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<< Salimos de Salamanca, y llegando a la puente, está a la entrada della un animal de 
piedra, que casi tiene forma de toro, y el ciego mandóme que llegáse cerca del animal, y 
allí puesto, me dijo: 
 
"Lázaro, llega el oído a este toro, y oirás gran ruido dentro del." Yo simplemente llegué, 
creyendo ser ansí; y como sintió que tenía la cabeza par de la piedra, afirmó recio la mano 
y dióme una gran calabazada en el diablo del toro, que más de tres días me duró el dolor 
de la cornada, y díjome: 
 
"Necio, aprende que el mozo del ciego un punto ha de saber más que el diablo", y rió 
mucho la burla. >> 

 
La vida de Lazarillo de Tormes, y de sus fortunas y adversidades. Anónimo, 1554. 
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 y para el resto de las 7, 
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1. Introduction 
 

 
 
 
 
 
 
 

An overview about Medicinal Inorganic Chemistry is given, with special attention to the 

role that platinum and ruthenium play in it. 
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1.1. Metals in medicine. The discovery of cisplatin as an anticancer agent 

Precious metals have been used for medicinal purposes for at least 3500 years, when 

records show that gold was included in a variety of medicines in Arabia and China.1 

However, the motivation for the use of these metals often had a superstitious or a religious 

origin, and was derived from the reasoning: if a metal is rare, it must mean it has special 

properties. Life was thought to be built exclusively from organic “bricks”. In the late 

1800´s, experiments carried out with blood samples revealed the existence of iron-

containing compounds in this fluid.2 The presence of metals in different enzymes was 

proven3 and bioinorganic chemistry was granted the status of a separate discipline in the 

1970´s.4 Nowadays, it is known that inorganic elements play diverse biological roles, such 

as stabilization of structures (e.g. CaCO3 stabilizes the structure of the bones; the PO4
3- 

groups stabilize the DNA structure), transport of molecules (e.g. haemoglobin, an iron-

containing protein, which transports oxygen in the bloodstream), transfer of electrons (e.g. 

cytochrome c), redox and other enzymatic reactions (copper, iron, zinc and manganese 

form part of several metalloenzymes), etc. The fact that some metal ions are essential for 

life also suggested the possibility of incorporating metal atoms into drugs. 

In modern history, the first compound containing an inorganic element that was 

described to be used in the cure of a disease was salvarsan, an arsenic compound used in 

the treatment of syphilis, which was synthesized and tested in the beginning of the 20th 

century by Ehrlich (see Fig.1.1).5, 6 Ehrlich, who was awarded the Nobel Prize in 1908 for 

his discovery of immunochemistry, is considered the founder of chemotherapy, which he 

defined as “the use of drugs to injure an invading organism without injury to the host”. 

Ehrlich introduced the “magic bullet” concept, also known as “drug targeting”, nowadays 

the object of extensive research worldwide. 
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Fig.1.1. Molecular structure of the arsenic drug salvarsan as proposed by Ehrlich (left). In 

2005, salvarsan was proven to consist of a mixture of cyclic species (centre and right).7 
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Medicinal inorganic chemistry as a discipline is considered to have boosted with the 

discovery of the anticancer properties of cisplatin.1 Cisplatin was the first chemical 

compound to become the subject of a mechanistic study: its mechanism of action was 

investigated, as well as the way to optimize its activity. Medicinal inorganic chemistry 

comprises not only the intentional introduction of a metal ion into a biological system, but 

also the rescue of a metal ion that has been introduced in a biological system by accident. 

Examples of the first case are the administration of essential elements and mineral 

supplements (e.g. iron, copper, zinc, selenium), the use of diagnostic agents (e.g. 

gadolinium and manganese for MRI, barium and iodine for X-ray), and therapeutic agents 

(e.g. lithium for bipolar disorder, platinum compounds in anticancer chemistry, gold 

compounds for arthritis and bismuth for ulcers), as well as the use of radiopharmaceuticals 

for diagnosis (99mTc) and therapy (186Re), and the use of enzyme inhibitors.8 Chelation 

therapy is most widely used in the treatment of poisoning by an inorganic (not necessarily 

metallic) element (e.g. 2,3-dimercapto-1-propanol, known as BAL, used for mercury, 

arsenic, antimony or nickel poisoning; Na2H2edta, used for lead removal). 

 

History of cisplatin, a leading anti-cancer drug 

cis-diamminedichloridoplatinum(II) was first described by Peyrone in 1845.9 

Together with its trans analogue, this complex was used by Werner in 1893 as the first 

example of isomers in Coordination Chemistry. 

Its activity against cancer remained, however, unknown until 1964, when Rosenberg 

realized that the platinum electrodes used in one of his experiments affected bacterial 

growth.10, 11 The main species responsible for that was found to be cis-Pt(NH3)2Cl2, which 

was formed slowly by reaction of the electrodes with the electrolyte NH4Cl solution. The 

drug entered clinical trials in 1971 and by the end of 1987 it was already the most widely 

used anticancer medicine.12 

Unfortunately, the use of this compound did not bring a definitive end to cancer, since 

it only showed anticancer activity against certain types of tumours. Some tumours avoid the 

action of cisplatin, being this resistance in some cases intrinsic, but also in some others 

acquired. Finally, cisplatin therapy produces severe side-effects, namely neurotoxicity, 

ototoxicity, nausea, vomiting, bone marrow dysfunction and nephrotoxicity, the latter being 

dose-limiting. Research has been focused on several fronts. Understanding the transport of 

the drug in the body and its cellular uptake, as well as its mechanism of action inside the 
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cell, is crucial for the design of improved pharmaceuticals. The development of synthetic 

methods that rapidly yield compound libraries to be screened afterwards for anticancer 

activity allows for a very efficient trial-and-error strategy. Since cisplatin is indeed effective 

against certain tumours, studies are also being done about how to avoid its undesired side 

effects, while still retaining the therapeutic value of the drug. 

 

1.2. Cisplatin: mechanism of action 

Cisplatin administration protocols currently include an intravenous infusion. Since 

this method is far from ideal, requiring patient hospitalization, research has been carried out 

to find an alternative administration route. A release-controlled formulation of cisplatin 

with reduced toxicity has recently been developed.13 The complex is encapsulated inside 

nano-scale liposomal carriers and administered to the patient via nebulization. This new 

approach is currently undergoing phase I clinical trials.13 

In the blood, the high physiological chloride concentration (ca. 100 mM) ensures that 

the complex remains neutral until it enters the cell. This passage was classically thought to 

occur mainly by passive diffusion. However, the debate about the importance of the 

participation of an active transport mechanism in this process was re-opened when cisplatin 

uptake was discovered to be mediated by the copper transporter Ctr1p both in yeast and in 

mammals.14 Once in the cytosol, hydrolysis occurs due to the lower chloride concentration 

(ca. 4mM). 

Cisplatin can bind to nucleic acids, proteins and sulfur-containing biomolecules, such 

as glutathione (GSH). The ultimate target of cisplatin, which triggers its cytotoxicity, is 

generally accepted to be DNA.15 

 

DNA adducts formed by coordination of cisplatin 

The DNA coordination sites of cisplatin after hydrolysis are, in order of preference, 

the N7 atom of guanine, the N7 atom of adenine, the N1 of adenine and N3 of cytosine. 

Two types of platinum-DNA binding have been found: monofunctional and bifunctional. 

Monofunctional binding is unlikely to be responsible for the cytotoxic action of cisplatin, 

since transplatin is as capable of forming this kind of adducts as cisplatin, while being 

inactive. Bifunctional binding results in chelation and subsequent formation of various 

adducts in DNA. Intrastrand 1,2-d(GpG) cross-links are the most abundant Pt-DNA adducts 

(60-65% of the platinum bound to DNA is in that form),16 followed by intrastrand d(ApG) 
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cross-links (around 20% of the bound platinum). Only about 1.5% of the cisplatin was 

found to be involved in interstrand adducts; some minor DNA-protein cross-links were also 

formed (see Fig.1.2).15, 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.2. Schematic view of a double-stranded DNA, depicting some of the most commonly 

occurring Pt-DNA adducts. Geometry considerations (HH, HT orientation) have been 

ignored. 

 

Cisplatin-DNA adducts inhibit DNA replication, block transcription by RNA 

polymerase II and trigger programmed cell death or apoptosis.15, 18 Experiments carried out 

to study the kinetics of the Pt-DNA interaction, amongst others, pointed out that the two 

most abundant adducts, i.e. intrastrand 1,2-d(GpG) and d(ApG) cross-links, are responsible 

for the cytotoxic effects of cisplatin. However, the results obtained in these studies are not 

unambiguous.15 

The formation of the above-mentioned cisplatin-DNA cross-links structurally distorts 

the DNA, resulting in a loss of helix stability and a structural change.19-22 NMR studies in 

solution have tried to predict the structural changes provoked by cisplatin in various DNA 
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fragments (see Fig.1.3); a few crystal structures have also been obtained (see Fig.1.3) that 

basically agree with the geometries proposed from the NMR spectra. 

 

 

 

Fig.1.3. Structure of a DNA double helix fragment containing a 1,2-d(GpG) intrastrand 

cross-link: NMR-solution structure (left)23 and schematic crystal structure (right).24 

 

The dihedral angle between the guanine rings in the Pt adduct ranges from 76° to 87°, 

reflecting distortion of base stacking. All the complementary base-pairing interactions 

remain, however, intact, even within the G-C base pairs directly involved in the Pt-

binding.15 A bending of the DNA is observed with a kink of 40-80° towards the major 

groove. Simultaneously an unwinding of the helix is observed of about 20°, provoking a 

compression of the major groove and opening up the minor groove.25-27 The cisplatin–DNA 

adducts may be stabilized by the formation of a hydrogen bond between one of the 

platinum ammine ligands and an oxygen atom on the 5’-phosphate group of DNA, which 

may be crucial for the activity of cisplatin.28-31 

 The resulting wide and shallow minor groove opposite the platinum adduct is 

recognised by a number of cellular proteins, including DNA repair proteins, histones and 

high mobility group (HMG) domain proteins such as HMGB1 (see Fig.1.4).32 
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DNA repair mechanism 

Cisplatin–DNA lesions are repaired in cells primarily through the nucleotide excision 

repair (NER) pathway, which consists on a group of proteins with enzymatic functions.33-35 

In NER, an enzyme system first recognizes the lesion and then hydrolyzes two 

phosphodiester bonds, one on either side of the lesion, to generate an oligonucleotide 

carrying the damage. The gap is then filled in and ligated by a DNA ligase.35 

The importance of the role of these proteins in the mechanism of action of cisplatin is 

underlined by the observation that the sensitivity to cisplatin increases in those cells 

deficient in DNA repair, while the DNA repair is more efficient in some cisplatin-resistant 

cell lines.36 

Numerous HMG-domain proteins have been found to specifically recognize and bind 

to cisplatin-modified DNA. Examples of these proteins are TBP, TATA-binding protein37-39 

and the transcription factor FACT (Facilitates Chromatin Transcription).40 

HMGB1 and other cellular proteins that recognize platinum-DNA adducts (see 

Fig.1.4) may play a role in the mechanism of action of cisplatin, according to two main 

hypotheses.41 The first of these hypotheses proposes that cisplatin-damaged DNA hijacks 

proteins away from their natural binding sites, leading to cellular stress and eventually cell 

death. The second hypothesis suggests that binding by cellular proteins shields cisplatin 

adducts from nucleotide excision repair (NER), allowing them to persist and drive 

apoptosis.42, 43 These two mechanisms are not mutually exclusive. Although many studies 

have demonstrated that HMG-domain proteins enhance cisplatin antitumour efficiency, 

others reached the opposite conclusion.44-46 It seems, therefore, that the effect of these 

proteins in modulating the activity of cisplatin depends upon the cell type and context. 
 



Chapter 1 
 

 18 

 
 

Fig.1.4. Schematic crystal structure of the HMGB1a protein bound to a cisplatin-modified 

DNA duplex.32 

 

1.3. Development of new platinum anticancer agents 

Thousands of platinum compounds have been synthesized in an attempt to overcome 

the problems of cisplatin. Surprisingly none of these has been able to substitute cisplatin in 

routine chemotherapy treatments. 

The observation of the first platinum complexes synthesized and their efficacies as 

antitumour agents led to what was called the “structure-activity relationships” (SAR´s).12 

This was a list of structural characteristics that a platinum complex was thought to require 

in order to show an antitumour activity. Subsequently every new compound was designed 

according to these rules. 

The most successful of the second-generation platinum compounds is 

cis-diammine-1,1-cyclobutane-dicarboxylatoplatinum(II), also known as carboplatin (See 

Fig.1.5). Since its introduction in 1986 it has been preferred to cisplatin in the treatment of 

many platinum-sensitive malignancies. Carboplatin has less severe side effects than 

cisplatin, but it is cross-resistant with it. Its activity is equivalent to cisplatin in the 

treatment of ovarian cancers, however in the treatment of testicular, head and neck cancers 

cisplatin is superior.47, 48 

Two other second- and third-generation compounds have been approved for clinical 

use. cis-diammine(glycolato)platinum(II) (nedaplatin)49 (see Fig.1.5) was approved in 1995 
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by the Health and Welfare Ministry in Japan50 and various studies of combined therapies of 

the platinum complex with other drugs are undergoing clinical trials for the treatment of 

urothelial, uterine, lung, esophageal or testicular cancer, amongst others.51-56 

(1R,2R-diaminocyclohexane)oxalatoplatinum(II) (oxaliplatin)57 (see Fig.1.5) was approved 

in France50 and in a few other European countries mainly for the treatment of metastatic 

colorectal cancer. Clinical studies pointed out that the myelosuppression and nephrotoxicity 

caused by oxaliplatin are less intense in comparison with cisplatin treatment, however 

neuropathy occurs more frequently in case of the patients treated with this third-generation 

compound.50 

 

 

Fig.1.5. Molecular structure of a few selected platinum drugs. From left to right: cisplatin, 

carboplatin, nedaplatin and oxaliplatin. 

 

Since it became evident that mere analogues of cisplatin or carboplatin would 

probably not offer any substantial clinical advantages over the existing drugs, as complexes 

of this kind can be expected to have similar biological consequences to cisplatin, some 

platinum complexes were synthesised which contradicted the SAR´s. 

 

Platinum(IV) complexes 

The design of platinum(IV) complexes yielded a new concept in platinum anticancer 

therapy. These compounds with lipophilic groups at axial positions would facilitate 

intestinal absorption of the drug, making oral administration possible.58 Moreover they 

would act as pro-drugs, which get reduced to platinum(II) by intracellular glutathione, 

ascorbic acid or other reducing agents. The platinum(II) would bind subsequently to DNA 

and exert the desired action.59, 60 The most successful Pt(IV) complex is bis(acetato)-

amminedichlorido(cyclohexylamine)platinum(IV) (see Fig.1.6), also known as satraplatin 

or JM216. Phase II trials of this drug have been completed by GPC-Biotech in hormone-

refractory prostate cancer (HRPC), ovarian cancer and small cell lung cancer.61 Phase III 

evaluation of satraplatin combined with prednisone is ongoing as a second-line 
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chemotherapy treatment for patients with HRPC. Other trials evaluating the effects of 

satraplatin in combination with radiation therapy, in combination with other cancer 

therapies and in various other cancers are underway or planned.61 Satraplatin also shows in 

vivo oral antitumour activity against a variety of murine and human subcutaneous tumour 

models, comparable to the activity of cisplatin. In addition, it has a relatively mild toxicity 

profile, being myelosuppression instead of nephrotoxicity the dose- limiting factor.62 

 

Sterically hindered cis-platinum(II) complexes 

In the search for platinum drugs that show activity in those cell lines in which 

cisplatin is inefficient, a strategy was tried which consisted on designing complexes with 

sterically crowded non-leaving groups. These compounds would react preferentially with 

nucleic acids over sulfur-containing biomolecules, thus avoiding inactivation by GSH and 

others. cis-amminedichlorido(2-methylpyridine)platinum(II) (ZD0473 or AMD473; see 

Fig.1.6) exhibited no cross-resistance to cisplatin in in vitro tests carried out with human 

ovarian carcinoma cells,63 so it was selected for clinical trials. Phase-II clinical trials carried 

out with lung and metastatic breast cancer patients showed a good tolerability of the drug, 

but no greater efficacy over existing agents in platinum-resistant patients.64, 65 Studies are 

ongoing using the drug in combination with other drugs, including docetaxel.65, 66 The 

results obtained in phase II clinical trials with ovarian cancer patients also suggested that 

ZD0473 may not completely circumvent the platinum-resistance mechanisms.67 Studies are 

ongoing of combined therapy with liposomal doxorubicin or paclitaxel.67 

 

 

   Fig.1.6. Molecular structure of the anticancer platinum complexes satraplatin or JM216 

(a Pt(IV) complex, on the left) and ZD0473 (a Pt(II) complex, on the right). 

 

trans- platinum(II) complexes 

Since transplatin displays no antitumour activity, one of the early conclusions drawn 

in the SAR´s was that the cis- geometry was an essential requisite. On the other hand a 
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complex that reacts exactly like cisplatin will never overcome resistance to it. In the search 

for complexes that followed a different mechanism to cisplatin the first SAR-rule was 

revised. Indeed a series of active trans-Pt(II) compounds was found.68 

The trans-Pt(II) complexes that have been synthesised so far can be divided into 

several groups that  respond to the general formula trans-[PtCl2(L)(L’)]. The pioneers were 

Farrell and his group, with complexes where L = a pyridine-like ligand and L´= an ammine, 

a sulfoxide or a pyridine-like group.69-72 Following his example, other groups synthesised 

more trans-Pt(II) complexes, finding in some cases very good anticancer activities. 

Navarro-Ranninger and her group focused on complexes with L = L´ = branched aliphatic 

amines.73, 74 Gibson and others reported that the replacement of one of transplatin´s  

ammine ligands by a heterocyclic ligand, such as piperidine, piperazine or 4-picoline, 

resulted in a radical enhancement of the cytotoxicity.75, 76 Finally the group of Natile and 

Coluccia synthesised complexes where L = an iminoether ligand and L´ = an amine or one 

more iminoether ligands.77, 78 

All these groups have reported that the cytotoxic ability of the above-described trans-

platinum complexes with bulky non-leaving groups is in some cases superior to that shown 

by cisplatin, and often better than the cytotoxicity of their respective cis- analogues. These 

trans- complexes are characterized by a spectrum of activity different from cisplatin and 

they often overcome resistance. The background concept for designing these complexes is 

that sterically crowded carrier ligands slow down the reaction between the platinum centre 

and the biomolecules.68 In addition, these complexes will cause different DNA alterations 

from those generated by cis-platinum complexes.71, 79 Finally, the cellular response towards 

these trans complexes is expected to be different than the response towards the cisplatin 

analogues.80 This is a mechanistically crucial point, which requires further investigation 

from a molecular pharmacology point of view.80, 81 

 

Polynuclear platinum drugs 

In the search for platinum complexes that interact with DNA in a drastically different 

way to cisplatin, several dinuclear compounds were studied.82 This new approach allowed 

many variations to be introduced, to fine-tune or drastically change the DNA binding 

modes and the biological activity of these complexes. Symmetric complexes have been 

synthesised and also complexes with two inequivalent coordination spheres;82 the 

compounds can vary from bifunctional to tetrafunctional; flexible amine linkers were used, 
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as well as rigid bridges. These dinuclear complexes were later amplified, becoming 

trinuclear, tetranuclear and even pentanuclear complexes. The interaction between each of 

these complexes, with its characteristic size and charge, and DNA is expected to be unique, 

as is the cellular processing of each drug. The final aim is the synthesis of a heterogeneous 

group of compounds some of which could overcome both intrinsic and acquired resistance 

to cisplatin.82 

A comparative study involving several dinuclear bifunctional and trifunctional 

platinum(II) complexes (see Fig.1.7) was carried out to investigate the effects of geometry 

and polyfunctionality on their biological activity.83 The results obtained showed that some 

of the complexes display a good antitumour activity, in various cases improving that of 

cisplatin. More interestingly, some of these complexes overcome cisplatin resistance. 

Mechanistically these compounds are expected to interact with DNA in different ways. 

 

 

Fig.1.7. The platinum(II) dinuclear complexes 1,1/c,c (above, left), 1,1/t,t (above, right), 

1,2/c,c (below, left) and 1,2/t,t (below, right). Counterions are not shown in the picture. 

 

Dinuclear (and trinuclear) complexes incorporating the 4,4´-dipyrazolylmethane 

(dpzm) ligand have been reported by Collins et al (see Fig.1.8).84 The presence of the 

heteroaromatic rings in the dpzm group could allow for favourable van der Waals 

interactions and hydrogen bonding within the DNA minor groove. These compounds 

display, however, less cytotoxicity than the dinuclear complexes with straight-chain 

diamine linkers. 
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Fig.1.8. Singularly bridged, multi-nuclear platinum complexes linked by the 4,4′-

dipyrazolylmethane (dpzm) ligand. 

 

Within the group of dinuclear platinum(II) complexes, a remarkable example consists 

in the use of pyrazole and triazole as rigid bridging ligands. The groups of Chikuma and 

Reedijk synthesised dinuclear platinum(II) complexes (see Fig.1.9) that display much 

higher in vitro cytotoxicity than cisplatin on several human tumour cell lines and largely 

overcome cross-resistance to cisplatin.85, 86 
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Fig.1.9. Molecular structure of two azole-bridged dinuclear platinum(II) complexes. 
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The trinuclear platinum(II) complex 1,0,1/t,t,t or BBR3464 (see Fig.1.10) was 

selected for phase II trials once promising pre-clinical data had been obtained.87 BBR3464, 

which provides long-range intrastrand crosslink upon DNA, was found to be very potent as 

a cytotoxic agent, besides being effective against cisplatin-resistant tumour cells. Notable 

features are the potency, the ten-fold lower maximum tolerated dose (MTD) in comparison 

to cisplatin and the broad spectrum of tumours sensitive to this agent. Importantly, 

BBR3464 also displays high antitumour activity in human tumour xenografts characterized 

as mutant p53, tumours that are known to be insensitive to drug intervention. 

 

 

Fig.1.10. The platinum(II) trinuclear complex 1,0,1/t,t,t.  

 

1.4. A possible alternative to platinum therapy: ruthenium chemistry 

In the search for drugs with improved clinical effectiveness, reduced toxicity and a 

broader spectrum of activity, other metals than platinum have been considered, such as 

rhodium and ruthenium. Non-platinum active compounds are likely to have different 

mechanisms of action, biodistribution and toxicities than platinum-based drugs and might 

therefore be active against human malignancies that have either an intrinsic or an acquired 

resistance to them. Ruthenium complexes are very promising, especially from the 

viewpoint of overcoming cisplatin resistance with a low general toxicity. 

Ruthenium has found its way into the clinic, where its properties are exploited for 

very miscellaneous uses. The radiophysical properties of 97Ru can be applied to 

radiodiagnostic imaging.88, 89 Other ruthenium compounds have potential as 

immunosuppressants (cis-[Ru(III)(NH3)4(HIm)2]3+), antimicrobials (e.g. organic drugs 

coordinated to ruthenium centres, such as [Ru(II)Cl2(chloroquine)2] against malaria and 

others for the treatment of Chaga´s disease), antibiotics (ruthenium complexes of organic 

antibiotic compounds, e.g. the Ru(III) derivative of thiosemicarbazone against Salmonella 

typhi and Enterobacteria faecalis), nitrosyl delivery/scavenger tools (e.g. the Ru(III) 

polyaminocarboxylates known as AMD6245 and AMD1226 to treat stroke, septic shock, 
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arthritis, epilepsy and diabetes), vasodilator/vasoconstrictor agents and, as above 

mentioned, as drugs for cancer chemotherapy.90 

 

Ruthenium properties that make it suitable for biological applications 

Ruthenium(II) and ruthenium(III) complexes have similar ligand-exchange kinetics to 

those of platinum(II) complexes. This property makes them the first choice in the search for 

compounds that display similar biological effects to platinum(II) drugs.90, 91 Very few metal 

drugs reach the biological target without being modified, which makes ligand exchange an 

important determinant of biological activity. Most metallodrugs undergo interactions with 

macromolecules such as proteins, or with small S-donor compounds, or even with water. 

Some interactions are essential for inducing the desired therapeutic properties of the 

complexes. As the rate of ligand exchange is dependent on the concentration of the 

exchanging ligands in the surrounding solution, diseases that alter these concentrations in 

cells or in the surrounding tissues may have an effect on the activity of the drug. 

The range of accessible oxidation states of ruthenium under physiological conditions 

makes this metal unique amongst the platinum group. The ruthenium centre, predominantly 

octahedral, can be Ru(II), Ru(III) or Ru(IV). Ru(III) complexes tend to be more 

biologically inert than related Ru(II) and Ru(IV) complexes. The redox potential of a metal 

complex can be modified by varying the ligands. In biological systems glutathione, 

ascorbate and single-electron-transfer proteins, like those involved in the mitochondrial 

electron-transfer chain, are able to reduce Ru(III) and Ru(IV),92 always depending on the 

nature of the ligands, while molecular dioxygen and cytochrome oxidase can oxidize Ru(II) 

in certain complexes.93-95 

The redox potential of ruthenium compounds can be exploited to improve the 

effectiveness of Ru-based drugs in the clinic.90, 91 In many cases the altered metabolism 

associated with cancer and microbial infection results in lower oxygen concentration 

(hypoxia) in these tissues in comparison to healthy ones.96 In a healthy cell the reduction of 

Ru(III) to Ru(II) by glutathione is a very slow process. Besides, the Ru(II) product is 

readily oxidized back to Ru(III) by the dioxygen that is present in the tissue. However, the 

reduction of relatively inert Ru(III) complexes by glutathione is more important in the 

hypoxic environment of solid tumours.97  
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The reduction of Ru(III) to Ru(II) can be catalysed by mitochondrial and microsomal 

single-electron-transfer proteins, amongst others. The mitochondrial proteins are of 

particular interest in drug design, as they can initiate apoptosis.90 

One more property of ruthenium that makes it very appreciated in medicinal 

chemistry is its tendency to selectively bind biomolecules, which partly accounts for the 

low toxicity of ruthenium drugs.90, 91 Transferrin and albumin are two proteins used by 

mammals to solubilise and transport iron, thereby reducing its toxicity. The ability of some 

ruthenium drugs to bind to transferrin has been proven.97-101 Since rapidly dividing cells, 

such as microbially infected or cancer cells, have a greater requirement of iron, they 

increase the number of transferrin receptors on their surfaces. This implies that the amount 

of ruthenium taken up by these infected or cancerous cells is greater than the amount taken 

up by healthy cells. This selectivity of the drug towards the diseased cells accounts for a 

reduction on its general toxicity.  

 

Anticancer activity 

Two approaches are commonly used for the design of new anticancer compounds. 

The trial-and-error approach consists on synthesizing as many compounds as possible that 

are analogous to a complex of known activity, but which has drawbacks that need to be 

solved. These new compounds are then tested for anticancer activity, both in vitro and in 

vivo. 

The second approach is based on thorough studies of the properties of some particular 

complexes, with the final aim of reaching some knowledge about their mechanisms of 

action. The chemical, physical, pharmacological properties, the uptake of the drug, its 

biodistribution and its detoxifying processes are subject of study. This implies a 

multidisciplinary task in which collaboration of scientists from different fields is necessary. 

Step by step novel derivatives are developed as potential drugs in anticancer therapy. 

