is indecomposable,
i.e. dim St(C) = 1.

Lemma 2.5.15. Let C ⊆ Fn be a code.

1. If dmin(C) > 1 then

dmin(C) ≤ n− dimC + 1− (dim St(C)− 1).

2. If C has full support then

dmin(C) ≤ n− dimC

dim St(C)
+ 1.

Proof. We may assume that C has full support, as the first claim in the
general case follows immediately from the first claim in the full-support case.
Set k := dimC, d := dmin(C) and h := dim St(C). By Lemma 2.5.14 we
have that C is a direct sum C = C1 ⊕ · · · ⊕ Ch of full-support codes. For all
i = 1, . . . , h, let ni, ki and di denote the support size, the dimension and the
minimum distance of Ci respectively. We have

∑h
i=1 ni = n,

∑h
i=1 ki = k and

d = min
i
{di} ≤ min

i
{ni − ki}+ 1

by the classical Singleton Bound. In the case d > 1 we have ni−ki ≥ di−1 ≥ 1
for all i = 1, . . . , h, hence, for all j = 1, . . . , h,

nj − kj = n− k −
∑
i 6=j

(ni − ki) ≤ n− k − (h− 1).

Putting everything together we have

d = min
i
{di} ≤ min

i
{ni − ki}+ 1 ≤ n− k + 1− (h− 1),

which proves the first claim. To prove the second claim, note that

n− k =

h∑
i=1

(ni − ki) ≥ hmin
i
{ni − ki},

hence mini{ni − ki} ≤ (n− k)/h and the conclusion follows.

We conclude this section with some remarks on the effect of the product opera-
tion on MDS codes. The two results below relate the dimension of the product
of two codes with the MDS property.

47

Theorem 2.5.16. Let C,D ⊆ Fn be full-support codes. If (at least) one of
them is MDS, then

dimCD ≥ min{n, dimC + dimD − 1}.

Proof. See [65, §3.5].

Lemma 2.5.17. Let C,D ⊆ Fn be MDS codes such that

dimCD = dimC + dimD − 1.

Then CD is MDS.

Proof. By Lemma 2.5.5, it suffices to show that for any choice of I ⊆
{1, . . . , n} with |I| = d∗ := n + 1 − dimCD there exist x ∈ C, y ∈ D with
suppxy = I. Without loss of generality, assume that I = {1, . . . , d∗}. As
C and D are both MDS, there exist x ∈ C and y ∈ D such that suppx =
I ∪{d∗+ 1, . . . , dC} and supp y = I ∪{n− (dD−d∗) + 1, . . . , n}, where dC and
dD denote the minimum distance of C and D respectively. One checks that
dC = n− (dD − d∗), hence indeed suppxy = suppx ∩ supp y = I.

Finally, we observe that if C and D are two Reed-Solomon codes with a com-
mon evaluation-point sequence α, then the product CD is also Reed-Solomon
with evaluation-point sequence α and we have dimCD = min{n,dimC +
dimD − 1} which, as Theorem 2.5.16 states, is the minimum possible dimen-
sion of the product of MDS codes.

2.5.3 Error Correcting Pairs

Code products where first used by Pellikaan [57, 58] and by Kötter [43] to
define error correcting pairs.

Let C ⊆ Fn be a code and let t be a positive integer.

Definition 2.5.18. A pair (A,B) of codes is a t-error correcting pair for C if

(i) AB ⊆ C⊥,

(ii) dimA > t,

(iii) dmin(B⊥) > t,

(iv) dmin(A) + dmin(C) > n.

48

This definition was subsequently extended in [59, 60], allowing A and B to be
defined over a finite extension of F.

A first example of error correcting pair comes from MDS codes: if A,B ⊆
Fn are MDS codes with dimA = t + 1 and dimB = t then (A,B) is a t-
error correcting pair for C := (AB)⊥. Indeed, the first three properties are
straightforward, while the last one follows from [60, Corollary 3.4]. Moreover,
by Theorem 2.5.16 it follows that dimC ≤ n− 2t. This bound is attained if A
and B are Reed-Solomon codes with a common evaluation-point sequence, and
in this case C is a Reed-Solomon code as well. We will show in Section 4.3.1
that the converse also holds, i.e. that a code of dimension n− 2t with a t-error
correcting pair is necessarily Reed-Solomon.

These objects are relevant to the decoding problem. Suppose that the sum
x̃ = x + e of a codeword x ∈ C and of an error vector e ∈ Fn of weight t is
known. Is it possible to correct the t errors in x̃, i.e. recover x, efficiently? The
existence of error correcting pairs allows one to answer positively.

Theorem 2.5.19 ([57, 58]). If C admits a t-error correcting pair over a finite
extension of F then there exists a t-error correcting algorithm with complexity
O(n3).

We now outline how the algorithm mentioned in Theorem 2.5.19 works in
practice. Suppose that a vector x̃ ∈ Fn is given, and that x̃ = x+ e for some
x ∈ C and e ∈ Fn with wt(e) ≤ t. Our purpose is to recover x, or equivalently
e.

The key observation is the following: a vector y ∈ Fn which is zero at every
coordinate in the support of e satisfies

xy = x̃y. (2.2)

On the left-hand side, the componentwise product of two vectors appears.
Suppose that there exists a code A ⊆ Fn satisfying the following property: for
each set of t coordinates, there exists a codeword of A which is zero at each of
the chosen coordinates. In particular, the vector y satisfying (2.2) can always
be chosen from A and in this case the product xy belongs to the code product
B′ := CA. So, instead of solving (2.2), we solve

z = x̃y (2.3)

with z ∈ B′ and y ∈ A. By expressing z and y as linear combinations of basis
vectors, this is a linear system with n equations and dimB′+dimA unknowns.

Let B denote the dual of B′. We have just defined a pair (A,B) which satisfies
the first condition of Definition 2.5.18. We now show how the other conditions
are used to guarantee the existence of a solution to (2.3), to prove that such

49

a solution solves (2.2) as well, and finally to prove its uniqueness. First, if
dimA > t then, for each set of t coordinates, there exists a codeword of A
which is zero at each of the chosen coordinates, hence there exists a solution
(x, y) to (2.2) with y ∈ A, which yields a solution (xy, y) to (2.3). Now assume
that there exists a solution (z, y) to (2.3), and we want to prove that z = xy
for some x ∈ C. If this is the case, then we can recover the coordinates of x
corresponding to non-error positions by “dividing z by y”, hence the whole x
by solving the erasure decoding problem. We have that

z = x̃y = (x+ e)y = xy + ey,

hence ey ∈ B′. Assuming that dmin(B′) > t implies ey = 0, hence z is of
the required form. Finally, if there exists x, x′ ∈ C such that (xy, y) and
(x′y, y), for some y ∈ A, are both solutions of (2.3), then x− x′ is a non-zero
codeword which is zero on the support of y. This cannot happen if we assume
dmin(A) + dmin(C) > n.

2.5.4 Code Products and Bilinear Maps

In this section we introduce a new perspective on codes which will be partic-
ularly useful to analyze the parameters of code products.

Let C ⊆ Fn be a code of dimension k, and let G be a generator matrix of C.
As anticipated in Section 2.5, G defines in a natural way a linear embedding
Fk → Fn whose image is C, namely the map x 7→ xG. If we denote the
columns of G by y1, . . . , yn, then the entries of the codeword xG are the inner
products (x | yi), for i = 1, . . . , n. Recall that, by classical linear algebra, the
map x 7→ (x | ·) gives an isomorphism between any vector space and its dual.
It follows that the image of the linear map

(Fk)
∗ Fn

φ (φ(y1), . . . , φ(yn))

equals C and in particular is independent of the choice of the yi’s. Conversely,
given any F-vector space V and v1, . . . , vn ∈ V , the image of the linear map

V ∗ Fn
φ (φ(v1), . . . , φ(vn))

is a code and, provided that the yi’s generate V , has dimension dimV .

Let now C,D ⊆ Fn be two codes of dimension kC and kD respectively, and let
y1, . . . , yn ∈ FkC and z1, . . . , zn ∈ FkD be the columns of a generator matrix

50

of C and of a generator matrix of D respectively. As above, we can view the
codes C and D as images of evaluation maps. In addition, we define the map

Bil(FkC × FkD) Fn
B (B(y1, z1), . . . , B(yn, zn))

where Bil(FkC × FkD) denotes the F-vector space of all bilinear forms FkC ×
FkD → F. This map is linear as well and its image is independent of the choice
of yi’s and zi’s and equals the code product CD. In the symmetric case C = D
we obtain the code square C2 as the image of the evaluation map

evC : Quad(FkC) Fn.
Q (Q(y1), . . . , Q(yn))

In this case the classical identity

dimC2 = dim Quad(FkC)− dim ker evC

allows us to relate the dimension of the code square with a combinatorial
problem about quadratic forms, namely counting the number of quadratic
forms which vanish at a given set of points. Chapter 3 proceeds further in this
direction, exploiting this relation to estimate the dimension of the square of a
random linear code.

Finally, we show how this perspective can be twisted in a way that will be useful
when analyzing code-based secret sharing schemes in Section 2.6.3. First, we
can see the columns of G as linear forms on Fk, and obtain C as the image of
the linear map

Fk Fn.
x (y1(x), . . . , yn(x))

Then C ×D is the image of the evaluation map

FkC × FkD Fn.
(x,w) (y1 ⊗ z1(x,w), . . . , yn ⊗ zn(x,w))

2.6 Arithmetic Secret Sharing

We introduce arithmetic secret sharing, which is the main motivation for our
study of code products. In particular, Section 2.6.3 is dedicated to showing

51

how codes and secret sharing schemes are closely related. We conclude this
section with a quick sketch of how a secure multiparty computation protocol
can be built from a secret sharing scheme. The main reference on this topic
is [28]. Among the possible equivalent definitions of secret sharing schemes,
we first give a general definition based on codices [16], and then we pick the
one which best suits our needs.

Definition 2.6.1. Let K be an arbitrary field and let A be a finite-dimensional
K-algebra. Let n, t, d, r be integers with d ≥ 1 and 0 ≤ t < r ≤ n. An
(n, t, d, r)-codex (for A over K) is a pair (C,ψ) where C ⊆ Kn is a K-vector
space and ψ : C → A is a K-linear map satisfying the following properties:

(i) ψ is surjective;

(ii) (C,ψ) satisfies (d, r)-multiplicativity, i.e. there exists a unique K-linear
map ψ : Cd → A which satisfies

ψ(x1 · · ·xd) = ψ(x1) · · ·ψ(xd)

for all x1, . . . , xd ∈ C and is r-wise determined4;

(iii) (C,ψ) satisfies t-disconnection, i.e. for each B ⊆ {1, . . . , n} with |B| = t
the projection map

C ψ(C)× CB
x (ψ(x), xB)

is surjective.

Remark 2.6.2. As to the second condition, we remark that here Cd denotes
the d-th code power of C (and not a cartesian product) and that, in the
multiplicative relation, the product on the left-hand side is componentwise
while the product on the right-hand side is multiplication in the algebra A.
In the third condition, CB denotes the projection of C onto B and xB is a
shorthand for (xi)i∈B .

Definition 2.6.3. If K is a finite field, d ≥ 2 and t ≥ 1 then a codex as in
Definition 2.6.1 is called an (n, t, d, r)-arithmetic secret sharing scheme with
secret space A and share space K.

The strength of this notion is that it encompasses all known relevant variations
on arithmetic secret sharing. For instance, an (n, t, 2, n)-codex is a multiplica-
tive scheme and an (n, t, 2, n − t)-codex is a t-strongly multiplicative scheme
in the sense of upcoming Definitions 2.6.5 and 2.6.7 respectively. Even more,

4If z, z′ ∈ Cd are equal at r coordinates then their images via ψ are also equal, i.e.
ψ(z) = ψ(z′).

52

it captures notions from other fields such as the one of bilinear multiplication
algorithm introduced in Section 2.3.

We now focus on the definition which best suits our needs. Let F be a finite
field of size q, n a positive integer, and let V be a finite-dimensional F-vector
space.

Definition 2.6.4. A (linear) secret sharing scheme (for F, over F, among n
players) is a sequence of linear forms Σ = (π0, π1, . . . , πn) ⊆ V ∗ such that

(i) π0 is non zero,

(ii) π0 belongs to the span of {πi : i = 1, . . . , n}.

The set P := {1, . . . , n} is the player set. Given a non-empty subset I ⊆ P
we define ΣI := (πi : i ∈ {0} ∪ I) and we say that I is accepting if π0 ∈
〈πi : i ∈ I〉, i.e. if ΣI is also a secret sharing scheme, rejecting otherwise. The
access structure of the scheme collects the accepting sets, whereas the adversary
structure collects the rejecting sets. Let t, r be integers with 0 ≤ t < r ≤ n.
The scheme has r-reconstruction if all subsets of P of cardinality at least r are
accepting and it has t-privacy if all subsets of P of cardinality at most t are
rejecting.

Note that we will not consider any of the more general definitions of secret
sharing from the literature, such as non-linear secret sharing and those allowing
the secrets (and/or the shares) to be vectors rather than single field elements.

A secret sharing scheme Σ = (π0, π1, . . . , πn) ⊆ V ∗ implements the following
two functionalities. Given a secret element s ∈ F, it can be shared as follows:
select x ∈ V uniformly at random such that π0(x) = s, which is possible by
assumption (i); define the i-th share to be πi(x) ∈ F. If a secret element s ∈ F
has been shared, with shares x1, . . . , xn ∈ F, then it can be reconstructed as
follows: by implementation of the sharing functionality there exists x ∈ V
such that s = π0(x) and xi = πi(x) for all i = 1, . . . , n; by assumption (ii)
there exists λ1, . . . , λn ∈ F such that π0 =

∑n
i=1 λiπi; hence we can compute

s = π0(x) =

(
n∑
i=1

λiπi

)
(x) =

n∑
i=1

λiπi(x) =

n∑
i=1

λixi.

In other words, there exists an F-linear form ρ : Fn → F, the reconstruction
function, such that ρ(π1(x), . . . , πn(x)) = π0(x) for all x ∈ V . Observe that ρ
does not depend on the secret, but only on the scheme.

In addition, a secret sharing scheme defined as above has the following linearity
property. Suppose that two secrets s, s′ ∈ F are shared, sampling x, x′ ∈ V

53

such that π0(x) = s and π0(x′) = s′ and obtaining xi = πi(x) and x′i = πi(x
′),

for all i = 1, . . . , n, as valid shares of s and s′ respectively. Then the i-th
player can compute a valid i-th share for the sum of the two secrets, namely
x+ x′, without interacting with other players. Indeed by linearity of the πi’s
we have that

πi(x+ x′) = πi(x) + πi(x
′) = xi + x′i

and
π0(x+ x′) = π0(x) + π0(x′) = s+ s′.

In other words, the sum of the shares of the secrets is a share of the sum of
the secrets. Analogously, each player can individually compute a valid share
for any multiple λs, with λ ∈ F, of the secret.

If a subset I ⊆ P is accepting then there is an F-linear form ρI : F|I| → F,
the reconstruction function for I, such that ρI((πi(x))i∈I) = π0(x) = s for
all x ∈ Fk. In other words, if I is accepting, the secret can be reconstructed
(linearly) from the joint shares of I. Again, such a function does not depend
on the secret, but only on the scheme.

On the other hand, if I is non-empty and rejecting, then, for any x ∈ V ,
(πi(x))i∈I is (part of) a set of valid shares for any possible secret. To prove
this claim, the key observation is that π0 /∈ 〈πi : i ∈ I〉 if and only if there
exists z ∈ V (where z may depend on I) such that π0(z) = 1 and πi(z) = 0
for all i ∈ I. This is trivial by linear algebra. Let x ∈ V , let s := π0(x) be the
secret corresponding to x and let s′ ∈ F be an arbitrary secret. Set λ := s′−s,
then s′ = π0(x)+λπ0(z) = π0(x+λz), i.e. s′ corresponds to the vector x+λz.
On the other hand, for all i ∈ I we have πi(x+ λz) = πi(x) + λπi(z) = πi(x),
i.e. (πi(x))i∈I is (part of) a set of valid shares for s′.

We remark that, in the case of linear secret sharing schemes, a non-empty
player subset is either accepting, i.e. can recover the secret, or rejecting, i.e. sees
all possible secrets as equally likely. No subset has partial information about
the secret. If this happens, the secret sharing scheme is said to be perfect. This
is a property of linear secret sharing schemes, but is not necessarily satisfied
by more general classes of schemes.

Finally, we introduce the notion of multiplicativity.

Definition 2.6.5. A secret sharing scheme (π0, π1, . . . , πn) ⊆ V ∗ is multi-
plicative if there is an F-linear form ρ∗ : Fn → F such that, for all x, y ∈ V ,

ρ∗(π1(x)π1(y), . . . , πn(x)πn(y)) = π0(x)π0(y).

In other words, the product of two secrets is obtained as a linear function of
the vector consisting of the coordinate-wise product of two respective share-
vectors. Such a function is called a product reconstruction function. This is a

54

special property that is not generally satisfied by linear secret sharing schemes.
Please refer to [27, 20] for more information about constructions and bounds.

The multiplicative property can be stated in terms of the properties of the
symmetric bilinear forms πi ⊗ πi.

Proposition 2.6.6. A secret sharing scheme (π0, π1, . . . , πn) ⊆ V ∗ is multi-
plicative if and only if π0 ⊗ π0 is in the span of {πi ⊗ πi : i = 1, . . . , n}.

Let 1 ≤ t ≤ n be an integer.

Definition 2.6.7. A secret sharing scheme Σ = (π0, π1, . . . , πn) ⊆ V ∗ is t-
strongly multiplicative if it has t-privacy and (n − t)-product reconstruction,
i.e., for every set I ⊆ P of n− t players, the scheme ΣI is multiplicative.

A secret sharing scheme which supports one of the above multiplication prop-
erties is said to be arithmetic.

Proposition 2.6.6 suggests that, given a secret sharing scheme (π0, . . . , πn) ⊆
V ∗, we can consider the product scheme generated by the symmetric bilinear
forms (π0 ⊗ π0, . . . , πn ⊗ πn) ⊆ V ∗ ⊗ V ∗. This is a secret sharing scheme as
defined by Definition 2.6.4 if and only if the original scheme is multiplicative.
Moreover, we have that a secret sharing scheme is t-strongly multiplicative if
and only if it has t-privacy and its product has (n− t)-reconstruction.

Lemma 2.6.8. If a secret sharing scheme among n players has t-privacy and
r∗-product reconstruction then it has (r∗ − t)-reconstruction.

Proof. Let (π0, . . . , πn) ⊆ V ∗ be a secret sharing scheme with t-privacy and
r∗-product reconstruction. Let I ⊆ P be a set of r∗ − t players, and assume
towards a contradiction that it is rejecting, i.e. that π0 6∈ 〈πi : i ∈ I〉. By
linear algebra, this means that there exists x ∈ V such that π0(x) = 1 while
πi(x) = 0 for all i ∈ I. Let J ⊆ P be a set of t players disjoint from I. By
t-privacy, π0 6∈ 〈πj : j ∈ J〉, hence there exists y ∈ V such that π0(y) = 1
while πj(y) = 0 for all j ∈ J . Now consider the set I ∪J , which has r∗ players.
We have that π0 ⊗ π0(x, y) = 1 while πi ⊗ πi(x, y) = 0 for all i ∈ I ∪ J , hence
π0 ⊗ π0 ∈ 〈πi ⊗ πi : i ∈ I ∪ J〉 against r∗-product reconstruction. It follows
that I is accepting, hence the scheme has (r∗ − t)-reconstruction.

Proposition 2.6.9. If a secret sharing scheme among n players is t-strongly
multiplicative then n ≥ 3t+ 1.

Proof. This is a straightforward consequence of the previous lemma: a
t-strongly multiplicative scheme among n players has t-privacy and (n − t)-
product reconstruction, hence (n − 2t)-reconstruction, hence n − 2t > t and
the conclusion follows.

55

2.6.1 Composition of Secret Sharing Schemes

Let V ′ and V ′′ be F-vector spaces. Let Σ′ = (π′0, . . . , π
′
n′) ⊆ (V ′)∗ and Σ′′ =

(π′′0 , . . . , π
′′
n′′) ⊆ (V ′′)∗ be secret sharing schemes among n′ and n′′ players

respectively.

We define a new secret sharing scheme Σ = Σ′[Σ′′] among n := n′ + n′′ − 1
players, the composition of Σ′ with Σ′′, which implements the following sharing
functionality. To share s ∈ F among n players, first share it using Σ′, so that
n′ shares x′1, . . . , x

′
n′ are obtained. Then use Σ′′ to share x′n′ and obtain n′′

shares x′′1 , . . . , x
′′
n′′ . The n shares of s in the scheme Σ are x′1, . . . , x

′
n′−1 and

x′′1 , . . . , x
′′
n′′ . In other words, in this composition the n′-th player of the scheme

Σ′ has been substituted by the set of players of the scheme Σ′′.

The player sets of Σ′ and Σ′′ can be identified, respectively, with {1, . . . , n′ −
1, p0} and {n′, . . . , n}, where p0 denotes the player of the scheme Σ′ corre-
sponding to the linear form π′n′ . For a set I ⊆ {1, . . . , n}, define I ′ :=
I ∩ {1, . . . , n′ − 1} and I ′′ := I ∩ {n′, . . . , n}. Then I is accepting for Σ if
and only if I ′ is accepting for Σ′, or I ′ ∪ {p0} is accepting for Σ′ and I ′′ is
accepting for Σ′′. In particular, if Σ′ has t-privacy then Σ has t-privacy.

As to the multiplicativity property, observe that if the scheme Σ′{1,...,n′−1}
obtained by removing player p0 from Σ′ is multiplicative then Σ′[Σ′′] is always
multiplicative. So it makes sense to exclude this case in the proposition below.

Proposition 2.6.10. Suppose that Σ′{1,...,n′−1} is not a multiplicative secret

sharing scheme. If Σ = Σ′[Σ′′] is a multiplicative secret sharing scheme then
both Σ′ and Σ′′ are so.

Clearly the converse is also true. Before proving this proposition, we formalize
the mathematical framework we are working with. Define the vector space

V := {(x′, x′′) ∈ V ′ × V ′′ : π′n′(x
′) = π′′0 (x′′)} ⊆ V ′ × V ′′.

Then V ∗ = ((V ′)∗ × (V ′′)∗)/〈(π′n′ ,−π′′0)〉. Given a vector (π, τ) ∈ (V ′)∗ ×
(V ′′)∗, we denote its class in V ∗ with (π, τ). The composition Σ = Σ′[Σ′′]
of Σ′ with Σ′′ is the secret sharing scheme Σ = (π0, . . . , πn) ⊆ V ∗ among
n := n′ + n′′ − 1 players defined by

• πi := (π′i, 0) for all i = 0, . . . , n′ − 1,

• πn′+j−1 := (0, π′′j) for all j = 1, . . . , n′′.

We are now ready to prove the above proposition.

56

Proof of Proposition 2.6.10. Define τ0 := (π′n′ , 0) = (0, π′′0) ∈ V ∗ and
observe that:

1. 〈πi : i = 0, . . . , n′ − 1〉 ∩ 〈πi : i = n′, . . . , n〉 ⊆ 〈τ0〉;
2. 〈πi ⊗ πi : i = 0, . . . , n′ − 1〉 ∩ 〈πi ⊗ πi : i = n′, . . . , n〉 ⊆ 〈τ0 ⊗ τ0〉.

The first property is obvious, while the second one is a straightforward conse-
quence of the first one.

If Σ = Σ′[Σ′′] is multiplicative then the inclusion in the property 2 above is an
equality. Indeed, by definition there exists λ1, . . . , λn ∈ F such that

π0 ⊗ π0 =

n∑
i=1

λiπi ⊗ πi,

hence

π0 ⊗ π0 −
n′−1∑
i=1

λiπi ⊗ πi =

n∑
i=n′

λiπi ⊗ πi.

The left-hand side of this identity is in 〈πi ⊗ πi : i = 0, . . . , n′ − 1〉 and is non-
zero as otherwise Σ′{1,...,n′−1} would be multiplicative, while the right-hand

side is in 〈πi ⊗ πi : i = n′, . . . , n〉. This proves that the intersection between
these two spaces is non-trivial, hence equals 〈τ0 ⊗ τ0〉. In particular 〈τ0 ⊗ τ0〉
belongs to both spaces, hence it is easy to conclude that both Σ′ and Σ′′ are
multiplicative.

2.6.2 Threshold Schemes and Shamir’s Scheme

Definition 2.6.11. A secret sharing scheme is threshold if, for some integer
0 ≤ r ≤ n, it has (r − 1)-privacy and r-reconstruction. In this case we will
also say that the scheme is r-threshold.

