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ABSTRACT

Despite the enormous research efforts that have been put into the development of 
central nervous system (CNS) drugs, the success rate in this area is still disappointing. To 
increase the successful rate in the clinical trials, first the problem of predicting human 
CNS drug distribution should be solved.

As it is the unbound drug that equilibrates over membranes and is able to interact 
with targets, especially knowledge on unbound extracellular drug concentration-
time profiles in different CNS compartments is important. The only technique able to 
provide such information in vivo is microdialysis. Also, obtaining CNS drug distribution 
data from human subjects is highly limited and therefore we have to rely on preclinical 
approaches combined with physiologically based pharmacokinetic (PBPK) modeling, 
taking unbound drug CNS concentrations into account. The next step is then to link 
drug concentrations in local CNS to target interaction kinetics and CNS drug effects.

In this review, system properties and small molecule drug properties that together 
govern CNS drug distribution are summarized. Furthermore, the currently available 
approaches on prediction of CNS pharmacokinetics are discussed, including in vitro, in 
vivo, ex vivo and in silico approaches, with special focus on the powerful combination 
of in vivo microdialysis and PBPK modeling. Also, sources of variability on drug kinetics 
in the CNS are discussed. Finally, remaining gaps and challenges are highlighted and 
future directions are suggested.
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INTRODUCTION

There is a huge unmet medical need for central nervous system (CNS) disease therapies 
because of the growing of chronic and complex diseases associated with aging. However 
development of CNS drugs is one of the most challenging tasks for the pharmaceutical 
industry (1). Actually, drug development for CNS drugs has suffered a higher attrition 
rate compared to that of other therapeutic areas drugs; it has been reported that only 
around 8-9% of CNS drugs that entered phase 1 were approved to launch (2). And 
around 50% of the attrition of potential CNS drugs has resulted due to a lack of efficacy 
and safety issues in phase 2 (2,3). Knowledge of human CNS drug concentrations forms 
the basis for understanding exposure-response relationships therefore the lack of 
appropriate consideration of these target-site drug concentrations is one of the factors 
contributing to this high degree of attrition.

Obtaining the target-site concentrations of CNS drugs is not straightforward because 
plasma concentrations do not adequately reflect CNS exposure, primarily due to the 
presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barriers 
(BCSFB), and additional specific physiological characteristics of the CNS. Furthermore, 
significant variation in the rate and extent of mechanisms that govern target-site 
pharmacokinetics (PK), target engagement and signal transduction is known to exist, 
due to differences in system conditions such as species, gender, genetic background, 
age, diet, disease and drug treatment (4). Moreover, with regard to CNS drug action 
there is a lack of sufficiently established clinical biomarkers and proof-of-concept (5). 
Thus, it is clear that there is a need for more predictive approaches. These predictive 
approaches have to be interconnected to the system conditions and must be performed 
using adequate (including bound and unbound drug) concentrations. Also processes 
should preferably not be studied in isolation and then combined, but instead studied 
in conjunction with each other as this will provide insight about the interdependencies 
of these processes (4). Since measurement on CNS target-site concentration in the 
clinical setting is highly restricted, we have to develop an approach based on integrated 
preclinical data that is translatable to human.

Even though drug properties have been investigated well, information of CNS system 
properties (CNS physiology and biochemistry) is sparse and has a large variability. Drug 
PK in the CNS is determined by their interaction. System properties depend on the 
condition of the system, which means that we have to use approaches to distinguish 
between system and drug properties, as this would allow us to translate the model 
to other species and also other disease conditions, by using physiologically based 
pharmacokinetic (PBPK) modeling.
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Currently many more or less complex semi-PBPK models have been published for CNS 
drug distribution. At present, 3 preclinical translational models have been validated 
with human CNS concentration profiles (6–8). In these models, however, the parameters 
were estimated using in vivo data to describe CNS distribution of individual drug in 
animals. Ultimate goal of the PBPK modeling is to build a generic PBPK model in which 
the parameters are derived from in vitro and/or in silico data. To achieve this, in vivo data 
is needed to validate the generic PBPK model. Furthermore, an investigation is needed 
on the relationship between drug physicochemical properties and CNS distribution.