The first generation of ruthenium compounds synthesized for anticancer purposes 

consists on a series of complexes that mimic platinum drugs and target DNA, just like 

cisplatin is generally accepted to do. 
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1.5. Classification of ruthenium complexes with anticancer properties 

Ammine-chlorido derivatives 

The first ruthenium complexes to be tested in search for anticancer properties were 

close imitators of cisplatin: several ammine and chlorido ligands were coordinated to Ru(II) 

and Ru(III) to form complexes with general formula [Ru(NH3)6-xClx]Y+. Those complexes 

in which the oxidation state of the ruthenium ion was (II) were expected to bind to DNA in 

an analogous way to cisplatin, and indeed the first experiments performed with the 

complexes [Ru(II)(NH3)5Cl]+ (see Fig.1.11) and [Ru(II)(NH3)5(H2O)]2+ fulfilled this 

expectation.102-104 The cytotoxicity tests carried out with these species yielded however 

disappointing results. Interestingly, both cis-[Ru(III)(NH3)4Cl2]+ and especially 

fac-[Ru(III)(NH3)3Cl3] displayed a comparable antitumour activity to that of cisplatin in a 

few selected cell lines.99, 105 It has been hypothesized that these complexes, once inside the 

cell, are reduced to less inert Ru(II) species, which bind to DNA after hydrolysis.92 The 

trichloride complex, being the most promising of all these compounds, was discarded for 

further investigation due to its poor water solubility. 
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Fig.1.11. Ammine-chlorido derivatives. From left to right, [Ru(II)(NH3)5Cl]+, 

cis-[Ru(III)(NH3)4Cl2]+ and fac-[Ru(III)(NH3)3Cl3]. 

 

Dimethylsulfoxide complexes 

The substitution of the ammine ligands by dmso molecules yields compounds with 

improved solubility. Both cis- and trans-[Ru(II)Cl2(dmso)4] (see Fig.1.12) were shown to 

be able to coordinate to guanine residues of DNA via the N7 position.106 The better activity 

displayed by the trans complex with respect to its cis analogue, both in vitro and in vivo, in 

cytotoxicity tests, was explained by means of differences in kinetics. This trans isomer also 

seemed to overcome cisplatin resistance, as seen in the case of the P388 leukaemia cell 

line.107 This observation, together with the fact that trans-[Ru(II)Cl2(dmso)4] shows a good 
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antimetastatic activity,107 suggests that the trans-ruthenium complexes could be an 

interesting alternative to cisplatin, by acting through a different mechanism of action. 

A series of dimethyl sulfoxide-ruthenium complexes was designed, which were 

inspired on the above-mentioned promising compound. Noteworthy are the compounds 

Na{trans-[Ru(III)Cl4(dmso)(Him)]}, (Him = imidazole), nicknamed NAMI, and the more 

stable [H2Im][trans-Ru(III)Cl4(dmso)(Him)], also known as NAMI-A (see Fig.1.12). The 

dmso ligand is in both cases bound via the S atom. NAMI-A is the first ruthenium complex 

to have ever reached clinical testing for anticancer activity, of which it has recently 

completed phase-I studies. Nowadays, when surgical removal of primary cancers is 

efficient and successful, a complex such as NAMI-A, which presents an antimetastatic 

activity in a broad range of tumours including lung metastasis, is becoming of utmost 

interest.108, 109 

 

Ru

S

SS

Cl

Cl

O

S
O

O
O

N

N

Ru

S

ClCl

Cl

Cl

O

H
N

N

H

H

N

N

Ru

S

ClCl

Cl

Cl

O

H
-

+

-

Na+

 
 

Fig.1.12. Dimethylsulfoxide complexes. From left to right, trans-[Ru(II)(dmso)4Cl2], 

Na{trans-[Ru(III)Cl4(dmso)(Him)]} (NAMI) and [H2Im]{trans-[Ru(III)Cl4(dmso)(Him)]} 

(NAMI-A). 

 

It is possible that these complexes are reduced to Ru(II) once inside the cell. It has 

been shown that NAMI loses two of its chlorido ligands, which are substituted by aqua 

ligands. This hydrated species could bind to several biomolecules, including DNA.110, 111 

However, the main mechanism of action of both NAMI and NAMI-A is thought not to be 

directly related to binding to DNA, but these molecules would exert their action via 

different ways than cisplatin.111-113 

A series of NAMI-A analogues bearing a weakly basic heterocyclic nitrogen ligand 

trans- to dmso was synthesized.108 These complexes were found to be more stable than 
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NAMI-A in slightly acidic solution, and their in vivo effectiveness appeared to be slightly 

better than that of the parent compound. NAMI-A, as well as these analogues, were proven 

to have an effect on cell distribution among cell cycle phases. In the case of the parent 

compound a cell cycle arrest is induced in the G(2)-M phase, an effect which does not take 

place in the experiments carried out with the NAMI-A analogues.108 

 

Complexes with other heterocyclic ligands 

Keppler and co-workers prepared a group of complexes, the so-called “Keppler-type” 

compounds. These are anionic ruthenium(III) complexes with monodentate heterocyclic 

nitrogen donor ligands, the most successful of which have the formula trans-[RuCl4(L)2]-, 

where L is imidazole (KP418) or indazole (KP1019 and KP1339), and the counterion (LH)+ 

or Na+ (see Fig.1.13). KP1019 and KP1339 were reported effective in inhibiting platinum-

resistant colorectal carcinomas in rats;114 KP1019 recently completed phase-I clinical 

trials.100 
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Fig.1.13. Molecular formula of the ruthenium(III) complexes imidazolium trans-

[tetrachloridobis(imidazole)ruthenate(III)] (KP418), indazolium trans-

[tetrachloridobis(indazole)ruthenate(III)] (KP1019) and sodium trans-

[tetrachloridobis(indazole)ruthenate(III)] (KP1339). 

 

The mechanism of action of these complexes is thought to differ considerably from 

that of cisplatin. The involvement of the “activation-by-reduction” process and the 

transferrin-mediated transport into the cells seem to play a very important role in the 

efficiency of the “Keppler-type” complexes,100, 114 as in the case of NAMI-A. 
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Several ruthenium polypyridyl complexes (see Fig.1.14) were synthesised, their in 

vitro DNA binding was studied and their antitumour activity in murine L1210 leukaemia 

and human cervix carcinoma HeLa cells was investigated. The only complex of this kind 

which was reported to be antitumour active was mer-[Ru(III)(tpy)Cl3], where tpy is 

2,2´:6´,2”-terpyridine.115 This complex was also the only one of this group that showed 

significant bifunctional DNA binding, therefore its cytotoxicity was thought to be related to 

the possibility of interstrand DNA cross-link formation.116, 117 Its poor water solubility, 

however, hampered its further progress into the clinical trials. 
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Fig.1.14. Molecular formula of the ruthenium polypyridyl complexes 

[Ru(II)(bpy)(tpy)Cl]Cl, cis-[Ru(II)(bpy)2Cl2], and mer-[Ru(III)(tpy)Cl3] 

(bpy = 2,2'-bipyridine, tpy = 2,2':6'2''-terpyridine). 

 

Ten years later an X-ray structure was reported of the cis-[Ru(II)(bpy)2]2+ fragment 

(bpy = 2,2´-bipyridine) bifunctionally binding to two DNA model bases.118 However, the 

ruthenium(II) precursor cis-[Ru(II)(bpy)2Cl2] had been proven mostly inactive in the above-

described biological tests.115 The fact that this complex can bind two model bases (after 

chloride removal) but it is inactive in vitro questions the relation that has been established 

between the possibility of bifunctionally binding to DNA and the cytotoxicity of ruthenium 

polypyridyl complexes. 

As a last noteworthy example of in vitro antitumour-active ruthenium complexes with 

heterocyclic ligands, one of the isomers of cis-[Ru(II)(azpy)2Cl2] (see Fig.1.15), where azpy 

= 2-phenylazopyridine, showed a remarkably high cytotoxicity against fast-growing cell 

lines.119, 120 The higher activity of cis-[Ru(II)(azpy)2Cl2] with respect to 

cis-[Ru(II)(bpy)2Cl2] has been related to a higher flexibility of the azpy ligand, which 
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allows an easier substitution of the chloride ligand and thus the binding of the complex to 

even two DNA bases.119 
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Fig.1.15. Molecular formula of the most active isomer of cis-[Ru(II)(azpy)2Cl2]. 

 

Ruthenium polyaminocarboxylate complexes 

There has been a wide interest in the redox properties of ruthenium(III/IV) complexes 

with polydentate mixed-donor ligands. Ligands like ethylenediaminetetraacetate (edta), 

1,2-cyclo-hexanediaminotetraacetate (cdta), 1,2-propylendiaminetraacetate (pdta), 

triethylenetraminehexaacetate (ttha), N,N,N´,N´-tetrakis(2-pyridyl)adipamide (tpda), N-

hydroxyethylethylenediaminetriacetate (hedtra) and others from the H4edta family have 

been coordinated to ruthenium to form complexes with acid-base and redox properties that 

have been thoroughly studied.121-125 

Some of these complexes were found to be able to bind to DNA model bases, as well 

as to blood proteins, such as albumin and transferrin, which suggested that they might have 

an antitumour activity.97, 110, 126-128 While this is still under study, the complex containing 

cdta was the first Ru(IV) compound reported to display cytotoxic activity.129, 130 

 

Organoruthenium complexes 

The monodentate ruthenium(II) arene complexes of the type 

[(η6-arene)Ru(II)(en)X][PF6], where en is ethylenediamine and X is chloride or iodide (see 

Fig.1.16), constitute a group that is believed to exert an antitumour action via mechanisms 

different from those of other ruthenium(III) complexes such as NAMI-A or KP1019.131-134 

The chlorido or iodido ligand is readily lost to yield the more reactive aqua species.135 DNA 

appears to be a target for these compounds, which bind preferentially to the guanine 
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residues and also interact “non-covalently” via both arene intercalation and minor groove 

binding.136, 137 

[(η6-toluene)Ru(II)(pta)Cl2] (RAPTA-T), where pta is 1,3,5-triaza-7-phospha-

adamantane (see Fig.1.16), is the parent compound from which a group of water-soluble 

selective DNA-binding antimetastatic drugs was synthesized.138, 139 The RAPTA 

compounds exhibit pH dependent DNA binding, almost no toxicity towards cancer cells in 

vitro and no toxicity at all towards healthy cells, also in vitro. However, RAPTA-T was 

found to inhibit lung metastases in mice bearing a mammary carcinoma, again with only 

mild effects on the primary tumours. The mechanism of action of the RAPTA compounds 

is only starting to be investigated.140 
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Fig.1.16. General formula of two groups of  organometallic ruthenium(II) complexes with 

modified arene ligands. On the left,  [(η6-arene)Ru(II)(en)X]+, where the arene can be 

benzene, p-cymene, biphenyl, 5,8,9,10-tetrahydroanthracene or 9,10-dihydroanthracene. X 

is Cl or I. On the right, [(η6-arene)Ru(II)(pta)XY] (RAPTA complexes). R1, R2 are alkyl 

groups; X and Y can be Cl or different µ-dicarboxylate ligands. 

 

Photoreactive ruthenium compounds that induce DNA cleavage 

Recently some photoreactive ruthenium(II) complexes have been under study as 

potential anticancer agents.91 In phototherapy, a photosensitizer absorbs light and it then 

reacts with a targeted endogenous molecule (O2 or DNA) via energy or electron transfer.91 

Metal compounds such as polyazaaromatic ruthenium(II) complexes are good candidates as 

photosensitizers, with properties that can be modulated by introducing changes in the 

ligands.141 

Once a photosensitizer is excited, it can react with a dioxygen molecule, leading to 

the production of singlet dioxygen.141 This very reactive species may induce formation of 
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oxidizing agents, such as superoxide or hydroxyl radicals, that can damage DNA by 

oxidizing the guanine moiety or even cleaving the DNA strand.141 

Important advances in this field are the discovery that singlet dioxygen production by 

[Ru(II)(bpy)2(phen)]2+ is able to block partially the activity of a bacteriophage RNA-

polymerase,142 as well as the encapsulation of the complex {Ru(II)[dip(SO3Na)2]3}, where 

dip(SO3Na)2 is the sodium salt of disulfonated 4,7-diphenyl-1,10-phenantroline, into 

polyacrylamide nanoparticles for use in photodynamic therapy.143 The main drawbacks of 

the in vivo treatments in photodynamic therapy are collateral damages to healthy cells, 

acquired resistance and limitation of light penetration in tissues.143 

An electron-transfer process can also be involved in phototherapy leading to DNA 

cleavages. Ru(II)-2,3-naphthalocyanine compounds showed activity in vivo against cancer 

cells in absence of singlet oxygen.144 Besides, it has been demonstrated that a photo-

induced electron transfer takes place from a guanine to the excited state of some Ru(II) 

complexes containing π-deficient ligands such as TAP (1,4,5,8-tetraazaphenantrene), HAT 

(1,4,5,8,9,12-hexaazatriphenylene) or BPZ (2,2´-bipyrazine). The formation of the radical 

on the guanine is enough to provoke DNA cleavages.141, 145 

 

Dinuclear ruthenium complexes 

As explained in section 1.3, several dinuclear platinum complexes have been 

synthesised in search for compounds that interact with DNA in a drastically different way 

to cisplatin. The interaction of each of these complexes with DNA, as well as its cellular 

processing, are expected to be unique, involving long-range intrastrand cross-links upon 

DNA and van der Waals interactions within the minor groove, amongst others, with as final 

aim finding a drug capable of overcoming cisplatin resistance. 

Although the electrochemical and photophysical properties of several cationic 

ruthenium dimeric complexes with heterocyclic bridging ligands had been extensively 

studied in the 1970s,146 the testing of this kind of complexes in the oncological field was 

only reported in the last decade. A group of these complexes has the general formula 

[{trans-Ru(III)Cl2(dmso)L1L2}2(µ-L3)]m-. L1, L2 are Cl or dmso. L3 is a nitrogen 

heterocyclic ligand with at least two nitrogen atoms, like pyrazine (pyz), pyrimidine (pym), 

4, 4´-bipyridine (bipy), 1,2-bis(4-pyridyl)ethane (etbipy), 1,2-bis(4-pyridyl)propane 

(prbipy) or trans-1,2-bis(4-pyridyl)ethylene (etilbipy). Finally, m is 0, 1 or 2 (see Fig.1.17). 

These complexes are based on the mononuclear NAMI-A.147 The dinuclear complexes 
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obtained from this antimetastatic compound show a chemical stability that renders them 

very suitable for pharmacological formulation, as well as a high antimetastatic activity that 

indicates they could be helpful in the treatment of tumours with a high degree of metastatic 

diffusion, such as mammary, lung or digestive tract carcinomas.148-151 
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Fig.1.17. From left to right, the general formula of dinuclear Ru(III) complexes based on 

NAMI-A; a Ru(II)-Pt(II) heterodinuclear complex with an aliphatic linker and a Ru(II)-

Pt(II) heterodinuclear complex with an intercalating linker. 

 

In vitro studies carried out with these complexes showed that a G(2)-M cell cycle 

arrest was induced, which was dependant on the ruthenium concentration and on the cell 

line, while their cytotoxicity was only mild against human and murine cell lines. This 

behaviour is comparable to that of the parent mononuclear complex NAMI-A. Moreover 

the cell cycle-regulating protein cyclin B appears to be significantly modified.152 

A variation of these compounds, where dmso is substituted by tetramethylene 

sulfoxide (tmso) is currently under study. So far only the mononuclear compounds have 

been described,153, 154 as well as the anionic ruthenium(III) dinuclear versions of these 

complexes with pyrazine as bridging ligand.155 

Mixed-valent ruthenium tetracarboxylate complexes were shown to have a mild 

antineoplastic activity against P388 leukaemia cell lines. However, these complexes are 

poorly water soluble.109 Mixed-valent complexes of structural formula 

[(RuL)2(µ-O2CR)4](PF6) were tested for cytotoxicity against HeLa and multidrug resistant 

CoLo 320DM human cancer cells. L is an imidazole, a 1-methylimidazole or an aqua 
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ligand when R is a methyl group, and L is an ethanol when R is a ferrocenyl (Fc) or a 

Fc-CH=CH-. The related series of complexes with formula 

M3[Ru2(µ-O2CR)4(H2O)2]·4H2O, where M is Na+ when R is m-C6H4SO3
- and M is K+ when 

R is p-C6H4SO3
- were also tested for cytotoxicity against the above-mentioned HeLa and 

multidrug resistant CoLo 320DM human cancer cells. A few of these complexes show 

some cytotoxicity and, more interestingly, CoLo 320DM was found to be more sensitive to 

these complexes than HeLa, which is more sensitive than CoLo 320DM to cisplatin. This 

observation suggests that the mechanism of action of these complexes is different to that of 

the classical platinum drugs.156 

Complexes with µ-N,N’-diphenylformamidinate and µ-(fluoroanilino)pyridinates 

have also been prepared. The compound µ-[(F3CCO2)4(F3CCO2)Ru2] forms cis-[µ-

(F3CCO2)4-µ-(9EtGua)Ru2(CH3OH)2]2+ where 9EtGua = 9-ethylguanine in which the 

guanines bridge between the two Ru(II) atoms in a N7-O6 head-to-tail fashion.99, 157 

The compound µ-O-[Ru(III)(bpy)2(H2O)2]2
4+ is a borderline example. This dinuclear 

ruthenium(III) complex has been proven to be effective in double-stranded DNA cleavage. 

However, its action is thought to be due to the mononuclear [Ru(III)(bpy)2(H2O)2]2+, which 

is formed by intracellular reduction of the dinuclear complex.158, 159 

The combination of metal moieties with different properties provides systems of great 

interest. Although the following three examples fall slightly out of the scope of the 

dinuclear ruthenium complexes, they are worth mentioning in relation with them. In general 

ruthenium complexes are less reactive than platinum compounds, and the design of 

ruthenium/platinum heterodinuclear complexes provides molecules that can selectively, 

sequentially react with particular DNA sequences and facilitate unique DNA 

modification.160 The complex {[cis,fac-Ru(II)Cl2(dmso)3][µ-NH2(CH2)4NH2][cis-

PtCl2(NH3)]} (see Fig.1.17) was the first of the series.161 These anticancer compounds are 

suspected to exert their action via a novel mechanism of action, involving interstrand 

crosslinks in which each metal atom is coordinated to one strand of DNA. A second 

strategy is the coupling of a light absorber to a cisplatin moiety by a ligand capable of 

intercalative binding with DNA. The{[M(bpy)2]2(µ-dpb)[PtCl2]}2+ complexes, where M is 

Ru(II) or Os(II) and dpb is 2,3-bis(2-pyridyl)benzoquinoxaline, form primarily intrastrand 

crosslinks, but interstrand crosslinks were also formed (see Fig.1.17).162, 163 Finally, the 

highly flexible heterodinuclear complex [Ru(II)(tpy)](µ-dtdeg)[PtCl]3+, where dtdeg is 

bis[4 -(2,2 :6 ,2 -terpyridyl)]-diethyleneglycol ether), was synthesized.164 Modifications of 
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the linker are currently under study in search for a derivative of this complex with an 

increased antitumour activity. 

 

1.6. How these drugs work: mechanisms of action 

In the past two decades a new approach to treating cancer, known as targeted therapy, 

has started to emerge.165 While classical chemotherapy involves drugs interfering with 

replication and mitotic processes of tumour cells, their “target” being thus DNA, a more 

recent strategy involves targeting cellular signalling pathways of cancer cells, yielding 

highly effective cancer treatments with less severe side effects.166 The recent discovery of 

receptors and growth factors, such as epidermal growth factor receptor (EGFR), vascular 

endothelial growth factor (VEGF), or cyclin-dependent kinases (CDK) that are upregulated 

in cancer cells provides new possible targets for cancer therapy.166 The high specificity of 

targeted therapies accounts for a more manageable toxicity profile of the drugs. Its main 

drawback is that most targeted therapeutic drugs are only effective in specific types of 

cancer (e.g. Imatinib mesylate for chronic myelogenous leukaemia, Erlotinib for advanced 

non-small cell lung cancer, etc), which limits their applicability.165 In recent years, 

ruthenium-based drug research is moving from classical chemotherapy into the non-

conventional approaches. 

Classical ruthenium anticancer therapy is based on the capability of ruthenium to 

coordinatively bind to DNA via some of the nitrogen atoms of the nucleic bases, in 

particular via the nitrogen N7 of guanine. This is also the action expected from the first 

ruthenium complexes designed as anticancer drugs, the ammine-chloro derivatives. The 

novelty is that these complexes are thought to act as ruthenium(III) prodrugs, which would 

be inactive until the ruthenium gets reduced in the cytosol.92, 102-104 

Binding to DNA via an additional mode was achieved when an intercalating 

polypyridyl ligand was added to the ruthenium system. Additional properties that make 

polypyridyl groups desirable ruthenium ligands are their photoluminescence, which makes 

them suitable as DNA probes, as well as the stability of the complexes that they can 

originate, amongst others.165 An often encountered problem is the poor water solubility of 

many of these complexes. 

While ruthenium(II) dimethylsulfoxide complexes were conceived as water-soluble 

versions of the above-mentioned ammine-chlorido derivatives, the good antimetastatic 

activity of trans-[Ru(II)Cl2(dmso)4] soon became apparent, as well as its capability to 
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overcome cisplatin resistance in certain cell lines. These two observations suggested a 

mechanism of action different to the by then widely accepted mechanism of cisplatin.107 

The use of polyaminocarboxylate ligands in metallopharmaceutical applications 

seemed a logical option due to their resemblance to biological molecules.167 Several of 

these complexes turned out to be antitumour active with low systemic toxicity. Some of 

them were proven to bind to DNA, alter its conformation and even induce DNA 

cleavage.110, 168 In addition, several of these complexes were found to be effective NO 

scavengers and protease inhibitors, thus they could be used to treat various diseases or serve 

as antiviral agents.169 

DNA also seems to be a target for the organometallic arene-ruthenium complexes. 

The coordination of the ruthenium atom to the nucleic bases was seen to be enhanced 

through H-bonding interactions or weakened because of steric interactions, suggesting the 

possibility to design compounds to target specific nucleotides.170 The binding of the 

complex to DNA appeared to be promoted by hydrophobic arene-purine base π-π stacking 

interactions when large ring systems were used.136 

Finally, the photoreactive ruthenium compounds can also be considered within the 

classical therapy, as well as most of the dinuclear ruthenium compounds aboved described, 

as their target is still DNA. 

One of the most successful ruthenium-based anticancer drugs to date, NAMI-A, 

displays a unique behaviour. Its lack of cytotoxicity in vitro, together with its in vivo ability 

to reduce metastases weight while the primary tumour remains unaffected, appear to 

exclude DNA as the primary target. NAMI-A binds strongly to serum proteins, including 

the iron transporter transferrin, and it induces cell arrest in the premitotic G(2)-M phase.108 

Studies carried out with NAMI-A analogues suggest that the imidazole fragment is not 

essential for the antimetastatic activity. On the other hand, the reinforcement of the axis 

dmso-Ru-N-donor ligand by using N-containing heterocycles that are less basic than 

imidazole reduce the loss of dmso from the complex, increasing at the same time the 

antitumour action.108 

The only ruthenium drug other than NAMI-A currently undergoing clinical trials, 

KP1019 (see Fig.1.13), is significantly cytotoxic in vitro against colorectal cell lines 

SW480 and HT29 by inducing apoptosis.114 The drug was also found to be highly effective 

in in vivo tests in which cisplatin had been inactive. The mechanism of action of the 

“Keppler-type” complexes is thought to be due to at least two factors, namely the 
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“activation-by-reduction” process and the transferrin-mediated transport into the cells.100, 114 

KP1019 is capable of forming crosslinks with DNA that are different to those originated by 

cisplatin. DNA is not completely excluded as a target for KP1019. However, it induces 

apoptosis in colorectal cell lines mainly via the intrinsic mitochondria pathway.100, 171 An 

increase in the number of indazole ligands of these complexes improved significantly the in 

vitro cytotoxicity in several cell lines, allegedly because the cellular uptake is facilitated 

and the reduction potential is increased.172 

Although DNA appears to be a target for the organometallic arene-ruthenium 

complexes (vide supra), the RAPTA complexes constitute a particular case (see Fig.1.16). 

Parting from the observation that the complex RAPTA-T displayed a similar in vivo activity 

to NAMI-A, albeit with lower systemic toxicity, a group of derivatives from this parent 

compound was synthesised, which were then tested in vitro for interactions with different 

biological molecules and in vivo for antitumour and antimetastatic activity.140, 173 Several of 

these complexes showed a reduction in lung metastases in mice, while leaving the primary 

tumour mostly unaffected. Moreover some specific protein-binding interactions were 

detected.140, 173 A proteomic-based analytical approach based on 2D PAGE and laser-

ablation inductively-coupled mass spectrometry (ICP-MS) appears to be a promising tool to 

identify the specific proteins interacting with ruthenium-based drugs.174-176 

In conclusion, ruthenium drugs are particularly important in the clinic due to their low 

toxicity. These complexes appear in some cases to function in a different way to classical 

chemotherapies. For this reason the conventional tests used to screen new compounds for 

anticancer activity should be treated with caution, and new assays for potential drug 

candidates are needed. Methods are required to rapidly locate drug interactions with key 

protein targets. Finally, even when metal drugs are not found directly active, they may 

interact with the proteins that regulate apoptosis, thereby modifying cell behaviour. 

 

1.7. Aim and scope of this thesis 

The existence of two common approaches for the design of new anticancer drugs has 

been mentioned in section 1.4. The first method, often known as “trial-and-error”, is based 

on the synthesis and testing of libraries of closely-related complexes. This thesis is based on 

the second approach, which parts from the synthesis of very few compounds. These are 

thoroughly studied in order to gain some insight about the way they function and, 

subsequently, how they can be improved. 
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The subject is first introduced earlier in Chapter 1 with an overview about medicinal 

inorganic chemistry, in particular about platinum and ruthenium anticancer agents. Special 

attention is given to the mechanisms of action of these antitumour drugs, as well as the 

structure-activity relationships that are known to date. 

A group of ruthenium(II) polypyridyl complexes is presented in Chapter 2. A 

complete description is given of the synthesis and characterization by several methods of 

three compounds derived from the cytotoxic, but poorly water-soluble complexes, 

Ru(III)(tpy)Cl3 and α-Ru(II)(azpy)2Cl2. 

With the purpose of proving or discarding DNA as a potential target of the newly-

synthesised complexes, a study was carried out, which is included in Chapter 3. NMR is 

used as a basic tool to follow the reaction between each of the complexes and a DNA model 

base, allowing identifying kinetic differences amongst the three proposed compounds. A 

conformational investigation of the so-called ruthenium–model base adduct was found to be 

of theoretical interest. 

Other modes of interaction between ruthenium complexes and DNA were looked into 

with the help of circular and linear dichroism. The question “is there a correlation between 

these interactions and the antitumour activity of the selected ruthenium(II) polypyridyl 

complexes?” has been dealt with in Chapter 4. The synthesis and characterisation of a 

ruthenium(II) homodinuclear complex are described. This compound, together with a few 

previously-known ruthenium(II) polypyridyl complexes, is investigated in the search for 

some structure-activity relationships. 

In Chapter 5 some suggestions for future directions in this work are given. The 

synthesis of a new ruthenium(II) homodinuclear complex, which is closely related to the 

other compounds herein described, raised several new questions. 

Chapter 6 offers a summary and discussion of the results presented in this thesis. 

Finally, a study carried out in relation with the work included in Chapter 3, in this 

case excluding the metal atom, is briefly described in the Appendix. 

Parts of this thesis have been published177-179 or submitted for publication.180 
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2. Ruthenium polypyridyl complexes 
containing the bischelating ligand 
2,2´-azobispyridine. Synthesis, 
characterization and crystal structures* 

 
 
 
 

Three ruthenium polypyridyl compounds of structural formula [Ru(apy)(tpy)L](ClO4)(2-n) 

(apy = 2,2’-azobispyridine; tpy = 2,2’:6’,2”-terpyridine; L = Cl-, H2O, CH3CN) (1a-c) were 

synthesized and crystallized. These complexes were fully characterized by means of 1D and 

2D 1H NMR spectroscopy, as well as mass spectrometry and elemental analysis. Although 

in theory two isomers are possible, i.e. the one in which the central N atom in tpy is trans to 

the azo N in apy and the one in which the former is trans to the pyridine N in apy, in all 

cases only the latter was observed. The molecular structures of the compounds were 

elucidated by single-crystal X-ray diffraction. 

