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Introduction

LetQ — Qbean algebraic closure of the field of rational numbers Q. In this thesis we obtain
explicit bounds for Arakelov invariants of curves over Q. We use our results to give algorithmic,
geometric and Diophantine applications.

Let X be a smooth projective connected curve over Q of genus g. Belyi proved that there
exists a finite morphism X — Pla ramified over at most three points; see [5]. Let degyz(X)
denote the Belyi degree of X, i.e., the minimal degree of a finite morphism X — Pla unramified
over Pl6 — {0,1,00}. Since the topological fundamental group of the projective line P!(C)
minus three points is finitely generated, the set of Q-isomorphism classes of curves with bounded
Belyi degree is finite.

We prove that, if ¢ > 1, the Faltings height hp, (X ), the Faltings delta invariant dg, (X ),
the discriminant A(X') and the self-intersection of the dualizing sheaf e¢(.X') are bounded by a
polynomial in degz(X); the precise definitions of these Arakelov invariants of X are given in

Section 1.5.

Theorem A. For any smooth projective connected curve X over Q of positive genus g,

—log(2m)g < hra(X) < 13- 10%degp(X)°
0 < e(X) < 3-107(g—1)degy(X)°

0 < AX) < 5-10%¢*degp(X)°
—10%¢*degp(X)” < dpa(X) < 2-10%°¢degp(X)°.

We give several applications of Theorem A in this thesis. Before we explain these, let us
mention that the Arakelov invariants hg, (X ), e(X), A(X) and dg, (X ) in Theorem A all have a
different flavour to them. For example, the Faltings height hg, (X ) plays a key role in Faltings’
proof of his finiteness theorem on abelian varieties; see [23]. On the other hand, the strict posi-
tivity of e(X') (when g > 2) is related to the Bogomolov conjecture; see [64]. The discriminant
A(X) “measures” the bad reduction of the curve X/Q, and appears in Szpiro’s discriminant
conjecture for semi-stable elliptic curves; see [62]. Finally, as was remarked by Faltings in his

introduction to [24], Faltings’ delta invariant g, (X) can be viewed as the minus logarithm of
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a “distance” to the boundary of the moduli space of compact connected Riemann surfaces of
genus g.

We were first led to investigate this problem by work of Edixhoven, de Jong and Schepers
on covers of complex algebraic surfaces with fixed branch locus; see [22]. They conjectured an
arithmetic analogue ([22, Conjecture 5.1]) of their main theorem (Theorem 1.1 in loc. cit.). We
use our results to prove this conjecture; see Section 3.3 for a more precise statement.

Let us briefly indicate where the reader can find some applications of Theorem A in this

thesis.

1. The Couveignes-Edixhoven-Bruin algorithm for computing coefficients of modular forms

runs in polynomial time under the Riemann hypothesis for number fields; see Section 3.1.

2. Let U be a smooth quasi-projective curve over Q. We show that the “height” of a finite

étale cover of degree d of U is bounded by a polynomial in d; see Section 3.3.

3. Theorem A gives explicit bounds for the “complexity” of the semi-stable reduction of a
curve in terms of its Belyi degree. From this, we obtain explicit bounds on the “complexity”
of the semi-stable reduction for modular curves, Fermat curves and Galois Belyi curves; see
Corollary 3.2.2.

4. We prove a conjecture of Szpiro for genus g curves X over a number field K with fixed
set S of bad reduction (Szpiro’s small points conjecture) in a special case. More precisely,
we prove Szpiro’s small points conjecture for cyclic covers of prime degree; see Theorem
44.1.

In the course of proving Theorem A we establish several results which will certainly interest
some readers.

— We show that, in order to bound Arakelov invariants of a curve X over Q, it essentially
suffices to find an algebraic point  in X (Q) of bounded height; see Theorem 2.2.1.

— We prove a generalization of Dedekind’s discriminant conjecture; we learned the argument
from H.W. Lenstra jr. (Section 2.4.1).

— We use a theorem of Merkl-Bruin to prove explicit bounds for Arakelov-Green functions
of Belyi covers; see Section 2.3.

— We use techniques due to Q. Liu and D. Lorenzini to construct suitable models for covers
of curves; see Theorem 2.4.9.

To prove Theorem A we will use Arakelov theory for curves over a number field K. To apply

Arakelov theory in this context, we will work with arithmetic surfaces associated to such curves,

i.e., regular projective models over the ring of integers O of K. We refer the reader to Section



1.2 for precise definitions. For a smooth projective connected curve X over Q of genus g > 1,
we define the Faltings height hg, (X ), the discriminant A(X'), Faltings’ delta invariant g, (X)
and the self-intersection of the dualizing sheaf e(X') in Section 1.5. These are the four Arakelov
invariants appearing in Theorem A.

We introduce two functions on X (Q) in Section 1.7: the canonical Arakelov height function
and the Arakelov norm of the Wronskian differential. We show that, to prove Theorem A, it
suffices to bound the canonical height of some non-Weierstrass point and the Arakelov norm of
the Wronskian differential at this point; see Theorem 2.2.1 for a precise statement.

We estimate Arakelov-Green functions and Arakelov norms of Wronskian differentials on
finite étale covers of the modular curve Y (2) in Theorem 2.3.12 and Proposition 2.3.13, re-
spectively. In our proof we use an explicit version of a result of Merkl on the Arakelov-Green
function; see Theorem 2.3.2. This version of Merkl’s theorem was obtained by Peter Bruin in
his master’s thesis; see [9]. The proof of this version of Merkl’s theorem is reproduced in the
appendix to [30] by Peter Bruin.

In Section 2.5.2 we prove the existence of a non-Weierstrass point on X of bounded height;
see Theorem 2.5.4. The proof of Theorem 2.5.4 relies on our bounds for Arakelov-Green func-
tions (Theorem 2.3.12), the existence of a “wild” model (Theorem 2.4.9) and a generalization of
Dedekind’s discriminant conjecture for discrete valuation rings of characteristic zero (Proposi-
tion 2.4.1) which we attribute to Lenstra.

A precise combination of the above results constitutes the proof of Theorem A given in Sec-
tion 2.5.3.

The main result of this thesis (Theorem A) also appears in our paper [30]. In loc. cit. the
reader can also find the applications of Theorem A given in Chapter 3. The proof of Szpiro’s
small points conjecture for cyclic covers of prime degree is joint work with Rafael von Kénel;

see [31].



CHAPTER 1

Arakelov invariants, canonical Arakelov

height, Belyi degree

We are going to apply Arakelov theory to smooth projective geometrically connected curves X
over number fields K. In [3] Arakelov defined an intersection theory on the arithmetic surfaces
attached to such curves. In [24] Faltings extended Arakelov’s work. In this chapter we aim at
giving the necessary definitions for what we need later (and we need at least to fix our notation).

We start with some preparations concerning Riemann surfaces and arithmetic surfaces; see
Section 1.1 and Section 1.2. We recall some basic properties of semi-stable arithmetic surfaces in
Section 1.4. In Section 1.5 we define the main objects of study of this thesis: Arakelov invariants
of curves over Q For the sake of completeness, we also included a section on Arakelov invariants
of abelian varieties (Section 1.6). The results of that section will not be used to prove the main
result of this thesis. To prove the main result of this thesis, we will work with the canonical
Arakelov height function on a curve over Q; see Section 1.7. A crucial ingredient is an upper
bound for the Faltings height in terms of the height of a non-Weierstrass point and the Arakelov

norm of the Wronskian differential; this is the main result of Section 1.8. Finally, we introduce

the Belyi degree in Section 1.9 and prove some of its basic properties.

1.1. Arakelov invariants of Riemann surfaces

In this sections we follow closely [21, Section 4.4]. Let X be a compact connected Riemann
surface of genus ¢ > 1. The space of holomorphic differentials H°(X, Q%) carries a natural

hermitian inner product:

(@) 3/wAﬁ-
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For any orthonormal basis (wy, .. .,w,) with respect to this inner product, the Arakelov (1,1)-

form is the smooth positive real-valued (1, 1)-form p on X given by
i g
= % kz:; wi N\ Wy
Note that ¢ 1s independent of the choice of orthonormal basis. Moreover, f =1
Denote by C™ the sheaf of complex valued C'*°-functions on X, and by A! the sheaf of com-
plex C* 1-forms on X . There is a tautological differential operator d: C* — A!. It decomposes

as d = O + 0 where, for any local C* function f and any holomorphic local coordinate z, with

real and imaginary parts = and y, one has 0f = (g£ — ng )-dzand Of = (8f + zaf L) - dz.

Proposition 1.1.1. For each a in X, there exists a unique real-valued g, in C*°(X — {a}) such

that the following properties hold:

1. we can write g, = log |z — z(a)| + h in an open neighbourhood of a, where z is a local

holomorphic coordinate and where h is a C*°-function;
2. 90g, = mipon X — {a};
3 + Japt = 0.

Let gr be the Arakelov-Green function on (X x X)\A, where A C X x X denotes the
diagonal. That is, for any @ and b in X, we have gry(a,b) = ¢,(b) with g, as in Proposition
1.1.1; see [3], [15], [21] or [24] for a further discussion of the Arakelov-Green function gr . The
Arakelov-Green functions determine certain metrics whose curvature forms are multiples of p,
called admissible metrics, on all line bundles Ox (D), where D is a divisor on X, as well as on
the holomorphic cotangent bundle Q. Explicitly: for D = >, DpP a divisor on X (with Dp
a real number), the metric ||-|| on Ox (D) satisfies log ||1]|(Q) = gry (D, Q) for all ) away from
the support of D, where

grx (D, Q) : ZDPng (P, Q)
Furthermore, for a local coordinate z at a point a in X, the metric || - || s, on the sheaf 2% satisfies

—log [|dz||ax(a) = lim (grx(a,b) —log[2(a) — 2(b)])

We will work with these metrics on Ox (P) and 2% (as well as on tensor product combinations
of them) and refer to them as Arakelov metrics. A metrised line bundle L is called admissible if,
up to a constant scaling factor, it is isomorphic to one of the admissible bundles Ox (D). Note
that it 1s non-trivial to show that the line bundle Q}( endowed with the above metric is admissible;
see [3] for details. For an admissible line bundle £, we have curv(L) = (deg £) - u by Stokes’

theorem.



For any admissible line bundle £, we endow the determinant of cohomology
ML) = det H(X, £) ® det H (X, £)Y

of the underlying line bundle with the Faltings metric, i.e., the metric on A(L) determined by the
following set of axioms (cf. [24]): (i) any isometric isomorphism £; — L5 of admissible line
bundles induces an isometric isomorphism A(L;) — A(L2); (ii) if we scale the metric on L by

a factor a, the metric on \(£) is scaled by a factor aX(*), where
X(L)=degL—g+1

is the Euler-Poincaré characteristic of £; (iii) for any divisor D and any point P on X, the exact

sequence
0— Ox(D—-P)— Ox(D)— P.P*Ox(D) =0

induces an isometry A\(Ox (D)) —— A(Ox(D — P)) @ P*Ox(D); (iv) for £ = QL the metric
on \(£) = det HY(X, Q%) is defined by the hermitian inner product

(w,17) (i/Q)/Xw/\ﬁ

on H°(X, Q). In particular, for an admissible line bundle £ of degree g — 1, the metric on the
determinant of cohomology A(£) does not depend on the scaling.

Let H, be the Siegel upper half space of complex symmetric g-by-g-matrices with positive
definite imaginary part. Let 7 in H, be the period matrix attached to a symplectic basis of

H; (X, Z) and consider the analytic Jacobian
J(X)=CY/(Z + 1Z9)
attached to 7. On CY one has a theta function

Wz 1) =Vop(z;7) = Z exp(mi 'nn + 2mi'nz),
neZ9

giving rise to a reduced effective divisor ©, and a line bundle O(©y) on J,(X). The function v

is not well-defined on J.(X). Instead, we consider the function
19 (z57) = (det S(r))"* exp(=my(S(r)) "' y)0(= 7)),

with y = (2). One can check that ||| descends to a function on .J,(X'). Now consider on the
other hand the set Pic,_;(X) of divisor classes of degree g — 1 on X. It comes with a canonical
subset © given by the classes of effective divisors and a canonical bijection Pic,_1(X) — J,(X)
mapping O onto O. As a result, we can equip Pic,_; (X)) with the structure of a compact com-

plex manifold, together with a divisor © and a line bundle O(0). Note that we obtain ||J||
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as a function on Pic,_1(X). It can be checked that this function is independent of the choice
of 7. Furthermore, note that ||| gives a canonical way to put a metric on the line bundle O(O)
on Pic,_(X).

For any line bundle £ of degree g — 1 there is a canonical isomorphism from A(L) to
O(—0)[L], the fibre of O(—0O) at the point [£] in Pic,_;(X) determined by L. Faltings proves
that when we give both sides the metrics discussed above, the norm of this isomorphism is a
constant independent of £; see [24, Section 3]. We will write this norm as exp(dp.(X)/8) and
refer to O, (X) as Faltings’ delta invariant of X. (Note that g, (X) was denoted as §(X) by
Faltings in [24].)

Let S(X) be the real number defined by

logS(X) = — /X log [9][(9P — Q) - u(P). (1L1.1)

where () is any point on X; see [15]. It is related to Faltings’ delta invariant dg,;(X). In fact, let
(w1, ... ,w,) be an orthonormal basis of H(X, ). Let b be a point on X and let z be a local

coordinate about b. Write w;, = frdz for k = 1,..., g. We have a holomorphic function

1 dlilfk
W, (w) = det <——)
(1 —1)! dzt-1 I<hi<g

locally about b from which we build the g(g + 1)/2-fold holomorphic differential
Wz(w)(dz)@@g(g“)m.