The most famous example of secret sharing scheme belongs to this family. Let
V := F[X]<k be the space of polynomials of degree less than k, where k ≤ n is
a fixed positive integer. Pick n + 1 pairwise distinct elements α0, . . . , αn ∈ F
and, for all i = 0, . . . , n, define πi ∈ V ∗ to be the evaluation map πi(f) := f(αi)
for all f ∈ V . In addition, we may allow one of the αi’s to be equal to ∞,
with the convention that, for any f ∈ F[X]<k, f(∞) equals the coefficient of
Xk−1 in f , as in section 2.5.1. This defines a secret sharing scheme, called
Shamir’s scheme [67]. Moreover, it is a threshold scheme with (k− 1)-privacy
and k-reconstruction, i.e. a k-threshold scheme.

57

In order to prove this, identify any polynomial f = f0+f1X+· · ·+fk−1Xk−1 ∈
V with its coefficient list (f0, f1, . . . , fk−1) ∈ Fk and, for all i = 0, . . . , n,
the linear form πi with the vector (1, αi, . . . , α

k−1
i) ∈ Fk if αi 6= ∞ or the

vector (0, . . . , 0, 1) ∈ Fk otherwise, so that the evaluation πi(f) is simply a
vector inner product. Then it is straightforward to see that any k of the πi’s
constitute an F-basis of V ∗, hence the claims about privacy and reconstruction
of the scheme follow.

To share a secret s ∈ F, we choose uniformly at random a polynomial f ∈
F[X]<k such that f(α0) = s, and we define the i-th share to be f(αi). On
the other hand, a reconstruction function ρI : Fk → F for any subset I ⊆
{1, . . . , n} of size k can be explicitly obtained using Lagrange’s Interpolation
Theorem 2.5.8. Assume that I = {1, . . . , k} for ease of notation, and that

y1, . . . , yk are the corresponding shares. Then f :=
∑k
i=1 yiδi ∈ F[X]<k, where

the δi’s are as in Theorem 2.5.8, is the unique polynomial satisfying f(αi) = yi
for all i = 1, . . . , k, and in particular s = f(α0) can be recovered.

As to the multiplicativity of this scheme, recall that, for all i = 0, . . . , n, πi⊗πi
is the bilinear form on F[X]<k defined by

πi ⊗ πi(f, g) := f(αi)g(αi) = (fg)(αi)

for all f, g ∈ F[X]<k. The matrix associated to πi ⊗ πi is
1
αi
...

αk−1i

 (1, αi, . . . , α
k−1
i)

and any 2k − 1 such matrices (with distinct αi’s) generate all the others.
This can be argued using again Vandermonde’s determinants. It follows from
Proposition 2.6.6 that, provided that 2k − 1 ≤ n, Shamir’s scheme is multi-
plicative. If in addition 2k − 1 ≤ n − (k − 1), i.e. n ≥ 3(k − 1) + 1, then
Shamir’s scheme is (k− 1)-strongly multiplicative. In particular this allows us
to construct a scheme which attains the bound given in Proposition 2.6.9. We
will show in Section 4.3.1 that the converse also holds, i.e. that a secret sharing
scheme which attains the bound of Proposition 2.6.9 is necessarily based on a
Reed-Solomon code.

2.6.3 Connection between Coding Theory
and Secret Sharing

Let F be a finite field of size q, n a positive integer, and let V be a finite-
dimensional F-vector space. In the ambient space Fn+1, coordinates are in-

58

dexed by {0, 1, . . . , n}. First observe that we can naturally associate a code to
a secret sharing scheme.

Definition 2.6.12. Let Σ = (π0, . . . , πn) ⊆ V ∗ be a linear secret sharing
scheme. The code associated to Σ is the code

C(Σ) := {(π0(x), . . . , πn(x)) : x ∈ V } ⊆ Fn+1.

This is indeed a linear space by linearity of Σ. It is a code of length n+ 1 and
dimension

dimC(Σ) = dim〈π1, . . . , πn〉.
Moreover the properties (i), (ii) required by Definition 2.6.4 are equivalent to
e0 6∈ C(Σ)⊥ and e0 6∈ C(Σ) respectively, where e0 denotes the 0-th unit vector
of Fn+1. One can view C(Σ) as the set of all (n + 1)-tuples (s, x1, . . . , xn)
where s is a secret and x1, . . . , xn is a valid set of shares for s in the scheme
Σ.

The parameters of a secret sharing scheme give an estimate of the dimension
of the associated code as follows.

Theorem 2.6.13. If the secret sharing scheme Σ has t-privacy and r-recon-
struction then the code C(Σ) has dimension

t < dimC(Σ) ≤ r.

Proof. Let I ⊆ P be a set of t players. By t-privacy π0 6∈ 〈πi : i ∈ I〉, while
π0 ∈ 〈π1, . . . , πn〉, hence

dimC(Σ) = dim〈π1, . . . , πn〉 > dim〈πi : i ∈ I〉 ≥ t.

As to the second inequality, let I ⊆ P be a set of r + 1 players, and for
simplicity assume I = {1, . . . , r + 1}. We need to prove that π1, . . . , πr+1

are linearly dependent. By r-reconstruction π0 ∈ 〈π1, . . . , πr〉, i.e. there exist
λ1, . . . , λr ∈ F such that

π0 = λ1π1 + · · ·+ λrπr

and at least one of the λi’s is non-zero, so we may assume that λ1 6= 0. Again
by r-reconstruction π0 ∈ 〈π2, . . . , πr+1〉, i.e. there exist µ2, . . . , µr+1 ∈ F such
that

π0 = µ2π2 + · · ·+ µr+1πr+1.

Subtracting the two identities we obtain

0 = λ1π1 + (λ2 − µ2)π2 + · · ·+ (λr − µr)πr − µr+1πr+1,

which is a trivial linear combination of π1, . . . , πr+1 with a non-zero coefficient,
hence these vectors are linearly dependent.

59

Corollary 2.6.14. If Σ is r-threshold then dimC(Σ) = r and C(Σ) is MDS.

Proof. The statement about the dimension is a trivial consequence of the
previous theorem. As to the MDS property, it is easy to see that the third
property in Lemma 2.5.5 is satisfied.

Conversely, a code C ⊆ Fn+1 of length n + 1 with e0 6∈ C⊥ and e0 6∈ C can
be used to share a secret s ∈ F as follows: select x ∈ C uniformly at random
such that its 0-th entry equals s; define the i-th share to be the i-th entry of
x. This can be formalized as follows.

Definition 2.6.15. The secret sharing scheme associated to C is the scheme
Σ(C) = (π0, . . . , πn) ⊆ Fk, where k := dimC and the πi’s are the columns of
a generator matrix of C.

This construction is due to Massey [50, 51]. First of all, observe that the
conditions e0 6∈ C⊥ and e0 6∈ C ensure that the properties required by Def-
inition 2.6.4 are satisfied. Second, this scheme gives the share functionality
described above, and this is clearly independent of the choice of the genera-
tor matrix of C. So, even though the sequence (π0, . . . , πn) which defines the
scheme depends on this choice, the possible sets of shares corresponding to
a given secret do not. In particular, access and adversary structures of the
scheme do not depend on this choice.

The following results characterize these families, based on properties of the
code and of its dual. As in the previous section, P := {1, . . . , n} denotes the
player set.

Lemma 2.6.16. Let I ⊆ P be non-empty. The following holds.

1. I is accepting for Σ(C) if and only if there exists x ∈ C⊥ such that
suppx ⊆ I ∪ {0}.

2. I is rejecting for Σ(C) if and only if there exists x ∈ C such that 0 ∈
suppx and I ∩ suppx = ∅.

Proof. Let Σ(C) = (π0, . . . , πn). I is accepting if and only if

π0 =
∑
i∈I

λiπi =

n∑
i=1

λiπi

for some λ1, . . . , λn ∈ F where λi = 0 if i 6∈ I. The vector x = (−1, λ1, . . . , λn)
satisfies the required properties, and this proves the first claim.

As to the second claim, observe that π0 6∈ 〈πi : i ∈ I〉 if and only if there exists
y ∈ Fk such that (π0 | y) 6= 0 and (πi | y) = 0 for all i ∈ I. This is a basic result

60

from linear algebra. The codeword yG, where G is the generator matrix of C
whose columns are the πi’s, satisfies the required properties, and this proves
the second claim.

Theorem 2.6.17. The secret sharing scheme Σ(C) has (n − dmin(C) + 2)-
reconstruction and (dmin(C⊥)− 2)-privacy.

Proof. This follows from the previous lemma. Let I ⊆ P be non-empty.

First assume that |I| ≥ n− dmin(C) + 2 and, towards a contradiction, that I
is rejecting. Then there exists x ∈ C such that 0 ∈ suppx and I ∩ suppx = ∅.
The first property implies that x 6= 0 and the second that wt(x) ≤ n+1−|I| ≤
n+ 1− n+ dmin(C)− 2 = dmin(C)− 1, which is clearly impossible.

Now assume that |I| ≤ dmin(C⊥) − 2 and that I is accepting. Then there
exists x ∈ C⊥ such that suppx ⊆ I ∪{0}, i.e. x ∈ C⊥, x 6= 0,wt(x) ≤ |I|+1 ≤
dmin(C⊥)− 2 + 1 = dmin(C⊥)− 1, which is another contradiction.

Finally, we show how the multiplicativity properties of the scheme relate to
the product of the original code. Recall that the code C2 ⊆ Fn+1 is defined as
the span of all componentwise products xy of codewords x, y ∈ C. Moreover,
as shown in Section 2.5.4, it can be obtained as the image of

Fk × Fk Fn+1.
(x, y) (π0 ⊗ π0(x, y), . . . , πn ⊗ πn(x, y))

This shows that the scheme associated to the square of the code C is the
product of the scheme Σ(C). Then from Theorem 2.6.17 we immediately have
the following.

Theorem 2.6.18. The secret sharing scheme Σ(C) is t-strongly multiplicative,
where

t := min{dmin(C⊥)− 2, dmin(C2)− 2}.

2.6.4 From Secret Sharing to Multiparty Computation

In this section we give a very high level overview of how an arithmetic secret
sharing scheme can be used to build a secure multiparty computation protocol.

The purpose of secure multiparty computation is to implement the following
functionality: n players want to jointly evaluate a function f : Fn → F of their
inputs x1, . . . , xn in a way that ensures the correctness of the outcome and
protects the privacy of the parties. We assume the existence of an external

61

adversary who can corrupt a fixed number of players in order to obtain addition
information about the other inputs. Here privacy is meant against such an
adversary. We now sketch how this is performed in practice and how the
properties of the scheme are exploited.

At the beginning of the protocol, each player uses the secret sharing scheme to
share his own input with all other players. The privacy property of the scheme
hides each input from other players.

Throughout the protocol, the function f is modeled as a sequence of + and ×
binary gates, and the arithmetic properties of the scheme are used to guarantee
the following: if a player enters the gate y + z (y × z respectively) with valid
shares of y and z, then he exits the gate with a valid share of y + z (y × z
respectively).

At the end of the protocol, each player possesses a valid share of the output
f(x1, . . . , xn), which can therefore be reconstructed thanks to the reconstruc-
tion property of the scheme.

We give more details on how the protocol proceeds through the gates. For all
i = 1, . . . , n, let yi and zi denote the i-th share of y and z respectively. As
seen in the previous section, yi + zi is a valid share of y + z, hence at every
+ gate each player is simply required to sum the shares in his possession. On
the other hand, × gates require more work and actual interaction among the
players.

Recall that, as the scheme is multiplicative, there exists a linear product re-
construction function ρ∗ : Fn → F such that, for any pair of secrets s, s′ ∈
F with corresponding shares x1, . . . , xn ∈ F and x′1, . . . , x

′
n ∈ F, we have

ρ∗(x1x
′
1, . . . , xnx

′
n) = ss′. As ρ∗ is linear, we can identify it with a list of

coefficients ρ∗1, . . . , ρ
∗
n ∈ F such that

ss′ =

n∑
i=1

ρ∗i xix
′
i

for any pair of secrets and list of shares as above. Let us highlight that the
reconstruction function, being a property of the scheme, is assumed to be
publicly known by all players, and so are the coefficients ρ∗i ’s.

For all i = 1, . . . , n, the i-th player processes a × gate following these instruc-
tions:

1. compute wi := ρ∗i yizi;

2. share wi and send the j-th share wi,j to the j-th player;

3. compute ti :=
∑n
j=1 wj,i.

62

It turns out that the ti’s constitute a valid share of y × z. Indeed, we have
that the i-th share of

yz =

n∑
j=1

ρ∗jyjzj =

n∑
j=1

wj

equals
∑n
j=1 wj,i by linearity. Finally, we point out that step 1 and 3 only

require local computation, whereas step 2 requires one round of communication
in which each player sends an element of F to each other player, for a total of
n2 transmitted elements of F.

63

64

Chapter 3

Squares of Random Linear
Codes

3.1 Overview

As shown in Chapter 1, the motivation for a systematic code-theoretic study of
squares is quite strong. With a view to contributing to such an endeavor, our
concern in this chapter is with the dimension of squares of random linear codes.
Specifically, our purpose is to answer the following question: does the square
of a code “typically” fill the whole space? We give a positive answer, for codes
of dimension k and length roughly k2/2 or smaller. Moreover, the convergence
speed is exponential in the difference k(k + 1)/2 − n, if this difference is at
least linear in k. The proof uses random coding and combinatorial arguments,
together with algebraic tools involving the precise computation of the number
of quadratic forms of a given rank, and the number of their zeros.

Even though the main results of this chapter involve probability measures,
we shall not give any introduction to probability theory, as we are only con-
cerned with discrete probability and uniform distributions, hence essentially
combinatorics. That is, given a finite sample space U , an event E is a subset
of U , and its probability Pr(E) is simply defined to be the ratio between the
size of the event itself and the size of the sample space. A random variable
is a function defined over the sample space and with values in a subset of R.
The expectation of a random variable X is E[X] :=

∑
x∈R xPr(X = x). Here

Pr(X = x) is a standard notation for the event corresponding to the preimage
of x in the sample space. Observe that in the discrete case this is zero for all
but a finite number of x ∈ R, hence the sum defining the expectation is finite.

65

Throughout this chapter, F denotes a finite field of size q, where q is a fixed
prime power, and all codes are F-linear. Since a generating set of vectors for
the square of a code C ⊆ Fn of dimension k can be constructed by taking all
possible k(k + 1)/2 products of two elements of a basis of the code C, it is
reasonable to expect that a randomly chosen code of length n < k(k + 1)/2
has a square which fills up the whole space, i.e. C2 = Fn. However, linear
relations between products of elements of C are not typically independent
random events, and one has to overcome a certain number of obstacles to
prove such a statement. Our main result is indeed to show that when the
difference k(k + 1)/2 − n goes to infinity as a function of k, however slowly,
the probability that a random code of length n and dimension k has a square
different from Fn goes to zero. We also study the speed of convergence, which
is exponential in the difference k(k + 1)/2 − n, if this difference is at least
linear in k, and the limiting case n = k(k + 1)/2. We shall also consider the
slightly easier case when the length n is such that n ≥ k(k + 1)/2: we obtain
that with probability tending to 1 when n − k(k + 1)/2 goes to infinity, the
dimension of the square of the random code is exactly k(k + 1)/2. Again,
this convergence is exponentially fast if n − k(k + 1)/2 is at least linear in k.
Previously, the best-known fact on this problem was given by Faugère et al.
in [34] who proved that for n ≥ k(k+1)/2 and for any function ω(k) that goes
to infinity with k, the dimension of the square of the random code is at least
k(k+ 1)/2− kω(k) with probability tending to 1 when k goes to infinity. Our
techniques break significantly with the approach of [34] and combine the study
of the dual distance of the square of a random code, and the distribution of
zeros of random quadratic forms. In the rest of this section we describe our
results precisely and give an overview of our proofs and the structure of the
chapter.

We first define the probabilistic model we shall work with. For all positive
integers n ≥ k, we define C(n, k) to be the family of all codes of length n and
dimension k whose first k coordinates make up an information set: equiva-
lently, members of C(n, k) have a generator matrix which can be written in
systematic form, i.e. as

G =

1
. . .

1

A

 ,

for some k×(n−k) matrix A. We endow C(n, k) with the uniform distribution.
Since codes of C(n, k) are in one-to-one correspondence with k × (n− k) ma-
trices A, choosing a random element of C(n, k) amounts to choosing a random
uniform matrix A.

Remark 3.1.1. There are several possible choices for the probabilistic model.
An alternative way of choosing a random code consists of choosing its generator

66

matrix uniformly at random among all k × n matrices. Yet another alterna-
tive is to consider the uniform distribution among all codes of length n and
dimension k. The first alternative probability distribution has the disadvan-
tage that the resulting code may be of dimension < k. The second alternative
distribution is perhaps the most theoretically elegant but makes it somewhat
cumbersome to use the puncturing arguments that we will work with, hence
the above choice of a probabilistic model. In Section 3.5 we shall argue however
that our results are not altered significantly under these alternative probability
distributions.

Our main result is the following.

Main Theorem 3.1.2. Let n : N→ N be such that k(k + 1)/2 ≥ n(k) ≥ k for
all k ∈ N and define t : N → N, t(k) := k(k + 1)/2 − n(k). Then there exist
constants γ, δ ∈ R>0 such that, for all large enough k,

Pr(C2 = Fn(k)) ≥ 1− 2−γk − 2−δt(k),

where C is chosen uniformly at random from C(n(k), k).

For lengths n that are larger than k(k + 1)/2, we also have:

Theorem 3.1.3. Let n : N → N be such that n(k) ≥ k(k + 1)/2 for all k ∈ N
and define s : N→ N, s(k) := n(k)− k(k + 1)/2. Then there exists a constant

δ̂ ∈ R>0 such that, for all large enough k,

Pr

(
dimC2 =

k(k + 1)

2

)
≥ 1− 2−δ̂s(k),

where C is chosen uniformly at random from C(n(k), k).

Strangely enough, Theorems 3.1.2 and 3.1.3 are not quite symmetrical. In
particular the term 2−γk is absent from the statement of Theorem 3.1.3 but
can not be avoided in Theorem 3.1.2: this is because with probability at least
1/qk, the random matrix G will contain a column of zeros, or two identical
columns, in which case the square C2 can not be equal to Fn(k). The two
theorems will not require exactly the same methods and Theorem 3.1.2 will
need more work than Theorem 3.1.3. We shall deal with them separately.

Our first step towards establishing Theorem 3.1.2 will be to estimate the ex-
pected minimum distance of the dual of the square of a random code of length
k(k + 1)/2. Specifically, we shall prove:

Proposition 3.1.4. There exist constants (depending only on q) c, c̃ ∈ R>0

such that, for all large enough k, if C is chosen uniformly at random from
C(k(k + 1)/2, k) then

Pr

(
dmin((C2)

⊥
) ≤ c · k(k + 1)

2

)
≤ 2−c̃k.

67

This last proposition enables us to use puncturing arguments. In our proba-
bilistic model, a random code of length n can be obtained by first choosing a
random code of length n + t and then puncturing t times on a random posi-
tion. The probability that a punctured code has the same dimension as the
original code is well-separated from zero whenever the dual distance of the
original code is large enough. This fact will be enough in itself to establish the
following weaker version of Main Theorem 3.1.2.

Theorem 3.1.5. There exist constants (depending only on q) c, c̃ ∈ R>0 such
that, if n : N→ N satisfies

k ≤ n(k) ≤ c · k(k + 1)

2

for all k ∈ N then, for all large enough k,

Pr(C2 = Fn(k)) ≥ 1− 2−c̃k,

where C is chosen uniformly at random from C(n(k), k).

However, in order to deal with block lengths that approach the upper bound
k(k + 1)/2 on the dimension of the square of C, and prove the full-fledged
Main Theorem 3.1.2, we need some additional ingredients.

Given an code C of length n and dimension k and denoting by π1, . . . , πn ∈ Fk
the columns of a generator matrix of C, define the linear map

evC : Quad(Fk) → Fn,
Q 7→ (Q(π1), . . . , Q(πn))

where Quad(Fk) denotes the vector space of quadratic forms on Fk. As ob-
served in Section 2.5.4, the image of evC does not depend on the choice of a
generator matrix of C, and it is equal to C2. In particular, C2 = Fn if and
only if evC is surjective. Moreover, by basic linear algebra C2 = Fn if and
only if

dim ker evC = dim Quad(Fk)− n =
k(k + 1)

2
− n.

So it makes sense to focus on this kernel. We view its cardinality as a ran-
dom variable, with distribution induced by the uniform distribution of C over
C(n, k): formally, for all positive integers n ≥ k we define

X(n, k) := | ker evC |.

Our main intermediate result, of interest in its own right, is:

Theorem 3.1.6. We have that

lim
k→∞

E
[
X

(
k(k + 1)

2
, k

)]
= 2.

68

A simple use of Markov’s inequality will then give us that, for a random code
C of length k(k + 1)/2, the probability that the codimension of C2 does not
exceed `,

Pr

(
dimC2 ≥ k(k + 1)

2
− `
)

tends to 1 when ` goes to infinity, furthermore exponentially fast if ` is linear
in k. Puncturing arguments, again relying on Proposition 3.1.4, will enable
us to conclude the proof of Theorem 3.1.2 when the block length n is well
separated from k(k + 1)/2.

As a by-product, Theorem 3.1.6 also enables us to deal easily with the case
when n ≥ k(k + 1)/2. Theorem 3.1.3 will follow as a straightforward conse-
quence.

We conclude this overview by giving a rough idea of the proof of Theorem 3.1.6.
It involves computing the number of zeros of a quadratic form of given rank
and the number of quadratic forms of given rank. The results we need are
stated in Section 3.3 and proved in Section 2.4.

By definition, for all positive integers m ≥ k we have

E[X(m, k)] =

= E[|{Q ∈ Quad(Fk) : Q(π1) = · · · = Q(πm) = 0}|],

where we can assume that, for i = 1, . . . , k, πi = ei is the i-th unit vector
while πk+1, . . . , πm ∈ Fk have independent, uniform distribution over Fk, by
definition of the family C(m, k) and our probabilistic model.

Note that the conditions Q(e1) = · · · = Q(ek) = 0 are independent (in the
sense of linear algebra), hence the subspace

S := {Q ∈ Quad(Fk) : Q(e1) = · · · = Q(ek) = 0}

of Quad(Fk) has dimension k(k − 1)/2. Moreover, as πk+1, . . . , πm ∈ Fk are
independent (in the sense of probability), we have

Pr(Q(πk+1) = · · · = Q(πm) = 0) =

= Pr(Q(πk+1) = 0)
m−k

=

(
|Z(Q)|
qk

)m−k
for any Q ∈ Quad(Fk). Here Z(Q) denotes the zero set of Q and q is the
cardinality of F. Finally, by linearity of the expectation we have

E[X(m, k)] =

= E[|{Q ∈ S : Q(πk+1) = · · · = Q(πm) = 0}|] =

=
∑
Q∈S

(
|Z(Q)|
qk

)m−k
. (3.1)

69

Now if it were true (it is not) that all non-zero quadratic forms on Fk have
qk−1 zeros, we would have, when we set m = k(k + 1)/2,

E[X(m, k)] = 1 +
1

qm−k
(q

k(k−1)
2 − 1) −→ 2

“proving” Theorem 3.1.6. However, even though it is false that all non-zero
quadratic forms on Fk have qk−1 zeros, this still holds “on average”: roughly
speaking, most quadratic forms have qk−1 zeros, quadratic forms whose num-
ber of zeros is far from this value are those of small rank, and the number of
such forms is so small that it contributes almost nothing to the expectation.
In other words, the expectation behaves as if it were true that all non zero
quadratic forms on Fk have qk−1 zeros.

The rest of the chapter is organized as follows. Section 3.2 is devoted to
proving Proposition 3.1.4 and Theorem 3.1.5. In Section 3.3 we recall some
basic definitions and state the results that we need on quadratic forms, namely
the number of forms of a given rank, and the number of their zeros. This can
be found in Section 2.4 as well, but we prefer to repeat those notions in order to
make this section self-contained. In Section 3.4 we use the results of Section 2.4
to derive Theorem 3.1.6. Theorem 3.1.3 is then derived as an almost immediate
consequence. We then apply the methods and results of Section 3.2 to conclude
the proof of Theorem 3.1.2. Finally, in Section 3.5 we expand Remark 3.1.1,
with the purpose of showing that, even though our probabilistic model may
appear restrictive, our analysis gives all the ingredients necessary to consider
different models.

3.2 Proof of Theorem 3.1.5

In this section we prove Proposition 3.1.4 and Theorem 3.1.5, the weaker
version of our main result. We start by introducing some notation and classical
results that we shall need.