 
 
 
 
 
 
 
 

                                                 
* This chapter is based on Corral, E.; Hotze, A.C.G.; Tooke, D.M.; Spek, A.L.; Reedijk, J., Inorg. Chim. Acta, 
2006, 359, 830-838. 



Chapter 2 
 

 48 

2.1. Introduction 

Recently a large interest has grown in ruthenium polypyridyl complexes as a possible 

alternative to the use of classical platinum chemotherapy.1 Some examples of these 

compounds are Ru(tpy)Cl3 and α-[Ru(azpy)2Cl2] (azpy = 2-phenylazopyridine). Ru(tpy)Cl3 

shows a pronounced in vitro cytotoxicity and exhibits antitumor activity.2 The compound 

α-[Ru(azpy)2Cl2] has been reported to show a remarkably high cytotoxicity, even more 

pronounced than cisplatin in most of the tested cell lines.3, 4 The increased amount of 

possible binding modes of ruthenium polypyridyl complexes to DNA as compared to those 

of the first generations of platinum drugs, including intercalation of the ligands between 

two parallel base pairs, could be crucial in order to overcome resistance to cisplatin.5 In 

addition, a number of ruthenium complexes, such as NAMI-A, 

[H2im][trans-Ru(III)Cl4(dmso)(Him)] (Him = imidazole; dmso = dimethylsulfoxide), have 

shown to display an antimetastatic activity, which has not been observed in the case of the 

routinely used platinum compounds.6, 7 

In this chapter, the synthesis and characterization of a group of the above-mentioned 

ruthenium polypyridyl complexes are described. Taking Ru(tpy)Cl3 as the starting building 

block in the synthesis, the second moiety of choice is 2,2’-azobispyridine (apy), a didentate 

polypyridyl ligand. First described by Kirpal in 1927,8 the availability of two possible 

coordination sites has made it attractive in the synthesis of multiple dinuclear complexes, 

most of which were symmetric, as reviewed by Kaim.9 On the other hand apy is structurally 

related to 2-phenylazopyridine (azpy), a ligand present in the recently reported cytotoxic 

bis(2-phenylazo)pyridine ruthenium(II) compounds, such as the above-mentioned 

α-[Ru(azpy)2Cl2].3, 4 

The X-ray structures of the three newly prepared complexes are presented, which 

provide interesting observations by comparison with each other, as well as with other 

already reported related structures.10-13 These results indicate a powerful possibility to tune 

the sixth coordination site and tailor-make complexes that display varying properties, 

thereby fulfilling different requirements. 

 

2.2. Experimental 

Materials and reagents 

2,2’-Azobispyridine (apy) and Ru(tpy)Cl3 were synthesized according to the literature 

methods.8, 14 LiCl, NaClO4 (both Merck), NaClO, AgNO3, (both Acros), tpy (Aldrich) and 
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RuCl3·3H2O (Johnson & Matthey) were used as supplied. All other chemicals and solvents 

were reagent grade commercial materials and used as received, without further purification. 

 

Physical measurements 

C, H and N determinations were performed on a Perkin Elmer 2400 Series II analyzer. 

Mass spectra were obtained with a Finnigan MAT TSQ-700 mass spectrometer equipped 

with a custom-made electrospray interface (ESI). FTIR spectra were obtained on a Perkin 

Elmer Paragon 1000 FTIR spectrophotometer equipped with a Golden Gate ATR device, 

using the diffuse reflectance technique (res. 4 cm-1). NMR spectra were recorded on a 

Bruker DPX-300 spectrometer operating at a frequency of 300 MHz, on a Bruker AV-500, at 

a frequency of 500 MHz, and on a Bruker DMX-400, at a frequency of 400 MHz. Chemical 

shifts were calibrated against tetramethylsilane (TMS). 

 

X-ray structural determination 

X-ray intensities were measured on a Nonius KappaCCD diffractometer with rotating 

anode and Mo Kα radiation (graphite monochromator, λ = 0.71073 Å) at a temperature of 

150(2) K. A multi-scan absorption correction was applied using MULABS15 (1a) or 

SADABS16 (1b and 1c). The structures were solved with the program DIRDIF,17 and 

refined using the program SHELXL-9718 against F2 of all reflections up to a resolution of 

(sinθ/λ)max = 0.65. The perchlorate anion containing Cl(2) in 1b was refined using a 

disorder model, with final occupancies of 88% and 12%. All other non hydrogen atoms 

were freely refined with anisotropic displacement parameters. The H atoms on the water 

molecules in 1b were found in a difference map, and refined with isotropic displacement 

parameters. All other H atoms were placed in geometrically idealized positions [d(C - H) = 

0.98Å for methyl H atoms and 0.95Å for other H atoms] and constrained to ride on their 

parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all 

other H atoms. The structure calculations, space group determination, validation and 

drawings were performed with the program PLATON.19 Further experimental details are 

given in Table 2.1. Crystallographic data (excluding structure factors) for the structures 

reported in this chapter have been deposited at the Cambridge Crystallographic Data Centre 

as numbers CCDC 266695-266697. 
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Table 2.1. Crystal data and structure refinement details for [Ru(apy)(tpy)Cl](ClO4) (1a), 

[Ru(apy)(tpy)(H2O)](ClO4)2·2H2O (1b) and [Ru(apy)(tpy)(CH3CN)](ClO4)2 (1c) 

 
  

1a 
 

 
1b 

 
1c 

Formula 

Formula weight 

Crystal colour 

Crystal size (mm3) 

Crystal system 

Space group 

a(Å) 

b(Å) 

c(Å) 

α(°) 

β(°) 

γ(°) 

V(Å3) 

Z 

Dcalc (g/cm3) 

µ(Mo Kα)(mm-1) 

Transmission range 

Total/unique reflections 

R1 

ωR2 

S 

Npar 

Residual density (e/Å3) 

 

C25H19N7O4RuCl2  

653.44 

Dark (purple) 

0.08 x 0.20 x 0.23 

Monoclinic 

Pc (No.7) 

8.6951(5) 

9.8750(5) 

14.7384(7) 

90 

97.810(4) 

90 

1253.76(11) 

2 

1.731 

0.887 

0.63-0.93 

33311/5711 

0.0316 

0.0785 

1.041 

352 

-0.49/1.14 

C25H25N7O11RuCl2

771.49 

Dark (purple) 

0.03 x 0.09 x 0.24 

Triclinic 

P-1 (No. 2) 

10.9876(9) 

11.5675(5) 

12.8188(15) 

79.141(7) 

70.879(7) 

84.259(6) 

1510.5(2) 

2 

1.696 

0.767 

0.76-0.98 

41476/6905 

0.0379 

0.0825 

1.03 

485 

-0.63/1.56 

C27H22N8O8RuCl2 
758.50 

Dark (purple) 

0.15 x 0.20 x 0.30 

Triclinic 

P-1 (No. 2) 

11.2566(7) 

11.6870(8) 

12.0681(9) 

94.444(6) 

113.183(5) 

91.415(5) 

1452.40(18) 

2 

1.734 

0.790 

0.72-0.89 

40042/6634 

0.0289 

0.0688 

1.043 

416 

-0.80/1.03 
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Synthesis and characterization of the [Ru(apy)(tpy)L](ClO4)(2-n) compounds 

The synthesis of the three complexes was accomplished in three steps, analogously to 

the synthesis of their related azpy complexes,10 as described in detail below (see Fig.2.1). 

 

Ru
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NCl
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N N
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+

2+2+

 

Fig.2.1. Scheme of the synthesis of the [Ru(apy)(tpy)L](ClO4)(2-n) compounds. 

 

Caution: Although no problems were encountered in the synthesis and handling of 

the materials described below, those containing perchlorate are potentially explosive and 

should be handled with care. 

Chloro(2,2´-azobispyridine)(2,2´:6´,2”-terpyridine)ruthenium(II) perchlorate, 

[Ru(apy)(tpy)Cl](ClO4) (1a) 

LiCl (300 mg, 7.08 mmol) was dissolved in 45 ml of ethanol-water (3:1). 

Triethylamine (0.096 ml, 0.68 mmol) was added, followed by Ru(tpy)Cl3·3H2O (300 mg, 

0.68 mmol) and 2,2’-azobispyridine (apy; 189 mg, 1.02 mmol). The mixture was refluxed 

for one hour, after which the hot solution was filtered to remove any insoluble material. The 
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filtrate was left to cool down to RT. By addition of a saturated aqueous solution of NaClO4 

(15 ml), a dark crystalline solid appeared. The crystals obtained were found to be suitable 

for X-ray diffraction measurements. The product was collected by filtration, washed with 

little ice-cold water and dried in vacuo over P4O10. Yield: 211 mg (47%). Anal. Calc. for 

C25H19N7O4Cl2Ru: C, 45.9; H, 2.9; N, 15.0%. Found: C, 45.2; H, 2.9; N, 14.8%. m/z 

(ESIMS) 553.0 ([Ru(apy)(tpy)Cl]+, 100%). 1H NMR (DMSO-d6): δ (ppm): 9.83 (1H, d, 

4.61 Hz); 8.93 (1H, d, 7.90 Hz); 8.63 (3H, m); 8.45 (1H, t, 7.86 Hz); 8.27 (2H, m); 8.10 

(2H, t, 6.57 Hz); 7.82 (1H, d, 3.57 Hz); 7.72 (1H, t, 7.71 Hz); 7.41 (2H, t, 6.09 Hz); 7.31 

(1H, t, 4.72 Hz); 7.22 (2H, d, 4.46 Hz); 7.12 (1H, d, 8.07 Hz). 

Aqua(2,2´-azobispyridine)(2,2´:6´,2”-terpyridine)ruthenium(II) diperchlorate 

dihydrate, [Ru(apy)(tpy)(H2O)](ClO4)2 ·2H2O (1b) 

To a stirred solution of [Ru(apy)(tpy)Cl](ClO4) (170 mg, 0.26 mmol) in 30 ml of 

acetone-water (1:5), 1 equivalent of AgNO3 (44 mg, 0.26 mmol) was added. The mixture 

was refluxed for one hour, then left to cool down to RT. AgCl was filtered off, together 

with any possible rests of unreacted starting material. Finally a saturated aqueous solution 

of NaClO4 (10 ml) was added and the solution was left overnight at 4 °C. The product was 

collected by filtration, washed with little ice-cold water and dried in vacuo over P4O10. 

Yield: 153 mg (76%). Anal. Calc. for C25H25N7O11Cl2Ru: C, 38.9; H, 3.3; N, 12.7%. 

Found: C, 39.1; H, 3.0; N, 12.9%. m/z (ESIMS) 259.2 ([Ru(apy)(tpy)]2+, 100%). 1H NMR 

(DMSO-d6): δ (ppm): 9.46 (1H, d, 5.11 Hz); 9.01 (1H, d, 7.82 Hz); 8.67 (3H, m); 8.55 (1H, 

t, 8.09 Hz); 8.36 (2H, m); 8.19 (2H, t, 7.83 Hz); 7.84 (1H, d, 4.70 Hz); 7.75 (1H, t, 7.67 

Hz); 7.50 (2H, m); 7.34 (3H, m); 7.14 (1H, d, 8.00 Hz). 

Acetonitrile(2,2´-azobispyridine)(2,2´:6´,2”-terpyridine)ruthenium(II) diperchlorate, 

[Ru(apy)(tpy)(CH3CN)](ClO4)2 (1c) 

[Ru(apy)(tpy)(H2O)](ClO4)2 (56 mg, 0.08 mmol) was dissolved in 9 ml CH3CN. The 

solution was refluxed for 30 minutes. The volume of the solution was reduced 5 to 6 times 

under reduced pressure before adding a saturated aqueous solution of NaClO4 (2.8 ml). A 

dark crystalline solid appeared overnight at 4 °C, from which a single crystal suitable for X-

ray diffraction measurements was extracted. The product was collected by filtration, 

washed with little ice-cold water and dried in vacuo over P4O10. Yield: 45 mg (78 %). Anal. 

Calc. for C27H22N8O8Cl2Ru: C, 42.8; H, 2.9; N, 14.8%. Found: C, 42.8; H, 2.9; N, 15.0%. 

m/z (ESIMS) 279.8 ([Ru(apy)(tpy)(CH3CN)]2+, 100%);  259.2 ([Ru(apy)(tpy)]2+, 30%). 1H 

NMR (CDCN3): δ (ppm): 9.67 (1H, d, 5.17 Hz); 8.93 (1H, d, 7.91 Hz); 8.50 (1H, t, 7.64 
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Hz); 8.38 (3H, m); 8.28 (1H, m); 8.18 (1H, t, 6.00 Hz); 8.06 (2H, t, 9.16 Hz); 7.80 (1H, d, 

3.66 Hz); 7.70 (1H, t, 7.82 Hz); 7.36 (4H, m); 7.27 (2H, m). 

 

2.3. Results and discussion 

Synthesis and characterization of the [Ru(apy)(tpy)L](ClO4)(2-n) compounds 

The synthesis of [Ru(apy)(tpy)Cl](ClO4) takes place in a one-pot reaction from the 

previously synthesized Ru(tpy)Cl3·3H2O and 2,2’-azobispyridine (apy). The presence of 

both triethylamine and lithium chloride is needed. The first of these compounds acts as a 

reducing agent of Ru(III) to Ru(II), helping in the dissociation of the chlorido from 

Ru(tpy)Cl3·3H2O, whereas LiCl is used to prevent any dissociation of Cl- from the product. 

AgNO3 in an aqueous solution is required to substitute the chlorido ligand, which is 

filtered off in the form of the insoluble salt AgCl, by an aqua ligand. The latter is easily 

substituted by acetonitrile by simply refluxing for a short time in that solvent. 

The possibility to synthesize a complex in which the sixth coordination position can 

be occupied by ligands with different lability, which also have an influence in the 

solubility, provides with a choice to fulfill the requirements of each situation. DNA is 

thought to be the ultimate target of platinum drugs and of some antitumor-active ruthenium 

compounds.1 The kinetics of the reaction of the complex with DNA are expected to be 

different in each case. Therefore the kinetics can be optimized by simply tuning the sixth 

coordination site. 

Crystallization turned out to be the most appropriate method found for the 

purification of these three new compounds. For that purpose, perchlorate was found to be 

the ideal counter ion, which not only allowed obtaining the compounds in high purity, but 

also crystals suitable for X-ray diffraction analysis. 

The composition and structures of these three complexes are confirmed by elemental 

analysis, mass spectrometry, infrared spectroscopy and 1H NMR spectroscopy. The 

microanalytical data are consistent with the empirical formulas C25H19N7O4RuCl2 (1a), C25 

H21N7O9RuCl2·2H2O (1b) and C27H22N8O8RuCl2 (1c). The mass spectrum of 1a reveals the 

appearance of a molecular peak at m/z (ESIMS) 553.0, which corresponds to the expected 

cation [Ru(apy)(tpy)Cl]+. In the case of 1b the aqua ligand is dissociated, therefore the 

molecular peak appears at m/z (ESIMS) 259.2, which corresponds to the species 

[Ru(apy)(tpy)]2+. This peak was also found in the case of 1c, however the molecular peak 

was found at m/z (ESIMS) 279.8, corresponding to the cation [Ru(apy)(tpy)(CH3CN)]2+. 
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The infrared spectra of the three complexes are almost identical. The only remarkable 

difference is the presence of a broad, weak peak at 3000-3500 cm-1 in the spectrum of 1b, 

which appears not only as a consequence of the aqua ligand, but also of the water molecules 

in the lattice structure of the compound, vide infra. The presence of perchlorate as a 

counterion is confirmed by the very strong, broad peak at 1070-1090 cm-1 and the strong, 

sharp peak at around 620 cm-1. Further the spectrum is complicated, with many peaks in the 

fingerprint area. A weak, broad peak around 3090 cm-1, characteristic of aromatic C-H 

stretching, as well as a sharp peak of medium intensity around 1600 cm-1, characteristic of 

aromatic ring stretchings, and an intense, sharp peak at 765-767 cm-1, characteristic of ring 

deformations and C-H out-of-plane deformations, appear as expected from a structure 

including aromatic rings. Two sharp peaks of medium intensity appear at 1448 cm-1 and 

1300 cm-1, respectively. These signals are the result of the N=N stretching vibration, 

indicating the presence of an azo group in the molecule. A Ru-Cl stretching mode would be 

expected in the area around 300 cm-1.20 However, this is a too crowded area with bands 

therefore no conclusions can be drawn. 

Finally, the solution geometry can be accurately assigned by means of 2D 1H NMR 

spectroscopy. Together with the NOE couplings, the COSY couplings between the peaks 

unmistakably confirm that the central nitrogen atom in tpy is trans to the pyridine N in apy 

in the three complexes (vide infra). 

 

X-ray structural determinations 

Plots of the structures of the cations of [Ru(apy)(tpy)L](ClO4)(2-n) (L = Cl-, H2O, 

CH3CN) are given in Fig.2.2. 

 
1a     1b    1c 

 
Fig.2.2. PLATON projections of the cations [RuII(apy)(tpy)L]n+ (L = Cl-, H2O, CH3CN) 

(1a-c), with numbering of major atoms. Hydrogen atoms and counter ions have been 

omitted for clarity. 
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The apy ligand could theoretically yield two different isomers of 

[Ru(apy)(tpy)L](2-n)+, the one in which the azo nitrogen of apy is trans to the pyridine 

nitrogen of tpy and the one in which the azo nitrogen is trans to the sixth coordination 

position, that is to say, to the chloro in 1a, the aqua in 1b and the acetonitrile in 1c. 

However, the only observed isomer is in all three cases the latter. A similar arrangement 

has been reported for the 2-phenylazopyridine (azpy) analogues.10, 12, 13 

The Ru-N(azo) bond distance is shorter than that of Ru-N(pyridine) in all three cases 

(see Table 2.2). This result is consistent with literature observations for the azpy 

analogues10, 12, 13 and can be explained by the stronger π-backbonding, dπ(Ru) → π*(azo). 

The bite angle of the apy ligand is between 76.2 (1a) and 76.8 (1b), comparable to the azpy 

ligand in [Ru(azpy)(tpy)Cl]Cl.13 The tpy ligand is coordinated in such a way that the 

distance between the ruthenium and the central N is shorter than the distances between the 

ruthenium and the extreme N atoms. This characteristic was also observed in the above 

mentioned azpy analogues,10, 12, 13 whereas in the starting complex Ru(tpy)Cl3 these three 

bond lengths are equivalent.11 Finally the tpy ligand is planar whereas the apy ligand is not. 

The latter consists of two planes: that of the coordinating pyridine ring and the one of the 

non-coordinating pyridine ring. The lack of coplanarity reduces the delocalization through 

the apy ligand. The dihedral angle between these two planes is 33.52(19)° for 1a, 

32.52(16)° for 1b and 53.56(10)° in the case of 1c. 

Packing in the crystal lattice 

Three-dimensional packing of the three complexes is depicted in Figs.2.3-2.5. 

Hydrogen bonding plays an important role in the crystal structure of complex 1b (Fig.2.4), 

the only one in which classical hydrogen bonds are formed. These occur between the 

hydrogen atoms of the aqua ligand and the oxygen atoms of both the water molecules and 

one perchlorate counter ion, between the hydrogen atoms of the water molecules and the 

oxygen atoms of perchlorate and also between the former and the oxygen atoms of other 

water molecules. 

π-π stacking is observed between the pyridine rings in all three complexes. In both 1a 

and 1b (Fig.2.3 and Fig.2.4), this stacking occurs between a pyridine ring of a tpy ligand 

and the opposite pyridine ring of the tpy ligand coordinated to the adjacent molecule, as 

well as between pyridine rings of adjacent apy ligands. Complex 1c only displays π-π 

stacking between opposite tpy pyridine rings. 
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Table 2.2. Selected distances (Å) and angles (°) in the crystal structures of 

[Ru(apy)(tpy)Cl](ClO4) (1a), [Ru(apy)(tpy)(H2O)](ClO4)2·2H2O (1b) and 

[Ru(apy)(tpy)(CH3CN)](ClO4)2 (1c) 

 

1a 1b 1c 

Interatomic distances  (Å) Interatomic distances  (Å) Interatomic distances  (Å) 

Ru(1)-N(1) 

Ru(1)-N(2) 

Ru(1)-N(3) 

Ru(1)-N(4)  

Ru(1)-N(6)  

Ru(1)-O(1) 

2.075 (2) 

1.978 (2) 

2.066 (2) 

2.060 (2) 

1.960 (2) 

2.143 (2) 

Hydrogen bonds 

Donor-H...Acceptor D..A (Å)

Ru(1)-N(1) 

Ru(1)-N(2) 

Ru(1)-N(3) 

Ru(1)-N(4)  

Ru(1)-N(6)  

Ru(1)-Cl(1) 
  
 

2.060 (3) 

1.968 (3) 

2.074 (3) 

2.053 (4) 

1.981 (3) 

2.3962 (9) 

O(1)-H(101)…O(3) 

O(1)-H(102)…O(11) 

O(2)-H(103)...O(6) 

O(2)-H(104)...O(7) 

O(3)-H(105)…O(2) 

O(3)-H(106)…O(8) 

2.646(4) 

2.718(4) 

2.802(4) 

2.849(4) 

2.718(4) 

2.948(5) 

Ru(1)-N(1) 

Ru(1)-N(2) 

Ru(1)-N(3) 

Ru(1)-N(4) 

Ru(1)-N(6) 

Ru(1)-N(8) 

 
 

2.0710 (18) 

1.9833 (19) 

2.0762 (18) 

2.0512(19) 

1.9744(18) 

2.0537 (19) 

Angles (°) Angles (°) Angles (°) 

N(4)-Ru(1)-Cl(1) 

N(4)-Ru(1)-N(6) 

N(4)-Ru(1)-N(1) 

N(4)-Ru(1)-N(2) 

N(4)-Ru(1)-N(3) 

N(6)-Ru(1)-Cl(1) 

N(6)-Ru(1)-N(1) 

N(6)-Ru(1)-N(2) 

N(6)-Ru(1)-N(3) 

N(1)-Ru(1)-Cl(1) 

N(1)-Ru(1)-N(2) 

N(1)-Ru(1)-N(3) 

N(2)-Ru(1)-Cl(1) 

N(2)-Ru(1)-N(3) 

N(3)-Ru(1)-Cl(1)  

96.19 (9) 

76.17 (13) 

101.00 (14) 

179.00 (12) 

100.25 (14) 

172.28 (9) 

92.46 (14) 

102.84 (12) 

93.97 (14) 

90.13 (10) 

79.16 (13) 

158.71 (15) 

84.80 (9) 

79.62 (13) 

86.18 (10) 

N(4)-Ru(1)-O(1) 

N(4)-Ru(1)-N(6) 

N(4)-Ru(1)-N(1) 

N(4)-Ru(1)-N(2)  

N(4)-Ru(1)-N(3) 

N(6)-Ru(1)-O(1) 

N(6)-Ru(1)-N(1) 

N(6)-Ru(1)-N(2) 

N(6)-Ru(1)-N(3) 

N(1)-Ru(1)-O(1) 

N(1)-Ru(1)-N(2) 

N(1)-Ru(1)-N(3) 

N(2)-Ru(1)-O(1) 

N(2)-Ru(1)-N(3) 

N(3)-Ru(1)-O(1) 

95.93 (9) 

76.85 (10) 

101.55 (9) 

177.95 (9) 

99.81 (9) 

172.78 (9) 

94.21 (9) 

101.27 (9) 

93.12 (9) 

87.21 (9) 

79.33 (9) 

158.49(9) 

85.95 (9) 

79.42 (9) 

88.05 (9) 

N(4)-Ru(1)-N(8) 

N(4)-Ru(1)-N(6) 

N(4)-Ru(1)-N(1) 

N(4)-Ru(1)-N(2) 

N(4)-Ru(1)-N(3) 

N(6)-Ru(1)-N(8) 

N(6)-Ru(1)-N(1) 

N(6)-Ru(1)-N(2) 

N(6)-Ru(1)-N(3) 

N(1)-Ru(1)-N(8) 

N(1)-Ru(1)-N(2) 

N(1)-Ru(1)-N(3) 

N(2)-Ru(1)-N(8) 

N(2)-Ru(1)-N(3) 

N(3)-Ru(1)-N(8) 

95.06 (8) 

76.41 (8) 

97.57 (7) 

172.53 (7) 

104.05 (7) 

170.52 (8) 

96.53 (7) 

97.00 (8) 

89.28 (7) 

88.62 (7) 

79.49 (7) 

158.36 (8) 

91.75 (8) 

79.12 (7) 

88.80 (7) 

Torsion angles (°) Torsion angles (°) Torsion angles (°) 

N(6)-N(5)-C(20)-N(4) 

N(5)-N(6)-C(21)-C(22) 

-0.9 (5) 

-31.8 (5) 

N(6)-N(5)-C(20)-N(4) 

N(5)-N(6)-C(21)-C(22) 

-1.3 (4) 

-29.6 (4) 

N(6)-N(5)-C(20)-N(4) 

N(5)-N(6)-C(21)-C(22) 

-5.5 (3) 

-45.0 (3) 
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Fig.2.3. Packing of [Ru(apy)(tpy)Cl](ClO4) (1a). Hydrogen atoms are omitted for clarity. 

 

 

 
 

Fig.2.4. Hydrogen bonding in [Ru(apy)(tpy)(H2O)](ClO4)2·2 H2O (1b). 
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Fig.2.5. Packing of [Ru(apy)(tpy)(CH3CN)](ClO4)2 (1c). Hydrogen atoms are omitted for 

clarity. 

 
1H NMR characterization of the [Ru(apy)(tpy)L](ClO4)(2-n) compounds 

The 1H NMR spectra of compounds 1a, 1b and 1c were recorded at 298 K in 

DMSO-d6, DMSO-d6 and CD3CN, respectively. In all three cases four sets of peaks were 

observed in the aromatic region. The hydrogen atoms present in the coordinated pyridine 

ring will be from now on referred to as NA, were N is a number that indicates the position 

of the hydrogen in the ring. Analogously, the hydrogen atoms in the non-coordinated 

pyridine ring will be called NA´; the hydrogen atoms in the extreme pyridine rings in tpy, 

NT and finally the ones in the central pyridine ring in tpy, NT´ (see Fig.2.6 for the 

numbering). The aromatic region of the 1H-1H COSY and NOESY spectra of 1a in DMSO-

d6 at 298K are shown in Fig.2.7. Some assignments are indicated in the figure.  

The most deshielded peak in the aromatic region of the 1H NMR spectrum of 1a 

appears at 9.83 ppm and corresponds to the 6A atom. This proton appears at such a low 

field, because it is close in space to a chlorine atom and also attached to a carbon adjacent 

to a coordinated nitrogen atom. This last fact determines that the J coupling of this doublet 

is smaller than that of the one situated directly upfield, which can be assigned as 3A, as 

explained below. The 2D COSY connectivities result in the assignment of 5A, 4A and 3A, 

at 8.27 ppm, 8.45 ppm and 8.93 ppm, respectively. 
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Fig.2.6. [Ru(apy)(tpy)L](ClO4)(2-n) compounds. Proton numbering scheme for 1H NMR 

spectra. 

 

The 2D NOESY spectrum shows a clear crosspeak between the 6A signal and that 

appearing at 7.22 ppm. Since it is known from the X-ray structure that 6A and 6T are close 

to each other in space, the signal al 7.22 ppm is assigned to the 6T atom. Once 6T is known, 

5T, 4T and 3T can be assigned from the interactions shown in the COSY spectrum. 

Theoretically a NOESY peak should appear between 3T and 3T´, but this was not observed 

due to overlap. The set 6A´, 5A´, 4A´, 3A´ appears much more upfield than 6A, 5A, 4A, 

3A and can be assigned analogously. In this case, 6A´ is also more deshielded than 3A´. 