It is readily checked that this holomorphic differential is independent of the choice of local
coordinate and orthonormal basis. Thus, this holomorphic differential extends over X to give
a non-zero global section, denoted by Wr, of the line bundle Q?}g(gﬂ)/ ®. The divisor of the
non-zero global section Wr, denoted by W, is the divisor of Weierstrass points. This divisor is
effective of degree ¢° — g. We follow [15, Definition 5.3] and denote the constant norm of the

canonical isomorphism of (abstract) line bundles
Q2 @0 (AMHO(X, Q%) @c Ox)" — Ox(W)
by R(X). Then,
log S(X) = ééFal(X) +log R(X). (1.1.2)

Moreover, for any non-Weierstrass point b in X,

gry(W,b) —log R(X) = log||Wr|/a:(b). (1.1.3)



1.2. Arakelov invariants of arithmetic surfaces

Let K be a number field with ring of integers Ok, and let S = SpecOg. Letp : X — S
be an arithmetic surface, i.e., an integral regular flat projective S-scheme of relative dimension
1 with geometrically connected fibres; see [41, Chapter 8.3] for basic properties of arithmetic
surfaces.

Suppose that the genus of the generic fibre X is positive. An Arakelov divisor D on X
is a divisor Dg, on X, plus a contribution D;,y = ) o, F, running over the embeddings
o : K — C of K into the complex numbers. Here the o, are real numbers and the F), are
formally the “fibers at infinity”, corresponding to the Riemann surfaces &, associated to the al-
gebraic curves X X, » C. We let EE(X ) denote the group of Arakelov divisors on X'. To a
non-zero rational function f on X, we associate an Arakelov divisor &R/( £) = (Han + (f)int
with (f)sn the usual divisor associated to f on X, and (f)inr = > v (f)F,, where we define
Vo (f) = — [y 10g|fls - p1o. Here ju, is the Arakelov (1,1)-form on X, as in Section 1.1. We
will say that two Arakelov divisors on X" are linearly equivalent if their difference is of the form
dfl\v( f) for some non-zero rational function f on X'. We let 61(2( ) denote the group of Arakelov
divisors modulo linear equivalence on X'.

In [3] Arakelov showed that there exists a unique symmetric bilinear map

(-,): Cl(x) x Cl(X) — R
with the following properties:

— if D and E are effective divisors on X without common component, then

(D7E) = (DvE)ﬁn_ Z ngU(DmEU)a

o K—C
where ¢ runs over the complex embeddings of K. Here (D, E)g, denotes the usual inter-

section number of D and F as in [41, Section 9.1], i.e.,

(D, E)in = Y _ io(D, E)log #k(s),

s€|S|
where s runs over the set of closed points |S| of S, is(D, E) is the intersection multiplicity
of D and F at s and k(s) denotes the residue field of s. Note that if D or E is vertical ([41,
Definition 8.3.5]), the sum ) _ . .~ gry (Do, E,) is zero;
— if D is a horizontal divisor ([41, Definition 8.3.5]) of generic degree n over S, then (D, F,,) = n
foreveryo : K — C;

— if 09,09 : K — C are complex embeddings, then (F,,, F,,) = 0.



In particular, if D is a vertical divisor and £ = Fy, + Ej,¢ is an Arakelov divisor on X', we have
(D, E) = (D, Ein)fin-

An admissible line bundle on X is the datum of a line bundle £ on &, together with admissible
metrics on the restrictions £, of £ to the X,. Let 151\(:(.)( ) denote the group of isomorphism classes
of admissible line bundles on X'. To any Arakelov divisor D = Dg,+ Diy¢ With Dips = > o Fy,
we can associate an admissible line bundle Ox (D). In fact, for the underlying line bundle of
Ox(D) we take Ox(Dg,). Then, we make this into an admissible line bundle by equipping
the pull-back of Oy (Dg,) to each X, with its Arakelov metric, multiplied by exp(—a, ). This
induces an isomorphism Gl(X) —s I/’1\0(X) . In particular, the Arakelov intersection of two
admissible line bundles on X is well-defined.

Recall that a metrised line bundle (L, ||-||) on Spec Ok corresponds to an invertible O-
module, L, say, with hermitian metrics on the complex vector spaces L, := C ®, 0, L. The
Arakelov degree of (L, ||||) is the real number defined by:

deg(L) = deg(L, ||[|) = log #(L/Oxs) — Y log|lsll..

o: K—C

where s is any non-zero element of L (independence of the choice of s follows from the product
formula).

Note that the relative dualizing sheaf wx /0, of p : X — S is an admissible line bundle on X
if we endow the restrictions Q}YU of wx /o, to the X, with their Arakelov metric. Furthermore,

for any section P : S — X, we have
deg P*WX/OK = (OX<P)7MX/OK) = (P7wX/OK)7

where we endow the line bundle P*wyx /0, on Spec Ok with the pull-back metric.

We state three basic properties of Arakelov’s intersection pairing; see [3] and [24].

Adjunction formula: Let b : Spec Ox — X be a section. Then

(b7 b) = _(OX(bL CLJ)(/OK)7
where we identify b : Spec O — X’ with its image in X.

Base change: Let L./ K be a finite field extension with ring of integers O, and let
q : Spec O, — Spec Ok

be the associated morphism. Then, if X’ — X X, Spec O, denotes the minimal resolution
of singularities and r : X’ — X’ is the associated morphism, for two admissible line bundles
L and Ly 0on X,

(r*Ly,7*Ls) = [L: K|(L1, Ls).



Riemann-Roch: Let £ be an admissible line bundle on X'. Let det R p, L be the determinant of
cohomology on Spec Ok endowed with the Faltings metric (defined in Section 1.1). Then

there is a canonical isomorphism of metrized line bundles
det R'p.wx /0, = det puwx /o
on Spec Ok and
— ‘ 1 B —
degdet Rp,L = 5(/5, L& wX}OK) + deg det p.wx /oy -

We are now ready to define certain invariants (read “real numbers”) associated to the arith-

metic surface p : X' — Spec Og. We will refer to these invariants as Arakelov invariants of
X.
The Faltings delta invariant of X is defined as

Opa(X) = Z Opal (X ),
0:0g—C

where o runs over the complex embeddings of O into C. Similarly, we define

[[9]lmax (X) = H max )Hﬁ“

Picy,_1(X,
g:0g—C feg—1(Xa

Moreover, we define

RX)= ]] R&X), sx)= ]] S(&).

:0g—C 0:0—C

The Faltings height of X is defined by
hFal(-X) = d/CE detp*w;(/oK = d/e\g det R’p*(’)/y,

where we endow the determinant of cohomology with the Faltings metric (Section 1.1) and
applied Serre duality. Furthermore, we define the self-intersection of the dualizing sheaf of X,
denoted by e(X), as

e(X) = (Wx ok, Wx /oK),

where we employed Arakelov’s intersection pairing on the arithmetic surface X'/Ok.

1.3. Arakelov invariants of curves over number fields

Let K be a number field with ring of integers O . For a curve X over K, a regular (projective)

model of X over O consists of the data of an arithmetic surface p : X — SpecOg and an
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isomorphism X = X, of the generic fibre &, of p : X — Spec Og over K. Recall that any
smooth projective geometrically connected curve X over K has a regular model by Lipman’s
theorem ([41, Theorem 9.3.44]). For a curve X over K, a (relatively) minimal regular model
of X over Oy is a regular model p : X — Spec Ok which does not contain any exceptional
divisors; see [41, Definition 9.3.12]. Any smooth projective geometrically connected curve over
K of positive genus admits a unique minimal regular model over O see [41, Theorem 9.3.21].

Let X be a smooth projective geometrically connected curve over K of positive genus. We
define certain invariants (read “real numbers”) associated to X. We will refer to these invariants
of X as Arakelov invariants.

Letp : X — Spec Ok be the minimal regular model of X over Og. Then
Opal(X/K) == par(X), |9 ]|lmax (X/K) = [[0]|max (),

S(X/K):=8(X), R(X/K):=R(X).
Moreover,
hpa(X/K) := hpa(X), e(X/K) :=e(X).
The following proposition shows that the Arakelov invariant hg, (X/K’) can be computed on any

regular model of X over Og.
Proposition 1.3.1. Let ) — Spec O be a regular model for X over Oy. Then hg(X/K) = hga ().

Proof. Recall that p : X — Spec O denotes the minimal regular model of X over Og. By
the minimality of X, there exists a unique birational morphism ¢ : Y — &X; see [41, Corollary
9.3.24]. Let E be the exceptional locus of ¢. Since the line bundles wy o, and ¢*wx 0, agree
on ); — FE, there is an effective vertical divisor V' (supported on F) and an isomorphism of
admissible line bundles

wy/0, = ¢ Wx/0x Doy Op(V).

By the projection formula and the equality ¢,O (V) = Oy, we obtain that

(PP)xwy 0 = Psbs (P wWx )0, R0, Op(V)) = Putdx /0 -

In particular, det(po).wy jox = det p,wx /o, . Taking the Arakelov degree, the latter implies
that

It (X/K) = hia(X) = hea(). O
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1.4. Semi-stability

The Arakelov invariants of curves we introduce in this chapter are associated to models with
“semi-stable” fibers. In this short section, we give the necessary definitions and basic properties
needed in this thesis concerning semi-stable arithmetic surfaces.

Let K be a number field with ring of integers O

Definition 1.4.1. Let p : X — Spec Ok be an arithmetic surface. We say that X is semi-stable
(or nodal) over Oy if every geometric fibre of X' over O is reduced and has only ordinary

double singularities; see [41, Definition 10.3.1].

Remark 1.4.2. Suppose that X is semi-stable and minimal. The blowing-up J — A along a

smooth closed point on & is semi-stable over O, but no longer minimal.

Definition 1.4.3. Let p : X — Spec Ok be a semi-stable arithmetic surface. The discriminant
of X (over Ok), denoted by A(X), is defined as

A(X) =) b, log#k(p).
pCOK
where p runs through the maximal ideals of Ox and d, denotes the number of singularities in the
geometric fibre of p : X — Spec Ok over p. Since p : X — Spec O is smooth over all but
finitely many points in Spec O and the fibres of X — Spec O are geometrically reduced, the

discriminant of X" is a well-defined real number.
We will work with the following version of the semi-stable reduction theorem.

Theorem 1.4.4. (Deligne-Mumford) [18] Let X be a smooth projective geometrically con-
nected curve over K of positive genus. Then, there exists a finite field extension L/ K such that

the minimal regular model of the curve Xy, over Oy, is semi-stable over Oy,

Theorem 1.4.5. Let p : X — Spec Ok be a semi-stable arithmetic surface. Let L]/ K be a finite
field extension, and let Oy, be the ring of integers of L. Let X' — X X, Op, be the minimal

resolution of singularities, and let r : X' — X be the induced morphism.
1. The arithmetic surface p' : X' — Spec Oy, is semi-stable.
2. The equality of discriminants A(X)[L : K] = A(X") holds.
3. The canonical morphism wy /0, — *Wx /0, is an isomorphism of line bundles on X'

4. The equality e(X)[L : K| = e(X’) holds.

12



5. Let q : SpecOp — SpecOg be the morphism of schemes associated to the inclusion

Ok C Oy. Then, the canonical map

det plwrrjo, — ¢* det powx o

is an isomorphism of line bundles on Spec Oy,

6. The equality hp, (X)L : K| = hga(X') holds.

Proof. We start with the first two assertions. To prove these, we note that the scheme X X, Op,
is normal and each geometric fibre of the flat projective morphism X X, Op — SpecOp is
connected, reduced with only ordinary double singularities. Thus, the minimal resolution of
singularities X’ — & x ¢, O, is obtained by resolving the double points of X’ x,. Op. By [41,
Corollary 10.3.25], a double point in the fiber of X ®¢,, O, — Spec O, over the maximal ideal
q C Oy is resolved by ¢4 — 1 irreducible components of multiplicity 1 isomorphic to P}C( o With
self-intersection —2, where k(q) denotes the residue field of q and e, is the ramification index of
q over Og. This proves the first two assertions. The third assertion is proved in [37, Proposition
V.5.5]. The fourth assertion follows from the third assertion and basic properties of Arakelov’s

intersection pairing. Finally, note that (5) follows from (3) and (6) follows from (5). O

Definition 1.4.6. Let X be a smooth projective geometrically connected curve over K with semi-
stable reduction over Ok, and let ¥ — Spec O be its minimal regular (semi-stable) model over
Ogk. We define the discriminant of X over K by A(X/K) := A(X).

Remark 1.4.7. Let us mention that, more generally, one can define the “relative discriminant”
of a curve X over K to be the Artin conductor of its minimal regular model over Ox. More
generally, one can even give a sensible definition of the relative discriminant of an arithmetic
surface in this way. Since we are only dealing with curves with semi-stable reduction over K,

we do not give a precise definition, but rather refer the interested reader to Saito [54].

1.5. Arakelov invariants of curves over (Q

The following lemma asserts that Arakelov invariants of curves with semi-stable reduction

are “stable”.

Lemma 1.5.1. Let K be a number field and let X, be a smooth projective geometrically con-
nected curve over K of positive genus. Assume that the minimal regular model of X over Ok

is semi-stable over Of. Then, for any finite field extension L/ K, we have
hFal (Xo/K) [L . K] = hFal((XO XK L)/L),

13



A(Xo/K)[L: K] = A((Xo xx L)/L),
Proof. This follows from the second, fourth, and sixth assertion of Theorem 1.4.5. ]

Remark 1.5.2. Let X be a smooth projective geometrically connected curve over a number field
K. One can consider stable Arakelov invariants of X . These are defined as follows. Let L/ K be
a finite field extension such that X; has semi-stable reduction over Oy,.. Then the stable Arakelov

invariants of X over K are defined as

_ hpa(Xp/L) _e(Xy/L)
hFal,stable(X ) = W, estable<X ) = m,
Astable(J() = M

[L: Q]

By Lemma 1.5.1, these invariants do not depend on the choice of field extension L/ K.

Let Q — Q be an algebraic closure of the field of rational numbers Q. Let X be a smooth
projective connected curve over Q of positive genus. There exists a number field K, an embed-
ding K — Q and a model X, over K for X, with respect to the embedding Kk — Q, such
that the minimal regular model of X over Oy is semi-stable. This follows from the semi-stable

reduction theorem (Theorem 1.4.4). We wish to show that the real numbers

hFal,stable(XO)7 estable(X0)7 and Astable(XO)

are invariants of X over Q, i.e., they do not depend on the choice of K, K — Q and X,. This

boils down to the following lemma.

