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Introduction

1.1 Symmetries and gauge theories

In the study of physical phenomena, conservation laws play an important
role: things do not just vanish into the blue. For example, consider a
bucket filled with water, and drill a hole in the bottom. The amount of
water in the bucket will diminish, but one will recover the same amount
when one considers the stream coming out of the hole. It is really this
notion which is at the very beginning of the 19th century discipline of
hydrodynamics.

The notion of conservation laws obtained a more profound meaning,
when Noether realised that conservation laws are in one-to-one correspon-
dence with symmetries. Perhaps the most simple-minded example is that
of momentum conservation in Newtonian mechanics. For example, for a
particle on which no forces are acting, the momentum is conserved. This
is imminent from symmetry, since the absence of a force implies a constant
potential, which is surely translational invariant. It is this translational
symmetry which takes care of the momentum conservation.

Similarly, in Maxwell electrodynamics, conservation and symmetry go
hand-in-hand as well, as related to charge conservation. The symmetry
in question involves rotations of a complex scalar. When one only admits
global rotations, one obtains global charge conservation. There is no rea-
son to restrict oneself to global symmetries, however. It turns out that
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making symmetries local, leads to more than just a rephrasing of con-
servation laws. Requiring the symmetry to be local, requires in turn the
introduction of a so-called gauge field, which in Maxwell theory describe
photons. If one also allows this field to be dynamic, it turns out that
the equations of motion for the gauge field are precisely the equations for
electric and magnetic field of Maxwell theory, which say that currents and
charges act as sources for electromagnetic fields.

The notion of symmetry has become more and more powerful in physics
during the twentieth century, especially with the advent of quantum field
theory. Indeed, the first step was to understand Maxwell dynamics as a
field theory of complex scalars which are symmetric under local phase rota-
tions, as explained above. These phase rotations are commutative, i.e., one
can interchange rotations without changing the final result. These sym-
metries under commutative groups go under the name of Abelian gauge
field theories, after the mathematician Abel.

Later on, local symmetries were generalised to non-Abelian groups,
i.e., groups of non-commuting elements. For example, the rotations in
three dimensions form a non-Abelian group, since rotations do not gener-
ally commute. In fact, the electroweak interaction, which governs e.g. the
decay of neutrons into protons, can be described by a non-Abelian sym-
metry acting on two complex dimensional fields. The group of interest
here is SU(2), i.e., the rotations in spin space. With this notion, the very
succesful Yang-Mills theory has been developed. The culmination of the
study of non-Abelian gauge theories is the development in the seventies of
quantum chromodynamics (QCD), which is really nothing more than the
study of the group SU(3). It gives a transparent framework to describe
the whole zoo of particles as discovered in accelerators. QCD introduces
not more than 2 × 6 elementary particles. The resulting unified theory,
SU(3) × SU(2) × U(1), known as the standard model, explains all phe-
nomena encountered in accelerators. The strong predictions it makes are
all confirmed, except for one. This one prediction involves the existence
of the Higgs particle.

1.2 Symmetry breaking

This Higgs particle is intimately connected with another notion, which
is at least as important as symmetry: namely, the spontaneous breaking
of symmetry. It states the following: if a system is described by some
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theory, e.g., a theory which is symmetric under global U(1), the ground
state of that system might break the symmetry under consideration. This
concept is actually much less esoteric than it might seem. Stronger, one
ecounters symmetry breaking all the time in everyday life. For example,
the chair in which you are reading this introduction, has no preference
for being in some position in your room, i.e., its posititon is described
by a translationally invariant theory. Still, it is where it is, and not five
foot further. Obviously, the translational symmetry is broken. By the
same token, consider a bunch of carbon atoms at room temperature and
ambient pressure. They are similarly described by a translationally invari-
ant theory. Yet they choose to form a quite regular lattice! The reader
might object that the symmetry is not broken, since you can translate
the carbon lattice by a multiple of the lattice spacing, to obtain the same
result. This is correctly observed: when symmetries are (spontaneously)
broken, it does not mean that all the symmetry is gone. There might be
some remaining ones, like translations modulo lattice spacings. These re-
maining symmetries lead to physical modes: in crystals, one has phonons,
and in superconductors, one has supercurrents. These modes are known
as Goldstone modes. These examples already point out that symmetry
is broken, when order occurs: crystalline order breaks translational sym-
metry, for example. For high energy physics, however, it is exactly this
broken order parameter which still has not been found, namely, a con-
densate of Higgs particles. One of the reasons why condensed matter
physics has an advantage relative to high energy physics, is that it is in
most instances clear what the order parameter is, and that it is accessible
for experiments. This is what condensed matter actually is about: the
study of long wavelength, low temperature phenomena induced by states
characterised by a spontaneously broken symmetry, and these occur in a
plethora of possibilities.

1.3 Parallel transport

The most important problem in physics is perhaps how to unify the stan-
dard model with the other great theory of the 20th century: general rela-
tivity, describing gravity. General relativity is about an elegant geometric
description of how all constituents of Nature move under the influence
of gravitational forces emerging from all the other objects. All objects
carry energy which is equivalent to mass, according to Einstein. Massive
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objects curve spacetime, and particles etc. moving in that spacetime, fol-
low trajectories which are shortest. Rephrasing the essence of this idea,
energy is a source for curvature, where the latter governs the trajectory
of all physical objects. The parallel between gauge theories and gravity
theories is now easily drawn: in gauge theories, one has sources which
determine field strengths. In other words, the parallel is ”curvature=field
strength”. This geometric interpretation of gauge theories and gravity has
proved to be very instructive and fruitful [1]. This makes it even more
tantalising that gravity and gauge theories are still not united into one
single consistent framework.

Let us focus on the curvature aspect of gauge theories, implied by the
geometric interpretation. In gravity, the curvature determines how mat-
ter moves. In the geometric framework, we say that curvature encodes
a parallel transport structure. Now, in gauge theories, the gauge fields
can be interpreted in the same way. For example, since spins are trans-
formed by SU(2) matrices, parallel transport by SU(2) gauge fields can
be interpreted as rotating spins.

A beautiful analogue of emergent gravity from curvature in condensed
matter systems, is provided by nematic liquid crystals. Defects therein
give rise to curvature, which exactly behaves like a parallel transport
structure [2]. In this way, it is an excellent example of emergent grav-
ity in condensed matter systems [3].

1.4 Motivation for this work

This thesis discusses typical examples of how structures associated with
non-Abelian gauge theories can emerge in a non-obvious way in condensed
matter systems. The first aspect is how parallel transport structures can
be understood in the context of transport of spins by electromagnetic
fields. This discussion can give a mean to understand how one can attempt
to understand quark-gluon plasmas.

Secondly, the example of the Mott insulator (MI) is discussed, in which
an SU(2) gauge theory emerges in its full glory, having full dynamics of the
gauge fields. It is shown how a condensed matter analogue of the quark-
gluon plasma emerges in the MI, known as the deconfined spin liquid.
The ramification of the discussion is that this mysterious deconfining state
leads to predictions which, surprisingly enough, have been measured in the
laboratory in the context of high-Tc superconductors.
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Let us move to a more substantial level of discussion for both of the
systems of interest.

1.4.1 Spin-orbit coupled systems and the hydrodynamics
of QCD

In the very beginning of this introduction, hydrodynamics was already
mentioned. In fact, all of everyday life understanding of transport phe-
nomena is based on hydrodynamics. In turn, this notion is based on
mass conservation, like the example of the bucket spilling water. Other
examples are electric currents or magnetohydrodynamic currents in plas-
mas. This local mass conservation is described by a U(1) theory, which is
Abelian. The question arises if there is such a thing as non-Abelian hy-
drodynamics. If so, this concept would really help to understand colour-
currents in quark-gluon plasmas, which originate from a deconfining SU(3)
gauge theory.

It is a surprising development that in condensed matter, non-Abelian
transport phenomena in the context of spin systems has attracted much
attention recently [4, 5, 6]. A main motivation is provided by spintronics
[7], which is about spin currents driven by electromagnetic fields by the
effect of spin-orbit coupling. Spin-orbit coupling is a prediction of the
Dirac equation, when expanded to lowest order in v/c. The non-relativistic
limit then shows that electromagnetic fields rotate SU(2) spins. Many
people [8, 9, 10] realised that this can be understood as the electromagnetic
fields mimicking an SU(2) parallel transport structure for the spins. The
unconvenient truth is that normally, this parallel transport destroys local
spin conservation, implying the absence of hydrodynamics.

Surprisingly enough, if the spin system becomes quantum coherent,
i.e., becomes superfluid, hydrodynamics re-emerges from the ashes, al-
beit in the guise of covariant conservation. This covariant hydrodynamics
hinges on the presence of an order parameter, providing rigidity. The fact
that in our example the gauge fields do not have dynamics, in contrast to
quark-gluon plasmas, is not important. The reason is that both in QCD
as in spin-orbit coupled systems, there are no ordinary local conservation
laws; only covariant conservation laws exist. It is this covariant conserva-
tion which is of importance in understanding non-Abelian hydrodynamics.

The ‘Higgs’ phase of the spin system makes it possible to discuss topo-
logical effects. These considerations are on the one hand motivated by the
SU(2) texture of the ’t Hooft-Polyakov monopole [11, 12], and on the other
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hand by the question what the spin rigid version of the Aharonov-Casher
effect, relevant for spin-orbit coupled systems, would look like [9, 13]. It
turns out that there exists a spin-fluid analogue of magnetic flux trapping
by the Aharonov-Bohm effect. The difference with the Aharonov-Bohm
effect is that in the latter case, the gauge fields are dynamical, whereas the
gauge fields are fixed in the spin-orbit coupled case. We will demonstrate
that it is the absence of screening of electromagnetic fields, which causes
the charge giving rise to the electromagnetic field to be quantised in the
charge quantum λ = m

µ0e , the analogue of the magnetic flux quantum.
Here, m is the mass of the particles forming the superfluid.

Then we will turn our attention to a system which is the only known
candidate to become superfluid: 3He. Superfluid 3He is well studied
[14, 15, 16], because of its rich vacuum structure, giving rise to a host
of possible topological excitations. Many features of 3He are also interest-
ing since these give a condensed matter analogue of the vacuum structure
of the universe. In this way, it is part of the rich subject of ‘cosmology in
the lab’, a research programme trying to understand and simulate cosmo-
logical phenomena by studying condensed matter systems which display
similar behaviour.

Our interest, however, will be focused on how spin-orbit coupling af-
fects the topology of 3He, which will provide much insight. We will also
discuss if and how the richness of the order parameter will destroy the
Aharonov-Casher topology making charge trapping possible.

1.4.2 The Mott insulator and the quark-gluon plasma

The spin-orbit coupled systems give a good playground to understand non-
Abelian parallel transport, but are less suitable to understand gauge field
dynamics, since the gauge fields are fixed by the electromagnetic fields.

A gauge theory displaying full gauge field dynamics is provided by
the Mott insulator. This is a condensed matter system with precisely
one electron per unit cell. The Coulomb repulsion is so strong that the
electrons cannot move. Note that this is different from the band insulator,
where motion of the electrons is forbidden by the Pauli principle. The
fact that there is one electron per site can immediately be interpreted as
a local conservation law. This constraint can be translated into gauge
fields, which need to have full dynamics in order to impose the constraint
exactly.

At a first glance, this would amount to a U(1) theory, since particle
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number conservation can be interpreted as a constraint imposed by a
gauge field with one phase. In fact, the structure of the Mott insulator is
richer. The electron carries the quantum numbers of spin and charge, of
which the charge degrees of freedom are frozen out by Coulomb blocking.
Hence the relevant degrees of freedom are the excitations carrying spin,
the spinons. It can be shown that in the MI the removal of a down-spinon
is the same as adding an up-spinon. This symmetry is a symmetry of
spinors, i.e., an SU(2) gauge symmetry. These spinors are the condensed
matter analogues of the quark doublets in QCD.

The question arises if the situation is similar to high-energy physics: is
the deconfining state of spinons/quarks only visible at very high energy, as
dictated by the asymptotic freedom in QCD? Or is there some hope that
spinons have physical relevance for the long-wavelength limit? The an-
swer is that the condensed matter analogue of the deconfined quark/gluon
plasma, known the spin liquid, can exist. The proviso here is that one ac-
cepts the existence of spinonic order parameters, i.e., one beliefs that mean
field vacuum expectation values of pairs of spinon operators exist.

If so, a miracle can happen: the existence of these mean fields break
the SU(2) gauge theory down to an effective theory, which can have lower
gauge symmetry, for example, U(1). The latter can still be confining
[17], but there are mean field states which have the power to make the
effective gauge theory deconfining, after integrating out the spinons. Put
differently: there are classes of mean fields giving the condensed matter
quark/gluon plasma analogue stability against gauge fluctuations.

It turns out that for the mean field theories under consideration, the
familiar classification of the phases of gauge theories breaks down. For
gauge theories, their behaviour is determined by the Wilson loop: if it
obeys the area law, the theory is in the confining phase, whereas the
perimeter law signals the deconfining phase. It is explained what classi-
fication is necessary to correctly address the various possibilities for the
low-energy gauge theories. In this discussion, we summarise the ideas de-
veloped by X.-G. Wen [18]. The scheme of classifying various mean field
theories will also be different from the way classical symmetry breaking is
classified. This will be illustrated by considering mean fields which have
different symmetries, but have the same excitation spectrum, which is
impossible for classical orders. It turns out that this is due to the possi-
bility that two different states can be gauge equivalent within the original
gauge theory. The new classification scheme will involve both the gauge
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symmetries together and the spatial symmetries of the mean field states.
The ramification is that condensed matter systems have the possibility to
show deconfining states after integration over the matter fields, analogous
to the quark/gluon plasma. In particular, they can show massless exci-
tations with Dirac dispersion: the nodal fermions. These nodal fermions
are then analogous to the deconfined quarks.

This deconfining state turns out to make sense experimentally as well.
This becomes particularly clear in the context of the problem of high-
temperature superconductivity, which emerges on removing electrons from
a Mott insulator (doping). Including charge degrees of freedom, it is
possible to set up a slave theory involving both spin degrees of freedom
(spinons) and charge degrees of freedom (holons). Assuming a decon-
fining state of spinons and holons, as motivated by the possibility of a
deconfining spin liquid, leads to predictions which are surprisingly well
in agreement with experimental results. In the first place, the constraint
structure forces the holons to have a hard core. This condition leads to
phase separation for values of the doping which are consistent with the
experimentally measured values for the compressibility [19]. The SU(2)
theory displaying phase separation denies ideas in the community that
slave theories cannot incorporate inhomogeneous states.

More importantly, the constraint structure together with mean field
calculations, insists that the order parameter of the high-Tc’s should have
an isotropic s-wave component, on top of the well-established d-wave
symmetry. This s-wave admixture is measured in several experiments
[20, 21, 22].

The conclusion from the second part is that an emergent deconfined
state in the SU(2) gauge theory of the doped Mott insulator gives results
that are not in conflict with at least some experiments. This is the motiva-
tion that condensed matter systems with emergent gauge theories provide
evidence that deconfining states can exist as effective low-energy theories.
This fact is not evident, since the quark-gluon plasma is supposed to be
found at high energies.



Part I

Spin-orbit coupled systems
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Introduction to spin-orbit
coupled systems

It is a remarkable development that in various branches of physics there
is a revival going on of the long standing problem of how non-Abelian
entities are transported over macroscopic distances. An important stage
is condensed matter physics. A first major development is spintronics,
the pursuit to use the electron spin instead of its charge for switching pur-
poses [4, 5, 6, 7, 23, 24], with a main focus on transport in conventional
semiconductors. Spin-orbit coupling is needed to create and manipulate
these spin currents, and it has become increasingly clear that transport
phenomena are possible that are quite different from straightforward elec-
trical transport. A typical example is the spin-Hall effect [4, 5, 7], defined
through the macroscopic transport equation,

ja
i = σSHεialEl (2.0.1)

where εial is the 3-dimensional Levi-Civita tensor and El is the electrical
field. The specialty is that since both ja

i and El are even under time
reversal, the transport coefficient σSH is also even under time reversal,
indicating that this corresponds to a dissipationless transport phenom-
enon. Triggered by theoretical work, this spin-Hall effect was recently
observed experimentally in various settings. An older development is the
mesoscopic spin-transport analogue of the Aharonov-Bohm effect, called
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the Aharonov-Casher effect [13]: upon transversing a loop containing an
electrically charged wire the spin conductance will show oscillations with
a period set by the strength of the spin-orbit coupling and the enclosed
electrical line-charge.

A rather independent development in condensed matter physics is the
recent focus on the multiferroics. This refers to substances that show
simultaneous ferroelectric- and ferromagnetic order at low temperatures,
and these two different types of order do rather strongly depend on each
other. It became clear recently that at least in an important subclass of
these systems one can explain the phenomenon in a language invoking
dissipationless spin transport [25, 26]: one needs a magnetic order charac-
terized by spirals such that ’automatically’ spin currents are flowing, that
in turn via spin-orbit coupling induce electrical fields responsible for the
ferroelectricity.

The final condensed matter example is one that was lying dormant over
the last years: the superfluids realized in 3He. A way to conceptualize the
intricate order parameters of the A- and B-phase [14, 15] is to view these
as non-Abelian (’spin-like’) superfluids. The intricacies of the topological
defects in these phases is of course very well known, but matters get
even more interesting when considering the effects on the superflow of
macroscopic electrical fields, mediated by the very small but finite spin-
orbit coupling. This subject has been barely studied: there is just one
paper by Mineev and Volovik [10] addressing these matters systematically.

A very different pursuit is the investigation of the quark-gluon plasma’s
presumably generated at the Brookhaven heavy-ion collider. This might
surprise the reader: what is the relationship between the flow of spin
in the presence of spin-orbit coupling in the cold condensed matter sys-
tems and this high temperature QCD affair? There is actually a very
deep connection that was already realized quite some time ago. Gold-
haber [27] and later Froehlich et al. [8], Balatskii and Altshuler [9] and
others realized that in the presence of spin-orbit coupling spin is sub-
jected to a parallel transport principle that is quite similar to the parallel
transport of matter fields in Yang-Mills non-Abelian Gauge theory, un-
derlying for instance QCD. This follows from a simple rewriting of the
Pauli-equation, the Schroedinger equation taking into account the lead-
ing relativistic corrections: the spin-fields are just subjected to covariant
derivatives of the Yang-Mills kind, see Eq.’s (3.1.4),(3.1.5) . However, the
difference is that the ’gauge’ fields appearing in these covariant derivatives
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are actually physical fields. These are just proportional to the electrical-
and magnetic fields. Surely, this renders the problem of spin transport
in condensed matter systems to be dynamically very different from the
fundamental Yang-Mills theory (standard model). However, the parallel
transport structure has a ’life of its own’: it implies certain generalities
that are even independent of the ’gauge’ field being real gauge or physical.

For all the various examples we alluded to in the above, one is dealing
with macroscopic numbers of particles that are collectively transporting
non-Abelian quantum numbers over macroscopic distances and times. In
the Abelian realms of electrical charge or mass a universal description of
this transport is available in the form of hydrodynamics, be it the hydro-
dynamics of water, the magneto-hydrodynamics of charged plasma’s, or
the quantum-hydrodynamics of superfluids and superconductors. Hence-
forth, to get anywhere in terms of a systematic description one would like
to know how to think in a hydrodynamical fashion about the macroscopic
flow of non-Abelian entities, including spin.

In the condensed matter context one finds pragmatic, case to case
approaches that are not necessarily wrong, but are less revealing regarding
the underlying ’universal’ structure: in spintronics one solves Boltzmann
transport equations, limited to dilute and weakly interacting systems. In
the quark-gluon plasma’s one find a similar attitude, augmented by RPA-
type considerations to deal with the dynamics of the gauge fields. In the
multiferroics one rests on a rather complete understanding of the order
parameter structure.

The question remains: what is non-Abelian hydrodynamics? To the
best of our knowledge this issue is only addressed on the fundamental
level by Jackiw and coworkers [28, 29] and their work forms a main inspi-
ration for this review. The unsettling answer seems to be: non-Abelian
hydrodynamics in the conventional sense of describing the collective flow
of quantum numbers in the classical liquid does not even exist! The im-
possibility to define ’soft’ hydrodynamical degrees of freedom is rooted in
the non-Abelian parallel transport structure per se and is therefore shared
by high temperature QCD and spintronics.

The root of the trouble is that non-Abelian currents do not obey a
continuity equation but are instead only covariantly conserved: we will
explain this in detail in section 3.3. It is well known that covariant con-
servation laws do not lead to global conservation laws, and the lack of
globally conserved quantities makes it impossible to deal with matters in
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terms of a universal hydrodynamical description. This appears to be a
most serious problem for the description of the ’non-Abelian fire balls’
created in Brookhaven. In the spintronics context it is well known under
the denominator of ’spin relaxation’: when a spin current is created, it
will plainly disappear after some characteristic spin relaxation determined
mostly by the characteristic spin-orbit coupling strength of the material.

Here we will approach the subject of spin transport in the presence
of spin-orbit coupling from the perspective of the non-Abelian parallel
transport principle. At least to our perception, this makes it possible to
address matters in a rather unifying, systematical way. It is not a-priori
clear how the various spin transport phenomena identified in condensed
matter relate to each other and we hope to convince the reader that they
are different sides of the same non-Abelian hydrodynamical coin. Except
for the inspiration we have found in the papers by Jackiw and coworkers
[28, 29] we will largely ignore the subject of the fundamental non-Abelian
plasma, although we do hope that the ’analogous systems’ we identify in
the condensed matter system might form a source of inspiration for those
working on the fundamental side.

Besides bringing some order to the subject, in the course of the de-
velopment we found quite a number of new and original results that are
consequential for the general, unified understanding. We will start out on
the pedestrian level of quantum-mechanics, discussing in detail how the
probability densities of non-Abelian quantum numbers are transported
by isolated quantum particles and how this relates to spin-orbit coupling
(Section 3.1). We will derive equations that are governing the mesoscopics,
like the Aharonov-Casher (AC) effect, while they are completely general.
A main conclusion will be that already on this level the troubles with
the macroscopic hydrodynamics are shimmering through: the AC effect is
more fragile than the Abelian Aharonov-Bohm effect, in the sense that the
experimentalists have to be much more careful in designing their machines
in order to find the AC signal.

In the short section 3.3 we revisit the non-Abelian covariant conserva-
tion laws, introducing a parametrization that we perceive as very useful:
different from the Abelian case, non-Abelian currents can be viewed as
being composed of both a coherent, ’spin’ entangled part and a factoris-
able incoherent part. This difference is at the core of our classification of
non-Abelian fluids. The non-coherent current is responsible for the trans-
port both in the high temperature liquid and in the multiferroic systems.
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The coherent current is responsible for both the Meissner ’diamagnetic’
screening currents in the ’fundamental’ non-Abelian Higgs phase, but also
for the non-Abelian supercurrents in true spin-superfluids like the 3He A-
and B phase.

The next step is to deduce the macroscopic hydrodynamics from the
microscopic constituent equations and here we follow Jackiw et al. closely.
Their ’particle based’ non-Abelian hydrodynamics has just to be associ-
ated with the classical hydrodynamics of the high temperature spin-fluid
and here the lack of hydrodynamical description hits full force: we hope
that the high energy physicists find our simple ’spintronics’ examples il-
luminating (Section 3.4).

As a next step we turn to the ’super’ spin currents of the multifer-
roics (Section 3.6). As we will show, these are rooted in the ’coherent’
non-Abelian currents and this renders it to be quite similar but subtly
different from the ’true’ supercurrents of the spin superfluid: it turns out
that in contrast to the latter they can create electrical charge! This is also
a most elementary context to introduce a notion that we perceive as the
most important feature of non-Abelian fluid theory. In Abelian hydrody-
namics it is well understood when the superfluid order sets in, its rigidity
does change the hydrodynamics: it renders the hydrodynamics of the su-
perfluid to be irrotational having the twofold effect that the circulation in
the superfluid can only occur in the form of massive, quantized vorticity
while at low energy the superfluid is irrotational so that it behaves like a
dissipationless ideal Euler liquid. In the non-Abelian fluid the impact of
the order parameter is more dramatic: its rigidity removes the multival-
uedness associated with the covariant derivatives and hydrodynamics is
restored!

This bring us to our last subject where we have most original results to
offer: the hydrodynamics of spin-orbit coupled spin-superfluids (Section
3.7). These are the ’fixed frame’ analogs of the non-Abelian Higgs phase
and we perceive them as the most beautiful physical species one encounters
in the non-Abelian fluid context. Unfortunately, they do not seem to be
prolific in nature. The 3He-superfluids belong to this category but it is
an unfortunate circumstance that the spin-orbit coupling is so weak that
one encounters insurmountable difficulties in the experimental study of its
effects. Still we will use them as an exercise ground to demonstrate how
one should deal with more complicated non-Abelian structures (Sections
5.2,5.4), and we will also address the issue of where to look for other
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spin-superfluids in the Conclusion and Outlook of this thesis (Chapter 9).
To raise the appetite of the reader let us start out presenting some

wizardry that should be possible to realize in a laboratory when a spin-
superfluid would be discovered with a sizable spin-orbit coupling: how the
elusive spin-superfluid manages to trap electrical line charge (section 2.1),
to be explained in Chapter 4.

2.1 The appetizer: trapping quantized electric-
ity

Imagine a cylindrical vessel, made out of plastic while its walls are coated
with a thin layer of gold. Through the center of this vessel a gold wire
is threaded and care is taken that it is not in contact with the gold on
the walls. Fill this container to the brim with a putative liquid that can
become a spin superfluid (liquid 3He would work if it did not contain a
dipolar interaction that voids the physics) in its normal state and apply
now a large bias to the wire keeping the walls grounded, see Fig.2.1. Since
it is a capacitor, the wire will charge up relative to the walls. Take care
that the line charge density on the wire is pretty close to a formidable
2.6× 10−5 Coulomb per meter.

Having this accomplished, cool the Helium through its superfluid phase
transition at 1.7 mK. Remove now the voltage and hold the end of the
wire close to the vessel’s wall. Given that the charge on the wire is huge,
one anticipates a disastrous decharging spark but .... nothing happens!

It is now time to switch the dilution fridge. Upon monitoring the rising
temperature, right at the 1.7 mK where the helium turns normal a spark
jumps from the wire to the vessel, grilling the machinery into a pile of
black rubble.

This is actually a joke. In section 3.7 and Chapter 4 we will present
the theoretical proof that this experiment can actually be done. There is
a caveat, however. The only substance that has been identified, capable
of doing this trick is 3He. As it turns out, in order to prevent bad things
to happen one needs a vessel with a cross sectional area that is roughly
equal to the area of Alaska. Given that there is only some 170 kg of
helium on the planet, it occurs that this experiment cannot be practically
accomplished.

What is going on here? This effect is analogous to magnetic flux trap-
ping by superconducting rings. One starts out there with the ring in the



2.1 The appetizer: trapping quantized electricity 17

Figure 2.1: A superfluid 3He container acts as a capacitor capable of trap-
ping a quantized electrical line charge density via the electric field generated
by persistent spin Hall currents. This is te analog of magnetic flux trapping in
superconductors by persistent charge supercurrents.

normal state, in the presence of an external magnetic field. One cycles the
ring below the transition temperature, and after switching off the external
magnetic field a quantized magnetic flux is trapped by the ring. Upon cy-
cling back to the normal state this flux is expelled. Read for the magnetic
flux the electrical line charge, and for the electrical superconductor the
spin-superfluid and the analogy is clear.

This reveals that in both cases a similar parallel transport is at work.
It is surely not so that this can be understood by simple electro-magnetic
duality: the analogy is imprecise because of the fact that the physical
field enters in the spin-superfluid problem via the spin-orbit coupling in
the way the vector potential enters in the superconductor. This has the
ramification that the electrical monopole density takes the role of the
magnetic flux, where the former takes the role of physical incarnation of
the pure gauge Dirac string associated with the latter.

The readers familiar with the Aharonov-Casher (AC) effect should hear
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a bell ringing. This can indeed be considered as just the ’rigid’ version of
the AC effect, in the same way that flux trapping is the rigid counterpart
of the mesoscopic Aharonov-Bohm effect. On the single particle level,
the external electromagnetic fields prescribe the behavior of the particles,
while in the ordered state the order parameter has the power to impose
its will on the electromagnetic fields.

