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Asymmetric synthesis of aliphatic a-amino acids

2.1 Introduction

Amino acids are characterized by an amine (-NH,) and a carboxylic acid (-COOH) functionality.
In nature, 21 proteinogenic a-amino acids, which are also termed natural amino acids, exist
and that are the building blocks of proteins. Non-proteinogenic a-amino acids are much more
diverse in nature and besides this numerous synthetic a-amino acids have been prepared in
the past decades. These are often used as substitutes for natural a-amino acids in the design
of bioactive compounds. For instance, various aliphatic unnatural a-amino acids were
incorporated in peptide-based proteasome inhibitors, which amongst others led to the
discovery of potent and selective inhibitors of the chymotryptic activity (B5c) of human
constitutive proteasomes. These and related studies require access to a wide array of aliphatic
a-amino acids, and for this purpose numerous synthesis strategies have been explored in the
past decades. In this chapter general synthesis strategies towards aliphatic a-amino acids are
reviewed, with a focus on identifying conceptually distinct strategies, rather than on providing

a complete overview of all research efforts in this field.



Chapter 2

2.2 Synthetic methods
2.2.1 The Strecker reaction

The Strecker reaction is named after the German chemist Adolph Strecker who first reported
this reaction in 1850." The reaction starts with the condensation of an amine and an aldehyde
to form a Schiff base. After the addition of HCN and subsequent hydrolysis, an amino acid is
obtained, in which the side chain (R,) functionality is derived from the nature of the aldehyde
applied in the reaction (Scheme 1). The asymmetric Strecker reaction was first explored by

Michael Worsley to prepare unnatural aliphatic a-amino acids.’

Scheme 1. General scheme of the Strecker reaction.

R R
H Re Ne R HCN )\2 OH
R4—NHj3 + \E _— R1/ X2 - R1\H CN > HoN
1 2 3 4 5

In the Worsley procedure, chiral amines such as R(+) and S(-)a-methylbenzylamine (Figure 1, 6
and 7) were used to prepare chiral Schiff bases by condensation with achiral aldehydes. These
Schiff bases were next reacted with HCN to obtain asymmetric Strecker products for further
elaboration towards the target amino acids in high enantiomeric excess (>97%) (Scheme 2A).
This methodology has been used to prepare a variety of amino acids also by other research
groups.3 For instance, 2,3,4,6-O-pivaloyl-B-D-galactopyranosyl imine (19) was reacted with
trimethylsilyl cyanide with SnCl, as the Lewis acid in THF to give compound 20 (Scheme ZB).4
Using the same Schiff base (19), but in combination with ZnCl, as the Lewis acid and CHCl; as
solvent, the S-configured Strecker product was obtained predominantly (80% de). Schiff base
21, which was prepared from R-a-phenylglycinol (9), was applied in the preparation of
compound 22 and 23 (Scheme 2C)

OPiv
/L /[ _OH  Ph, [ L
Ph” ONH,  ph” ONH, VO Ph/T\NH
6 10
CO,Me )C\ozlvle COMe /[OMe MeO™ .
Ind Q
\/'\NHZ Ph” “NH, Ph\/'\NH2 Ph” “NH, N
12 13 14 15 16

Figure 1. The structures of some chiral amines that have been applied in asymmetric Strecker reactions.®
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OPiv
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P HCN ; SnCIy/THE o k
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R =nC3H7; nC4Hg 86% yield; 86% de
C)
Ph. N % Me3SiCN rk
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H
HO™ 54 23
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Scheme 2. Application of chiral amines in diastereoselective Strecker reactions.

Chiral sulfinimimes were first developed by Davis and co-workers’ for diastereoselective
Strecker reactions using Et,AICN (Scheme 3A) as the cyanide source. Two chiral auxiliaries
were explored for this reaction, which both gave low to medium de values. Later on, the same
research group8 found that when the imine (R = tBu, Ar = p-Tolyl), Et,AICN and 2-propanol
were used in a 1:1.5:1 (eq.) ratio, the de value increased to 80% and the product was obtained
in 91% yield. This improved method was applied9 in the preparation of B-fluoro a-amino acids.
The combination of TMSCN and CsF was also applied in this process, also with high

diastereoselectivity (Scheme 3B).10

A) - ~ CN B) - CN
O/’-s{ ___ EBAICN oy J o s/ TMSCN/CsF oy J
Ar N~ R — A \H "R /©/ \NAR n-hexane /@/ \H /
24 25 26 27
R=nPr R=nPr, 92% yield; 82% de
Ar = p-Tolyl 38% de; 67% yield R = cHex, 99% yield; >98% de
2-Methoxyl-1-naphthyl 65% de; 73% yield R = nHex, 95% yield; >98% de

Scheme 3. Application of chiral sulfinimines in diatereoselective Strecker reactions.

The preparation of both enantiomers of adamantylalanine and carboranylalanine by
asymmetric Strecker reaction on Ellmans tert-butyl sulfinimines was reported recently.11 In
preparing the adamantylalanine precursors, ethylisopropoxyaluminium cyanide was used as
cyanide source’ and the Strecker reaction proceeded in high enantioselectivity (92%
enantiomeric excess, >99% enantiomeric excess after crystallization). This method was also
used in the preparation of cis and trans bicyclohexylalanine.13 In the asymmetric synthesis of
carboranylalanine TMSCN was used as cyanide source in presence of CsF and the reaction

proceeded in up to 85% de.