Lemma 1.5.3. Let K/Q be a finite Galois extension with ring of integers Og. Letp : X — Spec O
be a semi-stable arithmetic surface. Then, for any g in the Galois group Gal(K/Q), the equali-
ties

hpa(X) = hra(9X), e(X) =e(gX), A(X) = A(gX)
hold, where gX is the conjugate of X with respect to g.

Proof. Since g permutes the finite places of K with the same residue characteristic, it is clear

that A(X) = A(gX). Note that hp, (X) = hpa(gX). In fact, we have a cartesian diagram

gx X
Q\L lp
Spec Og —;> Spec Ok.
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Note that g* det p.wx /0, = det g.wyx /0, - By the Galois invariance of the Arakelov degree EGE,

we conclude that
hpa(X) = degdet p.wy o, = deg g* det uwyx /0, = degdet gwgx /o -

The latter clearly equals hp,(gX). A similar reasoning applies to the self-intersection of the
dualizing sheaf e(X). O

We are now ready to define Arakelov invariants of X over Q. We define

_ Oral(Xo/ K)
[K:Q]

S(X) = S(Xo/K)l/[K:Q], R(X) = R(XO/K)I/[K:Q]_

Ora(X) : 19 () = (9] (Xo/ )5,

We will refer to g, (X ) as the Faltings delta invariant of X. We also define
hFal(X) = hFal,stable<X0)a €(X) = estable(XO)a A(X) = Astable(Xo)-

We will refer to hg, (X) as the Faltings height of X, to e(X) as the self-intersection of the
dualizing sheaf of X and to A(X) as the discriminant of X.

1.6. The stable Faltings height of an abelian variety

In this section we state two important properties of the Faltings height of a curve over Q. Let
us be more precise.

Let K be a number field, and let A be a g-dimensional abelian variety over K. Let A be the
Néron model of A over Of; see [7]. Then we have the locally free O x-module Coto(A) := 0*Q4/0,

of rank ¢, and hence the invertible O -module of rank one:
wa = ACotg(A).
For each complex embedding o : K — C, we have the scalar product on C ®¢, w4 given by
(W, ) = L(=1)90-Dr2 / T
2 4,(0)

The relative Faltings height of A over K is then defined to be the Arakelov degree of the metrized
line bundle wy,
hFal(A/K> = deg wy.

Recall that A has semi-stable reduction over Oy if the unipotent rank of each special fibre
of A over Ok equals zero. By the semi-stable reduction theorem for abelian varieties (see [1]),

there exists a finite field extension L /K such that A, has semi-stable reduction over Oy,.
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Definition 1.6.1. Let L/ K be a finite field extension such that A has semi-stable reduction over

Op. Then the stable Faltings height of A is defined to be

hra(Ar/L
hFal,stable(A) = %

Definition 1.6.2. Let A be an abelian variety over Q. Let K be a number field such that the
abelian variety A has a model Ay over K with semi-stable reduction over O. Then the Falt-
ings height of A is defined as hp,(A) := hpastble(Ao)-

To show that these invariants are well-defined one applies arguments similar to those given in
the proofs of Lemma 1.5.1 and Lemma 1.5.3. For the sake of completeness, we now state two

important properties of the Faltings height.
Theorem 1.6.3. Let X be a curve over Q of positive genus. Then
hpa1(X) = hpa(Jac(X)).
Proof. See Lemme 3.2.1 of Chapter 1 in [59]. [
The Faltings height has the following Northcott property.

Theorem 1.6.4. (Faltings) Let C' be a real number and let g be an integer. For a number field
K, there are only finitely many K -isomorphism classes of g-dimensional principally polarized

abelian varieties A over K such that A has semi-stable reduction over O and hpy < C.
Proof. This is shown in [23]. An alternative proof was given by Pazuki in [50]. O
This implies the Northcott property for the Faltings height of curves.

Theorem 1.6.5. Let C be a real number, and let g > 2 be an integer. For a number field K, there
are only finitely many K -isomorphism classes of smooth projective connected curves X over K

of genus g with semi-stable reduction over O and hga) siapie(X) < C.

Proof. The Faltings height of X coincides with the Faltings height of its Jacobian J; see The-
orem 1.6.3. Moreover, X has semi-stable reduction over O if and only if J has semi-stable
reduction over Ok ; see [18]. Thus, the result follows from Torelli’s theorem (and a standard

Galois cohomology argument as in Remark 4.1.4). [

1.7. Arakelov height and the Arakelov norm of the Wronskian

The main goal of this thesis is to obtain bounds for the Arakelov invariants defined in Section

1.5. To do this, we introduce the height function on a curve. Let us be more precise.
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Let X be a smooth projective connected curve over Q of positive genus. We introduce two
functions on X (Q): the height and the Arakelov norm of the Wronskian differential. More
precisely, let b € X(Q). Let K be a number field, K — Q an embedding and X, a smooth
projective geometrically connected curve over K whose minimal regular model X — Spec Oy
over Oy is semi-stable such that X, x x Q is isomorphic to X over Q and b induces a section P
of X over Ok. Then we define the (canonical Arakelov) height of b, denoted by h(b), to be
h(b) = degP*wa /o, _ (P wxjox)

(K : Q] [K: Q]

Note that the height of b is the stable canonical height of a point, in the Arakelov-theoretic sense,

with respect to the admissible line bundle wy /0, . That is, let K be a number field, X' — Q an
embedding and X a smooth projective geometrically connected curve over K whose minimal
regular model X — Spec O over Ok is semi-stable such that Xy X g Qis isomorphic to X
over Q and b induces an algebraic point bx of X. If D denotes the Zariski closure of b in X,

then
(D, wx/ox)
[K : Q]deg(D/K)

The height is a well-defined function, i.e., independent of the choice of K, K — Q and X,. To

h(b) =

prove this, one can argue as in Section 1.5.

Moreover, we define the Arakelov norm of the Wronskian differential

[Wrf| - X(Q) = R

as

1/[K:Q]
‘|WrHAr(b) = ( H ‘|WrHAr(ba)> :

0:K—C
Example 1.7.1. For the reader’s convenience, we collect some explicit formulas for elliptic

curves from [16], [24] and [57]. Suppose that X /Q is an elliptic curve. Then e(X) = 0 and
12hFal(X) = A(X) + 5Fal(X) — 410g(27r).

One can relate A(X ) and 6,1 (X) to some classical invariants. In fact, let K, K — Q, X, — Spec K
and X — SpecOg be as above. Let D be the minimal discriminant of the elliptic curve
Xo — Spec K and let |A||(Xo,) be the modular discriminant of the complex elliptic curve

Xo,0» where 0 : O — C is a complex embedding. Then
A(X) = log [Nk/q(D)];
where N /q is the norm with respect to //Q. Moreover,

K QJoea(X) + [K: QIlog(2m) = 3 —log [ A](Xo.0).

0:0—C
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Szpiro showed that, for any b € X(Q), we have 12h(b) = A(X). In particular, the “height”

function on X (Q) is constant. Therefore, h : X(Q) — R is not a “height” function in the

usual sense when g = 1.

If g > 2, for any real number A, there exists a point z € X (Q) such that h(z) > A; see [58,

Exposé XI, Section 3.2]. Also, if g > 2, the canonical Arakelov height function on X (Q) has the

following Northcott property. For any real number C' and integer d, there are only finitely many

2 in X (Q) such that h(z) < C and [Q(x) : Q] < d. Faltings showed that, for all = in X(Q),
the inequality h(z) > 0 holds; see [24, Theorem 5]. In particular, when g > 2, the function

h: X(Q) — R>q is a height function in the usual sense.
Changing the model for X might change the height of a point. Let us show that the height of

a point does not become smaller if we take another regular model over O.

Lemma 1.7.2. Let X' — Spec Ok be an arithmetic surface such that the generic fibre Xj. is

isomorphic to Xg. Suppose that b € X (Q) induces a section Q) of X' — Spec Og. Then

h(b) < (Qan’/OK)
(K : Q]
Proof. By the minimality of X', there is a unique birational morphism ¢ : X’ — X; see [41,
Corollary 9.3.24]. By the factorization theorem, this morphism is made up of a finite sequence
X/:Xngxn_lg...*ﬂxozx

of blowing-ups along closed points; see [41, Theorem 9.2.2]. For an integer 7 = 1,...,n, let
E; C A denote the exceptional divisor of ¢;. Since the line bundles wy, /0, and ¢jwx, /04

agree on X; — E;, there is an integer a such that
Wx,; /0 = ¢:WX¢71/OK ®Oxi OXz(aEZ)

Applying the adjunction formula, we see that @ = 1. Since ¢; restricts to the identity morphism

on the generic fibre, we have a canonical isomorphism of admissible line bundles
W, /0K = G;Wx, 10k ®0x, Ox;(Ej).
Let Q; denote the section of X; over O induced by b € X (Q). Then
(Qiswx,j0k) = (Qisdiwx,_1j0k) + (Qis Ey) > (Qi, djwa, 0k )
= (Qi—la WXH/OK),
where we used the projection formula in the last equality. Therefore,
(@, wxrj0x) = (Qn, Wx,j0x) = (Qo, Wan/0x) = (Prwxjoy)-
Since (P, wx/0,) = h(b)[K : Q], this concludes the proof. O
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1.8. A lower bound for the height of a non-Weierstrass point

We follow [15] in this section.

Proposition 1.8.1. Let X be a smooth projective connected curve over Q of genus g > 1. Then,

for any non-Weierstrass point b in X (Q),

%g(g + 1)h(b) + log [We|[ar(b) = A (X).

Proof. This follows from [15, Proposition 5.9]. Let us explain this. Let K be a number field
such that X has a model X, over K with semi-stable reduction over O and the property that b
is rational over K. Then, if p : X — Spec Ok is the minimal regular (semi-stable) model of X,
over Oy, by [15, Proposition 5.9], the real number 3g(g + 1)(P, wx/0, ) equals
hea(X) = ) log [Wrllarx, (bs) +log (#R'p.Ox(gP)) .
o K—C

where we let P denote the section of p : X — Spec O induced by b. Since
log (#R'p.Ox(gP)) > 0,

the inequality

1
5909+ D(Pwrjo,) > hra(X) = > log|[Wrllarx, (bo)

o:K—C

holds. Dividing both sides by [K : Q] gives the sought inequality. In fact, by definition,

~ (Pywxjox) ~ hpa(X)
h<b)_—[KQ] 5 hFal(X)_ [K:Q]’
and .
log [[Wr||ar(b) = mm;c log [|[Wr||ar,x,, (bo)- u

1.9. The Belyi degree of a curve

We finish this chapter with a discussion of the Belyi degree of a smooth projective connected

curve over Q.

Theorem 1.9.1. Let X be a smooth projective connected curve over C. Then the following
assertions are equivalent.

1. The curve X can be defined over a number field.

2. There exists a finite morphism X — P& ramified over precisely three points.
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Proof. Weil (and later Grothendieck) showed that “2 implies 1”; see [27]. In [5] Belyi proved
that “1 implies 2. O]

Example 1.9.2. Let I' C SILy(Z) be a finite index subgroup. Then the compactification X
of the Riemann surface I"\H (obtained by adding cusps) can be defined over a number field.
This follows from the implication (2) = (1) of Theorem 1.9.1. In fact, the morphism
Xr — X(1) & Pg of degree at most [SLy(Z) : T is ramified over precisely three points if
g(Xr) > 1. (The isomorphism X (1) = P!(C) is given by the j-invariant.)

Example 1.9.3. Let n > 4 be an integer. Let F'(n) be the curve defined by the equation
" +y" = 2" in P%4. We call F(n) the Fermat curve of degree n. The morphism from F'(n) to

n

Pla given by (z : y : z) — (2" : 2") is ramified over precisely three points. We note that this

finite morphism is of degree n.

Definition 1.9.4. Let X be a smooth projective connected curve over C which can be defined
over a number field. Then the Belyi degree of X, denoted by deg (X ), is defined as the minimal

degree of a finite morphism X — P ramified over precisely three points.

Remark 1.9.5. Let U over Q be a smooth quasi-projective connected variety over Q. Then
base-change from Q to C (with respect to any embedding Q@ — C) induces an equivalence of
categories from the category of finite étale covers of U to the category of finite étale covers of
Uc; see [27]

Definition 1.9.6. Let X be a smooth projective connected curve over Q. Then the Belyi degree
of X, denoted by degy(X), is defined as the minimal degree of a finite morphism X — Pla

ramified over precisely three points. (Note that such a morphism always exists by Remark 1.9.5.)

Definition 1.9.7. Let X be a curve over a number field /. Let ' — C be a complex embedding.
We define the Belyi degree degy(X) of X to be the Belyi degree of X. This real number is
well-defined, i.e., it does not depend on the choice of the embedding K — C.

Example 1.9.8. The Belyi degree of the curve X is bounded from above by the index of I in
SLs(Z).

Example 1.9.9. For all n > 1, the Belyi degree of the Fermat curve F'(n) is bounded by n?.
Lemma 1.9.10. For X a smooth projective connected over Q of genus g, we have 2g+1 < degz(X).

Proof. Letm : X — Pla be ramified over precisely three points. By Riemann-Hurwitz, the
equality 2g — 2 = —2 deg 7 + deg R holds, where R is the ramification divisor of 7 : X — Pla.
The lemma follows from the inequality deg R < 3degm — 3. [

20



Example 1.9.11. The Belyi degree of the genus g curve y? +y = x%97!

equals 2¢g + 1. In fact,
the projection onto y is a Belyi cover of degree 2g + 1. In particular, the inequality of Lemma

1.9.10 is sharp.

Proposition 1.9.12. Let C be a real number. The set of Q-isomorphism classes of smooth pro-

Jective connected curves X such that degg(X) < C is finite.