In this review, system properties and small molecule drug properties that together 
govern CNS drug distribution are summarized, followed by currently available 
approaches on prediction of drug PK in the CNS, including in vitro, in vivo, ex vivo 
and in silico approaches, with special focus on the powerful combination of in vivo 
microdialysis and PBPK modeling. Also, sources of variability on drug kinetics in the 
CNS are discussed. Finally, remaining gaps and challenges will be discussed and future 
directions will be provided.

INTERACTION BETWEEN CNS SYSTEM- AND DRUG PROPERTIES

Many CNS system properties and drug specific properties are known to influence drug 
kinetics in the brain, as shown in Figure 1. Here we focus on the relevant factors from 
each that contribute to the drug kinetics, and summarize their function.

CNS system properties

Physiological compartments, flows and pH
The CNS is a complex system composed of many physiological components and flows 
(Figure 2): Physiological compartments are the BBB, the BCSFB, brain extracellular fluid 
(brainECF), cerebral blood, brain parenchymal cells, and the cerebrospinal fluid (CSF) in the 
ventricles, the cisterna magna, and the subarachnoid space (4). There are pH differences 
among the compartments (9–15). Then there are the CNS fluid flows that include the 
cerebral blood flow, brainECF bulk flow, and CSF flow. All relevant physiological parameter 
values are summarized in Table I.
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Figure 1. System and drug properties which govern drug kinetics in brain. The figure is 
modified from de Lange (4).

Figure 2. Brain physiological components and flow. The figure is modified from de Lange (4).
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Active transporters
The localization of transporters, and their expression level are also important factors to 
determine drug distribution in the brain. Transporters are present at the BBB and at the 
BCSFB, also on the membrane of brain parenchyma. Active transporters on the BBB and 
BCSFB consist of facilitated transport and ATP-dependent transport. The solute carrier 
(SLC) family, such as organic anion-transporting polypeptide (OATP) and organic anion 
transporters (OATs) are categorized as a facilitated transport, while ABC transporters, 
such as P-glycoprotein (P-gp), multidrug resistance protein (MRPs) and breast cancer-
resistant protein (BCRP) are categorized as an ATP-dependent transport (16). Table II 
summarizes an overview of transporters with their localization, and their endogenous 
and exogenous substrates.

Metabolic enzymes
Presence and localization of enzymes in the brain are also important factors to determine 
drug kinetics in the brain. In the brain the following enzymes are found: oxidoreductases 
such as cytochrome P450 (CYPs) and monoamine oxidase (MAO), membrane-bound 
and soluble catechol-O-methyltransferase (COMT), and transferases such as uridine 
5-diphospho (UDP) -glucuronosyltransferases (UGTs) and phenol sulfotransferase (PST) 
(17). In Table III, an overview is provided of the different enzymes with their localization, 
and examples of their endogenous and exogenous substrates.
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Table I. Values of CNS system properties for rat and human
Parameter Human Refs Rat Refs

Vo
lu

m
es

BBB volume
8.25 mL
 (calculated using thickness 
endothelial cell of 550 nm)

(18) 5.02 µL (19)

BCSFB volume
107.25 mL
(calculated using thickness 14.3 
µm of endothelial cell)

(20) 37.5 µL (19)

Brain volume 1400 g (21) 1.8 g, 1880 µL (22,23)

BrainECF volume 240-280 mL (24,25) 290 µL (26)

BrainICF volume 960 mL (25) 1440 µL (25)

CSF volume 130-150 mL (27,28) 250 µL (22)

CSFLV volume 20-25 mL (27,29) 50 µL (30,31)

CSFTFV volume 20-25 mL (27,29) 50 µL (30,31)

CSFCM volume 7.5 mL (32,33) 17 µl (32,33)

CSFSAS volume 90-125 mL (27,29) 180 µL (34,35)

Fl
ow

s

cerebral blood flow 610-860 mL/min (36–38) 1.1-1.3 mL/min (39,40)

brainECF flow
0.15-0.2 mL/min (50% of CSF 
production)

(28)
0.00018–0.00054 
mL/min 

(41)

CSF flow 0.3–0.4 mL/min (28) 0.0022 mL/min (26,42)

Su
rf

ac
es

BBB SA 12-18 m2 (18) 155-263 cm2 (43,44)

BCSFB SA
6-9 m2

(assumed 50% of BBB SA)
(18)