This electrical line-charge trapping effect summarizes neatly the deep
but incomplete relations between real gauge theory and the working of
spin-orbit coupling. It will be explained in great detail in section 3.7 and
Chapter 4, but before we get there we first have to cross some terrain.
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Non-Abelian hydrodynamics

3.1 Quantum mechanics of spin-orbit coupled sys-
tems

To address the transport of spin in the presence of spin-orbit(SO) coupling
we will follow a strategy well known from conventional quantum mechan-
ical transport theory. We will first analyze the single particle quantum-
mechanical probability currents and densities. The starting point is the
Pauli equation, the generalization of the Schrödinger equation contain-
ing the leading relativistic corrections as derived by expanding the Dirac
equation using the inverse electron rest mass as expansion parameter.
We will first review the discovery by Volovik and Mineev [10], Balatskii
and Altshuler [9] and Froehlich and others [8] of the non-Abelian parallel
transport structure hidden in this equation, to subsequently analyze in
some detail the equations governing the spin-probability currents. In fact,
this is closely related to the transport of color currents in real Yang-Mills
theory: the fact that in the SO problem the ’gauge fields’ are physical
fields is of secondary importance since the most pressing issues regard-
ing non-Abelian transport theory hang together with parallel transport.
For these purposes, the spin-orbit ’fixed-frame’ incarnation has roughly
the status as a representative gauge fix. In fact, the development in this
section has a substantial overlap with the work of Jackiw and co-workers
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dedicated to the development of a description of non-Abelian fluid dy-
namics [28, 29]. We perceive the application to the specific context of SO
coupled spin fluid dynamics as clarifying and demystifying in several re-
gards. We will identify their ’particle based’ fluid dynamics with the high
temperature, classical spin fluid where the lack of true hydrodynamics is
well established, also experimentally. Their ’field based’ hydrodynamics
can be directly associated with the coherent superflows associated with
the SO coupled spin superfluids where at least in equilibrium a sense of a
protected hydrodynamical sector is restored.

The development in this section might have a direct relevance to meso-
scopic transport phenomena (like the Aharonov-Casher effect [9, 13]. How-
ever, we will largely ignore these applications and our first aim is to set
up the system of microscopic, constituent equations that will be used in
the subsequent sections to derive the various macroscopic fluid theories.

The starting point is the well known Pauli-equation describing mildly
relativistic particles. This can be written in the form of a Lagrangian
density in terms of spinors ψ,

L = i~ψ†(∂0ψ)− qBaψ†
τa

2
ψ +

~2

2m
ψ†

(
∇− ie

~
~A

)2

ψ

− eA0ψ
†ψ +

iq

2m
εialEl

{
(∂iψ

†)
τa

2
ψ − ψ†

τa

2
(∂iψ)

}

+
1
8π

(
E2 −B2

)
(3.1.1)

where as usual

~E = −∇A0 − ∂0
~A , ~B = ∇× ~A. (3.1.2)

The Aµ are the usual U(1) gauge fields associated with the electromag-
netic fields ~E and ~B. The relativistic corrections are present in the terms
containing the quantity q, proportional to the Bohr magneton, and the
time-like first term ∝ B is the usual Zeeman term while the space-like
terms ∝ E corresponds with spin-orbital coupling.

The recognition that this has much to do with a non-Abelian parallel
transport structure, due to Mineev and Volovik [10], Goldhaber [27] and
Froehlich et al. [8] is in fact very simple. Just redefine the magnetic- and
electric field strengths as follows,

Aa
0 = Ba Aa

i = εialEl . (3.1.3)
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Define covariant derivatives as usual,

Di = ∂i − i
q

~
Aa

i

τa

2
− i

e

~
Ai (3.1.4)

D0 = ∂0 + i
q

~
Aa

0

τa

2
+ i

e

~
A0 , (3.1.5)

and it follows that the Pauli Lagrangian becomes,

L = i~ψ†D0ψ + ψ†
~2

2m
~D2ψ

+
1

2m
ψ†

(
2eq

τa

2
~A · ~Aa +

q2

4
~Aa · ~Aa

)
ψ

+
1
8π

(
E2 −B2

)
.

(3.1.6)

Henceforth, the derivatives are replaced by the covariant derivatives of
a U(1) × SU(2) gauge theory, where the SU(2) part takes care of the
transport of spin. Surely, the second and especially the third term violate
the SU(2) gauge invariance for the obvious reason that the non-Abelian
’gauge fields’ Aa

µ are just proportional to the electromagnetic ~E and ~B
fields. Notice that the second term just amounts to a small correction
to the electromagnetic part (third term). The standard picture of how
spins are precessing due to the spin-orbit coupling to external electrical-
and magnetic fields, pending the way they are moving through space can
actually be taken as a literal cartoon of the parallel transport of non-
Abelian charge in some fixed gauge potential!

To be more precise, the SO problem actually corresponds to fixing
a particular gauge in the full SU(2) gauge theory. The electromagnetic
fields have to obey the Maxwell equation

∇× ~E +
∂ ~B

∂t
= 0 (3.1.7)

and this in turn implies
∂µAa

µ = 0 . (3.1.8)

Therefore, the SO problem is ’representative’ for the SU(2) gauge theory
in the Lorentz gauge and we do not have the choice of going to another
gauge as the non-Abelian fields are expressed in terms of real electric and
magnetic fields. This is a first new result.
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By varying the Lagrangian with respect to ψ† we obtain the Pauli
equation in its standard Hamiltonian form,

i~D0ψ = − ~
2

2m
D2

i ψ −
1

2m

(
2eq

τa

2
~A · ~Aa +

q2

4
~Aa · ~Aa

)
ψ (3.1.9)

where we leave the electromagnetic part implicit, anticipating that we will
be interested to study the behavior of the quantum mechanical particles in
fixed background electromagnetic field configurations. The wave function
ψ can be written in the form,

ψ =
√

ρ e(iθ+iϕaτa/2)χ (3.1.10)

with the probability density ρ, while θ is the usual Abelian phase associ-
ated with the electromagnetic gauge fields. As imposed by the covariant
derivatives, the SU(2) phase structure can be parametrised by the three
non-Abelian phases ϕa, with the Pauli matrices τa acting on a reference
spinor χ. The careful reader might object that the number of degrees of
freedom does not match: the spinor on the left-hand side has four real
degrees of freedom, whereas the right hand side has five (viz., ρ, θ and the
three τa). This redundancy can be removed, however. For example, if the
reference spinor is chosen χ = (1, 0), the third Pauli matrix eiϕ3τ3/2 can
be absorbed in the Abelian phase eiθ. This Abelian U(1) phase is gauge,
as phases of the wave function make no physical difference. Hence it can
be chosen zero, by which the redundant fifth degree of freedom vanishes.

Hence, with regard to the wavefunction there is no difference whatever
between the Pauli-problem and genuine Yang-Mills quantum mechanics:
this is all ruled by parallel transport.

Let us now investigate in further detail how the Pauli equation trans-
ports spin-probability. This is in close contact with work in high-energy
physics and we develop the theory along similar lines as Jackiw et al.[29].
We introduce however a condensed matter inspired parametrization that
we perceive as instrumental towards laying bare the elegant meaning of
the physics behind the equations. We derive several new results. Let us
dwell a little longer on the level of quantum mechanics.

A key ingredient of our parametrization is the introduction of a non-
Abelian phase velocity, an object occupying the adjoint together with the
vector potentials.The equations in the remainder will involve time and
space derivatives of θ, ρ and of the spin rotation operators eiϕaτa/2. Let
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us introduce the operator Sa as the non-Abelian charge at time t and at
position ~r, as defined by the appropriate SU(2) rotation

Sa ≡ e−iϕaτa/2 τa

2
eiϕaτa/2 . (3.1.11)

The temporal and spatial dependence arises through the non-Abelian
phases ϕa(t, ~r). The non-Abelian charges are, of course, SU(2) spin 1/2
operators:

SaSb =
δab

4
+

i

2
εabcSc. (3.1.12)

It is illuminating to parametrize the derivatives of the spin rotation oper-
ators employing non-Abelian velocities ~ua defined by,

im

~
~uaSa ≡ e−iϕaτa/2(∇eiϕaτa/2) or

~ua = −2i
~
m

Tr
{

e−iϕaτa/2(∇eiϕaτa/2)Sa
}

,

(3.1.13)

which are just the analogs of the usual Abelian phase velocity

~u ≡ ~
m
∇θ = −i

~
m

e−iθ∇eiθ (3.1.14)

and as the latter this phase velocity is the scale parameter for the prop-
agation of spin probability in non-Abelian quantum mechanics, or either
for the hydrodynamical flow of spin-superfluid.

In addition we need the zeroth component of the velocity

iua
0S

a ≡ e−iϕaτa/2(∂0e
iϕaτa/2) or

ua
0 = −2iTr

{
e−iϕaτa/2(∂0e

iϕaτa/2)Sa
} (3.1.15)

being the time rate of change of the non-Abelian phase, while is the exact
analog of the time derivative of the Abelian phase representing matter-
density fluctuation,

u0 ≡ ∂0θ = −i
~
m

e−iθ∂0e
iθ . (3.1.16)

It is straightforward to show that the definitions of the spin operators Sa,
Eq.(3.1.11) and the non-Abelian velocities ua

µ, Eq.(3.1.13), (3.1.15), imply
in combination,

∂0S
a = −εabcub

0S
c ∇Sa = −m

~
εabc~ubSc. (3.1.17)
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It is easily checked that the definition of the phase velocity Eq. (3.1.13)
imply the following identity,

∇× ~ua +
m

2~
εabc~u

b × ~uc = 0 , (3.1.18)

which has as Abelian analog,

∇× ~u = 0 . (3.1.19)

as the latter controls vorticity, the former is in charge of the topology in
the non-Abelian ’probability fluid’. It, however, acquires a truly quantum-
hydrodynamical status in the rigid superfluid where it becomes an equa-
tion of algebraic topology. This equation is well known, both in gauge
theory and in the theory of the 3He superfluids where it is known as the
Mermin-Ho equation[30].

3.2 Spin transport in the mesoscopic regime

Having defined the right variable, we can now go ahead with the quantum
mechanics, finding transparent equations for the non-Abelian probability
transport. Given that this is about straight quantum mechanics, what
follows does bear relevance to coherent spin transport phenomena in the
mesoscopic regime. We will actually derive some interesting results that
reveal subtle caveats regarding mesoscopic spin transport. The punchline
is that the Aharonov-Casher effect and related phenomena are intrinsically
fragile, requiring much more fine tuning in the experimental machinery
than in the Abelian (Aharonov-Bohm) case.

Recall the spinor definition Eq. (3.1.10); together with the definitions
of the phase velocity, and it follows that the vanishing of the imaginary
part of the Pauli equation implies,

∂0ρ + ~∇ ·
[
ρ

(
~u− e

m
~A + ~uaSa − q

m
~AaSa

)]
= 0 (3.2.1)

and this is nothing else than the non-Abelian continuity equation, im-
posing that probability is covariantly conserved. For non-Abelian paral-
lel transport this is a weaker condition than for the simple Abelian case
where the continuity equation implies a global conservation of mass, be-
ing in turn the condition for hydrodynamical degrees of freedom in the
fluid context. Although locally conserved, the non-Abelian charge is not
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globally conserved and this is the deep reason for the difficulties with as-
sociating a universal hydrodynamics to the non-Abelian fluids. The fluid
dynamics will borrow this motive directly from quantum mechanics where
its meaning is straightforwardly isolated.

Taking the trace over the non-Abelian labels in Eq. (3.2.1) results in
the usual continuity equation for Abelian probability, in the spintronics
context associated with the conservation of electrical charge,

∂0ρ +∇ ·
[
ρ

(
~u− e

m
~A
)]

= 0 , (3.2.2)

where one recognizes the standard (Abelian) probability current,

~J = ρ
(
~u− e

m
~A
)

=
~
m

ρ
(
∇θ − e

~
~A
)

. (3.2.3)

From Abelian continuity and the full non-Abelian law Eq. (3.2.1) it is
directly seen that the non-Abelian velocities and vector potentials have to
satisfy the following equations,

∇ ·
[
ρ

(
~ua − q

m
~Aa

)]
=

q

~
ρεabc~ub · ~Ac (3.2.4)

and we recognize a divergence – the quantity inside the bracket is a
conserved, current-like quantity. Notice that in this non-relativistic the-
ory this equation contains only space like derivatives: it is a static con-
straint equation stating that the non-Abelian probability density should
not change in time. The above is generally valid but it is instructive to
now interpret this result in the Pauli-equation context. Using Eq.(3.1.3)
for the non Abelian vector potentials, Eq (3.2.4) becomes,
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[
ρ

(
ua

i −
q

m
εailEl

)]
= − q

~
ρ

(
ub

aEb − ub
bEa

)
. (3.2.5)

As a prelude to what is coming, we find that this actually amounts to a
statement about spin Hall probability currents. When the quantity on the
r.h.s. would be zero, ja

i = ρua
i = ρq

m εailEl +∇× ~λ, the spin Hall equation
modulo an arbitrary curl and thus the spin Hall relation exhibits a “gauge
invariance”.

Let us complete this description of non-Abelian quantum mechanics
by inspecting the real part of the Pauli equation in charge of the time
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evolution of the phase,
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Tracing out the non-Abelian sector we obtain the usual equation for the
time rate of change of the Abelian phase, augmented by two SU(2) singlet
terms on the r.h.s.,
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(3.2.7)

Multiplying this equation by Sb and tracing the non-Abelian labels we
find,
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It is again instructive to consider the spin-orbit coupling interpretation,

ua
0 = qBa − m
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m
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·
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m
εialEl

)
(3.2.9)

ignoring the spin orbit coupling this just amounts to Zeeman coupling.
The second term on the right hand side is just expressing that spin or-
bit coupling can generate uniform magnetization, but this requires both
matter current (first term) and a violation of the spin-Hall equation! As
we have just seen such violations if present necessarily take the form of a
curl.

To appreciate further what these equations mean, let us consider an
experiment of the Aharonov-Casher[13] kind. The experiment consists of
an electrical wire oriented, say, along the z-axis that is charged, and is
therefore producing an electrical field Er in the radial direction in the xy
plane. This wire is surrounded by a loop containing mobile spin-carrying
but electrically neutral particles (like neutrons or atoms ). Consider now
the spins of the particles to be polarized along the z-direction and it is
straightforward to demonstrate that the particles accumulate a holonomy
∼ Er. It is easily seen that this corresponds with a special case in the above



3.2 Spin transport in the mesoscopic regime 27

formalism. By specializing to spins lying along the z-axis, only one compo-
nent ~uz, uz

0 of the non-Abelian phase velocity ~ua, ua
0 has to be considered,

and this reduces the problem to a U(1) parallel transport structure; this
reduction is rather implicit in the standard treatment. Parametrise the
current loop in terms of a radial (r) and azimuthal (φ) direction. Insisting
that the electrical field is entirely along r, while the spins are oriented
along z and the current flows in the φ direction so that only uz

φ 6= 0 , Eq.

(3.2.5) reduces to ∂φ

(
ρ(uz

φ − (q/m)Er)
)

= 0. Jz
φ = ρuz

φ corresponds with
a spin probability current, and it follows that Jz

φ = (qρ/m)Er + f(r, z)
with f an arbitrary function of the vertical and radial coordinates: this is
just the quantum-mechanical incarnation of the spin-Hall transport equa-
tion Eq.(2.0.1)! For a very long wire in which all vertical coordinates are
equivalent, the cylindrical symmetry imposes z independence, and since
we are at fixed radius, f is a constant. In the case where the constant can
dropped we have uz

φ = ∂φθz = (q/m)Er the phase accumulated by the
particle by moving around the loop equals ∆θz =

∮
dφuz

φ = L(q/m)Er:
this is just the Aharonov-Casher phase. There is the possibility that the
Aharonov-Casher effect might not occur if physical conditions make the
constant f nonzero.

Inspecting the ’magnetization’ equation (3.2.9), assuming there is no
magnetic field while the particle carries no electrical charge, ua

0 = −(m/~)~u·
(~ua− (q/m)εialEl) = 0, given the conditions of the ideal Aharonov-Casher
experiment. Henceforth, the spin currents in the AC experiment do not
give rise to magnetization.

The standard AC effect appears to be an outcome of a rather special,
in fact fine tuned experimental geometry, hiding the intricacies of the full
non-Abelian situation expressed by our equations Eq.(3.2.5,3.2.9). As an
example, let us consider the simple situation that, as before, the spins are
polarized along the z-direction while the current flows along φ such that
only uz

φ is non zero. However, we assume now a stray electrical field along
the z-direction, and it follows from Eq.(3.2.5),

∂φ

(
ρ(uz

φ −
q

m
Er)

)
= − q

~
uz

φEz. (3.2.10)

We thus see that if the field is not exactly radial, the nonradial parts will
provide corrections to the spin Hall relation and more importantly will
invalidate the Aharonov-Casher effect! This stray electrical field in the z-
direction has an even simpler implication for the magnetization. Although
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no magnetization is induced in the z-direction, it follows from Eq. (3.2.9)
that this field will induce a magnetization in the radial direction since
ur

0 = −uφ(q/m)εφrzEz. This is finite since the matter phase current uφ 6=
0.

From these simple examples it is clear that the non-Abelian nature of
the mesoscopic spin transport underlying the AC effect renders it to be a
much less robust affair than its Abelian Aharonov-Bohm counterpart. In
the standard treatment these subtleties are worked under the rug and it
would be quite worthwhile to revisit this physics in detail, both experi-
mentally and theoretically, to find out if there are further surprises. This
is however not the aim of this chapter. The general message is that even
in this rather well behaved mesoscopic regime one already finds the first
signs of the fragility of non-Abelian transport. On the one hand, this will
turn out to become lethal in the classical regime, while on the other hand
we will demonstrate that the coherent transport structures highlighted in
this section will acquire hydrodynamical robustness when combined with
the rigidity of non-Abelian superfluid order.

3.3 Spin currents are only covariantly conserved

It might seem odd that the quantum equations of the previous section
did not have any resemblance to a continuity equation associated with
the conservation of spin density. To make further progress in our pur-
suit to describe macroscopic spin hydrodynamics an equation of this kind
is required, and it is actually straightforward to derive using a different
strategy (see also Jackiw et al.[28, 29]).

Let us define a spin density operator,

Σa = ρSa (3.3.1)

and a spin current operator,

~ja = − i~
2m

[
ψ†

τa

2
∇ψ − (∇ψ)†

τa

2
ψ

]

≡ ~ja
NC +~ja

C .

(3.3.2)

We observe that the spin current operator can be written as a sum of two
contributions. The first piece can be written as

~ja
NC = ρ~uSa . (3.3.3)
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It factorizes in the phase velocity associated with the Abelian mass current
~u times the non-Abelian charge/spin density Σa carried around by the
mass current. This ’non-coherent’ (relative to spin) current is according to
the simple classical intuition of what a spin current is: particles flow with
a velocity ~u and every particle carries around a spin. The less intuitive,
’coherent’ contribution to the spin current needs entanglement of the spins,

~ja
C =

ρ

2
~ub{Sa, Sb} =

ρ

4
~ua (3.3.4)

and this is just the current associated with the non-Abelian phase velocity
~ua highlighted in the previous section.

The above expressions for the non-Abelian currents are of relevance to
the ’neutral’ spin fluids, but we have to deal with the gauged matter cur-
rents, say in the presence of SO-coupling. Obviously we have to substitute
covariant derivatives for the normal derivatives,

~Ja = − i~
2m

[
ψ†

τa

2
~Dψ − ( ~Dψ)†

τ b

2
ψ

]
(3.3.5)

= ~JSa +
ρ

4

(
~ua − q

m
~Aa

)

≡ ~Ja
NC + ~Ja

C , (3.3.6)

where the gauged version of the non-coherent and coherent currents are
respectively,

Ja
NC = ~JSa (3.3.7)

Ja
C =

ρ

4

(
~ua − q

m
~Aa

)
(3.3.8)

with the Abelian (mass) current ~J given by Eq. (3.2.3).
It is a textbook exercise to demonstrate that the following ’continuity’

equation holds for a Hamiltonian characterized by covariant derivatives
(like the Pauli Hamiltonian),

D0Σa + ~D · ~Ja = 0 (3.3.9)

with the usual non-Abelian covariant derivatives of vector-fields,

DµBa = ∂µBa +
q

~
εabcAb

µBc . (3.3.10)

Eq. (3.3.9) has the structure of a continuity equation, except that the
derivatives are replaced by covariant derivatives. It is well known[31]
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that in the non-Abelian case such covariant ’conservation’ laws fall short
of being real conservation laws of the kind encountered in the Abelian
theory. Although they impose a local continuity, they fail with regard to
global conservation because they do not correspond with total derivatives.
This is easily seen by rewriting Eq. (3.3.9) as

∂0Σa +∇ · ~Ja = − q

~
εabcAb

0Σ
c − q

~
εabc ~Ab · ~Jc . (3.3.11)

The above is standard lore. However, using the result Eq. (3.2.4) from
the previous section, we can obtain a bit more insight in the special nature
of the phase coherent spin current, Eq. (3.3.8). The equation (3.2.4) can
be written in covariant form as

~D · ~Ja
C = 0 , (3.3.12)

involving only the space components and therefore

D0Σa + ~D · ~Ja
NC = 0 . (3.3.13)

Since Σa is spin density, it follows rather surprisingly that the coherent
part of the spin current cannot give rise to spin accumulation! Spin accu-
mulation is entirely due to the non-coherent part of the current. Antici-
pating what is coming, the currents in the spin superfluid are entirely of
the coherent type and this ’non-accumulation theorem’ stresses the rather
elusive character of these spin supercurrents: they are so ’unmagnetic’ in
character that they are even not capable of causing magnetization when
they come to a standstill due to the presence of a barrier!

As a caveat, from the definitions of the coherent- and non-coherent
spin currents the following equations can be derived

ρ
(
∇× ~Ja

NC

)
= 4

m

~
εabc ~Jb

C × ~Jc
NC +

q

~
ρεabc ~Ab × ~Jc

NC (3.3.14)

ρ
(
∇ · ~Ja

NC

)
= −1

2
∂ρ2

∂t
Sa − 4

m

~
εabc ~Jb

C · ~Jc
NC

− q

~
ρεabc ~Ab · ~Jc

NC . (3.3.15)

From these equations it follows that the coherent currents actually do
influence the way that the incoherent currents do accumulate magnetiza-
tion, but only indirectly. Similarly, using the divergence of the Abelian



3.4 Particle based non-Abelian hydrodynamics, or the classical
spin fluid 31

covariant spin current together with the covariant conservation law, we
obtain the time rate of precession of the local spin density

∂0Σa =
∂ρ

∂t
Sa + 4

m

~ρ
εabc ~Jb

C · ~Jc
NC −

q

~
εabcAb

0Σ
c (3.3.16)

demonstrating that this is influenced by the presence of coherent- and
incoherent currents flowing in orthogonal non-Abelian directions.

This equation forms the starting point of the discussion of the (lack
of) hydrodynamics of the classical non-Abelian/spin fluid.

3.4 Particle based non-Abelian hydrodynamics,
or the classical spin fluid

We have now arrived at a point that we can start to address the core-
business of this chapter: what can be said about the collective flow prop-
erties of large assemblies of interacting particles carrying spin or either
non-Abelian charge? In other words, what is the meaning of spin- or non-
Abelian hydrodynamics? The answer is: if there is no order-parameter
protecting the non-Abelian phase coherence on macroscopic scales spin
flow is non-hydrodynamical, i.e. macroscopic flow of spins does not even
exist.

The absence of order parameter rigidity means that we are considering
classical spin fluids as they are realized at higher temperatures, i.e. away
from the mesoscopic regime of the previous section and the superfluids
addressed in Section 3.7. The lack of hydrodynamics is well understood
in the spintronics community: after generating a spin current it just dis-
appears after a time called the spin-relaxation time. This time depends
on the effective spin-orbit coupling strength in the material but it will not
exceed in even the most favorable cases the nanosecond regime, or the mi-
cron length scale. Surely, this is a major (if not fundamental) obstacle for
the use of spin currents for electronic switching purposes. Although spin
currents are intrinsically less dissipative than electrical currents it takes a
lot of energy to replenish these currents, rendering spintronic circuitry as
rather useless as competitors for Intel chips.

Although this problem seems not to be widely known in corporate head
quarters, or either government funding agencies, it is well understood in
the scientific community. This seems to be a different story in the commu-
nity devoted to the understanding of the quark-gluon plasma’s produced
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at the heavy ion collider at Brookhaven. In these collisions a ’non-Abelian
fire ball’ is generated, governed by high temperature quark-gluon dynam-
ics: the temperatures reached in these fireballs exceed the confinement
scale. To understand what is happening one of course needs a hydro-
dynamical description where especially the fate of color (non-Abelian)
currents is important. It seems that the theoretical mainstream in this
pursuit is preoccupied by constructing Boltzmann type transport equa-
tions. Remarkably, it does not seem to be widely understood that one
first needs a hydrodynamical description, before one can attempt to cal-
culate the numbers governing the hydrodynamics from microscopic prin-
ciple by employing kinetic equations (quite questionable by itself given the
strongly interacting nature of the quark-gluon plasma). The description
of the color currents in the quark-gluon plasma is suffering from a fatal
flaw: because of the lack of a hydrodynamical conservation law there is no
hydrodynamical description of color transport.

The above statements are not at all original in this regard: this case is
forcefully made in the work by Jackiw and coworkers [28, 29] dealing with
non-Abelian ’hydrodynamics’. It might be less obvious, however, that
precisely the same physical principles are at work in the spin-currents of
spintronics: spintronics can be viewed in this regard as ’analogous system’
for the study of the dynamics of quark-gluon plasma’s. The reason for the
analogy to be precise is that the reasons for the failure of hydrodynamics
reside in the parallel transport structure of the matter fields, and the fact
that the ’gauge fields’ of spintronics are in ’fixed frame’ is irrelevant for
this particular issue.

The discussion by Jackiw et al. of classical (’particle based’) non-
Abelian ’hydrodynamics’ starts with the covariant conservation law we
re-derived in the previous section, Eq. (3.3.13). This is still a microscopic
equation describing the quantum physics of a single particle and a coarse
graining procedure has to be specified in order to arrive at a macroscopic
continuity equation. Resting on the knowledge about the Abelian case
this coarse graining procedure is unambiguous when we are interested in
the (effective) high temperature limit. The novelty as compared to the
Abelian case is the existence of the coherent current ~Ja

C expressing the
transport of the entanglement associated with the non-Abelian character
of the charge; Abelian theory is special in this regard because there is no
room for this kind of entanglement. By definition, in the classical limit
quantum entanglement cannot be transported over macroscopic distances
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and this implies that the expectation value 〈 ~Ja
C〉 cannot enter the macro-

scopic fluid equations. Although not stated explicitly by Jackiw et al.,
this particular physical assumption (or definition) is the crucial piece for
what follows – the coherent current will acquire (quantum) hydrodynamic
status when protected by the order parameter in the spin-superfluid.

What remains is the non-coherent part, governed by the pseudo–
continuity equation (3.3.13). Let us first consider the case that the non-
Abelian fields are absent (e.g., no spin-orbit coupling) and the hydrody-
namical status of the equation is immediately obvious through the Ehren-
fest theorem. The quantity Σa → 〈ρSa〉 becomes just the macroscopic
magnetization (or non-Abelian charge density) that can be written as
n~Q, i.e. the macroscopic particle density n = 〈ρ〉 times their average
spin ~Q = 〈~S〉. Similarly, the Abelian phase current ρ~u turns into the
hydrodynamical current n~v where ~v is the velocity associated with the
macroscopic ’element of fluid’. In terms of these macroscopic quantities,
the l.h.s. of Eq. (3.2.9) just expresses the hydrodynamical conservation
of uniform magnetization in the absence of spin-orbit coupling. In the
presence of spin orbit coupling (or gluons) the r.h.s. is no longer zero and,
henceforth, uniform magnetization/color charge is no longer conserved.

Upon inserting these expectation values in Eqs. (3.2.2), (3.3.13) one
obtains the equations governing classical non-Abelian fluid flow,

∂tn +∇ · (n~v) = 0 (3.4.1)

∂tQ
a + ~v · ∇Qa = −εabc

(
cA0

b + ~v · ~Ab
)

Qc. (3.4.2)

Eq. (3.4.1) expresses the usual continuity equation associated with (Abelian)
mass density. Eq. (3.4.2) is the novelty, reflecting the non-Abelian par-
allel transport structure, rendering the substantial time derivative of the
magnetiziation/color charge to become dependent on the color charge it-
self in the presence of the non-Abelian gauge fields. To obtain a full set of
hydrodynamical equations, one needs in addition a ’force’ (Navier-Stokes)
equation expressing how the Abelian current n~v accelerates in the pres-
ence of external forces, viscosity, etcetera. For our present purposes, this
is of secondary interest and we refer to Jackiw et al.[28, 29]for its form in
the case of an ideal (Euler) Yang-Mills fluid.