The 1H NMR spectra of 1b and 1c were assigned using the same methodology. The 

aromatic region of the 1H-1H COSY and NOESY spectra of 1b in DMSO-d6 are shown in 

Fig.2.8. Analogous 2D NMR spectra of 1c in CD3CN at 298K can be found in Fig.2.9. The 

peaks corresponding to 3T´ and 4T´ appear overlapping those of 3T and 5A, respectively, 

in the case of complexes 1a and 1b. This can be seen from the integral values, as well as the 

COSY interactions. In the spectrum of 1c the signals corresponding to 3T´, 4T´and 3T are 

overlapped, forming a multiplet of intensity four. 

The peak corresponding to 5A´ in complex 1b overlaps with 6T; 3A´and 5A´ are 

overlapping with each other in complex 1c, resulting in a multiplet of intensity two. The 

chemical shift values of all the above-mentioned protons are listed in Table 2.3. 

 

 

Ru
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N N
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Fig.2.7. Aromatic region of the 1H-1H COSY (above) and NOESY (below) spectra of 1a in 

DMSO-d6 at 298K, with some assignments. In the COSY spectrum, the dashed lines 

indicate the 6A-5A(-4A-3A) COSY cross peaks. The dotted lines show the 3T-4T(-5T-6T) 

COSY cross peaks. The solid lines indicate the 3A´-4A´(-5A´-6A´) COSY cross peaks. 

Arrows show the COSY cross peaks between 6A and 5A, 3T and 4T, 3A´and 4A´, 

respectively. In the NOESY spectrum, the 6A-6T NOE is signalled. 

 

6A 
6T 

6A-6T 

6A-5A 

6A 3T 5A 4T 6A´ 4A´ 6T 3A´ 

3T-4T 

3A´-4A´ 
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Fig.2.8. Aromatic region of the 1H-1H COSY (above) and NOESY (below) spectra of 1b in 

DMSO-d6 at 298K, with some assignments. In the COSY spectrum, the dashed lines show 

the 6A-5A(-4A-3A)  COSY cross peaks. The dotted lines show the 3T-4T(-5T-6T) COSY 

cross peaks. The solid lines indicate the3A´-4A´(-5A´-6A´)  COSY cross peaks. An arrow 

shows the COSY cross peak between 3T´ and 4T´. Substitution of H2O by dmso has 

occurred to some extent. 
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Fig.2.9. Aromatic region of the 1H-1H COSY (above) and NOESY (below) spectra of 1c in 

CD3CN at 298K, with some assignments. In the COSY spectrum, the dotted lines show the 

3T-4T(-5T-6T) COSY cross peaks. The solid lines indicate the 3A´-4A´(-5A´-6A´) COSY 

cross peaks. An arrow shows the COSY cross peak between 3T´ and 4T´. In the NOESY 

spectrum, the 6A-6T NOE is signalled. 
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Table 2.3. Proton chemical shift values (ppm) for the [Ru(apy)(tpy)L](ClO4)(2-n) complexes 

1a-1c. 1a and 1b were taken in DMSO-d6; 1c was taken in CD3CN, all of them at 298K. 

 

Complex 3A    4A    5A    6A    3A´    4A´    5A´    6A´    3T    4T    5T    6T    3T´    4T´    

 
1a 

 
1b 

 
1c 
 

 
8.93  8.45  8.27  9.83  7.12   7.72   7.31  7.82   8.63  8.10  7.41  7.22  8.63  8.27 
 
9.01  8.55  8.36  9.46  7.14   7.75   7.34  7.84   8.67  8.19  7.50  7.34  8.67  8.36 
 
8.93  8.50  8.18  9.67  7.27   7.70   7.27  7.80   8.38  8.06  7.36  7.36  8.38  8.38 
 

 

2.4. Concluding remarks 

A family of ruthenium polypyridyl compounds of formula [Ru(apy)(tpy)L](ClO4)(2-n) 

(apy = 2,2’-azobispyridine; tpy = 2,2’:6’,2”-terpyridine; L = Cl-, H2O, CH3CN) (1a-c) was 

successfully synthesized and characterized. The study of their crystal structures revealed 

trans azo-nitrogen coordination similar to that reported for 2-phenylazopyridine, and л-л 

stacking between the pyridine rings. 

The potential interest of these complexes is multiple. They have been designed to be 

similar to Ru(tpy)Cl3, a compound with anticancer activity, but with the disadvantage of a 

poor water-solubility. The [Ru(apy)(tpy)L](ClO4)(2-n) complexes show an improved 

solubility. Moreover the ligand apy is structurally related to azpy, which is present in 

recently reported cytotoxic ruthenium complexes.3, 4 Therefore it is of interest to find out 

how these compounds interact with DNA model bases and DNA, since the anticancer 

properties of a number of platinum and ruthenium complexes are generally accepted to be 

related to their binding to the DNA of cancerous cells.1 In a subsequent study calf-thymus 

DNA, as well as a series of both cisplatin-resistant and non-resistant cancerous cell lines 

will be treated with the [Ru(apy)(tpy)L](ClO4)(2-n) complexes to test factors such as the 

DNA binding and the in vitro anticancer activity of such compounds (see chapter 4 of this 

thesis). 
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3. Interaction between the DNA 
model base 9-ethylguanine and a group 
of ruthenium polypyridyl complexes: 
kinetics and conformational 
temperature dependence* 
 

 
The binding capability of three ruthenium polypyridyl compounds of structural formula 

[Ru(apy)(tpy)L](ClO4)(2-n) (1a-c; apy = 2,2’-azobispyridine; tpy = 2,2’:6’,2”-terpyridine; 

L = Cl-, H2O, CH3CN) to a fragment of DNA was studied. The interaction between each of 

these complexes and the DNA model base 9-ethylguanine (9-EtGua) was followed by 

means of 1H NMR studies. DFT calculations were carried out to explore the preferential 

ways of coordination between the ruthenium complexes and guanine. The ruthenium–9-

ethylguanine adduct formed was isolated and fully characterized using different techniques. 

A variable-temperature 1H NMR experiment was carried out, which showed that while the 

9-ethylguanine fragment was rotating fast at high temperature, a loss of symmetry was 

suffered by the model base adduct as the temperature was lowered, indicating restricted 

rotation of the guanine residue. 

 

 

 

                                                 
* This chapter is based on Corral, E.; Hotze, A.C.G.; Magistrato, A.; Reedijk, J., Inorg. Chem., 2007, 46, 
6715-6722. 
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3.1. Introduction 

As discussed in chapter 2, recent studies concerning some ruthenium polypyridyl 

complexes suggest that such compounds could be an alternative to the use of the classic 

platinum anticancer drugs.1 An example of this type of complexes is Ru(tpy)Cl3, which 

shows a remarkable in vitro cytotoxicity and exhibits antitumour activity.2 

α-[Ru(azpy)2Cl2] was reported to show a very high cytotoxicity, which was found to be 

even more pronounced than the cytotoxicity showed by cisplatin in most of the applied cell 

lines.3, 4 

The ultimate target of this kind of compounds is generally accepted to be DNA.5 

Ruthenium polypyridyl complexes bind to DNA in a variety of covalent and non-covalent 

modes. One of the most likely ways of interaction between the two molecules appears to be 

the coordination of the ruthenium centre to a DNA base.6-9 

Various groups have tried to correlate DNA binding of a potential metallodrug to its 

anticancer activity.10-20 The models vary from simple model bases, of which the preferred 

ones are the 9-alkylguanines, to oligonucleotides and larger DNA pieces. 

NMR spectroscopy can be an important tool that allows studying whether the metal 

complex reacts with the model base and, if this reaction occurs, how it develops in time, as 

well as the structure of the formed products. Further, the experimental conditions can be 

tuned to resemble physiological conditions as closely as possible. 

In the current investigation a series of complexes with formula 

[Ru(apy)(tpy)L](ClO4)(2-n) (1a-c; apy = 2,2’-azobispyridine; tpy = 2,2’:6’,2”-terpyridine; 

L = Cl-, H2O, CH3CN) was selected (see Fig.2.2). 

These complexes are very similar to each other,21 except for the relative lability of the 

ligand occupying the sixth coordination position. The labilities of the three chosen ligands 

should, in principle, be large enough to allow coordination of the complex to the model 

base, albeit their different sizes, shapes, charges and binding affinities suggest this process 

could happen following different kinetics in each case. Intercalation of the polypyridyl 

ligands between DNA base pairs could also be a possible way of interaction of these 

complexes with DNA. 

The reaction between each of the complexes and the model base 9-ethylguanine was 

studied. The 9-ethylguanine adduct that resulted in all cases (1d; see Fig.3.1) was isolated 

and completely characterized. Conformational studies were carried out by means of 

variable temperature and 2D NMR studies. Structural and electronic properties of the 

analogous guanine adduct were calculated by DFT calculations. 
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Fig.3.1. Schematic structure of [Ru(apy)(tpy)(9-EtGua)]2+ (1d). A few selected atoms have 

been labeled, for use in NMR assignments. The sub indexes “a” and “b” are only used in 

the low-temperature spectra. Under low-temperature conditions the protons in the external 

rings of tpy are not equivalent due to the slow rotation of 9-EtGua on the NMR time scale. 

As a consequence of this rotation, ring “a” becomes “b” and vice versa. 

 

3.2. Experimental 

Materials and reagents 

2,2´-azobispyridine (apy), Ru(tpy)Cl3, [Ru(apy)(tpy)Cl](ClO4), 

[Ru(apy)(tpy)(H2O)](ClO4)2·2H2O and [Ru(apy)(tpy)(CH3CN)](ClO4)2 were synthesized 

according to the literature methods.21-23 LiCl, NaClO4 (both Merck), NaClO, AgNO3 (both 

Acros), tpy (Aldrich), RuCl3·3H2O (Johnson & Matthey), and 9-EtGua (Sigma) were used 

as supplied. All other chemicals and solvents were reagent grade commercial materials and 

used as received. 

 

Physical measurements 

C, H and N determinations were performed on a Perkin Elmer 2400 Series II 

analyzer. Mass spectra were obtained with a Finnigan Aqa mass spectrometer equipped 

with an electrospray ionization source (ESI). FTIR spectra were obtained on a Perkin Elmer 

Paragon 1000 FTIR spectrophotometer equipped with a Golden Gate ATR device, using 

the diffuse reflectance technique (res. 4 cm-1). NMR spectra were recorded on a Bruker 

DPX-300 spectrometer operating at a frequency of 300 MHz, at a temperature of 310 K; on 

a Bruker Avance-400, at a frequency of 400 MHz and 328 K, and on a Bruker DRX-500 
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spectrometer operating at a frequency of 500 MHz, at a variable temperature. Chemical 

shifts were calibrated against tetramethylsilane (TMS). 

 

[Ru(apy)(tpy)(9-EtGua)]2+ titration 

The pH titrations were carried out at 310 K in D2O, by adjustments with DCl and 

NaOD without the use of any buffer. The pH values were not corrected for the H/D isotope 

effect. The pH meter was calibrated with Fisher certified buffer solutions of pH 4.00, 7.00 

and 10.00. 

 

Synthesis and characterization of [Ru(apy)(tpy)(9-EtGua)](ClO4)2 

[Ru(apy)(tpy)(H2O)](ClO4)2·2H2O (15 mg, 0.019 mmol) and 9-EtGua (4 mg, 0.022 

mmol) were vigorously refluxed in 5 mL EtOH abs for 24 hours. The mixture was left to 

cool down to r.t. The product was collected by filtration, washed with a small amount 

(about 2 mL) of ice-cold water and ether and dried in vacuo over silica (yield 82%). 

C32H28N12O9Cl2Ru (%) calcd C, 42.9; H, 3.1; N, 18.7. Found: C, 42.7; H, 2.7; N, 18.8. ESI-

MS: m/z 697.1 ([Ru(apy)(tpy)(9-EtGua - H)]+); 348.7 ([Ru(apy)(tpy)(9-EtGua)]2+). 1H 

NMR (300 MHz, D2O, 310 K): δ (ppm)= 9.21 (d, 1H, 5.20 Hz); 8.92 (d, 1H, 8.22 Hz); 8.48 

(t, 1H, 8.00 Hz); 8.37 (m, 3H); 8.20 (t, 1H, 8.06 Hz); 8.11 (m, 3H); 7.92 (d, 1H, 4.99 Hz); 

7.64 (m, 3H); 7.41 (dd, 2H, J1 = 8.70 Hz, J2 = 14.92 Hz); 7.30 (dd, 1H, J1 = 4.28 Hz, J2 = 

6.86 Hz); 6.81 (s, 1H); 6.52 (d, 1H, 7.98 Hz); 3.83 (dd, 2H,  J1 = 7.21 Hz, J2 = 14.47 Hz); 

1.07 (t, 3H, 7.27 Hz). 

 

Computational Details 

DFT calculations24 were performed using the program CPMD25 with a plane waves 

(PW) basis set up to an energy cut-off of 70 Ry. Core/valence interactions were described 

using norm conserving pseudopotentials of the Martins-Troullier type.26 Integration of the 

non-local parts of the pseudopotential was obtained via the Kleinman-Bylander scheme27 

for all of the atoms except ruthenium, for which a Gauss-Hermite numerical integration 

scheme was used. For ruthenium a semicore pseudopotential was adopted as described in 

literature28 that also incorporates scalar relativistic effects. The gradient corrected Becke 

exchange functional and the Perdew correlation functional (BP) were used.29, 30 Isolated 

system conditions31 were applied. Calculations were performed in an orthorhombic cell of 

edge a =30, b=29, c=36 a.u. Geometries have been relaxed by iterating geometry 

optimization runs (based on a conjugate gradient procedure) and molecular dynamics (MD) 



Interaction between 9-EtGua and a group of ruthenium polypyridyl complexes 
 

 69

runs at 0 K up to a gradient of 5.0 x10-5 a.u. A fictitious electron mass of 900 a.u., and a 

time step of 0.1205 fs were used in the MD runs. 

Four possible conformers of Ru(apy)(tpy)(Gua) were found, which differ in the 

orientation of the guanine above the plane of the ligands. 

 

3.3. Results and discussion 
1H NMR studies of the interaction between three ruthenium polypyridyl 

complexes and 9-ethylguanine 

The reaction between the ruthenium polypyridyl complex [Ru(apy)(tpy)(H2O)]2+ and 

the DNA model base 9-ethylguanine was studied by 1H NMR at a 1:2 ratio (see Fig.3.2). 

The conditions of the experiment were chosen to be as close as possible to physiological 

conditions, using D2O as a solvent and a temperature of 310 K. The reaction was studied 

for 24 hours, during which the pH was seen to remain neutral. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.3.2. 1H NMR study over 24 h of the reaction between the ruthenium polypyridyl 

complex [Ru(apy)(tpy)(H2O)]2+ (1b) and the DNA model base 9-ethylguanine in D2O at a 

1:2 ratio. Some selected peaks have been labeled with their assignments. 
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The signals appearing in this experiment could be unambiguously assigned by 

comparison with the 1H NMR spectrum of the isolated model base adduct 

[Ru(apy)(tpy)(9-EtGua)](ClO4)2 (1d), which had been synthesized and characterized by 

several techniques, vide infra. Although the peaks corresponding to 9-ethylguanine (CH3 at 

1.07 ppm, CH2 at 3.83 ppm and H8 at 6.81 ppm) were found to be shifted with respect to 

the free base, the peak of choice for the kinetic studies was that corresponding to the proton 

6A. This significantly deshielded proton presented a different chemical shift for each of the 

four complexes (1a-d), which allowed us to easily distinguish each species in solution as 

well as to measure the ratio between them. 

The model base 9-ethylguanine was observed to react with the ruthenium complex to 

give the adduct [Ru(apy)(tpy)(9-EtGua)]2+. This reaction occurred during the first 5 hours 

when a ruthenium compound–9-EtGua ratio of 1:2 was used. No further changes were 

observed. Despite the two-fold excess of 9-EtGua, only 20% of the ruthenium complex 

reacted to yield the adduct. 

The same experiment was carried out starting from the complex 

[Ru(apy)(tpy)(CH3CN)](ClO4)2 (1c; see Fig.3.3). In this case the acetonitrile complex was 

observed to hydrolyze to produce the cation [Ru(apy)(tpy)(H2O)]2+, besides reacting with 

9-ethylguanine as described above. After the 5 hours needed by the model base adduct to 

reach its maximum concentration in the experiment described above, 15% of the ruthenium 

could be found in the form of the 9-EtGua adduct in this second case. The 20% obtained in 

the first experiment was obtained in this second experiment after 8 hours. The reaction 

went on until the maximum fraction of adduct was reached. In a total of 18 hours from the 

start of the reaction, 30% of the ruthenium was found to be in the form of 

[Ru(apy)(tpy)(9-EtGua)]2+. 

The different kinetics followed by complexes 1b and 1c can be understood in terms 

of the geometry of the labile ligand. That is, while H2O is angular and forms hydrogen 

bonds, CH3CN is linear and it does not form any hydrogen bonds, offering less sterical 

hindrance for an attack by 9-EtGua. 

Despite the excess of 9-EtGua used for the experiment, most of the ruthenium 

compounds appears in the form of the aqua or the acetonitrile compound. This suggests the 

formation of a very slow equilibrium between 1d and each of the other involved Ru 

species.  
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Fig.3.3. 1H NMR study over 24 h of the reaction between the ruthenium polypyridyl 

complex [Ru(apy)(tpy)(CH3CN)]2+ (1c) and the DNA model base 9-ethylguanine in D2O at 

a 1:2 ratio. Some selected peaks have been labeled with their assignments. 

 

The reaction between [Ru(apy)(tpy)Cl]+ and 9-ethylguanine proceeded much slower 

than the other two Ru precursors described above. Due to the lower solubility of the 

ruthenium complex in D2O, the results obtained in this last case were only regarded in a 

qualitative way. 

The curve of the molar fraction of [Ru(apy)(tpy)(9-EtGua)]2+ (χE) vs. time (see 

Fig.3.4) was fitted with eq. (1). 

 

χE = k (1 - e–k´t) (1) 

 

Where k is the maximum value of the molar fraction of the ruthenium-model base 

adduct reached. The values of k and the rate constant k´ were calculated, as well as the half-

life of the ruthenium–model base adduct (1d) in solution (see Table 3.1). 
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Fig.3.4. Formation of the model base adduct from two ruthenium complexes (1b and 1c). 

Molar fraction of [Ru(apy)(tpy)(9-EtGua)]2+ (χE) vs. time. 

 
Table 3.1. Rate constants determined for the reaction between 9-ethylguanine and the 

ruthenium polypyridyl complexes [Ru(apy)(tpy)(H2O)]2+ (1b) and 

[Ru(apy)(tpy)(CH3CN)]2+
 (1c), respectively. 

 

Complex Rate constant k´ 
(hours-1) 

k half-life of 1d in 
solution (hours) 

 
1b 

 

 
0.92 ± 0.08 

 
0.207  ± 0.004 

 
0.8 ± 0.2 

 
1c 
 

 
0.139 ± 0.004 

 
0.290 ± 0.003 

 
5.0 ± 0.3 

 
DFT Calculations 

Four different models of the [Ru(apy)(tpy)(Gua)]2+ adduct were considered, differing 

in the orientation of the  N1-Ru-N7-C8 torsional angles (see Fig.3.5). Structures 1dI and 

1dII show an orientation of Gua in such a way that its keto group is wedged between the 

pyridine ring of apy and the pyridine ring of tpy. This orientation is analogous to that 

shown in the X-ray structure of the complex [RuCl(bpy)2(9-EtGua)]2+, where bpy is 

2,2´-bipyridine.12 In structure 1dIII and 1dIV, however, the keto group is positioned above 

the tpy plane. The four models 1dI-1dIV resulted almost isoenergetic, with relative energies 

≤ 15.9 kJ/mol. The accuracy of these results was validated by relaxing the geometry of 

[Ru(apy)(tpy)(H2O)]2+ (1b) and by comparing it with the corresponding X-ray structure. 

For 1b the largest deviation with respect to the X-ray structure21 occurs for the Ru-OH2 
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bond ∆d < 0.1Å (4% relative error), while the overall agreement is excellent for all other 

coordination bond and angles. 

 

Fig.3.5. Four models of the [Ru(apy)(tpy)(Gua)]2+ adduct obtained by the DFT 

calculations, with numbering of major atoms as referred to in Table 3.2. 

 

Structural parameters of the most stable isomers of [Ru(apy)(tpy)(H2O)]2+ and 

[Ru(apy)(tpy)(Gua)]2+ are given in Table 3.2 along with an analysis of the bond ionicity 

(BI).32 The four conformational isomers 1dI-1dIV present similar coordination geometries 

with a small difference in the Ru-N7 bond length. The Ru-N7 varied by ∆d=0.04 Å 

between the most and the less thermodynamically stable conformers 1dI and 1dIV. The 

presence of the keto group of the guanine between the pyridine ring of apy and the pyridine 

ring of tpy in 1dI, 1dII or above the tpy plane in 1dIII, 1dIV determines also a small 

rearrangement of the angles. 

The binding of the guanine determines a small rearrangement of the apical ligands: 

the Ru-N7 bond shortens by ∆d = 0.04 - 0.08 Å (∆BI = 0.06 - 0.08) for 1dI-1dIV, with 

respect to the Ru-OH2 bond of 1b (this might be related to the intrinsic smaller radius of N 

compared to O), while the Ru-N6 bond increases by ∆d = +0.05 - 0.04 Å (∆BI = 0.04). The 

coordination geometry corresponds to that of a slightly distorted octahedron that is imposed 

by the rigidity of the aromatic ring systems of the apy ligand. 

The bond energy of the aqua ligand is exothermic by -78.2 kJ/mol, while the binding 

of the guanine is exothermic by a maximum amount of -199.6 kJ/mol in 1dI and a 

minimum of -183.7 kJ/mol in 1dIV. The exchange reaction between water and the guanine 

results exothermic by -121.7 to -105.8  kJ/mol (see Table 3.2). 
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Table 3.2. Selected bond lengths (Å), angles (0) and bond ionicities (BI) of  

[Ru(apy)(tpy)(H2O)]2+ (1b) and [Ru(apy)(tpy)(Gua)]2+ (1dI-1dIV) compounds. Relative 

energies (kJ/mol) of the conformational isomers are given, along with binding energies of 

water and guanine and the enthalpy for the reaction of exchange between water and 

guanine ligand. 

 
Bonds 

 

X-
Ray 

(1b) 

Calculated 
Structure 

(1b) 

Bond 
Ionicity 

(1b) 

1dI BI 

1dI 

1dII BI 

1dII 

1dIII BI  

1dIII 

1dIV BI 

1dIV 

Ru-O,N7 2.15 2.25 0.82 2.17 0.75 2.19 0.75 2.21 0.74 2..21 0.76 

Ru-N1 2.07 2.09 0.73 2.11 0.71 2.09 0.72 2.09 0.73 2.08 0.73 

Ru-N2 1.98 1.98 0.71 1.98 0.76 1.98 0.75 1.98 0.70 1.98 0.70 

Ru-N3 2.07 2.08 0.73 2.08 0.73 2.09 0.71 2.09 0.73 2.09 0.74 

Ru-N4 2.06 2.07 0.74 2.07 0.75 2.08 0.73 2.08 0.74 2.09 0.75 

Ru-N6 1.96 1.97 0.68 2.02 0.72 2.01 0.72 2.01 0.72 2.01 0.72 

Angles            

N1-Ru-O,N7 87.2 87.0  89.5  85.4  85.9  93.6  

N2-Ru-O,N7 85.9 86.2  88.0  87.5  88.7  89.9  

N3-Ru-O,N7 88.0 88.3  91.0  91.9  96.4  88.9  

N4-Ru-O,N7 95.9 95.3  94.6  96.1  93.6  92.8  

N4-Ru-N6 76.8 77.2  76.2  76.7  76.4  76.2  

N6-Ru-N1 94.3 93.8  88.6  90.7  88.5  88.9  

N6-Ru-N2 101.3 101.5  100.5  100.1  101.6  101.0  

N6-Ru-N3 93.1 93.6  94.7  91.9  93.1  92.9  

N6-Ru-O,N7 172.8 172.2  169.7  172.1  167.2  169.1  

Torsional Angles            

N1-Ru-N7-C8    121.3  133.4  -44.6  -157.6  

Relative Energies   0.0 2.1 10.5 15.9 

∆H binding  

wat/Gua 

-78.2 -199.6 -197.5 -189.1 -183.7 

∆H exchange 

wat/Gua 

 -121.7 -119.7 -111.3 -105.8 
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Synthesis and characterization of [Ru(apy)(tpy)(9-EtGua)](ClO4)2. pH titration. 

Variable temperature and 2D NMR studies 

The 1H NMR chemical shift values for the model base adduct 

[Ru(apy)(tpy)(9-EtGua)]2+ (1d) in the aromatic region are presented in Table 3.3. 

 

Table 3.3. Proton chemical shift values (ppm) for the complexes 1b and 1d in the aromatic 

region, taken in D2O at 310 K. The proton labels are indicated in Fig.3.1. 

 
Complex 3A      4A      5A      6A      3A´      4A´      5A´      6A´      3T      4T      5T      6T      3T´      4T´     H8    

 
1b 

 
1d 

 

 
9.01    8.55    8.36    9.46    7.14     7.75     7.34    7.84     8.67    8.19    7.50    7.34    8.67   8.36    ----- 
 
8.92    8.48    8.11    9.21    6.52     7.64     7.30    7.92     8.37    8.11    7.41    7.64    8.37    8.20    6.81 
 

 
The coordination of 9-ethylguanine to ruthenium was proven to occur via the nitrogen 

N7 by a 1H NMR pH titration experiment. At low pH, the N7 atom in free 9-ethylguanine is 

protonated. When the pH is increased, site N7 is deprotonated, causing a shift in the H8 

peak toward higher field. The absence of this shift when the experiment was carried out 

with 1d was sufficient to prove that the N7 position of 9-ethylguanine was coordinated to 

ruthenium. 

When a 1H NMR spectrum of 1d was recorded at r.t., some of the peaks appeared 

broadened. This effect is of great interest in the study of the conformational behaviour of 

the adduct, as these broad resonances suggest hindered rotational behaviour of the 

coordinated 9-EtGua. 

Subsequently, a full variable-temperature NMR study was carried out. For this 

purpose, the solvent was chosen to be MeOH-d4, as its lower freezing point than that of 

water allowed a more extensive study. 1H NMR spectra of [Ru(apy)(tpy)(9-EtGua)]2+ were 

recorded in MeOH-d4 at the following temperatures: 213 K, 233 K, 253 K, 273 K, 298 K, 

308 K and 318 K (see Fig.3.6). 2D NMR spectra of the compound were recorded at 213 K 

(see Fig.3.7) and 328 K (see Fig.3.8). The peaks of the spectra at the highest and the lowest 

temperatures were assigned as indicated in Table 3.4. 
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Fig.3.6. 1H NMR spectra of [Ru(apy)(tpy)(9-EtGua)]2+ (1d) in MeOH-d4 at different 

temperatures in the range 213 K – 318 K, with labeled peak assignments. The peak 

corresponding to H8 was left out at 298, 308 and 318 K for clarity of the figure. 
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Fig.3.7. Aromatic region of the 1H-1H COSY (above) and NOESY (below) spectra of 1d in 

MeOH-d4 at 213 K. In the COSY spectrum, the dashed lines indicate the 3Ta-4Ta-5Ta-6Ta 

cross peaks. The dotted lines show the 3T´a-4T´-3T´b cross-peaks. The solid lines indicate 

the 3Tb-4Tb-5Tb-6Tb cross-peaks. Some of these COSY cross-peaks are labeled. In the 

NOESY spectrum, a few selected cross-peaks and exchange peaks are assigned. 
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Fig.3.8. Aromatic region of the 1H-1H COSY (above) and NOESY (below) spectra of 1d in 

MeOH-d4 at 328 K, with some assignments. In the COSY spectrum, the dashed lines 

indicate the 3T-4T-5T-6T cross-peaks. Some of these COSY cross-peaks are labeled. In the 

NOESY spectrum, a selected cross-peak is assigned. Decomposition of 1d to 1b has 

occurred to some extent. 
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Table 3.4. Proton chemical shift values (ppm) for the complex 1d in the aromatic region, 

taken in MeOH-d4 at 213 K and 328 K. The proton labels are indicated in Fig.3.1. 