25-75 cm2

(assumed 50% of 
BBB SA)

(43,45)

brain ECF/ICF SA 228 m2 Calculated a) 3000 cm2 (19)

brain ICF/lysosome 
SA

12 m2 Calculated a) 162 cm2 Calculated a)

pH

Plasma 7.4 (12) 7.4 (9)

BrainECF NA 7.3 (10)

BrainICF 7.0 (13) 7.0 (10)

lysosome 4.5-5.0 (14) 5.0 (10)

CSF 7.3 (12) 7.3 (11)
a) Calculation was performed based on an assumption that the brain cells and lysosome are spherical.
brainECF; a brain extracellular fluid compartment, brainICF; a brain intracellular fluid compartment, CSFLV; a compartment of cerebrospinal fluid in 
lateral ventricle, CSFTFV; a compartment of cerebrospinal fluid in the third and fourth ventricle, CSFCM; a compartment of cerebrospinal fluid in the 
cisterna magna, CSFSAS; a compartment of cerebrospinal fluid in the subarachnoid space, SA; surface area
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Small molecule drug properties and interaction with the CNS system
A combination of CNS system properties and drug properties determines drug PK 
in the CNS, including the CNS target-site. Important physicochemical properties for 
determination of drug PK in the CNS are summarized in Figure 1.

Physicochemical properties of a drug, such as lipophilicity, size, charge, hydrogen binding 
potential and polar surface area (PSA), are important determinants for drug distribution 
in the CNS. Many studies have investigated the influence of individual physicochemical 
properties on the BBB penetration in isolation. However, as physicochemical properties 
are highly inter-correlated, it is more appropriate to consider these properties in 
combination.

First of all it should be noted that it is the unbound and neutral form of drug molecules 
that is able to diffuse across barriers like the BBB and BCSFB, depending on the 
concentration gradient of the unbound and neutral form of the drug on either side of a 
membrane. Lipophilicity relates to the BBB permeability, as transcellular diffusion rate 
(92,93). Furthermore, as a rule of thumb, higher lipophilicity increases drug binding to 
brain tissue. Molecular size is an important factor for paracellular drug diffusion rate, 
and also has an impact on transcellular diffusion rate at the BBB (92,94,95). The degree 
of ionization depends on the pKa of the drug and actual pH in a body compartment. 
Thus, the BBB permeability rate is influenced by lipophilicity, size and pKa of a drug. 
(92,96). Using quantitative structure-activity relationship (QSAR) modeling, it has been 
shown that the descriptors for the prediction of BBB penetration, are different for 
different charge classes (97) . As there are pH differences between plasma, brainECF and 
CSF (Figure 2), charge is an important factor for CNS drug disposition (98).

The hydrogen bonding potential reflects the necessary energy for a molecule to move 
out of the aqueous phase into the lipid phase of a membrane. Recent studies have 
shown that the relationship between chemical structure and Kp,uu,brain (the ratio 
of the unbound concentration in the brain over that in plasma at equilibrium which 
measures the extent of CNS distribution) was dominated by hydrogen bonding (99).

PSA is generally defined as the sum of the van der Waals surface areas of oxygen and 
nitrogen atoms. Therefore, PSA of a compound can be related to its hydrogen bonding 
potential. Some studies have shown that PSA is highly correlated with the permeability 
coefficient of membranes (93,100,101). A recent study for Kp,uu,brain has been shown 
that PSA is one of the important factors to predict the Kp,uu,brain for each compound 
(102).
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BBB and BCSFB transport
Protein binding. It is generally accepted that unbound drug in plasma is able to cross 
the BBB and BCSFB. Two major proteins in plasma are albumin and α1-acid glycoprotein 
(103). For passive diffusion, the free concentration gradient between plasma and brain 
determines the rate of transport. The extent of BBB and BCSFB transport are investigated 
using Kp,uu,brain: If there is only diffusion, Kp,uu,brain is 1. If there is active transport 
processes, then Kp,uu,brain is larger than 1 (active in) or Kp,uu,brain is smaller than 1 
(active out).

Ionization of the drug in plasma and in the brain. There are similar pH differences among 
the CNS physiological compartments in human and in rat (Table I). Because of the 
pH differences, the ratio of neutral form of a compound among the compartments 
is different. It is generally accepted that neutral form can pass the barriers, therefore 
ionization that is determined by the pKa of a compounds and pH in the physiological 
compartments will have an impact on drug disposition in the brain.