Various chiral catalysts have been developed for asymmetric Strecker reactions (Scheme 4).
Several chiral imine-containing catalysts were found to catalyze this type of reaction.™

14
Jacobsen and co-workers

found that compound 29 is an effective catalyst for asymmetric
Strecker reactions (Scheme 4A). The amino nitriles (30) were obtained with R configuration

and in good enantiomeric excess. Catalyst 34 was used in one-pot asymmetric Strecker
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Chapter 2

reaction, also in good ee (Scheme AB).15 Catalyst 37 is different from the other catalysts in this
series as it does not have an imine moiety. Various substrates and reaction conditions were
explored for this catalyst (Scheme 4C).*®

1) HCN, toluene
A _R' catalyst 29 HN R' \l/ S
N| 2) TFAA )\ thH S —
A . ML
28 30 29 HO OMe

R=1tBu, R'=allyl: 70% yield, 85% ee tBU
R = cHex, R' = allyl: 77% yield, 83% ee

B) @)
0 (0] 34 (10 mol%) )j\ Bn | \l/ s
- )J\ + BnNH, DCM/MS 5A N N P .
R™H CN T T e \g/\H N
31 32 33 35 34 H
R = nBu, 75% vyield, 88% ee
R =tBu, 46% yield, 94% ee tBu
R =tBuCH,, 97% yield, 92% ee

0] OPiv

C) CF;
Ph TMSCN, MeOH Ph
P 37 (5 mol%)

o a8 0

N toluene (0.2 M) Ph N -

P& PN NN CFs
IO e S

R™ OH R "CN
36 38
R Yield(%) ee(%) R Yield(%) ee(%)
tBu 99 93 cHex 99 74
Et,MeC 99 96 1-cyclohexenyl 99 95
(1-methyl)cyclohexyl 99 95 (E)-1-methyl-pent-1-enyl 98 91
1-adamantyl 99 93 (E)-Hexenyl 97 73

Scheme 4. Application of chiral catalysts in enantioselective Strecker reactions.

The cyclic dipeptide 39 was reported to catalyze asymmetric Strecker processes (Scheme 5A).

However, the enantiomeric excess appeared to be very low (17%).17

Catalyst 42 was
developed as phase transfer catalyst (PTC) for the asymmetric Strecker-type reaction using
aqueous KCN as cyanide source (Scheme 5B). Bulkyl groups (R = adamantyl) required longer
reaction times and all product were obtained in high enantiomeric excess.'® Later on, they
used the same PTC system in the Strecker synthesis with compound 44 as starting material
which could generate the reactive N-sulfonyl imines in situ, and the products were prepared in
high enantiomeric excess (Scheme 5C)."
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HCN

catalyst 39 N HNy,NH:
Ph._
Ph\/N§)< MeOH \A)< T\I/H

A)

38
80% yleld
17% ee
B) 42 (1 mol%)
N-SO2Mes oM ag. KON HN”
)I\ toluene/H,0O /\
R H R
41
R time(h) Yield (%) ee (%)
tBu 3 94 94
cOct 2 88 97
cHex 2 89 95 Ar = p-CF3-CgHy
Adamantyl 8 98 97 42
C) catalyst 42 (1 mol%) PG
HN/F’G 2M ag. KCN HN™ R PG time(h) Yield(%) ee(%)
toluene/H,O R Py
SO4(p-Tol) R™ CN cHex Mts 1.5 99 97
44 45 cOct Mts 2 99 98

nHep Mtr 1 96 89

Scheme 5. Application of cyclic chiral catalysts in diatereoselective Strecker reactions.

Metal-containing catalysts were also developed for asymmetric Strecker reactions. Ti(OiPr),
was used in combination with various ligands to catalyze this reaction.”’ For example, this
metal in combination with ligand 47 could catalyze the enantioselective addition of cyanide to
imine 46 with high yield and enantiomeric excess (Scheme 6A).”® Chiral zirconium catalyst 51
was also reported to catalyze this reaction with tribuyltin cyanlde 50 (Scheme 6B). 200 The
one-pot strategy was also developed for this asymmetric reaction.” The aluminium-containing
bifunctional catalyst system was also explored for this asymmetric Strecker reactions.”
Shibasaki and co-workers* developed catalyst 54 for this type of asymmetric reaction. The
products were obtained in modest enantiomeric excess (Scheme 6C). the
magnesium-tartramide complex generated from compound 58 and MeMgBr, could catalyze
the asymmetric cyanide addition to compound 56 using compound 57 as cyanide source and
the products were obtained with medium to high enantiomeric excess (Scheme 6D).23

19



Chapter 2

A Ti(OiPr); (10 mol%) o
ligand 47 (10 mol%) H
ji‘ TMSCN, iPrOH GN j\h Br Sy N\)LN/WOMe
}/%N pp _folere }/LN Ph \Q\A LA

H OH ~otBu
4 Br 47
97% yield, 85% ee
® Br; Br Br
0 LB 0 O, 00, 00
toluene otB L
N + BuzSnCN benzene HN O\Z\r/lb 2/O
PR B8 0% 0—Zr—o
ot o LYY )
49 50 52 B o .