 

 

T 3A    4A    5A    6A    3A´    4A´    5A´   6A´   4T´   H8 3Ta   4Ta   5Ta   6Ta   3T´a 
3Tb   4Tb   5Tb  6Tb   3T´b 
3T     4T     5T    6T     3T´ 

 
213 K 

 
328 K 
 

 
9.03  8.48  8.06  9.31  7.27   7.71   7.28  7.85  8.33  7.12 
 
8.95  8.46  8.04  9.25  7.16   7.66   7.24  7.80  8.26  6.80 
 

8.83  8.21   7.43  7.43  8.85 
8.25  7.94   7.32  7.80  8.43 

8.43  8.04   7.36  7.58  8.51 
 

 
The shifts of the 2,2´-azobispyridine protons, as well as that of the proton labeled 4T´ 

(see Fig.3.1) remain virtually unaltered by the temperature change. These peaks look sharp 

in the complete range of temperatures. If the 9-ethylguanine moiety is disregarded, all these 

protons lie on or close to a symmetry plane. The rest of the terpyridine protons give one set 

of sharp signals of intensity 2 at 318 K, which split into two sets of sharp signals of 

intensity 1 at 213 K. At intermediate temperatures, these terpyridine resonances appear 

broadened. 

If one considers the 9-ethylguanine moiety to be rotating fast on the NMR time scale 

at high temperature, its proximity to all terpyridine protons would be equivalent. This 

would have the same effect if a symmetry plane were considered, formed by the apy ligand, 

the Ru atom, the N atom of the central terpyridine ring and 4T´. The rest of the terpyridine 

protons would therefore be equivalent in pairs, and one set of five sharp peaks with 

intensity 2 would be obtained. As described above, this is what can be seen in the 

experiment at 318 K (see Fig.3.6). 

Upon decreasing the temperature, the protons lying on that “symmetry plane” shift 

slightly, while the rest of the terpyridine protons broaden first, and finally split into ten 

sharp peaks with intensity 1 at 213 K (see Fig.3.6). This effect is due to the 9-ethylguanine 

progressively slowing down its rotational movement, until it has reached a slow rotational 

movement on the NMR time scale. The complex has become now asymmetric and 

therefore each proton gives a different NMR resonance. 

Since the protons of the two external pyridine rings of terpyridine are  not equivalent 

at low temperature, the subindexes “a” and “b” were given to distinguish them. In the same 

way, 3T´a is closer to the “a” ring and 3T´b is closer to the “b” ring. 
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The NOE H8-3T´a and H8-3Ta cross-couplings (see Fig.3.7) prove that the 

9-ethylguanine proton H8 is situated between the “a” and the central terpyridine rings. No 

NOEs are observed between H8 and 3T´b or 3Tb. Moreover, a strong NOE cross coupling 

can be observed between 6A and 6Ta, while the cross-coupling between 6A and 6Tb is 

much weaker. This difference is due to the presence of the carbonyl group between 6A and 

6Tb. The proximity of the carbonyl group to 6Tb could also explain why the resonance of 

this proton appears 0.37 ppm downfield with respect to 6Ta. This conformation of a 9-

ethylguanine adduct is analogous to that shown in the crystal structure of the complex 

[RuCl(bpy)2(9-EtGua)]2+, where bpy is 2,2´-bipyridine.12 

It can be concluded from the DFT calculations that 4 conformations of the model 

base adduct are possible. If the torsion angle of the non-coordinated pyridine ring is 

neglected, only 2 conformations are possible. This is in agreement with the low-

temperature 1H NMR and 2D 1H–1H NMR spectra, which show only one of these possible 

pair of conformers present in a methanolic solution at 213 K, with the carbonyl group being 

wedged between the tpy and the apy ligands (structures 1dI and 1dII Fig.3.5). 

Exchange cross-peaks between all of the corresponding tpy resonances can be seen in 

the 1H–1H NOESY NMR spectrum at 213 K (see Fig.3.7). This effect suggests that the 

9-ethylguanine moiety is slowly rotating on the NMR time scale around the Ru–N7 bond. 

The two degenerate positions (structures 1dI and 1dII from Fig.3.5) are equivalent in the 

NMR, in such a way that the “a” ring becomes “b”, and vice versa, which explains the 

absence of H8-3Tb and H8-3T´b cross couplings. 

It has been suggested for analogous compounds33, 34 that the above-mentioned 

rotation of the 9-ethylguanine moiety occurs in such a way that the keto group passes over 

the tpy ligand, since a 900 rotation of the model base is hindered by the coordinated 

pyridine ring of, in the present case, 2,2´-azobispyridine. During this rotation the molecule 

passes through two energetic minima, corresponding to the conformers 1dIII and 1dIV, 

which lie at higher energies than 1dI and 1dII (Fig.3.5). The observation of both H8-6A and 

H8-6Ta NOE cross-couplings supports this theory. 

The model bases bound to ruthenium polypyridyl complexes, such as guanine and 

other smaller imidazole derivatives, were found to be: rotating fast on the NMR time scale, 

as observed in the cases of the smaller imidazole ligands,35-37 not rotating at all, in the cases 

in which the model base was stabilized by hydrogen bonds and electrostatic forces,37, 38 and 

slowly rotating, in the intermediate cases.33, 34, 36, 37 The whole rotation process can be 

followed by variable-temperature 1D and 2D NMR, as described in this study. 
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3.4. Conclusions 

The interaction between a group of ruthenium polypyridyl complexes and a DNA 

model base was studied. Three very similar complexes differing only in one coordination 

site, occupied by a leaving group, were chosen for the experiment. The three complexes 

were proven to bind to 9-ethylguanine, following different kinetics in each case. Both 

complexes [Ru(apy)(tpy)Cl]+ and [Ru(apy)(tpy)(CH3CN)]2+ were seen by 1H NMR to 

hydrolyze to give [Ru(apy)(tpy)(H2O)]2+, besides reacting with 9-ethylguanine. The 

reaction from the ruthenium starting complex to the ruthenium–model base adduct is faster 

in the case of [Ru(apy)(tpy)(CH3CN)]2+, and much slower in the case of the chlorido 

complex. 

The preferential geometry of the ruthenium–model base adduct formed in all cases 

was inferred from DFT calculations. This 9-ethylguanine complex shows a very interesting 

conformational behaviour, which has been studied in full detail by means of variable-

temperature 1H NMR and 2D COSY and NOESY NMR spectroscopy. At high 

temperatures, the 9-ethylguanine moiety is rotating fast at the NMR time scale, while at 

low temperatures, this model base shows a preferred orientation, with the keto group 

wedged between the terpyridine and the 2,2´-azobispyridine ligands. This behaviour is in 

agreement with the DFT calculations. 
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4. Ruthenium polypyridyl complexes 
and their modes of interaction with 
DNA: is there a correlation between 
these interactions and the antitumour 
activity of the compounds?* 
 
Different ways of interaction between a group of ruthenium polypyridyl complexes and 

DNA were studied using various spectroscopic techniques. A group of mononuclear 

compounds with structural formula [Ru(tpy)L1L2](2-n)+, where tpy = 2,2’:6’,2”-terpyridine, 

was selected. The ligand L1 is a bifunctional pyridyl ligand, with either two pyridine rings 

and an azo group (apy = 2,2’-azobispyridine), or one pyridine ring and an azo group (azpy 

= 2-phenylazopyridine) or one pyridine ring and an imino group (impy = 2-

phenylpyridinylmethylene amine). The ligand L2 is a monofunctional labile ligand (Cl-, 

H2O, CH3CN). All these complexes were found to be able to coordinate to the DNA model 

base 9-ethylguanine by 1H NMR and MS. The closely-related dinuclear compound 

[{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}]4+, which has no positions available for coordination, 

was studied for comparison. The interactions between each of four representative 

complexes and calf thymus DNA were studied by circular and linear dichroism. In order to 

explore a possible relation between DNA-binding ability and toxicity, all these compounds 

were screened for in vitro anticancer activity in a variety of cancer cell lines, showing in 

some cases an activity comparable to that of cisplatin. The design of the complexes was 

found helpful to formulate some structure-activity relationships. 

 

                                                 
* This chapter is based on Corral, E.; Hotze, A.C.G.; den Dulk, H.; Hannon, M.J.; Reedijk, J., to be submitted 
for publication in J. Biol. Inorg. Chem. 
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4.1. Introduction 

Since the appearance of cisplatin in the medical protocols for treatment of certain 

cancers in 19781 a great interest has grown in anticancer metallopharmaceuticals.2 The 

clinical drawbacks of cisplatin therapy became soon apparent.3 In order to design improved 

antitumour platinum drugs, research focused on understanding the mechanisms of action of 

cisplatin in the body and in the living cell. To date DNA is generally accepted to be the 

main target of cisplatin, which has been proven to bind most frequently to two adjacent 

guanine residues via their N7 position, thereby generating a kink in the DNA structure.4 

During the early years of platinum drugs anticancer research was based on a few rules 

known as Structure-Activity Relationships (SAR´s),5 which dictated the geometry that a 

platinum complex should have in order to display anticancer activity, as well as the lability 

of its ligands, amongst others. However, a number of compounds were later reported that, 

despite violating some of these rules, still display an anticancer activity.6-16  

A relatively new line of investigation focuses on ruthenium chemistry as an 

alternative metallopharmaceutical approach to chemotherapy,17, 18 and this ruthenium 

anticancer chemistry has already yielded many promising results. A few compounds have 

been described which exhibit an activity comparable to that of cisplatin, in some cases even 

better.19-24 In other cases the compound did not show any cytotoxicity in the parent tumor, 

yielding, however, an important activity against the metastases.25, 26 

Discussing the mechanism of action of these ruthenium complexes and describing a 

few SAR´s as a starting point to design improved ruthenium anticancer drugs is not 

straightforward. A large variety of drugs have been synthesized, with ligands such as 

amines, imines, dimethylsulfoxide, polypyridyl compounds, arenes, etc.17, 27, 28 These 

different types of ruthenium complexes might follow different mechanisms of action.29 

The present investigation focuses on ruthenium polypyridyl complexes with one free 

binding site. A series of Ru(II) complexes was selected, which contained the chelating 

polypyridyl ligand 2,2’:6’,2”-terpyridine (tpy), a bifunctional polypyridyl ligand and a 

labile monofunctional ligand.30-32 (see Fig.4.1). The mentioned bifunctional ligand was 

slightly modified by substituting a pyridine ring for a phenyl ring first and then an azo 

group by an imino group. These variations, together with the fact that several different 

labile ligands were used, allowed for the proposal of some SAR´s. On the other hand, the 

choice for tpy as a ligand was based on earlier data of Ru(tpy) complexes that display 

interesting anticancer properties.33 
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Fig.4.1. Schematic structure of [Ru(tpy)L1L2](2-n)+ compounds (1a-c, 1e and 1f). Proton 

numbering scheme for use in 1H NMR spectra. 

 

For comparison, a symmetric, homodinuclear compound has been synthesized (1g) 

(see Fig.4.2) which, unlike complexes 1a-c, 1e and 1f, has no free positions available for 

coordination. This compound may still interact with DNA through a non-coordinative 

mechanism. The interactions of all these complexes with calf thymus DNA were studied by 

circular and linear dichroism. 
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Fig.4.2. Schematic structure of the dinuclear compound  [{Ru(apy)(tpy)}2 

{µ-H2N(CH2)6NH2}]4+ (1g). Proton numbering scheme for use in 1H NMR spectra. 

 

Cytotoxicity tests were performed with the present ruthenium complexes against a 

series of cancerous cell lines. The new complexes show a significant cytotoxicity in several 

cell lines and, more interestingly, the results obtained suggest that the mechanism of action 

of this kind of ruthenium complexes may be quite different from that of the classical 

platinum anticancer agents. 
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4.2. Experimental 

Materials and reagents 

2,2´-azobispyridine (apy), Ru(tpy)Cl3, [Ru(apy)(tpy)Cl](ClO4), 

[Ru(apy)(tpy)(H2O)](ClO4)2·2H2O, [Ru(apy)(tpy)(CH3CN)](ClO4)2, 

[Ru(azpy)(tpy)Cl]Cl·5H2O and [Ru(impy)(tpy)Cl](ClO4) were synthesised according to the 

literature methods.30-32, 34, 35 LiCl, NaClO4 (both Merck), NaClO, AgNO3 (both Acros), tpy 

(Aldrich), RuCl3·3H2O (Johnson & Matthey), 9-EtGua (Sigma) and H2N(CH2)6NH2 (Fluka) 

were used as supplied. Ultra pure water (18.2 ΩM; Aldrich) was used for the MS, CD and 

LD experiments. All other chemicals and solvents were reagent grade, commercial 

materials and used as received. 

Calf-thymus DNA (ct-DNA) was purchased from Sigma Aldrich and used without 

further purification. The solid DNA salt was dissolved in ultra pure water (18.2 ΩM; 

Aldrich) and left at 278 K for 24 hours to fully hydrate. The resulting stock DNA solution 

was kept frozen and it was thawed when needed. The concentration of the DNA stock 

solution was determined spectroscopically, using the known molar extinction coefficient of 

ct-DNA at 258 nm: ε258 = 6600 molar base−1 
 cm−1 dm3.36 

A 100 mM stock solution of sodium cacodylate buffer (pH 6.8) was prepared, as well 

as a 1M sodium chloride stock solution, using in both cases ultra pure water (18.2 ΩM; 

Aldrich). 

 

Physical measurements 

C, H and N determinations were performed on a Perkin Elmer 2400 Series II analyzer. 

Mass spectra were obtained with a Finnigan Aqa mass spectrometer equipped with an 

electrospray ionization source (ESI). NMR spectra were recorded on a Bruker DPX-300 

spectrometer operating at a frequency of 300 MHz, at a temperature of 310 K, unless 

otherwise stated. Chemical shifts were calibrated against tetramethylsilane (TMS). CD spectra 

were collected in 2 mm path-length quartz cuvettes using a Jasco J-810 spectropolarimeter. 

Flow LD spectra were collected using a flow Couette cell in the above-mentioned 

spectropolarimeter. All CD and LD spectra were recorded at room temperature. 
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Synthesis and characterization of [{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}](ClO4)4 

[Ru(apy)(tpy)(H2O)](ClO4)2·2H2O (26 mg, 0.034 mmol) and H2N(CH2)6NH2 (2 mg, 

0.016 mmol) were dissolved in 12 mL EtOH abs:MeOH 5:1. The solution was vigorously 

refluxed for 15 hours. The pH remained constant around 7. The product was collected by 

filtration, washed with little ethanol and diethyl ether and dried in vacuo over silica. Yield: 

20 mg (76%). Anal. Calc. for C56H54N16O16Cl4Ru2: C, 43.4; H, 3.5; N, 14.4%. Found: C, 

43.8; H, 3.8; N, 14.5%. m/z (ESI-MS) 634.1 ([{Ru(apy)(tpy)}{H2N(CH2)6NH2}]+); 576.1 

([{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}]2+); 317.3 ([{Ru(apy)(tpy)}{H2N(CH2)6NH2}]2+). 1H 

NMR (DMSO-d6, 298 K): δ (ppm): 9.34 (2H, d, 4.81 Hz); 9.00 (2H, d, 8.05 Hz); 8.62 (6H, 

m); 8.52 (2H, t, 6.84 Hz); 8.30 (4H, m); 8.14 (4H, t, 7.24 Hz); 7.78 (2H, d, 4.83 Hz); 7.73 

(2H, t, 7.76 Hz); 7.46 (4H, t, 6.12 Hz); 7.30 (6H, m); 6.98 (2H, d, 7.98 Hz); 4.92 (4H, m); 

1.64 (4H, m); 1.10 (4H, m); 0.66 (4H, m). 

 

Interaction between ruthenium polypyridyl complexes and 9-ethylguanine 

Aqueous solutions with a concentration 1.3 mM of the ruthenium compound and 2.6 

mM of the DNA model base 9-ethylguanine were incubated at 310 K for 24 hours. 

Subsequently a mass spectrum was recorded of each of the mixtures. m/z (ESI-MS) of the 

mixture 1a + 9-EtGua: 618.1 [Ru(apy)(tpy)](ClO4)+; 554.2 ([Ru(apy)(tpy)Cl]+); 536.3 

([Ru(apy)(tpy)(H2O)]+); 348.9 ([Ru(apy)(tpy)(9-EtGua)]2+). m/z (ESI-MS) of the mixture 

1b + 9-EtGua: 696.7 ([Ru(apy)(tpy)(9-EtGua)]+); 617.6 [Ru(apy)(tpy)](ClO4)+; 535.7 

([Ru(apy)(tpy)(H2O)]+); 517.7 ([Ru(apy)(tpy)]+); 348.9 ([Ru(apy)(tpy)(9-EtGua)]2+). m/z 

(ESI-MS) of the mixture 1e + 9-EtGua:   695.8 ([Ru(azpy)(tpy)(9-EtGua)]+); 552.7 

([Ru(azpy)(tpy)Cl)]+); 534.8 ([Ru(azpy)(tpy)(H2O)]+); 348.3 ([Ru(azpy)(tpy)(9-EtGua)]2+). 

m/z (ESI-MS) of the mixture 1f + 9-EtGua: 695 ([Ru(impy)(tpy)(9-EtGua)]+); 616 

[Ru(impy)(tpy)](ClO4)+; 552 ([Ru(impy)(tpy)Cl]+); 534 ([Ru(impy)(tpy)(H2O)]+); 516 

([Ru(impy)(tpy)]+); 348 ([Ru(impy)(tpy)(9-EtGua)]2+). 

Each ruthenium compound was dissolved in 600 µL D2O and the appropriate amount 

of 9-ethylguanine was added to prepare solutions with a concentration 1.3 mM of the 

ruthenium compound and 2.6 mM of 9-ethylguanine. The interaction between each 

ruthenium complex, H2O and 9-EtGua was followed by 1H NMR for 24 hours at 310 K. 
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Interaction between ruthenium polypyridyl complexes and ct-DNA 

Fresh samples were made with constant concentrations of DNA (300 µM in ultrapure 

water for the experiments involving the complexes 1b, 1e and 1f and 100 µM for the 

experiment with complex 1g), NaCl (20 mM) and sodium cacodylate buffer (1 mM), and a 

variation of the metal concentration using a stock solution (500 µM in ultrapure water of 

the complexes 1b, 1e and 1f and 300 µM of the complex 1g). The ratio of DNA: metal 

complex was decreased from 50:1 to 1.5:1 in the various samples. The CD spectra of these 

solutions were measured after 24 hours of incubation at 310 K. The solutions prepared with 

complex 1g were also measured fresh. 

For the LD measurements, a 300 µM solution of DNA in ultrapure water containing 

NaCl (20 mM) and sodium cacodylate buffer (1 mM) was prepared. This solution was 

titrated with two stock solutions. The first solution contained each of the complexes 1b, 1e 

and 1f in a 1000 µM concentration in ultrapure water or complex 1g in a 500 µM 

concentration. The second stock solution contained DNA 600 µM, NaCl (40 mM) and 

sodium cacodylate buffer (2 mM). The DNA, NaCl and sodium cacodylate concentrations 

were kept constant, while the ratio of DNA:metal complex was decreased from 20:1 to 3:1 

for complexes 1b, 1e and 1f or from 40:1 to 6:1 for complex 1g. 

 

In vitro cytotoxicity assays 

The cytotoxicity of compounds 1a-c and 1e-g was tested in vitro in a series of 

selected cell lines. WIDR (human colon cancer), IGROV (human ovarian cancer), M19 

MEL (human melanoma), A498 (human renal cancer) and H226 (non-small human cell 

lung cancer) belong to the currently used anti-cancer screening panel of the National 

Cancer Institute, USA.37 The human breast cancer cell lines MCF7 and EVSA-T are 

estrogen receptor (ER)+/progesterone receptor (PgR)+ and (ER)-/(PgR)-, respectively. 

Prior to the experiments a mycoplasma test was carried out on all cell lines and found to be 

negative. All cell lines were maintained in a continuous logarithmic culture in RPMI 1640 

medium with Hepes and phenol red. The medium was supplemented with 10% fetal calf 

serum, penicillin 100 units/mL and streptomycin 100 µg/mL. The cells were mildly 

trypsinized for passage and for use in the experiments. Cytotoxicity was estimated by the 

microculture sulforhodamine B (SRB) test.38 

A2780 (human ovarian carcinoma) and A2780R cisplatin-resistant cell lines were 

maintained in continuous logarithmic culture in Dulbecco´s modified Eagle´s Medium 
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(DMEM) (Gibco BRLTM, Invitrogen Corporation, The Netherlands) supplemented with 

10% fetal calf serum (Hyclone, Perbio Science, The Netherlands), PenicillinG Sodium (100 

units/ml Duchefa Biochemie BV, The Netherlands), streptomycin (100 µg/ml, Duchefa 

Biochemie BV, The Netherlands) and Glutammax 100x (Gibco BRLTM, NL) in a 

humidified 7% CO2, 93% air atmosphere at 310 K. Cisplatin sensitive and resistant mouse 

leukemia L1210/0 and L1210/2 cells were grown under the above-mentioned conditions. 

The cells were harvested from logarithmic growing (confluent) monolayers. Cell viability 

was determined by the trypan-blue dye exclusion test. 

For the cytotoxicity evaluation in the cell lines WIDR, IGROV, M19 MEL, A498, 

H226, MCF7 and EVSA-T, the test and reference compounds were dissolved to a 

concentration of 250.000 µg/mL in full medium, by 20 fold dilution of a stock solution 

which contained 1 mg compound/200 µL DMSO. 150 µL of trypsinized tumor cells (1500-

2000 cells/well) were plated in 96-wells flatbottom microtiter plates (Falcon 3072, BD). 

The plates were preincubated 48 hours at 310 K, 5.5 % CO2. A three-fold dilution sequence 

of ten steps was then made in full medium, starting with the 250.000 µg/mL stock solution. 

Every dilution was used in quadruplicate by adding 50 µL to a column of four wells, 

resulting in a highest concentration of 62.500 mg/mL. The plates were incubated for 5 days, 

after which the cells were fixed with 10% trichloroacetic acid in PBS and placed at 277 K 

for one hour. After three washings with water the cells were stained for at least 15 minutes 

with 0.4% SRB dissolved in 1% acetic acid. The cells were washed with 1% acetic acid to 

remove the unbound stain. The plates were air-dried and the bound stain was dissolved in 

150 µL of 10 mM Tris-base. The absorbance was read at 540 nm using an automated 

microplate reader (Labsystems Multiskan MS). Data were used for construction of 

concentration-response curves and determination of the IC50 value by use of Deltasoft 3 

software. 

In the case of the cell lines A2780, A2780R, L1210/0 and L1210/2, 2000 cells/well 

were seeded in 100 µl of complete medium in 96-multiwell flatbottom microtiter plates 

(Sarstedt). The plates were incubated at 37 ºC, 7% CO2 for 48 h prior to drug testing to 

allow cell adhesion. The stock solutions of all tested compounds were freshly prepared and 

directly used for the dilutions. As both 1a and α-[Ru(azpy)2Cl2] are poorly water soluble 

and for the sake of comparison with the water-soluble compounds, a DMSO/H2O stock 

solution was chosen for all the tested compounds, except compound 1g. The latter was 

dissolved directly in water, to avoid decomposition due to stability problems. The dilutions 
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(8 step dilutions) were prepared in complete medium. The range of the final tested 

concentrations was 0.019-0.012-0.0015-0.0009-0.0005-0.0001-0.00005-0.00001 mM in the 

case of α-[Ru(azpy)2Cl2] and 0.17-0.11-0.06-0.04-0.01-0.003-0.001-0.0003 mM for the 

other compounds. Each concentration was tested in quadruplicate, using 45 µl/well added 

to the 100 µl of complete medium, plus 50 µl of extra complete medium. In the control 

group only 95 µl of complete medium were added containing the corresponding 

percentages of H2O and DMSO. The maximum content of DMSO in the wells was 0.96%. 

Parallel experiments showed that no difference in cell proliferation was observed in control 

groups with or without 1% DMSO. The plates were incubated for 48 h and the evaluation 

of cell proliferation was performed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

2H-tetrazolium bromide] colorimetric assay.39-41 50 µl MTT solution (5 mg/ml in PBS, 

Sigma Chemical Co.) were added to each well and incubated for 3 hours. Formazan crystals 

were dissolved in 100 µl DMSO. Optical density was measured using a microplate reader 

(Bio Rad) at 590 nm. IC50 values were obtained by GraphPad Prism software, version 3.02, 

2000. 

 

4.3. Results and discussion 

Synthesis and characterization of [{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}](ClO4)4 

The anticancer activity of compounds analogous to 1a-c, 1e and 1f is often 

hypothesized to be related to their ability to bind to DNA model bases. In order to prove 

this relation, an additional new compound was synthesized. 

[{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}](ClO4)4 (1g) (see Fig.4.2) was found to be pure by 1H 

NMR and EA and fully characterized by 2D NMR and ESI Mass spectroscopy. The latter 

showed the intact dinuclear species and also the mononuclear fragment originating from 

fragmentation by the electrospray method. The 1H NMR spectrum of 1g was recorded in 

DMSO-d6 because, although its solubility in water was good enough for cell testing, it was 

not suitable for 1H NMR spectroscopy. The peak assignment was carried out with the help 

of 2D NMR spectra (see Table 4.1). The stability of 1g in water was studied by dissolving 

the compound in this solvent, incubating the solution at 310 K for two weeks, evaporating 

the water and subsequently recording a 1H NMR in DMSO-d6. The compound was proven 

to remain unchanged after this time. 
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Table 4.1. Proton chemical shift values (ppm) for the complex 

[{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}](ClO4)4 (1g) taken in DMSO-d6 at 298 K. The proton 

labels are indicated in Fig.4.2. 
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Interaction between ruthenium polypyridyl complexes and 9-ethylguanine 

A previous 1H NMR study of the interaction between each of the complexes 1a-c 

([Ru(apy)(tpy)L2](2-n)+, where L = Cl-, H2O and CH3CN, respectively) and 9-EtGua42 was 

described in chapter 3. This study proved that these three complexes are capable of binding 

to the DNA model base in water at 310 K and pH = 7, albeit to a limited extent and with 

different kinetics in each case. Carrying out a kinetic study of these reactions was only 

possible for complexes 1b and 1c, while the low water-solubility of complex 1a allowed 

only for qualitative observations to be made. 

This previous study analyzed the influence of the respective leaving ligands (Cl-, H2O 

and CH3CN) on the reaction rate of each complex with 9-ethylguanine. In the present study 

a possible relationship between structure and activity is sought. For this purpose, a whole 

series of related compounds, which have different didentate ligands, as well as a dinuclear 

analogue, are taken into account. 

The above-mentioned 1H NMR study was carried out involving 9-ethylguanine and 

the complexes [Ru(azpy)(tpy)Cl]+ (1e) and [Ru(impy)(tpy)Cl]+ (1f), respectively. The 

hydrolysis of these complexes in the same experimental conditions and absence of the DNA 

model base was also followed by 1H NMR. Comparison of the spectra indicated that both 

compounds 1e and 1f undergo two reactions, as it had previously been reported for the case 

of 1c.42 The major reaction is hydrolysis. Each complex also reacts with 9-EtGua to form a 

ruthenium-model base adduct. The reaction between 1e and 9-EtGua is estimated to reach 

its maximum in about 2 hours, with an approximate conversion of 25%, while the complex 

1f yields as much as a 60% conversion, in a longer reaction that proceeds for about 9 hours 

(see Fig.4.3 and Table 4.2). The maximum conversions observed in the cases of complexes 

1b and 1c were reported to be 20% in 5 hours and 30% in 18 hours, respectively.42 
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Fig.4.3. 1H NMR studies of the reactions 1e + 9-EtGua (left) and 1f + 9-EtGua in D2O 

(right). The spectra on the left show the complex 1e in D2O at time = 0 (below), the 

complex 1e in D2O at time = 24 h (centre) and the mixture 1e + 9-EtGua at time = 24 h 

(above). The spectra on the right show the  mixture 1f + 9-EtGua at time = 30 min (below) 

and at time = 24 h (above). The peaks assigned to the proton 6A in each complex are 

labeled, as well as the peaks assigned to the proton H8 of 9-EtGua, both in the free ligand 

and in the Ru-model base adduct. 