Cerebral blood flow- flow versus permeability limited transport rate. Lipophilic compounds 
usually have a large permeability coefficient, therefore a permeability surface area 
product (PA), which is determined by the permeability coefficient and surface area of 
tissue, becomes large. If the PA is larger than the physiological cerebral blood flow, then 
the physiological cerebral blood flow determines the transport rate of the compound.

Modes of BBB transport- different modes. The combination of transport modes at the BBB, 
BSCFB and membrane of brain parenchyma determines the rate and extent of drug 
exchange at the BBB, BCSFB and membrane of brain parenchyma (104,105). Therefore, 
the operative transport mechanism(s) may differ for each drug. Each transport mode is 
summarized in Table IV.

Active transporter function. Active transporters mediate influx and efflux of drug transport. 
The magnitude of interaction of active transport is drug and species dependent (106). 
The functions of individual transporters are summarized in Table II.
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Table IV. Blood-brain barrier main modes of transport and their characteristics

BBB/BCSFB 
transport mode

Characteristics 
Concentration-

dependent transport 
kinetics?

Drug concentration-
gradient dependent?

Consumes 
energy?

Paracellular
Passive; 
Between tight junctions of 
the BCEC and the CPEC

No Yes No

Transcellular
Passive;
Across the membranes of the 
BCEC and the CPEC

No Yes No

Facilitated Passive; Yes Yes No

Active influx Active; Yes No Yes

Active efflux Active; Yes No Yes

Transcytosis

Receptor (specific, low 
capacity) or absorptive 
mediated (non-specific, high 
capacity) 

No No Yes

BCEC; brain capillary endothelial cells, CPEC; choroid plexus epithelial cells

Brain distribution and elimination
Extra-intracellular distribution. Once having crossed the BBB, the drug is distributed by 
brainECF bulk flow into the CSF compartments. At the same time, the drug in brainECF is 
transported to brain parenchymal cell intracellular fluid (brainICF). It should be noted 
that also on the brain parenchyma cell membranes active transport may occur (105).

Tissue binding. Tissue binding can occur as being specific at the target or non-specific to 
tissue components.

Lysosomal trapping. In the brain parenchyma cells, there is a physiological pH gradient 
between the intracellular compartment (cytoplasm) and the lysosome compartment 
(Figure 2). Especially basic compounds are known to be trapped in the lysosomes (10).

Drug dispersion within CSF. Some studies have shown that intrathecally administered 
drugs distribute faster than what can be accounted only by molecular diffusion 
(107,108). Thus, it is thought that molecular diffusion makes only a small contribution 
to the total drug dispersion within CSF. This leads to the need to take into account also 
the convection due to oscillatory CSF flow to adequately explain this dispersion (109). 
Recently the drug dispersion has been considered to be enhanced by the CSF pulsatility 
(heart rate and CSF stroke volume), and it leads to high inter- and intra-patient variability 
in drug distribution in the brain (109,110).
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Elimination from the brain. Apart from transport across the BBB and BCSFB as discussed 
earlier, drug may leave the brain via the BBB, but also via CSF reflux into the blood 
stream at the level of the arachnoid villi.

Metabolism. In the brain, several metabolic enzymes are present. Enzyme interaction 
with drugs is important information not only on the drug PK profile but also on the drug 
pharmacological effect in the brain since it may create active metabolites. Presence and 
localization of several enzymes have been reported in the brain (Table III), although 
their activity is reported to be relatively small compared to the liver (17,86).

CURRENT APPROACHES TO INVESTIGATE CNS DRUG 
DISTRIBUTION

Since obtaining a human drug target-site concentration in the brain is not feasible 
in most of the clinical studies, quantitative prediction of target-site concentration is 
important. To achieve this, we need information from in vitro, ex vivo, in vivo, and in 
silico approaches. Here we summarize the current approaches to obtain the necessary 
information to predict human drug target-site concentration.