Proof. The fundamental group of the Riemann sphere minus three points is finitely generated.
[]
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CHAPTER 2

Polynomial bounds for Arakelov invariants

of Belyi curves

This chapter forms the technical heart of this thesis. Most of the results of this chapter also

appear in our article [30].

2.1. Main result

We prove that stable Arakelov invariants of a curve over a number field are polynomial in the
Belyi degree. We use our results to give algorithmic, geometric and Diophantine applications in
the following two chapters.

Let X be a smooth projective connected curve over Q of genus g. In [5] Belyi proved that
there exists a finite morphism X — Pla ramified over at most three points. Let deg;(.X') denote
the Belyi degree of X (introduced in Section 1.9). Since the topological fundamental group
of the projective line P'(C) minus three points is finitely generated, the set of Q-isomorphism
classes of curves with bounded Belyi degree is finite; see Proposition 1.9.12. In particular, the
“height” of X is bounded in terms of deg(X).

We prove that, if g > 1, the Faltings height hg,(X), the Faltings delta invariant 0p, (X),
the discriminant A(X') and the self-intersection of the dualizing sheaf e(.X) are bounded by an
explicitly given polynomial in deg(X).

Theorem 2.1.1. For any smooth projective connected curve X over Q of genus g > 1,

—log(2m)g < hra(X) < 13-10%degp(X)°
0 e(X) < 3-107(g — 1) degy(X)?
0 A(X) < 5-10%¢2degp(X)®
—10%¢? degp(X)® < dpa(X) < 2-108¢gdegp(X)°.

A

IA
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We were first led to investigate this problem by work of Edixhoven, de Jong and Schepers
on covers of complex algebraic surfaces with fixed branch locus; see [22]. They conjectured an
arithmetic analogue ([22, Conjecture 5.1]) of their main theorem (Theorem 1.1 in loc. cit.). We

use our results to prove their conjecture; see Section 3.3 for a more precise statement.

Outline of proof

To prove Theorem 2.1.1 we will use Arakelov theory for curves defined over a number field
K. To apply Arakelov theory in this context, we will work with arithmetic surfaces associated
to such curves. We refer the reader to Section 1.2 for precise definitions.

Firstly, we show that, to prove Theorem 2.1.1, it suffices to bound the canonical height of
some non-Weierstrass point and the Arakelov norm of the Wronskian differential at this point;
see Theorem 2.2.1 for a precise statement.

In Section 2.3 we have gathered all the necessary analytic results. We estimate Arakelov-
Green functions and Arakelov norms of Wronskian differentials on finite étale covers of the
modular curve Y'(2) in Theorem 2.3.12 and Proposition 2.3.13, respectively. In our proof we use
an explicit version of a result of Merkl on the Arakelov-Green function; see Theorem 2.3.2. This
version of Merkl’s theorem was obtained by Peter Bruin in his master’s thesis ([9]). The proof
of this version of Merkl’s theorem is reproduced in the appendix of [30] by Peter Bruin.

In Section 2.5.2 we prove the existence of a non-Weierstrass point on X of bounded height;
see Theorem 2.5.4. The proof of Theorem 2.5.4 relies on our bounds for Arakelov-Green func-
tions (Theorem 2.3.12), the existence of a “wild” model (Theorem 2.4.9) and a generalization of
Dedekind’s discriminant conjecture for discrete valuation rings of characteristic zero (Proposi-
tion 2.4.1) which we attribute to H.W. Lenstra jr.

A precise combination of the above results constitutes the proof of Theorem 2.1.1 given in

Section 2.5.3.

2.2. Reduction to bounding the Arakelov height of a point

In this section we prove bounds for Arakelov invariants of curves in the height of a non-

Weierstrass point and the Arakelov norm of the Wronskian differential in this point.

Theorem 2.2.1. Let X be a smooth projective connected curve over Q of genus g > 1. Let

b€ X(Q). Then
e(X) < 49(g — 1)h(b),

Ora(X) > —90¢% — 4g(29 — 1)(g + 1)h(b).
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Suppose that b is not a Weierstrass point. Then

hgal(X) 19(g + 1)h(b) + log ||Wr||ac(b),
opal(X) < 6g(g + 1)h(D) + 121og || Wr||a. (D) + 4glog(27),
A(X) < 2g9(g+1)(4g + 1)h(b) + 121og | Wr|| a:(D) 4+ 93¢°.

ARVAN

This theorem is essential to the proof of Theorem 2.1.1 given in Section 2.5.2. We give a

proof of Theorem 2.2.1 at the end of this section.

Lemma 2.2.2. For a smooth projective connected curve X over Q of genus g > 1,
10g ||| max (X) < %log max(1, hra(X)) + (4g° + 59 + 1) log(2).

Proof. We kindly thank R. de Jong for sharing this proof with us. We follow the idea of [26,
Section 2.3.2], see also [14, Appendice]. Let F, be the Siegel fundamental domain of dimension
g in the Siegel upper half-space H,, i.e., the space of complex (g x g)-matrices 7 in H, such
that the following properties are satisfied. Firstly, for every element u;; of v = R(7), we have
lu;j| < 1/2. Secondly, for every v in Sp(2g, Z), we have det (v - 7) < det I(7), and finally,
3 (7) is Minkowski-reduced, i.e., for all £ = (&1, ...,&,) € Z9 and for all ¢ such that §;, ..., ¢,
are non-zero, we have £3(7)%¢ > (S(7)), and, forall 1 < i < g — 1 we have (3(7));:11 > 0.
One can show that 7, contains a representative of each Sp(2¢, Z)-orbit in H,.

Let K be a number field such that X has a model Xy over K. For every embedding

o : K — C, let 7, be an element of F, such that
Jac( Xk o) = CY/(1,2° +27)

as principally polarized abelian varieties, the matrix of the Riemann form induced by the polar-
ization of Jac(X[ ) being I(7,) ! on the canonical basis of CY. By a result of Bost (see [26,

Lemme 2.12] or [50]), we have

ZU:K—>C IOg det (%(7—0))
(K- Q]
Here we used that hp, (X ) = hpa(Jac(X)); see Theorem 1.6.3. Now, let J(z; 7) be the Riemann

theta function as in Section 1.1, where 7 is in F, and z = x + 1y is in C7 with z,y € RY.

< glogmax(1, hga (X)) + (2¢° + 2) log(2).

Combining the latter inequality with the upper bound
exp(—mly(S(r) 'y Wz )| < 230+ (2.2.1)

implies the result. Let us prove (2.2.1). Note that, if we write



for bin RY,

exp(—m'y(S(r)) Y0z 1) < Y exp(=n'(n +b)(S(7))(n +b)).

neZ9

Since (7) is Minkowski reduced, we have

g> 4
(cf. [29, Chapter V.4] for these facts). Forz = 1,..., g, we define

-1
for all m in RY. Here ¢(g) = (i>g (§)g(g_1)/2. Also, (3(7))i > V/3/2foralli =1,...

B; = me(g)(ng + 0;)%(3(7))is.

Then, we deduce that

> exp(=mt(n+b)(S(r)(n+b) < Y exp (- Z Bi>

nez9 neZ9
g
< TIX ool
=1 nieZ
Finally, we note that the latter expression is at most

g

> s 2 Y
H 1 —exp(—mc(g)(3(7))ii) =2 <1 " 7"'\/30(9)) .

This proves (2.2.1).

Lemma 2.2.3. Let a € R and b € R<;. Then, for all real numbers x > b,

1
x — alogmax(1,z) = 7% + 5(:16 — 2alog max(1,x)),

and

—_

1 1 1
37 + i(x — 2alog max(1,z)) > 57 + min(ib, a — alog(2a)).

Proof. Tt suffices to prove that = — 2a log max(1, z) > min(b, 2a — 2alog(2a)) for all z > b. To

prove this, let z > b. Then, if 2a < 1, we have

r — 2alogmax(1l,z) > b > min(b, 2a — 2alog(2a)).

(To prove that x — 2alog max(1,z) > b, we may assume that x > 1. It is easy to show that

x — 2alog x is a non-decreasing function for x > 1. Therefore, for all x > 1, we conclude that

x—2alogz >1>b.)If 2a > 1, the function = — 2a log(z) attains its minimum value at z = 2a

on the interval [1, c0) . This concludes the proof.
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Lemma 2.2.4. (Bost) Let X be a smooth projective connected curve over Q of genus g > 1.
Then
hpa(X) > —log(2m)g.

Proof. See [25, Corollaire 8.4]. (Note that the Faltings height i (X) utilized by Bost, Gau-
dron and Rémond is bigger than hg, (X) due to a difference in normalization. In fact, we have

h(X) = hga(X) + glog(y/). In particular, the slightly stronger lower bound
hrat (X) > —log(V27)g
holds.) N

Lemma 2.2.5. Let X be a smooth projective connected curve over Q of genus g > 1. Then
log S(X) + hpa(X)

is at least

hpal (X . [ —glog(2

—relh ) 12( ) _ (4¢° + 5g + 1) log(2) + min (—g o2g( 7T>,% — %log (g)) :
Proof. By the explicit formula (1.1.1) for S(X) and our bounds on theta functions (Lemma
2.2.2),

log S(X) + hra (X)
is at least
—% log max(1, hpa (X)) — (49° + 59 + 1) log(2) + hga(X).
Since hp,(X) > —glog(2m), the statement follows from Lemma 2.2.3 (with x = hpy(X),

a=g/4and b = —glog(2m)). O

Lemma 2.2.6. Let X be a smooth projective connected curve of genus g > 2 over Q. Then

@g—U@+1%Q3+%%mX)ZbgﬂXy+MmX)

8(g —1)
Proof. By [15, Proposition 5.6],
8(g = 1)
X log R(X) + hpa(X)) .
Note that log R(X) = log S(X) — 0pa(X)/8; see (1.1.2). This implies the inequality. O

Lemma 2.2.7. (Noether formula) Ler X be a smooth projective connected curve over Q of

genus g > 1. Then

12hpa(X) = e(X) + A(X) + 0pa(X) — 4glog(2m).
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Proof. This follows from [24, Theorem 6] and [47, Théoréme 2.2]. O]

Proposition 2.2.8. Let X be a smooth projective connected curve of genus g > 2 over Q. Then

hea(X) < Qoo ” +1)6(X) + 10pa(X) + 203
—glog(2m) < 2g 1 9+1)6(X) + iépal(X) +20g°
AX) < %em + 20 (X) + 24847

Proof. Firstly, by Lemma 2.2.6,
29 —1 1 1
(29 e )_(91; ) e(X) + SOm(X) 2 log S(X) + hu(X).

To obtain the upper bound for hg, (X), we proceed as follows. Write

= lOg S(X) + hFal(X)-
By Lemma 2.2.5,
1
s> Shea(X) = (49" + 5 + 1) log(2) + min (-% log(2n), % - %log (g)) .

From these two inequalities, we deduce that %hpal(X ) is at most

(298—(91)_(95 1)€<X) + ‘SF%(X) + (49 + 59 + 1) log(2)+
+ max (g log(27), %10g <g> — %) ‘

Finally, it is straightforward to verify the inequality

(4¢® + 5g + 1) log(2) + max <g log(27), % log (g) - %) < 10g°.

This concludes the proof of the upper bound for Ap, (X).

The second inequality follows from the first inequality of the proposition and the lower bound
hpa(X) > —glog(2m) of Bost (Lemma 2.2.4).

Finally, to obtain the upper bound of the proposition for the discriminant of X, we eliminate

the Faltings height of X in the first inequality using the Noether formula and obtain that
A(X) + e(X) + bra(X) — 4glog(2m)

1s at most
3(29 —1)(g +1)
(9-1)
In [24, Theorem 5] Faltings showed that e(X') > 0. Therefore, we conclude that

3(29 —1)(g + 1)
A(X) < e

e(X) + 30pa(X) + 2409°.

e(X) + 20pa(X) + (240 + 4log(27))g°. O
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We are now ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. The proof is straightforward. The upper bound
e(X) < 49(g — 1)h(d)

is well-known; see [24, Theorem 5].

Let us prove the lower bound for dg, (X). If g > 2, the lower bound for dg.;(X) can be de-
duced from the second inequality of Proposition 2.2.8 and the upper bound e(X) < 4g(g—1)h(b).
When g = 1, we can easily compute an explicit lower bound for Jg,(X). For instance, it not
hard to show that 0, (X) > —8log(27) (using the explicit description of dg,(X) as in Remark
1.7.1).

From now on, we suppose that b is a non-Weierstrass point. The upper bound
1
hra(X) < S99+ Dh(B) + log [Wrl| 4, ()

is Proposition 1.8.1.

We deduce the upper bound
Srn(X) < 6g(g + 1)(B) + 12 log | Wrl|r(b) + 4glog(2)
as follows. Since e¢(X) > 0 and A(X) > 0, the Noether formula implies that
Oral(X) < 12hpa(X) + 4glog(27).

Thus, the upper bound for dg, (X)) follows from the upper bound for Ag, (X).
Finally, the upper bound

A(X) < 2g(g + 1)(4g + 1)h(b) + 121og [[Wr|a:(b) + 93¢

follows from the inequality A(X) < 12hg, (X )—0dpa(X)+4g log(27) and the preceding bounds.

(One could also use the last inequality of Proposition 2.2.8 to obtain a similar result.) ]

2.3. Analytic part

Our aim is to give explicit bounds for the Arakelov-Green function on a Belyi cover of X (2)
in this section. Such bounds have been obtained for certain Belyi covers using spectral methods
in [33]. The results in loc. cit. do not apply to our situation since the smallest positive eigenvalue

of the Laplacian can go to zero in a tower of Belyi covers; see [43, Theorem 4].
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Instead, we use a theorem of Merkl to prove explicit bounds for the Arakelov-Green function
on a Belyi cover in Theorem 2.3.12. More precisely, we construct a “Merkl atlas” for an arbitrary
Belyi cover. Our construction uses an explicit version of a result of Jorgenson and Kramer ([32])
on the Arakelov (1, 1)-form due to Bruin.

We use our results to estimate the Arakelov norm of the Wronskian differential in Proposition

2.3.13.