72% yield, 74% ee 51 L= N-Methylimidazole

C)
O Method A O x OO Br
or
' Method B ' O
N O EE— HN Q c-aZ
\ o
R)\H R)\CN « OO
53 Br
) )

55

A: X =P(O)Ph
Method A: catalyst 54A (9 mol%), TMSCN (2 eq.), PhOH (20 mol% B X = Ci—IF’hz 2

Method B: catalyst 54B (9 mol%), TMSCN (20 mol%), HCN (1.2 eq.)

54
R Method time(h) Yield(%) ee(%)
trans-CH3(CH,);CH=CH A 24 66 86
n-Hex A 24 80 80
n-Hex B 36 75 81
Et A 4 84 70
tBu A 44 97 78
tBu B 36 98 77
& QA0
N N
o) =0 R R t(h) Yield%) ee(%)
O\Q/R‘ OH HO  OH R'..OH  cHex Bn 6 97 73
e 58 N cHex Ph,CH 21 87 90
Ry N MemgBiDBUTHE L By B0 22 90 &7
tBu Ph,CH 21 88 93
56 57 59

Scheme 6. Application of metal-containing chiral catalysts in diatereoselective Strecker reactions.

2.2.2 Catalytic hydrogenation of aromatic amino acids

Catalytic hydrogenation of aromatic amino acids is the most direct and concise method to
prepare their aliphatic counterparts (Figure 2). Various catalyst and catalytic systems have
been developed to carry out this type of reaction. H-Cha-OH (60) was prepared through the
hydrogenation of H-Phe-OH in AcOH and H,0 with PtO, as the catalyst and the reaction was
carried out at 50 psi H,.* This catalytic system was also used by several other groups25 to
prepare H-Cha-OH and its analogs, and these studies investigated the influence of different
solvent systems.”® Rhodium on carbon (5% Rh/C) can also catalyze the hydrogenation of
H-Phg-OH to H-Chg-OH (61) in aqueous HCl and under 3.6 bar H, pressure.27 Various catalytic
conditions for the reduction of H-Phe-OH to H-Cha-OH with Rh/C were investigated.28 It
appeared that catalyst loading (5% or 10%) did not affect the reaction. The reaction also went
on smoothly in various solvent systems. However, no conversion was observed when pure
acetic acid was used as solvent and also when the reaction was carried out in a big batch.

Prakash and co-worker®® found that hydrogenation of H-Phe-OH required acidic conditions
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Asymmetric synthesis of aliphatic a-amino acids

(hydrochloride, sulfuric or phosphoric acids) when using Rh/C. When replacing Rh/C with
rhodium on alumina (Rh/Al), no acid was needed to obtain high yield. In reducing H-Phg-OH to
H-Chg-H, basic conditions proved superior to acidic conditions. Furthermore, other catalysts,
such as 5% ruthenium on active carbon,30 Raney nickel,31 (CAAC-1)Rh(COD)CI complex32 and
5% Rh/Al (rhodium on activated aIuminum)13’33 can also be used to catalyze this type of

reactions, yielding various aliphatic amino acids.

\
0]
OH OH H OH
BocHN i BocHN jr BocHN/g‘?/ BocHN OH BocHN OH BocHN
o] o] 0 o) o) o
63 64 65

60 61 62
Boc-Cha-OH Boc-Chg-OH  Boc-Cha(4-OMe)-OH  Boc-1-DecAla-OH  Boc-2-DecAla-OH Boc-BiCha-OH

Figure 2. Representative structures of amino acids, prepared through catalytic hydrogenation of their aromatic

counterparts.

2.2.3 Catalytic asymmetric hydrogenation of dedydroamino acid

The preparation of enantiomerically pure a-amino acids from asymmetric hydrogenation of
the corresponding dehydroamino acid has been reported for a long time and various
rhodium-containing catalyst systems were developed. Various phosphine containing ligands
have been used to form complexes with rhodium.** Rhodium-chiral phosphine (68, 69 and 70)
complexes can catalyze the homogeneous hydrogenation of dehydroamino acid with aliphatic
side chains (Scheme 7A).>% b

Rhodium-chiral phosphine (73) complex was used to catalyze the hydrogenation of cyclic

Different substrates were explored in this reaction.*

dehydroamino acids (71) with different ring sizes (Scheme 7B). Small ring size (n=1,2) gave low

enantiomeric excess but large ring size (up to n=12) gives good enantioselectivities and high
34c

yields.