In silico approaches
For decades, QSAR studies have been performed using Kp,brain (total concentration 
ratio of the brain to plasma) or log BB, either of which may not reflect the relevant 
drug exposure in the brain to assess the drug efficacy since drug efficacy is influenced 
by binding of compounds to plasma proteins and brain tissue. Eventually log BB was 
replaced by the PA, as an estimate of the net BBB influx clearance (111). However, it 
has been argued that the PA cannot predict the unbound drug concentration in 
the CNS by itself. Recently the most relevant parameter Kp,uu,brain has been used, 
with QSAR being conducted to model this parameter (99,102,112,113). Other than 
Kp,uu,brain, physiological meaningful parameter, Vu,brain (the volume of distribution 
of the unbound drug in the brain) or Kp,uu,cell (unbound concentration ration between 
brainECF and brainICF) are also reported using molecular descriptors (102).
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In vitro approaches
In vitro approaches to investigate the BBB permeability have been conducted using BBB 
models (114). BBB models can be classified into non-cell based surrogate models, such 
as parallel artificial membrane permeability assay (PAMPA), and cell-based models such 
as primary cultures cells, immortalized brain endothelial cells or human-derived stem 
cells (115). Although primary cultured cells from human tissue have been reported, 
acquiring human brain tissue is difficult as it can only be obtained postmortem and 
should be fresh enough (116). Therefore alternative models based on immortalized 
brain endothelial cells or human-derived stem cells are often used (117,118). Even 
though these models have been developed for measuring the BBB permeability, an 
ideal cell culture model of the BBB is yet to be developed. Furthermore, reliable in vitro-
in vivo correlation data is needed to enable the use of in vitro results for the prediction of 
in vivo permeability. However, in vitro results have not been consistent in their ability to 
predict in vivo permeability, probably because of different in vitro models, and different 
sets of compounds used in the in vitro studies (119).

Currently, the biopharmaceutics classification system (BCS) and biopharmaceutics 
drug distribution classification system (BDDCS) are used for CNS drugs. The BDDCS 
is a modification of BCS that utilizes drug metabolism to predict drug disposition 
and potential drug-drug interactions in the brain (120). However, this classification 
approach needs to be further investigated because of inconsistencies. For example, it 
was proposed that 98% of BDDCS class 1 drugs would be able to get into the brain 
even though the drugs were P-gp substrates based on in vitro studies (121), while it 
has also been reported that the in vitro efflux ratio reflects the in vivo brain penetration 
regardless of the class in BDDCS (122).

Ex vivo approaches
As mentioned before, it is the unbound drug molecules that are able to pass membranes 
and to interact with the target (22). Thus, measuring unbound drug concentrations is 
very important. Vu,brain or Fu,brain (the unbound fraction in the brain) are used to 
investigate unbound fraction of drugs in the brain. Fu,brain can be derived from brain 
homogenate (123), and Vu,brain can be obtained from the brain slice technique (124). 
The brain slice method is more physiologically relevant because the cell-cell interactions, 
pH gradients and active transport systems are all conserved (34).
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In vivo approaches
Microdialysis can be considered as a key technique to examine time-dependent 
information regarding unbound drug concentrations. With microdialysis both the 
rate and extent of drug transport and distribution processes can be determined 
(125,126). Thus, it can be used to obtain Kp,uu,brain in conjunction with the rate of 
transport processes. Moreover, this can be done at multiple locations and this feature 
has shown that even for a drug like acetaminophen that is not subjected to any active 
transport, substantial differences in pharmacokinetic profiles exist in different brain 
compartments (6). While there is some limit to use this water-based technique for the 
highly lipophilic drugs, lots of microdialysis experiments have contributed to a boost 
in the understanding on drug exchange across the BBB (125,127,128). Especially the 
use of microdialysis at multiple brain locations have provided insight into the relative 
contribution of CNS distribution and elimination processes to the local (differences in) 
PK of a compound (6,7,129).

Positron emission tomography (PET) is a valuable non-invasive in vivo monitoring 
technique that can be used to visualize drug CNS distribution in living animals and 
human. However, the PET technique cannot distinguish parent compounds from 
their metabolites, or bound and unbound drug. Furthermore it may also encounter 
difficulties in obtaining useful data when a very high non-specific binding (NSB) to 
non-target proteins and phospholipid membranes occurs (130). Recently a novel 
Lipid Membrane Binding Assay (LIMBA) was established as a fast and reliable tool for 
identifying compounds with unfavorably high NSB in the brain tissue (55).