Jackiw et al coined the name ’Fluid-Wong Equations’ for this set of
equations governing classical non-Abelian fluid flow. These would describe
a hydrodynamics that would be qualitatively similar to the usual Abelian
magneto-hydrodynamics associated with electromagnetic plasma’s were it
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not for Eq. (3.4.2): this expression shows that the color charge becomes
itself dependent on the flow. This unpleasant fact renders the non-Abelian
flow to become non-hydrodynamical.

We perceive it as quite instructive to consider what this means in
the spintronics interpretation of the above. Translating the gauge fields
into the physical electromagnetic fields of the Pauli equation, Eq. (3.4.2)
becomes,

∂tQ
a + ~v · ∇Qa =

([
~B + ~v × ~E

]
× ~Q

)
a

(3.4.3)

where ~Q(~r) has now the interpretation of the uniform magnetization as-
sociated with the fluid element at position ~r. The first term on the r.h.s.
is just expressing that the magnetization will have a precession rate in
the comoving frame, proportional to the external magnetic field ~B. How-
ever, in the presence of spin-orbit coupling (second term) this rate will
also become dependent on the velocity of the fluid element itself when an
electrical field ~E is present with a component at a right angle both to
the direction of the velocity ~v and the magnetization itself. This velocity
dependence wrecks the hydrodynamics.

The standard treatments in terms of Boltzmann equations lay much
emphasis on quenched disorder, destroying momentum conservation. To
an extent this is obscuring the real issues, and let us instead focus on the
truly hydrodynamical flows associated with the Galilean continuum. For
a given hydrodynamical flow pattern, electromagnetic field configuration
and initial configuration of the magnetization, Eq. (3.4.3) determines the
evolution of the magnetization. Let us consider two elementary examples.
In both cases we consider a Rashba-like[32] electromagnetic field configu-
ration: consider flow patterns in the xy directions and a uniform electrical
field along the z direction while ~B = 0.

a. Laminar flow
Consider a smooth, non-turbulent laminar flow pattern in a ’spin-fluid

tube’ realized under the condition that the Reynold’s number associated
with the mass flow is small. Imagine that the fluid elements entering
the tube on the far left have their magnetization ~Q oriented in the same
direction (Fig.3.1). Assume first that the velocity ~v is uniform inside the
tube and it follows directly from Eq. (3.4.3) that the ~Q’s will precess with
a uniform rate when the fluid elements move trough the tube. Assuming
that the fluid elements arriving at the entry of the tube have the same
orientation at all times, the result is that an observer in the lab frame will
measure a static ’spin spiral’ in the tube, see Fig.3.2. This simple example
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sheds light on an interesting and somewhat confusing issue. It is easy to
prove that an ordered magnet characterized by a finite spiral pitch can also
be viewed as a state carrying a spin current with a magnitude proportional
to the pitch. One might want to view this particular kind of spin flow as
just a realization of the above, except that the flow pattern is completely
fixed by the presence of the conventional magnetic (spin density) order.
We will analyze this in further detail in the next section. Finally, we leave
it to the reader to find out the peculiarity that the spiral pattern actually
will not change when the flow in the tube acquires a typical laminar, non-
uniform velocity distribution, with the velocities vanishing at the walls.

b. Turbulent flow

Let us now consider the case that the fluid is moving much faster,
such that downstream of an obstruction in the flow turbulence arises in
the matter current. In Figure 3.3 we have indicated a typical stream line
showing that the flow is now characterized by a finite vorticity in the re-
gion behind the obstruction. Let us now repeat the exercise, assuming
that fluid elements arrive at the obstruction with aligned magnetization
vectors. Following a fluid element when it traverses the region with finite
circulation it is immediately obvious that even for a fixed precession rate
the non-Abelian charge/magnetization becomes multivalued when it has
travelled around the vortex! Henceforth, at long times the magnetization
will average away and the spin current actually disappears at the ’sink’
associated with the rotational Abelian flow. This elementary example
highlights the essence of the problem dealing with non-Abelian ’hydro-
dynamics’: the covariant conservation principle underlying everything is
good enough to ensure a local conservation of non-Abelian charge so that
one can reliably predict how the spin current evolves over infinitesimal
times and distances. However, it fails to impose a global conservation.
This is neatly illustrated in this simple hydrodynamical example: at the
moment the mass flow becomes topologically non-trivial it is no longer
possible to construct globally consistent non-Abelian flow patterns with
the consequence that the spin currents just disappear.

Although obscured by irrelevant details, the above motive has been
recognized in the literature on spin flow in semiconductors where it is
known as D’yakonov-Perel spin relaxation. We hope that the analogy with
spin-transport in solids is helpful for the community that is trying to find
out what is actually going on in the quark-gluon fireballs. Because one has
to deal eventually with the absence of hydrodynamics we are pessimistic
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with regard to the possibility that an elegant description will be found,
in a way mirroring the state of spintronics. We will instead continue now
with our exposition of the remarkable fact that the rigidity associated
with order parameters is not only simplifying the hydrodynamics (as in
the Abelian case) but even making it possible for hydrodynamics to exist!

Direction of

laminar flow

Non−Abelian charge

Fluid element

Electric

field

Figure 3.1: Laminar flow of a classical spin fluid in an electric field. The fluid
elements (blue) carry non-Abelian charge, the red arrows indicating the spin
direction. The flow lines are directed to the right and the electric field is pointing
outwards of the paper. Due to Eq. (3.4.3), the spin precesses as indicated.

Figure 3.2: The laminar flow of a parallel transported spin current, Figure 3.1,
can also be viewed as a static spin spiral magnet.
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Spin sink

Electric

field

Figure 3.3: Turbulent spin flow around an obstruction in an electric field. It is
seen that only the “mass” is conserved. The change in spin direction after one
precession around the obstruction causes a spin sink. Hence it is precisely the
parallel transport, or the covariant conservation, which destroys hydrodynamic
conservation for non-Abelian charge.

3.5 Electrodynamics of spin-orbit coupled sys-
tems

Before we address the extremely interesting and novel effects in multifer-
roics and spin superfluids, we pause to obtain the electrodynamics of spin
orbit coupled systems. From the Pauli Maxwell Lagrangian (3.1.1) we see
that the spin current couples directly to the electric field and will thus act
as a source for electric fields. In order to see how this comes about let us
obtain the electrodynamics of a spin-orbit coupled system. We presuppose
the usual definition of electromagnetic fields in terms of gauge potentials,
which implies the Maxwell equations

∇ · ~B = 0 , ∇× ~E + ∂0
~B = 0 . (3.5.1)

If we vary the Lagrangian with respect to the scalar electromagnetic po-
tential, we obtain

∂iEi = 4πqεial

(
χ†∂iJ

a
l χ

)
(3.5.2)

where we suppose that the charge sources are cancelled by the background
ionic lattice of the material or that we have a neutral system. This term
is extremely interesting because it says that the “curl” of spin currents
are sources for electric fields. In fact, the electric field equation is nothing
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but the usual Maxwell equation for the electric displacement ∇ · ~D = 0
where ~D = ~E + 4π ~P with

Pi = −εialχ
†Ja

l χ . (3.5.3)

The spin current acts as a polarization for the material. The physical ori-
gin of this polarization is relativistic. In the local frame the moving spins
in the current produce a magnetic field as they are magnetic moments.
When you Lorentz transform into the lab frame, part of this field becomes
electric. On the other hand, it can be shown that ∇ · ~P = 0 unless the
spin current has singularities. Thus, in the absence of singularities spin
currents cannot create electric fields.

Varying the Lagrangian (3.1.1) with respect to the vector potential we
obtain

(
∇× ~B

)
i
= 4π ~Jem − 4π

(
∇× q~Σ

)
i
+ ∂0Ei

− 4πqεlai∂0

(
χ†ja

l χ
)

= 4π ~Jem − 4π
(
∇× q~Σ

)
i
+ ∂0Di .

(3.5.4)

The first term on the right contains the usual electromagnetic current

~Jem = 4πeρ
(
ui + ua

i χ
†Saχ

)
(3.5.5)

which includes the motion of particles due to the advance of the Abelian
and the non-Abelian phases. The term containing the non-Abelian ve-
locity(the coherent spin current) in this electromagnetic current will only
contribute when there is magnetic order 〈Sa〉 6= 0. The second term is
conventional since it is the curl of the magnetization which generates mag-
netic fields. The third is the Maxwell displacement current in accordance
with our identification of the polarization from the spin current.

3.6 Spin hydrodynamics rising from the ashes I:
the spiral magnets.

Recently the research in multiferroics has revived. This refers to materials
that are at the same time ferroelectric and ferromagnetic, while both order
parameters are coupled. The physics underlying this phenomenon goes
back to the days of Lifshitz and Landau[33]. Just from considerations
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regarding the allowed invariants in the free energy it is straightforward
to find out that when a crystals lacks an inversion center (i.e., there is
a net internal electric field) spin-spin interactions should exist giving rise
to a spiral modulation of the spins (helicoidal magnets). The modern
twist of this argument is[26]: the spin spiral can be caused by magnetic
frustration as well, and it now acts as a cause (instead of effect) for an
induced ferroelectric polarization. Regarding the microscopic origin of
these effects, two mechanisms have been identified. The first one is called
’exchange striction’ and is based on the idea that spin-phonon interactions
of the kind familiar from spin-Peierls physics give rise to a deformation
of the crystal structure when the spin-spiral order is present, and these
can break inversion symmetry[34]. The second mechanism is of direct
relevance to the present subject matter. As we already explained in the
previous section, a spiral in the spin-density can be viewed at the same
time as a spin current. In the presence of the magnetic order parameter
this spin current acquires rigidity (like a supercurrent) and therefore it
can impose its will on the ’gauge’ fields. In the spin-orbital coupling case,
the ’gauge’ field of relevance is the physical electrical field, and henceforth
the ’automatic’ spin currents associated with the spiral magnet induce
an electrical field via the spin-orbit coupling, rendering the substance to
become a ferroelectric[25].

This substance matter is rather well understood [26] and the primary
aim of this section is to explain how these ’spiral magnet’ spin currents fit
into the greater picture of spin-hydrodynamics in general. Viewed from
this general perspective they are quite interesting: they belong to a cat-
egory of non-Abelian hydrodynamical phenomena having no analogy in
the Abelian universe. On the one hand these currents are spontaneous
and truly non-dissipative and in this regard they are like Abelian super-
currents. They should not be confused with the Froehlich ’super’ currents
associated with (Abelian) charge density waves: these require a time de-
pendence of the density order parameter (i.e., the density wave is sliding)
while the spiral magnet currents flow also when the non-Abelian density
(the spiral) is static. At the same time they originate entirely in the
factorisable non-coherent current sector ~Ja

NC because this current is com-
municating with the spin density; we already learned that the coherent
non-Abelian phase current ~Ja

C is completely detached from the spin den-
sity and this current ’rules the waves’ in the spin-superfluids, or either
the non-Abelian Higgs phase. Since these two varieties of ’rigid’ currents
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cannot be distinguished by merely their dissipationless nature, a more
fanciful physical measure has to be invoked in order to distinguish them.
This observable turns out to be surprising in the spin-orbit coupling con-
text: the spin-spiral ’super’ spin current can induce monopole sources of
electrical charge. This is embodied by the observation of Mostovoy that
a vortex in the (2D) spin system has a monopole electrical charge at its
core, with a total charge determined by the spin-orbit coupling. On the
other hand, we will present a theorem in the next chapter demonstrating
that no configuration of coherent spin supercurrents exist in the spin su-
perfluid that can act as a source of electrical fields. The phase coherent
spin fluid can quantize the electrical line charge but not cause electrical
charge.

Last but no least, the spiral magnet currents offer a minimal context
to illustrate the most fundamental feature of non-Abelian hydrodynamics:
the rigidity of the order parameter is capable of restoring hydrodynamical
degrees of freedom that are absent in the ’normal’ fluid at high tempera-
ture. This is so simple that we can explain it in one sentence. One directly
recognizes the XY spin vortex in the turbulent flow of Fig. 3.3, but in the
presence of spin density order the ’spiral’ spin pattern associated with the
vortex has to be single valued, and this in turns renders the spin current
to be single valued: spin currents do not get lost in the ordered magnet!

To become more explicit, consider an ordered XY -magnet with a local
order parameter that is the expectation value of the local spin operator

〈Sx + iSy〉 = Seiθ . (3.6.1)

In general a spin state of an XY -magnet is given by
∏

lattice sites

g(~x)| ↑〉 (3.6.2)

where we have chosen S = 1/2 spins for explicitness, but similar results
hold for larger spin. The ket | ↑〉 describes a spinor in the +z direction
and g(~x) is an SU(2) rotation matrix in the xy-plane:

g(~x) = eiθ(~x)τz/2 (3.6.3)

where τz is the Pauli matrix in the z-direction. The ground state in
the ordered side of the phase diagram for the XY -magnet is given when
θ(~x) and hence g(~x) are constant independent of ~x. Besides the ground
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state, XY -magnets have excited metastable states corresponding to spin
vortices. These are easily constructed by choosing

θ(~x) = nφ , n integer , φ = arctan
(y

x

)
. (3.6.4)

Now we can compute the spin current in this state. The coherent spin
current is given by

~Ja
C =

~ρ
2m

~ua = −i
~ρ
2m

[
g−1 τa

2
∇g − (∇g−1)

τa

2
g

]
. (3.6.5)

For our case

g−1 τx

2
g =

1
2

[τx cos θ + τy sin θ]

g−1 τy

2
g =

1
2

[−τx sin θ + τy cos θ]
(3.6.6)

we have the appropriate O(2) or U(1) rotation. We also have for the
vortex θ = nϕ

Ja
c =

n~ρ
8m

∇ϕ
[
e−inϕτz/2 {τa, τ z} einϕτz/2

]

=
n~ρ
4m

(∇ϕ)δaz .

(3.6.7)

We derived in the previous section that spin currents contribute to Maxwell’s
equations and in particular Gauss’ law is

∂iEi = 4πqεial〈∂iJ
a
l 〉 (3.6.8)

where q measures the coupling between spin currents and electric fields
via spin orbit coupling. Hence using that for φ = arctan(y/x)

∇×∇φ = 2πδ(2)(~r) (3.6.9)

we find for the spin current of the vortex

∂iEi = 2π2nq
~ρ
m

δ(2)(~r) . (3.6.10)

Therefore spin vortices in XY -magnets produce electric fields!
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3.7 Spin hydrodynamics rising from the ashes II:
the spin superfluids

Even without knowing a proper physical example of a spin-orbit coupled
spin-superfluid one can construct its order parameter theory using the
general principles discovered by Ginzburg and Landau. One imagines a
condensate formed from electrically neutral bosons carrying a SU(2) spin
triplet quantum numbers. This condensate is characterized by a spinorial
order parameter,

Ψ = |Ψ| e(iθ+iϕaτa/2)χ (3.7.1)

where |Ψ| is the order parameter amplitude, nonzero in the superfluid
state, while θ is the usual U(1) phase associated with particle number,
while the three non-Abelian phases ϕa, with the Pauli matrices τa acting
on a reference spinor χ keep track of the SU(2) phase structure. Accord-
ing to the Ginzburg-Landau recipe, the free energy of the system should
be composed of scalars constructed from Ψ, while the gradient structure
should be of the same covariant form as for the microscopic problem –
’parallel transport is marginal under renormalization. Henceforth, we can
directly write down the Ginzburg-Landau free energy density for the spin
superfluid in the presence of spin orbit coupling,

F = i~ψ†D0ψ + ψ†
~2

2m
~D2ψ + m2|Ψ|2

+ w|Ψ|4 +
1

2m
ψ†

q2

4
~Aa · ~Aaψ

+
1
8π

(
E2 −B2

)
.

(3.7.2)

We now specialize to the deeply non-relativistic case where the time deriva-
tives can be ignored, while we consider electrically neutral particles (e = 0)
so that the electromagnetic gauge fields drop out from the covariant deriv-
atives.

Well below the superfluid transition the amplitude |Ψ| is finite and
frozen and one can construct a London-type action. After some algebra
we obtain that

Lspin-vel = −m

8
ρ

(
~ua − m

2
ρ~u2 − q

m
~Aa

)2
+

q2

8m
~Aa · ~Aa . (3.7.3)

Using the spin identities written in section 3.3, this can be rewritten as

Lspin-vel = −2 ~Ja
C · ~Ja

C − 2 ~Ja
NC · ~Ja

NC −
q

m

(
~Aa

)2
+

q2

8m
~Aa · ~Aa . (3.7.4)
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We see that the Ginzburg-Landau action is a sum of the spin coherent and
non-coherent square currents. The spin noncoherent part has to do with
mass or U(1) currents, but since the particles carry spin they provide a
spin current but only if 〈Sa〉 6= 0, that is if there is magnetic order. The
coherent part is a bona fide spin current originating in coherent advance
of the non-Abelian phase associated with the spin direction.

In order to make contact with the Helium literature we will write our
spin operators and the coherent spin currents in terms of SO(3) rotation
matrices via

Ra
b(~ϕ)

τ b

2
= e−iϕaτa/2 τa

2
eiϕaτa/2. (3.7.5)

Here, Ra
b(~ϕ) is an SO(3) rotation matrix around the vector ~ϕ by an angle

|~ϕ|. Using this, we obtain that the spin operator is a local SO(3) rotation
of the Pauli matrices

Sa = Ra
b(~ϕ)

τ b

2
. (3.7.6)

In terms of the rotation operators, the spin velocities related to advance
of the non-Abelian phase are

~ua =
~
m

εabc[∇Rb
d(~ϕ)]Rd

c(~ϕ) . (3.7.7)

It is also easily seen that

ua
0 = εabc[∂0R

b
d(~ϕ)]Rd

c(~ϕ) . (3.7.8)

If we look at the expressions for ~ua and ua
0 in terms of the spin rotation

matrix for the spin-orbit coupled spin superfluid (3.7.7, 3.7.8), we see them
to be the exact analog of the spin velocity and spin angular velocity of
3He-B (5.2.1) reproduced in the section 5.2. We define g through

Rαi(~ϕ)
τ i

2
= e−iϕaτa/2 τα

2
eiϕaτa/2

= g−1 τα

2
g = Sα ,

(3.7.9)

that is
g = eiϕaτa/2 , (3.7.10)

which is an SU(2) group element. We now have the spin velocities and
angular velocities expressed as

ωαi = −iTr
{
Sαg−1∂ig

}
= −iTr

{
g−1 τα

2
∂ig

}
,

ωα = −iTr
{
Sαg−1∂0g

}
= −iTr

{
g−1 τα

2
∂0g

}
.

(3.7.11)
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The first is proportional to the coherent spin current and the second to
the effective magnetization. If we define the spin superfluid density via

ρ =
1
γ2

χBc2 , (3.7.12)

we have the following Lagrangian that describes the low energy spin
physics, written in a way that is quite analogous to that of 3He-B,

L(~ϕ, ~E, ~B) =
1

2γ2
χB

(
~ω2 + 2γ~ω · ~B

)
− 1

2γ2
χBc2

(
ω2

αi −
4µ

~c
ωαiεαikEk

)

+
1
8π

(
E2 −B2

)
. (3.7.13)

From the lagrangian (3.7.13) we obtain the spin equations of motion for
the spin superfluid by varying with respect to the non-Abelian phase

∂0

[
∂L

∂(∂0g)

]
+ ∂i

[
∂L

∂(∂ig)

]
− ∂L

∂g
= 0 . (3.7.14)

We evaluate
∂L

∂g
=

∂g−1

∂g

∂ωα

∂g−1

∂L

∂ωα
+

∂g−1

∂g

∂ωαi

∂g−1

∂L

∂ωαi

= − ig−2 τα

2
(∂0g)

1
γ2

χB (ωα + 2γBα)

+ ig−2 τα

2
(∂ig)

1
γ2

χBc2

(
ωαi − 2µ

~c
εαikEk

)
(3.7.15)

∂L

∂(∂0g)
=

∂ωα

∂(∂0g)
∂L

∂ωα

= ig−1 τα

2
1
γ2

χB (ωα + γBα)
(3.7.16)

∂L

∂(∂ig)
=

∂ωαi

∂(∂ig)
∂L

∂ωαi

= − ig−1 τα

2
1
γ2

χBc2

(
ωαi − 2µ

~c
εαikEk

) (3.7.17)

which yields the rather formidable equation of motion

0 = ∂0

[
ig−1 τα

2
(ωα + γBα)

]
+ ∂i

[
−ig−1 τα

2
c2

(
ωαi − 2µ

~c
εαikEk

)]

+ ig−2 τα

2
(∂0g) (ωα + γBα)− ig−2 τα

2
(∂ig)c2

(
ωαi − 2µ

~c
εαikEk

)
.

(3.7.18)
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After some straightforward algebra this equation reduces to the fairly
simple equation

∂0 (ωα + γBα)− c2∂i

(
ωαi − 2µ

~c
εαikEk

)
= 0. (3.7.19)

The solution of this equation of motion gives the spin velocities and an-
gular velocities as a function of space and time.

Similarly, by varying the Lagrangian (3.7.13) with respect to the elec-
tromagnetic potentials, we obtain the Maxwell equations for the electro-
magnetic fields “created” by the spin velocities and angular velocities,

∂kEk = 4π∂k

(
2cµ

~γ2
χBεαikωαi

)
, (3.7.20)

(
∇× ~B

)
α

= − 4π

(
∇× 1

γ
χBωα

)

+ ∂0

(
Eα − 4π

2cµ

~γ2
χBεβiαωβi

)
.

(3.7.21)

We like to draw the reader’s attention to the fact that Mineev and
Volovik derived these results already in the seventies [10] in the context
of 3He-B. We show here that these hold in the general case of an SU(2)
spin superfluid, and will demonstrate in section 5.4 that similar equations
can be derived for the case of superfluid 3He-A as well.
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Cha p t e r 4

Charge trapping by spin
superfluids

We now go back to the trick of charge trapping in superfluids we used
previously to wet your appetite. How does this magic trick work? At the
heart of our idea lies the spin vortex solution. Let us first briefly sketch
the argument, and then prove it. The straight wire causes an electric field
of

~E =
λ

2πε0r
r̂, (4.0.1)

where r̂ is a radial unit vector in the xy plane perpendicular to the cylinder
axis z. The azimuthal angle is ϕ. We now need to determine the electric
field in the superfluid region. Because of the symmetry of the problem,
this electric field will be radial. Lets call it Ei. This electric field will
drive a spin current, which will be a source of electric field itself if it has
a singularity, which because of radial symmetry will lie on the wire. The
symmetry of the problem suggests that the spins will be polarized along
the axis of the cylinder. By solving the equations of motion in the presence
of an electric field and no magnetic field, we obtain that when the spin
current and spin angular velocity satisfy the Spin Hall relation for spin
direction α = z

ωα = 0, ωzϕ =
2µ

~c2
Er, (4.0.2)
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with the magnetic moment of the He-atoms

µ = g
me

mHe
µB, (4.0.3)

whereas the other spin superfluid velocities vanish. Since the electric fields
do not depend on the z-coordinate and only have a radial component,
the equations of motion (3.7.19) are satisfied. In our case, written in
cylindrical coordinates,

~ωz =
2µ

~c2
εzikEk ∼ ϕ̂ . (4.0.4)

We see that the electric field leads to a spin vortex, i.e., z-polarised
spins flowing around the wire. This is nothing different from vortices in
Bose superfluids induced by rotation. This might cause some concern as
we have an SU(2) superfluid rather than a U(1). Why does the spin vortex
have stability? First the geometry and topology of the experimental set
up does not allow the formation of SU(2) monopoles and restricts the
only topological objects that exist to obey the experimental cylindrical
symmetry. One possible argument relies on a result from mathematics.
Gauge theories coupled to matter are known to mathematicians as bundle
theories. One way to classify them is by using Chern classes [1, 35]. The
Chern classes do not depend on the gauge chosen, or the configuration of
the matter fields, but are a property of the bundle. The ramification is
that if the topology of the gauge field is cylindrical, the matter field has
cylindrical topology as well.

The stability of the vortex can also be obtained from the fact that
only a vortex centered on the wire, with spin parallel to it, satisfies the
equations of motion as shown above, and that such a solution is an energy
minimum. From the Lagrangian in the previous section the momentum
conjugate to the non-Abelian or spin phase is

H =
χBc2

2γ2

(
ω2

αi −
4µ

~c2
ωαiεαikEk

)
+

1
8π

E2 . (4.0.5)

When the vortex solution and thus the Spin Hall relation is valid we have
energy density

HSH =
(

1
8π

− 2χBc2

γ2

µ2

~2c4

)
E2 . (4.0.6)

If there is no vortex we have energy density

Hno-vortex =
1
8π

E2 (4.0.7)
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which is bigger than the energy density HSH corresponding to a vortex
present and thus the solution with the vortex is favored. If we have a
vortex solution and perturb around by δωαi the energy changes by

δH =
χBc2

2γ2
(δωαi)

2 (4.0.8)

which is a positive quantity and we see that the vortex solution is stable
against perturbations as they increase the energy of the system. We can
rephrase the above reasoning in a more sophisticated way: the cylindrical
topology of the fixed-frame gauge fields imposes the same vortex-type
topology on the matter field, because of the parallel transport structure
originating from spin-orbit coupling!

The vortex topology can be classified by winding numbers. Indeed,
from the definition of the spin supercurrent in chapter 3.7 we have

~ωz = −∇θ. (4.0.9)

Therefore the spin current must satisfy the quantization condition
∮

~ωz · d~l = 2πN (4.0.10)

when we integrate around the cylinder where N is an integer. This quan-
tisation is not quite shocking, since any order parameter theory has this
condition. However, bearing in mind the magnetic flux trapping in super-
conductors, it is interesting to integrate the spin current after substituting
the spin-Hall equation. By Gauss’ law, one obtains that the very same
phase velocity integral becomes

∮
~ωz · d~l =

e

mHe
µ0λ2π. (4.0.11)

In other words, the charge density is quantised in units of

λ = Nλ0 = N
mHe

µ0e
= 2.6× 10−5C/m! (4.0.12)

This experiment is the rigid realisation of the Aharonov-Casher phase
[13], for which our application is inspired by Balatskii and Altshuler [9].
The rigidity is provided by the superfluid density, forcing the integral
winding number. Our idea is actually the spin superfluid analogue of
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Aharonov-Bohm flux trapping [36] with superconducting rings. The quan-
tization of magnetic flux is provided by the screening of electromagnetic
fields, causing zero total superconducting current. The latter, being de-
fined covariantly, consists of a U(1) superfluid velocity and a gauge field.
Calculation of the line integral

0 =
∮

Jsc
i dxi =

∮
∂iφ−

∮
Aidxi = 2πn− Φsc, (4.0.13)

leads to the flux quantisation condition. In the above argument, the gauge
fields Ai have dynamics, leading to screening of the Ai in the supercon-
ducting ring.

In our case, the gauge fields are fixed by the electromagnetic fields, such
that there cannot be screening effects. Still, the spin-Hall equations, which
solve the equations of motion (3.7.19), lead to a vanishing superconducting
current. The gauge fields, being unscreened, play now a quite different
role: these are necessary to force the topology of the superfluid order
parameter to be U(1). The result is the same: quantisation of electric
flux, determined by the charge on the wire.

Charge trapping in spin superfluids and in spiral magnets both origi-
nate from the coherent part of the spin current. In this sense, there is not
too much difference between the two effects. On the other hand, there is
a subtle, but important distinction. For spiral magnets there is no need
for electric fields to impose the supercurrent, since they are wired in by
the magnetic spiral order. In contrast in the spin superfluids, an elec-
tric field is necessary to create a coherent spin current since there is no
magnetisation.

The question which surely is nagging the reader’s mind, is whether
one can actually perform our experiment. The answer is threefold. To
begin with, nobody knows of the existence of a material exhibiting an
SU(2)-order parameter structure. Fortunately, the existence of two spin
superfluids is well-established: 3He-A and 3He-B.