R - R’

AR coocH ? = / \O
. 3 Hy/RhL )L o 0 o) p—/
o ey O

H /\ R
H  NHCOCH, 0 v P (Ph)P P(Ph), p_ R
66 67 Ph  Ph J
R
(R,R)-Dipamp (R)-Prophos DuPHOS
68 69 70
A: R' = ethyl
B: R' = n-propyl
B) Ha/RuL L= Et Et
jL Ry n Q 2 n yield(%) ee(%) n_yield(%) ee(%)
N”COMe —————= N7 Co,Me P P 1 84 04 5 97 945
i / 295 265 9 9% 913
CO,Ph 4
2 CO;:“ B E 3 9 948 128  86.0
& (R,R)-Et-DUPHOS 4 96  97.0
73

Scheme 7. Catalytic hydrogenation of dehydroamino acids catalyzed by rhodium-chiral phosphine complex.
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Ferrocene-containing ligands were also developed for this reaction (Figure 3A).35 The
rhodium-(R,R)-(S,S)-TRAP(74) complex was used to catalyze the asymmetric hydrogenation of
compound 78 to 79 (Figure 3B). The products were obtained with different configurations.35a
The trans-chelating chiral ligand 77-Rh complex was also applied to asymmetric catalytic
hydrogenation of the cyclic dehydroamino acids (Figure 3C). Aliphatic six- and
seven-membered ring substrates with different protecting group were subjected to these

. s 35b
reaction conditions.

(COD)2Rh*OTf
ﬁ@/

PhPp  Prg @ N~
@) @Fb; PPh, PPz
R.R)(S.5)-TRAP ) ) - ) (5,9)-(R.R)-TRAP
(R.R)-(S,S) BisPhosphine  phosphine-aminophosphine R=Ph(PhTRAP)
74 75 76 77
B) [Rh(COD),]BF, Rz cmpd R; R, ee(%) config.
Rzi COOCH3;  ligand 74/H2 o t-Bu Me 86 (2S, 3R)
N ~ 2 Me H 92 R
R; NHCOCH; H o 3 i-Bu H 88 R
78 4  iPr H 57 R
o]
) [Rh(nbd),]PFg(L77) Entry n Ry Ry ee(%) Entry n Ry Ry ee(%)
A 1,2-dichioroethane, 2 Boc O(iBu) 90 5 2 Bz O(-Bu) 73
N R2 50°C, 24h 2 2 Boc OMe 85 6 3 Boc O(-Bu) 87
&0 3 2 Boc NH(i-Bu) 93 7 3 Boc NH(i-Bu) 83
1 4 2 Cbz O(-Bu) 92 8 3 Cbz O(-Bu) 11
80

Figure 3. Catalytic hydrogenation of didehydroamino acids catalyzed by rhodium-ferrocene complex.

Riley and co-workers®® reported 1,2-bis(diphenylphosphino)-cyclohexylethane (83) as a new
chiral ligand in catalyst [Rh((R)-cycphos)-(norbornadiene)]PF, (Figure 4A). This catalyst was
used in the preparation of L-2-amino-5-methylhexanoic acid precursor 84 through asymmetric
hydrogenation. The chiral mixed rhodium-phosphorus/sulfur (85 and 86) system could also
enantioselectively catalyze the hydrogenation of dehydroamino acids (Figure 4B). By using
different ligands, the products with R and S configurations can be obtained with high
enantiomeric excess.”’ (S)-pipecolic acid methyl ester 89 was prepared through the
asymmetric catalytic hydrogenation of the cyclic dehydroamino acid 87 using the Noyori’s
ruthenium catalyst, RuCl,-(R)-BINAP (Figure 4C).*
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A) 0 [Rh((R)-cycphos)- o} R Solvent Presure Optical Yield(%)
OR (norbornadiene)]PF,4 OR
— o] Ha o] H THF 1 atm 90
H J@ H Jg) H MeOH 1atm 94
h h H FEtOAc 1atm 95
82 84 H EtOAc 50 atm 94
H DCM 1atm 91
H DCM 50atm 92
PPh, Me MeOH 1 atm 86
R-cycphos PPhz Me EtOAc 1atm 84
83 Me DCM 1atm 90
B) [Rh(cod)(L)]SbFg ()
L= o L= o, @ RuCl, / (R)-BINAP Q
thP\)i thPV'O N" > CO,Me H, / MeOH N" CH,0,Me
—_—
. Ph,s T CO,Ph CO,Ph
,o-IVieyl t-Bu 86 87 88
78% ee, 82% yield
ee% (S) ee % (R)
PtO, / HCI
NHAc MeOH, H,
_— 97 98
CO,Me
NHAc Q
R
MCOZMe 94 94 N CH;0;Me
NHAc 2¢l
89
= -
CO,Me 95 95% yield

Figure 4. Rhodium-catalyzed hydrogenation of dehydroamino acids.

2.2.4 Alkylation of glycine

Cinchonidine and its derivatives are widely used in the preparation of non-natural amino acids
by asymmetric alkylation of glycine derivatives (Figure 5).39 Compound 100 could be
enantioselectively alkylated when using catalyst 90 (Scheme 8A). The obtained product can be
further transformed into the corresponding amino acids.*” Organoboranes (103), together
with catalyst 94 were also used for the synthesis of S and R amino acids (Scheme 8B). A variety

of aliphatic substituents including cyclic side chains of different ring size could be used in this
strategy.agb
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O-PEGsg0-OMe

Cinchonidine, CdOH

94

X

=
X
N

N

Figure 5. Structures of cinchonidine—containing catalysts.
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A)