Recall that, for all non-negative integers n ≥ k, we define[
n

k

]
q

:=

k∏
i=1

qn−k+i − 1

qi − 1
,

the Gaussian binomial coefficient, and by convention we define a product with
no factors to be equal to 1. As q is assumed to be fixed, it will be suppressed
from the notation from here on.

Remark 3.2.1. For all non-negative integers n ≥ k, we bound[
n

k

]
≤ 2kqk(n−k).

70

This holds as
[
n
k

]
is the product of k terms, and each term is bounded by

2qn−k.

Definition 3.2.2 (entropy function). The q-ary entropy function is defined
by

Hq(x) := x logq(q − 1)− x logq x− (1− x) logq(1− x)

for all 0 < x ≤ 1− q−1.

Again, from here on q will be suppressed from the notation. In particular,
all logarithms will be in base q. The following lemma is folklore, see e.g. [37,
§2.10.3] for a proof.

Lemma 3.2.3. For all 0 < δ ≤ 1− q−1 and all integers n, we have

bδnc∑
i=0

(
n

i

)
(q − 1)

i ≤ qnH(δ).

For ease of notation, we define m : N→ N by m(k) := k(k+ 1)/2. Also, recall
that, given a code C, we denote by C⊥ its dual and by dmin(C) its minimum
distance.

We prove now Proposition 3.1.4.

Proof of Proposition 3.1.4. Let C ∈ C(m(k), k). By definition, C admits
a generator matrix of the form1

. . .

1

g1
...
gk

 .

Note that a uniform random selection of C from C(m(k), k) induces an inde-
pendent, uniform random selection of g1, . . . , gk from Fm(k)−k. We consider
the code

〈gigj : 1 ≤ i ≤ k/2 < j ≤ k〉

and we define D to be its dual. This is a code of length k(k − 1)/2 and it is
easy to see that

dmin((C2)⊥) ≥ dmin(D).

In the following, when D is involved in some probability measure, we implicitly
mean that it has the distribution induced by the uniform distribution of C on
C(m(k), k). We remark that this does not necessarily correspond to a uniform
distribution on the set of all possible D’s.

71

For any positive integer w and any code C ′, denote by Ew(C ′) the event “there
exists a non-zero codeword of C ′ of weight w”. We shall now prove the follow-
ing statement, which clearly implies the Proposition. There exist constants
c, c̃ ∈ R>0 such that, for all large enough k,

cm(k)∑
w=1

Pr(Ew(D)) ≤ 2−c̃k.

Note that, for any positive integer w,

Pr(Ew(D)) =
∑

z∈Fk(k−1)/2

of weight w

Pr(z ∈ D). (3.2)

So we need to estimate, for all positive integers w and all vectors z of weight
w, the probability that z belongs to D.

We do that as follows. For 1 ≤ i ≤ k/2, let xi be the projection of gi on the
support of z. Similarly, for k/2 < j ≤ k, let yj be the projection of gj on the
support of z. This defines k vectors in Fw. Moreover, a uniform random selec-
tion of C from C(m(k), k) induces an independent, uniform random selection
of the xi’s and the yj ’s from Fw. Note now that if we identify z with a vector
of Fw, we can define the non-degenerate bilinear form that to any two vectors
a, b of Fw associates the quantity

(a|b)z := (1 | zab)

where 1 denotes the all-one vector of Fw and (· | ·) denotes the standard inner
product. Let us say that a and b are z-orthogonal if (a|b)z = 0. The purpose of
this definition is to note that z ∈ D if and only if, for all 1 ≤ i ≤ k/2 < j ≤ k,
xi is z-orthogonal to yj . In the computation that follows we assume that k is
even, thus avoiding cumbersome floor and ceiling notation, and giving us the
same number of xi’s and of yj ’s, namely k/2. It is readily seen that the case
k odd can be dealt with in a similar fashion.

For all positive integers r < k/2, denote by Hr the event “dim〈xi : 1 ≤ i ≤
k/2〉 < r”. Conditioning by this event, we have

Pr(z ∈ D) = Pr(Hr) Pr(z ∈ D|Hr)+
+ Pr(Hr) Pr(z ∈ D|Hr) ≤
≤ Pr(Hr) + Pr(z ∈ D|Hr),

for any choice of r. In order to estimate Pr(Hr), note that dim〈xi : 1 ≤ i ≤
k/2〉 < r if and only if there exists an (r − 1)-dimensional subspace of Fw
containing all xi’s. The probability that an xi falls into a given subspace of di-
mension r−1 is 1/qw−r+1 and since the xi’s are independent random variables,

72

the probability that all the xi’s fall into the same subspace is 1/q(w−r+1)k/2.
We have therefore,

Pr(Hr) ≤
[
w

r − 1

]
1

q
k
2 (w−r+1)

≤ 2r

q(w−r)(k/2−r)
,

where we have used the upper bound of Remark 3.2.1 on the number
[
w
r−1
]

of
subspaces of dimension r − 1.

On the other hand, z ∈ D if and only if all yj ’s are z-orthogonal to the space
〈xi : 1 ≤ i ≤ k/2〉, which has dimension at least r, under the condition Hr.
Therefore, using the independence of the random variables yi,

Pr(z ∈ D|Hr) ≤
(

1

qr

) k
2

=
1

q
rk
2

.

Now fixing r := min{w/2, k/4} it follows that there exist two positive constants
c′ and c′′ such that

Pr(z ∈ D) ≤ 1

qc′kw
+

1

qc′′k2
.

Applying this last upper bound to (3.2), we now have

Pr(Ew(D)) =
∑

z∈Fk(k−1)/2

of weight w

Pr(z ∈ D) ≤

≤
(k(k−1)

2

w

)
(q − 1)

w

(
1

qc′kw
+

1

qc′′k2

)
for any positive integer w. Therefore, for any constant c we have

cm(k)∑
w=1

Pr(Ew(D)) ≤

cm(k)∑
w=1

(k(k−1)
2

w

)
(q − 1)

w

qc′kw

+

+
1

qc′′k2

cm(k)∑
w=1

(k(k−1)
2

w

)
(q − 1)

w
. (3.3)

We deal with the two terms separately.

We bound the first sum in (3.3) as follows,

cm(k)∑
w=1

(k(k−1)
2

w

)
(q − 1)

w

qc′kw
≤
cm(k)∑
w=1

(
k(k − 1)

2

)w
(q − 1)

w

qc′kw
≤

≤
cm(k)∑
w=1

qw(−c′k+o(k)) ≤ q−c
′k+o(k)

73

since there are not more than m(k) = qo(k) terms in the sum and none is larger
than q−c

′k+o(k).

Writing
(k(k−1)

2
w

)
≤
(
m(k)
w

)
for any w ≤ cm(k), the second term in (3.3) is upper

bounded by

1

qc′′k2

cm(k)∑
w=1

(
m(k)

w

)
(q − 1)

w
.

We now set c ≤ 1− q−1 and apply Lemma 3.2.3:

1

qc′′k2

cm(k)∑
w=1

(
m(k)

w

)
(q − 1)

w ≤ 1

qc′′k2
qm(k)H(c) ≤

≤ q(1
2H(c)−c′′)k2+o(k2).

If c is such that H(c) < 2c′′ we obtain an exponentially small upper bound.
Putting everything together, we obtain

cm(k)∑
w=1

Pr(Ew(D)) ≤ 1

qc′k+o(k)
+

1

q
1
2 (c
′′−H(c)/2)k2+o(k2)

and the proposition is proved.

Remark 3.2.4. In the proof of the previous proposition we can take c′′ = 1
8 .

Therefore the proposition holds for any c with H(c) < 1/4. For example, for
q = 2, c = 0.041 suffices.

We can now prove Theorem 3.1.5.

Proof of Theorem 3.1.5. Let c, c̃ be the constants given by Proposi-
tion 3.1.4. Let n : N → N be as in the hypothesis of the theorem. Given
C ∈ C(n(k), k), we create V ∈ C(m(k), k) by adding m(k) − n(k) columns to
the systematic generator matrix of C. Moreover, if C and all the new columns
are chosen uniformly at random from C(n(k), k) and Fk respectively then V
has the uniform distribution on C(m(k), k). A codeword in the dual of C2

gives a codeword in the dual of V 2 of the same weight (padding with zeros).
Hence

Pr
(
C2 6= Fn(k)

)
≤ Pr

(
dmin((V 2)

⊥
) ≤ cm(k)

)
≤ 2−c̃k

by Proposition 3.1.4 and the conclusion follows.

74

3.3 Quadratic Forms

In this section we state the results that we need in the proof of our Main
Theorem, as well as the definitions necessary to read such results. For a more
involved discussion, see Section 2.4, where we include full proofs of the results
stated here as well. Even though these can be found, at least partly, in the
literature, we have felt it necessary to derive what we need in a unified way.

Throughout this section, let K be an arbitrary field and let V be a finite
dimensional K-vector space.

Definition 3.3.1. A quadratic form on V is a map Q : V → K such that

(i) Q(λx) = λ2Q(x) for all x ∈ V, λ ∈ K,

(ii) the map (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is a bilinear form on V .

We denote by Quad(V) the K-vector space of all quadratic forms on V . The
vector space V , endowed with a quadratic form Q on V , is called a K-quadratic
space.

Every quadratic form Q ∈ Quad(V) defines a bilinear form B̃Q ∈ Bil(V) by

B̃Q(x, y) := Q(x+ y)−Q(x)−Q(y)

for all x, y ∈ V .

Definition 3.3.2. The radical of the quadratic space V is the K-vector space

RadV := {x ∈ V : B̃Q(x, y) = 0 for all y ∈ V }.

We say that V is non-degenerate (as a quadratic space) if B̃Q is non-degenerate
(as a bilinear form), i.e. if RadV = 0.

Definition 3.3.3. Let Rad0 V := {x ∈ RadV : Q(x) = 0}. We define the
rank of Q to be

rkQ := dimV − dim Rad0 V.

Remark 3.3.4. Note that in the case charK 6= 2, it holds that Q(x) =
1
2 B̃Q(x, x) and therefore Rad0 V = RadV . Hence in this case (V,Q) is non-
degenerate if and only if Q has full rank. This is not the case if charK = 2.

We are now ready to state the results we need. Theorem 3.3.5 counts the
number of zeros of a given quadratic form. Theorem 3.3.6 counts the number
of quadratic forms of a given rank.

75

Theorem 3.3.5. Let V be an F-vector space of dimension k, Q a quadratic
form on V of rank r. The number of vectors x ∈ V such that Q(x) = 0 is

a. qk−1 if r is odd,

b. either qk−1 − (q − 1)qk−
r
2−1 or qk−1 + (q − 1)qk−

r
2−1 if r is even.

Theorem 3.3.6. For all non-negative integers k, the number N(k) of full-rank
quadratic forms on an F-vector space of dimension k is

N(k) = qb
k
2 c(b k2 c+1)

d k2 e∏
i=1

(q2i−1 − 1) =

=

{
q
k−1
2

k+1
2

∏ k+1
2

i=1 (q2i−1 − 1) if k is odd,

q
k
2 (k2+1)∏ k

2
i=1(q2i−1 − 1) if k is even.

For all non-negative integers k ≥ r, the number of rank r quadratic forms on
an F-vector space of dimension k is

N(k, r) =

[
k

r

]
N(r),

where
[
k
r

]
denotes the q-ary Gaussian binomial coefficient.

A more general result implying Theorem 3.3.5 appears in [47, Chapter 6,
Section 2].

As to Theorem 3.3.6, the following references need to be mentioned. In [10,
Lemma 9.5.9] the number of symmetric bilinear forms of given rank is com-
puted. In the odd characteristic case, as symmetric bilinear forms correspond
to quadratic forms and the two notions of rank coincide, this result is equiv-
alent to Theorem 3.3.6. As to the arbitrary characteristic case, [10] refers to
[33]. The latter uses the language of association schemes and gives a result
that allows to compute (even though this is not explicitly stated) the number
N ′(k, s) of quadratic forms of rank r ∈ {2s − 1, 2s} on an F-vector space of
dimension k. This result is slightly weaker than our theorem, as it allows to
compute the sum N(k, 2s− 1) +N(k, 2s) instead of N(k, 2s− 1) and N(k, 2s)
separately, but it would be sufficient for the main purpose of this work.

3.4 Proof of Main Theorem 3.1.2

We recall the notation introduced in Section 3.1. Given a code C of length n
and dimension k and denoting by π1, . . . , πn ∈ Fk the columns of a generator

76

matrix of C (i.e. a matrix whose rows form a basis of C), we define the linear
map

evC : Quad(Fk) → Fn,
Q 7→ (Q(π1), . . . , Q(πn))

whose image is C2.

Recall that we have defined the random variable X(n, k) := | ker evC |, with
distribution induced by a uniform random selection of C from C(n, k). For
simplicity, we will write Xk as a shorthand for X(k(k + 1)/2, k).

It is convenient to measure “how far” C2 is from being the full space by
defining, for all positive integers n ≥ k and all non-negative integers `, the
probabilities:

p`(n, k) := Pr(codimC2 ≤ `),

where C is chosen uniformly at random from C(n, k). Using this notation,
Main Theorem 3.1.2 claims that there exists δ ∈ R>0 such that, for all large
enough k, p0(n(k), k) ≥ 1− 2−δt(k).

As mentioned before, crucial to the proof of Main Theorem 3.1.2 is to estimate
the expected value of Xk = X(k(k + 1)/2, k): this is precisely the purpose of
Theorem 3.1.6, that states that limk→∞ E [Xk] = 2. We now proceed to its
proof.

Proof of Theorem 3.1.6. In Section 3.1 we defined the space S of all
quadratic forms vanishing at all unit vectors and we proved that, for all positive
integers m ≥ k,

E[X(m, k)] =
∑
Q∈S

(
|Z(Q)|
qk

)m−k
. (3.1)

We now fix a rank threshold, i.e. a fraction of k, and we classify the forms in
S accordingly. Precisely, for any 0 < α < 1 we define

S−(α) := {Q ∈ S : 0 < rkQ ≤ αk},
S+(α) := {Q ∈ S : rkQ > αk},

so S = {0} ∪ S+(α) ∪ S−(α). We observe that

|S−(α)| ≤ q(−α
2

2 +α)k2+o(k2). (3.4)

Indeed, by Theorem 3.3.6 we have

|S−(α)| =
αk∑
r=1

N(k, r) =

αk∑
r=1

[
k

r

]
N(r).

77

We loosely bound
[
k
r

]
≤ qr(k−r+1) and N(r) ≤ |Quad(Fr)| = qr(r+1)/2 and we

obtain

|S−(α)| ≤
αk∑
r=1

qr(k−r+1)qr(r+1)/2 =

αk∑
r=1

q−
r2

2 +(k+ 3
2)r ≤

≤ αkq(−α
2

2 +α)k2+ 3
2αk,

proving (3.4). This yields

|S−(α)|
|S|

≤ q(−
α2

2 +α)k2+o(k2)

q
k(k−1)

2

= q−
1
2 (α−1)

2k2+o(k2)

which tends to 0 as k →∞. Hence, noting that |S+(α)| = |S| − 1− |S−(α)|,
we obtain

lim
k→∞

|S+(α)|
|S|

= 1. (3.5)

In view to using the observations (3.4) and (3.5) on the “density” of S+(α)
and S−(α) in S, we apply the partition of S to (3.1) and write

E[X(m, k)] =

= 1 +
∑

Q∈S+(α)

(
|Z(Q)|
qk

)m−k
+

∑
Q∈S−(α)

(
|Z(Q)|
qk

)m−k
. (3.6)

We now prove that the first sum tends to 1 while the second one (for some
suitable value of α) tends to 0.

By Theorem 3.3.5, the number of zeros of any form Q ∈ S+(α) is bounded by

|Z(Q)| ≤ qk−1 + (q − 1)qk−
αk
2 −1 ≤ qk−1

(
1 +

1

q
αk
2 −1

)
and

|Z(Q)| ≥ qk−1 − (q − 1)qk−
αk
2 −1 ≥ qk−1

(
1− 1

q
αk
2 −1

)
.

It follows that

1

q

(
1− 1

q
αk
2 −1

)
≤ |Z(Q)|

qk
≤ 1

q

(
1 +

1

q
αk
2 −1

)
hence (

1− 1

q
αk
2 −1

)m−k |S+(α)|
qm−k

≤
∑

Q∈S+(α)

(
|Z(Q)|
qk

)m−k
≤

≤
(

1 +
1

q
αk
2 −1

)m−k |S+(α)|
qm−k

.

78

Setting m = k(k + 1)/2, we get

(
1− 1

q
αk
2 −1

) k(k−1)
2 |S+(α)|

|S|
≤

∑
Q∈S+(α)

(
|Z(Q)|
qk

) k(k−1)
2

≤

≤
(

1 +
1

q
αk
2 −1

) k(k−1)
2 |S+(α)|

|S|
.

So the first sum in (3.6) is bounded, from above and from below, by functions
which tend to 1 (by (3.5)), hence it tends to 1, too.

We now prove that if we take any 0 < α < 1−
√

logq(2q − 1)− 1, the last sum

in (3.6) tends to 0, which will conclude the proof of the theorem.

By Theorem 3.3.5, all forms Q ∈ S−(α) satisfy

|Z(Q)| ≤ qk−1 + (q − 1)qk−2 = 2qk−1 − qk−2.

This is trivial for odd rank forms, as they always have exactly qk−1 zeros. We
get ∑

Q∈S−(α)

(
|Z(Q)|
qk

)m−k
≤
(

2q − 1

q2

)m−k
|S−(α)|.

Setting m = k(k + 1)/2 and using (3.4) we finally obtain

∑
Q∈S−(α)

(
|Z(Q)|
qk

)m−k
≤

≤
(

2q − 1

q2

) k(k−1)
2

q(−
α2

2 +α)k2+o(k2) = qµ(α)k
2+o(k2),

where µ(α) := − 1
2 (α2 − 2α+ 2− logq(2q − 1)) < 0 under the assumptions on

α. Therefore the right hand side tends to 0. This concludes the proof.

As a first consequence of Theorem 3.1.6, we derive a proof of Theorem 3.1.3.

Proof of Theorem 3.1.3. As before, set m(k) := k(k + 1)/2. Given a
code C ∈ C(n(k), k), we obtain a code C ′ ∈ C(m(k), k) puncturing the last
s(k) coordinates of C. We define N to be the event “dimC2 = m(k)” and,
for all j ∈ N, we define Ej to be the event “| ker evC′ | = j”. We observe that
dimC2 = m(k) if and only if ker evC = 0, and this holds if and only if for all
nonzero Q ∈ ker evC′ there exists i ∈ {m(k)+1, . . . , n(k)} such that Q(πi) 6= 0.

79

Hence, if in the case of Ej we write ker evC′ \{0} = {Q1, . . . , Qj−1}, we have

Pr(N|Ej) =

= Pr

(
j−1⋃
i=1

{
Qi(πm(k)+1) = · · · = Qi(πn(k)) = 0

})
≤

≤
j−1∑
i=1

Pr(Qi(π) = 0)
s(k)

,

for all j ∈ N, where π ∈ Fk is chosen uniformly at random. Moreover, for any
nonzero quadratic form Q ∈ Quad(Fk),

Pr(Q(π) = 0) ≤ qk−1 + (q − 1)qk−2

qk
=

2q − 1

q2
.

Note that (2q − 1)/q2 is a constant strictly smaller than 1. It follows that

Pr(N|Ej) ≤
j−1∑
i=1

(
2q − 1

q2

)s(k)
= (j − 1)

(
2q − 1

q2

)s(k)
.

Applying the law of total probability to Pr(N) together with the above obser-
vations we finally have

Pr(N) =
∑
j∈N

Pr(Ej) Pr(N|Ej) ≤

≤
(

2q − 1

q2

)s(k)∑
j∈N

Pr(Ej)(j − 1) =

=

(
2q − 1

q2

)s(k)
(E[Xk]− 1).

The conclusion follows by Theorem 3.1.6.

Next, we derive from the estimation of the expectation of Xk given by The-
orem 3.1.6, a lower bound for the probability of Xk being smaller than some
fixed constant. Precisely, the following holds.

Proposition 3.4.1. For any ε > 0 there exists kε ∈ N such that, for all
k ≥ kε, for every non-negative integer ` we have

Pr

(
dimC2 ≥ k(k + 1)

2
− `
)
≥ 1− 2 + ε

q`+1
,

where C is chosen uniformly at random from C(k(k + 1)/2, k).

80

Proof. We apply Markov’s inequality to the random variable Xk, namely:

Pr(Xk < δ) ≥ 1− E[Xk]

δ
(3.7)

for any δ > 0. By Theorem 3.1.6 there exists kε ∈ N such that, for all k ≥ kε,
we have E [Xk] ≤ 2 + ε, hence for any δ > 0, (3.7) gives

Pr(Xk < δ) ≥ 1− 2 + ε

δ

if k ≥ kε. Now setting δ = q`+1 and noting that Pr(Xk < q`+1) = Pr(dimC2 ≥
k(k + 1)/2− `) we conclude.

Proposition 3.4.1 together with Proposition 3.1.4 allow us to conclude the
proof of Main Theorem 3.1.2.

Proof of Main Theorem 3.1.2.

Let k ≤ n < m := k(k + 1)/2 be positive integers, and let t := m− n. We use
a puncturing argument. The key observation is that a random code of length
n can be obtained by first choosing a random code of length m and then
deleting m − n random coordinates. We shall look closely at the probability
that non-zero words survive in the dual of the punctured code.

Precisely, consider a uniform random code C ∈ C(m, k): let C ′ ∈ C(n, k) be
obtained from C by removing t random coordinates among the last m−k. Let
these t coordinates be chosen uniformly, independently of C.

In order to estimate p0(n, k), we define the following events. Call E the event
studied in Proposition 3.1.4, namely dmin((C2)⊥) ≤ cm where c is the con-
stant of Proposition 3.1.4. For all non-negative integers i, call Ei the event
codimC2 = i. As before, bar denotes the complement event.

For any positive integer ` we have

p0(n, k) ≥
∑̀
i=1

Pr(E ∩ Ei) Pr(codim(C ′)2 = 0|E ∩ Ei). (3.8)

Let C0 be a fixed code of length m and suppose x is a codeword of C⊥0 of
weight w. Puncture C0 by removing t random coordinates among the last
m − k. The probability that none of the random t coordinates belong to the
support of x is at most (

m−w
t

)(
m−k
t

) (3.9)

(and actually equal to (3.9) if the support of x contains the first k coordinates).
If the dual code C⊥0 contains exactly qi − 1 non-zero codewords all of which

81

have weight at least cm, then the probability that the t random coordinates
miss the support of at least one codeword of C⊥0 is, by (3.9) and the union
bound, bounded from above by

(qi − 1)

(
m−cm
t

)(
m−k
t

) .
Now observing that a non-zero codeword in ((C ′)2)⊥ exists only if there ex-
ists a non-zero codeword in (C2)⊥ with support disjoint from the chosen t
coordinates, we obtain that, for all i = 1, . . . , `,

Pr(codim(C ′)2 6= 0|E ∩ Ei) ≤ (qi − 1)

(
m−cm
t

)(
m−k
t

) ≤
≤ q`

(
m−cm
t

)(
m−k
t

) .
We bound the fraction as follows:(

m−cm
t

)(
m−k
t

) =
(m− cm) · · · (m− cm− t+ 1)

(m− k) · · · (m− k − t+ 1)
≤

≤
(
m− cm
m− k

)t
= (1− c)t

(
k + 1

k − 1

)t
from which we obtain

Pr(codim(C ′)2 6= 0|E ∩ Ei) ≤ q`+t(log(1−c)+log k+1
k−1).

Since log k+1
k−1 goes to zero when k goes to infinity and log(1 − c) is negative,

by fixing ` = αt we get the existence of a positive β such that, for any k large
enough,

Pr(codim(C ′)2 6= 0|E ∩ Ei) ≤ q−βt. (3.10)

Now note that by the union bound

Pr(E ∩ Ei) = 1− Pr(E ∪ E i) ≥ 1− Pr(E)− Pr(E i) =

= Pr(Ei)− Pr(E).

Therefore, (3.10) with (3.8) give

p0(n, k) ≥ (1− q−βt)
∑̀
i=1

(Pr(Ei)− Pr(E))

≥ (1− q−βt)(1− Pr(dimC2 ≤ m− `)− `Pr(E)). (3.11)

82

Proposition 3.4.1 gives us, since ` = αt, that Pr(dimC2 ≤ m− `) ≤ 2β
′t for a

constant β′. Proposition 3.1.4 gives us, since ` ≤ k2, that `Pr(E) ≤ 2−γk for
some constant γ. From (3.11) we therefore get

p0(n, k) ≥ 1− 2−γk − 2−δt.

for constants γ and δ.