 

Table 4.2. Chemical shifts of the peaks assigned to the protons 6A and H8, indicative of the 

formation of the corresponding ruthenium-model base adducts. 

 

Complex 6A(ppm) H8(ppm) 

Free 9-EtGua --- 7.81 

1b (= hydrated 1a , 1c) 9.46 --- 

1a-c–model base adduct (1d) 9.21 6.81 

1e 9.71 --- 

Hydrated 1e 9.40 --- 

1e-model base adduct 9.15 6.76 

1f 9.90 --- 

Hydrated 1f 9.57 --- 

1f-model base adduct 9.19 6.62 

 

6A(1e) 

6A(1e-model-base adduct) 

6A(hydrated 1e) 

H8(1e-model-base adduct)
H8(free 9-EtGua) 

6A(1f)

6A(hydrated 1f)
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To confirm these results, a mixture of each of the chlorido complexes 1a, 1d and 1e 

with 9-EtGua was incubated for 24 h at 310 K, and subsequently a mass spectrum was 

measured for each mixture. The spectrum of the mixture 1a + 9-EtGua showed a peak at 

348.9, which was assigned to the species [Ru(apy)(tpy)(9-EtGua)]2+. Two peaks appearing 

at m/z 695.8 and 348.3 in the spectrum of 1e + 9-EtGua were assigned to the species 

[Ru(azpy)(tpy)(9-EtGua)]+ and [Ru(azpy)(tpy)(9-EtGua)]2+, respectively. The mass 

spectrum recorded from the mixture 1f + 9-EtGua showed two peaks at m/z 695 

([Ru(impy)(tpy)(9-EtGua)]+) and 348 ([Ru(impy)(tpy)(9-EtGua)]2+). The conclusion 

extracted from these experiments is that the ruthenium complexes 1a-c, 1e and 1f have the 

ability to bind to the DNA model base 9-EtGua under the experimental conditions used 

here. 

 

Interaction between ruthenium polypyridyl complexes and ct-DNA 

Circular dichroism (CD) is a well-established analytical tool for the study of 

conformational changes in chiral systems.43, 44 A widely-studied example is DNA. Any 

changes in the nucleic base stacking that result in modifications in the DNA secondary 

structure are clearly reflected in the CD spectra. 

Non-covalent (supramolecular) recognition of DNA by natural, as well as by 

synthetic agents occurs via several different mechanisms, which have been recently 

reviewed.45 

As early as 1979, Lippard and co-workers were interested in the possible non-

covalent interactions established between several platinum(II) compounds and DNA, 

particularly by intercalation.46 

Since the mechanism of action of platinum anticancer complexes was generally 

accepted to involve an interaction with DNA, circular dichroism has often been used, in 

combination with other techniques, to study it.47, 48 Subsequently, this method was also 

applied to some ruthenium complexes that had been synthesized with the aim of providing 

an alternative to cisplatin-based anticancer therapy.23, 49-51 

In the present study, different concentrations of the ruthenium complexes 1b, 1e, 1f 

and 1g were mixed with ct-DNA and left to incubate for 24 hours at 310 K. Complex 1b is 

the aqua analogue of complex 1a; the former was preferred for this study because of its 

much higher water solubility. The CD spectra of all these samples were then measured (see 

Fig.4.4). The CD signal of pure ct-DNA is represented by solid lines (Fig.4.4) and it is 
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characteristic of B-DNA. A first glance at these curves reveals that the bands do not change 

their positive and negative sign, respectively, by addition of any of the ruthenium 

compounds under study. This observation indicates that the B-DNA structure is retained in 

all the studied cases. 

Each of these ruthenium complexes seems to exert a slightly different interaction with 

DNA, as deduced from the CD signals. Both complexes 1b and 1f cause the negative band 

centred at 244 nm to diminish its intensity upon increasing the ruthenium concentration 

from a DNA base pairs–ruthenium complex 20:1 to 1.5:1. No effect is observed in the 

positive band at 275 nm. This behaviour is analogous to that reported for the 

monofunctional organometallic Ru(II) complex [(η6-p-cymene)Ru(en)(Cl)]+.52 

A relatively broad, positive band appears at 328 nm by addition of complex 1f, which 

was not observed in any other of the measured CDs. This kind of bands has been related to 

either intercalation or groove binding.52 These two complexes (1b and 1f) appear to cause 

conformational changes while not significantly altering the length of the DNA chain.49, 50, 53 

Low amounts of complex 1e (ratios 20:1 to 10:1) induce significant intensity 

increases of both positive and negative CD bands of ct-DNA, in a similar way to some 

reported platinum(II) complexes54 and to the potentially bifunctional Ru(III) complex cis-

K[Ru(eddp)Cl2] (eddp = ethylenediamine-N,N´-di-3-propionate).53 This observation could 

indicate a coordinative reaction between ruthenium and DNA. Further addition of 1e (ratios 

10:1 to 1.5) induces a notable decrease of both positive and negative CD bands due to 

appreciable conformational alterations of DNA. From ratio 2.5:1 to ratio 1.5:1, addition of 

ruthenium compound induces increase of the positive band, while keeping the decreasing 

tendency of the negative band. 

The most dramatic effect was observed upon addition of the dinuclear complex 1g to 

ct-DNA. The most concentrated samples showed precipitation. The remaining samples 

were measured to observe an important change in the CD signals. Both bands at 244 nm 

and 275 nm showed hyperchromic shifts; the negative band also showed a 2 nm 

bathochromic shift. 

Since precipitation had not occurred in the fresh samples of complex 1g with ct-DNA, 

even in the most concentrated ones, the CD spectra of the freshly-prepared solutions were 

also measured (see Fig.4.4). In this graph, upon increasing the ruthenium concentration, the 

positive band shows a hyperchromic shift first, followed by a hypochromic shift. At the 

same time, an important bathochromic shift (10 nm) is observed. The negative band 
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experiences a hyperchromic shift first, then the inverse tendency and finally the intensity of 

the band decreases once more. A 5 nm bathochromic shift is also observed. 

The variations observed in the intensity of the CD bands of the freshly-prepared 1g + 

ct-DNA solutions suggest a similar behaviour to 1e, vide supra. Non-covalent interactions 

between the ruthenium complex and DNA would thus be followed by alterations of the 

secondary structure of the latter. In the case of the dinuclear complex 1g, these alterations 

are so important that precipitation of metal-DNA adducts occurs at high ruthenium 

concentrations. These observations remind us of the properties reported for some metallo-

supramolecular cylinders that recognize the DNA major groove, inducing DNA coiling, as 

can be seen in AFM images.55, 56 Moreover, the dinuclear complex 1g is presumably more 

hydrophobic than its mononuclear parent compound and analogues. The hydrophobic 

environment within the major groove should therefore favour the interactions of this 

species with DNA.  
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Fig.4.4. Above, circular dichroism spectra of ct-DNA 300 µM incubated for 24h with 

increasing concentrations of the mononuclear ruthenium complexes 1b (left), 1e (centre) 

and 1f (right). The DNA base pairs to ruthenium complex ratios are 20:1, 10:1, 5:1, 3:1, 

2.5:1, 2:1 and 1.5:1 Below, CD spectra of ct-DNA 100 µM with increasing concentrations 

of the dinuclear complex 1g, from freshly-prepared samples (left) and from samples 

incubated for 24h (right). The DNA base pairs to ruthenium complex ratios are 50:1, 10:1, 

5:1, 3.5:1, 2.5:1, and 2:1; the last two ratios were eliminated in the incubated sample 

because of precipitation. The solid line represents the ct-DNA; some of the curves are 

labelled with the base pairs to ruthenium complex ratios. The arrows in bold indicate a 

variation of the intensity of the band upon addition of ruthenium. 

 

 

-6

-4

-2

0

2

4

6

220 240 260 280 300 320
-6

-4

-2

0

2

4

6

220 240 260 280 300 320
-6

-4

-2

0

2

4

6

220 240 260 280 300 320 340

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

220 240 260 280 300 320
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

220 240 260 280 300 320

CD 

λ/nm λ/nm

λ/nm λ/nm λ/nm 

20:1 
10:1 

1.5:1 
5:1 

10:1 
20:1 
5:1 

1.5:1 

50:1 

5:1 

2.5:1 
2:1 

2:1 
3.5:1 

5:1 
10:1 

CD 



Ruthenium polypyridyl complexes and their modes of interaction with DNA 
 

 

 97

Linear dichroism (LD) is defined as the difference in absorption of light polarized 

parallel and perpendicular to an orientation axis.43, 55 The DNA that is present in a sample 

solution located in the circular space between an outer (static) and an inner (rotating) quartz 

cylinders can be oriented by the viscous drag created by the rotation of one cylinder inside 

the other, an effect that is most efficiently achieved in a Couette cell.57 This orientation 

along the DNA helix axis can be studied by LD. Since the base pairs are oriented 

perpendicular to the mentioned helix axis, a negative LD signal appears for B-DNA (see 

Fig.4.5, band at 258 nm). 

Metallo-intercalators produce, by interaction with DNA, a significant change in this 

signal. For this reason LD has been used in the study of non-covalent DNA recognition by 

platinum(II) and copper(II) complexes58, 59 and, more recently, by ruthenium antitumour 

complexes.52, 60 This technique is typically applied in combination with other spectroscopic 

methods, especially circular dichroism. 

The LD signal at 258 nm remained negative through all the herein described 

experiments, indicating that the DNA retained its B conformation. This DNA band 

becomes, however, less negative upon addition of the corresponding ruthenium complex in 

all the studied cases, indicating a reduction in the DNA orientation. This behaviour, 

characteristic of DNA bending or coiling, is much more pronounced in the experiment 

carried out with the dinuclear compound 1g. In a similar way, this negative band has been 

reported to diminish its intensity by addition of complexes such as the difunctional Pt(II) 

complexes reported by Nordén,59 or the monofunctional organometallic Ru(II) complexes 

reported by Sadler and Brabec.52 However, the intensity decrease produced in this negative 

LD band by metallo-cylinders like the above-mentioned iron cylinder,55 or the more 

recently-reported ruthenium cylinder,61 is much more dramatic. 

A positive induced LD band at around 330 nm can be observed in the LD series 

corresponding to complexes 1b and 1g. This band appears also in the case of 1e, although 

much smaller, and it is absent in the 1f-DNA LD spectra. The occurrence of this induced 

LD signal may suggest that the complex is orientated more parallel to the DNA helical axis 

than to the base pairs. The binding mode displayed by the complexes 1b, 1e and 1g would 

thus be non-intercalative. In the same way, the complex 1f would display no specific 

binding orientation with respect to ct-DNA. 
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Fig.4.5. Linear dichroism spectra of ct-DNA 300 µM with increasing concentrations of the 

ruthenium complexes 1b (left, above), 1e (left, below), 1f (right, above) and 1g (right, 

below). The DNA base pairs to ruthenium complex ratios are 20:1, 15:1, 10:1, 8:1, 5:1, 

3.5:1, 3:1, 2.5:1 and 2:1 in the case of the mononuclear complexes (1b, 1e and 1f); for the 

dinuclear complex 1g, 40:1, 20:1, 15:1, 10:1, 8:1 and 6:1. The solid line represents the 

ct-DNA. The arrows in bold indicate a variation of the intensity of the band upon addition 

of ruthenium. 

 

In summary, according to the CD and LD experiments the complexes 1b and 1e-g 

cause conformational changes in the DNA molecule, although the B-DNA structure is 

retained in all the studied cases. Both 1b and 1e seem to interact with DNA via a non-

intercalative way and, at high concentrations, they cause conformational changes of DNA. 

Complex 1g appears to be capable of bending or coiling the DNA even at low 

concentrations. Finally, 1f does not display any specific binding orientation with respect to 

ct-DNA. 
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In vitro cytotoxicity assays 

The cytotoxicities of the mononuclear complexes 1a-c, 1e and 1f in several selected 

cell lines were compared, in search for differences that might arise from their structural 

differences. The dinuclear complex [{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}](ClO4)4 (1g) was 

also studied. The reasons why complex 1g was selected are multiple. The six coordination 

positions of ruthenium are blocked by non-labile ligands, making 1g unable to bind to DNA 

in a coordinative way. Hence, the study of this complex may give indications about the 

existence of a relation between DNA-binding and cytotoxicity. On the other hand the 

compound was chosen to be symmetrical and analogous to the mononuclear parent 

compounds 1a-c to make the comparison amongst all these complexes as valid as possible. 

Finally the bridging ligand between the two ruthenium atoms of 1g is a chain that is long 

enough to allow the complex 1g to act as two units of the parent compound. 

The analyzed compounds, including the non-coordinating homodinuclear complex 

1g, show a good to moderate activity in the EVSA-T and H226 cell lines (see Table 4.3). 

The same results were obtained in the A2780 normal and resistant cell lines, with only one 

exception. The non-azo complex 1f showed very low or no activity at all in the tested cell 

lines (see Table 4.4). The most active drug in the case of the non-resistant cell line, A2780, 

was found to be compound 1b. The activities in this cell line are in general worse than that 

of cisplatin, whereas in the resistant cell lines on average the activities are comparable to 

that of cisplatin. This is also displayed in the resistance factor (rf) values, which are defined 

as the IC50 value of a cisplatin-resistant cell line divided by the IC50 value of the 

corresponding cisplatin-sensitive cell line The rf values of the active compounds for the 

A2780 cell lines range from 0.8-2.2, suggesting that the compounds seem unaffected by the 

multifactorial resistance mechanism in the resistant cell line. In the case of the murine 

leukaemia cell lines the compounds 1a-c and 1e interestingly show rather low activity in 

the non-resistant cell line, whereas the activity is moderate in the resistant cell line, also 

shown by the low rf values (0.6-1.2). This suggests that the effect of the resistance profile 

of the murine leukaemia cell line, if any, is actually to improve the activity of the 

compounds. Neither the non-azo complex (1f) nor the homodinuclear complex (1g) show 

any activity in the L1210 cell lines. 
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Table 4.3. IC50 values (µM) of the [Ru(apy)(tpy)L2](2-n)+ complexes (1a-c) and their 

dinuclear analogue [{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}](ClO4)4 (1g) after a 5 days 

treatment in some selected cell lines. The IC50 values of α-[Ru(azpy)2Cl2] and cisplatin 

have been included as a reference. 

 

Tested compound A498 EVSA-
T 

H226 IGRO
V 

M19 MCF-7 WiDR

[Ru(apy)(tpy)Cl](ClO4) (1a) >96 7 17 >96 25 13 66 

[Ru(apy)(tpy)(H2O)](ClO4)2·2H2O (1b) >81 6 17 44 26 18 50 

[Ru(apy)(tpy)(CH3CN)] (ClO4)2 (1c) >82 6 26 78 30 21 73 

[Ru(azpy)(tpy)Cl]Cl·5H2O (1e) 39 11 34 65 15 30 51 

[{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}] 
(ClO4)4 (1g) 

>40 17 28 >40 33 >40 >40 

α-[Ru(azpy)2Cl2] 0.3 0.1 0.5 0.3 0.1 0.3 0.3 

Cisplatin 2 1 2 0.2 3 2 2 

 
Table 4.4. IC50 values (µM) of the [Ru(tpy)L1L2](2-n)+ complexes (1a-c, 1e and 1f) and the 

dinuclear complex [{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}](ClO4)4 (1g) after a 48 h treatment 

in some selected cell lines. The IC50 values of α-[Ru(azpy)2Cl2] and cisplatin have been 

included as a reference. 

 

Tested compound A2780 A2780R L1210/0 L1210/2

[Ru(apy)(tpy)Cl](ClO4) (1a) 23 25 100 56 

[Ru(apy)(tpy)(H2O)](ClO4)2·2H2O (1b) 11 30 80 97 

[Ru(apy)(tpy)(CH3CN)] (ClO4)2 (1c) 31 28 70 40 

[Ru(azpy)(tpy)Cl]Cl·5H2O (1e) 19 42 42 26 

[Ru(impy)(tpy)Cl] (ClO4) (1f) >100 62 >100 >100 

[{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}] (ClO4)4 (1g) 33 28 >100 >100 

α-[Ru(azpy)2Cl2] 0.1 0.2 0.1 0.2 

Cisplatin 6 25 2 24 
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4.4. Concluding remarks 

Considering the IC50 values that were found for the apy complexes 1a-c, which are 

analogous to each other except for the leaving group, no correlation appears to exist 

between the lability of the mentioned leaving group and the cytotoxic activity of the 

ruthenium compound. 

According to the results obtained in the experiments with 9-ethylguanine, the most 

rapid complex to react with the DNA model base is the azpy complex 1e, which reaches the 

maximal conversion 16 hours earlier than the slowest complex, 1c. On the other hand, the 

maximal amount of ruthenium-model base adduct is obtained from the impy complex 1f. 

Taking into account that the IC50 values obtained for the complexes 1c and 1e are not 

the two extreme values, and that the complex giving a maximal conversion is inactive in the 

tested cell lines, no correlation can be established between the ability of a complex to bind 

to 9-ethylguanine and its cytotoxic activity. 

Moreover, while the azo function is in principle unrelated to coordination to guanine, 

our results indicate that the presence of this functional group is necessary for cytotoxic 

activity. The only compound of the series lacking an azo group was found to be inactive in 

the tested cell lines. It is interesting to point out that the complex [Ru(bpy)(tpy)Cl]Cl, 

which is to some extent analogous to the complexes herein described, and which also lacks 

an azo group, has been reported to be inactive.33 

More importantly, a relation has been found between the experiments carried out with 

ct-DNA and the activity of the compounds. The inactive compound 1f seems to bind to 

ct-DNA, but with no specific orientation with respect to the double helix. On the other 

hand, the biggest changes observed in both CD and LD spectra correspond to the dinuclear 

complex 1g. While this complex cannot coordinatively interact with DNA, its cytotoxic 

activity is comparable to those displayed by the mononuclear complexes. The CD and LD 

experiments show that there is indeed an interaction between DNA and 1g, even if it is not 

of a coordinative nature. For other non-coordinative dinuclear compounds, this strong effect 

on the DNA band in LD is proven to be caused by interactions in the major groove of 

DNA,55, 56, 62 as well as in 3-way junctions (structures that are formed at the point where 3 

double-helical regions join together).45, 63 

The CD experiments seem to indicate that the studied complexes cause 

conformational changes in the DNA. It is interesting to point out that the complex 1e shows 

an effect on the positive CD band centered at 275 nm, which suggests that the azpy 
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complex induces changes in the DNA chain length.49, 50, 53 This effect is also observed in 

the case of the dinuclear complex, but not in the rest of the mononuclear complexes. 
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5. Explorations towards novel 
ruthenium anticancer drugs 

 
 
 
 
 
 

Most of the compounds described in this thesis show a certain degree of activity in some 

selected cancerous cell lines. The research presented so far suggests that the mechanism of 

action of some of these compounds, namely the mononuclear ruthenium(II) complexes 

1a-c, 1e and 1f, might involve coordination to DNA. In this chapter, other alternative 

interaction modes with DNA are dealt with and a number of suggestions are presented for 

further development of this research line. 
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5.1. Alternative ways of interaction between metallodrugs and DNA 

5.1.1. Introduction 

Anticancer therapy with classical ruthenium coordination compounds is based on the 

capability of the metal to coordinatively bind to DNA.1 These ruthenium complexes are 

usually bifunctional and they mostly exert their action by forming intra- or interstrand 

crosslinks with the DNA molecule.2 On the other hand, examples of monofunctional 

ruthenium complexes are also known that display an anticancer activity, such as some of 

the complexes described in this thesis (1a-c and 1e). The cytotoxicity of these 

monofunctional complexes could also be related to coordination to DNA. 

Other ways of interaction with DNA are known, including backbone binding3 and 

recognition of DNA junction structures.4 This chapter will focus on the interactions caused 

by intercalation between nucleic base-pairs and on groove recognition. 

 

Groove binding 

The dinuclear complex [{Ru(apy)(tpy)}2{µ-H2N(CH2)6NH2}]4+ (1g), described in 

chapter 4, interacts with DNA presumably via electrostatic and especially via 

groove-binding interactions. The activity displayed by this compound in a number of cell 

lines is comparable to cisplatin. 

Two strategies can be followed that are inspired by the above-described results. The 

first one consists on the synthesis of homodinuclear ruthenium(II) complexes that are first 

electrostatically attracted to DNA, subsequently form a coordinative interaction with the 

latter, and finally interact with the DNA in the same way 1g does, i.e., by groove binding 

(see Fig.5.1). 

 

 

 

 

 

 

 

Fig.5.1. Scheme depicting a homodinuclear, positively-charged Ru(II) complex being first 

electrostatically attracted to DNA (left), coordinated to a nucleic base (middle) and finally 

binding to a DNA groove (right). 
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A second strategy deals with the synthesis of heterodinuclear Pt-Ru complexes using 

such ligands. The Pt moiety can be chosen such that it will form a coordinative interaction 

with DNA, like transplatin, or it could even be an intercalator, vide infra, such as 

[Pt(tpy)]2+. 

Following the first approach, the homodinuclear ruthenium(II) compound 

[{Ru(tpy)Cl}2(µ-paa)](BF4)2 (1h) was obtained, where tpy is 2,2´-6´2”-terpyridine and paa 

is 2-pyridinealdazine (see Fig.5.2), and some cell tests were subsequently performed (as 

summarized in section 5.1.2, Table 5.1). 
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Fig.5.2. Molecular structures of [{Ru(tpy)Cl}2(µ-paa)](BF4)2 (1h, left) and 

[Ru(abpt)(bpy)2](PF6)2 (1i,  right). Proton numbering scheme as used in 1H NMR spectra. 

 

Intercalation 

Small, planar aromatic molecules can bind DNA through intercalation, as proposed 

already by Lerman in 1961.5 The base pairs and helical backbone extend and unwind to 

accommodate the molecule, which inserts into the resulting hydrophobic pocket. The 

intercalating surface is stabilized electronically in the helix by π-π stacking with the bases, 

thus the intercalator is rigidly held and oriented with the planar moiety perpendicular to the 

helical axis.6 

A decade later, the concept “metallointercalator” was introduced. The platinum(II) 

complexes [Pt(tpy)(SCH2CH2OH)]+ and [Pt(tpy)Cl]+, where tpy is 2,2´-6´,2”-terpyridine, 

were proven to bind strongly to DNA by intercalation between base pairs.7 Subsequently, 
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other aromatic ligands were made to react with platinum to generate new compounds that 

interact with DNA in that same way.8, 9 

Although in principle the square-planar geometry of platinum(II) was thought to be 

essential for a metallointercalator, octahedral metal centres with large planar aromatic 

ligands were synthesised afterwards, which also displayed intercalative interactions with 

the DNA helix.10, 11 While one of the planar units inserts between base-pair planes, the 

metal and additional co-ligands interact in one of the DNA grooves.10, 11 To date, many 

[Ru(bpy)2L]2+ and [Ru(phen)2L]2+ complexes have been described, where L is an aromatic 

bidentate ligand, which have been proven to interact with DNA via intercalation.12-17 Even 

a dinuclear analogue with a large aromatic bridging ligand has been reported to very slowly 

bind to DNA via an intercalation process.18 

It should be noted that distinguishing a groove binder from an intercalator is not 

straightforward, as illustrated by many discussions on the controversial case of 

[Ru(phen)3]2+, where phen is phenantroline.6, 19-23 

It may be very interesting to synthesize ruthenium(II) polypyridyl ligands containing 

the ligands 4-amino-3,5-bis(2-pyridinyl)-1,2,4 triazole (abpt) and 3,5-bis(2-pyridinyl)-1,2,4 

triazole (Hbpt), for several reasons. Firstly, some ruthenium complexes with π-deficient 

ligands behave as photo-oxidants, giving rise to photo-induced electron-transfer processes 

that lead to DNA cleavage.24-27 Moreover, the strong σ–donor properties of the 

triazole/triazolate groups make these ligands optimal for use as bridges in the synthesis of 

dinuclear and polynuclear complexes.28-31 

An especially interesting feature of this kind of complexes is the luminescence 

displayed by some of them.32 Finally, the abpt and Hbpt ligands may behave as 

intercalators. 

The ruthenium(II) complex [Ru(abpt)(bpy)2](PF6)2 was synthesized and its anticancer 

activity was tested against some selected cell lines. Although this complex displayed an 

activity comparable to that of cisplatin in the cell line H226 and a reasonable activity in the 

cell line WiDR (see Tables 5.1 and 5.2), it was found to be virtually inactive in the rest of 

the tested cell lines. The interaction of this compound with DNA remains to be studied. 
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5.1.2. Experimental 

Materials and reagents 

2-pyridinealdazine (paa), 4-amino-3,5-bis(pyridine-2-yl)-1,2,4-triazole (abpt), 

Ru(tpy)Cl3 and cis-Ru(bpy)2Cl2 were synthesized following procedures described in 

literature.33-36 2-cyanopyridine, 2-pyridinaldehyde, hydrazine monohydrate, NH4PF6 and 

tpy (Aldrich), LiCl (Merck), NaBF4 and bpy (Acros) and RuCl3·3H2O (Johnson & Matthey) 

were used as supplied. All other chemicals and solvents were reagent grade commercial 

materials and used as received, without further purification. 

 

Physical measurements 

C, H and N determinations were performed on a Perkin Elmer 2400 Series II analyzer. 

Mass spectra were obtained with a Finnigan MAT TSQ-700 mass spectrometer equipped 

with a custom-made electrospray interface (ESI). NMR spectra were recorded on a Bruker 

DPX-300 spectrometer operating at a frequency of 300 MHz. Chemical shifts were calibrated 

against tetramethylsilane (TMS). 

 

Synthesis and characterization of [{Ru(tpy)Cl}2(µ-paa)](BF4)2 (1h) 

LiCl (500 mg, 11.80 mmol) was dissolved in 80 ml of ethanol-water (3:1). 

Triethylamine (0.160 ml, 1.135 mmol) was added, followed by Ru(tpy)Cl3 (500 mg, 1.135 

mmol) and paa (360 mg, 1.715 mmol). The mixture was vigorously refluxed for 90 

minutes, and the hot solution was filtered to remove any insoluble material. The brown 

solution was evaporated to dryness. 15 ml methanol were used to dissolve the residue, to 

which 35 ml of a methanolic saturated solution of NaBF4 were added. The flask was left for 

3 days at 4 °C. A brown precipitate had then appeared, which was filtered, washed with 

little ice-cold ethanol and ether and dried in vacuo over silica Yield: 39 mg (3%). Anal. 