2.3.1. Merkl’s theorem

Let X be a compact connected Riemann surface of positive genus and recall that 1 denotes
the Arakelov (1, 1)-form on X.

Definition 2.3.1. A Merkl atlas for X is a quadruple

({(UJ7 Zj)}?:h r, M7 01)7

where {(U;, zj)}?zl is a finite atlas for X, % <r; <1, M >1andc¢; > 0 are real numbers such
that the following properties are satisfied.

1. Each z;U; is the open unit disc.

2. The open sets U := {x € U; : |z;(x)| <1} with 1 < j <n cover X.

3. Forall 1 < j, j <mn, the function |dz;/dz;/| on U; N U; is bounded from above by M.

4. For 1 < j < n, write pia, = tF;dz; A dz; on U;. Then 0 < Fj(x) < ¢ forall z € Uj.

Given a Merkl atlas ({(Uj, 2;)}j—,,71, M, c1) for X, the following result provides explicit
bounds for Arakelov-Green functions in n, r;, M and c;.

Theorem 2.3.2 (Merkl). Let ({(Uj, z;)}j—;,71, M, c1) be a Merkl atlas for X. Then

330n 1
5 < 1 13.2 — 1) log M.
Xil)lc}ia Blx = (1 — )32 e 1 " ner+(n = 1)log

Furthermore, for every index j and all v # y € U}*, we have that

| grx(z,y) —log|z(x) — 2 (y)]l

s at most

330n 1
(=)o log T + 13.2nc¢; + (n — 1) log M.

Proof. Merkl proved this theorem without explicit constants and without the dependence on 7,
in [45]. A proof of the theorem in a more explicit form was given by P. Bruin in his master’s

thesis; see [9]. This proof is reproduced, with minor modifications, in the appendix of [30]. [
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2.3.2. An atlas for a Belyi cover of X (2)

Let H denote the complex upper half-plane. Recall that SL,(R) acts on H via Mobius trans-
formations. Let I'(2) denote the subgroup of SLy(Z) defined as

I'2)={(2%)€eSLy(Z):a=d=1 mod2andb=c=0 mod 2}.

The Riemann surface Y'(2) = I'(2)\H is not compact. Let X (2) be the compactification of the
Riemann surface Y (2) = I'(2)\H obtained by adding the cusps 0, 1 and co. Note that X (2)
is known as the modular curve associated to the congruence subgroup I'(2) of SLy(Z). The
modular lambda function A : H — C induces an analytic isomorphism \ : X (2) — P!(C); see
Section 2.5.1 for details. In particular, the genus of X (2) is zero. For a cusp x € {0, 1,00}, we
fix an element ,; in SLy(Z) such that 7,,(k) = oo.

We construct an atlas for the compact connected Riemann surface X (2). Let B, be the open

subset given by the image of the strip

: 1

Soo 1= {x+iy:—1§x<1,y>§}CH
in Y (2) under the quotient map H — I'(2)\H defined by 7 +— I'(2)7. The quotient map
H — T'(2)\H induces a bijection from this strip to B... More precisely, suppose that 7 and 7/

in S, lie in the same orbit under the action of I['(2). Then, there exists an element

7=<Z Z)em)

such that v = 7/. If ¢ # 0, by definition, ¢ is a non-zero integral multiple of 2. Thus, ¢? > 4.

Therefore,
1 5 ST 1 - 1
— <37 = —.
2 et +d]? — 437 2

This is clearly impossible. Thus, ¢ = 0 and 7 = 7 £ b. By definition, b = 2k for some integer

k. Since 7 and 7’ lie in the above strip, we conclude that b = 0. Thus 7 = 7.

Consider the morphism 2z, : H — C given by 7 — exp(7i7 + 7). The image of the strip
S under 2y, in C is the punctured open unit disc 3(0, 1). Now, for any 7 and 7’ in the strip S,
the equality 2., (7) = 2o (7’) holds if and only if 7/ = 7 £ 2k for some integer k. But then & = 0
and 7 = 7/. We conclude that z., factors injectively through B.. Let 2o, : B, — B (0,1)
denote, by abuse of notation, the induced chart at co, where By, := Bo,U{co} and B(0, 1) is the
open unit disc in C. We translate our neighbourhood B, at oo to a neighborhood for «, where «
is a cusp of X (2). More precisely, for any 7 in H, define z,(7) = exp(miv; '7 + 7/2). Let B,
be the image of S, under the map H — Y'(2) given by

7 = [(2)7y,T.

30



We define B, = B, U {x}. We let z, : B, — B(0,1) denote the induced chart (by abuse of
notation).
Since the open subsets B, cover X (2), we have constructed an atlas {(By, z.) }. for X(2),

where « runs through the cusps 0, 1 and oo.

Definition 2.3.3. A Belyi cover of X (2) is a morphism of compact connected Riemann surfaces
Y — X(2) which is unramified over Y (2). The points of Y not lying over Y (2) are called

cusps.
Lemma 2.3.4. Let 7 : Y — X(2) be a Belyi cover with Y of genus g. Then, g < deg .
Proof. This follows from Lemma 1.9.10. [

Let 7 : Y — X(2) be a Belyi cover. We are going to “lift” the atlas {(B,, z.)} for X(2) to
an atlas for Y.
Let x be a cusp of X (2). The branched cover 7—!(B,) — B, restricts to a finite degree

topological cover ! (B,i) — B,.In particular, the composed morphism

1B, B. ~—— B(0,1)

ZK BK

is a finite degree topological cover of B(0,1).

Recall that the fundamental group of B (0, 1) is isomorphic to Z. More precisely, for any con-
nected topological cover of V — B(0, 1), there is a unique integer e > 1 such that V — B(0,1)
is isomorphic to the cover B(0,1) — B(0, 1) given by = > x°.

For every cusp y of Y lying over &, let Vy be the unique connected component of 1B,
whose closure V,, in 7~1(B,) contains y. Then, for any cusp y, there is a positive integer e, and
an isomorphism

w, : V, —= B(0,1)
such that wy’ = z, o 7|y, . The isomorphism wy, : V,, — B(0, 1) extends to an isomorphism
wy : V;, — B(0, 1) such that w,’ = z, o |y,. This shows that e, is the ramification index of y

over . Note that we have constructed an atlas {(V},, w,)} for Y, where y runs over the cusps of
Y.

2.3.3. The Arakelov (1, 1)-form and the hyperbolic metric

Let
11 _
,uhyp (T) = EwdeT
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be the hyperbolic (1, 1)-form on H. A Fuchsian group is a discrete subgroup of SLs(R). For
any Fuchsian group I', the quotient space I'\H is a connected Hausdorff topological space and
can be made into a Riemann surface in a natural way. The hyperbolic metric p,,, on H induces
a measure on I'\H, given by a smooth positive real-valued (1, 1)-form outside the set of fixed
points of elliptic elements of I'. If the volume of I"\ H with respect to this measure is finite, we
call I' a cofinite Fuchsian group.

Let I' be a cofinite Fuchsian group, and let X be the compactification of I'\H obtained by
adding the cusps. We assume that [" has no elliptic elements and that the genus g of X is positive.

There is a unique smooth function Fr : X — [0, co) which vanishes at the cusps of I such that

1
T EFFMhyp. 2.3.1)

A detailed description of [T is not necessary for our purposes.

Definition 2.3.5. Let 7 : Y — X (2) be a Belyi cover. Then we define the cofinite Fuch-
sian group I'y (or simply I') associated to 7 : Y — X (2) as follows. Since the topological

fundamental group of Y'(2) equals

I'(2)/{+£1},
we have 771(Y'(2)) = I"\H for some subgroup I" C T'(2)/{+1} of finite index. We define
[' C T'(2) to be the inverse image of I under the quotient map I'(2) — I'(2)/{+1}. Note that

I' is a cofinite Fuchsian group without elliptic elements.

Theorem 2.3.6. (Jorgenson-Kramer) For any Belyi cover 1 : Y — X(2), where Y has
positive genus,

sup Fr < 64max(e,)* < 64(degm)>.
TEY S

Proof. This is shown by Bruin in [8]. More precisely, in the notation of loc. cit., Bruin shows
that, with @ = 1.44, we have Ngy,(z)(z, 2a*—1) < 58. In particular, sup,.y Nr(z, z,2a*—1) < 58;
see Section 8.2 in loc. cit.. Now, we apply Proposition 6.1 and Lemma 6.2 (with ¢ = 2deg 7) in

loc. cit. to deduce the sought inequality. ]

Remark 2.3.7. Jorgenson and Kramer prove a stronger (albeit non-explicit) version of Theorem
2.3.6; see [32].

2.34. A Merkl atlas for a Belyi cover of X (2)

In this section we prove bounds for Arakelov-Green functions of Belyi covers.
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Recall that we constructed an atlas {(B,, z.) }» for X(2). For a cusp « of X (2), let
Yi * H— (07 OO)

be defined by

1 log |z
TH%(%ZlT)ZE_ Og|2 (T)|
™

This induces a function B, — (0, 00) also denoted by ..

Lemma 2.3.8. For any two cusps k and ' of X (2), we have

< 4dexp(3m1/2)

dz,
dZ,{/

on B, N B,,.

Proof. We work on the complex upper half-plane H. We may and do assume that x # «’. By

applying ’y;,l, we may and do assume that ' = co. On B, N B, we have

dzy(T) = mi exp(m”yng + 7T/2)d(’)/;17'),

and
dzoo(T) = miexp(miT + 7/2)d(T).
Therefore, )
dzy , d(v,:
) = explritys 7 - 1) e D)
It follows from a simple calculation that, for v, ! = ( ¢ ) with ¢ # 0,
c

dz, 1

o (1) = mexp(w(yo@(ﬂ — (7))

For 7 and v ' 7 in B, one has y..(7) > 1/2 and y,.(7) > 1/2. From the inequality |c7+d| > yoo(7) = (1),
it follows that

et _ at +0b _ ST < ST <9
(1) =304 = (TE0) = S < g 2
and similarly y..(7) < 2. The statement follows. O

Let 7 : Y — X(2) be a Belyi cover. Recall that we constructed an atlas {(V/,, w,)} for
Y. We assume that the genus g of Y is positive and, as usual, we let ;o denote the Arakelov
(1,1)-form on Y. Also, we let V = 7= 1(Y(2)).
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Lemma 2.3.9. Foracuspyofm:Y — X(2) with k = 7(y), the equality

. di- — 27T2y£‘wy|2
Law, AWy = o2 hyp
y

holds on V.

Proof. Let k = m(y) in X (2). We work on the complex upper half-plane. By the chain rule, we
have

d(zc) = d(wgr) = eywr ™ dw,.

Therefore,

21, |2e,—2 _ —
e, |w, " “dw,dw, = dz.dz;.

Note that dz, = miz.d(y;"'), where we view ' : H — C as a function. Therefore,

€Z‘wy’2€y_2dwydw_y = 7T2|ZN|2d(’Y;1)d(F)'

Since |wy’| = |2x|, we have
22 -
idwydzy = TSL g0 a6

€
2m?yplwy|® id(y )d(veY) _ 2mPylw, |
e: 2y2 e:

(:“hyp °© 'Y;l) .

Since the hyperbolic (1,1)-form iy, is invariant under the action of SLy(Z), this concludes the

proof. ]

Proposition 2.3.10. Let y be a cusp of m : Y — X (2). Write
p = iF,dw,dw,

onV,. Then I, is a subharmonic function on V,, and

4
0<F < 128 exp(3m)(deg ) '

Proof. The first statement follows from [32, page 8]; see also [10, page 58]. The lower bound
for I, is clear from the definition. Let us prove the upper bound for £,.

For a cusp « of X (2), let B,(2) C B, be the image of the strip
{z+iy:—1<z<ly>2}
in Y (2) under the map H — Y'(2) given by 7 — I'(2)v,7. For a cusp y of Y lying over k,

define V,(2) = 7 (B,(2)) and V,(2) = V,(2) U {y}. Since the boundary 9V, (2) of V,(2) is
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contained in Vj, — V}/(2), by the maximum principle for subharmonic functions,

sup F,, = max(sup F,, sup F,)

Vy Vy(2) Vy=Vy(2)
= max(sup F,, sup Fy)
oVy(2) Vy—Vy(2)
= sup F,.
Vy_vy(Z)

By Lemma 2.3.9, Definition 2.3.5 and (2.3.1) in Section 2.3.3,

62

F, = IF———2%——. 2.3.2
! 29y w2 (252
Note that y,? < 4 on V,,. Furthermore,

3

sup ]wy\’QS sup ]znl’zzexp(—ﬂ) sup exp(2my,) <e
Vy—Vy(Q) BK_BH(Q) B&—BR(Q)

Thus, the proposition follows from Jorgenson-Kramer’s upper bound for Fr (Theorem 2.3.6).
[]

Definition 2.3.11. Define s; = 1/1/2. Note that £ < s; < 1. For any cusp x of X (2), let B!
be the open subset of B, whose image under z, is {v € C : |z| < s;}. Moreover, define the

positive real number r; by the equation rfeg” = s;. Note that % < r; < 1. For all cusps y of
m:Y — X(2), define the subset V,;* C V, by V]* = {z € V, : |wy(z)| <7}

Theorem 2.3.12. Let m : Y — X (2) be a Belyi cover such that Y is of genus g > 1. Then
d 5
sup ar, < 6378027087
YxY\A g
Moreover, for every cusp y and all x # x' in Vi
(deg )
g
Proof. Write d = deg 7. Let s; and r; be as in Definition 2.3.11. We define real numbers

lgry (z,2") —log [wy(2) — w,(«)]| < 6378027

128 exp(3m)d*
= = ,

n:=#Y =V), M:=4dexp(37), ¢ :

Since n is the number of cusps of Y, we have n < 3d. Moreover
1 d
<

1—7’1 - 1—51.