We will show that 3He-B has an order parameter structure similar to
that of the pure spin superfluid. The effect of dipolar locking will destroy
the spin vortex caused by the electric field, however, see Section (5.3).
Then we will show that 3He-A has, for subtle reasons, the wrong topology
to perform our experiment. We will also demonstrate that the small spin-
orbit coupling constant forces us to use an amount of 3He with which one
can cover Alaska, turning our experiment into a joke. In the outlook of
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this work, we will discuss how the organic superconductors [37, 38] might
meet the desired conditions.

To make these discussions more substantial, let us first consider the
secrets of 3He more closely.
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Cha p t e r 5

Superfluid 3He

5.1 Order parameter structure of 3He

As is well-known, 3He is a fermionic atom carrying spin 1
2 . In field theory,

we describe it with an operator cpα, where p is momentum and α is spin.
In the normal phase, it is a Fermi liquid, but for low temperatures and/or
high pressures, 3He displays a BCS-like instability towards pairing. In-
deed, the condensate wave function Ψ displays an order parameter which
transforms under both spin and orbital angular momentum:

〈Ψ|
∑
p

pcpαc−pβ |Ψ〉 = Aµi(iσµσ2)αβ, (5.1.1)

so the order parameter describes a p-wave state. The Aµi carry a spatial
index i and an internal spin index µ. The numbers Aµi transform as a
vector under the spin rotation group SO(3)S acting on the index µ and the
orbital rotation group SO(3)L acting on the index i. We can reconstruct
the wave function Ψ from the Aµi as follows. First we rewrite them as a
vector decomposition with amplitudes akl in the following way:

Aµi =
∑

k,l

aklλ
k
µλl

i. (5.1.2)
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The λk,l are vectors. Then the wave function in momentum space Ψ(p) =
〈p|Ψ〉 is the decomposition

Ψ(p) =
∑

k,l

aklYL=1,k(p) χS=1,l , (5.1.3)

where YL=1,k is a triplet spherical harmonic and χS=1,l is a triplet spinor.
This means that the order parameter has 3×3×2 real degrees of freedom.
Indeed, following Volovik [15] and Leggett [14], there exist two mean-field
states.

The first one is an isotropic state with vanishing total angular mo-
mentum J = L + S = 0. In order to have zero projection of the total
spin mJ = ml + ms = 0, we have for the coefficients in the decomposition
(5.1.2)

a+− = a−+ = a00 = ∆B. (5.1.4)

This state is called the B-phase of 3He, or the BW-state, after Balian and
Werthamer [39]. This means that the order parameter looks like

Aαi = ∆Bδαi. (5.1.5)

There is still a degeneracy, however. Indeed, both the spin and orbit index
transform under SO(3), which leads to an order parameter manifold

Rαi = RL
ijR

S
αβδβj , or R = RS(RL)−1. (5.1.6)

So the matrix R ∈ SO(3) labels all degenerate vacua and describes a
relative rotation of spin and orbital degrees of freedom. Including also the
U(1) phase of the matter field, the order parameter manifold of 3He-B is

GB = SO(3)rel × U(1)matter. (5.1.7)

This will be the starting point of our considerations for 3He-B, in which
we will often drop the U(1) matter field.

The second one is the A-phase, which has just one non-vanishing am-
plitude in (5.1.2), viz.,

a0+ =
√

2∆A, (5.1.8)

which corresponds to a state with ms = 0 and ml = 1. The quantisation
axes are chosen along the ẑ-axis, but this is just arbitrary. This is known
as the 3He-A phase, or the Anderson-Brinkman-Morel (ABM) state [40].
The order parameter is

Aαi = ∆Aẑα(x̂i + iŷi). (5.1.9)
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Rotations of the quantisation axis of 3He-A lead to the same vacuum,
which tells us how to describe the degeneracy manifold. The vector de-
scribing spin, called the d̂-vector in the literature [14], can be any rotation
of the ẑ-axis:

d̂α = RS
αβ ẑβ. (5.1.10)

Since only the direction counts in which the d̂-vector points, its order
parameter manifold is the 2-sphere S2. The orbital part of the order
parameter is called the l̂ vector, which is in the ”gauge”(5.1.9) simply ẑ.
Again, the orientation is arbitrary, so that any rotation RL and gauge
transformation eiφ leads to a correct vacuum state,

ê
(1)
i + iê

(2)
i = eiφRL

ij(x̂j + iŷj), (5.1.11)

where l̂ = e(1) × e(2) is invariant under eiφ. This phase communicates
with the phase of the matter field, so that the order parameter has a
relative U(1)rel = U(1)matter−orbital. For the determination of the order
parameter manifold for He-A, we need to observe that the order parameter
does not change if we perform the combined transformation d̂ → −d̂ and
(ê(1)

i + iê
(2)
i ) → −(ê(1)

i + iê
(2)
i ). This means that we have to divide out an

extra Z2 degree of freedom. In summary, the order parameter manifold
for He-A is

GA = (S2
s × SO(3)l)/Z2, (5.1.12)

where s refers to the spin and l to the orbit. The intricateness of the order
parameter already indicates that there is a lot of room for various kinds
of topological excitations and other interesting physics. For extensive
discussions, we recommend the books of Grigory Volovik [15, 16]. What
counts for us, however, is how the topology is influenced by switching on
fixed frame gauge fields.

5.2 3He-B

As discussed above, the order parameter of 3He is described by an SO(3)
matrix R. The question is now if R admits spin vortex solutions. In
principle, it does, because SU(2) rotations are like SO(3) rotations, since
they are both representations of angular momentum, as we learned in
freshman quantum mechanics courses. This means that, in principle, all
considerations for the SU(2) case apply to 3He-B as well. In particular,
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the spin superfluid velocity (3.7.11) has a similar expression, but now with
g = R ∈ SO(3). It reads

ωαi =
1
2
εαβγRβj∂iRγj . (5.2.1)

Inspired by the SU(2) case, which was effectively Abelianised, we try
a vortex solution around the z-axis (assuming the electric field is radial)

R = exp(iθJ3) =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 , (5.2.2)

where J is the generator of total angular momentum, and θ = arctan(x2
x1

).
With the help of the SO(3) analogue of Eq. (3.7.11), the superfluid ve-
locities (5.2.1)are readily calculated to be

ω3
1 = −(∂1R1k)R2k =

x2

r2
=

2µ

~c2
E2

ω3
2 = −(∂2R1k)R2k = −x1

r2
= − 2µ

~c2
E1

ω1
3 = −(∂3R2k)R3k = 0

ω2
1 = −(∂3R1k)R3k = 0, (5.2.3)

where r2 = x2
1 + x2

2. Since the groups SO(3) and SU(2) give the same
equations of motion (3.7.19), we see that the Ansatz (5.2.2) satisfies these
as well, giving a spin-Hall current for the z-polarised spin. In other words,
3He-B is a possible candidate for our quantised spin vortex.

This result can also be understood by topological means, in the fol-
lowing way. The equation of motion for the SU(2) case tells us, that the
vacuum manifold for the spin becomes U(1) instead of SO(3) ' SU(2).
Only if we were allowed to change the orientation of the wire, described
by a point on S2, we would obtain the full SO(3). This is the translation
of the mathematical fact that SO(3)/S2 ' U(1), merely saying that a
rotation is fixed by an axis of rotation and the angle of rotation about
that particular axis. The implication is that we need to calculate the
fundamental group of GB/S2 instead of GB itself:

π1(SO(3)/S2) = π1(U(1)) = Z , (5.2.4)

leading to the existence of vortices in a cylindrical set up, i.e., the inclusion
of radial electric fields induces vortices.

There is however one effect which destroys our spin vortex solution.
This effect, known as dipolar locking, will be discussed in the next section.
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5.3 Dipolar locking

In the 1970s, Leggett described in his seminal article about 3He many im-
portant properties of this interesting system [14]. One of them is how the
spin part of the condensate wave function Ψ(~x) interacts with its orbital
motion by a ~S · ~L interaction. According to Leggett, the contribution of
the Cooper pairs to the dipolar energy is

Edip = −gdip

∫
d~x

1
x3

(|Ψ(~x)|2 − 3|~x ·Ψ(~x)|2)

= gdip

∫
dΩ
4π

3|n̂ · (Aαinα)|2 − constant, (5.3.1)

remembering that the spin order parameters carry a spatial index, cf.
(5.1.9), (5.1.5). We used the notation n̂ = ~x

|x| . On inserting the order pa-
rameters (5.1.9) and (5.1.5), we obtain for both phases the dipole locking
Lagrangians

Ldip,B = −gdip

(
(TrR)2 + Tr(R)2

)
,

Ldip,A = −gdip(l̂ · d̂)2. (5.3.2)

For the 3He-A part, we do not need to solve the equations of motion
in order to infer that the orbital and spin vector wish to be aligned. For
the B-phase, we give a derivation of the Leggett angle. A general matrix
R ∈ SO(3) can be described by three Euler angles. For the trace, only
one of them is important, let’s say it is called θ. Then

Ldip,B = −gdip

{
(1 + 2 cos θ)2 + 2(cos2 θ − sin2 θ)

}
, (5.3.3)

which leads to the static equation of motion

0 =
dLdip,B

dθ
= 4 cos θ + 1, (5.3.4)

with the Leggett angle as solution,

θL = arccos(−1
4
) ' 104o. (5.3.5)

The Leggett angle tells us that one degree of freedom is removed from
the order parameter of 3He-B so that

SO(3)rel → GB,dip = S2, (5.3.6)
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but π1(S2) = 0, as any closed path on the sphere can be continuously
shrunk to a point.

Now we can also understand that dipolar locking destroys vortices,
even in a cylindrical set up, i.e. with a radial electric field, since

π1(GB,dip/S2) = π1(e) = 0 . (5.3.7)

The “division” by the manifold S2 translates the fact that different vortices
in the 3He-B manifold are only equivalent to each other up to different
orientations of the cylindrical wire, being described by S2. Another way
to understand the destruction of vortices beyond the dipolar length, is
that the U(1) vortex angle θ is fixed to the Leggett angle, as depicted in
Figure 5.1.

Figure 5.1: The destruction of the spin vortex by dipolar locking. The U(1)
degree of freedom is indicated by an arrow. In the center where the electric
field is located, the angle follows a vortex configuration of unit winding number,
corresponding to one charge quantum. Since the electric field, decaying as 1

r , is
not able to compete with the dipolar locking at long distances, the U(1) angle
becomes fixed at the Leggett angle, indicated by a horizontal arrow.

The fact that the vortices are destroyed, even though the spin-orbit
coupling energy is higher than the dipolar locking energy [10], is due to
the fact that small energy scales do play a role at large distances. This
is similar to spontaneous symmetry breaking in, for example, an XY-
antiferromagnet. A small external field is enough to stabilise domain walls
at long wavelenghts.
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5.4 3He-A

In the discussion of the pure spin superfluids and of 3He-B, we used the
fact that the order parameter has a matrix structure, namely SU(2) and
SO(3), respectively. For the SU(2) case we had to transform from the
fundamental spinor representation to the adjoint matrix representation.
Since both representations are SU(2), the physics did not change fun-
damentally. The resulting equations of motion were equations for group
elements g, with the ramification that spin vortex states lower the energy
with respect to the trivial solution, cf. Eq.(4.0.6). As a result, the vac-
uum manifolds in both cases become U(1) instead of SU(2) (pure spin
superfluid) or SO(3) (3He-B without dipolar locking). The topological
protection of the spin vortex solution followed from the fact that U(1) is
characterised by the winding numbers, π1(U(1)) = Z.

For the case of 3He-A, matters are different, since the spin order para-
meter for 3He-A is a vector in S2 instead of a matrix in SO(3). Although
SO(3) acts on S2, these manifolds are not the same. What we will prove is
that as a result, spin vortices do not lower the energy in the presence of an
electric field, as opposed to the 3He-B and pure spin superfluids. The con-
sequence is that the vacuum manifold remains S2, and since π1(S2) = 0,
spin vortices are not protected. The presence of dipolar locking will not
change matters.

Let us prove our assertions by deriving the equations of motion from
the Lagrangian for 3He-A.

The free energy functional [15] for 3He-A is quite analogous to that of
liquid crystal[41], as the A phase is both a superfluid and liquid crystal
is some sense. Besides the bulk superfluid energy, there are also gradient
energies present in the free energy, of which the admissible terms are
dictated by symmetry:

Fgrad = γ1(∂iAαj)(∂iAαj)∗ + γ2(∂iAαi)(∂jAαj)∗ + γ3(∂iAαj)(∂jAαi)∗

Aαi = ∆Ad̂αeiφrel(ê(1)
i + iê

(2)
i ). (5.4.1)

This then leads to

FLondon
grad =

1
2
Kijmn∂iêm∂j ên + Cij(vs)iεjkl∂kêl

+
1
2
ρij(∂id̂α)(∂j d̂α) + gdip(d̂αêα)2. (5.4.2)
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The coefficients Kijmn and Cij are the liquid crystal like parameters[41].The
superfluid velocity vs is the Abelian superfluid velocity coming from the
relative U(1) phase.

We are going to prove that 3He-A does not have topologically stable
spin vortices, and that dipolar locking does not stabilise these. Generically,
the spin stiffness tensor ρij is given by [15]

ρij = ρ|| l̂i l̂j + ρ⊥
(
δij − l̂i l̂j

)
, (5.4.3)

but it becomes fully diagonal when the neglect anisotropies in the spin
wave velocities, i.e., ρ|| = ρ⊥. We are also take that the Kij,mn and and
Cij are fully diagonal, since this will not change the nature of the universal
low energy physics. Including now spin-orbit coupling and kinetic terms
the 3He-A Lagrangian is

LA(ψαj , ~E, ~B) = − ~2

2mc2

{
|∂0êj |2 + (∂0dα)2 +

2µmns

~3c
εαβγ d̂β∂0d̂γBα

}

+
~2

2m

{
|∂iêj |2 + (∂idα)2 − 2µmns

~c2
εαβγεαikd̂β∂id̂γEk

}

+
1
8π

(
E2 −B2

)− 1
2
gdip

(
d̂ · l̂

)2
. (5.4.4)

The strategy for solving the equations of motion is as follows: first we
demonstrate that a spin vortex is possible without dipolar locking, but
that is does not gain energy with respect to the constant solution. Then
we show that the spin vortex is not stabilised on switching on the dipolar
locking.

Without dipolar locking a spin-only action is obtained, leading to an
equation of motion which resembles (3.7.19),

∂i

[
∂idj − 2µmns

~c2
εαik(εαβj)dβEk

]
= 0. (5.4.5)

Let us choose a reference vector Dν , such that dj = RjνDν . Again, R is
an SO(3) matrix, describing the superfluid phase of the S2 variable d. In
this way, the equation of motion for the group element R reads

∂i

[
∂iRjν − 2µmns

~c2
εαik(εαβj)RβνEk

]
= 0. (5.4.6)
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Using cylindrical coordinates, the demonstration that the spin vortex
Ansatz for R is a solution to this equation of motion is analogous to the
proof that a spin vortex exists in 3He-B, cf. Eq.(5.2.3). On the other hand,
this equation also admits constant R, i.e., the equation (5.4.5) admits a
constant Dµ as well. Substituting both solutions back into the energy
functional Eq.(5.4.4), there turn out to be no energy differences between
the spin vortex and the constant solution. In mathematical terms, the
vacuum manifold in the presence of a cylindrical electric field remains S2.
In plain physics language: the electric field does not prevent phase slips
to occur.

The presence of dipolar locking makes matters even worse, since the
equations of motion become The equations of motion for e and d involving
dipolar locking,

~2

2m
∂2

i ê
(1)
j = −gdip(εabcê

(1)ê(2)
c d̂a)εkjmê(2)

m d̂α

~2

2m
∂2

i ê
(2)
j = −gdip(εabcê

(1)ê(2)
c d̂a)εkmj ê

(1)
m d̂α

∂i

[
∂idj − 2µmns

~c2
εαik(εαβj)dβEk

]
= −2gdip(εabcê

(1)ê(2)
c d̂a)εjlmê

(1)
l ê(2)

m .

(5.4.7)

It is clear that in general, a vortex configuration for d̂ is not a solution,
since the left hand side of the equation for d̂ is annihilated, whereas the
right hand side is not. Instead, the orbital and spin vectors will perform
some complicated dance, set in motion by the electric field.

The conclusion as to whether our charge trapping experiment is pos-
sible, is that it will not work for 3He-A.

5.5 Baked Alaska

In the search for an experimental realisation of the proposed charge trap-
ping experiment, it turned out that 3He-B admits spin vortex solutions
only at short wavelengths. But if there were a way to circumvent dipolar
locking in some ideal world, nothing would stop us from performing the
actual experiment.

Or... does it? It turns out that the numbers which Nature gave us
conspire to obstruct matters. It is really hidden in the fact that electric
fields are so strong, and spin-orbit coupling so weak. Let us first confess
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that in the previous considerations we did not regard a very important
part of our charge trapping device, namely, the wire itself. The charge
stored on it is hugely repelling indeed, giving rise to an enormous charging
energy.

First, we calculate the Coulomb energy stored in the wire. Let ρ(x) be
the charge density distribution, which we approximate by a step function
of the radius. Then,

WCoulomb =
1

8πε0

∫
ρ(x)ρ(x)
‖x− x′‖dxdx′

=
1

8πε0

Q2
tot

πa2L
I. (5.5.1)

We integrated over the center-of-mass coordinate, and (with the defini-
tions u = x− x′ and q = L/a) we introduced

I ≡
∫ L

0
duz

∫ a

0
2πdu⊥u⊥

1
‖u‖

= 2π

{
−1

2
L2 + a

∫ L

0
duz

√
1 +

(uz

a

)2
}

= 2π
{
−1

2
L2 +

a2

2

(
q
√

1 + q2 + ln(q +
√

1 + q2)
)}

' 2π
a2

2
ln(2q) for L >> a. (5.5.2)

We used the standard integral
∫

dτ
√

1 + τ2 = 1
2τ
√

1 + τ2 + 1
2 ln(τ +√

1 + τ2). Hence

WCoulomb =
1

8πε0
λ2L ln

(
2L

a

)
. (5.5.3)

For the parameters under estimation, WCoulomb/L ' 1J/m, which is really
enormous, since the coupling constant of electric fields is so huge.

The question is now if the superfluid is strong enough to keep the
charge trapped. Indeed, if it doesn’t, the system can lower its energy
by simply discharging the wire, causing a big spark, and destroying the
superfluid. This is analogous to magnetic flux trapping in superconducting
rings with the Aharonov-Bohm effect [36]. The flux trapped in a ring is
a metastable state, but the superconducting condensate is strong enough
to keep it there.
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R

a
ξ

Figure 5.2: View from the top of our container. The container radius is R, and
the wire has radius a. Now, the Coulomb energy of the wire has to make a tiny
region of superfluid normal again, in order to make phase slips happen, removing
the topological constraint. The region in which this should happen, needs to be
of the width of the coherence length ξ, but it has to extend over the whole radius
of the container.

However, spin-orbit coupling is too weak to do so with our Aharonov-
Casher analogue. In fact, the only thing the system needs to do, is to
destroy the spin superfluid, not in the whole container, but just a small
strip of the order of the coherence length ξ, which is of the order of 0.01µm
[42].

We now need to estimate the energy density of the fluid. To do this,
we perform Landau theory for the superfluid order parameter ψ,

δF =
∫ {

a|ψ|2 +
1
2
b|ψ|4

}
dx. (5.5.4)

This expression is zero when there is no superfluid. There is no kinetic
term, since ψ is parallel transported by the electric field: indeed, if it sat-
isfies the equations of motion, the kinetic term vanishes, cf. Eq. (3.7.19).
Hence, we are only left with the potential energy terms. From Landau
theory, we know the saddle point value for ψ in terms of a = α(T − Tc)
and b, viz.,

|ψ|2 =
−a

b
⇒ δF = −V

α2

2b
(T − Tc)2, (5.5.5)

where V = πR2L is the volume of the container. Note that R is the
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unknown variable in our problem. From Landau and Lifschitz we obtain
the BCS-parameters

a(T ) =
6π2

7ζ(3)
kBTc

µ
(kBTc)

(
1− T

Tc

)
, b = α

kBTc

ρ
, (5.5.6)

where ρ is the superfluid density. For low temperatures T << Tc we have
µ ' εF , so

δF ' 3.52(nkBTcV )
kBTc

εF
. (5.5.7)

We use experimental values [43] εF /kB = 0.312K and Tc = 3mK. From
the Fermi gas relation ρ = p3

F /3π2~2 we then obtain ρ ≈ 15 mol/liter.
This leaves us with an estimate

δF

V
∼ 34 J/m3.

The question we need to ask is: how big does the container radius R need
to be, in order to remain in the metastable, charge trapped state? The
estimate per unit length L is

WCoulomb

L
=

δF

V
Rξ. (5.5.8)

Due to the enormously small ξ and the enormously big WCoulomb, this
leads to a truly disappointing radius of

R ' 1000km, (5.5.9)

enough to cover Alaska, and much more than the total amount of 3He on
Earth (180 liters). There might be enough 3He on the Moon, but still it
is a “only in your wildest dreams” experiment. Is there no way out? In
the concluding chapter 9 , we give a direction which might provide some
hope.
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Cha p t e r 6

Projective symmetry

In the first part of this thesis the parallel transport aspect of non-Abelian
gauge theories was considered. It was shown how spin-orbit coupling ap-
pears as an SU(2) Yang-Mills theory in disguise: the electromagnetic fields
coupling to spin act as a non-Abelian parallel transport structure. Central
to this construction is the fixed-frame nature of the parallel transport fields
as they are completely determined by the electromagnetic fields applied to
the spin system. This implies that the analogy with ordinary Yang-Mills
gauge theory is not complete since the fields providing the parallel trans-
port do not obey the dynamics of SU(2) gauge fields, and hence do not
impose conservation laws for spin-orbit coupled systems. It was shown
that only in the phase coherent phase, analogous to the Higgs phase in
Yang-Mills theory, conservation laws emerge, giving hydrodynamic status
to the spin-Hall equation, familiar from spintronics.

In the second part of this work a system is studied in which non-
Abelian gauge theory appears in its full glory: the non-Abelian gauge fields
are now introduced as fields imposing local constraints, thereby requiring
the gauge fields to become fully dynamic. This dynamics give rise to
the phenomenon of confinement, familiar from quantum chromodynamics
(QCD) in high-energy physics. Quantum chromodynamics is the SU(3)
gauge theory describing quarks and gluons, mediating the gauge force.
This gauge theory is in a confining phase, meaning that up to very high
energies, only hadrons like protons and mesons can exist. Only if there
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were a deconfining phase would the quarks and gluons acquire an existence
of their own.

In this part of the thesis, we are going to explain how an SU(2) gauge
theory emerges in a condensed matter system known as the Mott insulator
(MI) [18, 44, 45]. It is shown how a deconfining state can emerge in the
context of an SU(2) gauge theory, following the work of theorists Lee,
Wen and Nagaosa [18, 44]. The deconfined “quarks” are called spinons
and holons, forming the meat-and-potato electrons after the confinement
transition. The stability of the deconfined state against gauge fluctuations
is provided by the assumption that a mean field state of condensed spinons
exists. This Higgs-like phase is able to give mass to gauge fluctuations,
preventing confinement, at least in some cases [44].

This chapter starts with the explanation of how the SU(2) gauge the-
ory emerges from the Mott insulator, the parent state of high-Tc com-
pounds. Next, we give an example of a special class of mean field states,
or Higgs phases, in which the miracle of deconfinement happens. The
stability of this state will be explained.

In the course of the story, the concept of quantum order is discussed,
as introduced by X.-G. Wen [18]. This novel idea is the gauge theory
counterpart of the classical concept of symmetry breaking. The motivation
for the introduction of quantum order is that, on the one hand, mean fields
form a measure of order. On the other hand, it turns out that mean field
states can be gauge equivalent, but a gauge symmetry can never be broken
[46]. Hence the Landau-Ginzburg-Wilson paradigm for classical order
parameter theories, as classified by broken symmetries, does not work.
In order to still be able to classify order in quantum systems obeying a
gauge symmetry, X.-G. Wen introduces the projective symmetry group
(PSG). This classification exploits the fact that mean-field theories with
different symmetries can still be equivalent up to a gauge transformation,
thus leading to the same physical state. In the context of SU(2) gauge
theory it is shown that some quantum orders, as classified by the PSG,
give stability to a deconfined spin liquid.

Let us now set the stage for the SU(2) gauge theory for high-Tc su-
perconductors, which emerges from Mott insulator states.
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6.1 SU(2)-gauge theory of the half-filled Mott in-
sulator

Since the discovery by Bednorz and Müller of compounds being able
to support superconductivity up to much high temperatures than pre-
viously encountered, a number of compounds showing the same excit-
ing phenomenon have been discovered. Some well known examples are
La2−xSrxCuO4, La1.6−xNd0.4SrxCuO4, YBa2Cu3O6+x and
Bi2Sr2CaCuO8+δ. Soon after the discovery, it was realised what the rele-
vant physics of these compounds is [47]. The high-Tc materials consist of
weakly coupled copper-oxide planes, the copper-oxide bonds forming the
bonds in a square lattice. The relevant physics is that of strongly repelling
electrons in the d-shells of the copper atoms.

For zero doping, i.e., x = 0 in the above materials, the electrons are
unable to move due to this repulsion, and form the state known as the
Mott insulator.

On the other hand, on introducing dopant atoms, like strontium or
oxygen, the electron wave functions become overlapping, enabling tunnel-
ing to nearby sites. This might be connected to the fact that for dopings
of 8%-25% superconductivity emerges, although the parent compound is
an insulator instead of a metal, as for conventional superconductors like
Al. In the early days of this research area it was realised that the question
of high-Tc is how superconductivity emerges on doping a Mott insulator.

One thing is clear: the explanation will probably be quite different
from the explanation of conventional superconductivity. The latter in-
volves a weakly interacting electron system, i.e., a conducting Fermi liquid,
which becomes unstable towards superconductivity by electron-phonon
coupling. On the other hand, in the high-Tc materials one is dealing with
strongly interacting electrons, with the Mott insulating ground state.

The textbook starting approach in understanding this problem, is writ-
ing down a Hamiltonian capturing both the Coulomb repulsion U and
tunneling t between sites, the Hubbard Hamiltonian [48]. In the limit of
half filling, there is one electron on each site. Because of the Coulomb
repulsion, these are not able to move, leading to the Mott insulator state.
Virtual hopping is still possible. By the Pauli exclusion principle, these
virtual processes are only possible when the spins of adjacent electrons are
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anti-aligned. So the effective Hamiltonian is the Heisenberg Hamiltonian,

Hheis = J
∑

〈ij〉
Si · Sj , (6.1.1)

where the operators Si describe the spins of the electrons. The effective
Heisenberg coupling constant J = 4t2

U is positive. A key observation is
that this Hamiltonian is obviously invariant under global SU(2), i.e., it
describes spin singlet states.

The spin operators S, being composed of two fermionic electrons, are
bosonic in nature. Let us now assume that these spins are not the funda-
mental particles, just as we can assume that baryons and mesons are not
the fundamental particles in nature, as is done in QCD. In high-energy
physics, this approach is chosen to more concisely describe the zoo of par-
ticles discovered in accelerators. In condensed matter, the objective is
different: from the elementary particles forming the spinons, one hopes to
find other states than the Mott insulator, providing a possible handle to
understand how superconductivity emerges on doping the Mott state.

Let us now exploit this idea of the spinon degrees of freedom as the
relevant ones by introducing the fermionic, chargeless spin-1

2 operators
fiα, with spin index α. The spin operator S on site i is then represented
in terms of the Pauli matrices τ l as

Sl
i =

1
2
f †iατ l

αβfiβ. (6.1.2)

At a first glance, this spin operator, and every Hamiltonian expressed
in terms of Si, is invariant under the U(1) gauge transformation

fi → fie
iθi . (6.1.3)

This is the usual local symmetry connected with local charge conservation.
To see this, we have to realise that this U(1) symmetry means that in
decomposing Si according (6.1.2) degrees of freedom are introduced which
are not physical: no matter what phase θi is chosen, the physical spin
operator remains the same. This redundancy can be projected out by
including the constraint

f †iαfiα = 1, (6.1.4)

which can be implemented by including a minimal coupling to a U(1)
gauge field Ai in the Hamiltonian by

Hconstr =
∑

i

Ai(f
†
iαfiα − 1). (6.1.5)
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Hence the U(1) gauge symmetry corresponds with a local conservation
law.