3.5 Changing the Probabilistic Model

In this section we expand Remark 3.1.1, with the purpose of showing that,
even though our probabilistic model may appear restrictive, our analysis gives
all the ingredients necessary to consider different models.

For all positive integers n ≥ k we define the following two families of codes.
Let A(n, k) be the family of all codes of length n and dimension at most k
with the following distribution: choose a k×n matrix A uniformly at random
and pick the code spanned by the rows of A. Let U(n, k) be the family of
all codes of length n and dimension k, with uniform distribution. Note that
it is equivalent to a uniform random choice of a k × n full-rank matrix, as
each such a code has the same number of bases, hence the same number of
generator matrices.

We first argue that all our results hold if we replace C(n, k) with A(n, k). The
two probability distributions are subtly different and it is not easy to derive
results for A(n, k) from the results for C(n, k) seen as “black boxes”. However,
if we go over the proofs of our theorems, we see that they will carry over to
A(n, k) with no significant change of strategy. Specifically, in the proof of

Theorem 3.1.6, one will replace the study of the quantity
∑
Q∈S

(
|Z(Q)|
qk

)m−k
in (3.1) by ∑

Q

(
|Z(Q)|
qk

)m
where Q ranges over all quadratic forms on k variables. The quantity to be
studied is simply the expected number of quadratic forms that vanish on m
random values. Going over the proof one will end up with exactly the same
expected value. We sum over a space with qk more quadratic forms but re-
place probabilities of the form (|Z(Q)|/qk)m−k by (|Z(Q)|/qk)m which behaves
like 1/qk times less. Regarding the probabilistic analysis that proves Proposi-
tion 3.1.4, we see that it is virtually unchanged when the first k coordinates
become random. Also the puncturing argument that proves Theorem 3.1.2
sees only the punctured coordinates being chosen from {1, . . . ,m} rather than
from {k + 1, . . . ,m}.

83

Regarding the second distribution U(n, k), we argue differently and relate it
to A(n, k). From here on n and k will be suppressed from the notation, since
they are assumed to be fixed. We add indices as C ← A or C ← U to our
probability notation to make the probabilistic model explicit. Observe that
for any fixed code C0 of dimension k, we have

Pr
C←A

(C = C0|dimC = k) = Pr
C←U

(C = C0).

It follows that, if P(C) denotes a property that a code C may have,

Pr
D←U

(P(D)) = Pr
C←A

(P(C)|dimC = k).

We deduce from this observation that:

Lemma 3.5.1. For any property P,

Pr
D←U

(P(D)) ≥ Pr
C←A

(P(C))− Pr
C←A

(dimC < k).

Proof. We have

Pr
C←A

(P(C)) = Pr
C←A

(P(C)|dimC = k) Pr
C←A

(dimC = k)+

+ Pr
C←A

(P(C)|dimC < k) Pr
C←A

(dimC < k) ≤

≤ Pr
D←U

(P(D)) + Pr
C←A

(dimC < k).

Next, recall this well-known result on random matrices:

Pr
C←A

(dimC < k) ≤ 1

qn−k
.

Together with Lemma 3.5.1 this gives us:

Pr
D←U

(P(D)) ≥ Pr
C←A

(P(C))− 1

qn−k
.

We can now apply this to versions of our Theorems for A(n, k). In particular,
our main Theorem 3.1.2 will read, under the uniform distribution U(n, k), that
there exist some positive real constants γ, δ such that

Pr
C←U

(C2 = Fn(k)) ≥ 1− 2−γk − 2−δt(k) − 1

qn(k)−k
.

This simple argument is enough to recover an asymptotically optimal version
of our main result for the uniform distribution, except for code rates that tend
to 1.

84

Chapter 4

Critical Pairs for the
Product Singleton Bound

4.1 Overview

Let F be a finite field, let n be a positive integer. Our goal in this chapter is
to characterize pairs (C,D) of codes that attain the following bound.

Theorem 4.1.1 (Product Singleton Bound [62]). Let C,D ⊆ Fn be linear
codes. Then

dmin(CD) ≤ max{1, n− (dimC + dimD) + 2}. (4.1)

A slightly stronger version of Theorem 4.1.1 is actually proved in [62], as is a
version involving the product of more than two codes, but the above statement
is really what motivates our discussion. We shall call the upper bound (4.1)
the Product Singleton Bound, that can be thought of as a generalization of the
classical Singleton Bound. Indeed, the classical Singleton Bound for a single
code C is recovered by taking the code D in Theorem 4.1.1 to be of dimension
1 and minimum distance n.

We make the remark that if dmin(CD) is allowed to be equal to 1, then pairs
achieving equality in (4.1) can be almost anything, since typical pairs of codes
will have a product equal to the whole space Fn. This phenomenon has been
studied in Chapter 3 in the case of C = D and in [64] in the general case.
So we shall disregard the situation when dmin(CD) = 1 and call (C,D) a
Product-MDS (PMDS) pair if it achieves equality in (4.1) and dmin(CD) ≥ 2.

85

As mentioned above, a PMDS pair can consist of an ordinary MDS code and
a code of dimension 1. It is a natural question to ask what other PMDS
pairs exist. It turns out that there is a surprisingly complete answer to this
question. We shall show in particular that if (C,D) is a PMDS pair such that
dimC ≥ 2, dimD ≥ 2, and dmin(CD) ≥ 3, then C and D can only be Reed-
Solomon codes. By this we mean Reed-Solomon code in the widest sense, i.e.
generalized, possibly extended or doubly extended in the terminology of [48],
or Cauchy codes as in [30]. PMDS pairs with dmin(CD) = 2 will also be
described quite precisely. To be more specific, in the symmetric case C = D
we shall prove:

Theorem 4.1.2. If (C,C) is a PMDS pair, then C is either a Reed-Solomon
code or a direct sum of self-dual codes.

Self-duality in the above statement should be understood to be relative to
a non-degenerate bilinear form which is not necessarily the standard inner
product.

To establish these results we shall import methods from additive combinatorics
and establish coding-theoretic analogues of the classical theorems of Kneser
[42] and Vosper [72]. For background on and proofs of Kneser and Vosper’s
Theorems we refer to [69]. Kneser’s Theorem implies in particular that if A,B
are subsets of an abelian group such that

|A+B| < |A|+ |B| − 1

then A + B must be periodic, i.e. there exists a non-zero element g of the
abelian group that stabilizes A+B so that we have A+B + g = A+B. Our
coding-theoretic variant of Kneser’s Theorem will imply that if C and D are
two codes such that

dimCD < dimC + dimD − 1,

then the code C is necessarily the direct sum of two non-zero codes, which
is equivalent to the existence of a non-constant vector x of Fn such that
xCD = CD.

Vosper’s Theorem is a characterization of pairs of subsets A,B of the integers
modulo a prime p with the property that |A+B| = |A|+ |B|−1. It states that,
excluding some degenerate cases, A,B must be arithmetic progressions with
the same difference. We make the remark that if a code C has a generator
matrix with rows g, gα, . . . , gαk−1, i.e. has a basis of elements in “geometric”
progression then, provided g is of weight n and α has distinct coordinates, C
must be a Reed-Solomon code. This is why a code-theoretic version of Vosper’s
Theorem forces the appearance of Reed-Solomon codes. There will be some
twists to the analogy however that we shall discuss later in the paper.

86

Our main result takes the following form.

Main Theorem 4.1.3. Let C,D ⊆ Fn be codes such that the pair (C,D) is
Product MDS. Then one of the following situations occurs.

(i) C and D are MDS and, if none of them has dimension 1, they are Reed-
Solomon codes with a common evaluation-point sequence.

(ii) There is a partition of the coordinate set into non-empty subsets

{1, . . . , n} = I1 ∪ · · · ∪ Ih

and there exist h pairs (C1, D1), . . . , (Ch, Dh) of codes of Fn, such that
suppCi = suppDi = Ii, for all i = 1, . . . , h, and such that C and D
decompose as:

C = C1 ⊕ · · · ⊕ Ch,
D = D1 ⊕ · · · ⊕Dh.

Furthermore, for all i = 1, . . . , h, when Ci and Di are identified with
codes of F |Ii| through the natural projection on their support, we have
that Ci = (giDi)

⊥ for some gi ∈ (F |Ii|)×.

Remark 4.1.4. The codes Ci and Di are mutually orthogonal relative to the
non-degenerate bilinear form (x, y) 7→ (x | giy) = (gix | y), where (· | ·) denotes
the standard inner product. Hence the wording of Theorem 4.1.2 in the case
C = D.

The rest of the chapter is organized as follows. Section 4.2 states and proves
the coding-theory equivalent of Kneser’s Theorem. Section 4.3 is dedicated to
a coding-theory version of Vosper’s Theorem. Section 4.4 shows how to recover
a version of the Product Singleton Bound as a straightforward consequence of
Kneser’s Theorem and goes on to derive the proof of Theorem 4.1.3. Section 4.5
concludes with some comments.

4.2 Kneser’s Theorem

As usual, F will denote a finite field, but we shall need, in a couple of occasions,
to deal with fields that may be infinite in which case we will use the notation K.
All codes will be linear. We will call them simply “codes” when the ambient
space is Fn, and use the terminology of vector spaces in the general setting of
Kn.

Kneser’s Addition Theorem below involves the stabilizer St(X) = {g ∈ G :
g + X = X} of a subset X of an abelian group G. The (Minkowski) sum

87

A+B of two subsets A,B of G is defined as the set of sums a+ b when a and
b range over A and B respectively.

Theorem 4.2.1 (Kneser [42]). Let G be an abelian group. Let A,B ⊆ G be
non-empty, finite subsets. Then

|A+B| ≥ |A|+ |B| − | St(A+B)|.

Kneser’s original Theorem was transposed to the extension field setting by
Hou, Leung and Xiang in [36]. Let L/K be a field extension. For K-linear
subspaces S, T ⊆ L, we may consider the product of subspaces ST defined
as the K-linear span of the set of elements of the form st, s ∈ S, t ∈ T . Hou
et al.’s Theorem is concerned with the structure of pairs of subspaces whose
product has small dimension. Again, the stabilizer of a K-subspace X ⊆ L is
involved and is defined in the expected way St(X) = {z ∈ L : zX ⊆ X}.

Theorem 4.2.2 (Generalized Kneser Theorem [36]). Let L/K be a separable
field extension. Let S, T ⊆ L be non-zero, finite-dimensional K-vector spaces.
Then

dimST ≥ dimS + dimT − dim St(ST).

Remarkably, Kneser’s original Theorem for groups can be recovered easily from
Hou et al.’s version.

We will now proceed to show that there is a variant of Kneser’s Theorem for
the algebra induced by coordinatewise multiplication.

Theorem 4.2.3. Let S, T ⊆ Kn be non-zero K-vector spaces. Then

dimST ≥ dimS + dimT − dim St(ST).

Remark 4.2.4. The products ST in Theorems 4.2.2 and 4.2.3 are in different
algebras. The statement of Theorem 4.2.2 is the only instance of the paper
where the product ST does not refer to a coordinatewise product.

Remark 4.2.5. Assuming that Theorem 4.2.3 holds in the case of full-support
S and T , the general case can be derived as follows. Let S0, T0 ⊆ Kn0 be
the projections of S, T respectively on suppST , where n0 := | suppST |. The
spaces S0 and T0 both have full support, hence

dimS0T0 ≥ dimS0 + dimT0 − dim St(S0T0).

Clearly dimS0T0 = dimST and dim St(ST) = dim St(S0T0) + n − n0. It
remains to prove that

dimS0 + dimT0 ≥ dimS + dimT − (n− n0).

88

Let S1, T1 ⊆ Kn−n0 be the projections of S, T respectively on the complement
of suppST . Observe that suppS1 and suppT1 cannot intersect, hence dimS1+
dimT1 ≤ n − n0. Moreover dimS ≤ dimS0 + dimS1 and dimT ≤ dimT0 +
dimT1. Putting everything together we obtain the desired inequality.

From here on “Kneser’s Theorem” will refer to Theorem 4.2.3 rather than to
the original result. Our proof is strongly inspired by Hou et al.’s proof of
Theorem 4.2.2 [36], itself drawing upon the e-transform technique of additive
combinatorics (see e.g. [69]).

If V is a K-subspace of Kn, we use the notation V × to mean the subset of
invertible elements of V .

Lemma 4.2.6. Let S, T ⊆ Kn be non-zero K-vector spaces. Assume that T has
a basis of invertible elements. Then, for all x ∈ S×, there exist a K-algebra
Hx ⊆ Kn and a K-vector space Vx ⊆ Kn such that HxVx = Vx, xT ⊆ Vx ⊆ ST
and

dimVx + dimHx ≥ dimS + dimT.

Proof. Assume that the lemma is proved for x = 1. Then, if S× is non-
empty, for any x ∈ S× we may apply the result for the case x = 1 to x−1S and
T . So we only need to prove the Lemma for 1 ∈ S and x = 1. Analogously,
we may assume that 1 ∈ T .

We argue by induction on k := dimS. If k = 1, H := K1 and V := T do the
job. So assume that k > 1 and the result holds for smaller dimension. For
each e ∈ T×, define

S(e) := S ∩ Te−1, T (e) := T + Se.

We have S(e)T ⊆ ST , S(e)Se ⊆ TS, therefore S(e)T (e) ⊆ ST . Furthermore,

dimT (e) = dimT + dimSe− dim(T ∩ Se)
= dimT + dimS − dim(Te−1 ∩ S)

by Lemma 2.5.10, hence

dimS(e) + dimT (e) = dimS + dimT.

We distinguish two cases.

Assume that S(e) = S for all e ∈ T×, i.e. S ⊆ Te−1 for all e ∈ T×. Then,
since T has a basis of invertible elements, we have ST ⊆ T . The result then
holds with H the subalgebra generated by S and V := T .

Assume that there exists e ∈ T× such that S(e) $ S. Then 0 < dimS(e) < k
hence the induction hypothesis applied to S(e) and T (e) gives an algebra H

89

and a vector space V such that HV = V ,

T ⊆ T (e) ⊆ V ⊆ S(e)T (e) ⊆ ST

and
dimV + dimH ≥ dimS(e) + dimT (e) = dimS + dimT.

Proof of Theorem 4.2.3. By Remark 4.2.5 we may assume that both S
and T have full support. The key to the proof is the following observation.
Assume that T has a basis of invertible elements. Recall that, by Lemma 4.2.6,
for all x ∈ S× there exist a K-algebra Hx ⊆ Kn and a K-vector space Vx ⊆ Kn
such that

HxVx = Vx (4.2)

xT ⊆ Vx ⊆ ST (4.3)

dimVx + dimHx ≥ dimS + dimT. (4.4)

Set k := dimS and assume furthermore that there exists a K-basis {x1, . . . , xk}
of S contained in S× such that

Hx1 = · · · = Hxk =: H. (4.5)

Then ST = Vx1
+ · · · + Vxk by (4.3), and therefore HST = ST by (4.2), in

other words H ⊆ St(ST). From (4.4) it follows therefore that

dimST + dim St(ST) ≥ dimVx1 + dimH ≥ dimS + dimT,

hence the conclusion.

We shall first prove the Theorem when K is an infinite field, by showing in that
case that T always has a basis of invertible elements and that there always
exists a basis {x1, . . . , xn} of invertible elements of S satisfying (4.5).

Since T has full support, it should be clear enough that it has a basis of in-
vertible elements for K infinite. In this case Lemma 4.2.6 applies. Now fix a
K-basis {s1, . . . , sk} of S and define, for all α ∈ K, yα :=

∑k
i=1 α

i−1si ∈ S. For
any choice of non-zero, pairwise distinct α1, . . . , αk ∈ K, the matrix transform-
ing s1, . . . , sk into yα1 , . . . , yαk is Vandermonde, and therefore yα1 , . . . , yαk is
also a K-basis of S. We now observe that the set {α ∈ K : yα ∈ S×} is infi-
nite: indeed its complement in K is finite, as it is a finite union of zero-sets of
non-zero polynomials. That these polynomials are non-zero is guaranteed by
the full-support property of S. On the other hand, the number of subalgebras
of Kn is finite by Remark 2.5.12, in particular the number of subalgebras Hx

guaranteed by Lemma 4.2.6 is finite. It follows that there exist α1, . . . , αk

90

such that {x1 = yα1 , . . . , xk = yαk} is a K-basis of S whose elements are all
invertible and such that Hx1

= · · · = Hxk . This concludes the proof in the
case K infinite.

Assume now that K is finite, and consider an infinite field extension K′ of K,
for example the rational function field K′ := K(t), where t is transcendental
over K. The infinite base-field case applies to K′-vector spaces. Our purpose
is to draw our conclusion from this. Define the base-field extensions S′ :=
S⊗K′, T ′ := T ⊗K′, where tensor products are taken over K. By construction
S′ and T ′ are K′-vector spaces and we have just proved that

dimK′ S
′T ′ ≥ dimK′ S

′ + dimK′ T
′ − dimK′ St(S′T ′).

It is clear that S′T ′ = ST ⊗ K′, dimK′ S
′ = dimS, dimK′ T

′ = dimT and
dimK′ S

′T ′ = dimST , where non-indexed dimensions are taken over K. More-
over St(S′T ′) = St(ST) ⊗ K′ by Lemma 2.5.13 and the conclusion follows.

Theorem 4.2.3 implies in particular that if C and D are two codes such that
CD has trivial stabilizer, i.e. is indecomposable, then we must have

dimCD ≥ dimC + dimD − 1. (4.6)

The next section studies pairs of codes C,D such that CD is indecomposable
and achieves equality in (4.6).

4.3 Vosper’s Theorem

We start by recalling Vosper’s Addition Theorem.

Theorem 4.3.1 (Vosper [72]). Let G be an abelian group of prime order p.
Let A,B ⊆ G be subsets, with |A|, |B| ≥ 2 and |A+B| ≤ p− 2. If

|A+B| = |A|+ |B| − 1

then A and B are arithmetic progressions with the same difference.

We point out that an extension-field version of Vosper’s Theorem for finite
fields was recently proved in [2].

Since the stabilizer of a subset of a group G must be a subgroup, when G is
of prime order and has no proper subgroup, Kneser’s Addition Theorem 4.2.1
implies that subsets A,B of G such that A+B 6= G must satisfy

|A+B| ≥ |A|+ |B| − 1.

91

This result is known as the Cauchy-Davenport Inequality, see [54, 69]. Vosper’s
Theorem is therefore concerned with characterizing pairs of sets achieving
equality in the Cauchy-Davenport Inequality.

In the algebra setting, the inequality (4.6) may be thought of as a code-product
version of the Cauchy-Davenport Inequality. But contrary to the group case,
the algebra Fn always has proper subalgebras (for n > 1) so we cannot hope
to ensure (4.6) purely by a condition on Fn. However, we have seen that (4.6)
holds when (at least one of) the codes involved is MDS (Theorem 2.5.16).
The following theorem may be seen as a version of Vosper’s Theorem for MDS
codes, and is the main result of this section.

Theorem 4.3.2. Let C,D ⊆ Fn be MDS codes, with dimC,dimD ≥ 2 and
dimCD ≤ n− 2. If

dimCD = dimC + dimD − 1

then C and D are Reed-Solomon codes with a common evaluation-point se-
quence.

Remark 4.3.3. The hypotheses dimC, dimD ≥ 2 clearly cannot be removed.
The value n − 2 is also best possible in the hypothesis dimCD ≤ n − 2,
since by taking C to be an arbitrary MDS (non Reed-Solomon) code, and
taking D = C⊥, we will have a pair of MDS codes such that dimCD =
dimC + dimD − 1 = n − 1. A slight relaxation of the MDS hypothesis is
presented in [1]: here it is observed that only the projections CI and DI of C
and D onto a sufficiently large coordinate set I ⊆ {1, . . . , n} are required to
be MDS in order to make our argument work.

We introduce the following notation for Vandermonde-type matrices. Given a
positive integer k and α = (α1, . . . , αn) ∈ (F ∪ {∞})n we denote by Vk(α) the
k × n matrix whose i-th column is (1, αi, . . . , α

k−1
i)T if αi 6=∞, (0, . . . , 0, 1)T

otherwise. Note that the possible presence of this last column makes Vk(α)
a Vandermonde matrix in a generalized sense. We remark that if the entries
of α are pairwise distinct then Vk(α) has full rank. With this notation, a
Reed-Solomon code of length n and dimension k is a code of the form gC,
where g ∈ (F×)n (i.e. g has no zero entries) and C is generated by Vk(α)
for some α ∈ (F ∪ {∞})n with pairwise-distinct entries. The vector α is an
evaluation-point sequence of C.

Lemma 4.3.4. Let C ⊆ Fn be a full-support code with dimC ≥ 2 and dmin(C) >
1. Assume that there exists a 2-dimensional MDS code A ⊆ Fn, generated by
V2(α) for some α ∈ Fn with pairwise distinct entries, such that

dimAC = dimC + 1 ≤ n− 1.

Then C is generated by gVdimC(α) for some g ∈ C.

92

Proof. Since α has at most one zero coordinate, dmin(C) > 1 implies that
dimαC = dimC. We therefore have

dimAC = dim(C + αC) = 2 dimC − dim(C ∩ αC),

hence
dim(C ∩ αC) = dimC − 1.

Moreover, C ′ = C ∩ αC has support strictly larger than its dimension, other-
wise it would have minimum distance 1 and this would imply the existence of
a word of weight 1 in C. We prove the lemma by induction on k := dimC.

In the case k = 2, pick g′ ∈ C ∩αC, which exists as dim(C ∩αC) = 1, and let
g ∈ C be such that g′ = gα. Then g and g′ = gα are linearly independent, as
| supp g| ≥ | supp g′| ≥ 2 and α has pairwise distinct entries. It follows that C
is generated by g and gα, i.e. by gV2(α).

Now assume that k > 2. We have

k = dimC ′ + 1 ≤ dimAC ′ ≤ dimαC = k,

where the right inequality follows from the inclusion AC ′ = C ′ + αC ′ ⊆ αC,
and the left inequality follows from Theorem 2.5.16 (recall that A is MDS).
Strictly speaking, Theorem 2.5.16 only applies to full-support codes and C ′

may have a support of cardinality n − 1 if α has a zero coordinate. But
if this happens we may puncture A and C ′ by deleting this coordinate to
obtain full-support codes of the same dimension as A and C and still apply
Theorem 2.5.16.

Since C ′ ⊆ C we have dmin(C ′) ≥ dmin(C) > 1, and we have just shown
dimAC ′ = dimC ′ + 1 ≤ (n − 1) − 1, since dimC ′ = dimC − 1. Therefore
the induction hypothesis applies to C ′, possibly after puncturing one zero
coordinate to make C ′ full support. Hence C ′ is generated by g′Vk−1(α) for
some g′ ∈ C ′. Let g ∈ C be such that g′ = gα. The matrix whose rows are
the elements of the set {g, g′ = gα, . . . , g′αk−2 = gαk−1} ⊆ C is gVk(α), which
has rank k as | supp g| ≥ | suppC ′| ≥ k. It follows that this set is linearly
independent and gVk(α) generates C.

Lemma 4.3.5. Let C,D ⊆ Fn be MDS codes satisfying

dimCD = dimC + dimD − 1.

Assume that there exists an index set I ⊆ {1, . . . , n} with |I| ≥ dimCD
such that the punctured codes CI , DI ⊆ F|I| obtained by projecting C and
D on the coordinates indexed by I are Reed-Solomon codes with a common
evaluation-point sequence. Then C and D are Reed-Solomon codes with a
common evaluation-point sequence.

93

Proof. Set k := dimC, ` := dimD. Since |I| ≥ dimCD we have |I| ≥ k
and |I| ≥ ` and since C and D are MDS we must have dimCI = dimC = k,
dimDI = dimD = `. Note that we may suppose k, ` ≥ 2, otherwise there is
nothing to prove.

Reformulating the hypothesis, there exist gI , g
′
I ∈ F|I|, αI ∈ (F ∪ {∞})|I|,

where αI has pairwise-distinct entries, such that CI and DI are generated by
gIVk(αI) and g′IV`(αI) respectively. In other words there are unique generator
matrices GC and GD of C and D whose I-indexed columns form gIVk(αI) and
g′IV`(αI) respectively. It also follows that gIg

′
IVk+`−1(αI) generates CIDI (as

k + ` − 1 ≤ |I|), dimCIDI = k + ` − 1 = dimCD and there is a unique
generator matrix GCD of CD whose I-indexed columns form gIg

′
IVk+`−1(αI).

Let x0, . . . xk−1 and y0, . . . , y`−1 denote the rows of GC and GD respectively.