Note that ;
330n 1 d

1 13.2 — 1) log M < 6378027—

L Ogl—r1+ nep + (n—1)log M < .
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Therefore, by Theorem 2.3.2, it suffices to show that

(Vi wy) }ys 1, M, 1),

where y runs over the cusps of 7 : Y — X(2), constitutes a Merkl atlas for Y.
The first condition of Merkl’s theorem is satisfied. That is, w,V/, is the open unit disc in C.
To verify the second condition of Merkl’s theorem, we have to show that the open sets V;jl
cover Y. For any z € V,,, we have z € V if n(z) € BZ'. In fact, for any x in V,,, we have
|w, ()| < 7y if and only if
[on(m(@))] = [y (2| < 7.

Cy

Since r; < 1, we see that s; = r¢ < r{". Therefore, if 7(z) lies in B?!, we see that x lies in
V' Now, since s; < Y3 we have X (2) = Uke{o,1,00) B! - Thus, we conclude that Y = U, V",
where y runs through the cusps.

Since we have already verified the fourth condition of Merkl’s theorem in Lemma 2.3.10, it
suffices to verify the third condition to finish the proof. Let x and " be cusps of X (2). We may
and do assume that k # x’. Now, as usual, we work on the complex upper half-plane. By the
chain rule,

d dz,

= —7 Sup
|wy|®=! BB, |dzw

dw,
dwy/

on V, NV, Note that |w,(7)[*~ > |w,(7)|* = |2,(7)| for any 7 in H. Therefore,

dw, d dz,
< — sup |—| < M,
'dwy, = el st |dz | =
where we used Lemma 2.3.8 and the inequality |z,| > exp(—37/2) on B, N B,. O

2.3.5. The Arakelov norm of the Wronskian differential

Proposition 2.3.13. Let 7 : Y — X (2) be a Belyi cover with' Y of genus g > 1. Then

sup log ||Wrl[ar < 6378028g(deg m)°.
Y —SuppW

Proof. Let b be a non-Weierstrass point on Y and let y be a cusp of Y such that b lies in V*. Let

w = (w1, ...,w,) be an orthonormal basis of H’(Y, 2},). Then, as in Section 1.1,

g(g+1)

log [[Wr[|a:(b) = log Wi, (w)(0)] + ==

log [|duw, || ax (b).
By Theorem 2.3.12,

1
29D 10g [y n(h) < 637802y ckeg )"
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Let us show that log |[W,,, (w)(b)] < g(degm)®. Write wy, = frdw, on V,. Note that
wr Awg = | fu*dw, A diw,.

Therefore,

i i

=) W AT == Y | fldw, A diwy,

29 = 2915

We deduce that Y 7_, | fx|* = 2gF,,, where F), is the unique function on V,, such that
= 1Fydw, A\ dw,.

By our upper bound for F}, (Proposition 2.3.10), forany j = 1,...,g,

256 exp(3)(deg m)*

2

S £ < Supz |fsl” = 29F, <

[

™
By Hadamard’s inequality,

1/2
log [Wy, (w)(b)| < Zlog ( (b)) :

Let r; < r < 1 be some real number. By Cauchy’s integral formula, forany 0 <[ < g — 1,

d'fy
dwly

d fk

(b) =

L/ fr dw
21 [wy |=r (U}y — ’wy(b))lJrl 4

It is not hard to see that

sup | fi| <
Yy

l!
P
— (T—T’l)lJrl v

degm

l—'/ Ji dw g—!su | fx|
200 Sy, (w0 — w, (D))FFL T

By the preceding estimations, since g! < g9 and =

- : 1/2
log|Wwy(w)(b)’ < Zlog ) <ZSup\fk )
1=0

k=1 V¥
g1 | g 4\ /2
q! 256 exp(3m)(deg )
< 1 —_—
> ; 0og (1 _Tl)g (; T2

Note that the latter expression equals

1 256 3
42 log 2569 exp(37) + 2glog(deg ).
1—r 2 2

glog(g!) + g*log (

Now, note that the latter expression is at most

1 1 256 3
(4.5 + log (1 ) + = log (ﬁ)) g*log(deg ).
— 81 2 T
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The latter expression is easily seen to be bounded by
13g(deg 7).

Since g > 1 and 7 : Y — X(2) is a Belyi cover, the inequality deg 7 > 3 holds. Thus,

< 13g(deg )°

13g(deg 7)* < 57

< g(degT)®. O

2.4. Arithmetic part

2.4.1. Lenstra’s generalization of Dedekind’s discriminant bound

Let A be a discrete valuation ring of characteristic zero with fraction field K. Let ord 4 denote
the valuation on A. Let /K be a finite field extension of degree n, and let B be the integral
closure of A in L. Note that L/ K is separable, and B/A is finite.

The inverse different D}

B/A of B over A is the fractional ideal

{r e L:Tr(zB) C A},

where Tr is the trace of L over K. The inverse of the inverse different, denoted by D /4, is the
different of BB over A. Note that © g/ 4 is actually an integral ideal of L.
The following proposition (which we would like to attribute to H.W. Lenstra jr.) is a general-

ization of Dedekind’s discriminant bound; see [56, Proposition II1.6.13].

Proposition 2.4.1. (H.W. Lenstra jr.) Suppose that B is a discrete valuation ring of ramifi-
ciation index e over A. Then, the valuation r of the different ideal D4 on B satisfies the
inequality

r<e—1+e-ords(n).

1.

nx’

Proof. Let x be a uniformizer of A. Since A is of characteristic zero, we may define y :=
note that y is an element of /. The trace of y (as an element of L) is % Since 1/x is not in
A, this implies that the inverse different @E} 4 18 strictly contained in the fractional ideal yB.
(If not, since A and B are discrete valuation rings, we would have that y B is strictly contained
in the inverse different.) In particular, the different © /4 strictly contains the fractional ideal
(nx). Therefore, the valuation ordp(®p/4) on B of D p) 4 is strictly less than the valuation of

nx. Thus,
ordg(®p/a) < ordg(nz) = e-orda(nz) = e(orda(n) + 1) = e - ordy(n) +e.

This concludes the proof of the inequality. ]
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Remark 2.4.2. If the extension of residue fields of B/A is separable, the above lemma follows
from the Remarque following Proposition I11.6.13 in [56]. (The result in loc. cit. was conjectured
by Dedekind and proved by Hensel when A = Z.) The reader will see that, in the proof of

Proposition 2.4.7, we have to deal with imperfect residue fields.

Proposition 2.4.3. Suppose that the residue characteristic p of A is positive. Let m be the biggest
integer such that p™ < n. Then, for 3 C B a maximal ideal of B with ramification index ez over

A, the valuation rg of the different ideal © g, 4 at 3 satisfies the inequality
rg <esz—1+ez-orda(p™).

Proof. To compute r3, we localize B at 3, and then take the completions Aand B\g of A and Bg,
respectively. Let d be the degree of B\g over A. Then, by Lenstra’s result (Proposition 2.4.1), the
inequality

rg < eg—1+es-ordz(d).

holds. By definition, ord 3(d) = ord4(d) < orda(p™). This concludes the proof. O

2.4.2. Covers of arithmetic surfaces with fixed branch locus

Let K be a number field with ring of integers O, and let S = Spec O. Let D be a reduced
effective divisor on X = P, and let U denote the complement of the support of D in X.
Let ) — S be an integral normal 2-dimensional flat projective S-scheme with geometrically
connected fibres, and let 7 : ) — X be a finite surjective morphism of S-schemes which
is étale over U. Let ¢ : ) — ) be the minimal resolution of singularities ([41, Proposition

9.3.32]). Note that we have the following diagram of morphisms

P

V' y—=Xx S.

Consider the prime decomposition D = »_._. D;, where I is a finite index set. Let D;; be an

iel
irreducible component of 7! (D) mapping onto D;, where j is in the index set .J;. We define r;;
to be the valuation of the different ideal of Oy p, /Ox p,. We define the ramification divisor R
tobe Y ;> iy, TijDij. We define B := . R.

We apply [41, 6.4.26] to obtain that there exists a dualizing sheaf wy,s for } — S, and a

dualizing sheaf w, for 7 : ) — X such that the adjunction formula
Wy/s = TWr/s & Wy

holds. Since the local ring at the generic point of a divisor on X is of characteristic zero, basic

properties of the different ideal imply that w,; is canonically isomorphic to the line bundle Oy (R).
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We deduce the Riemann-Hurwitz formula
Wy/s = T*wx/s X Oy(R)

Let Ky = —2 - [oo] be the divisor defined by the tautological section of wx,0, . Let Ky
denote the Cartier divisor on )’ defined by the rational section d( o 1)) of wyr/g. We define the
Cartier divisor Ky on ) analogously, i.e., Ky is the Cartier divisor on ) defined by dr. Note
that Ky, = 1, Ky». Also, the Riemann-Hurwitz formula implies the following equality of Cartier
divisors

Ky :W*K)(+R.

Let E1, ..., E, be the exceptional components of ¢ : ) — ). Note that the pull-back of
the Cartier divisor /* Ky coincides with Ky» on

s
=1

Therefore, there exist integers c; such that
S
Ky/ = w*Ky + Z CiEi,
i=1

where this is an equality of Cartier divisors (not only modulo linear equivalence). Note that
(v*Ky, E;) = 0 for all 4. In fact, Ky is linearly equivalent to a Cartier divisor with support

disjoint from the singular locus of ).
Lemma 2.4.4. Foralli =1,...,s, we have ¢; < 0.

Proof. We have the following local statement. Let y be a singular point of ), and let I, ..., E.

be the exceptional components of ¢ lying over y. We define

V+ = 72 C; E,L

i=1,¢;>0

as the sum on the ¢; > 0. To prove the lemma, it suffices to show that V/; = 0. Since the intersec-
tion form on the exceptional locus of ) — ) is negative definite ([41, Proposition 9.1.27]), to
prove V., = 0, it suffices to show that (V,, ;) > 0. Clearly, to prove the latter inequality, it suf-
fices to show that, for all ¢ such that ¢; > 0, we have (V, F;) > 0. To do this, fix: € {1,...,r}
with ¢; > 0. Since )’ — ) is minimal, we have that F; is not a (—1)-curve. In particular, by the

adjunction formula, the inequality (K, F;) > 0 holds. We conclude that

T

(V+,Ei) = (Ky/,Ei) — Z Cj(Ej,Ei) 2 O,

7=1,c;<0

where, in the last inequality, we used that, for all j such that ¢c; < 0, we have that £; # F;,. [
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Proposition 2.4.5. Let P’ : S — )’ be a section, and let () : S — X be the induced section. If

the image of P’ is not contained in the support of Ky, then
(Kyr, P)ein < (B, Q)sin.

Proof. Note that, by the Riemann-Hurwitz formula, we have Ky = 7n*Ky + R. Therefore, by
Lemma 2.4.4, we get that

(Ky, Plan = (V"Ky + Y By, P

= (W' Ky + 9" R+ 6B, P
=1

< (W7 Ky, Pgn + ("R, P')gin.

Since the image of P’ is not contained in the support of K., we can apply the projection formula
for the composed morphism w0 ¢ : V' — X to (V*1* Ky, P)g, and (V*R, P')gn; see [41,
Section 9.2]. This gives

(Ky, Pn < (07" Ky, P + ("R, P)gn = (Kx, Q)in + (MR, Q) gin-

Since Ky = —2 - [00], the inequality (Ky,Q)sn < 0 holds. By definition, B = m,R. This

concludes the proof. O]

We introduce some notation. For 7 in / and j in J;, let e;; and f;; be the ramification index
and residue degree of 7 at the generic point of D,;, respectively. Moreover, let p; C Og be
the maximal ideal corresponding to the image of D; in Spec Ok. Then, note that e;; is the
multiplicity of D;; in the fibre of ) over p;. Now, let e, and f,, be the ramification index and
residue degree of p,; over Z, respectively. Finally, let p; be the residue characteristic of the local

ring at the generic point of D; and, if p; > 0, let m; be the biggest integer such that p** < deg,
i.e., m; = |log(degm)/log(p;)].

Lemma 2.4.6. Let ¢ be in [ such that 0 < p; < degm. Then, for all j in J;,
Tij S 2€Z'jmi€pi.

Proof. Let ordp, be the valuation on the local ring at the generic point of D;. Then, by Lenstra’s

result (Proposition 2.4.3), the inequality
rij < €5 — 1+ ej; - ordp, (p;™)
holds. Note that ordp, (p;"*) = m;e,,. Since p; < deg m, we have that m; > 1. Therefore,

Tij S €ij — 1+ €€y, S 2€ijmi€pi. O]
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Let us introduce a bit more notation. Let /; be the set of ¢ in I such that D, is horizontal (i.e.,
p; = 0)or p; > degw. Let D, = Zie I D;. We are now finally ready to combine our results to

bound the “non-archimedean” part of the height of a point.

Proposition 2.4.7. Let P' : S — )’ be a section, and let () : S — X be the induced section. If
the image of P' is not contained in the support of Ky, then

(Ky, P)gn < deg (D1, Q)an + 2(deg m)* log(deg 7)[K : Q].