The gauge symmetry of the Mott insulator is actually larger than just
U(1): it is SU(2), corresponding to a particle-hole symmetry. This is
demonstrated by introducing the spinor

ψi =

(
fi↑
f †i↓

)
. (6.1.6)

The spin operators can then be rewritten as SU(2) invariant combinations
of the ψ:

S+
i =

1
2
(ψ†1iψ

†
2i − ψ†2iψ

†
1i) (6.1.7)

Sz
i =

1
2
(ψ†i ψi − 1). (6.1.8)

The spin operators Si are invariant under local SU(2) transformations,

ψi → giψi, τ l → giτ
lg†i , gi ∈ SU(2), (6.1.9)

and so is the Hamiltonian (6.1.1) when expressed in ψi. The transforma-
tion gi interchange the spinons fi↑ and f †i↓, which is nothing more than
interchanging particles and holes. The SU(2) symmetry then expresses
the particle-hole symmetry of the system.

Again, the Hilbert space is enlarged, since the fermion number per
site can be different from one. To make sure that the correct Hilbert
space with one spinon per site is obtained, constraint equations similar to
the U(1) case have to be introduced. Since SU(2) has three degrees of
freedom, viz. the three Pauli matrices, three constraint equations should
be imposed:

f †iαfiα = 1, fiαfiβεαβ = 0. (6.1.10)

These constraints will lead to an SU(2) gauge theory, as these are imple-
mented by three gauge fields al

0i. This is done by adding the term

Hconstr =
∑

i

a3
0i(f

†
iαfiα − 1) + [(a1

0i + ia2
0i)fiαfiβεαβ + h.c.] (6.1.11)

to the original Hamiltonian. These constraints can be reformulated in
terms of the SU(2) spinors ψ. Since the physical Hilbert space has pre-
cisely one spinon per site, the operator Sz

i = 1
2f †iασ3

αβfiβ has eigenvalues
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±1
2 on that Hilbert space. Translating this into the reformulation (6.1.7),

this means

ψ†ψ |phys〉 = 0 or ψ†ψ |phys〉 = 2 |phys〉 . (6.1.12)

In other words, one f -fermion per site corresponds to an even number
of ψ-fermions per site. Now we demonstrate that the Hilbert space of
one fermion per site is a singlet under the SU(2) transformations ψ†i τ

lψi.
This can be seen by observing that ψ†i τ

+ψi = f †i↑f
†
i↓, ψ†i τ

−ψi = fi↓fi↑
and ψ†i τ

3ψi = f †i↑fi↑ + f †i↓fi↓ − 1 act as zero on the states f †iα |vac〉. The
constraints (6.1.10) then translate into the requirement that the physical
states are SU(2) gauge singlets,

ψ†i τψi |phys〉 = 0. (6.1.13)

These constraints are, again, implemented by the gauge fields al
0i.

Imposing the constraints (6.1.10), (6.1.13) exactly, means that the
gauge coupling is infinite. This does not mean that the gauge fields do
not have dynamics. Instead, by integrating out the fermion fields, the
gauge coupling can be renormalised to an effectively finite value.

When the gauge fields become dynamical, we should worry about con-
finement issues, since Polyakov showed that a compact U(1)-gauge theory
on a lattice is always confining in 2 + 1 dimensions[12]. Hence it is to be
expected that an SU(2)-gauge theory, having more degrees of freedom,
confines as well. So how can any reality be attached to the construction
of bosonic spins consisting of fermionic spinons, if only the confining state
has reality?

In this chapter, it will be shown that the deconfined state can gain
physical relevance after assuming that mean field theory has physical
meaning, i.e., one may assume the existence of the fermionic vacuum ex-
pectation values

χij = 〈f †i↑fj↑ + f †i↓fj↓〉 (6.1.14)
∆ij = 〈fi↑fj↓ − fi↓fj↑〉. (6.1.15)

The first one is a hopping amplitude, inspired by the staggered flux spin
liquid states proposed by Affleck and Marston [49, 50]. The order para-
meter ∆ is going to play the role of a superconducting amplitude with
d-wave symmetry. If these expectation values exist, the hope is that a
Higgs-like mechanism will give mass to gauge fields. One might expect
that the gauge fields, being massive, will then not be able to fluctuate,
thus preventing confinement.
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6.2 SU(2) mean field theory: the deconfined spin
liquid

We will devote this section to the question of whether a deconfined spin
liquid is possible by arguing that a mean field state exists which gives
mass to gauge fluctuations.

Let us now assume that the expectation values (6.1.14) and (6.1.15)
exist, and let us presuppose deconfinement, by neglecting fluctuations in
the gauge fields al

0i. This is equivalent to replacing of the exact constraints
(6.1.13) by the mean field constraints

〈ψ†i τ lψi〉 = 0. (6.2.1)

Let us first obtain a manifestly SU(2)-gauge invariant mean field the-
ory, by grouping the mean fields as follows:

Uij =
(−χ∗ij ∆ij

∆∗
ij χij

)
. (6.2.2)

We arrive at a central result of this section, namely the mean-field Hamil-
tonian for the half-filled state,

Hmean = −3
8
J

∑

〈ij〉

[
1
2
Tr(U †

ijUij) + (ψ†i Uijψj + h.c.)
]

+
∑

i

al
0i

[
ψ†i τ

lψi

]
.

(6.2.3)
Provided that the mean-field Ansatz Uij acquires the form

Uij = τµηijµ, ηij0 imaginary, ηijl real, (6.2.4)

the Hamiltonian (6.2.3) is manifestly SU(2) invariant under the transfor-
mation

ψi → giψi, Uij → Ũij = giUijg
†
j , al

i0τ
l → ãl

0iτ
l = gia

l
i0τ

lg†j . (6.2.5)

The assumption of deconfinement, as speculative as it is, leads to pre-
dictions which make physical sense. To make this point, let us consider
an Ansatz describing the d-wave superconductor at zero doping, (dSC)

Ui,i+x̂ = −χτ3 + ∆τ1,

Ui,i+ŷ = −χτ3 −∆τ1,

al
0 = 0. (6.2.6)
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Although the MI is not superconducting, the Ansatz Eq. (6.2.6) is called
“dSC”since the order parameter ∆ couples fi↑ and fi↓. The al

0 can be
chosen to be zero [18]. The dispersion for the fermions is readily calculated,
and reads

Ef =
√

ε2
f + η2

f , (6.2.7)

where

εf = −3J

4
(cos kx + cos ky)χ, ηf = −3J

4
(cos kx − cos ky)∆. (6.2.8)

This dispersion shows Dirac quasiparticles at (1
2π, 1

2π), i.e., massless ex-
citations with linear dispersion carrying a spin quantum number. As op-
posed to electrons, they do not carry a charge quantum number, remiscent
of the fact that the charge degree of freedom is frozen out in the MI. In
the context of high-Tc superconductors, similar kinds of quasiparticles
have been measured and confirmed [51], and are known as nodal fermi-
ons, since these occur along the line describing the gap node. These nodal
excitations are the condensed matter analogues of the quarks in QCD. In
a similar way to the deconfined quarks and gluons, the nodal fermions are
given real existence by the magic of the long-wavelength limit, in which
mean field theory becomes exact. Beyond the confinement transition the
spinons are glued back into the original Heisenberg spins by gauge fluctua-
tions, in analogy to the confinement of quarks and gluons into the hadrons
in QCD.

Out of the spinons one can make a spin liquid as well. Let us now
consider the following mean-field Ansatz, which is known in the literature
as the staggered flux phase [49, 50, 52] (SFP):

Ui,i+x̂ = −χτ3 − i(−)I∆,

Ui,i+ŷ = −χτ3 + i(−)I∆,

a1,2,3
0 = 0. (6.2.9)

The quantity I is defined as I = ix+iy. The SFP is a spin liquid, describing
spinons hopping around the plaquettes of the square copper-oxide lattice.
It breaks translation symmetry, since the hopping fluxes

Φhop =
π

4

∑
plaquette

Arg(U11
ij ) = ±∆

χ
π (6.2.10)
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show a bipartite staggered pattern. By a Fourier transformation to mo-
mentum space, the dispersion is readily calculated. It turns out to be
identical to the dSC-dispersion

Ef =
√

ε2
f + η2

f . (6.2.11)

This is surprising, since the SFP breaks translation symmetry, whereas
the dSC does not. In the framework of classical Landau-Ginzburg-Wilson
theory, this is impossible: in general, different symmetry broken states
give rise to different excitations. What is going on here? In fact, the two
states above are two sides of the same coin. This is seen after applying
the following site-dependent transformation,

gi = exp
(
−i

π

4
(−)Iτ1

)
(6.2.12)

by which the SFP is mapped to the dSC. In fact, all states connected to
the dSC by a gauge transformation

gi = exp
(−iθiτ

1
)

(6.2.13)

are equivalent. This can be pictured nicely by the concept of the isospin
sphere. An SU(2)-gauge group element gi can be written as follows:

gi =
(

zi1 −z∗i2
zi2 z∗i1

)
(6.2.14)

where the complex numbers zi are parametrised by three angles, viz.,

zi1 = eiαie−i
φi
2 cos

θi

2
, zi2 = eiαiei

φi
2 sin

θi

2
. (6.2.15)

The z’s are grouped in the vector zi = (zi1, zi2).
The isospin vector Ii turns out to be a useful definition:

Ii = z†i τzi = (cosφi sin θi, sinφi sin θi, cos θi) (6.2.16)

The angle θ can then be interpreted as the latitude on the isospin
sphere, whereas the angle φ is the longitude, cf. Figure 6.1. The north
and south pole of the sphere correspond to a staggered flux phase, with
A − B and B − A staggering respectively, while the equator corresponds
to the d-wave superconductor. For half filling, the rotations on the isospin
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A−B

B−A

Staggered Flux

Staggered Flux

Isospin vector

d−wave SC

θ

ϕ

Figure 6.1: The isospin sphere. States on the north and south pole are staggered
flux phases, whereas states on the equator are dSC. In between, the isospin vector
describes a mix.

sphere correspond to pure gauge transformations, meaning that spinon
flux phases and d-wave superconductors are gauge-equivalent.

We have thus demonstrated the fact that the SFP is not translationally
invariant and must be viewed as a gauge artefact. This leads to the
conclusion that different mean field states are able to describe the same
physics. The reason is that in applying mean field theory, we neglect
the fluctuating nature of the gauge fields. In turn, this implies that the
projection onto the physical Hilbert space of one f -fermion per site, is not
exact. Instead, one should project out the doubly occupied and empty
sites of the mean field wave function Ψ(Uij ,al

0i)
mean described by the Ansatz

(Uij , a
l
0i). This projection onto the singly occupied sites is achieved by

the operator

P ≡ 〈vac|
∏

i

fiα. (6.2.17)

This projection is equivalent to the projection onto the Hilbert space with
an even number of ψ-fermions per site. Mean field states connected by
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the gauge transformation (6.2.5) lead to the same physical wave function:

Ψ(Uij ,al
0i)

phys = PΨ(Uij ,al
0i)

mean = PΨ
(U ′ij ,a′l0i)
mean . (6.2.18)

The gauge equivalent mean field states leading to the same physical wave
function Ψ(Uij ,al

0i)
phys constitute a new gauge group, which is not necessarily

the same as the original gauge group, being SU(2) for the case of the
Mott insulator. This effective gauge group is called projective symmetry
group PSG, since different states in the same new gauge group lead to the
same physical state after projection. This new gauge volume will be an
extension of the usual symmetry breaking classification schemes, including
the notion of the Higgs phase in gauge theory. This construction of the
projective symmetry group actually works for every gauge group, not just
the group SU(2) of relevance for the Mott insulator, although we restrict
ourselves to the latter when discussing the Mott insulator.

On the other hand, it is also different from determining the phases in
a pure gauge theory, as determined by the Wilson loop

W [Γ] = 〈exp iq

∮

Γ
al

µτ ldxµ〉, (6.2.19)

where the loop Γ consists of paths of length T along the time direction
and those of length R along the spatial direction. It is related to the gauge
potential V (R) between two static gauge charges ±q with opposite sign
put at the distance R as

W [Γ] = exp[−V (R)T ]. (6.2.20)

There are two types of behaviour of W [Γ], i.e., the area law W [Γ] ∼
exp(αRT ), or a perimeter law W [Γ] ∼ exp(β(R + T )), where α and β are
some constants. In the first case, the potential V (R) increases linearly
with R, hence the gauge charges can never be free. This is the confining
phase. On the other hand, in the perimeter phase, the potential grows with
a lower power, thus allowing free charges. This phase is the deconfining
state of the gauge theory.

For the mean field theories of the Mott insulator, a variable similar
to the Wilson loop can be defined, with the important difference that it
is constituted by the matter fields Uij instead of the gauge fields. Let us
define the SU(2) flux operator P (Ci) through a closed loop Ci with base
point i by

P (Ci) = (iUij)(iUjk)...(iUki) =
∏

Ci

iUij . (6.2.21)
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Since P (Ci) is an element of SU(2), we may write it in terms of three
SU(2) fluxes Φl

i:
P (Ci) = eiΦl

iτ
l
. (6.2.22)

This flux operator will be important for determining which gauge fields
can obtain mass.

Let us consider what these SU(2) fluxes are for the dSC and SFP
mean fields. Since the dSC Ansatz has the form χijτ

3+∆ijτ
1, Eq.(6.2.21)

becomes for this case

P (Ci, dSC) = c0(Ci)τ0 + c2(Ci)τ2, (6.2.23)

where c0 and c2 are some constants, due to the fact that the vacuum
expectation values in (6.2.6) are constant, implying that in contrast with
the Wilson loop, these fluxes do not decay according to some perimeter
or area law, but are constant instead. The question arises how a sensible
classification can be made. To answer this, let us consider the SU(2) flux
variable Φ(Ci) = Φl(Ci)τ l. For the dSC case, the flux operator can be
rewritten

P (Ci, dSC) = exp(iΦ(Ci)) = exp(iΦ2(Ci)τ2), (6.2.24)

expressing the fact that the dSC matter fields lead to a flux Φ2 in the τ2

direction. On the other hand, the SFP, having the form χijτ
3 +∆ijτ

1 has
a flux pointing in the τ3 direction:

P (Ci, SFP) = c′0τ
0 + c′3τ

3 ∝ exp iΦ3(Ci)τ3. (6.2.25)

Although the dSC leads to the same quasiparticle spectrum as the SFP
after a gauge transformation, the fluxes are not the same. But since the
flux operators are not gauge invariant quantities, by gauge transformations
gi ∈ SU(2), these can be rotated

Φ(Ci) → giΦ(Ci)g
†
i . (6.2.26)

For example, the dSC flux can be rotated in the τ3 direction by the trans-
formation gi = exp(iπ

4 )τ1. The class of mean fields for which the fluxes
of loops originating from the same base point can be rotated to point in
the same direction, is called the class of collinear Ansatzes. Fluxes for
loops with different base points cannot be compared, since they can be
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rotated independently by SU(2) gauge transformations. Hence it only
makes sense to compare fluxes from loops with the same base point.

Let us now show how one can use the flux operator to determine which
gauge fluctuations obtain mass. Having established that the SFP leads to
a τ3 flux, we can work backwards, and choose a gauge in which the mean
field state acquires the form

Ūij = ieiφijτ3
, (6.2.27)

since this leads precisely to the expression (6.2.25). One immediately sees
that (6.2.27) is not invariant under the whole SU(2). Instead, the Ansatz
is invariant under a subgroup U(1), generated by eiθiτ

3
. This subgroup

leaving the Ansatz invariant is called the invariant gauge group (IGG),
and will be important in classifying PSGs.

Now we will demonstrate that the low lying gauge fluctuations for the
collinear Ansatz are also described by a U(1) gauge field, exploiting the
notion of the flux operator (6.2.21).

The mean field energy (6.2.3) depends on Ūij , which can gauge fluctu-
ate: gauge equivalent states lead to the same physics. Put differently, the
state Ūij gives the same physical state as the gauge transformed Ūije

ial
ijτ l

.
The requirement for the gauge fluctuations is that the mean field energy
(6.2.3) is invariant under gauge transformations eiθiτ

3
:

Hmean(Ūije
ial

ijτ l

) = Hmean(Ūije
iθiτ

3
eial

ijτ l

e−iθjτ3
), (6.2.28)

which for a1,2
ij reduces to

Hmean(Ūije
ia3

ijτ3

) = Hmean(Ūije
i(a3

ij+θi−θj)τ
3

). (6.2.29)

This expression means that a mass term a3
ij is incompatible with Eq.

(6.2.29), so the gauge field a3
ij is massless. On the other hand, the other

two fields a1,2
ij do obtain masses. This will be demonstrated by exploiting

the flux operator (6.2.21). Let PA(i) be the SU(2) flux through a loop
A with base point i. Assuming that all gauge invariant terms which can
appear do appear, Hmean will contain the term

Hmean = Tr [PA(i)iUi,i+x̂PA(i + x̂)iUi+x̂,i] + . . . (6.2.30)

Let us now write iUi,i+x̂ as χeiφijτ3
eial

x̂τ l, and note that Ui,i+x̂ = U †
i+x̂,i,

cf. Eq.(6.2.2). Expanding to quadratic order in al
x̂, a term

Hmean = −1
2
χ2Tr

(
[PA(i), al

x̂τ l]
)

+ . . . (6.2.31)
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is obtained. Now the flux operator shows its merit: since for the collinear
Ansatz PA ∝ exp iΦ3

A(i)τ3, mass terms for a1
ij and a2

ij are generated, such
that at low energies a U(1) gauge theory remains.

The above discussion can be summarised in a result which is general
[18, 44]. The collinear Ansatz is invariant under U(1) gauge transforma-
tions, which coincides with the gauge group describing the massless gauge
fluctuations.

Although the SU(2) gauge fluctuations are now restrained to a com-
pact U(1)-theory, the confinement/deconfinement issue is still not settled,
since Polyakov showed in 1977 [17] that a compact U(1) theory in 2+1
dimensions is always in the confining phase. The argument is that the
screened interactions between the gauge charges give rise to a finite cre-
ation probability for the instantons in the theory, destroying deconfine-
ment. This can still be the case after integrating out the fermion fields,
thereby obtaining an effective action for the gauge fields. For example,
when the fermion fields are fully gapped, the effective interaction between
the gauge charges after integrating out the fermion fields will be confining
[44].

For the case of the dSC/SFP, however, the spinon matter fields show
gapless points in the dispersion. It turns out that these Dirac quasipar-
ticles give rise to logarithmic interactions between the topological excita-
tions, rather than screened interactions[53, 54]. Then the question arises
of whether there exists a Kosterlitz-Thouless-like phase transition in 3D.
The first results predicted the absence of such a transition [54], imply-
ing that the monopoles, being liberated, always confine the spinons and
holons together into electrons. This is similar to the SU(3) theory of
QCD, where the confining interactions between the gluons only allows us
to detect hadrons and mesons, not the constituent quarks.

Numerical calculations by Sudbø and collaborators [55] show that such
a transition exists, admitting liberation of the spinon fields, giving stability
to the U(1) spin liquid [56, 57, 58], as pursued by Zou, Baskaran and
Anderson [59]. The ramification of those results is that the assumption
of a deconfining phase in the SU(2) gauge theory coupled to matter is
justified, at least for collinear Ansatzes showing nodal quasiparticles. In
turn, since confinement is caused by fluctuations in al

0i, the existence of a
deconfined phase means that those fluctuations can be neglected, and the
al

0i may be treated as mean fields.
In summary, we have explained how the miracle of deconfinement can
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happen: as soon as a mean field exists, the gauge symmetry is effectively
lowered from SU(2) to U(1). The latter gauge theory can still be con-
fining, but when the mean field state admits nodal quasiparticles, these
are protected against gauge fluctuations in the effective theory, remaining
after integration over the fermion fields.

In the next section, we will explain Xiao-Gang Wen’s ideas about the
deeper principle of quantum order underlying this interesting phenom-
enon, and how quantum order can be classified by the projective symmetry
group mentioned before.

6.3 Classification of projective symmetry groups

In the previous section, it was shown how two seemingly different mean
field states lead to the same physics. Both the SFP and the dSC lead to
nodal quasiparticles, the condensed matter analogue of deconfined quarks.
These quasiparticles were argued to gain physical existence, i.e., they not
only exist on mean field level, but are preserved on projecting onto the
physical Hilbert space of singly occupied sites of the parent Mott insulator.
This preservation is interpreted as protection against gauge fluctuations.
Projection onto the physical Hilbert space is accomplished by making the
constraints (6.2.1) exact, i.e., by including all the gauge fluctuations. So
if the nodal quasiparticles are protected against gauge fluctuations, these
will be preserved after projection onto the physical state.

As was shown in the previous section, this protection is due to decon-
finement. The deconfinement emerges by the combination of two reasons:
the mean field states dSC and SFP lead to a U(1) gauge theory, and the
nodal excitation spectrum of the matter field leads to a deconfining gauge
field-mediated interaction.

The combination of this invariance of mean field states and protec-
tion against gauge fluctuations leads to the idea that there is a ordering
principle at work. For classical systems, order is classified by breaking of
symmetry groups, leading to predictions of collective excitations (Gold-
stone bosons). As observed earlier, since dSC and SFP have different
symmetries, classical order cannot be the protecting principle, the more
so since gauge symmetries cannot be broken spontaneously [46]. This new
kind of order at work, called quantum order, should be related to the
gauge invariance of mean field states, which might have different sym-
metries. In the previous section we already showed that the translation
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symmetry breaking of the SFP is a gauge artefact. It was shown that the
symmetry breaking can be absorbed by a gauge transformation (6.2.14)
into the dSC Ansatz. As mentioned before, this observation will lead to
the classification of quantum order by the projective symmetry group.

Let us elaborate more on this invariance by considering the following
example. The SFP, which breaks translational symmetry breaking,

Ui,i+x̂ = −χτ3 − i(−)I∆, Ui,i+ŷ = −χτ3 + i(−)I∆ (6.3.1)

is changed under a parity transformation Pxy into

Pxy(Ui,i+x̂) = −χτ3 − i(−)I∆, Pxy(Ui,i+ŷ) = −χτ3 + i(−)I∆. (6.3.2)

This parity transformation can be annihilated by performing a gauge
transformation gi = i(−)Iτ1, since

gi(Ui,i+x̂)g†i+x̂ = [i(−)Iτ1](−χτ3−i(−)I∆)[−i(−)I+1τ1] = −χτ3+i(−)I∆.
(6.3.3)

Hence the parity transformation Pxy is equivalent to SU(2) gauge trans-
formation gi = i(−)Iτ1. The gauge equivalence of the SFP to the dSC
can now be understood in a different way. Working out the gauge trans-
formation connecting those,

gi = exp(−i
π

4
(−)Iτ1) =

1
2

√
2(1− i(−)Iτ1), (6.3.4)

we see that this transformation corresponds to the application of a combi-
nation of the identity transformation and the parity operation Pxy. Appar-
ently, it is this combination which gauges away the translation symmetry
breaking of the SFP. Stated the other way around, the dSC is invariant un-
der the combination of breaking translation symmetry towards the SFP,
combined with the gauge transformation (6.2.14). This illustrates the
idea that Ansatzes with different symmetries which are gauge equivalent,
should be considered to have the same quantum order.

The above example gives the inspiration for the classification of quan-
tum order. States with different symmetries are equivalent if they reside
in the same gauge volume. In line with the discussion of the previous sec-
tion, this gauge volume should coincide with the effective gauge theory as
dictated by the flux operator loop determined by the mean field Ansatz.
For the dSC/SFP case, we have already seen that the low-lying gauge
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fluctuations are U(1), and the gauge symmetry connecting those states,
is also a U(1) transformation, since it only involves τ1.

This can be formalised in the following way. Let us consider some
mean field state described by some group element Uij ∈ G, where G is the
symmetry group of the microscopic Hamiltonian describing the system.
For the Mott insulator, G = SU(2), but the construction of the PSG
works for any group. The projective symmetry group (PSG) is a combi-
nation of a gauge symmetry Gs in the gauge group G and an element s in
spatial symmetry group SG. The projective symmetry group is referred to
that way, since projection of mean field states residing in the same gauge
volume onto the physical Hilbert space lead to the same physical state,
according to (6.2.17).

This can be expressed mathematically by introducing the definitions

Gs(Uij) ≡ Gs(i)UijG
†
s(j)

s(Uij) ≡ Us(i),s(j). (6.3.5)

The combination Gss is an element of the PSG if and only if the require-
ment

Gss(Uij) = Uij (6.3.6)

is met. Hence the elements in the PSG of a mean field state are charac-
terised by pairs (Gs, s) with Gs ∈ G and s ∈ SG, such that (6.3.6) holds.
For any s, Eq. (6.3.6) can be understood as an equation for Gs(i) and
Gs(j). In other words, if the SG of an Ansatz is given, one can solve for the
group elements Gs, and the PSG is obtained. Unfortunately, for a fixed
symmetry transformation s, there can be many gauge transformations Gs

fulfilling (6.3.6), i.e. the mapping from Gs to s is not one-to-one.
In the solution of this problem, the IGG as determined by the flux

operators (6.2.21) plays a special role, forming the key for the construction
of the PSG. For the collinear Ansatzes like dSC/SFP, the IGG leaving
the flux operator (6.2.21) invariant, turned out to be U(1), which was also
demonstrated to be the gauge theory describing gauge fluctuations. On
the other hand, in some gauge, the collinear Ansatz can be written as a
gauge group element invariant under the IGG, cf. (6.2.27). According
to (6.3.6), the spatial symmetry connected with the elements of IGG, is
simply the unit transformation. Then a theorem from mathematical group
theory can be applied [60], saying that for each symmetry transformation
s, the different possible choices of Gs satisfying (6.3.6) are related by a
gauge transformation living in IGG. Put differently, if Gss ∈ PSG, and
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G′
ss ∈ PSG, then this is the case if and only if G′

s = hGs, h ∈ IGG. This
leads to the unique classification of the PSG, since each element in the
PSG can now be written in terms of an element in IGG and an element
from SG,

SG = PSG/IGG. (6.3.7)

In this way, the quantum order of a mean field state is characterised by
the effective gauge theory described by IGG, together with the symmetry
transformations s ∈ SG, where the latter are translated into elements Gs

of the gauge group by the requirement (6.3.6).
This construction is independent of the choice of the gauge group G.

In particular, it works for the case at hand, the Mott insulator with G =
SU(2).

Let us now point out the three distinct classes of the SU(2) mean field
theory.

6.3.1 Collinear flux

In his classification of mean fields with gauge group SU(2), Xiao-Gang
Wen considers symmetric spin liquids, these being spin liquids obeying
the lattice symmetries of translation, rotation, parity and time reversal.
The dSC/SFP state obeys all of these, since these can all be absorbed in
gauge transformations as follows:

GTx(i) = GTy(i) = i(−)Iτ1, GPxy(i) = i(−)Iτ1

GPx(i) = GPy(i) = τ0, GIGG(i) = eiθiτ
3
. (6.3.8)

The example of GPxy was discussed in the previous section, and the other
transformations are checked similarly. For completeness, the U(1) ele-
ments of IGG are recorded as well.

Since the SFP/dSC state is classified as a collinear state by the flux
operator (6.2.21), it could be shown that the low-lying gauge degrees of
freedom are U(1), explaining why the dSC/SFP is called a U(1) spin
liquid.

Although there are many U(1) spin liquids possible, only the states
related by rotations on the isospin sphere obey (6.3.8). Hence the IGG
U(1) together with (6.3.8) gives the unique classification of the quantum
order of the SFP. On the other hand, Wen showed that there are at least
4 gauge inequivalent U(1) spin liquids showing nodal fermions, whereas
there are several quantum orders showing either gapless or a fully gapped
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dispersion. Finally, there is also a U(1) quantum order showing gapless,
but quadratic dispersion at a finite number of points in reciprocal space.
Hence, because of the possibility of a gapped spectrum for some U(1) spin
liquids, not all these quantum orders are stable against gauge fluctuations,
as discussed before.

6.3.2 Trivial flux

Next to the U(1) spin liquids with collinear flux, there are SU(2) mean
field states showing the full SU(2) as IGG. One such a state is a sibling of
the SFP, characterised by its plaquette fluxes as in Eq.(6.2.10). An SU(2)
liquid is obtained by taking ∆ = χ, as will be shown. The plaquette fluxes
show a staggered pattern of fluxes±π. This justifies the name π-flux liquid
(πFL) for the state

Ui,i+x̂ = −χ(τ3 + i(−)I),
Ui,i+ŷ = −χ(τ3 − i(−)I).