The key observation is the following: let u, v, s, t be integers, with 0 ≤ u, s ≤
k − 1 and 0 ≤ v, t ≤ `− 1, such that

u+ v = s+ t.

Since xuyv and xsyt coincide in the I-indexed coordinates, and dimCIDI =
dimCD, the vectors xuyv and xsyt must coincide in every coordinate of
{1, . . . , n}. In other words, if π = (π0, π1, . . . , πk−1)T and τ = (τ0, τ1 . . . , τ`−1)T

are the j-th column of GC and GD respectively, for some j 6∈ I, then

πuτv = πsτt.

We now exploit this property in order to prove the lemma. Pick two columns
π, τ of GC , GD as above.

First assume that π0 6= 0 and τ0 6= 0. Without loss of generality we may
assume π0 = τ0 = 1. It follows from π0τ1 = π1τ0 that τ1 = π1 =: β ∈ F.
For all i ≤ k − 1, it holds that πi = πiτ0 = πi−1τ1. Applying this formula
recursively we obtain πi = βi for all i ≤ k − 1, i.e. π corresponds to the
evaluation point β ∈ F. The same argument applies to τ , which corresponds
to the evaluation point β ∈ F as well.

Now assume that π0 = 0. If τ0 6= 0, then π1τ0 = π0τ1 = 0 implies π1 = 0.
Continuing in this way, we see that if πi = 0, then πi+1τ0 = πiτ1 = 0 implies
πi+1 = 0 and by induction we obtain π = 0 which contradicts the full-support
property of the MDS code C. Therefore τ0 = 0. Assume without loss of
generality that k ≤ `. If k = ` = 2, then both π1 and τ1 are non zero as C and
D have full support, hence the columns π and τ correspond to the evaluation
point ∞. If k = 2 and ` ≥ 3 then as τiπ1 = τi+1π0 = 0 for all i < ` − 1 and
as π1 6= 0 it follows that τi = 0 for all i < ` − 1 and again the full-support
property of D implies that the column τ corresponds to the evaluation point

94

∞. If k > 2, then the same procedure that we applied to π0, τ0 again yields
π1 = τ1 = 0. Iterating in this way, we obtain that both π and τ correspond to
the evaluation point ∞.

We have proved that up to multiplication by vectors g, g′, the codes C and
D have generator matrices of the form Vk(α) and V`(α). Since C and D are
MDS, the evaluation-sequence α must have distinct entries and C and D are
Reed-Solomon codes with the same evaluation-point sequence.

Proof of Theorem 4.3.2. Set k := dimC, ` := dimD, k∗ := dimCD =
k + ` − 1. Let C0, D0 ⊆ Fn0 be the punctured codes obtained by projecting
C,D on the first n0 := k∗ + 2 coordinates. As C0, D0 and C0D0 are MDS, we
have dimC0 = dimC, dimD0 = dimD, dimC0D0 = dimCD and

k∗ = dimC0D0 = dimC0 + dimD0 − 1 = n0 − 2. (4.7)

Define the code A ⊆ Fn0 by

A := (C0D0)⊥.

By Lemma 2.5.17 the code C0D0 is MDS, therefore A is MDS and furthermore
has dimension 2 by (4.7). Now observe that for any a ∈ A, x ∈ C0, y ∈ D0,
orthogonality of A and C0D0 translates into

(a |xy) = 0

which is equivalent to
(ax | y) = 0.

We have therefore (AC0)⊥ ⊇ D0, from which we deduce

dimAC0 ≤ n0 − dimD0 = dimC0 + 1 ≤ n0 − 1

whence
dimAC0 = dimC0 + 1 (4.8)

by Theorem 2.5.16. Similarly we also have

dimAD0 = dimD0 + 1. (4.9)

Now A is an MDS code of dimension 2 and therefore has a generator matrix
with at most two zero entries. By puncturing one coordinate if need be, we
obtain a generator matrix with at most one zero entry. The two rows of this
matrix are clearly of the form g, gα for some g ∈ Fn and α ∈ Fn with pairwise
distinct coordinates. Finally, consider that dimC0 = n0−1−dimD0 ≤ n0−3,
and similarly dimD0 ≤ n0 − 3. Hence (4.8) and (4.9) imply

dimAC0 ≤ n0 − 2,

dimAD0 ≤ n0 − 2.

95

Therefore Lemma 4.3.4 applies to A,C0 and to A,D0, possibly after puncturing
one coordinate. From there we obtain that C0 and D0 (possibly punctured on a
common coordinate) are Reed-Solomon codes with a common evaluation-point
sequence, and Lemma 4.3.5 gives the desired conclusion.

4.3.1 Consequences of Theorem 4.3.2

A first interesting consequence of Theorem 4.3.2 is the following characteriza-
tion of Reed-Solomon codes among MDS codes.

Corollary 4.3.6. Let C ⊆ Fn be an MDS code, with dimC ≤ (n−1)/2. The
code C is Reed-Solomon if and only if

dimC2 = 2 dimC − 1. (4.10)

Remark 4.3.7. If dimC ≥ (n + 1)/2, then C being MDS we must have
C2 = Fn and the dimension of the square cannot yield any information on
the structure of C. However in that case, whether C is Reed-Solomon is
betrayed by the dimension of the square of the dual code C⊥. The remaining
case in which Corollary 4.3.6 does not say anything is the case dimC = n/2.
One may wonder whether it still holds that C is Reed-Solomon if and only if
dimC2 = 2 dimC−1, and possibly Theorem 4.3.2 and Corollary 4.3.6 have not
managed to capture this fact. The answer to this question is negative, indeed
there exist plenty of MDS codes of dimension n/2 satisfying (4.10) which are
not Reed-Solomon. For instance, the codes denoted C11,8,8 and C13,8,21 in [9],
of length 8 over the fields with 11 and 13 elements respectively are self-dual,
therefore satisfy (4.10), and can be shown not to be Reed-Solomon.

In addition, as our proofs are constructive, they can be used to design an
algorithm that, given an MDS code which satisfies (4.10) (and is henceforth a
Reed-Solomon code), recovers its defining parameters, i.e. the αi’s and gi’s as
in Definition 2.5.7.

A second consequence concerns error correcting pairs, which we defined in
Section 2.5.3. Recall that a pair of MDS codes (A,B) with dimA = t+ 1 and
dimB = t is a t-error correcting pair for C := (AB)⊥, and dimC ≤ n − 2t.
Moreover, this bound is attained if A and B are Reed-Solomon codes with a
common evaluation-point sequence, and in this case C is a Reed-Solomon code
as well. The converse also holds.

Theorem 4.3.8. Let 2 ≤ t < n/2 be an integer. Let C ⊆ Fn be a code of
dimension n−2t that has a t-error correcting pair (A,B) over a finite extension
of F. Then A,B,C are Reed-Solomon codes with a common evaluation-point
sequence.

96

This results first appeared in [49, Theorem 6.2]. In the original statement,
it was further assumed that C is MDS, but this is actually implied by the
existence of a t-error correcting pair: as observed in [58, Corollary 2.15] if
C can correct t errors, then dmin(C) ≥ 2t + 1, hence dimC + dmin(C) ≥
n− 2t+ 2t+ 1 = n+ 1. The paper [49] gives two separate proofs of this result:
a first direct one, and a second one based on our Main Theorem 4.1.3. In fact,
this second proof can be further simplified by using Theorem 4.3.2 as follows.
For simplicity, we assume that the error correcting pair is defined over F (and
not over an extension). For the full proof the reader is referred to [1].

First observe that, as in the original proof, A is MDS of dimension t+ 1, and
B, possibly after an extension of the base field, contains a subcode B′ which
is MDS of dimension t such that (A,B′) is a t-error correcting pair for C. We
have that

2t = n− dimC ≥ dimAB ≥ dimA+ dimB − 1 ≥ dimA+ dimB′ − 1 = 2t,

where the dimensions are taken over the field of definition of B′, hence B′ = B,
and in particular this field extension was not even necessary. The inequality
dimAB ≥ dimA+dimB−1 holds because A is MDS. Moreover, we have that
dimAB = dimA + dimB − 1, hence Theorem 4.3.2 applies and yields that
A,B,AB and C = (AB)⊥ are Reed-Solomon codes with a common evaluation-
point sequence.

Finally we show that a t-strongly multiplicative secret sharing scheme among n
players such that n = 3t+1, i.e. attains the bound given in Proposition 2.6.9, is
necessarily based on a Reed-Solomon code. Recall that given a secret sharing
scheme Σ = (π0, . . . , πn) ⊆ V ∗, where V is an F-vector space, we define the
code

C(Σ) := {(π0(x), . . . , πn(x)) : x ∈ V }.

Theorem 4.3.9. Let t be a positive integer. Let Σ be a t-strongly multiplicative
secret sharing scheme among n players. If n = 3t + 1 then C(Σ) is a Reed-
Solomon code.

Proof. By assumption Σ has t-privacy and (n − t = 2t + 1)-product recon-
struction. By Lemma 2.6.8 it also has (n − 2t = t + 1)-reconstruction, hence
it is (t+ 1)-threshold. It follows by Corollary 2.6.14 that the associated code
C(Σ) is MDS of dimension t+ 1. Its square has dimension

dimC(Σ)2 ≥ 2 dimC(Σ)− 1 = 2t+ 1

by Theorem 2.5.16 and
dimC(Σ)2 ≤ 2t+ 1

as the product scheme has (2t+1)-reconstruction. The conclusion now follows
by our variant of Vosper’s Theorem.

97

This result was first proved in [1], together with two generalizations. The first
one consider secret sharing schemes for a finite extension L of F, i.e. schemes
which allow the secret to be in L. To capture this notion in full generality,
one can use the definition of codex introduced in [16]. Alternatively one can
adapt Definition 2.6.4 allowing π0 to be an F-linear map V → L, or can
consider secret sharing schemes associated to F-linear subspaces of L× Fn in
the sense of Definition 2.6.15. In this setting, one can prove that a t-strongly
multiplicative secret sharing scheme among n players satisfies

n ≥ 3t+ 2k − 1,

where k is the degree of the field extension. If L = F this is simply Proposi-
tion 2.6.9.

Theorem 4.3.10. Let t be a positive integer. Let Σ be a t-strongly multiplica-
tive secret sharing scheme for L among n players. If n = 3t + 2k − 1 then
C(Σ) is a Reed-Solomon code in L× Fn.

By a Reed-Solomon code in L× Fn, we mean a code of the form

{(g0f(α0), g1f(α1), . . . , gnf(αn)) : f ∈ F[X]<k},

where α1, . . . , αn ∈ F ∪ {∞} are pairwise distinct and g1, . . . , gn ∈ F are non-
zero, α0 ∈ L is different from the other αi’s and g0 ∈ L is non-zero.

We only quickly sketch the proof. First, one proves that the L-span of C(Σ),
which is an L-liner code, defines a secret sharing scheme which has (t+k−1)-
privacy and (2t+ 2k−1)-product reconstruction, hence (t+k)-reconstruction,
hence the scheme is (t+ k)-threshold. It follows that the L-span of C(Σ) is an
MDS code of dimension t+k. Then, one notices that this implies dimL C(Σ)2 =
2 dimL C(Σ)− 1, hence the L-span of C(Σ) is a Reed-Solomon code. The last
step consists of proving that C(Σ) itself is a Reed-Solomon code in L× Fn.

The second generalization allows not only the secret, but also each share to lie
in a possibly different field extension of F. For all i = 1, . . . , n, let us denote
by Fi the field where the i-th share lies. The idea is to focus on projections
of C(Σ): for all sufficiently large subsets I ⊆ {1, . . . , n}, we can prove that

C(ΣI) is a Reed-Solomon code in L× F|I|I , where FI denotes the compositum
of the Fi’s with i ∈ I. Then two such projections can be glued together if
their supports intersect in at least three points, using the fact that the set of
all evaluation-point sequences of a given Reed-Solomon code is an orbit under
the action of a triply transitive group. Finally, if i belong to the intersection
of two different supports I and J then αi ∈ FI ∩ FJ and if FI and FJ are
“sufficiently different” then it may be the case that FI ∩ FJ = Fi as desired.
We refer the reader to [1, Section 7] for a fully detailed discussion and a precise
statement of the results.

98

4.4 Classification of PMDS pairs

We now are finally ready to focus on the chapter’s central result, namely
Theorem 4.1.3.

First, we show how Randriambololona’s Product Singleton Bound can be ob-
tained as a consequence of Theorem 4.2.3. To be precise we obtain:

Theorem 4.4.1. Let C1, . . . , Ct ⊆ Fn be codes. Assume that their product
C1 · · ·Ct has full support. Then

dmin(C1 · · ·Ct) ≤ max{t− 1, n− (dimC1 + · · ·+ dimCt) + t}.

Remark 4.4.2. The full result of [62] is actually stronger than Theorem 4.4.1,
as it ensures that an element of weight at most max{t− 1, n− (dimC1 + · · ·+
dimCt) + t} can be found in the set

{x1 · · ·xt : x1 ∈ C1, . . . , xt ∈ Ct},

and not only in its span. The support condition given here is also not the same
as the apparently weaker hypothesis given in [62], but the two conditions are
really interchangeable, as argued in [62, Remark 3(c)].

Proof of Theorem 4.4.1. For ease of notation, set ki := dimCi for all
i = 1, . . . , t, P := C1 · · ·Ct, k∗ := dimP , d∗ := dmin(P). Assume that d∗ ≥ t.
The classical Singleton Bound, applied to P , says that

k∗ ≤ n− d∗ + 1. (4.11)

Repeatedly applying Kneser’s Theorem 4.2.3 we obtain

k∗ ≥ k1 + · · ·+ kt − (t− 1) dim St(P). (4.12)

Combining it with (4.11), we get

d∗ ≤ n− (k1 + · · ·+ kt) + 1 + (t− 1) dim St(P), (4.13)

which is apparently a weaker statement than Theorem 4.4.1. To improve it,
we “correct” (4.11) to transform it into an identity, namely we define m :=
n − d∗ + 1 − k∗. Thus, by definition, P is “m-far from being MDS”. The
combination of this identity with (4.12) gives an improved version of (4.13),
namely

d∗ = n− k∗ + 1−m ≤ n− (k1 + · · ·+ kt) + 1 + (t− 1) dim St(P)−m. (4.14)

In the case of t = 2, the first claim of Lemma 2.5.15, rewritten as

dim St(P)− (n− d∗ + 1− k∗) ≤ 1

99

immediately proves the theorem. In the general case, using the second claim
of Lemma 2.5.15 instead we obtain

(t− 1) dim St(P)−m ≤ (t− 1)
n− k∗

d∗ − 1
−m

= t− 1 + (t− 1)
m

d∗ − 1
−m

= t− 1− d∗ − t
d∗ − 1

m. (4.15)

As d∗ ≥ t the conclusion follows.

From here on we focus on the case of t = 2. Recall that a pair of codes
C,D ⊆ Fn is defined to be PMDS if

2 ≤ dmin(CD) = n− dimC − dimD + 2.

Observe that for a PMDS pair (C,D) all inequalities in the proof of Theo-
rem 4.4.1 are actually identities. From this simple observation we obtain some
corollaries which relate the Product Singleton Bound with Kneser’s Theorem
and with the classical Singleton Bound.

Corollary 4.4.3. Let C,D ⊆ Fn be codes such that the pair (C,D) is PMDS.
Then the following hold.

1. The pair (C,D) attains the bound of Kneser’s Theorem, i.e.

dimCD = dimC + dimD − dim St(CD).

2. Either CD is MDS or dmin(CD) = 2.

Proof. From the above observation, (4.12) is an identity if (C,D) is PMDS,
hence the first claim is immediately proved. From (4.14) and (4.15) we obtain

dmin(CD)− 2

dmin(CD)− 1
m = 0,

where m := n− dmin(CD) + 1− dimCD, hence either m = 0 meaning CD is
MDS, or dmin(CD) = 2.

The two possible cases in our main Theorem 4.1.3 arise from the two possible
situations given by the second claim of the above corollary. We distinguish the
case of dmin(CD) > 2, which implies that CD is MDS, and dmin(CD) = 2.

Proposition 4.4.4. Let C,D ⊆ Fn be codes such that the pair (C,D) is
PMDS, and assume dmin(CD) > 2. Then C,D and CD are MDS. Moreover,
if dimC, dimD ≥ 2 then C,D and CD are Reed-Solomon codes with a common
evaluation-point sequence.

100

Proof. By the above corollary CD is MDS. Moreover the PMDS property
immediately yields n > dimC + dimD. We now proceed to prove that C and
D are also MDS through Lemma 2.5.6.

Set k := dimC, ` := dimD. Without loss of generality, we can choose a
generator matrix GC of C that is systematic in the first k positions. Let GD
be a generator matrix of D. The matrix formed by the last n− k columns of
GD has full rank, otherwise there is a non-zero vector of D that is zero in the
last n−k positions, and taking the product with a row of GC we would obtain
a vector of CD of weight 1, contradicting that CD is MDS and not the whole
space Fn. So we can now assume that GC is systematic in the first k positions
and GD is systematic in the subsequent ` positions.

Now we focus on GC . Assume that there is a zero entry in the j-th column
of GC for some j > k + `, say in position (i, j) of GC . Then, since the j-th
column of GD is not all-zero (otherwise CD would not be full support and
would not be MDS), the product of the i-th row of GC with some row of GD
yields non-zero vector of CD of weight at most n− k− `+ 1 = dmin(CD)− 1,
a contradiction. Therefore, all columns of GC indexed by j > k+ `, that exist
since n > k + `, have no zero entries. For the same reason, this is also true of
GD, and we obtain that the product of any row of GC with any row of GD is
non-zero.

From this last fact, we get that GC cannot have zero entries in the columns
indexed by {k + 1, . . . , k + `}, or again, by taking a product of a row of GC
with a row of GD, we would have a non-zero vector of CD of weight at most
n − k − ` + 1. Now Lemma 2.5.6 allows us to conclude that C is MDS.
Analogously, one has that D is MDS as well.

The last statement now follows immediately by Theorem 4.3.2. Note that
n > dimC + dimD is equivalent to the hypothesis dimCD ≤ n− 2.

The following lemma will be useful to deal with the second case.

Lemma 4.4.5. Let C,D ⊆ Fn be codes such that CD is MDS and

dimCD = dimC + dimD − 1 = n− 1.

Then there exists g ∈ (Fn)× such that C = (gD)⊥.

Proof. Let g ∈ Fn be a generator of (CD)⊥, which is invertible as (CD)⊥ is
MDS of dimension 1. For any x ∈ C, y ∈ D, we have

(x | gy) = (xy | g) = 0

so that C ⊆ (gD)⊥, and equality follows by comparing dimensions.

101

Proposition 4.4.6. Let C,D ⊆ Fn be codes such that the pair (C,D) is
PMDS. Set h := dim St(CD) and let {π1, . . . , πh} be an F-basis of St(CD) of
disjoint projectors with supports I1, . . . , Ih. Then C,D and CD decompose as

C = π1C ⊕ · · · ⊕ πhC,
D = π1D ⊕ · · · ⊕ πhD,

CD = π1CD ⊕ · · · ⊕ πhCD

and, for all i = 1, . . . , h, we have suppπiC = suppπiD = suppπiCD = Ii and

dimπiCD = dimπiC + dimπiD − 1. (4.16)

Moreover, if dmin(CD) = 2 then, for all i = 1, . . . , h, when πiC and πiD are
identified with codes of F|Ii| through the natural projection on their support,
then πiC = (giπiD)⊥ for some gi ∈ (F|Ii|)×.

Proof. By Kneser’s Theorem we have, for all i = 1, . . . , h,

dimπiCD ≥ dimπiC + dimπiD − 1 (4.17)

since πiCD has trivial stabilizer. Therefore

dimCD =

h∑
i=1

dimπiCD ≥
h∑
i=1

(dimπiC + dimπiD − 1). (4.18)

Observing that

C ⊆ π1C ⊕ · · · ⊕ πhC, D ⊆ π1D ⊕ · · · ⊕ πhD (4.19)

we get
h∑
i=1

(dimπiC + dimπiD − 1) ≥ dimC + dimD − h,

but the right hand side of this inequality equals dimCD by the first claim of
Corollary 4.4.3. From (4.18) we obtain therefore that all inequalities in (4.17)
are equalities, i.e. for all i = 1, . . . , h,

dimπiCD = dimπiC + dimπiD − 1,

and we obtain also

h∑
i=1

(dimπiC + dimπiD) = dimC + dimD,

hence both inclusions in (4.19) are actually identities.

102

Now assume that dmin(CD) = 2. Observe that n = dimC + dimD by the
Product Singleton Bound. From here on all codes are identified with full-
support codes through the natural projection on their support. For all i =
1, . . . , h, we have dmin(πiCD) ≥ 2, hence |Ii| ≥ dimπiCD + 1 by the classical
Singleton Bound applied to πiCD. Therefore

n =

h∑
i=1

|Ii| ≥
h∑
i=1

(dimπiCD + 1)

=

h∑
i=1

(dimπiC + dimπiD)

= dimC + dimD = n.

It follows that

dimπiCD = dimπiC + dimπiD − 1 = |Ii| − 1

and dmin(πiCD) ≥ 2 = |Ii| − dimπiCD + 1 proves that πiCD is MDS. Now
the conclusion follows by Lemma 4.4.5.

Propositions 4.4.4 and 4.4.6 constitute the proof of Theorem 4.1.3.

4.5 Concluding Comments

As mentioned in Section 4.3, Theorem 4.3.2 is arguably a coding-theoretic
analogue of Vosper’s Addition Theorem. The analogy with its additive coun-
terpart is not as clear-cut however as in the case of Theorem 4.2.3 and Kneser’s
Addition Theorem. More precisely, the MDS hypothesis in Theorem 4.3.2 is
not a very natural analogue of the prime order of the ambient group hypothesis
in Vosper’s original Theorem, and there may possibly be other coding-theoretic
analogues to consider.

The natural question raised by Theorem 4.2.3 and Theorem 4.3.2 is whether
there exists a satisfying characterization of pairs C,D such that CD is inde-
composable and of codimension at least 2, and dimCD = dimC + dimD− 1.
Beside pairs of Reed-Solomon codes, one now has Reed-Solomon codes with
duplicate coordinates. Beside these, other examples turn up.

Theorem 4.5.1 ([1, Theorem 4.9]). For any finite field F and positive integer
` there exists a code C of length n (which in general depends on `) which is
not MDS, and whose square is indecomposable and satisfies

dimC2 = 2 dimC − 1 = n− `.

103

Such codes are constructed by taking the amalgamated direct sum, defined in
the end of Section 2.5, of self-dual codes. Given two self-dual codes C ⊆ Fn1

and D ⊆ Fn2 such that dimC2 = 2 dimC−1 = n1−1 and dimD2 = 2 dimD−
1 = n2 − 1, we have that

dim(C
.
⊕D)2 = 2 dimC

.
⊕D − 1 = 2(dimC + dimD − 1)− 1

= (2 dimC + 2 dimD − 1)− 2 = n− 2

where n = n1 + n2 − 1 is the length of C
.
⊕D. The theorem is then proved by

iterating this construction.

If the analogy with additive combinatorics is to be trusted, a full characteriza-
tion may be tractable, though probably difficult, and would be a coding-theory
equivalent of Kemperman’s Structure Theorem for small sumsets [41].

Finally, it is natural to wonder whether the characterization of PMDS pairs
extends to products of more than two codes. Our techniques (Corollary 4.4.3
and Proposition 4.4.4) allow to deal with the analogue of the first case of
Theorem 4.1.3 and to prove the following: if (C1, . . . , Ct) is a t-PMDS tuple,
i.e. satisfies

dmin(C1 · · ·Ct) = n− (dimC1 + · · ·+ dimCt) + t,

if none of the Ci’s has dimension 1 and

dmin(C1 · · ·Ct) > t,

then all Ci’s are Reed-Solomon codes with a common evaluation-point se-
quence. On the other hand the arguments in the paper do not seem quite
sufficient to deal with the case of

dmin(C1 · · ·Ct) = t

corresponding to the second case of our main theorem. We leave the matter
open for further study.

A version of Kneser’s Theorem for a family of algebras was independently
posted by Beck and Lecouvey [4], and is a more general version of Theo-
rem 4.2.3. The proof follows similar arguments. Moreover, [4, Section 6]
shows how Kneser’s original Theorem can be recovered from the new variant.
The very same argument, which is based on the embedding of the group G
into the complex group algebra C[G] and on the isomorphism C[G] ∼= C|G|,
allows one to recover the original theorem from our variant as well.