Calc. for C42H32N10B2F8Cl2Ru2: C, 44.9; H, 2.9; N, 12.5. Found: C, 42.2; H, 2.9; N, 11.7. 

m/z (ESIMS) 580.1 ([Ru(paa)(tpy)Cl]+); 475.0 ([{Ru(tpy)Cl}2(µ-paa)]2+). 1H NMR 

(DMSO-d6): δ (ppm): 9.71 (2H, d, 5.49 Hz, 6P); 8.44 (8H, m, 3T, 3T´); 8.22 (2H, t, 6.93 

Hz, 4P); 8.12 (4H, t, 7.12 Hz, 4T); 8.00 (4H, m, 5P, 4T´); 7.92 (2H, d, 8.06 Hz, 3P); 7.46 

(4H, t, 6.24 Hz, 5T); 7.11 (4H, d, 4.83 Hz, 6T); 6.97 (2H, s, CH=). 
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Synthesis and characterization of [Ru(abpt)(bpy)2](PF6)2 (1i) 

The synthesis of [Ru(abpt)(bpy)2](PF6)2 was carried out as described in the 

literature,32 with slight modifications. cis-Ru(bpy)2Cl2 (75 mg, 0.18 mmol) and abpt (82 

mg, 0.34 mmol) were dissolved in 15 ml of ethanol and refluxed for two hours. The mixture 

was evaporated under reduced pressure, and the obtained residue was dissolved in 2.5 ml 

methanol. 5 ml of a saturated solution of NH4PF6 were added. An orange-red solid was 

collected by filtration and dried in vacuo over silica. Yield: 32 mg (19%). Anal. Calc. for 

C32H26N10P2F12Ru: C, 40.8; H, 2.8; N, 14.9%. Found: C, 39.9; H, 2.6; N, 14.9%. m/z 

(ESIMS) 797.1 ([Ru(abpt)(bpy)2][PF6]+), 326.1 ([Ru(abpt)(bpy)2]2+). 1H NMR (MeOD-d4): 

δ (ppm): 9.13 (2H, d, 7.87 Hz, 3a); 8.75 (1H, d, 4.75 Hz, 6a´); 8.68 (2H, m, 6b´); 8.61 (2H, 

m, 6b); 8.11 (6H, m, 4a, 3a´, 5b, 5b´); 7.93 (3H, m, 4a´, 3b); 7.82 (3H, m, 6a, 3b´); 7.52 

(5H, m, 5a´, 4b, 4b´); 7.43 (1H, t, 6.45 Hz, 5a). 

 

In vitro cytotoxicity assays 

The anticancer activity of [Ru(abpt)(bpy)2](PF6)2 was tested in vitro in several 

selected cell lines, following the experimental procedure described in chapter 4 of this 

thesis. The results can be seen in Tables 5.1 and 5.2. Preliminary results are also given for 

the dinuclear complex [{Ru(tpy)Cl}2(µ-paa)](BF4)2. 

 

5.1.3. Results, discussion and concluding remarks 

The synthesis of groove-binder homodinuclear ruthenium(II) and heterodinuclear Pt-

Ru complexes has been introduced. As a possible example of the former, the ruthenium(II) 

compound [{Ru(tpy)Cl}2(µ-paa)](BF4)2 (1h) was obtained. This dinuclear compound has 

two leaving groups, one per ruthenium atom, therefore a coordinative interaction with DNA 

is also possible, and even the formation of intra- and interstrand adducts might be expected. 

According to the results obtained in preliminary cell tests (see Table 5.1), complex 1h 

is moderately active in the L1210/2 cell line, although it displays virtually no activity in the 

human ovarian cancer cell lines A2780 and A2780R, in which the homodinuclear complex 

1g was shown to be active (see Table 4.3). 

The ruthenium(II) complex [Ru(abpt)(bpy)2](PF6)2 (1i) was selected as the parent 

compound of a family of ruthenium(II) polypyridyl complexes to be tested for anticancer 

activity. Substitution of the bpy groups by other chelating polypyridyl ligands, such as 

2,2´:6´,2”-terpyridine or phenantroline, or the more π-deficient 2,2´-bipyrazine, 1,4,5,8-
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tetraazaphenanthrene or 1,4,5,8,9,12-hexaazatriphenylene, would yield a group of various 

related ruthenium(II) complexes. The cytotoxicity of all these compounds should be tested, 

as well as their ways of interaction with DNA and their DNA cleavage ability. Some 

structure-activity relationships could be extracted from the differences in their properties 

and anticancer activities. 

Work in these compounds has not gone yet any further than the synthesis and testing 

of the chosen parent compound against some selected cancer cell lines. The activity 

displayed by [Ru(abpt)(bpy)2](PF6)2 was disappointing in most of the cell lines (see Tables 

5.1 and 5.2). Considering that this compound is structurally very different from the other 

compounds described in this thesis, no conclusions can be extracted by comparison of the 

results listed in Tables 5.1 and 5.2 with the results described in chapter 4. 

 

Table 5.1. IC50 values (µM) of [{Ru(tpy)Cl}2(µ-paa)](BF4)2 (1h), [Ru(abpt)(bpy)2](PF6)2 

(1i) and the reference compound cisplatin in some selected cell lines 

 

Tested compound A2780 A2780R L1210/0 L1210/2 

 
[{Ru(tpy)Cl}2(µ-paa)](BF4)2 (1h) 
 

 
61 

 
> 100 

 
36 

 
53 

 
[Ru(abpt)(bpy)2](PF6)2 (1i) 
 

 
> 200 

 
> 200 

 
> 200 

 
75 

 
Cisplatin 
 

 
6 

 
25 

 
2 

 
24 

 
 

Table 5.2. IC50 values (µM) of [Ru(abpt)(bpy)2](PF6)2 (1i) and the reference compound 

cisplatin in some selected cell lines 

 

Tested compound A498 EVSA-T H226 IGROV M19 MCF-7 WiDR 

 
[Ru(abpt)(bpy)2](PF6)2 (1i) 
 

 
43 

 
43 

 
14 

 
>65 

 
44 

 
44 

 
27 

 
Cisplatin 
 

 
7 

 
1 

 
11 

 
1 

 
2 

 
2 

 
3 
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5.2. Interactions between metallodrugs and other biological molecules 

5.2.1. Introduction on serum proteins 

Albumin 

Serum albumin is the most abundant plasma protein. It plays a key role in a number 

of physiological functions, such as the control of osmotic blood pressure; transport, 

metabolism and distribution of various compounds; radical deactivation, and delivery of 

amino-acids after hydrolysis for the synthesis of other proteins.37 

 

Transferrin 

The transferrins are a class of iron-binding and transporting proteins, widely 

distributed in the extracellular fluids of vertebrates. Most of the transferrins consist of a 

single polypeptide chain with a molecular weight of around 80 kDa, constituted by two 

remarkably similar amino acid sequences, each accounting for half of the molecule and 

each carrying an iron-binding site.38 

Binding of iron is dependent on concomitant binding of carbonate, 

hydrogencarbonate or some other synergistic anion, which serves as a bridging ligand 

between protein and metal. The role of the bridging anion may be to prevent water from 

binding in the coordination sphere of the metal, locking it tightly to the protein and 

avoiding hydrolysis. Iron binding is strong enough to resist hydrolysis in the extracellular 

fluids, but still allows iron to be released within specific intracellular compartments. The 

metal binding site with its associated anion-binding site is a characteristic of all 

transferrins.38 

The iron-binding cleft in the C-lobe is closed, both in the presence and in the absence 

of the metal. However, the cleft in the N-lobe is wide open in apotransferrin, exposing three 

basic side chains, which are buried within it in the iron-loaded transferrin. These side 

chains are Arg 121, Arg 120 and Lys 301; they may serve to attract the carbonate anion as 

the first step in binding.38 

Transferrin receptors are present in all dividing cells, in a number varying from 

several tens of thousands to almost a million. This number increases when a cell is in need 

of iron. Transferrin receptors are continuously traveling between the surface and the interior 

of the cell.38 
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At the slightly alkaline extracellular pH of 7.4, transferrin can bind 1 or 2 ferric ions, 

and 2 iron-bearing transferrin molecules can bind the dimeric transferrin receptor. Iron-free 

transferrin is not recognized by the receptor at this pH.38 

Transferrin is thought to release its iron within the cell in an endosomal compartment 

which has a pH of 5.5. Then the apotransferrin-transferrin receptor complex travels back to 

the membrane, and the apotransferrin is released again in the extracellular medium.38 

 

Cytochrome c 

Cytochrome c is a mitochondrial peripheral membrane protein. Its function in the 

respiratory chain in the inner mitochondrial membrane consists on electron transfer from 

cytochrome c reductase to cytochrome c oxidase.39 In 1996 it has been reported that, when 

released into the cytosol, cytochrome c activates a programmed cell death cascade 

(apoptosis).40 

 

Other proteins 

Haemoglobin is a globular tetrameric protein consisting of four subunits (two α- and 

two β-polypeptide chains) bound through non-covalent interaction. Each protein subunit 

carries a haeme group including a Fe(II) as the central atom.37 Haemoglobin is in charge of 

O2 and CO2 transport in the blood. 

Ubiquitin is a small cytoplasmic protein which has two potential binding sites for 

cisplatin. It was chosen as a model protein to study the formation of protein-cisplatin 

adducts.41, 42 

Another familiy of essential metal-transporting serum proteins are the γ-globulins.37 

 

5.2.2. Interactions between metallodrugs and serum proteins 

Protein interactions with platinum drugs, amongst which cisplatin and carboplatin, 

have been studied thoroughly, using various techniques. The influence of these interactions 

in the distribution and pharmacokinetics of the drugs has been recognised.37, 39 

 

Albumin 

Cisplatin binds preferentially to haemoglobin, followed by albumin.37 The efficient 

binding to the latter can be explained by the high affinity of platinum to sulfur. Hence, the 

most likely binding point of cisplatin to albumin is the cysteine-34 residue. Cisplatin 
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irreversible binding leads to cleavage of albumin disulfide bonds, inducing changes in the 

structure of the protein, thus affecting its activity. Other platinum compounds, such as 

oxaliplatin (see chapter 1, section 1.3), display the same behaviour with albumin; the 

interaction between albumin and transplatin is reported to be not very significant.37 

 

Transferrin 

In an analogous way, cisplatin binds to sulfur-containing residues of transferrin, 

although the exact interaction position is a subject of debate.43, 44 This interaction was 

proven to be determinant of properties such as cytotocixity, in vivo distribution of the drug 

and tumour-specificity.45 

Certain anticancer ruthenium(III) complexes, such as indazolium trans-

[tetrachloridobis(indazole)ruthenate(III)], KP1019, were also proven to bind to both 

albumin and transferrin. Particularly the interaction of KP1019 with the latter suggested the 

theory that this ruthenium(III) complex could act as a virtually non-toxic prodrug that 

enters the cell when it is bound to transferrin. This prodrug would then be activated by 

intracellular reduction to a ruthenium(II) complex, which would be the actual cytotoxic 

drug.46 This mechanism would also account for a selective entrance of the drug in the 

tumorous cells, which express an increased number of transferrin receptors in their 

membranes, due to their higher iron requirements.39 

A study of the ability of ruthenium(III) cytotoxic compounds to bind to transferrins 

was carried out in 1996.47 The presence of a large water-filled cavity in the interdomain 

cleft of each transferrin lobe, in which the metal- and anion-binding site is found, 

apparently allows some flexibility in the species that can be bound, while domain closure is 

still possible. Cell-culture experiments have given evidence that the antitumour capacity of 

some ruthenium(III) complexes is enhanced by binding to transferrin,47 and so the role of 

serum transferrin in the accumulation of ruthenium(III) complexes in tumours is suspected 

to be important. The ruthenium complex binds via a coordinative interaction with a 

histidine residue in the N-lobe of transferrin. The heterocyclic ligands remain bound to 

ruthenium, and this is presumably essential for antitumour activity following the release of 

the complex.37, 47 

 

 

 



Explorations towards novel ruthenium anticancer drugs 
 
 

 115

Cytochrome c 

The results obtained with various techniques indicate that the binding of the 

ruthenium(III) complex KP1019 to cytochrome c induces conformational changes in the 

protein. A loss of tertiary structure is experienced, together with changes in the haeme 

group and an increase in the α–helical content of apocytochrome c.48 These conformational 

changes are expected to have an influence in the biological activity of cytochrome c, and 

subsequently, in its ability to induce cell apoptosis. 

 

Other proteins 

The binding of different platinum complexes to the serum proteins haemoglobin, 

ubiquitin and γ-globulins has been widely studied and a review of these interactions is 

available.37 On the other hand, the studies involving ruthenium(III) complexes have been 

mainly focused on the interactions between these drugs and transferrin or cytochrome c. 

 

5.2.3. Interactions between Ru(II) polypyridyl complexes and serum transport proteins 

Some ruthenium(III) complexes are hypothesised to act as inactive prodrugs, which 

may get activated by reduction to ruthenium(II) once they entered the cells, vide supra. 

Serum transport proteins, such as transferrin, might be involved in this cellular uptake 

process. Hence the interest in studying the interactions between these proteins and the 

anticancer active ruthenium(III) complexes. However, while a number of ruthenium(II) 

complexes are known that display a considerable activity in cell tests, to the best of my 

knowledge no studies have been reported of the interaction between these complexes and 

transferrin. Therefore, a preliminary experiment was carried out to explore whether or not 

such interactions could occur. 

Two 5 µM solutions of [Ru(apy)(tpy)(H2O)](ClO4)2·2H2O in phosphate buffered 

saline (PBS) were prepared. Human serum transferrin (Invitrogen) was added to one of 

them to give a 1 µM concentration. Both solutions were incubated for 3 hours at 37 °C. 

Both samples were ultrafiltered (Millipore centricon 10,000 MWCO) and the filter was 

washed four times with PBS. The unbound ruthenium complex should have been recovered 

after going through the filter in both cases. The portion that did not go through the filter 

should contain no ruthenium in the control experiment, and the transferrin-bound 

ruthenium, in the sample containing the protein. The four portions were analysed for 

ruthenium by inductively coupled plasma (ICP). 
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70% of the initial ruthenium was recovered in the portion of the control experiment 

that went through the membrane filter. The detected ruthenium in the portion that did not 

pass through the filter was negligible. From the sample that contained transferrin, the 

portion that went through the filter contained 34% of the initial ruthenium (unbound 

ruthenium), while the portion that did not go through the filter contained 35% of the initial 

ruthenium. This implies that after just 3 hours in PBS at 37 °C, at least 35% of the initial 

ruthenium was bound to transferrin. 

The results obtained clearly encourage further studies of the interactions between 

transferrin and other ruthenium(II) polypyridyl complexes, such as those described in this 

thesis. Important questions still remain unanswered, such as whether this interaction has an 

influence in the cytotoxicity and tumour-selectivity of the compounds, or to what extent the 

results obtained in the performed cell tests are valid, without the involvement of serum 

transferrin in them.  

 

5.3. Ruthenium complexes and metastasis 

The existence of ruthenium drugs which, despite showing no significant activity 

against the primary tumour (and no in vitro cytotoxicity), do yield an important activity 

against metastases,49, 50 illustrates the importance of testing ruthenium complexes not only 

against cancerous cell lines, but also for antimetastatic activity. 

Well-known in vitro methods for antimetastatic ability determination are migration 

and invasion assays. However, since apoptotic cells do not migrate and not all cancerous 

cells are invasive, cytotoxic compounds are not susceptible to these studies, nor is every 

type of cell lines. 

The ability of a drug to diminish migration of a malignant cell from the initial tumour 

to another tissue can be measured in experiments involving Boyden chambers.51 On the 

other hand, the invasion of basement membranes by tumour cells, a property which is 

characteristic of metastatic cells, can be studied by using Matrigel, a reconstituted 

membrane.52-54 

In conclusion, a new testing routine is necessary for potential 

anticancer/antimetastatic ruthenium complexes. Not only should the interactions of these 

compounds with proteins be studied, which could lead to both selective apoptosis and a 

decrease in resistance to the drug, but also the antimetastatic ability of these drugs should 
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be tested. A broader knowledge of all these factors is expected to lead to a better 

understanding of the mechanism of action of ruthenium anticancer agents. 
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6. Summary, general evaluation and 
future developments 

 
 
 
 
 
 
 

The contents that can be found in each chapter of this thesis are briefly exposed. Some 

conclusions are extracted from the results obtained during the course of this research. 

Proposals are presented for further work in this line of investigation. 

 

 

 

 

 

 

 

 



Chapter 6 
 

 120 

6.1. Introduction 

Several ruthenium(II) polypyridyl complexes were synthesised, with two main 

purposes: finding new potential anticancer metallodrugs and getting some insight in their 

mechanism of action. The obtained results are presented in this thesis. This last chapter 

gives a brief overview of all the herein described work, and it provides a number of 

suggestions for further research. 

 

6.2. Summary 

It is not possible to understand the role of ruthenium in the field of anticancer 

metallodrugs without a previous reference to platinum chemistry. With this in mind, a brief 

historical introduction to cisplatin is given in Chapter 1, followed by an explanation of its 

mechanism of action and the development of second and third generation platinum 

anticancer agents. Ruthenium chemistry is presented as a possible alternative to platinum 

therapy. A classification of ruthenium compounds with proven anticancer activity is 

provided, and their possible mechanisms of action are discussed, providing examples from 

relevant literature. 

In Chapter 2, the synthesis and characterisation of three carefully-chosen, closely-

related ruthenium(II) polypyridyl complexes is described. The structural information 

deduced from NMR spectroscopy supports the results obtained from the elucidation of the 

crystal structures. The distinct 3D packing of each of the three complexes is interesting to 

mention, as well as the formation of a hydrogen-bond net in one of the cases. 

The reasons for the choice of these three ruthenium complexes are further detailed in 

Chapters 3 and 4, in which a kinetic study is described of the reactions between each of 

these complexes and the DNA model base 9-ethylguanine. A parallel study of the 

cytotoxicity of each complex sheds some light on the importance of the leaving group and 

the kinetics, vide infra. Moreover, NMR spectroscopy was proven to be a valuable tool in 

the study of some interesting temperature-dependant conformational changes in the formed 

ruthenium-DNA model-base adduct, while CD and LD were the techniques of choice for 

the study of conformational changes provoked by the tested ruthenium compounds in the 

DNA molecule. 

A look beyond any possible coordinative interactions between the metal atom and the 

DNA nucleic bases has resulted in Chapter 5, in which other alternative interaction modes 

are dealt with. The synthesis and characterisation of a possible intercalator and a possible 
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groove-binder are described, as well as some cell tests. Further work needs to be done in 

order to establish the mechanism of action of these novel compounds. 

Also in Chapter 5, the study of the interaction between potential ruthenium(II) 

anticancer agents and some selected serum transport proteins, such as transferrin, is 

discussed. Finally, a reminder is made of the fact that some ruthenium complexes that were 

proven to be inactive against primary tumours, showed nevertheless an important 

antimetastatic activity. 

The Appendix to this thesis deals with the formation of a planar hydrogen-bonded 

network of nucleic bases and formate residues in parallel sheets, which are of great 

theoretical importance and may have applications in nanotechnology. 

 

6.3. Conclusions and future perspectives 

Two cytotoxic compounds were considered, Ru(tpy)Cl3 and α-[Ru(azpy)2Cl2], with 

an activity that seems to be due to the formation of intra- and/or interstrand cross-links,1 in 

the same way cisplatin does. In this thesis, the design of a complex of formula 

[Ru(apy)(tpy)L](2-n)+ (L = leaving group) is described, which was based on the first two, but 

with an improved water-solubility.2 However, this new complex is monofunctional; 

therefore it can only bind to one nucleic base. The new complex was proven to display a 

moderate and, in some cases, even a high activity against a number of cell lines.3 Studies 

were carried out to elucidate its mechanism of action. First, the kinetic factor was taken into 

account. For that purpose, three variants of the same complex were obtained: those in 

which the leaving group was a chloro, an aqua residue and an acetonitrile, respectively. All 

three complexes were capable of binding the DNA model base 9-EtGua in the experimental 

conditions, although following different kinetics in each case.4 The differences in the 

kinetics could not be correlated to the small differences in cytotoxicity.3 These results seem 

to suggest that it does not matter how fast these molecules can bind to DNA. 

The cytotoxicity of an analogous dinuclear complex with no ability to coordinatively 

bind to DNA was tested.3 From the positive results obtained it can be concluded that 

coordination to DNA is not essential for cytotoxic activity, and it might be that the 

mechanism of these complexes does not involve DNA at all.3 

In order to test this last theory, experiments with calf-thymus DNA were carried out. 

The results from the circular and linear dichroism show an extensive interaction of the 

dinuclear complex with the DNA molecule, which is clearly different from the way the 
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mononuclear complex interacted with the nucleic acid.3 Therefore from these results an 

interaction with DNA cannot be ruled out as a key step in anticancer activity of this kind of 

ruthenium compounds. 

Finally, two other ruthenium(II) complexes with heterocyclic ligands were studied in 

search for structure-activity relationships. According to these studies, the azo function 

might be essential for activity.3 

To summarize, neither all compounds capable of DNA-coordination are anticancer-

active, nor all ruthenium cytotoxic compounds can coordinate to DNA. This observation 

underlines the importance of alternative ways of DNA recognition. Several strategies for 

further research in this direction are suggested in this thesis, including some examples of 

possible candidate compounds (Chapter 5, section 5.1.1). 

A better understanding of the mechanisms of action is crucial for the development of 

new ruthenium drugs. The study of the interactions between a potential metallodrug and 

DNA is of utmost importance, as well as the interactions between ruthenium complexes and 

serum transport proteins.5 

Simultaneously, an effort should be made to improve and standardize the tests used to 

screen a metallodrug for anticancer activity, including tests of drug uptake and of 

antimetastatic activity. 

 

6.4. References 

1. Clarke, M. J., Coord. Chem. Rev. 2003, 236, 209-233. 
2. Corral, E.; Hotze, A. C. G.; Tooke, D. M.; Spek, A. L.; Reedijk, J., Inorg. Chim. 
Acta 2006, 359, 830-838. 
3. Corral, E.; Hotze, A. C. G.; den Dulk, H.; Hannon, M. J.; Reedijk, J., 2007, to be 
submitted for publication in J. Biol. Inorg. Chem. 
4. Corral, E.; Hotze, A. C. G.; Magistrato, A.; Reedijk, J., Inorg. Chem. 2007, 46, 
6715-6722. 
5. Kostova, I., Curr. Med. Chem. 2006, 13, 1085-1107. 
 
 



 123

 
 
 

Appendix. Nucleic acids in two 
dimensions: layers of base pairs linked 
by carboxylate* 

 

 

 

 

 
The formation of a planar 2D hydrogen-bonded network between DNA bases and formate 

residues is reported, leading to unprecedented parallel sheets of DNA analogues. 

 

 
 
 
 
 

                                                 
* This appendix is based on Corral, E.; Kooijman, H.; Spek, A.L.; Reedijk, J., New J. Chem., 2007, 31, 21-24. 
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A.1. Introduction 

Nucleic acids, such as DNA, RNA and their fragments, occur naturally in three-

dimensional chain-based structures derived from the double chain structure first described 

by Watson and Crick in 1953.1 The principal forces holding this spatial organization 

together are the Watson-Crick base pairing and the stacking between the bases; the chains 

are built of sugar-phosphate links. Several deviations of these structures are known to occur 

naturally. These abnormalities are the subject of intense studies and in some cases they are 

provoked in search for therapeutic applications.2-5 Bends and kinks usually arise as a 

consequence of the presence of special sequences or mismatching, for instance in some 

RNA´s.6-8 Triple-helix chains are also known,2, 4 as well as some quadruplex structures,3, 9-

12 knots and features such as hammerhead and other junctions.5 In all cases the 1D 

organisation is one of the factors that determine the structure. 

Much work has been done to create new artificial base-association ways. Different 

approaches, such as metal-assisted hydrogen-bonding13, 14 and incorporation of artificial 

bases into DNA,15, 16 have been used to develop new DNA base pairs or duplexes, many of 

which can be enzymatically replicated in search for possible new biological applications.17 

More recently research has been reported on the synthesis of ion channels that consist 

of self-assembled supramolecular rosettes. These rosettes contain nucleic acids and other 

DNA-based artificial nucleosides, which associate with each other in unusual ways. The 

rosettes pile up due to π-stacking.18-20 

Following these lines of investigation also some supramolecular helical,21 linear,22 

and macrocyclic structures23-25 have been obtained. 

So far, a complete 2D organized flat structure of nucleic acid bases has never been 

achieved by self-assembly of the nucleobases in solution, and it has been questioned 

whether such a flat structure, with only hydrogen bonding within the plane, would be 

possible. In fact, when having a close look at the common nucleic acid bases it is not 

difficult to imagine that such structures should be possible, either with neutral bases or with 

cationic or anionic bases in combination with small cations or flat anions, respectively. 

 

A.2. Results and discussion 

To explore this possibility in detail a simple DNA model base that resembles a 

nucleotide and that has been used in many model systems, namely 9-ethylguanine,26-28 was 

selected in combination with the smallest bifunctional flat anion, i.e. formate. Simple 
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modelling shows that in this case all strong H-bond donors and H-bond acceptors would 

match, originating a H-bond net. Indeed when the 9-ethylguanine (eg, previously 

abbreviated in this thesis as 9-EtGua) was crystallised from a formic acid solution at a 

proper concentration at RT, crystals of (H7eg)(HCOO) could be isolated, where the 

guanine moiety is protonated in position 7 (see Fig.A.1). 

 
 

Fig.A.1. PLATON projection of (H7eg)(HCOO) showing the hydrogen bonding. 

 

The asymmetric unit contains two (H7eg)(HCOO) ion pairs. The packing 

environment of these pairs is virtually identical. The formate anion plays an indispensable 

role in the formation of a hydrogen-bond net (see Table A.1 and Fig.A.2) in which the 

9-Ethylguaninium residues are associated to each other by the unusual 12-Trans Sugar 

Edge/Sugar Edge interactions, as described in the Leontis/Westhof classification.29, 30 These 

base pairs belong to the so-called class IV from the Saenger classification,31 which a more 

recent designation classifies as GG N3-amino, symmetric.32 To the best of our knowledge 

only one example is known of an organism containing this kind of base-pairing in a cellular 

organelle: the Haloarcula marismortui ribosome, in its pairs G315:G336 and 

G2428:G2466.33 This base-pair association has never before been achieved artificially 



Appendix 
 

 126 

without a simultaneous inclusion of metal atoms in the structure, such as gold or 

cadmium,34 or the blockage of the N7 of the purine ring with a metal atom or a methyl 

group.13, 35 

 

Table A.1. Selected distances (Å) and angles (0) in the crystal structure of (H7eg)(HCOO). 

Only data for one of the independent ion pairs is given. The atom numbering is indicated in 

Fig.A.2. 

 

Interatomic distances   

Donor-H...Acceptor D..A (Å) 

 
Angles (0) 

N(24)-H(24)…O(31II) 

N(21)-H(21)…O(41I) 

N(22)-H(22A)…O(42I) 

N(22)-H(22B)...N(23III) 

2.545(3) 

2.776(3) 

2.883(3) 

3.026(3) 

N(21)-C(21)-N(22) 

N(22)-C(21)-N(23) 

O(41I)-N(21)-C(21) 

N(22)-O(42I)-C(41I) 

O(42I)-N(22)-H(22B)

117.0(2) 

119.4(2) 

116.09(16) 

112.04(17) 

115.5 (2) 

 

 
 

Fig.A.2. Detail of Fig.A.1, with numbering of major atoms. The Roman subscripts are the 

same as in Table A.1. 
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The nucleoside-formate sheets herein described were found to allow a very close 

base-pair stacking, with a distance between parallel layers of only 3.288(1) Å (see Fig.A.3) 

(the distance between base-pair planes in B-DNA is 3.46 Å). 

 

 

 
 

Fig.A.3. Packing of (H7eg)(HCOO), forming parallel layers. 

 

The structure described in this appendix is not the only possible example of 2D 

nucleoside packing that can be thought of. Current work is focusing on such systems, by 

changing both the nucleic acid bases and the counter ions. Formate has proven to be a valid 

example of a counter ion that, due to its simplicity as much as to its planar geometry, could 

help to build these systems. Although in principle nitrate could also be thought suitable to 

yield a planar crystal structure, it does not have a hydrophobic part in the proximity of the 

ethyl group, and cannot form such a lattice. The formate hydrogen, however, fits perfectly 

in the “gap” existing between the 2 ethyl groups of the neighbouring guanine moieties, 

while the corresponding nitrate oxygen atom would provoke repulsion forces that would 

distort the 2D structure. 

The self-organisation of organic molecules into non-covalently bonded 

nanostructures, such as flat solid surfaces, gives structures with a high degree of order, 

thereby opening a wide range of applications, for example, in electronic and optical 

devices,36 in corrosion inhibition37 and in supramolecular chemistry.38 In molecular 

electronics, gold nanoparticles are embedded in ultrathin organic films, which could be 

used to interconnect gold nanoelectrodes in a molecular-scale electronic device, as 

suggested by Samorí and co-workers.39 
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The possible uses of these nucleoside layers in nanotechnology are barely starting to 

emerge,40 and much research is currently being done in fields such as DNA computation. 