(6.3.9)

It has the dispersion relation

Ek =
1
2

√
2χ

√
cos2 kx + cos2 ky, (6.3.10)

also showing nodal Dirac quasiparticle dispersion.
Although the only difference with the SFP seems to be the equality of

∆ and χ, the quantum order is different. After applying gauge transfor-
mations, the πFL is proportional to τ0, the unit element in SU(2),

Ui,i+x̂ = iχ,

Ui,i+ŷ = i(−)ixχ,

(6.3.11)

Hence the flux operator is proportional to τ0 as well, classifying it as a
trivial flux state. Clearly, this quantum order has IGG = SU(2). It
can be shown that the symmetry group of this state is again the full
lattice symmetry group, since these can all be absorbed by the gauge
transformations

GTx(i) = (−)ixGTy(i) = τ0, GPxy(i) = (−)ixiyτ0

(−)ix GPx(i) = (−)iyGPy(i) = τ0, GIGG(i) = eiθl
iτ

l
, (6.3.12)
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satisfying (6.3.6).
The different physics is obviously related to the fact that for IGG =

SU(2) all gauge fluctuations are massless, leading to confinement. In turn,
this means that after projection onto the physical spin wave function, the
nodal fermions will not survive. Hence, one cannot expect SU(2) spin
liquids to be physical.

6.3.3 Non-collinear flux

Finally, there is a class of spin liquids which is always protected against
gauge fluctuations. This is the class having as IGG the discrete subgroup
Z2 of SU(2). This class of spin liquids are described by the mean field
states carrying non-collinear flux.

An example is provided by a mean field state including longer links,

Ui,i+x̂ = Ui,i+ŷ = −χτ3

Ui,i+±x̂+ŷ = ∆τ1 ± λτ2

a2,3
0 = 0, a1

0 6= 0. (6.3.13)

Let us demonstrate that this Ansatz shows a non-collinear flux through
loops with the same base point. Take two triangular loops (i, i + ŷ, i− x̂)
and (i, i+ ŷ, i+ x̂) through the same base point i. The corresponding flux
operators are

Ui,i+ŷUi+ŷ,i−x̂Ui−x̂,i = −χ2(∆τ1 + λτ2)
Ui,i+x̂Ui+x̂,i+ŷUi+ŷ,i = −χ2(∆τ1 − λτ2). (6.3.14)

As opposed to the U(1) spin liquid, the fluxes cannot be rotated towards
the same direction, since they cannot be written as the exponent of a
single Pauli matrix.

The state (6.3.13) can be shown to have a gap [18], hence this state
is called the Z2-gapped state. This gap in the fermion spectrum is not
important anymore to prevent confinement, as the gauge symmetry is
discrete, making all gauge fluctuations massive.

6.4 Concluding remarks

The examples shown worked as follows. One starts out with some mean
field state, figures out what the IGG of that particular state is, and then
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determines the elements Gs for every s in the symmetry group SG. To ob-
tain all PSG’s, it is not necessary to list all possibilities for the mean field
states Uij . This would become very cumbersome when one also includes
longer links than just nearest neighbour links. Wen has shown that it is
possible to obtain all PSG’s just by studying the flux operator (6.2.21),
under the assumption of some IGG. The flux operator is able to classify
all gauge inequivalent choices of Gs for every s ∈ SG. This leads to the
result that there are at most 196 Z2 spin liquids for G = SU(2), whereas
there is a countably infinite number of U(1) spin liquids.
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Cha p t e r 7

The doped Mott insulator:
lessons from the empty limit

In the previous chapter, we have extensively studied the Mott insulator
at half filling. Since charge excitations have a large gap, due to Coulomb
repulsion, we reformulated the Mott insulator in terms of a constrained
Heisenberg Hamiltonian. We parametrised the theory in terms of fermi-
onic degrees of freedom, transforming under local SU(2), associated with
the redundant fermions and their local particle-hole symmetry.

The reformulation in terms of these spinful fermions, known as spinons,
put us in the position to describe spin liquid states. We discussed the
idea of Xiao-Gang Wen, that all the mean-field spin liquid states can be
classified within one framework, the projective symmetry group PSG. It
basically stated that the possible mean field states group in gauge volumes
associated with the gauge group. Furthermore, this PSG is a powerful
mathematical framework to describe quantum order, i.e., the order asso-
ciated with the various gauge equivalent groups of mean field states. The
projective symmetry group explained why spin flux states (FL) and d-
wave superconducting states (dSC) are indistinguishable states of matter
for zero doping. They both support nodal fermionic excitations, an ex-
pression of the fact that they are gauge fixes describing the same quantum
order.

We ended our discussion of the PSG with the announcement that for
non-zero doping, the symmetry between dSC and FL is broken, singling
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out the dSC. This presupposes that the effects of doping can be incorpo-
rated in the SU(2) gauge theory as well, a fact first realised by Lee and
Wen [45]. This chapter will review carefully the Lee and Wen approach
of describing doping in the framework of SU(2) gauge theory. This will
take some space, because we have to explain some novel results related to
improving the original formulation due to Wen, Lee and coworkers [45].

In Chapter 8 we will continue discussing the breaking of SU(2) sym-
metry, and what the properties of the resulting mean field theory are. It
turns out that only with the lessons from this Chapter, it is possible to
formulate the theory consistently for non-zero doping.

We start out this discussion with introducing a first-order approxima-
tion of a Heisenberg model with doping: the t − J-model. It is just a
theorists’ playground, but it does capture the essence of the physics of the
doped Mott insulator.

Subsequently we show how one describes electronic degrees of freedom
for the doped case, rather than the spin degrees of freedom in the Mott
insulator. Indeed, charge degrees of freedom, holons, are also to be incor-
porated in the SU(2) framework, by carefully taking into account that the
physical Hilbert space has to consist of singly occupied or empty sites only,
because the strong Coulomb interactions project out the doubly occupied
sites. One lesson following from these projection constraints, imposed by
SU(2) gauge fields, is that when one wishes to do mean field theory, one
needs all the constraints, and not just one. In this regard the original
formulation seems to be flawed [45]. In Chapter 8, this will lead to the
suprising conclusion that the superconducting order parameter does not
have a pure d-wave gap structure, but a d + s-wave form. In this way,
SU(2) theory is the only explanation on the market which gives an im-
mediate and transparent explanation of experiments detecting an s-wave
admixture [22, 20].

We continue studying the extreme case of the empty limit: only holes,
and no electrons. The full SU(2) gauge theory is certainly able to do
this, since it can describe the absence of a charge exactly. However, the
mean-field theory becomes unphysical in this limit. Indeed, when a lot of
vacancies are present, SU(2) gauge fluctuations become eventually com-
pletely dominant, confining the spinons and holons into electrons. We
show, however, that as an energy density functional, the mean field the-
ory is a fair description, since it gives the correct energy in the empty
limit.
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We learn from the empty limit an important lesson regarding the way
the holons have to be described within mean field theory: one has to
assume that the bosons have a hard core. In Chapter 8, we will show that
this leads to phase separation below certain dopings. This will denounce
thoughts in the community, that slave theories and phase separation are
mutually exclusive.

7.1 Slave boson formulation of the doped Mott
insulator

As is widely accepted, the problem of high-temperature superconductivity,
is the problem of doping a Mott insulator. The parent compounds of high-
Tc are insulating, due to a large Coulomb repulsion. By removing electrons
however , the charges get mobile, and it is believed that this physics
is at the origin of the superconductivity. This forms the motivation to
include the hopping of projected electrons c̃iσ in the original Heisenberg
Hamiltonian:

Ht−J =
∑

<ij>

J

(
Si · Sj − 1

4
ninj

)
−

∑

ij

tij

(
c̃†iσ c̃jσ + h.c.

)
, (7.1.1)

where the hoppings tij are the wave function overlaps of electrons at sites
i and j. Without loss of generality, we take tij = t for nearest neighbour
sites, and tij = 0 otherwise. The spin operators are still given in terms of
the fermion operators,

S+
i =

1
2
(ψ†1iψ

†
2i − ψ†2iψ

†
1i) (7.1.2)

Sz
i =

1
2
(ψ†i ψi − 1). (7.1.3)

Importantly, the Hilbert space of the t − J Hamiltonian is formed from
three states only: a spin up electron, c†↑ |vac〉, a spin down electron c†↓ |vac〉
and a vacancy |vac〉. Consequently, the electron operators in (7.1.1) are
projected electron operators c̃iα = ciα(1 − niᾱ), where ᾱ denotes a spin
opposite from α. The tilde is dropped from now on and the projection
is kept implicit. Bear in mind that one should take care that all physics
takes place in this projected Hilbert space!

Let us now describe these electrons in the SU(2) gauge theory. As
mentioned at previous occasions, in everyday life, one does not encounter
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SU(2) doublets: the deconfined spinons and holons. This means that the
confined phase describing electrons, corresponds to a phase consisting of
SU(2) gauge singlets. To construct these singlets, introduce the SU(2)
doublet describing holons:

hi =
(

b1i

b2i

)
. (7.1.4)

Then the appropriate SU(2) singlet describing the projected electron is

c↑i =
1√
2
h†iψi =

1√
2
(b†1if↑i + b†2if

†
↓i), (7.1.5)

c↓i =
1√
2
h†iψi =

1√
2
(b†1if↓i − b†2if

†
↑i). (7.1.6)

Let us first demonstrate that this reparametrisation does indeed de-
scribe projected electrons. From the half-filled case, we know that a spin
up electron should be described by a single up spinon, f †↑i |vac〉. Acting
with a down electron creation operator should annihilate this sate,

(h†iψi)†f
†
↓i |vac〉 = (b1if

†
↑i + b2if↓i)f

†
↑i |vac〉 = 0.

This works since the bosons annihilate the vacuum. Eq. (7.1.5) as it
stands, however, is not an operator equality, since the Hilbert space of
the SU(2) theory is larger. To arrive at the correct physics, we have to
impose constraints to make the mapping to the states of the original t−J-
Hamiltonian exact. In the spirit of the previous chapter, we again require
that the physical states |phys〉 of the t− J model are SU(2) singlets,

(
ψ†i τ

lψi + h†iτ
lhi

)
|phys〉 = 0. (7.1.7)

Let us now identify the states satisfying (7.1.7). We can borrow the spin
up and spin down fermion states already identified in the half-filled case,
f †↑i |vac〉 and f †↓i |vac〉. Since these do not involve holons, we only need to
care about the ψ-part of the constraint, hence

(
ψ†i τ

1ψi + h†iτ
1hi

)
f †↑i |vac〉 =

(
ψ†i τ

1ψi

)
f †↑i |vac〉

= (f †↑if
†
↓i + f↓if↑i)f

†
↑i |vac〉 = 0,

(
ψ†i τ

3ψi + h†iτ
3hi

)
f †↑i |vac〉 =

(
ψ†i τ

3ψi

)
f †↑i |vac〉

= (f †↑if
†
↓i + f↓if↑i)f

†
↑i |vac〉 = 0,
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and similarly for τ2, and for f †↓i |vac〉. Hence, the f †σi are indeed the desired
gauge singlets. But how should we now incorporate the holes? As a first
attempt, let us try |vac〉. This fails, since an empty site is turned into a
pair singlet site:

(
ψ†i τ

1ψi + h†iτ
1hi

)
|vac〉 = f †↑if

†
↓i |vac〉 6= 0, (7.1.8)

Conversely, a doubly occupied site is turned into an empty site,
(
ψ†i τ

1ψi + h†iτ
1hi

)
f †↓if

†
↑i |vac〉 = − |vac〉 . (7.1.9)

This guides us toward the correct answer of Wen and Lee [45]: let us
accompany an empty site with a b1 boson, and a doubly occupied site
with a b2 boson, so that a hole in the t− J model is represented by

|0〉i =
1√
2

(
b†1i + b†2if

†
↓if

†
↑i

)
|vac〉i . (7.1.10)

Indeed, it is easy to check that (7.1.10) does satisfy all the constraints
(7.1.7). Observe that we needed all the three constraints to arrive at
this expression. This last fact is overlooked in the original Wen and Lee
formulation, and will turn out to be very important. In the expression
for the hole, SU(2) gauge theory already reveals some of its powers: it
captures the fact associated with the particle-hole symmetry intrinsic to
spin that the singletness of pure vacuum should be treated on precisely
the same footing as the spin singletness of either the empty or doubly
occupied spinon configuration.

7.2 The empty limit: the importance of being
hard core

In the previous section, we have described how one can introduce charge
degrees of freedom in the doped Mott insulator. By introducing a holon
SU(2) doublet, it was possible to recover the physical electron. It was
also shown how one can make a mapping from the slave boson operator
states to the Hilbert space of the t − J model, by including the exact
constraints (7.1.7). Solving for exact constraints is however extremely
difficult. To do this, one needs to introduce gauge fields, that have to be
treated exactly, in principle. In order to make progress, we are going to
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put forward a mean field theory, and treat the constraints on a mean field
level. For the mean-field theory, we have to construct a trial wave function,
incorporating bosons and spinons. The best inspiration for such a wave
function, follows from inspecting the empty limit, as counterintuitive as
it may seem. In a sense, it is unphysical to treat the state with doping
x = 1 in the gauge theory way, since gauge fluctuations already restore
confinement into electrons at a much lower doping level. It turns out,
however, that the gauge theory does not only give the correct energy in
the empty limit, but it also gives a guide line of how to construct the
low-doping mean field wave function.

The exact wave function describing the empty limit is simple,

|0〉 =
∏

i

(
b†i1 + b†i2f

†
↓if

†
↑i

)
|vac〉 . (7.2.1)

Deconfinement or spin-charge separation implies that the system loses its
knowledge about the three particle correlation b†i2f

†
↓if

†
↑i and the best one

can do is to look for a holon-spinon product wave function. The best
choice is obviously

|0〉MF =
∏

i

[
1
2

(
b†i1 + b†i2

)(
1 + f †↓if

†
↑i

)]
|vac〉 . (7.2.2)

This wave function still has to satisfy the mean-field version of the
constraint (7.1.7), 〈

ψ†i τ
lψi + h†iτ

lhi

〉
= 0, (7.2.3)

where the brackets in this case stand for the expectation value relative to
the state |0〉MF . This brings us to the main point: the constraints are
only satisfied when the bosons have the hard core. Indeed, the mean field
wave function (7.2.2) obeys

〈0|ψ†i τ3ψi |0〉MF + 〈0|h†iτ3hi |0〉MF = 0 + 0 = 0. (7.2.4)

If we were to take soft-core bosons, the state (b†1i
2 + (b†1i) |vac〉 would be

possible. It does not satisfy the constraints, however, since then

〈0|ψ†i τ3ψi |0〉MF + 〈0|h†iτ3hi |0〉MF = 0 + 1 6= 0. (7.2.5)

So, if we are to take the Hilbert space constraints seriously, we need to
accept that the holons have an infinite hard core. This is consistent with
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the fact that the holons carry electric charge. Since the Coulomb repulsion
is taken infinite to arrive at the t− J model in the first place, this means
that there can be at most one b-boson per site.

The reason to stress this hard-core nature of the bosons, is that in
the original formulation [45], the bosons were taken to be non-interacting.
The empty limit exercise, being transparent in this regard, shows that
this is inconsistent for appreciable dopings. This is also illustrated by the
fact that the hard-core bosons give the correct energy in the empty limit.
Indeed, let us first show that with the original projected electrons, the
exact energy of the t − J Hamiltonian (7.1.1) is zero in this limit. The
empty state is described in the projected electron formulation simply by
|vac〉, implying vanishing ni on this state. Since the spin operator Sl

i is
given by c†iα

1
2τ l

αβciβ, the energy of the Heisenberg part vanishes. Since
there are no electrons around, the hopping part vanishes as well, and we
conclude that the total energy vanishes.

Let us now demonstrate that the Ansatz (7.2.2) yields the same re-
sult. Firstly, the Heisenberg term vanishes. The only component of spin
that could contribute is the l = 3 component, since the others vanish
when acting on

(
1 + f †↓if

†
↑i

)
|vac〉 . However, since S3

i is the number of
up spins minus the number of down spins, it vanishes as well. Further-
more, since the number operator ni in the slave boson representation reads
c†iαciα = 1

2ψ†i hih
†
iψi, it also gives zero contribution, because of the hard

core condition. Similarly, the hoppings vanish for the same reason.

This would not be the case if the bosons were assumed to have no
hard core, since for weakly interacting bosons there is no restriction on
the hoppings. This is inconsistent with the t−J model, as hopping is only
allowed between occupied and empty sites. In conclusion, the hard core
condition is a sufficient condition for the empty state to have the correct
energy in the empty limit.

So far, we have derived an exact expression for the hole creation oper-
ator in the SU(2) gauge theory, taking seriously all three constraints. We
considered the empty limit next, since it is easy to construct the mean field
theory in this case. Treating the constraints correctly, we arrived at the
conclusion that the bosons should be treated as having a hard core. In the
next section, we will show how our mean field Ansatz (7.2.2) generalises
to mean field wave functions describing intermediate dopings.
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7.3 SU(2) mean field theory

In the previous section, we showed that a correct description of the empty
limit requires that the bosons should be treated as hard-core. The empty
limit considerations leading us to that conclusion, turns out to be very
useful to find out the structure of the mean field wave function at inter-
mediate dopings. In fact, hard-core bosons are just like XY spins, and the
straightforward generalisation of (7.2.2) becomes obvious,

|Ψ0〉holons =
∏

i

(
αi + βi(uib

†
i1 + vib

†
i2)

)
|vac〉 , (7.3.1)

where the complex numbers α and β obey the normalisation condition
|α|2 + |β|2 = 1.

To actually calculate matters, we have to derive the slave boson version
of the Hamiltonian (7.1.1), with the decomposition (7.1.5). To decouple
terms quartic in the spinons, we use the spin liquid Ansatzes from the
previous Chapter 6, namely

χij = 〈f †i↑fj↑ + f †i↓fj↓〉 (7.3.2)
∆ij = 〈fi↑fj↓ − fi↓fj↑〉. (7.3.3)

In order to impose the three constraints (7.2.3), we need to incorporate
the Lagrange multipliers al

0i into the mean field Hamiltonian, just as in
the half filled case in Chapter 6. The difference is that these fields in the
doped case also couple to the bosons describing doping. Bearing these
remarks in mind, it is a straightforward exercise to derive the mean field
Hamiltonian

Hmf = −µ
∑

i

h†ihi −
∑

i

al
0i

(
1
2
ψ†αiτ

lψαi + h†iτ
lhi

)

+
∑

<ij>

3J

8

(
|χij |2 + |∆ij |2 + ψ†i Uijψj + h.c.

)

+
∑

<ij>

t
(
h†iUijhj + h.c.

)
, (7.3.4)

where Uij was already defined in (6.2.2), while the holons are still exact.
Of course, the Hamiltonian (6.2.3) is manifestly SU(2) invariant under

the transformation

ψi → giψi, hi → gihi, Uij → Ũij = giUijg
†
j , al

i0τ
l → ãl

0iτ
l = gia

l
i0τ

lg†j .
(7.3.5)
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To already harvest some results from our considerations, let us consider
the saddle point Lagrange multiplier equations

∂

∂al
0

〈Hmf 〉 = 0, l = 1, 2, 3. (7.3.6)

These are precisely the mean field constraint equations (7.2.3):
〈
f †↑if

†
↓i + f↓if↑i

〉
=

〈
b†1ib2i + b†2ib1i

〉
(7.3.7)

−i
〈
f †↑if

†
↓i − f↓if↑i

〉
= −i

〈
b†1ib2i − b†2ib1i

〉
(7.3.8)

〈
f †αifαi − 1

〉
=

〈
b†2ib2i − b†1ib1i

〉
. (7.3.9)

These constraint equations already convey an important message. The
third equation tells us something about the deviation from half-filling,
which was an important point already made by Lee, Wen and Nagaosa [44].
As soon as the average fermion occupation number deviates from unity,
i.e., deviates from half filling, there is a difference between b1 bosons and
b2 bosons. In plain physics language: as soon as Fermi pockets form, the
difference between empty sites and spinon pair singlets becomes physical.

The first two equations acquire a novel interpretation. For non-zero
dopings, the holon expectation values are non-zero as well. However,
looking at the left-hand side of the equations, one needs to conclude that
a superfluid order parameter appears with an s-wave structure. In other
words, taking seriously all constraint equations, and having convinced
oneself that doping must be described by a superposition of both empty
and doubly occupied sites, one has to face an extra order parameter with
a superconducting s-wave symmetry. Rephrased in physical language:
within the framework of SU(2) theory, doping induces s-wave pairing.

One could argue that there are some left-over degrees of freedom, so
that one could gauge away the s-wave component. This is not the case,
however. Let us exploit the isospin representation, introduced in Chapter
6. Using the isospin angles ϕ and θ, cf. Fig 6.1, we parametrise the holon
wave function (7.3.1) by ui = cos(θi

2 ) and vi = sin( θi
2 ). Further, choose

βi → βie
iϕi such that βi is real. This parametrisation is instructive, since

θi = π
2 makes the expectation values for b1 with vacancies indistinguishable

from b2 with a spinon pair, reproducing the particle-hole symmetric empty
state (7.2.2). Moreover, this corroborates the point that the equator on
the SU(2)-isospin sphere (i.e.,θi = π

2 ) corresponds to the particle-hole
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symmetric d-wave superconductor. Calculating the expectation values
explicitly, the equations (7.2.3) become

〈
f †↑if

†
↓i + f↓if↑i

〉
= |β0i|2 sin(θi) cos(ϕi) (7.3.10)

〈
f †↑if

†
↓i − f↓if↑i

〉
= |β0i|2 sin(θi) sin(ϕi) (7.3.11)

〈
f †αifαi − 1

〉
= |β0i|2 cos(θi). (7.3.12)

On the one hand, this illustrates once again that equator states are particle-
hole symmetric, cf. Eq.(7.3.12). Secondly, and more importantly, we see
that there is no way to gauge away the s-wave component. In other words,
as soon as there is a superconducting order parameter (sin(θ) 6= 0), there
is an s-wave component linearly increasing with doping x:

∆s =
1
2
x sin(θ). (7.3.13)

The only freedom is to choose its phase to be real by choosing ϕi = 0,
implying zero a2

0i [18]. This is a first result of our empty-limit exercise,
which at first sight looks trivial. Conversely, the first equation tells us
that we cannot neglect the Lagrange multiplier a1

01, which accounts for
the s-wave admixture. This has been ignored in the original formulations
of the mean field theory [44, 45, 61]. This flaw leads to a disaster, as we
will show in the next section.

7.4 The empty limit in mean-field theory

One could wonder if it is really wrong to leave out the first constraint.
Probably one remains very closely to the ”correct”mean field state when
ignoring it? This is not the case: it leads to nonsensical results. The
bright side is the ease by which the constraint a1

0i is incorporated. Let us
fix the holon density

〈
h†ihi

〉
= 1, and choose the Hubbard-Stratonovich

fields to be homogeneous, ∆ij = ∆, χij = χ. Since the empty state makes
no distinction between empty and doubly occupied sites, we have θi = θ =
1
2π. Inserting these assumptions into (7.3.4), we obtain an energy density
functional Emf for the empty limit.
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Let us first ignore a1
01. Then the mean field equations are

∂Emf

∂χ
= 2χ =

∑

k

χ(cos kx + cos ky)2

Ek
, (7.4.1)

∂Emf

∂∆
= 2∆ =

∑

k

∆(cos kx − cos ky − a1
0)(cos kx − cos ky)

Ek
,(7.4.2)

a1
0 = 0. (7.4.3)

where the dispersion Ek is given by

Ek =
√

(χk − a3
0)2 + (∆k − a1

0)2,

χk = −3J

4
(cos kx + cos ky)χ,

∆k = −3J

4
(cos kx − cos ky)∆. (7.4.4)

In the empty limit, the holons cannot move, so there are no mean field
equations and dispersions governing those. The above mean field equa-
tions can be solved numerically to yield the unphysical result χ = ∆ =

√
2

4 ,
identical to the result for half filling. But this is clearly nonsense: the
empty limit is neither a spin liquid nor a superconductor. Also, since ∆
and χ are non-zero, the total energy will be nonzero, in flagrant contrast
with the correct result being zero, as pointed out earlier.

Taking a1
0 into account, however, the above mean field equations are

extended with the saddle point equation for a1
0,

1 =
∑

k

(∆(cos kx − cos ky)− a1
0)

Ek
, (7.4.5)

where the number 1 is the boson density. Solving the new system of
equations numerically, we obtain the correct result χ = ∆ = 0 and a1

0 = 1
2 .

Therefore, the Lagrange multiplier is of central importance, and the mean
fields vanish, as they should. Substituting this solution in the Hamiltonian
(7.3.4), we recover the correct energy for the empty limit. In other words,
things go dramatically wrong if a1

0 is ignored. In the last section we will
show that our mean field theory is performing well as an energy density
functional at intermediate dopings. To calculate dynamic properties, one
has to be careful, because of the confinement issues we already mentioned.
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7.5 Dynamical properties of the empty limit

It is interesting to consider the dynamic properties following from the slave
boson theory in the empty limit. It turns out that although this theory
is a good energy density functional, it is less trustworthy with regard to
dynamical properties revealed through the propagators. This is of course
due to the mean field treatment ignoring fluctuations of the gauge fields.
Indeed, the Lagrange multipliers al

0i should be given dynamics, causing
fluctuations confinement of the spinons and holons to electrons. Since
we ignored the fluctuations, we can not expect the mean field theory to
describe the physical electron of the empty limit.

The starting point for the study of electron dynamics is the single
electron propagator

G(x, y; t− t′) = 〈T (cx↑(t)c
†
y↑(t

′))〉 (7.5.1)

= 〈cx↑e−iĤ(t−t′)/~c†y↑〉Θ(t− t′)eiE0(t−t′)/~

−〈〈c†y↑e−iĤ(t′−t)/~cx↑〉Θ(t′ − t)e−iE0(t−t′).

Here the ciσ again describe projected electron operators. Since in the
empty limit there are by definition no electrons in the vacuum,

G(x, y; t− t′) =
∑

kk′
eik′x−iky〈ck′↑e−iĤ(t−t′)/~c†k↑〉Θ(t− t′)eiE0(t−t′)/~.

(7.5.2)
Let us first show that for the exact expression (7.2.1) describing the

empty limit of the t− J model, one obtains a free particle dispersion.
We need to know the time evolution operator e−iĤ(t−t′)/~. The Hamil-

tonian operator has no Heisenberg part for projected electrons, and it also
vanishes on the state c†x↑|0〉, where |0〉 is the wave function (7.2.1). So we

only need to calculate the effect of Ht = −t
∑

ij ψ†i hih
†
jψj on

c†x↑|empty〉 =
1
V

∑
m

eimx(b1mf †↑m + b2mf↓m)|0〉. (7.5.3)

In Fourier space, the result is

〈ck′↑Htc
†
k↑〉 = −2tδkk′(cos kx + cos ky) ≡ εkδkk′ . (7.5.4)

Including the chemical potential and using a contour integral expression
for Θ(t− t′), we conclude that the propagator is

G(k, ω) =
1

~ω − (εk − µ) + iη
, (7.5.5)
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the correct result for the propagator of a free particle. This means that
the wave function (7.2.1) encodes the right physics.

But what to expect from the mean field theory? Without a0
1, one

obtains the expected errors, namely a d-wave dispersion. Repairing this
with a nonzero a1

0 leads, however, to both bad news and good news. The
bad news is that one does not obtain the desired free particle dispersion,
but the good news is that the dispersionless spectrum makes possible a
vanishing of the ground state energy.