Proof. Note that

B=>)" (Z rijfij> D;.

i€l ]'GJZ'
Let /5 be the complement of /7 in I. Let Dy = >

particular,

D;, and note that D = D; + D,. In

i€l

(B,Q)fn = Z Z 735 fii(Di, Q)fin

iel jGJi
= Z Z rij i (Di, Q)fin + Z Z rij i (Di, Q)fin-
i€l jeJ; 1€ls jeJ;

Note that, for all 7 in /; and j in J;, the ramification of D;; over D; is tame, i.e., the equality
rij = e;; — 1 holds. Note that, for all 7 in I, we have >, ; €;; f;; = deg 7. Thus,

Z Z Tijfij(Dia Q)fin < Z Z eijfij(Div Q)sin = deg (D1, Q)gin-

i€l jEJi ie€lq jEJZ‘

We claim that

SN rif(Di, Qs < 2(degm)* log(deg m)[K : Q.
i€ly jeJd;
In fact, since, for all ¢ in I and j in J;, by Proposition 2.4.6, the inequality

rij S 2€ijmiepi
holds, we have that

erijfz’j(DiaQ)ﬁn < QZmiepi(Di7Q)ﬁn <Z€ijfij>

i€ls jEJ; i€l JjeJ;

= 2(degm) Z miep, (Di, Q)fin-

icls

Note that (D;, Q) = log(#k(p;)) = f. log p;. We conclude that

> miey,(Di, Qan = Y ( > emfm) {%J log(p)

i€l pprime \i€l2,p;=p
log(deg 7
- kel Y[ PEET ),
ogp
XpN|D2|#0
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where the last sum runs over all prime numbers p such that the fibre &), contains an irreducible
component of the support of Dy. Thus, the real number (B, Q))g, is at most

{log(deg )

(deg m) (D1, Q)fin + 2(deg m)[K : Q] Z logp

XpNDa#0

J log(p)

holds. Note that
log(d
Z { Ogl(o eg W)J log(p) < Z log(deg ) < degmlog(deg ),
X,NDy#0 &p XpNDa#£0

where we used that X, N Dy # () implies that p < deg 7. In particular,
(B, Q)tin < (degm)(D1, Q)sin + 2(deg m)* log(deg m)[K : Q.
By Proposition 2.4.5, we conclude that

(Kyr, P)sn < (degm)(D1, Q)sin + 2(deg m)* log(deg m)[ K : Q). O

2.4.3. Models of covers of curves

In this section, we give a general construction for a model of a cover of the projective line.

Let K be a number field with ring of integers Ok, and let S = Spec Ok.

Proposition 2.4.8. Let ) — Spec Ok be a flat projective morphism with geometrically con-
nected fibres of dimension one, where Y is an integral normal scheme. Then, there exists a finite
field extension L/K such that the minimal resolution of singularities of the normalization of

Y xo, Oy is semi-stable over Of,.
Proof. This follows from [42, Corollary 2.8]. ]
The main result of this section reads as follows.

Theorem 2.4.9. Let K be a number field, and let Y be a smooth projective geometrically con-
nected curve over K. Then, for any finite morphism wy : Y — PL., there exists a number field
L/K such that:
— the normalization ™ : Y — PloL of PloL in the function field of Y7, is finite flat surjective;
— the minimal resolution of singularities 1) : ) — Y is semi-stable over Oy,
— each irreducible component of the vertical part of the branch locus of the finite flat mor-
phism 7 : )Y — P})L is of characteristic less or equal to deg . (The characteristic of a

prime divisor D on P})L is the residue characteristic of the local ring at the generic point

of D.)
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Proof. By Proposition 2.4.8, there exists a finite field extension L/K such that the minimal res-
olution of singularities ¢ : )’ — ) of the normalization of P%)L in the function field of Y7, is
semi-stable over Oy,. Note that the finite morphism 7 : ) — P%)L is flat. (The source is normal
of dimension two, and the target is regular.) Moreover, since the fibres of )’ — Spec O, are
reduced, the fibres of ) over Oy, are reduced. Let p C O, be a maximal ideal of residue char-
acteristic strictly bigger than deg 7, and note that the ramification of 7 : JJ — PloL over (each
prime divisor of P%)L lying over) p is tame. Since the fibres of ) — Spec Oy, are reduced, we see
that the finite morphism 7 is unramified over p. In fact, since P})L — Spec Oy, has reduced (even
smooth) fibres, the valuation of the different ideal Do, /0 (p) ON Op of an irreducible component
D of ), lying over w(D) in X is precisely the multiplicity of D in }),. (Here we let Op denote
the local ring at the generic point of D, and O(p) the local ring at the generic point of 7(D).)
Thus, each irreducible component of the vertical part of the branch locus of 7 : J) — PloL is of

characteristic less or equal to deg 7. O]

2.5. Proof of main result

2.5.1. The modular lambda function

The modular function A : H — C is defined as
1,7y _ T
)\(T):p(2_|7__2) ]Jl(2>7
p(3)—r(3)

where p denotes the Weierstrass elliptic function for the lattice Z + 77 in C. The function A

is I'(2)-invariant. More precisely, A factors through the I'(2)-quotient map H — Y'(2) and an
analytic isomorphism
Y(2) — C—{0,1}.

Thus, the modular function ) induces an analytic isomorphism from X (2) to P!(C). Let us note
that A(ico) = 0, A\(1) = oo and A(0) = 1.

The restriction of A to the imaginary axis {iy : y > 0} in H induces a homeomorphism, also
denoted by A, from {iy : y > 0} to the open interval (0,1) in R. In fact, for « in the open
interval (0, 1),

)\71(0() = M(17 \/a>
M(1,v1—a)’

where M denotes the arithmetic-geometric-mean.

Lemma 2.5.1. For 7 in H, let (1) = exp(wiT) and let

) =3 ang"(7)

n=1
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be the q-expansion of A on H. Then, for any real number 4/5 < y < 1,

—log | Z na,q"(iy)| < 2.
n=1
Proof. Note that
dA
> =

It suffices to show that |¢gd\/dq| > 3/20. We will use the product formula for A\. Namely,

1+q2n
—16(]an , fala) W

Write f!(q) = df.(q)/dq. Then,
dA — fula)
qd—q:/\<1+q; n(Z)) <1+qz (log fn(q )

Note that, for any positive integer n and 4/5 < y < 1,

(d% log fn(q)) (iy) < 0.

Moreover, since A\(7) = 1/2 and A(0) = 1, the inequality A(iy) > 1/2 holds forall 0 < y < 1.

Also, forall 4/5 <y <1,
7
( D (AT >)) (i) < =

o0 (o] o0
d 2ng*nt (2n —1)g*" 2
L log fulq)) = I Gt [

It is straightforward to verify that, for all 4/5 < y < 1, the real number

In fact,

2n—l('

i 2ng*"(iy) i (2n — 1)¢*"(iy)
= 1+ ¢*(iy) 1+ ¢*=(iy)

n=1
is at least
100 2n— 1 . 2n 2
105 2~ 2nq ; (iy)

holds. Finally, utilizing classical formulas for geometric series, for all 4/5 < y < 1, the real

number

Zdi (log fu(q)) (iy)
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is at least

. 200q(iy) 1+ ¢2(iy) 7
q(iy) ( 5 s | >
109(1 = ¢*(iy))*> (1 —¢*(iy)) 10
We conclude that
a7y 3 =
Tiqg| = 2 0]~ 20

2.5.2. A non-Weierstrass point with bounded height

The logarithmic height of a non-zero rational number a = p/q is given by

hnaive(a) = log max(|p|, |q|)7
where p and ¢ are coprime integers and ¢ > 0.

Theorem 2.5.2. Let mq : Y — PIG be a finite morphism of degree d, where Y /Q is a smooth
projective connected curve of positive genus g > 1. Assume that g 1 Y — Pla is unramified
over Pla —{0,1, 00}. Then, for any rational number 0 < a < 2/3 and any b € Y (Q) lying over
a,

5
h(b) < 6hpgive(a)d® + 6378031%.

Proof. By Theorem 2.4.9, there exist a number field & and a model
TK . Y — P}(

formg Y — Pla with the following three properties: the minimal resolution of singularities
1 : Y — Y of the normalization 7w : ) — PlOK of P})K in Y is semi-stable over Oy, each
irreducible component of the vertical part of the branch locus of 7 : ) — P})K is of characteristic
less or equal to deg 7 and every point in the fibre of 7 over a is K -rational. Also, the morphism
T:)Y — P%)K is finite flat surjective.

Let b € Y (K) lie over a. Let P’ be the closure of b in ). By Lemma 1.7.2, the height of b is
“minimal” on the minimal regular model. That is,

hb) < (P, wyjo)
(K- Q]

Recall the following notation from Section 2.4.2. Let X = Pg, . Let Ky = —2 - [0o] be
the divisor defined by the tautological section. Let Ky be the divisor on )’ defined by d(7)
viewed as a rational section of wyr /o, . Since the support of Ky on the generic fibre is contained

in 7' ({0, 1, 00}), the section P’ is not contained in the support of K. Therefore, we get that

hB)IK : Q) < (P wyjo) = (P Ky + Y (= log|ldm|)(o(b)):

o K—C
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Let D be the branch locus of 7 : V — X endowed with the reduced closed subscheme
structure. Write D = 0 + 1 4 0o + Dy, Wwhere Dy, is the vertical part of D. Note that, in the
notation of Section 2.4.2, we have that D; = 0 + 1 4 oo. Thus, if () denotes the closure of a in
X, by Proposition 2.4.7, we get

(P, Ky )an < (degm)(0+ 1+ 00, Q)in + 2(deg m)* log(deg 7)[K : QJ.
Write a = p/q, where p and ¢ are coprime positive integers with ¢ > p. Note that

04+ 1+ 00, Q)fin

(K : Qlog(pg(q —p))
< 3log(g)[K : Q]
= 3hpaive(a)[K : Q].
We conclude that
(P, Ky )fin
(K : Q]

It remains to estimate > . .(—log|/drk||,)(o(b)). To do this, we will use our bounds

< 3hnaive (@) (deg 7)* + 2(deg 7)°.

for Arakelov-Green functions.

Let 0 : K — C be an embedding. The composition

Y,— ™ -PY{C)—2—~X(2)

is a Belyi cover (Definition 2.3.3). By abuse of notation, let m denote the composed morphism
Y, — X(2). Note that A™1(2/3) ~ 0.85i. In particular, S(A\7(a)) > S(A71(2/3)) > s1.
(Recall that s; = 1/1/2.) Therefore, the element A~!(a) lies in B3.. Since V* D V, N7 1B,
there is a unique cusp y of Y, — X(2) lying over oo such that o'(b) lies in V.

Note that ¢ = z,, exp(—/2). Therefore, since A = >°°, a;¢’ on H,

o0

)\owzz%exp( j7r/2 Zoo Z%GXP ]71'/2) ovd

on V,,. Thus, by the chain rule,

d(Aom) =e, Zjaj exp(—jﬂ/Q)w;yj_ld(wy).

Jj=1

The real number

—log ||d(\ o )| ax(c (b))
equals

—log||dw,||ar(o(b)) —logle, ) jaze™ ™ Puwipi = (a(b))].

Jj=1
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By the trivial inequality e, > 1 and the inequality |w,| < 1, the latter is at most

—log [[dw, || ar(a (b)) = log | Y jaje ™ 2wy (o (b))].

J=1

By Lemma 2.5.1, the latter is at most
— log [|dwy[|ar(o (D)) + 2.

Thus, by Theorem 2.3.12, we conclude that

> ox—c(—log [[drkllo) (o (b))
[K: Q]

Corollary 2.5.3. Let X be a smooth projective connected curve over Q of genus g > 1. Then,

(degm)°

< 6378027 + 2. []

there exists a point b in X (Q) such that

degp(X)°
g :
Proof. Write d = degz(X). We apply Theorem 2.5.2 with a = 1/2. This gives

h(b) < 6378032

5
h(b) < 3log(2)d* + 6378031%.

Since d > 3 and d > g, the inequality 31log(2) degz(X)? < d°/g holds. This clearly implies the
sought inequality. ]

Theorem 2.5.4. Let Y be a smooth projective connected curve over Q of genus g > 1. For any
finite morphism 7 : 'Y — Pla ramified over exactly three points, there exists a non-Weierstrass

point bon 'Y such that
(degm)®

9

Proof. Define the sequence (a,, )22 ; of rational numbers by a; = 1/2 and, for all n > 2, by

a, =n/(2n —1). Note that 1/2 < a,, < 2/3, and that the inequality Apaive(a,) < log(2n) holds.

h(b) < 6378033

We may and do assume that 7 : Y — Pl6 is unramified over Plc —{0,1, 00}. By Theorem 2.5.2,
forall z € 7 '({a,}),

d 5
h(z) < 3log(2n)(deg )% + 6378031 ei ™" (2.5.1)

Since the number of Weierstrass points on Y is at most g®—g, there exists an integer 1 < ¢ < (deg 7)?
such that the fibre 77! (a;) contains a non-Weierstrass point, say b. Applying (2.5.1) to b, we ob-

tain that 5
d
(b) < 3log(2(deg m)?)(deg v)? + 6378031 ei .
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Therefore, we may conclude that

5 5
2@ n 6378031@.

Remark 2.5.5. Let us mention that combining the above results with a theorem of Zhang (The-

h(b) < 0

orem4.5.2) we obtain infinitely many points b in X (Q) such that

h(b) < 13-10°degyz(X)°.

2.5.3. Proving Theorem 2.1.1

For a smooth projective connected curve X over Q, we let deg;(X) denote the Belyi degree
of X.

Proof of Theorem 2.1.1. The lower bound for A(X) > 0 is trivial, the lower bound ¢(X) > 0
is due to Faltings ([24, Theorem 5]) and the lower bound hp, (X) > —glog(27) is due to Bost
(Lemma 2.2.4).

For the remaining bounds, we proceed as follows. By Theorem 2.5.4, there exists a non-

Weierstrass point b in X (Q) such that

degB(X)5
—g .

By our bound on the Arakelov norm of the Wronskian differential in Proposition 2.3.13, we have

h(b) < 6378033

log || W[ ax(b) < 6378028g deg (X )°.

To obtain the theorem, we combine these bounds with Theorem 2.2.1. O
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CHAPTER 3

Applications

3.1. The Couveignes-Edixhoven-Bruin algorithm

Let I" C SLy(Z) be a congruence subgroup, and let k be a positive integer. Let
d(T') = [SLy(Z) : {£1}17]/12.

A modular form f of weight £ for the group I" is determined by £ and its g-expansion coefficients
a;(f) for 0 < i < k- d(T"); see [19] for definitions. In this section we follow [11] and give an
algorithmic application of the main result of this thesis. More precisely, the goal of this section

is to complete the proof of the following theorem. The proof is given at the end of this section.

Theorem 3.1.1. (Couveignes-Edixhoven-Bruin) Assume the Riemann hypothesis for (-functions

of number fields. Then there exists a probabilistic algorithm that, given

a positive integer k,
a number field K,
a congruence subgroup I' C SLy(Z),

a modular form f of weight k for I over K, and

a positive integer m in factored form,
computes a,(f) of f, and whose expected running time is bounded by a polynomial in the length

of the input.