104

Chapter 5

On Secret Sharing with
Non-linear Product
Reconstruction

5.1 Overview

Multiplicative linear secret sharing is a fundamental notion in the area of secure
multi-party computation (MPC). By extension, this holds in the area of two-
party cryptography as well, by virtue of recently discovered deep applications
of MPC to two-party cryptography as initiated in [39].

While linear secret sharing is additive in the sense that “the sum of share vec-
tors corresponds to the sum of the secrets”, multiplicative linear secret shar-
ing enjoys the further property that “the product of two secrets is obtained
as a linear function of the vector consisting of the coordinatewise product of
two respective share vectors”. There are several important (more demanding)
variations on this notion, such as strongly multiplicative secret sharing. First
framed and studied in [27] in the late 1990s as an abstract property of a lin-
ear secret sharing scheme1, it had been implicit in several results since the
mid 1980s (notably [7, 18, 35]) in the context of the application of Shamir’s
secret sharing scheme [67] to (information-theoretically) secure multi-party
computation. The asymptotical (constant-rate) theory of strongly multiplica-

1It was shown, in particular, when and how a multiplicative scheme can be obtained from
just a linear secret sharing scheme. However, this does not work for strong multiplicativity.

105

tive schemes has been initiated in [19], using algebraic geometry2. It has found
several notable applications, starting with [39]. For a full discussion and ref-
erences, please refer to [15].

This chapter focuses on the following foundational question, which is novel
to the best of our knowledge. Suppose we abandon the latter linearity con-
dition and instead require that the product of the two secrets is obtained by
application of some, not-necessarily-linear “product reconstruction function”.
Is the resulting notion equivalent to multiplicative linear secret sharing? We
show the (perhaps somewhat counter-intuitive) result that this relaxed notion
is strictly more general.

Throughout this chapter, let F be a finite field of size q, n a positive integer,
and let V be a finite-dimensional F-vector space. When the field size needs to
be put in evidence, we will use the notation Fq for the base field.

Definition 5.1.1. Let (π0, . . . , πn) ⊆ V ∗ be a secret sharing scheme. The
scheme has product reconstruction if, for all x, x′, y, y′ ∈ V with

π1(x)π1(y) = π1(x′)π1(y′), . . . , πn(x)πn(y) = πn(x′)πn(y′),

it holds that
π0(x)π0(y) = π0(x′)π0(y′).

Note that the product reconstruction condition is equivalent to the existence
of a product reconstruction function ρ′ : Fn −→ F such that

ρ′(π1(x)π1(y), . . . , πn(x)πn(y)) = π0(x)π0(y),

for all x, y ∈ V . In particular, a multiplicative secret sharing scheme (see
Definition 2.6.5) is one for which a linear product reconstruction function
exists. To separate and compare the two multiplicativity notions, we say that
a scheme is M1 if it is multiplicative in the sense of Definition 2.6.5, M2 if
it admits a non-necessarily-linear product reconstruction function as required
by Definition 5.1.1. Thus, an M1 scheme is also M2. As a consequence of our
results the converse does not hold.

Remark 5.1.2. There does not appear to be much that one can say, a pri-
ori, about the complexity of such not-necessarily-linear product reconstruction
functions. At best, one can say that in order to determine the product of two
secrets from the coordinatewise product of two corresponding share vectors, it
suffices to solve a system of quadratic equations.

The main result of this chapter is the following.

2Later, this asymptotical theory has also been developed in the case of multiplicative
schemes using classical coding theory in [5]. The results there do not seem to carry over
easily to strong multiplicative schemes.

106

Main Theorem 5.1.3. For any prime power q, there exists a function tq(n) ∈
Ω(n) such that, for infinitely many n ∈ N, there exists an Fq-vector space V
and a secret sharing scheme (π0, . . . , πn) ⊆ V ∗ which has tq(n)-privacy and ad-
mits a product reconstruction function. However, such function is necessarily
not Fq-linear. Therefore, the scheme is M2 but not M1.

The existence of such counterexamples can be explained from the difference
between linear and algebraic independence of certain multivariate polynomi-
als. For instance, the polynomials X, Y , XY are linearly independent but
algebraically dependent. Nevertheless, since the involved polynomials are ho-
mogeneous with degree 2, quadratic forms are a powerful tool to solve our
problem. Indeed, by means of combinatorial arguments involving bilinear and
quadratic forms, we find examples of linear secret sharing schemes with non-
linear product reconstruction on a small number of players.

Theorem 5.1.4. For every finite field Fq of size q ≥ 3, there exists an Fq-
linear secret sharing scheme on 9 players that is M2 but not M1. In addition,
there exists an F2-linear secret sharing scheme on 14 players that is M2 but
not M1.

Our main result is then obtained by composing those small examples with
multiplicative linear secret sharing schemes on n players that have t-privacy
with t = Ω(n). The existence of such schemes over any fixed base field was
proved in [11, 20]. As an additional result, we prove that, for every finite field
Fq of size q ≥ 3, n = 9 is the minimum value for which there exists an Fq-linear
secret sharing scheme on n players that is M2 but not M1. This value remains
undetermined for q = 2, but it is at least 9.

Theorem 5.1.5. Every M2 secret sharing scheme on less than 9 players is
also M1.

Our results extend to similar separation results for important variations, such
as strongly multiplicative secret sharing.

Theorem 5.1.6. For any prime power q, there exists a function t̂q(n) ∈ Ω(n)
such that, for infinitely many n ∈ N, there exists an Fq-vector space V and a
secret sharing scheme Σ = (π0, . . . , πn) ⊆ V ∗ which has t̂q(n)-privacy and such
that, for each set I ⊆ P consisting of n− t̂q(n) players, the scheme ΣI admits
a product reconstruction function (M2). However there exists a set J ⊆ P with
n − t̂q(n) players such that ΣJ is not M1. Therefore, Σ is not t̂q(n)-strongly
multiplicative.

It is an interesting question whether there are applications of this “exotic”,

107

novel class of secret sharing schemes with non-linear product reconstruction3

to cryptographic protocols, but we will not offer any speculations here.

We remark that, while the notion of multiplicativity defined in [27] applies
to linear secret sharing schemes where each share may consist of an arbitrary
number of elements of the base field, in this work our definitions and results
concern only ideal linear secret sharing schemes, i.e., those where each share
is a single field element. This is the notion considered in e.g. [11, 19, 20]. If
the local function is the component-wise product of the share-vectors, then
the analysis is the same for both cases. If any bilinear function can be used
in the local computations, then the general case can be reduced to the case of
ideal schemes (maybe except for fields of characteristic 2) 4.

This chapter is organized as follows. In Section 5.2 we show that both the
multiplicativity notion and its relaxed notion of product reconstruction can be
captured in terms of the existence of quadratic forms with certain algebraic
conditions imposed on them (see Propositions 5.2.1 and 5.2.2). This leads
us to defining the “separating quadratic forms”, which are characterized in
Propositions 5.2.4 and 5.2.5 by using the classification of quadratic forms over
finite fields. For any necessary theoretical background, the reader is referred
to the introductory Sections 2.3 and 2.4.

By using those results, several examples of linear secret sharing schemes that
prove the separation between the two notions are presented in Section 5.3.
Specifically, for every finite field Fq, we present examples of Fq-linear secret
sharing schemes with non-linear product reconstruction on n players, where
n = 9 if q ≥ 3 and n = 14 if q = 2. This constitute the proof of Theorem 5.1.4.

In Section 5.4, we analyze the behavior of the relaxed notion of product re-
construction under the composition of secret sharing schemes defined in Sec-
tion 2.6.1 and we prove Main Theorem 5.1.3 by composing the examples on
a small number of players presented in Section 5.3 with multiplicative lin-
ear secret sharing schemes whose privacy is linear in the number of players.
Moreover, we show how to extend our results to strongly multiplicative secret
sharing using the same composition technique, proving Theorem 5.1.6.

Finally, in Section 5.5 we prove Theorem 5.1.5, which states that it is not
possible to find examples separating the two notions on less than 9 players.
Therefore, the examples presented in Section 5.3 are among the smallest ones.

3All applications of multiplicative linear secret sharing we are aware of make essential
use of linearity of product reconstruction.

4Of course our results do not rule out that separating examples with a smaller number
of players exist in the non-ideal case, but we do not elaborate further on this matter.

108

5.2 Separating Quadratic Forms

In this section we characterize properties M1 and M2, or rather, their nega-
tions, separately. The characterization of the M2 property is given in terms of
a class of quadratic forms, which we call separating as they allow us to distin-
guish the two multiplicativity notions. Finally, we provide a characterization
for this class.

Proposition 5.2.1. A secret sharing scheme (π0, . . . , πn) ⊆ V ∗ is not M1 if
and only if there exists a quadratic form Q ∈ Quad(V ∗) such that Q(π1) =
· · · = Q(πn) = 0 and Q(π0) 6= 0.

Proof. Straightforward from Proposition 2.6.6 and the isomorphism between
Sym(V)∗ and Quad(V ∗) in Lemma 2.4.2. Here we use the following trivial fact
from linear algebra: if V is an F-vector space, W ⊆ V is a subspace and x ∈ V
is a vector, then x 6∈ W if and only if there exists a linear form π ∈ V ∗ such
that π(x) 6= 0 and π(y) = 0 for all y ∈W .

Given x, y, x′, y′ ∈ V , define the bilinear form Tx,y,x′,y′ := x ⊗ y − x′ ⊗ y′ ∈
Bil(V ∗) and its associated quadratic form Qx,y,x′,y′ ∈ Quad(V ∗).

Proposition 5.2.2. A secret sharing scheme (π0, . . . , πn) ⊆ V ∗ is not M2 if
and only if there exist vectors x, y, x′, y′ ∈ V such that Qx,y,x′,y′(π1) = · · · =
Qx,y,x′,y′(πn) = 0 and Qx,y,x′,y′(π0) 6= 0.

Proof. Obvious from Definition 5.1.1.

Definition 5.2.3. A quadratic form Q ∈ Quad(V ∗) is called separating if
Q 6= Qx,y,x′,y′ for every x, y, x′, y′ ∈ V , non-separating otherwise.

Using this notion, Proposition 5.2.2 claims that (π0, . . . , πn) is not M2 if and
only if there exists a non-separating quadratic form Q ∈ Quad(V ∗) such that
Q(π1) = · · · = Q(πn) = 0 and Q(π0) 6= 0.

As a consequence of the two propositions above, a secret sharing scheme
(π0, . . . , πn) ⊆ V ∗ is M2 but not M1 if and only if there exists a quadratic
form Q ∈ Quad(V ∗) such that Q(π1) = · · · = Q(πn) = 0 and Q(π0) 6= 0, and
all such quadratic forms are separating.

Next two propositions provide a characterization of the separating forms.

Proposition 5.2.4. No quadratic form of rank r ≤ 3 is separating. All
quadratic forms of rank r ≥ 5 are separating.

109

Proof. Let Q be not separating, i.e. Q = Qx,y,x′,y′ for some x, y, x′, y′ ∈ V .

Then the associated bilinear form B̃Q is given by B̃Q = x⊗ y + y ⊗ x− x′ ⊗
y′−y′⊗x′ and its rank is at most 4. This directly implies that non-separating
forms have rank at most 4, since in the case of characteristic 2, when the rank
of B̃Q is exactly 4 it is easy to see that Q is identically zero on RadV . This
proves the second claim of the theorem.

We prove the first statement for forms of rank r = 3, being the cases with
r ≤ 2 similar. Let Q ∈ Quad(V ∗) be a quadratic form of rank 3. Clearly, we
can assume that k := dimV = 3.

Suppose first that charF 6= 2. By the classification of quadratic forms, there
exists a basis {e1, e2, e3} of V such that, for some α ∈ F∗, the matrix associated
to the symmetric bilinear form BQ is0 1 0

1 0 0
0 0 α

 .

Therefore, Q is not separating because BQ = e1⊗ e2 + e2⊗ e1 +αe3⊗ e3, and
this implies that Q = Qx,y,x′,y′ with x = 2e1, y = e2, x′ = αe3 and y′ = −e3.

Assume now that charF = 2. By the classification of quadratic forms, Q
is determined by a bilinear form T ∈ Bil(V ∗) such that its matrix in some
suitable basis {e1, e2, e3} of V is0 1 0

0 0 0
0 0 1

 .

Then T = Te1,e2,e3,e3 , and hence Q is not separating.

It remains to study what happens for quadratic forms of rank r = 4. Briefly,
up to equivalence, there are two quadratic forms of rank 4, and only one of
them is separating.

Proposition 5.2.5. If charF 6= 2, a quadratic form of rank r = 4 is separating
if and only if its discriminant is −1. If charF = 2, a quadratic form of rank
r = 4 is separating if and only if its Arf invariant is 1.

Proof. Let Q ∈ Quad(V ∗) be a quadratic form of rank r = 4. As before, we
can assume that k = dimV = 4. Suppose that Q is not separating, that is,
Q = Qx,y,x′,y′ for some x, y, x′, y′.

Suppose that charF 6= 2. Then the symmetric bilinear form associated to Q is

BQ =
1

2
(x⊗ y + y ⊗ x)− 1

2
(x′ ⊗ y′ + y′ ⊗ x′).

110

If {x, y, x′, y′} is a linearly dependent set, then rkBQ ≤ 3. Therefore, {x, y, x′,
y′} is a basis of V . The determinant of the matrix of BQ in this basis is equal
to (1/4)2, and hence the discriminant of Q is equal to 1.

If charF = 2, then B̃Q = x⊗y+y⊗x+x′⊗y′+y′⊗x′. Again, {x, y, x′, y′} =
{e1, e2, e3, e4} is a basis of V . Let {π1, π2, π3, π4} be the dual basis of V ∗. The
Arf invariant of Q is equal to 0 because Q(πi) = 0 for i = 1, . . . , 4 and hence
Q(π1)Q(π2) +Q(π3)Q(π4) = 0.

5.3 Finding “Exotic Schemes”

We apply here the results in Section 5.2 to find examples of linear secret sharing
schemes that are M2 but not M1. Specifically, we prove Theorem 5.1.4 and
we present some additional examples of interest.

Associated to a secret sharing scheme Σ = (π0, . . . , πn) ⊆ V ∗, consider the
subspace

W (Σ) = 〈πi ⊗ πi : i = 1, . . . , n〉 ⊆ Sym(V)

and its annihilator

I(Σ) = {φ ∈ Sym(V)∗ : φ(B) = 0 for every B ∈W (Σ)} ⊆ Sym(V)∗.

Recall that Σ is M1 if and only if π0 ⊗ π0 ∈ W (Σ). By linear algebra, these
subspaces satisfy

dimW (Σ) + dim I(Σ) = dim Sym(V) =
k(k + 1)

2
.

If W (Σ) = Sym(V), then π0 ⊗ π0 ∈ W (Σ), and hence Σ is M1. In the case
dimW (Σ) = dim Sym(V)− 1, we obtain the following sufficient condition for
a linear secret sharing scheme to be M2 but not M1.

Proposition 5.3.1. Suppose Σ satisfies the following conditions.

(i) dimW (Σ) = dim Sym(V)− 1.

(ii) There exists a separating quadratic form Q∈Quad(V ∗) such that Q(πi) =
0 for all i = 1, . . . , n while Q(π0) 6= 0.

Then Σ has product reconstruction (is M2) but is not multiplicative (is not
M1).

Proof. Condition (ii) implies that Σ is not M1. The subspace I(Σ) ⊆
Sym(V)∗ has dimension 1, so I(Σ) = 〈Q〉, where Q is the separating form in

111

Condition (ii). Therefore, all non-zero elements in I(Σ) are separating, which
implies that Σ is M2 by Proposition 5.2.2.

At this point, we can apply this sufficient condition to present the first example
of a linear secret sharing scheme that is M2 but not M1. Take q = 5 and V =
F5
5, and fix a basis of V . Consider the symmetric bilinear form T ∈ Sym(V ∗)

that is represented by the 5 × 5 identity matrix and the quadratic form Q
that is determined by T . Obviously, rkQ = 5, and hence Q is separating by
Proposition 5.2.4. Our example is a linear secret sharing scheme Σ among
n = 14 players such that dimW (Σ) = dim Sym(V)− 1 = 14 and I(Σ) = 〈Q〉.
That is, we have to find π0, . . . , π14 ∈ V ∗ such that {πi ⊗ πi : i = 1, . . . , 14} is
linearly independent, Q(πi) = 0 for all i = 1, . . . , 14, and Q(π0) 6= 0. Then Σ
is M2 but not M1 by Proposition 5.3.1. A suitable choice for (π0, . . . , π14) is
given by the column vectors of the following matrix.

1 1 1 1 1 0 0
1 2 0 0 0 1 1
1 0 2 0 0 2 0
1 0 0 2 0 0 2
2 0 0 0 2 0 0

0 0 0 0 1 1 1 1
1 0 0 0 3 0 0 0
0 1 1 0 0 3 0 0
0 2 0 1 0 0 3 0
2 0 2 2 0 0 0 3

 .

It is easy to see that Σ achieves 2-privacy.

We use again Proposition 5.3.1 to present a similar example over F2. Take
V = F5

2 and fix a basis for V . Consider the quadratic form Q ∈ Quad(V ∗)
defined by the bilinear form T with matrix

1 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .

Observe that Q is separating because it has rank 5. Reasoning as in the
previous example we obtain that the linear secret sharing scheme determined
by the matrix

1 1 1 1 1 1 1 0
1 1 0 1 0 1 1 1
1 1 0 0 1 1 1 1
1 0 1 1 1 1 0 1
1 0 1 1 1 0 1 1

0 0 0 0 0 0 0
1 1 0 0 0 0 1
0 0 1 1 0 0 0
1 0 1 0 1 0 0
0 1 0 1 0 1 0


is M2 but not M1.

Similarly to the first one, the following example is again linear secret sharing
scheme Σ with dimension k = 5 over F5, but in this case the number of players

112

is reduced to n = 13. This is achieved by taking dim I(Σ) = 2. Consider the
quadratic forms Q1, Q2 ∈ Quad(V ∗) determined by the symmetric bilinear
forms with matrices

M1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

 , M2 =


0 0 0 0 1
0 0 1 1 0
0 1 0 2 0
0 1 2 0 0
1 0 0 0 0

 ,

respectively. One can check that all nonzero linear combinations of these two
matrices have rank 5. As a consequence, all nonzero forms in 〈Q1, Q2〉 have
rank 5, and hence they are separating. Next, we present a linear secret sharing
scheme Σ among 13 players such that it is not M1 and I(Σ) = 〈Q1, Q2〉.
Clearly, Σ is M2. A possible choice is given by the columns of the matrix

1 1 1 1 1 0 0
0 2 3 0 0 0 0
0 0 0 2 3 0 0
0 0 0 0 0 1 1
0 0 0 0 0 2 3

0 0 0 1 1 1 1
1 1 1 4 1 1 4
1 3 3 1 4 1 4
3 1 1 1 4 0 0
0 3 2 0 0 4 4

 .

There exist separating quadratic forms of rank 4, and they have been char-
acterized in Proposition 5.2.5. Therefore, we can apply Proposition 5.3.1 to
find examples with dimension k = 4 on 9 = k(k + 1)/2 − 1 players. In each
of the three following examples, we consider V = F4

q, where the characteristic
of the field is different from 2, and a quadratic form Q ∈ Quad(V ∗) that is
determined by a symmetric matrix

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 α

 .

Take q = 3 and α = −1. As the determinant of D is not a square in F3, Q
is separating. In addition, Q has at least 9 different zeros in F4

3, so we can
construct a linear secret sharing scheme Σ among 9 players which is M2 but
not M1. An example is

0 1 0 0 2 0 0 2 1 1
0 0 1 0 0 2 0 1 2 1
0 0 0 1 0 0 2 1 1 2
1 1 1 1 1 1 1 0 0 0

 .

The previous example generalizes as follows. Take α = −1 and a prime power
q such that −1 is not a square in Fq. As before, Q is separating. Observe that

113

a2 + b2 6= 0 for every a, b ∈ F∗q because −1 is not a square in Fq. Therefore,
there exist a, b, c ∈ F∗q with a2 + b2 + c2 = 0. The previous discussion implies
that the matrix

1 1 0 0 −1 0 0 −a a a
0 0 1 0 0 −1 0 b −b b
0 0 0 1 0 0 −1 c c −c
0 1 1 1 1 1 1 0 0 0

 .

defines a linear secret sharing scheme Σ among 9 players that is M2 but not
M1.

We now consider the case of a field Fq with charFq 6= 2 containing a square
root i of −1. Let α be a non-square in Fq, and assume further that α 6= i. Note
that this choice is always possible, replacing i with −i if necessary. Again, Q
is separating and we find another linear secret sharing scheme that is M2 but
not M1. 

1 1 1 0 1 1 α+1
2

α+1
2 0 α+1

2

0 i 0 1 −i 0 i(α−1)
2 0 α+1

2
i(α−1)

2

0 0 i i 0 −i 0 i(α−1)
2

i(α−1)
2 0

0 0 0 0 0 0 i i i −i

 .

Finally, we present another example on 9 players, this time over fields of char-
acteristic 2. Let Fq = F2[α], with α 6∈ F2, be an arbitrary field extension of
F2, and assume Tr(α) = 1. Note that it is always possible to choose such an
α. So the form

Q =


0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 α


is separating and yields the separating scheme

Σ =


1 1 0 1 α1/2 α1/2 α1/2 1 α2 1
1 0 1 1 α1/2 α1/2 1 α1/2 1 α2

1 0 0 1 0 1 α1/2 α1/2 α α
1 0 0 0 1 1 1 1 1 1

 .

Note that in the case of Fq = F2 we have α = α2 = α1/2 = 1 and this
construction gives a scheme that is M1.

5.4 Composition and Proof of the Main Result

We discuss here how to obtain larger examples from small ones by using the
composition of secret sharing schemes defined in Section 2.6.1. Recall that this

114

operation consists in substituting a player by several players by distributing its
share using another secret sharing scheme. By using this tool and the examples
in Section 5.3, we present proofs for Main Theorem 5.1.3 and Theorem 5.1.6.

Let V ′ and V ′′ be F-vector spaces. Let Σ′ = (π′0, . . . , π
′
n′) ⊆ (V ′)∗ and

Σ′′ = (π′′0 , . . . , π
′′
n′′) ⊆ (V ′′)∗ be secret sharing schemes. Let Σ = Σ′[Σ′′] =

(π0, . . . , πn) ⊆ V ∗ be the composition of Σ′ with Σ′′, where the vector space
V as well as the linear forms πi are defined as in Section 2.6.1.

We investigate how the multiplicativity properties of Σ′ and Σ′′ are inherited
by their composition. As to the M1 property, recall that we have proved in
Proposition 2.6.10 that if Σ = Σ′[Σ′′] is multiplicative in the sense of Defini-
tion 2.6.5 and Σ′{1,...,n′−1} is not, then both Σ′ and Σ′′ are multiplicative. As
to the M2 property, the following holds.

Proposition 5.4.1. If both Σ′ and Σ′′ have product reconstruction, then the
composition Σ = Σ′[Σ′′] has product reconstruction too.

Proof. Suppose that Σ is not M2 and Σ′′ is M2, and let us prove that Σ′ is
not M2. By Proposition 5.2.2 there exists a non-separating quadratic form Q ∈
Quad(V ∗) such that Q(πi) = 0 for all i = 1, . . . , n and Q(π0) 6= 0. Consider
the quadratic forms Q′ ∈ Quad((V ′)∗) and Q′′ ∈ Quad((V ′′)∗) defined by

Q′(π′) = Q
(

(π′, 0)
)

and Q′′(π′′) = Q
(

(0, π′′)
)
.

Observe that bothQ′ andQ′′ are non-separating. Since Σ′′ is M2 andQ′′(π′′j)=
0 for every j = 1, . . . , n′′, we have that Q′′(π′′0) = 0, hence

Q′(π′n′) = Q(τ0) = Q′′(π′′0) = 0,

where τ0 := (π′n′ , 0) = (0, π′′0) ∈ V ∗. Therefore, Σ′ is not M2 because Q′ ∈
Quad((V ′)∗) is a non-separating quadratic form such that Q′(π′i) = 0 for all
i = 1, . . . , n′ and Q′(π′0) = Q(π0) 6= 0.

By composing Shamir’s threshold secret sharing scheme with the small exam-
ples in Section 5.3, linear secret sharing schemes that are M2 but not M1 are
obtained for an arbitrarily large number of players. Indeed, for every integer
t ≥ 1 and every prime power q ≥ 2t+ 1, Shamir’s scheme among 2t+ 1 play-
ers, with t-privacy and (t + 1)-reconstruction, provides a multiplicative (M1)
Fq-linear secret sharing scheme Σ′ with the additional property that, for every
proper subset I $ {1, . . . , 2t + 1}, Σ′I is not multiplicative. If Σ′′ is one of
the examples over Fq on 9 players in Section 5.3, then by Propositions 2.6.10
and 5.4.1 the composition Σ = Σ′[Σ′′] is an Fq-linear secret sharing scheme on
n = 2t+ 9 players with t-privacy that is M2 but not M1.