Combinatory mapping approach
Combinatory mapping is an approach that combines three compound-specific 
parameters obtained from in vitro, ex vivo and in vivo data: Kp,brain, Vu,brain and 
Fu,plasma, for calculation of Kp,uu,brain (132). This approach can be used not only to 
obtain Kp,uu,brain but also to understand unbound drug disposition in the cell cytosol, 
and the lysosomes. Recently, this approach has been extended to predict drug exposure 
in different brain regions such as frontal cortex, striatum, hippocampus, brainstem, 
cerebellum and hypothalamus, in which also the impact of transporters and receptors 
in each region was taken into account (133). Although this approach is useful to support 
the selection of potential CNS drugs in drug discovery, it has two limitations. The first 
limitation is that it can only predict the parameters at steady state. The second limitation 
is that the approach cannot be translated to predict the parameters, for instance, inter-
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species or inter-disease conditions because the processes to obtain the parameters in 
this approach are not connected with system properties which will be changed in these 
conditions.

CONDITION DEPENDENCY AND PBPK MODELING

Condition dependency
Drug distribution into and within the brain depends on the interaction between system 
and drug properties. Drug properties remain the same, whatever the species and 
conditions are in which the drug has been administered. This indicates that interspecies 
variability in drug distribution into and within the brain is the result of differences in 
physiological and biochemical parameters. Factors which cause variation in drug PK 
include: genetic background, species differences, gender, age, diet, disease states, 
drug treatment (4). Factors which cause variation in drug pharmacodynamics include: 
seasonal effect (134), age (135), gender (136), species (137). Effects of these conditions 
on CNS system properties are summarized in Table V.

(Semi-) PBPK modeling
PBPK models need to be informed on system and on drug properties to model the 
interaction and predict the drug PK in different compartments. Especially as obtaining PK 
data from the human brain is highly restricted, working in the PBPK model framework is 
valuable as it can be translated to predict the target-site concentrations in inter-species 
and inter-disease situations (4). Some translational research has been reported by using 
an animal (semi-) PBPK model for CNS drugs but it is relatively sparse and ranges from 
simple to more advanced (Table VI).

For remoxipride, Stevens et al. have shown that drug concentration in brainECF which 
was measured with microdialysis, represented the target-site concentrations, because 
these concentrations could be directly linked to the effect of remoxipride on plasma 
prolactin levels in an advanced mechanism-based model (138). After scaling to human, 
this indeed could also be concluded for human CNS remoxipride effects on human 
plasma prolactin levels. This underscores the importance of having information on PK 
at the CNS target region.
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Table V. Sources of variability in CNS pharmacokinetics
Parameter Location Source of variability Effect Refs

Protein binding
aging lower (139)

pathophysiological 
condition

higher with disease induced evaluation of 
plasma protein

(140,141)

Cerebral blood 
flow

aging lower (142)

pathophysiological 
condition

lower in the multi-infarct group (143)

diurnal variation change (144)

BBB

membrane 
lipid

aging change (145)

diet change (146)

pathophysiological 
condition

change in several disease conditions, such as 
Alzheimer’s disease and schizophrenia

(147–149)

paracellular 
diffusion

stress increase with hypoxic stress (150)

pathophysiological 
condition

increase (due to loose of tight junctions) see below

tight junction
pathophysiological 
condition

disruption of the tight junctions by ischaemic 
brain stroke

(151)

opening of the tight junctions in AD patients (152)

opening of tight junctions in multiple 
sclerosis patients

(153)

facilitated 
transport

diet decreased in hypoglycemia condition (154)

pathophysiological 
condition

upregulation in the brain tumor (155)

vesicle based 
transport

pathophysiological 
condition

increase in experimental autoimmune 
encephalomyelitis 

(156)

active 
transporters

pathophysiological 
condition

see below see below

BrainECF

pathophysiological 
condition

volume is enlarged in the patient with 
vasogenic type of brain

(157)

blockade of brain ECF flow in AD patient (42)

Brain 
Parenchyma

aging shrunk (158)

BCSFB
aging thinner (159)

pathophysiological 
condition

decrease in Alzheimer patients (159)

CSF

aging
decrease in CSF production, increase in CSF 
outflow resistance

(160)

pathophysiological 
condition

decrease in CSF production, CSF turnover and 
increase in CSF volume in AD patients