DNA biosensors could be made by taking advantage of the specificity in the binding of the 

base pairs.41, 42 

Ribbon-like architectures have been described, which were formed by self-assembly 

of guanosines in solution and in the solid state.43-45 Different applications of these ribbon 

structures in fields such as surface chemistry and photochemistry are being studied.46-49 The 

exploitation of DNA fragments and their mutual hydrogen bonding interactions for material 

purposes was extensively reviewed by Seeman.50 

From a theoretical point of view, this kind of structures is of interest in the study of 

the emergence of life.51 It has been suggested that purine and pyrimidine monolayers could 

be candidates for a stationary phase in organic molecule separation systems and as 

templates for the assembly of higher ordered polymers at the prebiotic solid-liquid 

interface.52, 53 

In conclusion, a new type of arrangement of DNA-base hydrogen bonding in layers is 

reported, which provides insights in novel templates for nanotechnology based in 2D 

structures of nucleosides linked by a very simple carboxylate-containing molecule. 

 

A.3. Experimental 

Materials and reagents 

9-ethylguanine was purchased from Sigma and used as supplied. All other chemicals 

and solvents were reagent grade commercial materials and used as received, without further 

purification. 

 

Physical measurements 

C, H and N determinations were performed on a Perkin Elmer 2400 Series II analyzer. 

NMR spectra were recorded on a Bruker DPX-300 spectrometer operating at a frequency of 

300 MHz. Chemical shifts were calibrated against tetramethylsilane (TMS). 

 

Experimental procedure 

A 0.014 M solution of 9-ethylguanine in formic acid-benzyl alcohol (1:1) was 

prepared. A white crystalline solid appeared. The crystals obtained were found to be 

suitable for X-ray diffraction measurements. The product was collected by filtration, 
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washed with little ice-cold water and dried in vacuo over silica. Anal. Calc. for 

C7H10N5O·CHO2: C, 42.7; H, 4.9; N, 31.1%. Found: C, 42.4; H, 5.0; N, 30.8%. 1H NMR 

(DMSO-d6): δ (ppm): 10.46 (1H, s, NH), 8.12 (1H, s, HCOO), 7.67 (1H, s, C(8)H), 6.37 

(2H, s, NH2), 3.94 (2H, dd, 7.3 Hz, 14.5 Hz, CH2), 1.31 (3H, t, 7.3 Hz, CH3). 

 

X-ray structural determination 

Crystal data: C7H10N5O · CHO2, M = 225.22, triclinic, space group P-1 (No. 2) with a 

= 7.4575(12), b = 11.6882(12), c = 12.8664(15) Å, α = 114.651(10), β = 94.767(11), γ = 

101.729(10)0, V = 980.1(2) Å 3, Z = 4, Dc = 1.5263(3) g cm–3, µ(Mo Kα) = 0.120 mm–1, T = 

150 K, 23598 reflections measured, 3550 independent, Rint = 0.1231 (before detwinning), 

Rσ = 0.0559. The measured crystal was a twin, with a two-fold rotation around the b + c 

direction as twin operation. Data were detwinned using PLATON.54 Refinement of 356 

parameters converged at a final wR2 value of 0.1540 (all data), R1 = 0.0515 (for 2847 

reflections with I > 2σ(I)),  S = 1.085, -0.29 < ∆ρ < 0.27 e Å-3. Crystallographic data 

(excluding structure factors) for the structure reported in this appendix have been deposited 

at the Cambridge Crystallographic Data Centre as number CCDC 612070. 
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Samenvatting 
 

“Ruthenium-polypyridylcomplexen met activiteit tegen kanker. Synthese, 

karakterisatie en mechanisme studies op zoek naar structuur-

activiteitsrelaties”. 
 

Het perfecte medicijn tegen kanker bestaat uit een verbinding die kankercellen doodt 

zonder schade aan de gezonde weefsels te veroorzaken. In dit onderzoek wordt de 

zoektocht naar dat ideale geneesmiddel, op rutheniumverbindingen gebaseerd, voortgezet. 

Hoofdstuk 1 is een inleiding over de rol van metalen in geneeskunde. Het initiële 

succes van cisplatina in het bestrijden van kanker werd het beginpunt van een aantal 

studies. Het mechanisme van deze verbinding werd onderzocht. Cisplatina bindt aan DNA 

en veroorzaakt een structuurverstoring van dat molecuul (Fig.1.3). De tumorcel kan niet 

meer delen en sterft. Gezonde cellen kunnen deze schade beter repareren en dus meestal 

overleven zij. 

Cisplatina-chemotherapie is niet volmaakt. Ten eerste is niet iedere type kanker 

gevoelig voor cisplatina. Sommige gevoelige types kunnen zelf na verloop van tijd een 

resistentie ontwikkelen. Bovendien heeft cisplatina een aantal bijverschijnselen, onder 

andere nierschade en schade aan het zenuwstelsel. 

Verbeterde verbindingen zijn dus nodig. De meest succesvolle gevallen zijn in 

Hoofdstuk 1 beschreven. Ten eerste wordt een lijst platinaverbindingen besproken. Daarna 

is ruthenium ook in overweging genomen. Ruthenium is een metaal dat in dezelfde familie 

hoort als platina. Zijn octaëdrische structuur, in tegenstelling tot de vlakvierkante geometrie 

van de meeste platinaverbindingen, kan een voordeel zijn in de ontwikkeling van 

kankermedicijnen. 

Mijn werk is gebaseerd op succesvolle structuren zoals die van Fig.1.14 en Fig.1.15. 

In Hoofdstuk 2 wordt besproken hoe een ruthenium-polypyridylverbinding werd 

ontworpen, die geïnspireerd werd door de structuren van Fig.1.14 en Fig.1.15. Drie 

variaties van de verbinding werden ontwikkeld, die worden 1a, 1b en 1c genoemd. De 

synthese en karakterisatie door middel van NMR  en röntgendiffractie van 1a-c worden in 

Hoofdstuk 2 beschreven. 
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Hoofdstuk 3 gaat over een theorische studie. Het is zeer belangrijk om het 

mechanisme van deze verbindingen uit te vinden. Cisplatina vormt een coördinatiebinding 

met DNA. Dat is een vrij sterke interactie. De vraag was dus of de rutheniumverbindingen 

die ik gesynthetiseerd heb ook DNA kunnen binden; in welke positie en op welke manier. 

De experimenten die gericht zijn om die vragen te beantwoorden worden in Hoofdstuk 3 

beschreven. De ruthenium-guanineverbinding 1d (Fig.3.1) werd gesynthetiseerd en 

gekarakteriseerd. De reactie tussen 1b en guanine werd per NMR gestudeerd (Fig.3.2). 

Hetzelfde experiment werd met 1c gedaan (Fig.3.3). De belangrijkste conclusie hiervan is 

dat de rutheniumverbindingen 1a-c aan guanine kunnen coördineren. De oriëntatie van 

guanine in 1d werd met behulp van DFT (Fig.3.5) en NMR bij variabele temperatuur 

(Fig.3.6) bestudeerd. 

In Hoofdstuk 4 worden de verschillende interacties tussen rutheniumverbindingen en 

DNA behandeld. Een antwoord is gezocht op de vraag: is er een relatie tussen de 

ruthenium-DNA-interacties en de cytotoxiciteit van de rutheniumcomplexen? Voor deze 

studie worden de complexen 1a-c gebruikt, de structuur-gerelateerde complexen 1e en 1f 

(Fig.4.1), en het dinucleaire complex 1g (Fig.4.2). Iedere coördinatiepositie van 1g is bezet 

dus coördinatie van deze rutheniumverbinding aan DNA is niet mogelijk. 

Ten eerste wordt er aangetoond dat zowel 1e als 1f met guanine kunnen coördineren. 

NMR en MS zijn daarvoor gebruikt. Daarnaast zijn CD en LD gebruikt om de interacties 

tussen ieder rutheniumcomplex en DNA te bestuderen. De verschillen zijn duidelijk 

(Fig.4.4 en Fig.4.5). Het complex 1g (Fig.4.2) vormt een sterk interactie met DNA, zelfs als 

er geen coördinatie-interactie tussen die twee moleculen kan ontstaan. 

Er zijn verschillende mogelijke interacties tussen metaalverbindingen en DNA. 

Sommige van deze interacties worden in Hoofdstuk 5 beschreven, hoewel zij ook van 

belang zijn om de conclusies van Hoofdstuk 4 te begrijpen. Een interactie-type is 

coördinatie; die werd al eerder beschreven. Een andere mogelijkheid is de invoeging van 

de aromatische gedeelte van de verbinding tussen de DNA-basen. Metaalverbindingen 

kunnen ook in de groeven van DNA passen. Het rutheniumcomplex 1g kan niet 

coördineren, maar het kan wel op een ander manier aan DNA binden, waarschijnlijk via de 

DNA-groeven. 

Een relatie wordt in Hoofdstuk 4 gezocht tussen DNA-binding en cytotoxiciteit. De 

activiteiten van de verbindingen 1a-c, 1e-g in verschillende kankercellen worden in de 

Tabellen 4.3 en 4.4 aangetoond. Ook de activiteit van de referentieverbindingen cisplatina 
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en α-[Ru(azpy)2Cl2] (Fig.1.15) worden ter vergelijking aangegeven. De resultaten van de 

guanine-experimenten, van de CD/LD-metingen en van de celtesten leiden tot de volgende 

conclusies: 

De bestudeerde verbindingen kunnen als actief of matig-actief beschouwd worden, 

met uitzondering van het complex 1f, dat niet actief is. Volgens de NMR-studies kan 1f wél 

met guanine binden. Volgens de CD/LD-studies kan deze verbinding door invoeging tussen 

de basen of door de DNA-groeven aan DNA binden. 1f is de enige van de bestudeerde 

verbindingen die geen azo-groep bevat. Deze groep lijkt dus essentieel voor de 

cytotoxiciteit. 

Van de studies met complexen 1a-c blijkt dat de uitgaande groep (Cl, H2O, CH3CN) 

geen invloed heeft op de cytotoxiciteit van de verbinding. 

Met guanine reageert 1e als snelste en 1c als langzaamste. Er is ook geen relatie 

gevonden tussen deze data en de cytotoxiciteit. 

Tenslotte, geen van de verbindingen 1b, 1e en 1g lijkt door invoeging aan DNA te 

binden. 1b en 1e worden verwacht om met DNA te coördineren. 1g bindt waarschijnlijk via 

de DNA-groeven. Alle drie vertonen enige activiteit in verschillende kankercellen. 

Hoofdstuk 5 begint met een beschrijving van de verschillende types van interactie 

tussen metaalverbindingen en DNA. Een paar voorbeelden worden gegeven van 

rutheniumverbindingen die op die manieren aan DNA zouden kunnen binden. De synthese 

van de complexen in Fig.5.2 is in detail beschreven. Data van cytotoxiciteit zijn in de 

Tabellen 5.1 en 5.2 te vinden. 

De interacties tussen metaalverbindingen en andere biologische moleculen worden 

ook in Hoofdstuk 5 vermeld. Een experiment is beschreven waarin wordt aangetoond dat 

het complex 1b aan het transporteiwit transferrin kan binden. Het zou belangrijk zijn om te 

ontdekken of er een relatie is tussen deze binding en de cytotoxiciteit van 1b. 

Tenslotte het belang van testen voor antimetastatische activiteit wordt benadrukt. 

Hoofdstuk 6 geeft een samenvatting in het Engels van de resultaten in dit proefschrift 

beschreven en de conclusies die daaruit volgen, alsmede suggesties voor verder werk. 

Tijdens de experimenten met guanine is een interessant project ontstaan dat niet direct 

te maken heeft met ruthenium of met kanker. Dit werk wordt als Appendix van dit 

proefschrift gepresenteerd. De kristalstructuur van bidimensionale, parallele vlakken van 

guanine is aangetoond (Fig.A.1 en Fig.A.3). Deze structuur zou praktische aanpassingen in 

nanotechnologie kunnen hebben. 



 136 

Resumen de la tesis doctoral: 
 

“Complejos polipiridilo de rutenio con propiedades anticáncer. Síntesis, 

caracterización y estudios mecanísticos en busca de relaciones estructura-

actividad”. 
 

El siguiente resumen está escrito de modo que pueda ser comprendido por la mayor 

parte de los lectores. Por ello puede contener algunas simplificaciones e inexactitudes. Un 

resumen más científico de la tesis se puede encontrar en inglés, en el Capítulo 6 de la 

misma. 

En esta tesis se habla constantemente de “complejos de rutenio”, así que no sería 

mala idea empezar por ahí. El rutenio es un metal de la familia del platino. Un complejo es 

una unidad formada por un átomo de rutenio y una serie de “ligandos”, que son moléculas 

orgánicas. Podemos imaginarnos un esqueleto octaédrico con el átomo de rutenio en el 

centro, y los ligandos distribuidos a su alrededor. Un ligando polipiridilo es una serie de 

anillos aromáticos unidos entre sí de diversas formas. Estos anillos tienen átomos de 

nitrógeno, que son muy importantes porque son los puntos en los que se anclan al átomo de 

rutenio. 

El objetivo a largo plazo de esta investigación es diseñar compuestos, en mi caso 

complejos polipiridilo de rutenio, tal que sean capaz de matar tumores sin dañar los 

tejidos sanos. Hay dos estrategias principales para buscar esos compuestos. La primera 

consiste en hacer muchos compuestos, y ver si funcionan. A la vez, mediante la segunda 

estrategia se intenta entender cómo funcionan estos compuestos, para así poderlos diseñar 

de una manera más racional. 

En la introducción de la tesis se explica por qué partimos de estos compuestos en 

particular: por qué usamos rutenio y por qué los ligandos polipiridilo, entre otras cosas. 

Primero se  introduce el papel que los metales han desempeñado en la historia de la 

medicina, y más adelante se explica el ejemplo concreto del platino y el cáncer. Tras el 

descubrimiento casual de la actividad antitumoral del cisplatino, que es un complejo muy 

sencillo de platino, se empezó a indagar sobre qué hacía el cisplatino, que desembocaba en 

la muerte de la célula tumoral. Es decir, el mecanismo de acción del cisplatino. Enseguida 

se comprobó que el cisplatino interacciona con el ADN, doblándolo (ver la Fig.1.3 en el 
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Capítulo 1) y haciéndolo inservible, de modo que la célula muere. Es cierto que el 

cisplatino mata también células sanas, aunque ataca preferentemente a las células enfermas. 

La quimioterapia con cisplatino no es la Panacea. Primero, cada cáncer se comporta 

de una manera distinta y, mientras algunos son extremadamente sensibles al cisplatino, 

otros apenas resultan afectados. Además, incluso esos cánceres sensibles acaban 

desarrollando una resistencia al cisplatino, de modo análogo a como las bacterias pueden 

desarrollar una resistencia a los antibióticos. Por otro lado, el cisplatino es bastante 

agresivo, y provoca algunos problemas “menores”, como los conocidos vómitos y la 

pérdida capilar, y otros mucho más graves, como fallos renales y problemas nerviosos, que 

pueden llegar a ser tan serios que hacen necesario interrumpir la terapia. 

Hace falta encontrar compuestos que funcionen mejor, y una parte importante de la 

comunidad científica dedica actualmente todos sus esfuerzos a este fin. En el Capítulo 1 de 

esta tesis se da una clasificación de los compuestos más exitosos publicados hasta el 

momento, sus ventajas respecto del cisplatino y también sus inconvenientes. Los primeros 

compuestos descritos son todos de platino, y después se pasa a los complejos de rutenio. El 

rutenio es un metal de la familia del platino que presenta ciertas propiedades químicas que 

lo convierten en un buen candidato a complementar o sustituir al platino en el campo de las 

medicinas contra el cáncer. 

El punto de partida de mi trabajo son estructuras como las que aparecen en las 

Figs.1.14  y 1.15. El compuesto de la derecha en la Fig.1.14, así como el compuesto de la 

Fig.1.15, resultaron eficientes en matar células tumorales en ensayos realizados in vitro, 

esto es, en placas de células. Sin embargo, estos compuestos no se pueden disolver en agua, 

lo cual hace complicada su inyección en pacientes. En el Capítulo 2 se explica cómo, 

inspirándome en estos dos compuestos, diseñé un compuesto que es una combinación de 

los dos. Lo sinteticé en tres variantes: con un átomo de cloro en uno de los vértices del 

octaedro, con una molécula de agua en lugar del cloro, o sustituyéndolo por una molécula 

de acetonitrilo (ver las Figs.2.2 y 2.6). A estos compuestos los llamo 1a, 1b y 1c. 

En el Capítulo 2 se describen la síntesis y la caracterización de los compuestos 1a-c, 

es decir, cómo los hice en el laboratorio y por qué sé que tienen las estructuras que 

describo. Para ello uso fundamentalmente dos herramientas: resonancia magnética nuclear 

(RMN) y difracción de rayos X. 

El Capítulo 3 describe un estudio teórico. Me centré en la segunda propuesta que 

acabo de explicar: entender cómo funcionan estos compuestos. Se sabe que el cisplatino se 
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relaciona con el ADN por medio de una interacción muy fuerte, que llamamos enlace de 

coordinación. El platino se “ancla” al ADN, y su punto de anclaje preferido es también 

conocido: un átomo de nitrógeno determinado de la guanina, que es a su vez uno de los 

ladrillos del ADN. Aplicando estos conocimientos a los compuestos 1a-c, intenté 

comprobar si el rutenio también era capaz de anclarse a la guanina, y si para ello elegía el 

mismo punto de anclaje que el cisplatino. Es necesario aclarar que el rutenio sólo puede 

“coordinarse” a 6 átomos. Pero, en los compuestos 1a-c, el rutenio ya está coordinado a 6 

átomos, ¿cómo puede coordinarse con el ADN? El rutenio no le tiene demasiado apego al 

cloro, el agua o el acetonitrilo, así que en cuanto se pone en contacto con el ADN, pierde 

esta molécula y se queda con una posición libre para reaccionar con el ADN. 

Conseguí sintetizar el compuesto 1d en el laboratorio (ver la Fig. 3.1). Así, pude 

caracterizarlo y tomar su “huella digital” por RMN. A continuación disolví algo del 

compuesto 1b en agua, añadí un modelo de guanina, y gracias al RMN pude seguir la 

reacción en condiciones “fisiológicas” (agua y 37 °C) en el tiempo. Conociendo el aspecto 

del RMN de 1b y el aspecto del RMN de 1d, pude conocer si 1b en efecto reacciona con la 

guanina para dar 1d, y a qué velocidad lo hace. Así, en la Fig.3.2 vemos el aspecto del 

RMN de 1b, abajo, y según va ocurriendo la reacción, vemos cómo se va formando 1d, y 

cómo después de 5 horas la reacción ya no va más allá. 

En la Fig.3.3 se muestra el mismo experimento partiendo de 1c. Es algo más 

complicado, porque 1c en agua da 1b (recordemos que 1b es igual que 1c, pero 

sustituyendo el acetonitrilo por agua). Pero también se puede ver que 1c reacciona con la 

guanina para dar 1d. El compuesto 1a apenas se disuelve en agua, así que no lo pude 

utilizar para hacer este estudio. 

La conclusión que se puede obtener hasta el momento es que los compuestos 1a-c son 

en principio capaces de interaccionar con el ADN de la misma forma que el cisplatino, esto 

es, mediante un enlace muy fuerte llamado de coordinación. 

El resto del Capítulo 3 describe un estudio teórico desarrollado para investigar la 

orientación de la guanina unida al compuesto de rutenio. Las técnicas utilizadas son una 

simulación por ordenador (DFT), que predice las orientaciones que vemos en la Fig.3.5, y 

RMN a distintas temperaturas (Fig.3.6). 

Tal vez la parte más importante de la tesis está expuesta en el Capítulo 4. En él nos 

preguntamos cómo interaccionan los compuestos propuestos en esta tesis con el ADN, y si 

hay alguna correlación entre estas interacciones y la capacidad de estos compuestos de 
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matar células tumorales. Además de los complejos 1a-c, utilizamos otros dos de estructuras 

muy similares, 1e y 1f (Fig.4.1), y un compuesto que es como dos unidades de los 

compuestos 1a-c, unidos por una cadena (1g, Fig.4.2). Lo interesante es que para que esta 

cadena se pueda unir a los átomos de rutenio, el compuesto inicial pierde el cloro, el agua o 

el acetonitrilo, y, puesto que la cadena se une fuertemente al rutenio, éste ya no puede 

anclarse al ADN, al contrario que el resto de compuestos 1a-c, 1e y 1f, que sí pueden. 

Lo primero es demostrar que 1e y 1f sí pueden coordinarse a la guanina. Para ello 

hice uso de dos técnicas: RMN y espectrometría de masas, en las siglas inglesas, MS. A 

continuación tomé la cadena entera de ADN y estudié la interacción entre cada compuesto 

y el ADN, utilizando otras dos técnicas: dicroísmo circular y lineal (CD y LD, en las siglas 

inglesas). Las diferencias entre las formas de interactuar de estos compuestos con el ADN 

son evidentes (ver los CDs de la Fig.4.4 y los LDs de la Fig.4.5). Tal vez lo más interesante 

sea que el compuesto 1g (Fig.4.2) que, como ya he explicado, no tiene ninguna posición de 

anclaje al ADN, es, de todos los compuestos estudiados, el que mayor cambio provoca en el 

CD y el LD. Esto quiere decir que interacciona con el ADN de un modo nada desdeñable. 

Pero, si no puede anclarse, ¿cómo interacciona con el ADN? 

Aunque los diferentes modos de interacción de los compuestos metálicos con el ADN 

están explicados en el Capítulo 5, es necesario mencionarlos ahora para poder entender las 

conclusiones del Capítulo 4. Uno de estos modos de interacción es el que se ha discutido 

ya: la coordinación, una interacción muy fuerte entre el rutenio y un punto de anclaje del 

ADN: un átomo de nitrógeno de la guanina. Otra posibilidad es la intercalación de los 

anillos aromáticos del compuesto (la parte “polipiridilo”) entre los pares de bases nucleicas 

del ADN. Podemos pensar en la molécula de ADN como una escalera de mano retorcida 

verticalmente, en cuyo caso los pares de bases serían los peldaños. Y los ligandos 

polipiridilo encajarían perfectamente entre esos peldaños. Aunque se conocen varios modos 

de interacción con el ADN, sólo mencionaré uno más: la unión a los surcos del ADN. Al 

retorcerse la escalera, se forman unos surcos externos. Algunas moléculas encajan 

perfectamente en esos surcos. El compuesto 1g no puede coordinarse, pero sí puede 

interaccionar de uno de los otros modos. Observando la forma del compuesto, considero 

que probablemente se una a los surcos del ADN. 

Volviendo a la otra gran pregunta de este capítulo: ¿hay alguna correlación entre las 

interacciones de los compuestos con el ADN y su capacidad de matar células tumorales? 
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Para responder a esa pregunta, medimos la toxicidad de los compuestos 1a-c, 1e-g en 

varios tipos de cáncer: cáncer de ovario, de mama, leucemia de ratón, etc. Vayamos a las 

Tablas 4.3 y 4.4. Cada fila se corresponde con un compuesto; cada columna, con un tipo de 

cáncer. Cuanto menor sea el número, más activo es el compuesto. Estos valores siempre se 

estudian de modo relativo, es decir, comparamos los números obtenidos en cada compuesto 

con aquellos obtenidos con compuestos que sabemos que son activos. Las referencias 

tomadas son el cisplatino y el compuesto α-[Ru(azpy)2Cl2], que es el compuesto de la 

Fig.1.15, en el que me inspiré para comenzar la síntesis de los compuestos descritos en esta 

tesis doctoral. 

Combinando los resultados de los experimentos llevados a cabo con la guanina con 

aquellos obtenidos en las mediciones con ADN y con los números de las Tablas 4.3 y 4.4, 

llegamos a las siguientes conclusiones: 

Se puede decir que los compuestos estudiados son activos o moderadamente activos 

contra varios tipos de tumores, a excepción del compuesto 1f. Éste sí parece capaz de 

coordinarse con la guanina, de hecho es el compuesto que mayor conversión alcanza de 

todos los estudiados. Del CD y del LD se puede deducir que este compuesto puede 

intercalarse o interaccionar con el surco del ADN, y esta relación no altera la longitud de la 

cadena de ADN. De todos los compuestos estudiados, éste es el único que carece de dos 

nitrógenos unidos por un doble enlace (grupo azo). De ello se deduce que el grupo azo es 

fundamental para que el compuesto sea activo. 

 Estudiando los compuestos 1a-c se concluye que el grupo saliente (esto es, el cloro, 

el agua, el acetonitrilo) no parece tener ninguna influencia en la toxicidad. De modo que 

podemos basarnos puramente en la solubilidad en agua para juzgar qué compuesto es 

“mejor” (en este caso, 1a es menos útil, porque no se disuelve bien en agua). 

En cuanto a la cinética de la reacción con guanina, 1e es el compuesto que se 

coordina más rápidamente, y 1c es el más lento. Sin embargo, esta diferencia tampoco se 

refleja en los datos de citotoxicidad. 

Por último, de los compuestos 1b, 1e y 1g no cabe esperar una interacción 

intercalativa. Se puede deducir que tanto 1b como 1e se coordinarán al ADN, mientras que 

1g encajará en su surco. Como ya he mencionado, los tres son activos o moderadamente 

activos contra ciertos tipos de tumores. 

El Capítulo 5 comienza con una descripción de los diferentes modos de interacción de 

los compuestos metálicos con el ADN, incluyendo las ya mencionadas unión con el surco e 
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intercalación. Se proponen varios ejemplos de compuestos que podrían interaccionar con el 

ADN de cada uno de estos dos últimos modos. Los complejos de la Fig. 5.2 fueron 

sintetizados y algunas pruebas ya se han llevado a cabo con ellos, como demuestran las 

Tablas 5.1 y 5.2, aunque aun queda mucho trabajo por hacer. 

A continuación se trata el tema de las interacciones entre los compuestos metálicos y 

otras moléculas biológicas, en particular las proteínas encargadas del transporte y 

almacenamiento de elementos esenciales como el hierro, de oxígeno, etc. Aunque el estudio 

de las interacciones de los compuestos sintetizados con el ADN es fundamental, no 

podemos olvidarnos de que tanto en la sangre como en las células hay muchos otros 

componentes, con los que los compuestos de rutenio también pueden relacionarse. En este 

apartado se describe un experimento con el que se demuestra que, en efecto, el compuesto 

1b reacciona con la transferrina, una proteína que transporta el hierro desde la sangre hacia 

el interior de las células. Es importante preguntarse si puede haber alguna influencia entre 

esta interacción y la toxicidad del compuesto. 

Por último se plantea la necesidad de comprobar si los compuestos sintetizados tienen 

actividad antimetastática. Hoy en día las intervenciones quirúrgicas para eliminar tumores 

primarios son muy eficientes. Sin embargo, a menudo el tumor reaparece en otra parte del 

cuerpo, es lo que se conoce como metástasis. En la actualidad se está empezando a 

comprender cómo se lleva a cabo este proceso, y en consecuencia se están proponiendo 

formas de medir si un compuesto tiene propiedades antimetastáticas. 

En el Capítulo 6 se ofrece un resumen en inglés de los contenidos de la tesis, así 

como de las conclusiones que de ella se derivan. 

Al trabajar con guanina surgió un interesante trabajo que nada tiene que ver con el 

rutenio o con el cáncer. Por esto, se presenta en la forma de Apéndice a la tesis. En él se 

describe la obtención de una estructura cristalina de guanina en capas bidimensionales y 

paralelas entre sí (ver Figs.A.1 y A.3), con posibles aplicaciones teóricas, así como en el 

campo de la nanotecnología. 

Para finalizar se ofrecen un breve currículo de la autora de la tesis, una lista de los 

artículos publicados en los que se presentan partes de los resultados de dicha tesis y, en 

último lugar, los agradecimientos. 
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