The same idea can be used to construct examples for the notion of strong
multiplication. For every integer t ≥ 1 and every prime power q ≥ 3t + 1,

115

a t-strongly multiplicative Fq-linear secret sharing scheme Σ′ on n′ = 3t + 1
players is obtained from Shamir’s threshold scheme. Consider, as before, a
scheme Σ′′ conveniently chosen among the examples in Section 5.3 and the
composition Σ = Σ′[Σ′′]. Then, Σ is an Fq-linear secret sharing scheme on
n = 3t+ 9 players with t-privacy such that the scheme ΣI is M2 for every set
I ⊆ {1, . . . , n} of n− t players, but ΣJ is not M1 for some set J ⊆ {1, . . . , n}
with n− t players.

The previous constructions prove neither Theorem 5.1.3 nor Theorem 5.1.6,
but the proofs for those results are derived in a very similar way.

The algebraic geometric constructions from [11, 15, 19] provide, for every finite
field Fq and for infinitely many values of n′ ∈ N, multiplicative (M1) linear
secret sharing schemes Σ′ over Fq on n′ players that have t-privacy with t =
Ω(n′). By removing some players, we can assume that there is a player p0
such that Σ′{1,...,n′−1} is not M1. Let Σ′′ be one of the schemes over Fq on

9 (or 14 if q = 2) players presented in Section 5.3. Then the composition
Σ = Σ′[Σ′′] is an Fq-linear secret sharing scheme on n = n′+ 8 (or n = n′+ 13
if q = 2) players that has t-privacy with t = Ω(n). By Propositions 2.6.10
and 5.4.1, The scheme Σ is M2 but not M1. This concludes the proof of Main
Theorem 5.1.3.

The constructions from [11, 15, 19] provide as well, for every finite field Fq
and for infinitely many values of n′ ∈ N, t-strongly multiplicative linear secret
sharing schemes over Fq with t = Ω(n′). Therefore, Theorem 5.1.6 can be
proved similarly to Main Theorem 5.1.3.

5.5 The Smallest Examples

We presented in Section 5.3 examples of linear secret sharing schemes of di-
mension k = 4 on 9 players that are M2 but not M1. The aim of this section
is to prove Theorem 5.1.5, which implies that n = 9 is the minimum required
number of players in order to have a separation between the two multiplica-
tivity notions.

We begin with some technical lemmas. We notate P = {1, . . . , n} for the set
of players and P0 = {0, 1, . . . , n}. An access structure Γ is Q2 if the set of
players is not covered by any two rejecting sets. It is well-known that the
access structure of every multiplicative (M1) linear secret sharing scheme is
Q2, and it is easy to prove that the same applies to the M2 property.

Lemma 5.5.1. If a linear secret sharing scheme is M2, then its access structure
is Q2.

116

Proof. Suppose that I and J with I ∪ J = P are rejecting sets for Σ =
(π0, . . . , πn) ⊆ V ∗. Then there exist x, y ∈ V such that π0(x) = π0(y) = 1,
while πi(x) = 0 for every i ∈ I and πj(y) = 0 for every j ∈ J . By applying
Proposition 5.2.2 to x, y, x′ = 0, y′ = 0, this implies that Σ is not M2.

Lemma 5.5.2. Every 2-threshold linear secret sharing scheme among 3 players
is M1.

Proof. Let Σ = (π0, π1, π2, π3) ⊆ V ∗ be a 2-threshold linear secret sharing
scheme. Then we can assume that dimV = 2. Moreover, {πi, πj} is linearly
independent for every two different i, j ∈ P0. Therefore, there exists a basis
of V such that, for some a, b ∈ F∗ with a 6= b, the linear forms (π0, π1, π2, π3)
are given by the columns of the matrix(

1 0 1 1
0 1 a b

)
.

It is easy to check that Σ is M1.

Given Σ = (π0, . . . , πn) ⊆ V ∗ and I ⊆ P, the linear secret sharing scheme
Σ\ I is obtained from Σ by removing the players in I. This operation is called
puncturing. For example, Σ \ {n} = (π0, . . . , πn−1).

Lemma 5.5.3. Suppose that Σ = (π0, . . . , πn) ⊆ V ∗ is M2. If there exists a
partition P0 = I0∪I1 with 0 ∈ I0 and I1 6= ∅ such that the span of {πi : i ∈ I0}
has trivial intersection with the span of {πj : j ∈ I1}, then the scheme Σ \ I1
is also M2.

Proof. Suppose that Σ \ I1 is not M2. Then there exist x, y, x′, y′ ∈ V
such that Qx,y,x′,y′(πi) = 0 for every i ∈ I0 \ {0} and Qx,y,x′,y′(π0) 6= 0. It
is not difficult to check that we can select x, y, x′, y′ ∈ V in such a way that
Qx,y,x′,y′(πj) = 0 for every j ∈ I1. This implies that Σ is not M2.

Given a tuple of vectors (π0, . . . , πn) ⊆ V ∗, a set B ⊆ P0 is said to be a basis
(or an independent set) if {πi : i ∈ B} is a basis of V ∗ (or, respectively, it is
linearly independent). The following is a well-known result from linear algebra
and also matroid theory.

Lemma 5.5.4. Let B,B′ ⊆ P0 be two different bases. Then the following
properties are satisfied.

1. If i ∈ B′ \B, then (B′ \ {i}) ∪ {j} is a basis for some j ∈ B \B′.
2. If i ∈ B′ \B, then (B \ {j}) ∪ {i} is a basis for some j ∈ B \B′.

117

We proceed now with the proof of Theorem 5.1.5. Let Σ = (π0, . . . , πn) ⊆ V ∗
be a linear secret sharing scheme over F on n ≤ 8 players. Suppose that Σ is
M2. We want to prove that Σ is also M1.

The access structure of Σ is denoted by Γ and min Γ denotes the family of the
minimal accepting sets. Take k = dimV . We can suppose that V ∗ = 〈πi : i =
1, . . . , n〉. If there exists an accepting set formed by a single player, then Σ is
M1. From now on, we assume that all accepting sets have at least two players.

Claim 5.5.5. k < n.

Proof. Obviously, k ≤ n. If k = n, there exists a basis B ⊆ P0 with 0 ∈ B.
Then P = (B \ {0}) ∪ {j} because |B| = n − 1. Therefore, P is the union of
two rejecting sets and Γ is not Q2, a contradiction.

We prove in Claim 5.5.7 that Σ is M1 if k ≤ 4. We need the following lemma.

Lemma 5.5.6. Assume dimV = 4 and let {π1, . . . , π4} be an F-basis of V ∗.
Let Q1, Q2 ∈ Quad(V ∗) be linearly independent and such that Qj(πi) = 0 for
all i = 1, . . . , 4 and j = 1, 2. Then there exists λ ∈ F such that Q1 + λQ2 is
not separating.

Proof. Let U1, U2 ∈ F4×4 be the unique upper-triangular matrices associated
to Q1 and Q2, respectively, in the basis {π1, . . . , π4} of V ∗. Then

U1 =


0 α1

0 0
A1

0
0 β1
0 0

 , U2 =


0 α2

0 0
A2

0
0 β2
0 0


for some α1, α2, β1, β2 ∈ F, A1, A2 ∈ F2×2. Reordering the basis, we may
assume that α2 6= 0. Take λ = −α1/α2. Then the matrix U3 = U1 + λU2 has
rank at most 2, hence the bilinear form whose associated matrix is U3 is of the
form x ⊗ y − x′ ⊗ y′ for some x, y, x′, y′ ∈ F4 and therefore Q1 + λQ2 is not
separating.

Claim 5.5.7. If k ≤ 4, then Σ is M1.

Proof. By Proposition 5.2.4, Σ is M1 if k ≤ 3. Suppose that k = 4. Since
dim Sym(V) = 10, we have that dim I(Σ) ≥ 2. By iterated application of
Lemma 5.5.6, we can replace all separating forms in a basis of I(Σ) with non-
separating forms, obtaining a basis {Q1, . . . , Qr} of I(Σ) consisting entirely
of non-separating forms. Since Σ is M2, Qj(π0) = 0 for all j = 1, . . . , r, and
hence π0 ∈W (Σ). Therefore, Σ is M1.

118

From now on, we suppose that 5 ≤ k ≤ n − 1, and hence 6 ≤ n ≤ 8. Take a
set B ⊆ P0 such that 0 ∈ B and B is a basis (such a set always exists). Then
X = B \ {0} /∈ Γ, and hence Y = P \ X ∈ Γ because Γ is Q2. In addition,
|Y | = n− k + 1.

Claim 5.5.8. If Y is a minimal accepting set, then Σ is M1.

Proof. If Y is a minimal accepting subset, then Y is independent. Since
π0 is in the span of {πj}j∈Y , there exists X1 ⊆ X such that B′ = X1 ∪ Y
is a basis. By Lemma 5.5.4, for every i ∈ X \ X1 ⊆ B \ B′, there exists
j ∈ B′ \ B = Y such that B′′i = (B \ {i}) ∪ {j} is a basis. This implies that
B′′i \{0} = (X \{i})∪{j} is not in Γ, and hence its complement (Y \{j})∪{i}
is accepting. Then πi is in the span of {π` : ` ∈ (Y \ {j}) ∪ {0}} because
Y \ {j} /∈ Γ, and hence πi is in the span of {π`}`∈Y . Therefore, every vector
πi with i ∈ P0 \ X1 is in the span of {π`}`∈Y . Take X0 = P0 \ X1. Since
X1 ∪ Y is a basis, the span of {πi}i∈X0

has trivial intersection with the span
of {πj}j∈X1

. Therefore, Σ′ = Σ \ {X1} is M2 by Lemma 5.5.3. The dimension
of Σ′ is k − |X1| = n − k + 1 ≤ 4. Then Σ′ is M1 by Claim 5.5.7, and hence
so is Σ.

Claim 5.5.9. If k = n− 1, then Σ is M1.

Proof. Since |Y | = n − k + 1 = 2, we have that Y is a minimal accepting
set. Apply Claim 5.5.8.

As a consequence, Σ is M1 if n = 6. From now on, we assume that 7 ≤ n ≤ 8
and 5 ≤ k ≤ n− 2.

Claim 5.5.10. If every pair {i, j} ⊆ P0 with i 6= j is independent and k = n−2,
then Σ is M1.

Proof. Without loss of generality, we can suppose that B = {0, 4, . . . , n} and
Y = {1, 2, 3}. If Y is a minimal accepting set, then Σ is M1 by Claim 5.5.8.
Otherwise, we can assume that {1, 2} ∈ min Γ. If π3 is in the span of {π1, π2},
then Σ′ = Σ\(P\Y) is a (2, 3)-threshold scheme and Σ′ is M1 by Lemma 5.5.2.
This implies that Σ is M1. Otherwise, we can assume that {1, 2, 3, . . . , n−2} is
a basis. Since π0 is a linear combination of {π1, π2}, then {0, 2, 3, . . . , n− 2} is
a basis, and hence {1, n−1, n} ∈ Γ. If this is a minimal accepting set, then Σ is
M1 by Claim 5.5.8. Since B = {0, 4, . . . , n} is a basis, {n−1, n} /∈ Γ. Without
loss of generality, we can assume that {1, n} ∈ Γ. Then Σ \ (P \ {1, 2, n}) is a
(2, 3)-threshold scheme, and hence Σ is M1.

Claim 5.5.11. If k = n− 2, then Σ is M1.

119

Proof. Suppose n = 7 and k = 5. If the pair {πi, πj} is linearly dependent,
then by removing (puncturing) one of these players an M2 LSSS on 6 players
is obtained, which is also M1. Otherwise, Σ is M1 by Claim 5.5.10. The proof
is analogous for the case n = 8 and k = 6.

At this point, only the case n = 8, k = 5 remains unproven. Since every M2
linear secret sharing scheme on 7 players is M1, we can suppose that every
pair {i, j} ⊆ P0 with i 6= j is independent.

Claim 5.5.12. Consider Z ⊆ P0 with 3 ≤ |Z| ≤ 4 and 0 ∈ Z. Let W be the
span of {πj}j∈Z and take C = {i ∈ P0 : πi ∈W}. If |C| ≥ |Z|+ 3, then Σ is
M1.

Proof. Take Z ′ ⊆ Z such that {πj}j∈Z′ is a basis ofW . Take A = P0\C ⊆ P .
By a simple case analysis, it is not difficult to check that there exist disjoint
sets A1, A2 ⊆ A such that A1∪A2 = A and {πj}j∈Z′∪Ai is linearly independent
for i = 1, 2.

Suppose that Σ is not M1. Then Σ′ = Σ\A is not M1 and, since its dimension
is |Z ′| ≤ 4, it is not M2. Then there exists a quadratic form Q = Qx,y,x′,y′ ∈
Quad(V ∗) such that Q(π0) 6= 0 while Q(πi) = 0 for every i ∈ C \ {p0}.
Moreover, by basic linear algebra there exist vectors u, v, u′, v′ ∈ V such that

• π(u) = π(x), π(v) = π(y), π(u′) = π(x′), and π(v′) = π(y′) for all
π ∈W , and

• πi(u) = πi(u
′) = 0 for every i ∈ A1, and

• πj(v) = πj(v
′) = 0. for every j ∈ A2.

Consider the quadratic form Q′ = Qu,v,u′,v′ . Observe that Q′(πi) = Q(πi) if
i ∈ C and Q′(πj) = 0 if j /∈ C. This implies that Σ is not M2, a contradiction.

Without loss of generality B = {0, 5, 6, 7, 8} is a basis. Let Y = {1, 2, 3, 4}.
Remember that Y is an accepting set. If Y is a minimal accepting set, then
Σ is M1 by Claim 5.5.8. Otherwise, we distinguish two cases

Case 1 {1, 2, 3} is a minimal accepting set. We consider two subcases, de-
pending on whether π4 is in the span of {π1, π2, π3} or not. If yes, we can
assume that {1, 2, 3, 5, 6} is a basis. Then every set of the form {0, x, y, 5, 6}
with x, y ∈ {1, 2, 3} and x 6= y is a basis, and hence every set of the form
{i, 4, 7, 8} with i ∈ {1, 2, 3} is accepting. If one of them is a minimal accepting
set, then Σ is M1 by Claim 5.5.8. Observe that {7, 8} /∈ Γ because {7, 8} ⊆ B.

120

If {i, 4, j} ∈ Γ for some i ∈ {1, 2, 3} and j ∈ {7, 8} such that {i, 4} /∈ Γ, then
πj is in the span of {π0, πi, π4} and Σ is M1 by Claim 5.5.12 with Z = {0, 1, 2}
(since π3,π4,πj are in the span of {π0, π1, π2}). If a set of the form {i, 7, 8} with
i ∈ {1, 2, 3, 4} is accepting, then π8 is in the span of {π0, πi, π7}, and hence
the dimension of the span of {π0, π1, π2, π3, π4, π7, π8} is at most 4. Again, Σ
is M1 by Claim 5.5.12. Suppose now that π4 is not in the span of {π1, π2, π3}.
Then we can assume that {1, 2, 3, 4, 5} is a basis. By using a similar argument
as before, every set of the form {i, 6, 7, 8} with i = 1, 2, 3 is accepting. Since
{6, 7, 8} is not accepting, the vector πi is in the span of {π0, π6, π7, π8} for
every i = 1, 2, 3. Apply Claim 5.5.12 with Z = {0, 6, 7, 8}.

Case 2 All minimal accepting subsets of Y have exactly 2 players. We can
assume that {1, 2} ∈ Γ. By Lemma 5.5.2, we can assume that {π1, π2, π3}
is linearly independent. Suppose that π4 is in the span of {π1, π2, π3} and
that {1, 2, 3, 5, 6} is a basis. Then B′ = {p0, 2, 3, 5, 6} is a basis and Y ′ =
{1, 4, 7, 8} ∈ Γ. If Y ′ is a minimal accepting set or {1, 4} ∈ Γ, then Σ is M1. If
there is a minimal accepting subset of Y ′ with cardinality 3, then we can reduce
to Case 1. Since {7, 8} ⊆ B, this set is not accepting. The only remaining case
is that there exists an accepting set {i, j} with i ∈ {1, 4} and j ∈ {7, 8}. Then
πj is in the span of {π1, π2, π3} and Σ is M1 by Claim 5.5.12. Suppose now that
π4 is not in the span of {π1, π2, π3}. Then we can assume that {1, 2, 3, 4, 5}
is a basis. Then B′ = {p0, 2, 3, 4, 5} is a basis and Y ′ = {1, 6, 7, 8} ∈ Γ. The
proof is concluded by using a similar argument as before.

121

122

Bibliography

[1] Mark A. Abspoel. Shamir’s scheme is the only strongly multiplica-
tive LSSS with maximal adversary. Master’s thesis, Universiteit Lei-
den, 2016. Preprint: https://www.math.leidenuniv.nl/scripties/

MasterAbspoel.pdf.

[2] Christine Bachoc, Oriol Serra, and Gilles Zémor. An analogue of Vosper’s
Theorem for Extension Fields. Math. Proc. Cambridge Philos. Soc., to
appear. Preprint: https://arxiv.org/pdf/1501.00602v1.pdf, 2015.

[3] Stéphane Ballet and Julia Pieltant. On the Tensor Rank of Multiplication
in Any Extension of F2. J. Complex., 27(2):230–245, April 2011.

[4] Vincent Beck and Cédric Lecouvey. Additive combinatorics methods in
associative algebras. Preprint: https://arxiv.org/pdf/1504.02287v2.
pdf, 2015.

[5] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution.
PhD thesis, Technion Haifa, 1996.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, pages 1–10, New York, NY, USA, 1988. ACM.

[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
Theorems for Non-cryptographic Fault-tolerant Distributed Computa-
tion. In Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, STOC ’88, pages 1–10, New York, NY, USA, 1988. ACM.

[8] E. Berlekamp, R. J. McEliece, and H. van Tilborg. On the inherent
intractability of certain coding problems (Corresp.). IEEE Transactions
on Information Theory, 24(3):384–386, May 1978.

[9] Koichi Betsumiya, Stelios Georgiou, T. Aaron Gulliver, Masaaki Harada,
and Christos Koukouvinos. On self-dual codes over some prime fields.
Discrete Mathematics, 262(1):37 – 58, 2003.

123

https://www.math.leidenuniv.nl/scripties/MasterAbspoel.pdf
https://www.math.leidenuniv.nl/scripties/MasterAbspoel.pdf
https://arxiv.org/pdf/1501.00602v1.pdf
https://arxiv.org/pdf/1504.02287v2.pdf
https://arxiv.org/pdf/1504.02287v2.pdf

[10] Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier. Distance-
regular graphs. Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer, 1989.

[11] Ignacio Cascudo, Hao Chen, Ronald Cramer, and Chaoping Xing. Asymp-
totically Good Ideal Linear Secret Sharing with Strong Multiplication
over Any Fixed Finite Field. In Shai Halevi, editor, Advances in Cryptol-
ogy - CRYPTO 2009: 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, pages 466–
486. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[12] Ignacio Cascudo, Ronald Cramer, Diego Mirandola, Carles Padró, and
Chaoping Xing. On secret sharing with nonlinear product reconstruction.
SIAM Journal on Discrete Mathematics, 29(2):1114–1131, 2015.

[13] Ignacio Cascudo, Ronald Cramer, Diego Mirandola, and Gilles Zémor.
Squares of Random Linear Codes. IEEE Transactions on Information
Theory, 61(3):1159–1173, March 2015.

[14] Ignacio Cascudo, Ronald Cramer, Chaopin Xing, and An Yang. Asymp-
totic Bound for Multiplication Complexity in the Extensions of Small Fi-
nite Fields. IEEE Transactions on Information Theory, 58(7):4930–4935,
July 2012.

[15] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. The Torsion-Limit
for Algebraic Function Fields and Its Application to Arithmetic Secret
Sharing. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO
2011: 31st Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2011. Proceedings, pages 685–705. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[16] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. The arithmetic
codex. In Information Theory Workshop (ITW), 2012 IEEE, pages 75–
79, Sept. 2012.

[17] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. Torsion Limits
and Riemann-Roch Systems for Function Fields and Applications. IEEE
Transactions on Information Theory, 60(7):3871–3888, July 2014.

[18] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty Uncondi-
tionally Secure Protocols. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC ’88, pages 11–19, New York,
NY, USA, 1988. ACM.

[19] Hao Chen and Ronald Cramer. Algebraic Geometric Secret Sharing
Schemes and Secure Multi-Party Computations over Small Fields. In
Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006: 26th

124

Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006. Proceedings, pages 521–536. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

[20] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and
Vinod Vaikuntanathan. Secure Computation from Random Error Cor-
recting Codes. In Moni Naor, editor, Advances in Cryptology - EURO-
CRYPT 2007: 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24,
2007. Proceedings, pages 291–310. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2007.

[21] D. V. Chudnovsky and G. V. Chudnovsky. Algebraic complexities and
algebraic curves over finite fields. Journal of Complexity, 4(4):285 – 316,
1988.

[22] Gérard Cohen, Iiro Honkala, Simon Litsyn, and Antoine Lobstein. Cover-
ing Codes. North-Holland Mathematical Library. Elsevier Science, 1997.

[23] Alain Couvreur, Philippe Gaborit, Valérie Gauthier-Umaña, Ayoub Ot-
mani, and Jean-Pierre Tillich. Distinguisher-based Attacks on Public-key
Cryptosystems Using Reed—Solomon Codes. Des. Codes Cryptography,
73(2):641–666, November 2014.

[24] Alain Couvreur, Philippe Gaborit, Valérie Gauthier-Umaña, Ayoub Ot-
mani, and Jean-Pierre Tillich. Distinguisher-based attacks on public-key
cryptosystems using Reed–Solomon codes. Designs, Codes and Cryptog-
raphy, 73(2):641–666, 2014.

[25] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. New Identities
Relating Wild Goppa Codes. Finite Fields Appl., 29:178–197, September
2014.

[26] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial
Time Attack on Wild McEliece over Quadratic Extensions. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EU-
ROCRYPT 2014: 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, pages 17–39. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014.

[27] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General Secure Multi-
party Computation from any Linear Secret-Sharing Scheme. In Bart Pre-
neel, editor, Advances in Cryptology — EUROCRYPT 2000: Interna-
tional Conference on the Theory and Application of Cryptographic Tech-
niques Bruges, Belgium, May 14–18, 2000 Proceedings, pages 316–334.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

125

[28] Ronald Cramer, Ivan B. Damg̊ard, and Jesper B. Nielsen. Secure Mul-
tiparty Computation and Secret Sharing. Cambridge University Press,
2015.

[29] Jean Alexandre Dieudonné. La géométrie des groupes classiques. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1971.

[30] Arne Dür. The automorphism groups of Reed-Solomon codes. Journal of
Combinatorial Theory, Series A, 44(1):69 – 82, 1987.

[31] Iwan M. Duursma and Ralf Kötter. Error-Locating Pairs for Cyclic Codes.
IEEE Transactions on Information Theory, 40(4):1108–1121, 1994.

[32] Roger H. Dye. On the Arf invariant. Journal of Algebra, 53(1):36 – 39,
1978.

[33] Yoshimi Egawa. Association schemes of quadratic forms. Journal of
Combinatorial Theory, Series A, 38(1):1 – 14, 1985.

[34] Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic
Perret, and Jean-Pierre Tillich. A Distinguisher for High-Rate McEliece
Cryptosystems. IEEE Transactions on Information Theory, 59(10):6830–
6844, Oct 2013.

[35] Matthew Franklin and Moti Yung. Communication Complexity of Secure
Computation (Extended Abstract). In Proceedings of the Twenty-fourth
Annual ACM Symposium on Theory of Computing, STOC ’92, pages 699–
710, New York, NY, USA, 1992. ACM.

[36] Xiang-Dong Hou, Ka Hin Leung, and Qing Xiang. A Generalization of
an Addition Theorem of Kneser. Journal of Number Theory, 97(1):1 – 9,
2002.

[37] W. Cary Huffman and Vera Pless. Fundamentals of Error-Correcting
Codes. Cambridge University Press, 2010.

[38] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and Jürg Wullschleger. Constant-Rate Oblivious Transfer
from Noisy Channels. In Phillip Rogaway, editor, Advances in Cryp-
tology – CRYPTO 2011: 31st Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2011. Proceedings, pages 667–684. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[39] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from Secure Multiparty Computation. In Proceedings of the
Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC
’07, pages 21–30, New York, NY, USA, 2007. ACM.