(161)

increased resistance to CSF absorption and 
CSF pressure in the patients with normal‐
pressure hydrocephalus 

(162)

Brain 
metabolic 
enzymes

aging increase in the CYP2D6 enzyme level (163)

gender higher MAO activity in women (82)

pathophysiological 
condition

higher MAOB activity in AD patients (164)

difference of COMT expression in 
schizophrenia patients 

(77)

gene
deficiency of CYP2D6 enzyme (74)

change of COMT function (165,166)

smoking and alcoholism change of CYP2B6 and CYP2E1 levels (72,167)
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Table V. (continued)
Parameter Location Source of variability Effect Refs

Transporter

aging
decrease in P-gp activity (168)

decrease in glucose transporter activity (169)

pathophysiological 
condition

upregulation of P-gp and MRPs in 
epileptogenic brain

(170)

upregulation of P-gp and MRP1 in the brain 
tumor

(171)

Alteration of the levels of glutamate 
transporter in the various brain disorders, 
including cerebral ischemia, amyotrophic 
lateral sclerosis , AD , AIDs, traumatic brain 
injury, schizophrenia, and epilepsy (seizure)

(172,173)

diurnal variation change in P-gp activity (174)
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REMAINING GAPS AND CHALLENGES ON PBPK MODELING, 
TOWARDS A GENERIC PBPK MODEL

 The ultimate aim is to have a CNS PBPK model that can predict human brain compartment 
concentrations on the basis of the compounds physicochemical properties, which can 
be determined by in vitro measurements, or in silico prediction. Thus, in the overview 
in Table VI it can be seen that we still have a number of gaps in the currently available 
(semi-) PBPK models of CNS drugs. Most of the models require in vivo data on the 
compound(s), and most of the predictions have not been validated on human data. 
Thus, it can be seen that there is a need for further development of a generic, fully PBPK 
model for CNS drug distribution (185–187).

To have a PBPK model that would predict CNS drug distribution based the 
physicochemical properties of an individual drug, for different species and in different 
conditions, a number of challenges remain:

• Having a PBPK model structure with all relevant compartment/parameters, as 
physiological parameter values reported are sparse and variable (see Table I).

• Having drug physicochemical parameter values determined from in vitro, and/or in 
silico, or even some in vivo measurements, which may not necessarily be correct. 
For example, in vitro or in vivo data may depend on the experimental setting, while 
in silico information really depends on the data availability, used to obtain the 
equation.

• Obtaining human data sets for validating the model predictive performance is 
typically very difficult.

• Having information on pathophysiological changes in human CNS system 
properties in (the many) disease conditions. For example, BBB characteristics may 
change in Alzheimer’s disease, multiple sclerosis, and pharmacoresistant epilepsies 
(188).

DISCUSSION AND CONCLUSION

PK of drugs in the CNS is governed by a combination of CNS system physiology and 
drug properties. This means that variability in CNS system physiological parameters 
(condition dependency) may lead to variability of CNS drug PK. Therefore, it is important 
to explicitly distinguish between system physiology and drug properties, by either 
changing conditions and investigating the PK of one drug, or investigating the PK of 
different drugs in the same condition.
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The currently available predictive approaches are based on total drug plasma and total 
tissue concentrations at equilibrium (SS), while more recent approaches include, at 
best, unbound plasma SS concentrations. However, as body processes are based on the 
interaction with the unbound drug and are time-dependent, it is crucial to measure 
the unbound drug in each compartment as a function of time (Mastermind Research 
Approach (MRA)) (4), for which microdialysis has been proven the key technique. Using 
the MRA, microdialysis will provide lots of valuable data that pave the way towards a 
generic CNS PBPK model.

One microdialysis experiment in a single freely-moving animal can provide a lot of data 
points, obtained under the same experimental condition of the animal, and thereby 
revealing the interrelationships of processes. With this microdialysis has already 
contributed to reduction and refinement in the use of animals. Furthermore, all this 
information can further be “condensed” into a generic PBPK model, and will thereby 
help in the reduction in the future use of animals (189).

In order to be able to predict CNS drug effects in human, next steps would be the 
development of a full PBPK CNS drug distribution model, and combining it with target 
binding kinetics, receptor occupancy and signal transduction (190,191), and including 
system changes by human disease condition.
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