Ph (6] catalyst Ph o - -
FN\)J\ C,Hsl or n-C6H13 FN\)J\ RX Catatyst Time(h) Yield(%) ee(%)
PH OtBu BH <" SOtBu  C2Hs| 90 10 50 92
R n-CgH13l 90 5 64 99
100 101 n-CeH13l 91 12 81 >99
C2H;| 92 12 83 97
n-CgH13l 92 12 80  >99
1) CdOH 94, KiCl
THF
B) o 2) nBuLi

—_—

o)
Ph,C=N < ( _
gl\OtBu 3)R-B 103 PhyC N\;)J\OtBu
Ac R

102 104

: o oS
_ =N =
Ph,C N%orsu PRCN- oy PG N Ao
@ \@ CnH2n+1

Yield ee
n=3  84% 54%(S) Yield ee Yeld ee
n=4  57% 55%(S) n=4  74% 65%(S) n=4 80% 80%(S)
n=5 78% 95%(S) n=5  89% 62%(S) n=6 74% 85%(S)
80% 92%(R) n=6 69% 62%(S) 85% 82%(R)
n=6  84% 92%(S) 63% 59%(R) n=8 92% 75%(S)
n=7  81% 89%(S)
n=8  79% 90%(S)

Scheme 8. Examples of alkylation of glycine derivatives using cinchonidine-containing catalysts.

Diastereoselective alkylation of pseudoephedrine glycinamide 105 was reported to give
compound 106, which was refluxed in H,0 to give the S configured amino acids (Scheme 9A).*
In a related strategy, the enantioselective synthesis of R configured amino acids was
accomplished starting from the hippuric acid amide 107 (Scheme 98B).** Chiral Schiff base 109
was explored for diastereoselective alkylation reactions (Scheme 9C).42 Asymmetric alkylation
of a Ni-containing glycine complex was also explored to prepare unnatural amino acids.”

a

Wang and co-workers® reported the asymmetric alkylation of a Ni-containing glycine
complex 111 (Scheme 9D). Various trifluoromethyl containing S and R a-amino acids were

obtained in high diastereomeric excess.

Several chiral quaternary ammonium cations were investigated on their properties to transfer
chirality in the alkylation of imines.** Compound 114 was alkylated with catalyst 115 and 116
was obtained with high enantiomeric excess (Scheme 10A). Lou and co-workers® reported the
preparation of B-branched a-amino acids through asymmetric alkylation of glycine imine 117
with compound 118. After acidic hydrolysis and treatment with CbzCl, various B-branched Chz
protected a-amino acids were obtained (Scheme 10B). The alkylation of cyclized glycine

derivatives was also repor‘ced,46 as was the alkylation of cyclo-(L-Val-Gly) 120 (Scheme 10C).46a
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A B) 0 0 8
CH; O 1) LDA, LiCl CHs O Ph NQ{N/% LHMDS/THE Ph\g/ fk"‘/%o
o, 2R ™ T 5 Rx, Lo ;
CHy H CHy R

105 CH,CH,:  82%yield, 97% ee 106 107 108

% i ’ CigHial:  88% yield; 98.5% de
¢-C3HsCHy: 82% yield, 98% ee cyclopentyl-I: 37% yield: 95% de

C)
)coeru 1) LDA, THF )COﬂBu
X 2) CH3(CHp)n-I X A
N 2) CHACHINT < N CHs
OH OH
109 110
n=11:98% de; n = 13: 96% de; n = 15: 98% de
D)
N CF3(CHy)nl 3M HCI CF3
N|\ \\ NaOH/DMF CF3 MeOH (fin S-proline, S product R-proline, R product
N HN OH n=1, yield 81%; de 96% n = 1, yield 82%; de 94%
2 n =2, yield 84%; de 99% n = 2, yield 83%; de 96%

n = 3, yield 90%; de 97% n = 3, yield 91%; de 99%

111 112 113

Scheme 9. Alkylation of glycine derivatives.

A) 0 catalyst o]
— R-1/CsOH =N
PhZC—N\)kNHme =~ Ph,C ﬁNHme
114 116 115
R Catalyst(mol%) Solvent t(h) Yield(%) ee(%) _ . Ar
nBu ) toluene 3 94 97 Ar = 3,5-bis(3,5-di-tert-butylphenyl)phenyl
cHecCH, 2 toluene 3 82 98
cPent 2 mesitylene 3 91 96
cHex 10 mesitylene 5 71 95
c-Hept 10 mesitylene 3 80 89
B) Q.0 1) KHMDS/toluene 0O R
1) 0> p-Br-CgH, 2)1N HCl/2-Me-THF !
H 1/10% DMAP/TEA
phc=N._J RSN 3)CzCII10% EtO)TkRz
OEt R; Ry HCbz
117 118

1
o o o 0 0 o}
o o Eto% to Etou\(kk -
HCbz HCbz HCbz HCbz HCbz HCbz

80% yield, 50% de  52% yield, 0% de 67% yield, 50% de 65% yield, 90% de 81% yield, 88% de  76% yield, 50% de

) iPr., o BuLi

i j/ 2)CGH13CHZBr //L I

121

CHyCgH13

Scheme 10. Alkylation of glycine derivatives through other strategies.
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2.2.5 Asymmetric amination
Diazene 123 can be used for the diastereoselective amination of chiral ester 122 and after
removal of the protecting groups, the corresponding S-amino acids were obtained (Scheme

11A).47 The amine could also be introduced via the azide, which in turn can be obtained from

48a

chiral halide or hydroxyl precursors.48 Oppolzer and co-workers™ reported on the azide

substitution of chiral a-haloesters (126ab, Scheme 11B) and the corresponding amino acids
were obtained via the transesterification of the azidoesters (127ab) and successive

hydrogenolysis.