Let us consider the expectation values relative to the mean field wave
function (7.2.2),

〈0|(b†1mf↑m + b†2mf †↓m)e−iH(t−t)′/~(b†1nf †↑n + b†2nf↓n)|0〉MF (7.5.6)

Defining ∆t = (t − t)′/~ , the correlator (7.5.6) splits in a boson and a
fermion part,

(7.5.6) = 〈b†1me−iHbos∆tb1n〉〈f↑me−iHfer∆tf †↑n〉 (7.5.7)

where 〈.〉 are expectation values with respect to (7.2.2). Now we make a
Bogoliubov transform to diagonalise the mean field Hamiltonian (7.3.4),

fq↑ = uqγq0 + vqγ
†
q1 (7.5.8)

f †q↓ = −vqγq0 + uqγ
†
q1, (7.5.9)

where the Bogoliubons γqσ are supposed to annihilate the mean field
ground state, γqσ|0〉MF = 0, while they have an energy Eq. It follows
directly that

〈f↑ae−i∆t
P

s Es(γ
†
s0γs0+γs1γ†s1)f †↑q′〉 = ei∆

P
s Esδqq′e

−i∆tEqu2
q . (7.5.10)

For the bosons a free particle dispersion is obtained, just as in the exact
case, except that the hoppings have been renormalised to become tχ:
Eb

p = −2tχ(cos px +cos py)−µ. Using the mean field solution without a1
0,

we have Ef
q =

√
χ2

q + ∆2
q . Including the correlator < f †f > as well, the

result is

G(k, k′; ω) = δkk′
∑
qp

(uq − vq)2

~ω − (Ef
q − Eb

p + iη)
, (7.5.11)

with (uq − vq)2 = 1− ∆q

Ef
q
. This expression is similar to the result of Lee,

Wen, Nagaosa and Ng. This is unphysical, since the free electron on the
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square lattice obeys the dispersion associated with the d-wave supercon-
ductor.

Including a1
0 does improve matters. Following the steps above, but

now with χ = ∆ = 0, and a1
0 = 1

2 , the dispersions are modified to become
Ef

q = −a1
0 and Eb

p = −µ−a1
0. The coherence factors are vq = −uq = − 1√

2
.

The spinon dispersion becomes

G(k, k′; ω) = δkk′
1

~ω − (µ + 1) + iη
. (7.5.12)

Since the bosons form a Bose Mott insulator, there are no low lying
states associated with those and, henceforth, the spinon propagator corre-
sponds directly with the electron propagator. Unfortunately, it does not
yield the correct free electron dispersion result. The reason for this is that
in the mean field theory the gauge fluctuations, causing confinement, are
completely ignored by construction. Although the mean field energy is
insensitive to this, the electron propagator surely is not. Indeed, prop-
agators probe systems directly if meat-and-potato electrons are present.
We, however, ignored these fluctuations, thus excluding the existence of
those electrons. Hence there are good reasons that the theory should fail
to describe the excitations of the empty limit.

The conclusion of this chapter is that there is some bad news, and
quite some good news. The bad news is that by treating the gauge fields
as non-dynamical mean field Lagrange multipliers, we ignored confinement
issues. Consequently, when one probes our slave boson gauge theory with
real electrons one does not obtain the correct dynamics - not for high
dopings, at least.

The good news is that it is possible to include doping into the SU(2)
gauge theory. In paying much attention to the projection constraints, one
obtains the correct description of a hole in terms of the hard-core bosons.
This description leads automatically to the best mean field description:
it gives the correct energy, even in the confining empty limit. This illus-
trates our earlier claim that we may regard the mean field theory as a good
“density functional”. As an important consequence of our mean field de-
scription together with the projection constraints, one inevitably obtains
the conclusion that the holons should be treated as hard core, reminding
of the infinite Coulomb repulsion needed to arrive at the t−J model. The
second important point was that in the mean field theory, one needs to
consider all the three constraints, and not just one of them. This leads
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to a second striking conclusion: a d-wave superconducting state needs to
have an s-wave admixture in its order parameter structure!

As academic as our empty limit discussion might seem, the fruit which
we are going to harvest in the next chapter, cannot be tasted if we do not
convince the reader of the inevitability of these matters, the motivation
for this chapter. Indeed, let us now show what the beautiful ramifications
of the lessons from the empty limit are.
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Cha p t e r 8

The phase separated d + s-wave
superconductor

In the previous chapter, we have discussed how one should describe doping
within the context of SU(2) gauge theory. By studying this carefully, we
convinced ourselves of two important lessons. The first one is that a hole
in the t− J model is described in the SU(2) theory by a superposition of
a vacancy and a spin pair singlet state. This implied that doping induces
s-wave pairing. The second message is that the holons describing doping
should be hard core bosons, instead of gaseous, non-interacting particles
employed by Wen and Lee. This hard-core is necessary condition in order
to account for the fact that there can be at most one charge per site, as
has been clear from very the beginning.

We arrived at these conclusions by studying the seemingly irrelevant
limit of no electrons. The first lesson learnt from that trivial exercise
was that it taught us how to construct a mean field theory describing
intermediate doping. In this chapter, we show that the pay-off is already
considerable for the low doping regime of interest for the high-Tc super-
conductors, being between 5% and 30 %. As it turns out, the s-wave
nature induced by the holons will affect the order parameter structure in
the superconducting doping regime.

This interferes in an interesting way with the empirical developments
in high-Tc superconductivity. The SU(2) mean field theory predicts a
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d + s order parameter. There is strong experimental evidence from c-axis
tunneling [20], [21] and Raman scattering [22, 62] that in Bi2212 there is an
s-wave component in the gap, which is in largeness comparable [21] to our
prediction, and grows with doping [22], also in accord with our prediction.
Further, π-phase shift experiments for YBCO point out that the s-wave
component therein cannot be fully explained by the orthorombicity of
the crystal [63, 64]. As far as we are aware, SU(2) gauge theory, in
our formulation, is the only theory explaining these results in at least an
elegant way.

It appears that the above experimental findings are largely ignored be-
cause all existing mechanism theories predict either a d-wave or an s-wave,
and the SU(2) gauge theory is stand-only with regard to its insistence on
a d + s-symmetry. In the narrow context of slave-like theories, Ogata and
coworkers excluded d + s in the related context of Gutzwiller projected
wave function Ansatzes [65, 66].

The second claim is somewhat of a sociological surprise: it is generally
assumed that slave theories cannot explain phase separation phenomena.
We will demonstrate that our mean field theory accounts for phase sep-
aration. It turns out that the hard-core nature of the bosons is fully
responsible for this. The predicted compressibility and critical doping are
in accord with chemical potential shift measurements [19]. These phase
separation tendencies of the SU(2) gauge theory puts the door ajar for
more intricate phenomena, like the stripe order [67, 68, 69] that has been
observed in experiments [70, 71, 72, 73, 74].

Our results are summarised in the mean-field phase diagram, reflecting
the phase separated d + s-wave superconductor. Another ramification we
make quantitative. The s-wave admixture in the superconducting gap is
shown to shift the gap nodes along the Fermi surface. We predict how
this node shift behaves as a function of doping, an effect which might be
just within the resolution of present day angle resolved photo-emission
experiments.
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8.1 SU(2) energy density functional

In the previous chapters, we already set the stage for the mean field theory
description of the doped Mott insulator. Let us first summarise the main
points so far, we give an executive summary, to help the reader in under-
standing the way the results are obtained. Then we derive a mean field
energy expression for homogeneous mean field states, being the working
horse for the remainder of this chapter.

8.1.1 Summary of the previous results

Let us first quickly remind the reader of the basic ingredients, as discussed
in the previous chapters. Our starting point is the slave boson Hamiltonian
(7.3.4), derived from the t− J model,

Hmf = −µ
∑

i

h†ihi −
∑

i

al
0i

(
1
2
ψ†αiτ

lψαi + h†iτ
lhi

)

+
∑

<ij>

3J

8

(
|χij |2 + |∆ij |2 + ψ†i Uijψj + h.c.

)

+
∑

<ij>

t
(
h†iUijhj + h.c.

)
, (8.1.1)

where the holons h described the charge sector of the theory, whereas ψ
desribes the spinons, cf. (7.1.4) and (6.1.6), respectively. We also remind
the reader that the matrix Uij in (6.2.2), defined as

Uij =
(−χ∗ij ∆ij

∆∗
ij χij

)
, (8.1.2)

incorporates the hopping amplitudes χij and pairing amplitudes ∆ij of
the spinons, as defined in Eqs. (6.1.14) and (6.1.15). Therefore, a mean
field Ansatz is described by Uij , the projective symmetry idea. The La-
grange multipliers al

0i enforce the single-occupancy constraints, required
to give a faithful representation of the t − J-model Hilbert space. Away
from the mean-field solution, the al

0i become dynamical, turning them into
fluctuating gauge fields, which kindles confinement issues. The previous
chapter 6 gave a summary of the ideas of Lee and Wen [44] that for zero
doping, an effective U(1) gauge theory remains, which is deconfining for
the SF-spin liquid. This justification is continued, since doping explicitly
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breaks SU(2) symmetry, as we will show. In the previous chapter, we
argued that this approach leads to a correct energy density functional de-
scription, but that it should not be trusted as soon as one asks dynamical
questions, concerning correlation functions. But in this chapter, we only
rely on vacuum properties of the Hamiltonian (7.3.4), which turns out to
give remarkable agreements with experiment.

Inspired by the spin liquid ideas of many people [47, 75, 76], an idea
having some experimental support [51] , we introduced in Chapter 6 three
mean field states, namely the staggered flux phase [49, 50], the d-density
wave state [77, 78] and the d-wave superconductor. We recall their de-
scriptions here.

The d-wave superconductor is in the projective symmetry group rep-
resented by

dSC
Ui,i+x̂ = −χτ3 + ∆τ1, Ui,i+ŷ = −χτ3 −∆τ1,

a3
0 = 0, a1,2

0 6= 0, < b1 >=< b2 >6= 0. (8.1.3)

The al
0i are generally non-zero, because of the doping. The dispersion

for the fermions is (at least for homogeneous a0i) readily calculated to be

Ek =
√

(χk − a3
0)2 + (∆k − a1

0)2,

χk = −3J

4
(cos kx + cos ky)χ,

∆k = −3J

4
(cos kx − cos ky)∆. (8.1.4)

One should notice that the spinons have gapless Dirac dispersions at the
points (kx, ky) = (±1

2π,±1
2π), i.e., at those points we have nodal fermions

consistent with experiments [79, 80].
The following two phases also support these Dirac quasiparticles. The

first one is the staggered flux phase,

SFP
Ui,i+x̂ = −χτ3 − i(−)I∆, Ui,i+ŷ = −χτ3 + i(−)I∆,

a1,2,3
0 = 0, < b1 >=< b2 >= 0. (8.1.5)

The third phase has Fermi pockets, with nodes radially shifted from
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(1
2π, 1

2π):

dSC with pockets
Ui,i+x̂ = −χτ3 − i(−)I∆, Ui,i+ŷ = −χτ3 + i(−)I∆,

a1,2
0 = 0, a3

0 6= 0, < b1 >6= 0, < b2 >= 0. (8.1.6)

We remind the reader that the dSC state is referred to that way, since in
the Hamiltonian 7.3.4 that particular Uij couples f↑i with f↓i.

The three mean field phases above describe nodal fermions, but at dif-
ferent points in k-space. For zero doping, all the three Ansatzes become
the same, supporting Dirac quasiparticles at (1

2π, 1
2π), since the Lagrange

multipliers and boson densities vanish. This is an expression of the fact
that for zero doping, these states describe the same quantum order, as
realised by Wen [18]. In fact, for zero doping, these three Ansatzes are
different representatives of the same projective symmetry group, and be-
cause of this, these can be smoothly morphed into each other by SU(2)
transformations. Indeed, in Chapter 6 we showed that the transformation
responsible for this, reads

gi = exp
(
−i

π

4
(−)Iτ1

)
. (8.1.7)

The way the SU(2) mean field theory is set up, is as follows. The
spinons and holons are considered to be separate systems. As long as
one rotates the spinons and holons together, SU(2) gauge symmetry gives
the same mean field properties. If one fixes a gauge for the spinons,
and then starts to rotate the holons independently, the mean field results
for the energy will be different. The strategy we choose is to fix the
spinon gauge at the dSC mean field state, whereas the holons will be
rotated by the group element gi. We showed in Eq.(6.2.14) that we can
decompose gi into ”Euler angles” αi, θi and φi, and encoded these in the
useful concept of isospin, as defined in (6.2.16). We pictured this concept
in the isospin sphere, cf. Fig. 6.1. Only the angle θi turned out to be
physical, whereas the other ones are gauge. For equator states, we have
θ = 1

2π, corresponding to < b1 >=< b2 >, whereas for θ = 0, < b1 > 6= 0
and < b2 >= 0. The latter means that the symmetry between empty sites
and doubly occupied sites is broken.
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8.1.2 Mean field energy

Having recapitulated the main ingredients, let us derive the energy density
functional. Inspired by the empty limit, our starting point is the mean
field wave function,

|Ψ0〉MF =
∏

i

(
αi + βie

iϕi(uib
†
i1 + vib

†
i2)

)
|vac〉 |F〉 . (8.1.8)

The ket |F 〉 describes the mean field spinon state, and the boson density
|β|2 is the density of physical holes.

The important point of SU(2) gauge theory is that the particle-hole
symmetry is broken upon doping. Indeed, a hole is described by a super-
position of vacancies and spin pair singlets f †i↓f

†
i↑, accompanied by their

own boson. In the particle-hole symmetric state, the b1 and b2 boson are
equal, meaning that this should correspond with θ = 1

2π. This is the
motivation for the parametrisation ui = cos(1

2θi) and vi = sin(1
2θi).

The phase ϕ is the same as the phase ϕi of gi, which is gauge. From
now on, we gauge fix ϕi = 0 everywhere. The transformation (8.1.7)
mapping the SFP into the dSC corresponds with ϕi = 1

2π + Iπ, as the
reader can verify.

For theoreticians, it is natural to first study spatially homogeneous
mean field states. However, in the course of time it has become clear
that strongly interacting electron systems tend to form inhomogeneous
states, like stripes. Being aware of this complication, let us nevertheless
study homogeneous states. Still, this exercise turns out to be instructive,
in this regard. The reason is that we treat the Hamiltonian (7.3.4) in
the grand canonical ensemble, instead of the canonical ensemble. The
original formulation of the SU(2) mean field theory [44, 45, 61] rested on
the canonical ensemble as well.

To account for condensation of the holons at finite doping, the temper-
ature was taken to be finite, to find out that the particle number constraint
leads to Bose-Einstein condensation of the holons, by treating µ simply as
a Lagrange multiplier. We prefer a different approach, since considering
first finite temperature is a detour given in by the unphysical assumption
that the holons form a non-interacting gas. On the other hand, hard-core
bosons are not only more physical, but also easy to treat at zero temper-
ature. In Chapter 7 we made the point that the bosons are interacting,
making them superfluid at zero temperature. The last motive is the pos-
sibility of phase separation, i.e., the possibility of coexistence of phases



8.1 SU(2) energy density functional 111

with different densities at the same chemical potential in the same vol-
ume, giving rise to the need of performing the Maxwell construction. To
anticipate this, it is necessary to take the chemical potential for the holons
as control parameter, instead as the Lagrange multiplier enforcing a fixed
density.

Let us substitute the mean field wave function (8.1.8) in the slave
Hamiltonian (7.3.4), we obtain an expression for the mean field energy
per site 1

N 〈Hmf 〉 = eMF . (N is the number of lattice sites.)

eMF = − 1
N

∑

k

Ek +
3

4N
J(|χ|2 + |∆|2) (8.1.9)

− 2tχ|α|2|β|2 − (µ + a1
0 sin θ + a3

0 cos θ)|β|2.

The homogeneity of the Ansatz is expressed in the fact that the lattice
site subscript i is dropped. It is important to observe that the isospin
latitude angle appears in the mean-field energy, expressing the fact that
for non-zero doping, SU(2) gauge symmetry is broken. Hence θ is not
gauge, but has acquired physical meaning. The kinetic part of the energy
is gauge invariant, leading to the fact that only the hopping amplitude
shows up in the holon hoppings. From this density functional, we derive
the saddle point equations for the dynamical variables χ,∆, a1

0, a
3
0 and the

hole density |β|2 = ρ(χ) = 1 − |α|2. To simplify matters a bit, we take
the isospin angle θ as an external parameter, controlling the density of b2

relative to b1.
The saddle point equations in the grand canonical ensemble are easily

derived, with the homogeneous forms of (7.3.10 and (7.3.12),

2χ =
1
χ

∑

k

χk(χk − a3
0)

Ek
+ 2

(
4t

3J

∂

∂χ
ρ(χ)(1− ρ(χ) )

)

2∆ =
1
∆

∑

k

∆k(∆k − a1
0)

Ek
(8.1.10)

ρ(χ) sin(θ) =
∑

k

(∆k − a1
0)

Ek

ρ(χ) cos(θ) =
∑

k

(χk − a3
0)

Ek

0 = ρ(χ)
(

ρ(χ)− 1
2

(
1 +

µ + a1
0 sin θ + a3

0 cos θ

2tχ

))
.
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As already discussed after (7.3.10), these equations give rise to an
important law which provides a linear relationship between the s-wave
spinon pairing ∆s ≡

〈
f †i↓f

†
i↑

〉
and the doping x = ρ(χ),

∆s =
1
2
x sin(θ), (8.1.11)

as a direct ramification of the full constraint structure.
In order to find the solutions to the saddle point equations (8.1.10),

the energy (8.1.10) is minimised numerically using the simulated annealing
method [81, 82].

We point out that the fifth equation admits both zero and non-zero
solutions for the density ρ. As a function of µ, the mean field energy will
tell which one is more favourable. In Section 8.2, we will show that the
system chooses between these two by a first order phase transition, and not
a second order one! This means that the mean field theory 8.1.10 implies
a phase separation regime, for the usual Maxwell construction reasons,
when transforming to the canonical ensemble.

8.2 The SU(2) mean field phase diagram

We have now arrived at the point where we can collect the results. Our
first step was to prove that one needs all SU(2) constraints to project
onto the t− J model Hilbert space, while this constraint structure is also
required for the mean field description of the SU(2) gauge theory. This
will bring us to the first result: that the superconducting order parameter
needs to have an s-wave component! Then we spent effort in proving that
the holons need to be hard-core in order to respect the full set of SU(2)
constraints. We now show that the superfluid hard-core holon condensate
displays phase separation behaviour, as expected for hard-core interacting
systems. We thereby achieve an intrinsic connection between slave theories
on the one hand, and the observation of inhomogeneous states on the other
hand, a connection that is traditionally considered as absent.

Let us first discuss the numerical verification of a claim inferred in the
literature [45], namely that at finite hole density the superconducting state
(θ = π/2) is preferred over the flux phase (θ = 0, π) (cf. the inset in Fig.
8.3). This is a natural ramification of the breaking of SU(2)-symmetry
for non-zero doping. The θ = π

2 states, characterised by a3
0 = 0, are

energetically more favourable, being consistent with the instability of the
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flux state towards d-wave superconductivity, as already understood in the
early nineties [83].

The reader might already have noticed a kink in eMF as a function
of doping in the inset figure 8.3. In other words: there is a first-order
phase transition. Indeed, our main result is that generically this mean-
field theory predicts phase separation at small chemical potential. The
system stays initially at half-filling and pending the ratio of J/t at some
finite µ a level crossing takes place to a state with a finite doping level, cf.
Fig.8.3.

We stress here that this phase separation behaviour is eventually com-
ing from the hard-core nature of the holons: also the “wrong”mean field
states (SFP and pure dSC with pockets) exhibit first order behaviour.
We conclude that, due to the Hilbert space restrictions on the SU(2) de-
scription of the holons, the theory insists on inhomogeneous states for low
doping. As a function of increasing J/t the width of this phase separation
regime is increasing (see Fig.8.4) and we find that for J/t ' 4 the phase
separation is complete. This is consistent with exact diagonalization stud-
ies on the t-J model indicating a complete phase separation for J/t ≥ 3.5
[68],[84]. This is quite remarkable and it reveals that the gauge mean field
theory has to be a remarkably accurate quantitative theory of the density
functional kind: it is a good description of the empty limit and the Mott
insulator, and gives a fair prediction of phase separation tendencies. We
stress that as a rule less severe demands on physical reality are put on
density functional theory , instead of full dynamical theories.

The significance of this finding is that for this most sophisticated ver-
sion of spin-charge separation theories, phase separation is natural feature,
as it is in the empirical reality. It is well understood that these macro-
scopic phase separated states are an artefact of the oversimplified t − J
model. By taking the long-range Coulomb interaction into account this
will turn immediately into the microscopic inhomogeneity [67],[69],[85], of
the kind that are seen in STM-experiments [86]. To see how well this
slave theory handles the ’big numbers’ in this regard, we show in Fig.
8.3 the electronic incompressibility 1/κ = ∂2EMF

∂x2 = ∂µ
∂x according to the

SU(2) theory, to find that it compares remarkably well with the experi-
mental results due to Fujimori and coworkers[19]. Firstly, it is seen that
independent of the ratio J/t, the compressibility is right on spot of the
experiments: the slope of µ vs. holon density is the same as the measured
slope. The doping at which phase separation occurs, namely 13 %, is cor-
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Figure 8.1: Phase diagram as a function of doping x and the ratio J/t, according
to the Maxwell construction. For dopings below a critical doping line xc(J/t),
homogeneous states are metastable against phase separation, stripes etc. For
J ' 4t, total phase separation takes place and the system becomes a mixture of
Mott insulating and empty regions.

rect only for the value J/t = 0.1, which is too small. Indeed, from ARPES
measurements a ratio of J/t = 0.3 is more realistic, but for those samples
phase separation takes place at dopings of about 17 %, and not 21 %, as
found in the SU(2) mean field theory for J/t = 0.3.

Let us now focus on the nature of the superconducting order parameter
found elevated doping levels. As expected, the s-wave component becomes
increasingly important, cf. Eq. (8.1.11). To further emphasize this , we
compare in the inset of Fig.8.3 the energy of a state where we have fixed
the Lagrange multiplier a1

0 = 0 such that the s-wave component vanishes,
with the best d + s mean-field state, finding that the former is indeed a
false vacuum. To mimick the average behavior of the superconducting
order parameter also in the micro-phase separated states at low dopings,
we calculate matters now in the false (uniform) vacuum of the canonical
ensemble, fixing the average density, simplifying the mean field equations
(8.1.10). Indeed, ρ(χ) becomes now a fixed ρ. Furthermore, since the
state θ = 1

2π is favoured, we take the mean field Ansatz Uij to be the
SC one, as stated before, and consequently we have a3

0 = 0. This enables
us to map out the phase diagram as a function of doping and the ratio
J/t, leading to three phases. The first, for low doping, is the phase-
separated, underdoped d + s-wave superconductor. It is a mixture of
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charged, superconducting islands in an insulating sea without charges,
where the full SU(2) symmetry is restored. This reminds the reader of
the STM-pictures from S.C. Davis’ group [86]. For intermediate dopings,
the homogeneous, overdoped d+s-wave superconductor is found, whereas
for high dopings, the d-wave gap vanishes, leaving behind a pure s-wave
superconductor. Hence, although d-wave superconductivity leads to an
s-wave admixture, the reverse is not true.

We find that the regime where phase separation is important, the
s-wave component is not negligible. This is consistent with Raman mea-
surements [22], where the superconducting gap was found to have both d-
and s-wave components. Although screening effects in Raman scattering
make it difficult to compare our results directly to theirs, their results
indicate that the ratio r = ∆s/∆d grows with doping, as it does in our
approach. Looking to Figure 8.2, we find in the phase separated over-
doped regime s-wave admixtures of about r = 10 − 20%, consistent with
c-axis tunneling experiments [20].

We predict that at a doping level that appears to be higher than can
be achieved in cuprate crystals a phase transition occurs to a pure s-wave
superconductor. As we already alluded to, the gauge fluctuations should
become more severe as well, for increasing doping and at some doping
level a transition should occur to a confining ”electron like”system.

As we learnt from the empty limit, it still make more sense than the
result obtained by disregarding the first constraint equation (7.3.10), since
that would lead to the unphysical result χ = ∆ = 1√

2
, giving the wrong

vacuum energy, as we discussed in Section 7.4. In other words, our mean
field theory is a remarkably good density functional theory, but unevitably
the theory fails completely in dynamic regards. In the confined phase,
at sufficiently high dopings, we need an approach which is qualitatively
different from slave theories, let alone that one can get away with the mean
field version. On the other hand, in the superconducting doping regime,
we find some promising experimental support for our results with regard
to the d + s structure of the order parameter, meaning that confinement
physics might not be overwhelmingly important in the low-doping part of
the phase diagram.

Having said this, the experimental support for an s-wave admixture
makes it possible to come up with a falsifiable prediction for photo-emission
experiments. The s-wave component induces a shift in the nodes, as can
be inferred from the spinon dispersion Ek: the hopping vanishes along the
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line ky = π − kx, so that the locus of the node can be readily calculated
to be ky − 1

2π = arccos(a1
0/(3J/2)∆), which shows a doping-dependent

behaviour as well, cf. the black line in Figure 8.2. The node shifts might
be able to explain the U-shaped gap as measured in Bi2212 [87], since the
twinning of samples mixes regions of node shifts +δ with −δ, smearing
out the V-shape of the gap to a U-shape.
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Figure 8.2: In this figure, we show how the s-wave admixture r = ∆s/∆d grows
as function of doping (light gray line) for J = 0.3t. The leftmost figure shows
the symmetry of the gap function in reciprocal space, indicating the shift of the
gap node along the Fermi surface, coinciding with the Brillouin zone boundary
Y-X. This shift is denoted by δ, and grows with doping. The black line plots δ as
function of doping in units of π/a, where a is the lattice spacing. Up to a doping
of 20% the results of the false vacuum homogeneous solution in the canonical
ensemble are used, exploiting the Maxwell construction. To remind the reader
of the fact that the homogeneous states are false vacuum states, the lines are
dashed. Finally, the lines end where the d-wave gap vanishes. Here r is infinite
and the Fermi surface is fully gapped.

In summary, we have argued that in order to achieve consistency in the
SU(2) slave boson theory, one has to implement hard-core bosons instead
of non-interacting Bogoliubov bosons to describe the charge sector. As a
result, one obtains phase separation at lower dopings consistent with the
experimental observations. Also the compressibility matches very well.
Furthermore, by inspecting the empty limit, we showed that an s-wave
component in the superconducting order parameter is implied when d-
wave superconductivity occurs, at least for dopings where homogeneous
states exist, a ramification of the constraint structure. This finds its origin
eventually in the particle-hole symmetry central to the gauge structure of
the SU(2) theory: to describe physical spin singlets, ”no fermions”are
indistinguishable from an ”s-wave spinon pair”. This is reflected in the
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constraint equations, required to reduce the SU(2) Hilbert space to the
Hilbert space of the t− Jmodel. The constraint equations tell us that as
soon as d-wave superconductivity emerges, one necessarily has an s-wave
component. This s-wave admixture is in accord with Raman [22] and c-
axis tunneling experiments [20, 21]. We also predict a node shift in the
gap function, that might be measurable by photoemission.

8.3 Conclusion: strong correlations and
inhomogeneous systems

In this chapter, we derived some important results, just using the mean
field version of the SU(2) gauge theory. Two important lessons from Chap-
ter (7) lead to two important results. The first is that by just respect-
ing the appropriate constraints, a superconducting gap with an s-wave
component emerges. This result is already engrained in the particle-hole
symmetric formulation captured in SU(2) theory. Although the theory
does not deal with confinement issues, it explains experiments indicating
the d+s wave symmetry remarkably well, within an elegant theoretical
framework.

Secondly, the physics of the problem enforces the holons to have infinite
hard core, in order to model the Coulomb repulsion correctly within the
physics of the t − J model. Hence, we should regard the holons as a
superfluid, instead of as a Bose gas. We have shown that this approach
leads to phase separation behaviour. In this way we demonstrate that
when the theory is formulated correctly, one finds that it unifies different
schools of thought: inhomogeneities and slave boson constructions are
actually going hand in hand.

This inhomogeneity seems to be ubiquitous for strongly correlated,
complex systems, see, e.g., Balatsky [88]. One way this tendency towards
inhomogeneity/phase separation is manifest in experiments is by the ex-
treme sensitivity of the strongly correlated electron systems in oxides to
disorder. A clear example of this is provided by the manganites, showing
a first order transition towards impurity-induced “puddles” [89, 90].