126

[40] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
Knowledge Proofs from Secure Multiparty Computation. SIAM Journal
on Computing, 39(3):1121–1152, 2009.

[41] Johannes H. B. Kemperman. On small sumsets in an abelian group. Acta
Mathematica, 103(1):63–88, 1960.

[42] Martin Kneser. Abschätzung der asymptotischen Dichte von Summen-
mengen. Mathematische Zeitschrift, 58:459–484, 1953.

[43] Ralf Kötter. A Unified Description of an Error Locating Procedure for
Linear Codes. In Proceedings of the International Workshop on Alge-
braic and Combinatorial Coding Theory, pages 113–117, Voneshta Voda,
Bulgaria, 1992.

[44] Tsit-Yuen Lam. Introduction to Quadratic Forms over Fields. Number 67
in Graduate Studies in Mathematics. American Mathematical Soc., 2005.

[45] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics.
Springer New York, 2005.

[46] A. Lempel, G. Seroussi, and S. Winograd. On the complexity of multi-
plication in finite fields. Theoretical Computer Science, 22(3):285 – 296,
1983.

[47] Rudolf Lidl and Harald Niederreiter. Finite Fields. Number 20, pt. 1 in
EBL-Schweitzer. Cambridge University Press, 1997.

[48] Florence Jessie MacWilliams and Neil James Alexander Sloane. The
Theory of Error-correcting Codes. North-Holland mathematical library.
North-Holland Publishing Company, 1977.

[49] Irene Márquez-Corbella and Ruud Pellikaan. A Characterization of
MDS Codes That Have an Error Correcting Pair. Finite Fields Appl.,
40(C):224–245, July 2016.

[50] James L. Massey. Minimal Codewords and Secret Sharing. In Proceed-
ings of the 6th Joint Swedish-Russian Workshop on Information Theory,
pages 269–79, Institutionen för informationsteori, Tekniska högsk. Lund,
Sweden, 1993.

[51] James L. Massey. Some Applications of Coding Theory in Cryptography.
In Codes and Ciphers: Cryptography and Coding IV, pages 33–47, 1995.

[52] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding
Theory. DSN Progress Report, 42–44:114–116, 1978.

127

[53] Diego Mirandola and Gilles Zémor. Critical Pairs for the Product Single-
ton Bound. IEEE Transactions on Information Theory, 61(9):4928–4937,
Sept. 2015.

[54] Melvyn B. Nathanson. Additive Number Theory: Inverse Problems and
the Geometry of Sumsets. Graduate Texts in Mathematics. Springer New
York, 1996.

[55] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding
theory. Problems of Control and Information theory, 15(2):159–166, 1986.

[56] Carles Padró. Lecture Notes in Secret Sharing. https://mat-web.upc.

edu/people/carles.padro/arc02v03.pdf, 2013.

[57] Ruud Pellikaan. On decoding linear codes by error locating pairs.
Preprint: http://www.win.tue.nl/~ruudp/paper/15-ecp-preprint.

pdf, 1988.

[58] Ruud Pellikaan. On decoding by error location and dependent sets of
error positions. Discrete Mathematics, 106:369 – 381, 1992.

[59] Ruud Pellikaan. On the Efficient Decoding of Algebraic-Geometric Codes.
In P. Camion, P. Charpin, and S. Harari, editors, Eurocode ’92: Inter-
national Symposium on Coding Theory and Applications, pages 231–253.
Springer Vienna, Vienna, 1993.

[60] Ruud Pellikaan. On the existence of error-correcting pairs. Journal of
Statistical Planning and Inference, 51(2):229–242, 1996.

[61] Hugues Randriambololona. Bilinear Complexity of Algebras and the
Chudnovsky-Chudnovsky Interpolation Method. J. Complex., 28(4):489–
517, August 2012.

[62] Hugues Randriambololona. An Upper Bound of Singleton Type for Com-
ponentwise Products of Linear Codes. IEEE Transactions on Information
Theory, 59(12):7936–7939, Dec 2013.

[63] Hugues Randriambololona. Asymptotically Good Binary Linear Codes
With Asymptotically Good Self-Intersection Spans. IEEE Transactions
on Information Theory, 59(5):3038–3045, May 2013.

[64] Hugues Randriambololona. Linear independence of rank 1 matrices and
the dimension of ∗-products of codes. In 2015 IEEE International Sym-
posium on Information Theory (ISIT), pages 196–200, June 2015.

[65] Hugues Randriambololona. On products and powers of linear codes under
componentwise multiplication. Contemporary Mathematics, Algorithmic
Arithmetic, Geometry, and Coding Theory, 637:3–77, 2015.

128

https://mat-web.upc.edu/people/carles.padro/arc02v03.pdf
https://mat-web.upc.edu/people/carles.padro/arc02v03.pdf
http://www.win.tue.nl/~ruudp/paper/15-ecp-preprint.pdf
http://www.win.tue.nl/~ruudp/paper/15-ecp-preprint.pdf

[66] Jean-Pierre Serre. A Course in Arithmetic. Graduate texts in mathemat-
ics. Springer, 1973.

[67] Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613,
November 1979.

[68] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems
based on generalized Reed-Solomon codes. Discrete Mathematics and
Applications, 2(4):439–444, 1992.

[69] Terence Tao and Van H. Vu. Additive Combinatorics. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 2006.

[70] J. H. van Lint and R. M. Wilson. On the minimum distance of cyclic
codes. IEEE Transactions on Information Theory, 32(1):23–40, 1986.

[71] Jacobus Hendricus van Lint. Introduction to Coding Theory. Graduate
Texts in Mathematics. Springer Berlin Heidelberg, 2013.

[72] A. G. Vosper. The Critical Pairs of Subsets of a Group of Prime Order.
Journal of the London Mathematical Society, s1-31(2):200–205, 1956.

[73] Christian Wieschebrink. Two NP-complete Problems in Coding Theory
with an Application in Code Based Cryptography. In 2006 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages 1733–1737, July
2006.

[74] S. Winograd. Some bilinear forms whose multiplicative complexity de-
pends on the field of constants. Mathematical systems theory, 10(1):169–
180, 1976.

129

130

Summary

The product CD of two codes C and D is defined to be the span of all elements
of the form xy, where x is in C, y is in D and the product is computed
componentwise. The square C2 of a code C is naturally defined as the product
of C with itself. These notions, throughout the last forty years, have appeared
in many different fields, such as cryptography, complexity theory, additive
combinatorics and cryptanalysis. We show three main results on such products
and discuss applications to cryptography. Our methods are typically algebraic-
combinatorial in nature, though sometimes probabilistic techniques will be
involved.

Our first purpose is to answer the following question: does the square of a
code “typically” fill the whole space? We give a positive answer, for codes of
dimension k and length roughly k2/2 or smaller. Moreover, the convergence
speed is exponential if the difference k(k + 1)/2 − n is at least linear in k.
The proof uses random coding and combinatorial arguments, together with
algebraic tools involving the precise computation of the number of quadratic
forms of a given rank, and the number of their zeros. As a consequence of this
work, it is impossible to rely on random codes in situations where properties
of the code square are required, as it will be the full space, hence trivial, with
high probability. This impacts for instance secret sharing: it is known that
linear, non-multiplicative secret sharing schemes with optimal privacy and
reconstruction parameters can be constructed using random codes; however,
due to our results, such schemes will most likely not be arithmetic.

Our second result characterizes Product-MDS pairs of linear codes, i.e. pairs of
codes C,D whose product under coordinatewise multiplication has maximum
possible minimum distance as a function of the code length and the dimensions
dimC,dimD. We prove in particular, for C = D, that if the square of the code
C has minimum distance at least 2, and (C,C) is a Product-MDS pair, then
either C is a generalized Reed-Solomon code, or C is a direct sum of self-dual
codes. The proof is based on new coding-theory analogues of classical theorems
of additive combinatorics, namely Kneser’s and Vosper’s Theorems. More

131

recently, these techniques have been used to prove that, among all t-strongly
multiplicative secret sharing schemes on n players, only Shamir’s scheme can
achieve the optimal t = (n− 1)/3.

Finally, we focus on a foundational question which is novel to the best of our
knowledge. Multiplicative linear secret sharing is a fundamental notion in the
area of secure multiparty computation and, since recently, in the area of two-
party cryptography as well. In a nutshell, this notion guarantees that “the
product of two secrets is obtained as a linear function of the vector consist-
ing of the coordinatewise product of two respective share-vectors”. Suppose
we abandon the linearity condition and instead require that this product is
obtained by some, not-necessarily-linear “product reconstruction function”.
Is the resulting notion equivalent to multiplicative linear secret sharing? We
show the (perhaps somewhat counter-intuitive) result that this relaxed notion
is strictly more general. Concretely, fix a finite field as the base field over which
linear secret sharing is considered. Then we show there exists an (exotic) linear
secret sharing scheme with an unbounded number of players n such that it has
t-privacy with t = Ω(n) and such that it does admit a product reconstruction
function, yet this function is necessarily nonlinear. In addition, we determine
the minimum number of players for which those exotic schemes exist. Our
proof is based on combinatorial arguments involving quadratic forms. It ex-
tends to similar separation results for important variations, such as strongly
multiplicative secret sharing.

132

Samenvatting

Het product CD van twee codes C en D is gedefiniëerd als het lineair opspansel
van alle elementen van de vorm xy, waar x een element van C is en y een ele-
ment van D, en het product componentbewijs wordt berekend. Het kwadraat
C2 van een code C is op natuurlijke wijze gedefinieerd als het product van
C met zichzelf. Deze begrippen zijn de laatste veertig jaar in verscheidene
vakgebieden verschenen, zoals in de cryptografie, complexiteitstheorie, addi-
tieve combinatoriek en cryptanalyse. We bewijzen drie hoofdresultaten over
deze producten en bespreken toepassingen op het gebied van de cryptografie.
Onze methoden zijn hoofdzakelijk algebräısch-combinatorisch, hoewel soms
gebruik wordt gemaakt van probabilistische technieken.

Ons eerste doel is om de volgende vraag te beantwoorden: vult het kwadraat
van een code “normaliter” de hele ruimte op? We geven een bevestigend antwo-
ord voor codes van dimensie k en lengte ruwweg k2/2 of kleiner. Bovendien
is de snelheid van convergentie exponentieel als het verschil k(k + 1)/2 − n
op zijn minst lineair is in k. Het bewijs gebruikt random codes en combina-
torische argumenten, samen met algebräısche tools die een precieze berekening
van het aantal kwadratische vormen van een gegeven rang, samen met hun
aantal nulpunten, erbij betrekken. Als gevolg van dit resultaat is het niet
mogelijk om random codes te gebruiken in situaties waar bepaalde eisen zijn
aan het kwadraat van de code, gezien dat dit met hoge waarschijnlijkheid de
hele ruimte zal zijn. Dit heeft gevolgen voor bijvoorbeeld secret sharing: het
is bekend dat lineaire, niet-multiplicatieve secret-sharingschema’s met opti-
male privacy- en reconstructieparameters geconstrueerd kunnen worden met
random codes; gezien onze resultaten echter, zullen deze schema’s hoogst-
waarschijnlijk niet aritmetisch zijn.

Ons tweede resultaat karakteriseert product-MDS-paren van lineaire codes, dat
wil zeggen paren van codes C,D wier product onder coördinaatsgewijze ver-
menigvuldiging een maximale minimumafstand heeft als functie van de lengte
van de code en de dimensies dimC,dimD. We bewijzen in het bijzonder voor
het geval C = D, dat als het kwadraat van de code C een minimumafstand

133

van op zijn minst 2 heeft, en (C,C) een product-MDS-paar is, dat C ofwel
een gegeneraliseerde Reed-Solomoncode is, ofwel C een directe som is van zelf-
duale codes. Het bewijs is gebaseerd op nieuwe coderingstheoretische analoga
van klassieke stellingen uit de additieve combinatoriek, te weten de stellin-
gen van Kneser en Vosper. Recentelijk zijn deze technieken gebruikt om aan
de tonen dat, onder alle t-sterk multiplicatieve secret-sharingschema’s met n
spelers, alleen Shamirs schema de optimale t = (n− 1)/3 kan bereiken.

Tenslotte richten we ons op een fundamentele vraag die naar ons beste weten
nieuw is. Multiplicatieve lineaire secret sharing is een fundamenteel begrip op
het gebied van secure multiparty computation, en sinds kort ook op het ge-
bied van twee-spelercryptografie. Kort gezegd geeft dit begrip een garantie dat
“het product van twee geheimen verkregen kan worden als een lineaire functie
van de vector die bestaat uit het coördinaatsgewijze product van twee respec-
tievelijke share-vectoren”. Neem nu aan dat we de conditie van lineariteit laten
varen en in plaats daarvan vereisen dat dit product verkregen kan worden door
een bepaalde, niet noodzakelijkerwijs lineaire, “productreconstructiefunctie”.
Is de resulterende notie equivalent met multiplicatieve lineaire secret shar-
ing? We laten het (wellicht contra-intüıtieve) resultaat zien dat deze versoe-
pelde notie een strikte veralgemenisering is. Concreet gezien, neem een eindig
lichaam als basislichaam waarover lineaire secret sharing wordt beschouwd.
We laten dan zien dat er een (exotisch) lineair secret-sharingschema over dit
basislichaam bestaat met een onbegrensd aantal spelers n zodat het t-privacy
heeft met t = Ω(n), en zodat het een productreconstructiefunctie toelaat,
waar deze functie noodzakelijkerwijs niet-lineair is. Daarbovenop bepalen we
het minimum aantal spelers waarvoor deze exotische schema’s bestaan. Ons
bewijs is gebaseerd op combinatorische argumenten die betrekking hebben op
kwadratische vormen. Het heeft uitbreidingen naar onderscheidingsresultaten
voor vergelijkbare versoepelde condities, zoals in het geval van sterk multipli-
catieve secret sharing.

134

Résumé

Le produit CD de deux codes C et D est défini comme l’espace vectoriel
engendré par tous les éléments de la forme xy, où x appartient à C, y appartient
à D et le produit est effectué coordonnée par coordonnée. Le carré C2 d’un
code C est naturellement défini comme le produit de C par lui-même. Au
cours des quarante dernières années, ces notions ont régulièrement fait des
apparitions dans différents domaines, comme la cryptographie, la théorie de la
complexité, la combinatoire additive et la cryptanalyse. Nous démontrons trois
principaux résultats sur les produits de codes et discutons de leurs applications
à la cryptographie. Nos méthodes combinent des considérations algébriques et
combinatoires, mais parfois des techniques probabilistiques seront également
impliquées.

Pour notre premier résultat, notre but principal est de répondre à la question
suivante : le carré d’un code “typique”, remplit-il l’espace tout entier ? Nous
donnons une réponse affirmative, pour des codes de dimension k et de longueur
qui ne dépasse pas à peu près k2/2. De plus, la vitesse de convergence vers 1 de
la probabilité de cet événement est exponentielle si la différence k(k+1)/2−n
est au moins linéaire en k. La preuve utilise du codage aléatoire et des argu-
ments combinatoires, avec des outils algébriques qui impliquent le calcul précis
du nombre de formes quadratiques de rang donné, et le nombre de leurs zéros.
Comme conséquence de ce travail, il résulte qu’il est impossible de compter sur
les codes aléatoires dans des situations où il est nécessaire d’exploiter des pro-
priétés du carré d’un code, car celui-ci sera l’espace entier - donc trivial - avec
grande probabilité. Ceci a un impact, par exemple, sur le partage de secret :
il est connu que les schémas de partage de secret linéaires non multiplicatifs
avec privacy et paramètres de reconstruction optimaux peuvent être construits
en utilisant des codes aléatoires ; cependant, nos résultats démontrent que ces
schémas seront très probablement non arithmétiques.

Notre deuxième résultat caractérise les paires de codes linéaires Produit-MDS,
c’est-à-dire les paires de codes C,D dont le produit coordonnée par coordonnée
a la distance minimale la plus grande possible, la longueur des codes et les

135

dimensions dimC,dimD étant fixées. En particulier, nous prouvons que pour
C = D, si le carré du code C a une distance minimale au moins 2 et (C,C) est
une paire Produit-MDS, alors soit C est un code de Reed-Solomon généralisé,
soit C est une somme directe de codes autoduaux. La preuve est basée sur des
nouveaux résultats de théorie des codes, analogues aux théorèmes classiques
de combinatoire additive, notamment ceux de Kneser et de Vosper. Plus
récemment, ces techniques ont été utilisées pour montrer que, parmi tous les
schémas t-fortement multiplicatifs de partage de secret entre n joueurs, seul le
schéma de Shamir peut atteindre le t = (n− 1)/3 optimal.

Enfin, nous nous concentrons sur une question qui à notre connaissance est
nouvelle. Le partage de secret linéaire multiplicatif est une notion fondamen-
tale dans le domaine du calcul sécurisé à plusieurs participants et, depuis peu,
dans le domaine de la cryptographie à deux participants aussi. En bref, cette
notion guarantit que “le produit de deux secrets est obtenu comme une fonc-
tion linéaire du vecteur qui consiste en le produit coordonnée par coordonnée
des deux vecteurs de partage respectifs. Supposons que nous renoncions à la
condition de linéarité afin de demander plutôt que ce produit soit obtenu par
une “fonction de reconstruction du produit” pas forcément linéaire. La notion
résultante, est-elle équivalente au partage de secret linéaire ? Nous démontrons
le résultat (peut-être quelque peu contre-intuitif) que cette notion relaxée est
strictement plus générale. Concrétement, fixons un corps fini comme corps de
base sur lequel le partage de secret est défini. Alors nous montrons qu’il existe
un schéma de partage de secret linéaire (exotique) avec un nombre illimité
de joueurs n, muni de t-privacy avec t = Ω(n) et qui admet une fonction de
reconstruction du produit: mais cette fonction est nécessairement non linéaire.
En outre, nous déterminons le nombre minimum de joueurs pour lesquels ces
schémas exotiques existent. Notre preuve est basée sur des arguments combi-
natoires qui impliquent les formes quadratiques. Elle s’étend à des résultats
de séparation pour des variations importantes, tels que le partage de secret
fortement multiplicatif.

136

Acknowledgments

In my experience as a Ph.D. candidate, I had the privilege of working with
two of the highest experts in my field of interest, namely Ronald Cramer and
Gilles Zémor. Ronald, your non-constant presence had the twofold effect of
teaching me that a scientist needs to be independent, but at the same time
can count on other scientists as sources of ideas: and you are an endless one.
Gilles, during my stay in Bordeaux we regularly spent infinite hours in your
office, staring at your whiteboard and working not as a supervisor with his
student, but as peers. This wonderful combination of different ways to play
the role of supervisor allowed me to make the best out of this experience, and
I am grateful for that. On top of that, I had the pleasure to share out-of-office
situations with both of you: this should be a mandatory part of your role in
my opinion, thank you for doing it spontaneously.

The paternity of two thirds of the content of this thesis is shared with Ignacio
Cascudo. Nacho, you were the first person who welcomed me when I arrived
at CWI and the best possible co-supervisor for the first year and a half of my
career. Thank you for all the mathematical discussions we had and for guiding
me through my first steps as a Ph.D. candidate.

This thesis would never have existed as a concrete book without the support
of my colleague and friend Gabriele Spini. Gabriele, thank you for teaching
me the existence and, through your example, the meaning of the word “de-
pendable”. And congratulations for your Ph.D..

The Cryptology group at CWI was the perfect setting for these four years
of hard work. I am grateful to all people who have been part of the group
throughout these years and who have shared with me their knowledge, or even
just a lunch. I thank also all CWI people who were present at any of my well-
deserved breaks: all people I shared a coffee with, all people I played football
or table-football with, all people I met at a Praethuys or at a gaming night.

Ringrazio le persone conosciute in questi anni e che, ciascuno a proprio modo,
mi hanno aiutato a continuare questo difficile percorso. Un pensiero spe-

137

ciale è dedicato ai miei amici Alberto, Giovanni, Giuseppe, Marcello, Nicola
e Samuele: la lontananza da casa è sempre stata per me un peso, il mio più
profondo ringraziamento per essere stati la mia seconda famiglia. Grazie a
Andrea, Emanuele, Fortunato, Luca, Marco, Rosanna e Tommaso, incontri
virtuali trasformatisi in amicizie reali.

Ho la fortuna di avere in Italia una famiglia, degli amici, e una città pronti
ad abbracciarmi a ogni mio ritorno e a salutarmi a ogni mia ripartenza. A
tutti voi, grazie per essere un motivo per tornare. A Maddalena, grazie per
esserci sempre stata per me. A Giacomino, grazie per credere in me anche più
di quanto non creda io stesso. Ad Anna, scusa per essermi perso i sei anni più
belli della tua vita: spero che un giorno tu possa capire quanto questa scelta
sia stata difficile ma allo stesso tempo importante, e magari trarne ispirazione.
A Matteo, semplicemente grazie: non c’è altro da aggiungere per chi è allo
stesso tempo un cugino, un fratello e un migliore amico.

Concludo ringraziando Madre e Padre per aver sopportato la mancanza del
loro unico figlio: posso solo dirvi che è stato difficile per me almeno quanto lo
è stato per voi, e che sono tornato.

138

Curriculum Vitae

Diego Mirandola was born on the 14th of November 1988 in Verona, Italy. He
grew up in the nearby town of Caldiero, and obtained his high school diploma
from the “Liceo Scientifico A. Messedaglia” in 2007.

He then started his Bachelor in Mathematics at the University of Padua, Italy
(Università degli Studi di Padova), obtaining the corresponding diploma in
2010. During these years, he was supported by a grant from INdAM, the
Italian National Institute of High Mathematics.

That same year he was accepted in the Algant-Master program, a double-
degree Erasmus Mundus project; he spent the first year (2010-2011) at the
University of Stellenbosch, South Africa, and the second year (2011-2012) at
the University of Bordeaux, France – then Université de Bordeaux 1. He wrote
his master thesis, with title “Schur products of linear codes: a study of param-
eters”, under the supervision of Professor Gilles Zémor from the University of
Bordeaux, obtaining his master degree in 2012.

In 2012 he was awarded an ALGANT-Doc joint Ph.D. fellowship to continue
his studies in Mathematics at Universiteit Leiden, the Netherlands, and Uni-
versité de Bordeaux, under the supervision of Prof. Dr. Ronald Cramer and
Prof. Dr. Gilles Zémor (Bordeaux), in cooperation with the Centrum Wiskunde
& Informatica (CWI) of Amsterdam, the Netherlands.

Publications

I. Ignacio Cascudo, Ronald Cramer, Diego Mirandola, Carles Padró, and
Chaoping Xing. On secret sharing with nonlinear product reconstruc-
tion. SIAM Journal on Discrete Mathematics, 29(2):1114–1131, 2015.

II. Ignacio Cascudo, Ronald Cramer, Diego Mirandola, and Gilles Zémor.
Squares of Random Linear Codes. IEEE Transactions on Information

139

Theory, 61(3):1159–1173, March 2015.

III. Diego Mirandola and Gilles Zémor. Critical Pairs for the Product Sin-
gleton Bound. IEEE Transactions on Information Theory, 61(9):4928–
4937, Sept. 2015.

140

	A Survey on Code Products
	Codes and Code Products
	Error Locating Pairs
	Secret Sharing and Secure Multiparty Computation
	Bilinear Multiplication Algorithms
	Additive Combinatorics
	Cryptanalysis of McEliece Cryptosystem
	Outline of the Thesis

	Preliminaries
	Overview
	Notation
	Bilinear Algebra
	Quadratic Forms
	Classification in charK=2
	Classification in charK=2
	Number of Zeros of a Quadratic Form
	Number of Quadratic Forms of Given Rank

	Coding Theory
	MDS Codes and Reed-Solomon Codes
	Code Products
	Error Correcting Pairs
	Code Products and Bilinear Maps

	Arithmetic Secret Sharing
	Composition of Secret Sharing Schemes
	Threshold Schemes and Shamir's Scheme
	Connection between Coding Theory and Secret Sharing
	From Secret Sharing to Multiparty Computation

	Squares of Random Linear Codes
	Overview
	Proof of Theorem 3.1.5
	Quadratic Forms
	Proof of Main Theorem 3.1.2
	Changing the Probabilistic Model

	Critical Pairs for the Product Singleton Bound
	Overview
	Kneser's Theorem
	Vosper's Theorem
	Consequences of Theorem 4.3.2

	Classification of PMDS pairs
	Concluding Comments

	On Secret Sharing with Non-linear Product Reconstruction
	Overview
	Separating Quadratic Forms
	Finding ``Exotic Schemes''
	Composition and Proof of the Main Result
	The Smallest Examples

	Bibliography
	Summary
	Samenvatting
	Résumé
	Acknowledgments
	Curriculum Vitae