Direct electrophilic azide transfer was also explored for this reaction.” In this way, compound
129 was obtained in high yield and enantiomeric excess from compound 128. Compound 129

49 50
® Walsh and co-workers

was further transformed to S-tert-butylglycine (Scheme 11C).
prepared various allylic alcohols 130 in an enantioselective fashion and these alcohols were
transformed to the allylic amide through Overman’s [3,4]-sigmatropic rearrangement of
imidates with high enantiomeric excess (Scheme 11D). The corresponding S amino acids were

obtained after oxidative cleavage of the allylic amines.

1)LiN(i-Pr),, Me;SiCl B)
2)TiCly, Ti(OiPr),
% COztBu R COztBu \g) \g/J\H_, \Q)\NS
N\ _CO,tBu
f poch w0
(Hexc),NO,

tBuOQC/ Ya 50,N(cHex), 125a 126a 127a
124

SOZN(cHex)Z
Yield: Et, 84%; nPr, 72%; nBu, 85%; n-CgH43, 69%; 1-adam-CHy, 65%. E)HYb\g)\X Y \g)\Ns
1)KHMDS

NG v TR
2)Trisyl-N3 125b 126b 127b
NJ( 3)ACOH %NK
AR L

0 0
A 2 3 4
PhH,C PhH,C : : .
128 120 R Y X Yield(%) ee(%) Yield(%) ee(%) Yield(%) ee(%)
5 5
1) cat. KH S0% yield; >98% ee Et acl 75 >09 8 - 2 9
D) ClaCCN o )k nPr a o 75 97 93 o7 87 94
OH 2) toluene L RUCI3.xH,0 CI3C nBu a Br 77 9 88 96 72 o4
BN reflux ClsC™ "NH NalO, nCeHis a CI 82 >04 89 100 78 98
Ph R = ph/\)\R 1-adam-CH, b CI 54 - 88 - 73 9%
130 131
Entry R yield(%) ee(%) Entry R yield(%) ee(%)
1 nBu 64 9599 4 tBu 90  96-99
2 oPr 93 89 5 ada 83  97-99
3 cHexyl 96 9599 6 CI(CHp),66 93

Scheme 11. Asymmetric amination reactions.

Dynamic kinetic resolution of racemic a-bromo acid S 133 with various amines has been
shown to give one major stereoisomer (Scheme 12A).51 Hopkins and co-workers™ prepared
R-Cbz-Nle-OH 138 though the asymmetric amination of 135 with compound 136 and after
oxidative cleavage of 137, product 138 was obtained (Scheme 12B). The o-carboranylalanine

and m-carboranylalanine were prepared via asymmetric amination of compound 139 and the
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obtained product 141 could be further transferred to the corresponding amino acids (Scheme
120).>

A) PhCH,NH,
Br H [CH3(CHo)slNI TEA
J\go N0 TEA/THF J\g O CgHsSe @/\ NHz _NCS H
NP
T T BCHN T
133 137
1)0;
70% yield; 75% de 2)CrO3,H,S04
acetone/H,0

1) NaN(TMS), )/
2) THF
) | NHOH .

c
R N % 140 R N " oH
V\g/ozé o v\g/ozé BzCHN/\g/

139 141 138
51( 58% yield; 84% ee
~

o-Car 84% yield p-Car 83% yield

Scheme 12. Asymmetric amination reactions through other strategies.

The conjugate addition of 4-phenyl-2-oxazolidinone potassium salt of 142 to nitroalkenes 143
yields the corresponding nitro 2-amino-nitroalkanes 144 (Scheme 13A). After oxidation and
Birch reduction, the desired amino acids were obtained.” Compound 148 catalyzes the
asymmetric transamination of the a-ketone acids 146 with amine 147 and various aliphatic
amino acids were prepared (Scheme 13B).55 The direct asymmetric amination of butyryl
chloride 151 with compound 152 was carried out with Lewis acid Sc(OTf); and BQd 153
(Scheme 13C).56

1) tBuOK, 18-crown-6 le)
THE oL Spn @
4\?\ 2) g NOz 143 od\lph NaNo, N on i NH2 148 (10 moi%) NH, )Ok
o B THF, H,0 ; +
3) aq. NH,CI R Ph/i,\co HITD MY 0
JaaNHC R)\/No2 DMSO )\g/ CO.H E R >COMH PR Ph
145 146 147 Ar 149 150
1 2 3 4 Oy o ANLloTEs
R EZ yield(%) de(%) yield(%) yield(%) de(%) HO. o
nPr >091 58  >08 48 9% 96 Q
cHex 83117 78  >98 88 - - 148
Bu >991 8 >98 89 88 95 Ar=3,5-Ph,CqHs

cl
o Ox_Ph-p-NO, 1) 10 mol% 153 o Q\)ﬁ'z NH; O\/“fz
[e] Y 10 mol% Sc(OTf)z COH COH COoH
c N DIPEA,THF it 7 2
c . 2) MeOH HO o 51% yield, 76% ee 1% yield, 78% ee 67% yield, 66% ee
OUN
4 COH A co COH