Inspired by the projective symmetry group, we will propose an inho-
mogeneous mean field state in the outlook of this thesis. Therein we will
discuss how experiments inspire the idea that inhomogeneous SU(2) mean
field states connecting spin liquid states with superconducting states, in-
corporate both stripes and protection of nodal fermions. If this idea works,
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this would mean another unification in the theory of high-Tc, since the
communis opinio is that the ”weak”nodal fermions should be destroyed
by the ”strong”charge ordering effects. That would be nothing less than
the culmination of Wen’s idea of quantum order.
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8.4 Appendix: colour figures for section 8.2
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Figure 8.3: Chemical potential shift as a funtion of doping, showing the phase
separation behaviour of the reformulated mean field theory. Indeed, the chemical
potential starts to shift for appreciable dopings only. The blue line are the numer-
ical results for J/t = 0.1, and agrees very well with the experimental results from
Fujimori [19] (dotted line). The red line depicts the results for J/t = 0.3. The
critical doping changes, but not the compressibility. The inset shows that ignor-
ing a1

0, i.e., ignoring the s-wave component, gives a false vacuum. Indeed, there
is a positive relative energy difference between the pure dSC and our mean field
theory, growing with doping (red line). The inset also shows that for non-zero
doping, the DDW/SFP state (blue line) is higher in energy than the supercon-
ducting states.
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Figure 8.4: Zero temperature phase diagram of the t − J model according to
SU(2)-mean field theory. It incorporates three phases, viz. the phase separated
d + s-wave superconductor for low dopings, the homogeneous d + s-wave super-
conductor for intermediate dopings, and a homogeneous s-wave superconductor
at high dopings. The bold line shows indicates the border of the phase separa-
tion region. The phase separation tendency grows for increasing J/t, to become
complete at J/t = 4. The colors indicate the total superconducting gap. For
zero doping, there is only a d-wave component, whereas the s-wave admixture
grows linearly with doping, so that the total gap is non-zero even beyond the
critical x − J/t line (rightmost line), where ∆d vanishes. The inset shows the
d-wave and the growth of the s-wave component separately for J/t = 0.3. The
blue line indicates the doping level where phase separation terminates, computed
by imposing uniformity (canonical ensemble) for x < 0.2.
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Conclusions and outlook

Let us conclude this thesis with a summary of the main results, and by
giving an outlook on the perspectives and ideas this work opens up. The
main theme of this thesis has been the investigation of analogues of non-
Abelian gauge theory structures in condensed matter systems. In high-
energy physics these are quite familiar, as symmetries become larger in
approaching higher energy scales. Non-Abelian gauge theories are less
natural in condensed matter systems, since these describe emergent low -
energy states. Yet there are examples of such kind of structures in con-
densed matter systems.

One aspect of finding such an analogue is parallel transport: spin-orbit
coupling can be interpreted as an SU(2) parallel transport structure [8, 9].
This gives another context of colour-currents in quark-gluon plasmas: for
spin-orbit coupled systems, the non-Abelian charges in this case are the
spins, being transported by electromagnetic fields appearing in the guise
of non-Abelian gauge fields. Although the analogy is not complete since
the “gauge” fields do not obey dynamics since these are fixed by the
electromagnetic fields, it is still an excellent context to address whether
and how non-Abelian hydrodynamics can exist. If so, it would provide
an excellent mean to figure out how the non-Abelian explosions at CERN
work.

A condensed-matter system in which a full gauge theory is truly emer-
gent, is the Mott insulator. The non-Abelian gauge structure arises from
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imposing both the single-occupancy constraint and the particle-hole sym-
metry locally in a slave theory [45]. This structure is captured in the
gauge group SU(2). To keep the constraints exact, it is necessary to keep
the full gauge field dynamics, leading to a full non-Abelian gauge theory
coupled to matter.

Both aspects turned out to lead to physical predictions, and both
analogues give more insight as to what the contours of answers to questions
in high-energy physics might be. Let us focus on those aspects separately,
highlighting the main results, and giving an outlook for both.

9.1 Parallel spin transport and non-Abelian hy-
drodynamics

The notion of parallel transport of non-Abelian quantities leads to the
question of whether a hydrodynamic description of, e.g., the quark-gluon
plasma exists. The answer turned out to be no and yes. The negative
part of the answer is based on the fact that the gauge fields change the
colour/spin. This translates into the statement that spin/colour currents
are only covariantly conserved, i.e., there is only a local conservation law.
But since local conservation not necessarily imply global conservation,
an effective long-wavelength scale hydrodynamic description is impossi-
ble. On the other hand, we have shown in section 3.7 that when the
non-Abelian matter condenses into a phase coherent state, the resulting
phase stiffness restores hydrodynamics! This is an example of emergent
non-Abelian hydrodynamics in condensed-matter systems. These equa-
tions incorporate the spin-Hall equation, familiar from spintronics, with
the difference that this equation has now acquired hydrodynamic status,
absent in ordinary spintronics.

The first example of hydrodynamics rising from the ashes is the or-
dered XY-magnet, an example inspired by the work on spiral magnets
by Mostovoy [26]. The hydrodynamic currents can be wired in by spiral
order, creating a singularity. This singularity corresponds with an elec-
tric field. The second example is given by spin superfluids. In the case
of the pure SU(2) spin superfluid, an electric field sets a hydrodynamic
spin current in motion. Inspired by SU(2) topological textures like the
’t Hooft-Polyakov monopole, the case of a cylindrical electric field was
considered. We demonstrated that the cylindrical topology of the electric
field is inherited by the spin current, giving rise to the spin vortex.
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Figure 9.1: The phase diagram of the highly frustrated κ-(ET)2Cu2(CN)3, as
proposed by Kanoda [38]. The spin liquid state shows linear specific heat, which
might signal the presence of a spinon Fermi surface. This would amount to
making a spinon Fermi liquid out of an insulator. Then the interesting possibility
is that this spinon metal might be unstable against an S = 1 spin superfluid.

This is the rigid version of the Aharonov-Casher effect [13], as de-
vised by Balatsky and Altshuler [9]. The very same topology, provided
by the rigidity of the spin superfluid, gives a beautiful ramification: the
winding number of the vortex corresponds with quantisation of the charge
that causes the electric fields. Put differently: charge is trapped by the
spin superfluid in quanta of λ0 = m

µ0e , which is 2.6 × 10−5C/m for 3He .
This charge trapping effect is reminiscent of, but not quite the same as
Aharonov-Bohm flux trapping with superconducting rings. In the latter,
the Maxwell gauge field is dynamical, becoming screened in the bulk. In
the spin superfluids, in contrast, the electric field is not a dynamical gauge
field. But since the total current vanishes, and since the field is necessary
to create a spin vortex current in the bulk, a quantisation condition is still
obtained.

Then the question was whether our proposed experiment in Figure
2.1 can be performed. We considered the two possible candidates, 3He-
A and 3He-B. 3He-B resembles the pure spin superfluid most, its order
parameter manifold being described by the group SO(3). The effect of
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dipolar locking destroys the spin vortex, however. Matters are even worse
for 3He-A, since the spin order parameter is described by a vector, not
a matrix. Although a cylindrical electric field will set a spin vortex into
motion, the vortex will decay, since it is energetically not more favourable
than the situation without vortex.

Even in the absence of dipolar locking, the numbers Nature provided
us with, conspire against the charge trapping experiment. The spin-orbit
coupling constant is inversely proportional to mass, making it small for
the 3He-atoms. Hence, if the amount of superfluid is too small, it is
more advantageous for the wire to discharge by an enormous spark, than
to remain trapped by the spin vortex. Actually it turned out that we
need an amount of 3He enough to cover Alaska, rendering our experiment
merely into a joke.

9.1.1 Outlook: organic superconductors

The problems signaled, point the direction in which we can look for a
solution. We have concluded that the heavier the constituent particles
are, the smaller the spin-orbit coupling gets. Hence, we need to look for
lighter things in order to be able to trap charge. The first candidate would
be a superfluid made out of electrons, since these are 5000 times lighter
than 3He-atoms. However, as electrons are charged, charge effects will
overwhelm the whimpy spin-orbit coupling effects. So we need a system
made out of electrons, but having a huge charge gap, i.e., we need a spin
superfluid made out of a Mott insulator. Does this exist?

In recent years, there have been many advances in the research on
highly frustrated systems on triangular lattices [91], which are realised in
organic compounds. In the last two years, Kanoda et al. have done specific
heat measurements in the spin liquid phase of the organic superconductor
κ-(ET)2Cu2(CN)3, see Figure 9.1. Although the spin liquid state is known
to be a featureless paramagnet, the specific heat showed a linear behaviour
as a function of temperature [37, 38].

The linear behaviour has led theorist P.A. Lee to the idea that this
might be caused by fermionic spinons forming a Fermi surface [92]. It
is plausible that at low energy scales, a BCS-like instability might give
rise to an S = 1 spinon condensate. This would then be the desired spin
superfluid made out of a Mott insulator. The theoretical complication is
that due to the SU(2) slave theories developed by Lee and Wen [44], there
will be transversal gauge degrees of freedom, blocking the triplet channel.
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This should give rise to some scepticism about whether the organics are
able to become a triplet superfluid. Whether or not this is the case, to our
opinion, the idea of charge trapping provides a good motivation to pursue
the BCS-instability towards a triplet state of the spinon metal further.

9.2 Emergence of the deconfined spin liquid

An example of the emergence of a full non-Abelian gauge theory, is the
doped Mott insulator, important for understanding high-Tc superconduc-
tivity. The doped Mott insulator is defined by having either one spin
or one charge degree of freedom per site, interpreting the electron as a
composite particle of a spinon and a holon, as discussed in Chapter 7 .
Although at a first glance this seems like just one constraint equation,
leading to a U(1) gauge theory, the extra local particle-hole symmetry of
the MI gives rise to a non-Abelian gauge theory described by the group
SU(2). The dynamics of the gauge fields are generated by integrating
out the matter fields, renormalising the effective gauge coupling to a fi-
nite value. These dynamics immediately make it necessary to address the
issue of confinement: is there any reality to the assertion that electrons
are not elementary, if in real life only the confined state is encountered?
The question whether a deconfined spin liquid state exists, being made
out of holons, spinons and deconfining SU(2) gauge fields, is similar to
the question of the existence of the quark-gluon plasma in the context of
SU(3) QCD. In this regard, the ideas of X.-G. Wen on spin liquids in the
Mott insulator might give insights into the quark-gluon plasma as well.

To summarise Wen’s ideas as discussed in Chapter 6, the main idea
is that on assuming that vacuum expectation values of the spinon opera-
tors exist, some SU(2) gauge fluctuations might become massive, leaving
behind an effective gauge theory with lower symmetry. In the determina-
tion of what the effective gauge theory is, the observation that mean field
states with different symmetries can be gauge equivalent, is important.
The main example is provided by the staggered flux liquid, breaking trans-
lation symmetry. It is equivalent to a d-wave pairing state of the fermions
after a gauge transformation. The notion of gauge equivalence of mean
field states, leads to a classification scheme of the mean field SU(2) gauge
theory which is different from the Wilson loop classification scheme in pure
gauge theories. The equivalence classes of mean field states, named pro-
jective symmetry groups, determine which effective gauge theory remains
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after integrating out the matter fields. Then the excitation spectrum of
the matter fields will have to determine whether the remaining massless
gauge interactions are confining or not. If the effective theory is decon-
fining, the spin liquid is real, being the condensed matter sibling of the
quark-gluon plasma. All the states in the same projective symmetry group
leading to deconfinement, are thus protected against gauge fluctuations.
This leads to the idea that there is an ordering principle at work. Since
states with different symmetries can lead to the same physics, it cannot
be classical order. This justifies the name of quantum order, and is by
definition classified by the projective symmetry group.

In this thesis, the spin liquid state describing the d-wave superconduc-
tor in the doped Mott insulator is studied. Some important lessons were
drawn from the empty limit, the opposite limit from half-filling. Although
a deconfined state surely will not exist in that regime, it turned out that
SU(2) theory is able to describe the energy of that state correctly. On the
other hand, dynamical properties are not rendered correctly, since con-
fining gauge interactions are ignored. Hence, SU(2) gauge theory can be
trusted as a good energy functional. The ramification of the empty limit
considerations is that the holons should be treated as hard-core bosons,
making phase separation possible. Performing mean-field calculations in
the grand canonical ensemble, indeed lead to the prediction of phase sep-
aration, reaching deep into the superconducting regime. The calculation
of the compressibility agrees with experimental results of Fujimori and
coworkers on the chemical potential shift in LSCO [19]. The phase sepa-
ration tendencies are also not inconsistent with numerical results [68], thus
corroborating the reliability of the SU(2) slave boson theory as an energy
density functional. Slave theories have up to now not been believed to
show phase separation. Our results show, however, that the SU(2) mean
field theory forms a bridge between on the one hand slave boson theories,
and on the other hand models predicting phase separation.

Secondly, the constraint structure implies a very interesting result:
describing the holons as a superfluid condensate, leads to s-wave pairing
of the spinons. This result is rooted in the description of a hole as a
superposition of a vacancy and two spinons: inducing holes induces double
spinon occupancy. Although deconfinement is destroyed in high doping
regimes, for lower doping the particle-hole symmetry of the Mott insulator
is still remembered. In particular, in the superconducting doping regimes,
the SU(2) order parameter insists on having a d+s wave structure, where
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the s-wave component grows linearly with doping. The d+s structure has
acquired support from c-axis tunneling experiments [20, 21] and Raman
scattering [22]. We strongly suggest an experiment measuring the s-wave
admixture as a function of doping.

These results provide good news for high-energy physicists. If the de-
confined spin-liquid lead to results which have been confirmed, deconfined
states in high-energy physics might also be on the real axis. This does not
hold for the phase separation, however, since in SU(3) the quark electric
charges are +2

3 and −1
3 , whereas in the SU(2) theory, there are only re-

pulsive charges −e. More surprisingly, deconfinement can emerge for low
energies in condensed matter systems.

9.2.1 Outlook: isospin spirals in cuprates

Having established the phase separation tendencies, new perspectives are
opened as to what the role of stripes in the superconducting cuprates is.
The understanding is that phase separation is a necessary condition for
stripes to exist. On the other hand, phase separation has never been seen
in the high-Tc’s. In fact, there are other properties at work. The Mott
insulator is an antiferromagnet, which makes it advantageous for holes to
order in stripes instead of phase separated islands. In fact, stripes should
be regarded as antiphase boundaries in the antiferromagnet [93].

Figure 9.2: A pictorial representation of the unit cell of the isospin spiral. The
green areas correspond with superconducting stripe regions (isospin angle θi = 0),
blue is the AB flux phase (θ = 1

2π) and red the BA flux phase (θ = − 1
2π). The

drawn cos(2θix) profile shows the boson density as a function of the x-coordinate
ix in the unit cell. Here, θi is the isospin angle of the fermionic mean field state
Uij . Note that the bosonic isospin angle as defined in Chapter 8, Eq. 8.1.8,
is in this case equal to θbos = θi − 1

2π. Hence, 〈b1〉 = 〈b2〉 still holds in the
superconducting state. It is seen that the hole-rich region forms an antiphase
boundary for the SF-liquid state in between the superconducting stripes.
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In the past decades, many approaches to understand the Hubbard
model in some slave boson representation are made. One is the large-S
expansion [48, 94], taking the limit of the spin value S →∞. The other is
introducing more than two flavours of spin, such that an SU(N) model is
obtained . The large-N limit leads to dimerised states [52, 95], whereas the
vacuum of the large-S limit is the antiferromagnet [48, 94]. The question
arises if the group SU(2) is able to describe the “anti-phase boundariness”
of the antiferromagnet, the more so since the antiferromagnet and the
dimerised state are incompressible, whereas the flux phases and the dSC
spin liquids of the SU(2) theory are compressible.

We propose a way in which the SU(2) mean field theory can describe
anti-phase boundaries, within the spin liquid states descending from the
Mott insulator. The first observation is that for zero doping, the dSC or
SFP state is just a gauge fix within the same projective symmetry group.
Let us now consider a gauge in which the spinon mean field Uij Eq. (6.2.2)
rotates over the whole isospin sphere,

Uij = exp
(

iθi
τ1

2

)(−χ ∆
∆ χ

)
exp

(
−iθj

τ1

2

)
(9.2.1)

by a harmonically varying isospin angle

θi = Q · i = qix, ordering vector Q in x direction. (9.2.2)

In this way, the SFP state is smoothly connected to a dSC state. Observe
that this state is in the same PSG for zero doping. Then the idea is that
for underdoped samples this spiral state might be lower in energy than the
phase separated state for the homogeneous d+ s-wave superconductor. A
cartoon representation is given in the figure 9.2.

The peculiar feature of the isospin spiral is that in the SU(2) gauge
theory the charge-density wave is made out of a superconductor, which
is not the case in the large-S limit. The antiferromagnetic domains are
now replaced by a spin liquid, carrying nodal fermions, a feature absent
in the antiferromagnet. As the nodal fermions exist in both the dSC
and SF phases, a very promising perspective is opened up, supported by
experiments.

The first support comes from the results from Fujimori and coworkers
[19] and Z.X. Shen and collaborators [96] for LaSCO. The chemical poten-
tial shift measurements of Fujimori in underdoped LaSCO are compatible
with the existence of charge order, with Shen finding similar results. Fur-
thermore, in the Nd-doped cuprates, clear features of static stripes are
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measured already in the nineties [70, 97]. On the other hand, existence of
nodal fermions in underdoped cuprates is found as well [96]. The combi-
nation of these results seem to indicate the coexistence of striped charge
order with nodal fermions. This idea is backed by recent results from the
group of J.C. Davis [86], reporting that charge order and nodal fermions
can coexist.

The SU(2) gauge theory is able to capture ’Mottness’, d-wave super-
conductivity and the protection of nodal fermions. The framework of the
isospin spiral state in SU(2) mean field theory forms an excellent explana-
tion to explain the mystery why nodal fermions should exist in a strongly
correlated background. This is a promising motivation to study the sta-
bility of the isospin spiral mean field states in underdoped cuprates.
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Samenvatting

Verschijnselen in de natuur te begrijpen door de samenstellende delen
ervan te bestuderen is een belangrijk wetenschappelijk paradigma. In feite
ligt hieraan dus de idee ten grondslag dat het geheel identiek is aan de som
der delen. Voor veel systemen in het dagelijks leven gaat dit ook op. Denk
hierbij bijvoorbeeld aan de thermodynamische gaswetten, die begrepen
kunnen worden door te veronderstellen dat gassen zijn samengesteld uit
moleculen. Verder kunnen chemische reacties tussen moleculen begrepen
worden door ze te beschouwen als herschikkingen van atomen.

In de twintigste eeuw is deze ontwikkeling verder gegaan met het ont-
dekken van kleinere substructuren: atomen bestaan weer uit protonen,
neutronen en electronen, en op hun beurt zijn protonen en neutronen
samengesteld uit quarks. Deze laatste deeltjes kunnen alleen bij zeer hoge
energieën en korte lengteschalen waargenomen worden, zodat er enorme
deeltjesversnellers nodig zijn, zoals die van het CERN in Genève. De
hoop is dat kennis van de allerkleinste deeltjes leidt tot onthulling van een
Theorie van Alles, die dan de verklaring voor de hele natuur kan zijn.

In de natuurkunde van de gecondenseerde materie doet zich echter de
omgekeerde situatie voor: het is vaak onmogelijk om het gedrag van een
macroscopisch systeem te begrijpen vanuit het begrip van de individuele
samenstellende delen. Dit uit zich al in het simpele voorbeeld van een
metaal, bijvoorbeeld koper. Van één koperatoom kan men niet zeggen of
het metallisch is of niet. Alleen een hele verzameling koperatomen kan de
beslissing nemen om bijvoorbeeld een geleidend metaal te worden. Dit is
een voorbeeld van hoe het geheel meer kan zijn dan de som der delen.

Hoe tegengesteld deze filosofieën ook mogen lijken, sommige veeldeel-
tjessystemen zoals die in de gecondenseerde materie bestudeerd worden,
blijken een aantal begrippen uit de hoge-energiefysica te imiteren. Deze
begrippen rusten dan ook vaak op één en het zelfde principe. Het be-
langrijkste concept dat door beide vakgebieden gedeeld wordt, is dat van
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symmetrie en symmetriebreking.
Symmetrieën zijn nauw verbonden met behoudswetten. Zo impliceert

translatiesymmetrie het behoud van impuls, de tweede wet van Newton.
Verder hangt het behoud van impulsmoment samen met rotatiesymmetrie.
Dit zijn allemaal voorbeelden die vanuit de klassieke mechanica begrepen
kunnen worden. Een voorbeeld dat begrepen kan worden vanuit quan-
tumveldentheorie is het ladingsbehoud in de electrodynamica. Dit be-
houd wordt gëımpliceerd door een (globale) rotatiesymmetrie beschreven
door de complexe groep U(1), die de globale fase van de operatoren in de
theorie beschrijft. Symmetrieën kunnen ook lokaal gemaakt worden: als
de actie die het systeem beschrijft invariant is onder het toepassen van
groepselementen die van plaats tot plaats van elkaar kunnen verschillen,
dan spreekt men van een lokale ijktheorie. In het geval van de commu-
tatieve groepen U(1) of Z2, wordt een dergelijke theorie Abels genoemd.

Een voorbeeld van een begrip uit de gecondenseerde materie dat er
zelfs eerder was dan de hoge-energie pendant, is het Anderson-Higgs me-
chanisme voor Abelse U(1)-ijktheorieën. In de theorie van supergeleiding
kan met dit mechanisme het Meissner-effect begrepen worden, nl. het
effect dat in supergeleiders stromen gaan lopen die electromagnetische
velden buiten het supergeleidende materiaal houden. Dit komt doordat er
een condensaat is dat massa geeft aan de electromagnetische velden, de
U(1)-ijkvelden, zodat ze een korte dracht krijgen. Precies dit mechanisme
wordt ook verondersteld te verklaren waarom elementaire deeltjes zoals
die in CERN waargenomen zijn massa hebben. In dat laatste geval zijn
de ijktheorieën echter niet-Abels, namelijk U(1)× SU(2)× SU(3).

De verrassing is dat aspecten van niet-Abelse ijktheorieën ook hun
tegenvoeters in de gecondenseerde materie kunnen hebben. Deze idee nu
ligt ten grondslag aan dit proefschrift. De twee aspecten die hierin behan-
deld worden, zijn parallel transport, en deconfined ijktheorieën. Laten we
hier wat dieper op ingaan.

Parallel transport is met name bekend geworden door de algemene
relativiteitstheorie. Deze zegt dat massa de ruimte kromt, zodat de “kort-
ste” weg (geodeet) niet per se de Euclidische rechte lijn hoeft te zijn.
Deze kromming kan vertaald worden in parallel transport-velden: ze trans-
porteren deeltjes dusdanig dat ze geodeten volgen. In ijktheorieën kunnen
de ijkvelden ook worden opgevat als een parallel-transportstructuur. Zo
kunnen SU(2)-ijkvelden worden gezien als velden die spins roteren. Dit
voorbeeld vormt de ijktheoretische context van Deel I. van dit proefschrift.
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Het blijkt dat spin-baan gekoppelde systemen beschreven kunnen worden
als zijnde een theorie met SU(2)-parallel transport. De “ijkvelden” zijn
echter geen ijkvelden met een eigen dynamica, maar worden éénduidig
vastgelegd door de electromagnetische velden die op het systeem worden
toegepast. Spin-baankoppeling is dus een voorbeeld van niet-Abels paral-
lel transport.

Eerder hebben we het onderwerp van de hydrodynamica aangestipt,
dat berust op massabehoud. In hoofdstuk 3 beantwoorden we een vraag
die zich nu opdringt: bestaat er zoiets als niet-Abelse hydrodynamica?
We laten zien dat voor niet-fasecoherente systemen er geen behoudswet-
ten bestaan, laat staan dat men hydrodynamica daarmee kan bedrijven.
In het geval van een fasecoherent spin condensaat treedt er echter een aan-
gename verassing op. De quantummechanica eist dat de ordeparameter
die het condensaat beschrijft éénwaardig is, en deze eis zorgt ervoor dat
op mesoscopische schaal hydrodynamische behoudswetten opduiken. Dit
is een mooi voorbeeld van emergentie in gecondenseerde-materie syste-
men: collectief gedrag kan tot rijkere verschijnselen aanleiding geven dan
de samenstellende delen alleen.

Het vierde hoofdstuk vormt een uitwerking van het tweede hoofdstuk.
We gebruiken de combinatie van spin-baan koppeling en het bestaan van
een spin supervloeistof om een effect te bewijzen dat analoog is aan quan-
tisatie van magnetische flux door supergeleidende ringen. We tonen aan
dat een cylindrisch symmetrisch electrisch veld aangelegd op een spin-baan
gekoppelde spin-supervloeistof een macroscopisch gequantiseerde ladings-
dichtheid moet dragen.

Het vijfde hoofdstuk bespreekt 3He, dat voorzover bekend het enige
systeem is dat een spin supervloeistof kan vormen en spin-baan gekoppeld
is. Dit is dus een goede kandidaat om het door ons voorspelde effect aan te
tonen. We tonen aan dat dit door de dipolaire koppeling helaas onmogelijk
is. Daar komt nog eens bij dat door het feit dat 3Heveel zwaarder is dan
een electron, de spin-baan koppeling zo klein is dat men een onpraktisch
grote hoeveelheid 3He nodig heeft.

In Deel II. bespreken we een systeem dat alle eigenschappen van een
ijktheorie in zich draagt, de gedoteerde Mott isolator. Deze is belangrijk
in de context van hoge-temperatuur supergeleiding, zoals waargenomen
in de cupraten. In de ongedoteerde toestand zijn dit isolerende antiferro-
magneten met één electron per eenheidscel. Wanneer er electronen ver-
wijderd worden (dotering), kunnen deze materialen echter supergeleidend
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worden. Hoewel deze ontdekking al twintig jaar geleden gedaan is, is het
onderliggende mechanisme onbegrepen. Het feit dat het basismateriaal
één electron per eenheidscel heeft, leidt tot een theoretisch idee dat veel-
belovend is, zoals uitgelegd in hoofdstuk 6. Deze randvoorwaarde van
enkele bezetting kan vertaald worden naar de introductie van een SU(2)-
ijkveld, dat volledig dynamisch moet zijn om deze randvoorwaarde exact
op te leggen. Dit ijkveld kan de vrijheidsgraden van spin en lading aan
elkaar “lijmen” om het huis-tuin-en-keuken electron te vormen. In dat
hoofdstuk wordt uitgelegd dat binnen de gemiddelde-veld benadering dit
theoretisch idee van deze spin vloeistof werkelijkheid kan worden, analoog
aan het bestaan van het quark-gluon plasma in deeltjesversnellers. Het
begrip “projectieve symmetrie” speelt hierin een belangrijke rol.

In het zevende hoofdstuk beschouwen we de gedoteerde Mott isolator
in de lege limiet, d.i., nul electronen per eenheidscel, om te laten zien dat
in eerdere formuleringen van de SU(2)-ijktheorie het harde-kern karakter
van de electronen onterecht niet is meegenomen. Wij tonen aan dat als dit
wel gedaan wordt, zelfs de lege limiet binnen de SU(2)-ijktheorie correct
beschreven kan worden.

Hoofdstuk 8 vormt de culminatie van dit proefschrift, waarin twee
hoofdresultaten worden aangetoond. In de eerste plaats leidt het harde-
kern gedrag van de ladingen tot fasescheiding, die ook kwantitatief overeen-
stemt met experimentele en eerdere numerieke resultaten. Het tweede re-
sultaat is nieuw: als men de randvoorwaardestructuur en de harde-kern
conditie correct behandelt, dan blijkt de supergeleidende ordeparame-
ter een d + s-golf symmetrie te dragen. Deze symmetrie is in overeen-
stemming met Raman-verstrooiingsexperimenten en met c-as tunneling.
Voorts groeit de s-golf component lineair met doping. Voorzover bekend
is de SU(2)-ijktheorie de enige theorie die deze voorspelling doet.

Deze resultaten plaveien de weg voor een overkoepelende verklaring
van experimentele resultaten die elkaar lijken uit te sluiten. Aan de ene
kant blijken er in de supergeleidende fase nodale fermionen te bestaan,
ook in het ondergedoteerde regime. Aan de andere kant blijken ladingsin-
homogeniteiten (stripes) ook onvermijdelijk. Van deze stripes wordt tot
nu toe echter gedacht dat ze het bestaan van nodale fermionen verbieden,
hoewel dit niet in experimenten bevestigd wordt. Dit is een groot raadsel
voor theoretici in het vakgebied. In het concluderende hoofdstuk stellen
we een mogelijke oplossing voor. Het principe van projectieve symmetrie
leidt tot het idee van de isospinspiraal. Dit is een gemiddelde-veld toes-
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tand die de landingsinhomogene supergeleider kan verenigen met nodale
fermionen.

Deze resultaten en ideeën onderbouwen het nut van het beschouwen
van niet-Abelse ijktheorieën in gecondenseerde-materie systemen, en kun-
nen instructief zijn voor de hoge-energie fysica.
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