7 yield 86%, ee > 99% 37% yield, 67% ee  29% yield, 60% ee 52% yield, 78% ee
no Sc(OT¥): yield 62%, ee > 99%

152 pO2N-Ph 15

N~ ] 153
x BQd
OCOPh

Scheme 13. Asymmetric amination reactions through other strategies.
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2.2.6 Other methods

Ugi multicomponent reactions were also explored for the preparation of aliphatic unnatural
amino acids.”” Guanti and co-workers reported the application of the bicyclic f-amino acid
scaffold 155 as a chiral auxiliary in the Ugi multicomponent reaction to prepare the S amino

acid (Scheme 14A).S7CI

Asymmetric addition of the organolithium reagent 160 which contains
the precursor of the carboxyl group, to the mesityl sulfonylimine 161 gave the precursor 162.
After ozonolysis, the protected S-tert-butylalanine 163 was obtained (Scheme 14B).58

aminocarbene 164 could be diastereoselectively converted to lactone 165 in good
enantiomeric excess and acceptable yield. The lactone can be further transformed to the
corresponding R amino acid 163 (Scheme 14C).59 The protected serine could also be modified
to non-natural amino acids. Various aliphatic amino acids were prepared via reaction of
lithium diorganocuprate with serine (n=1) and homoserine (n=2) derivatives (Scheme 14D).60
Cyclohexen-1-yl triflate (168) was coupled with organozinc reagent (169) with (Ph3P),PdCl, as
the catalyst (Scheme 14E). The obtained product (170) can be further reduced to prepare

Boc-Cha-0Bn.*

1) toluene, reflux

0
Bn i
7 I 2) HCI, dioxane
Lb \)L CN MeOH Lb)l 3) Pd black / formic acid NHBn
—0 O )—NHBn _MeOH PN

155 158 159
70% yield 75% yield; >95%% ee
MEMO
MEMO o
302 Ar Br ArO,SHN ~
NHSO,Ar
162 163
52% yield
Ar=2,4,6-(CH3)3CgH, 96% ee
MEM= CH,OCH,CH,0CHj
c) Ph  Ph A9 D) X R
lan '/'.Hko (f R CuLi (
M Et,0
HN OH . HN\)"'ph YHN OMe EO N OMe
(OC)5Cr)W &
164 165 166 167 n=12

X=Cl, Br, |, OTs

55% yield; 86% de Y = Bz, Cbz, Boc

E) R = Me, Et, nPr, tBu, nBu
Znl
(PhsP),PdCl,
OBn + @\ OB
B°°HN/EQ/ 0S0,CF5 BocHN n
168 169 170
36% yield

Scheme 14. The application of Ugi multicomponent reactions in the preparation of amino acids.

29



Chapter 2

Various imine derivatives of glycine were asymmetrically added to various reagents and after
the removal of the protecting groups, the corresponding amino acids were obtained.® Naito

62ad
and co-workers™*®

reported highly stereocontrolled radical addition to Oppolzer’s camphor
sultam derivative of glyoxylic oxime ether 171 (Scheme 15A). The addition of n-butyllithium to
imine 173 gave compounds 174 with a carboxyl precursor and after the changing the
protecting group and oxidative cleavage, Cbz protected S amino acids 175 were obtained
(Scheme 1SB).62bh

oximes 176 gave compound 178 and the corresponding amino acids 179 were obtained after
62i

The asymmetric addition of organolithium reagents to S-O-(1-phenylbutyl)

oxidative cleavage (Scheme 15C).

0
)K/Noan RI, BusSnH )K/NOHBn

6 Et;B ﬁ\o R
172

Entry RI Lewis acid Solvent Yield(%) de(%)
1 Etl none Et,0 54 92
2 Etl BF3yOEt, DCM 80 90
3 tBul none Et,0 25 >96
4 tBul BF3yOEt, DCM 83 >96
5 iBul none Et,O 39 94
6 iBul BF3;OEt, DCM 83 94
7 c-Hexyl-l none Et,O 74 92
8 c-Hexyl-l BF3yOEt, DCM 86 92

1) Zn,AcOH
ultrasound
7 RMet T ebacl R
: BF;OEt, Ph N e ~-OH
Ph\NN‘o/\Ph 3OEt \/\/ “Sph  3)RuCls, 10, CszN/\g/
R
173 174 175
R =n-Bu 174, yield 92% / de 93%; 175, yield 47%
R =i-Bu 174, yield 93% / de 92%; 175, yield 31%
C)

/(\ i) Zn,AcOH
R3Met ultrasound Ri~_-NHPg Ry~_-NHPg
0 ; o >

R1Y 0" >Ph _BFyEt,0t _ iiN-protected 177 _ Ry s Ry

R3 COOR,4

Ra

176 178 179

Entry R, R, R3 R, Pg yield(%) ee or de(% cfg.)

2a tBu H Ph - Ac 9 >98 (R)

3a tBu H - H Ac 63 -

2b n-Pr H CH=CH, - Cbz 77 84*.(R)

3b n-Pr  H - Me Cbz 59 -

2c c-Hex H CH=CH, - Cbz 38 92* (S)

3c c-Hex H - Me Cbz 70 -

*Note: de values are measured after the 1st step reaction.

Scheme 15. Asymmetric addition to imine derivatives.
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Stereoselective conjugate addition to dehydroalanine derivatives (Michael acceptors) was
developed as an alternative strategy to prepare amino acids.”® Bechwith and co-workers®®
reported the diastereoselective radical addition of alkyl iodides or alkylmercuric halide to
compound 180 (Scheme 16A). Pedrosa et al. reported the diastereoselective nucleophilic ring
opening of compound 182 with dialkylzinc reagents. After Pd/C catalyzed bis-debenzylation, R
amino acids 184 were obtained with good to high enantiomeric excess, although the yields
were not high (Scheme 16B).64 S-cycloalkylglycine (188) and S-N-heterocyclic amino acids (190)
were prepared from 185 with S configuration. The alkylated intermediates (186) were
converted to two different cyclic products when using different bases (Scheme 16C). If the

starting material 185 is in R configuration, the corresponding R products were obtained.”

A) 00 0.0
tBur-< 1 tBur-{ :C
N . N R
o= o=

180 181
Method A:
R-l,azobisiosbutyronitrile R Method Yield (%) de (%)
tributylstannane cycolhexyl A 52% 82%
Method B: cycolhexyl B 89%  68%
alkylmercuric halide 1-adamantyl A 66%  90%
sodium cyanoborohydride 1-adamantyl B >95% 84%
Method C-: M C  63%  84%
R-l, tributyltin chloride (10% mol) “'© o o
sodium cyanoborohydride tBu A 70%  >96%
(CH,)3CF3 A 63% 84%
B 1) RoZn, Et,O
0-_LCO,Et 24N, =2 CO,Et R
Y 2) H,0, NH,CI Phﬁ\ A7 PdicH, :_OFt
—_—
\NH NR e N
Ph OH Bn
182 183 184
Entry R ee (%) yield (%) Entry R ee (%) yield (%)
1 Me 72 45 4 iPr 72 45
2 Et 74 42 5 nBu 74 42
3 Pr 76 47 6 i-Bu 76 47
C) KOtBu
SOPh - BuLi X-(CHy) SOPh  or NaH SO,Ph
L_OTHp Br-(CH2)n-Cl _DMF_ (CHz I
BocHN "2 T BoeunOTHP > OTHP
A oc
185 186 189
1) 6% Na-Hg, MeOH,
n-BuLi, THF Na,HPO4
1) 6% Na-Hg, MeOH 2) pyridinium
Na,HPO4 p-toluenesulfonate
(CHon 2) pyridinium (CHo)N 3) Jones oxidation
p-toluenesulfonate
S SO,Ph
3) Jones oxidation OTHP (CH,) H
BocHN” = ~COOH : 2" X
A BocHN" 4 COOH
188 187 190

n=2345
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Scheme 16. Other methods to prepare the non-natural amino acids.

Various lipophilic S amino acids were also prepared though Wittig reaction of the aldehyde

containing S amino acids 191, which are prepared from L-glutamic acid (X=2) or L-aspartic acid

(X=1) (Scheme 17A).66 Direct alkylation of protected alanine 193 was developed as an efficient

method to synthesize optically active amino acids and various aliphatic sides could be

introduced (Scheme 17B).67 Various aliphatic unnatural amino acids has been prepared

through this method.

A) 0 RCH,PPhy I~ R o
H KN(TMS), g
OMe  51uene, -78°C OMe
O N@Boc), — N(Boc),
191 192
X=2 _ X=1
R= g 7 R= n-C1aHag
R a7t
R/
R/ I S
B) Pd(OAc),
NPhth (BnO),PO,H
UL Ag2COs Henh
+ R-l DEC/tBuOH ~
H O —_— Q o=% \
R O N
193 194
NPhth NPhth NPhth NPhth NPhth
ﬂ ﬂ m l::s(:l'iz‘:/rﬁ‘r
58% 79% 84% 85% 54%
NPhth NPhth Nphth NPhth
ﬂ \Q w ﬂ \Q
C17H3s ° CICoH,
87% 76% 66% 25%
NPhth NPhth NPhth NPhth
ﬂ Q ﬂ
o]
CICsH1g IC3Hs ICsH10
84% 37% 44% 30%

NPhth

67%

Scheme 17. Other methods to prepare the non-natural amino acids.

2.3 Conclusion
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Various synthetic methods and procedures are presented in this review to prepare

enantiomerically pure aliphatic a-unnatural amino acids. The enantioselectivity can vary

considerably with different side chains and different reaction conditions. There is not a

reaction condition that could fit the preparation of most amino acids, but at the same time the

broad array of synthetic methodology available ascertains that the synthesis of a desired chiral

aliphatic amino acid can be done with confidence, provided that the appropriate methodology

is selected.
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