To make the above theorem into a precise statement, we explain in the following remarks how

the number field K and the modular form f are supposed to be given.

Remark 3.1.2. In the algorithm, we represent K by its multiplication table with respect to some
Q-basis (b1,...,b,) of K. This means that we represent /X' by the rational numbers ¢;;;, with

1 <1,7,k < rsuch that

bibj = Z Cijkbk-
k=1
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We represent elements of K as Q-linear combinations of (bq,. .., b,).

Remark 3.1.3. Let us make precise how the modular form f of weight k for the group I" should
be given. Firstly, a modular form f of weight k£ for the group I' is determined by & and its
g-expansion coefficients a;(f) for 0 < i < k- d(I'). For the algorithm, we represent f by its

coefficients
ao(f)7 s C%d(r)(f)-

These are all elements in K and are thus given as explained in Remark 3.1.2.

Remark 3.1.4. We have made precise how the number field K" and the modular form f should
be given to the algorithm, and how the algorithm returns the coefficient a,,(f). We should also
explain what “probabilistic” means in this context. The correct interpretation is that the result
is guaranteed to be correct, but that the running time depends on random choices made during

execution. We refer to [38] for a discussion of such probabilistic algorithms.
The above remarks make Theorem 3.1 into a precise mathematical statement.

Remark 3.1.5. The algorithm is due to Bruin, Couveignes and Edixhoven. Assume the Riemann
hypothesis for (-functions of number fields. It was shown that the algorithm runs in polynomial
time for certain congruence subgroups; see [11, Theorem 1.1]. Bruin did not have enough
information about the semi-stable bad reduction of the modular curve X;(n) at primes p such
that p? divides n to show that the algorithm runs in polynomial time. Nevertheless, our bounds
on the discriminant of a curve can be used to show that the algorithm runs in polynomial time

for all congruence subgroups.

Proof. We follow Bruin’s strategy; see [10, Chapter V.1, p. 165]. In fact, Bruin notes that the
algorithm runs in polynomial time for all congruence subgroups if, for all positive integers n, the
discriminant A(X;(n)) is bounded by a polynomial in n. Now, by Theorem 2.1.1, the inequality
A(Xi(n)) <5-10®deggz(X1(n))" holds. Note that

degp(X1(n)) < [SLa(Z) : T1(n)].

Since
SLo(Z) : Ty (n)] = n* J[(1 = 1/p%) < 0,

pln
we conclude that A(X;(n)) < 5-10%n!. We conclude that A(X;(n)) is bounded by a polyno-

mial in n. L]
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3.2. Modular curves, Fermat curves, Hurwitz curves, Wolfart curves

Let X be a smooth projective connected curve over Q of genus g > 2. We say that X is a Fer-
mat curve if there exists an integer n such that X is isomorphic to the curve given by the equation
" 4+ y" = 2" in P%. Moreover, we say that X is a Hurwitz curve if #Aut(X) = 84(g — 1).
Also, we say that X is a Wolfart curve (or Galois Belyi cover) if the quotient X /Aut(X) is
isomorphic to Pla and the morphism X — X/Aut(X) is ramified over exactly three points;
see [12, Proposition 2.4], [66] or [67]. Note that Fermat curves and Hurwitz curves are Wolfart
curves. Finally, we say that X is a modular curve if X¢ is a classical congruence modular curve
for some (hence any) embedding Q C C.

If X is a Wolfart curve, we have degz(X) < 84(¢g — 1). This follows from the Hurwitz
bound #Aut(X) < 84(g — 1). In particular, by Proposition 1.9.12, there are only finitely many

isomorphism classes of Wolfart curves of bounded genus.
Proposition 3.2.1. If X is a modular curve, then degy(X) < 128(g + 1).

Proof. This result is due to Zograf; see [70]. Zograf’s proof uses methods from the spectral
theory of the Laplacian. Let us explain Zograf’s proof more precisely. Let I be a cofinite
Fuchsian group, i.e., a discrete subgroup of SLo(R) such that the volume vol(I'\H) of I'\H is
finite; see Section 2.3.3. (Recall that the hyperbolic metric p,y, on H induces a measure on
'\ H, and we take the volume of I"\ H with respect to this measure.) The Laplace operator A on
the space of smooth I'-invariant functions on H with compact support (as a function on ['\H) is
defined as
A =~y +2),

where we write 7 = x + ¢y on H. This operator can be extended to an (unbounded) self-adjoint
operator on the Hilbert space L?(I"\H) of square-integrable complex-valued functions on H
(with respect to the measure induced by fu,y;,), defined on a dense open subspace; we denote this

extension by A as well. The spectrum of A consists of a discrete part and a continuous part. The

discrete spectrum of A consists of eigenvalues of A and is of the form {);}22, with
O:)\0<>\1§)\2§..., )\j%OO&Sj%OO.

Zograf proves a generalization of the Yang-Yau inequality of a compact Riemann surface; see
[68]. More precisely, Zograf proves that, if g(I") denotes the genus of the compactification Xr
of I'\H obtained by adding the cusps and we have vol(I'\H) > 327 (¢(I") + 1), the inequality

8r(g(l') + 1)

A< o)
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holds; see [70, Theorem 1]. This statement implies that, for I" a congruence subgroup of SLs(Z),
the inequality

[SLo(Z) : T] < 128(g(T") + 1)
holds, where [SL2(Z) : T'] denotes the index of I" in SLy(Z); see [70, Corollary 1]. To prove the

latter inequality, we argue by contradiction. In fact, suppose that
[SLo(Z) : T] > 128(g(T") + 1).

Since 3vol(I'"\H) = 7[SLy(Z) : I'], we deduce that
vol(T'\H) > %W(Q(F) +1) > 327n(g(I") + 1).

Now, Zograf’s generalization of the Yang-Yau inequality implies that
8m(g(T') + 1) < 3
vol(I"\H) ~ 16

That is, the smallest positive eigenvalue is strictly less than 3/16. But this contradicts Selberg’s

1

famous lower bound for the smallest positive eigenvalue of the Laplace operator associated to a
congruence subgroup, i.e., the first eigenvalue \; of A is not less than 3/16; see [55]. Finally,
to deduce the upper bound for the Belyi degree of the congruence modular curve X, note that
degp(Xr) < [SLo(Z) : T. O

Corollary 3.2.2. Let X be a smooth projective connected curve over Q of genus g > 1. Suppose

that X is a modular curve or Wolfart curve. Then
max(hpa (X)), e(X), A(X), [0ra (X)]) < 2-10%¢%(g + 1)°.
Proof. For X a modular curve, this follows from Theorem 2.1.1 and the inequality
degp(X) < 128(g +1)
due to Zograf (Proposition 3.2.1). For X a Wolfart curve, this follows from Theorem 2.1.1 and
the inequality degz(X) < 84(¢g — 1). O

Remark 3.2.3. Let I' C SL(Z) be a finite index subgroup, and let X be the compactification
of I'\H obtained by adding the cusps, where I" acts on the complex upper half-plane H via
Mobius transformations. Let X (1) denote the compactification of SLy(Z)\H. The inclusion
I' € SLy(Z) induces a morphism X — X (1). There is a unique finite morphism Y — Pla of
smooth projective connected curves over Q corresponding to X — X (1). The Belyi degree of

Y is bounded from above by the index d of I' in SLy(Z). In particular, the inequality
max (hra(Y), e(Y), A(Y), |0pa(Y)]) < 107d"

holds.

53



Remark 3.2.4. Non-explicit versions of Corollary 3.2.2 were previously known for certain mod-
ular curves. Firstly, polynomial bounds for Arakelov invariants of X(n) with n squarefree were
previously known; see [65, Théoreme 1.1], [65, Corollaire 1.3], [2], [46, Théoreme 1.1] and
[34]. The proofs of these results rely on the theory of modular curves. Also, similar results for
Arakelov invariants of X (n) with n squarefree were shown in [20] and [44]. Finally, bounds for
the self-intersection of the dualizing sheaf of a Fermat curve of prime exponent are given in [13]
and [36].

3.3. Heights of covers of curves with fixed branch locus

For any finite subset B C P'(Q) and integer d > 1, the set of smooth projective connected
curves X over Q such that there exists a finite morphism X — Pla étale over Pla — B of degree
d is finite. In particular, the Faltings height of X is bounded by a real number depending only on
B and d. In this section we prove an explicit version of the latter statement. To state our result
we need to define the height of 5.

For any finite set B C P'(Q), define the (exponential) height as

Hp = max{H(a): a € B},

where the height H (o) of an element o in Q is defined as

1/[K:Q]
= (Hmax(l,”oz”v)) :

Here K i1s a number field containing «v and the product runs over the set of normalized valuations
v of K. (As in [35, Section 2] we require our normalization to be such that the product formula
holds.)

Theorem 3.3.1. Let U be a non-empty open subscheme in Pla with complement B C P(Q).
Let N be the number of elements in the orbit of B under the action of Gal(Q/Q). Define

¢(B) := (4N Hpg)oN2 N,

Then, for any finite morphism = : Y — Pla étale over U, where Y is a smooth projective

connected curve over Q of genus g > 1,

llog@rlg < hea(Y) € 13- 10%6(B)(deg )’
0 < eY) < 3-10"(g—1)e(B)(degm)®

0 < AY) < 5-10%¢%¢(B)(deg)?
(B degn) < Gea(Y) < 2. 10%0(B)(degn)’



Theorem 3.3.1 is a consequence of Theorem 3.3.3 given below where we consider branched
covers of any curve over Q (i.e., not only Pla). Firstly, let us explain how Theorem 3.3.1 settles
a conjecture of Edixhoven-de Jong-Schepers ([22, Conjecture 5.1]). Let us start by stating their

conjecture.

Conjecture 3.3.2. (Edixhoven-de Jong-Schepers) Ler U C PL be a non-empty open sub-
scheme. Then there are integers a and b with the following property. For any prime number (,

and for any connected finite étale cover w : V' — Ugy1 /g, the Faltings height of the normalization
of Pt in the function field of V' is bounded by (deg m)"¢".

Proof of Conjecture 3.3.2. We claim that this conjecture holds with b = 0 and an integer a
depending only on Uq. In fact, let U C P, be a non-empty open subscheme, and let V' — U be
a connected finite étale cover. Let 7 : ¥ — P}Q be the normalization of P}Q in the function field
of V' and note that 7 is étale over Uq. Let B = P}Q — Uq C P}(Q) and let N be the number of
elements in the orbit of B under the action of Gal(Q/Q). By Theorem 3.3.1,

hpa(Y) := Z hpa(X) < (degm)?,

XCVq
where the sum runs over all connected components X of Y :=Y Xq Q, and
a=6+log (13 : 106N(4NHB)45N32”*2N!> .
Here we used that, g < N deg 7 and

sN32N—2
13 10°g(AN Hp) SN2V N0 < (dog ) Hos(1910 N @NHp) S5,

This proves Conjecture 3.3.2. []

We now state and prove Theorem 3.3.3. Let X be a smooth projective connected curve over
Q. We prove that Arakelov invariants of (possibly ramified) covers of X are polynomial in the

degree. Let us be more precise.

Theorem 3.3.3. Let X be a smooth projective connected curve over Q, let U be a non-empty
open subscheme of X, let By C P'(Q) be a finite set, and let f : X — Pla be a finite morphism
of degree n unramified over PIQ — By. Define B := f(X — U) U By. Let N be the number of
elements in the orbit of B under the action of Gal(Q/Q) and let Hp be the height of B. Define

Cp ‘= (4NHB)45N32N_2N!.
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Then, for any finite morphism m : Y — X étale over U, where Y is a smooth projective con-

nected curve over Q of genus g > 1,

—3 log(2m)g < hpa(Y) < 13-10%gep - n°(deg )’

0 < eY) < 3-10"(g—1)ecp-n®(degm)?
0 < A®Y) < 5-108¢%p-n®(degm)®
—10%g%cp - n®(degm)® < dpa(Y) < 2-10%gcp - n®(deg)®.

Proof. We apply Khadjavi’s effective version of Belyi’s theorem. More precisely, by [35, Theo-

rem 1.1.c], there exists a finite morphism
. pl 1
R:PG5— Py
étale over Pla — {0, 1,00} such that R(B) C {0,1, 00} and
deg R < (4NHp)'N?" !,

Note that the composed morphism

Rofom:Y = X ! Pl@ R PIQ

is unramified over Pla —{0,1, 00}. We conclude by applying Theorem 2.1.1 to the composition
Ro fom. []

Proof of Theorem 3.3.1. We apply Theorem 3.3.3 with X = Pla, By the empty set, and
f: X — P16 the identity map. O

In the proof of Theorem 3.3.3, we applied Khadjavi’s effective version of Belyi’s theorem.
Khadjavi’s bounds are not optimal; see [40, Lemme 4.1] and [35, Theorem 1.1.b] for better
bounds when B is contained in P!(Q). Actually, the use of Belyi’s theorem makes the depen-
dence on the branch locus enormous in Theorem 3.3.3. It should be possible to avoid the use of

Belyi’s theorem and improve the dependence on the branch locus in Theorem 3.3.3.

Remark 3.3.4. We mention the quantitative Riemann existence theorem due to Bilu and Strambi;
see [6]. Bilu and Strambi give explicit bounds for the naive logarithmic height of a cover of Pla
with fixed branch locus. Although their bound on the naive height is exponential in the degree,

the dependence on the height of the branch locus in their result is logarithmic.
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CHAPTER 4

Diophantine applications

In [23] Faltings proved the Shafarevich conjecture. That is, for a number field K, finite set S
of finite places of K, and integer g > 2, there are only finitely many K -isomorphism classes of
curves over K of genus g with good reduction outside S. This is a qualitative statement, i.e., this
statement does not give an explicit bound on the “complexity” of such a curve.

In this chapter we are interested in quantitative versions of the Shafarevich conjecture, e.g.,
the effective Shafarevich conjecture and Szpiro’s small points conjecture.

Our main result (joint with Rafael von Kinel) is a proof of Szpiro’s small points conjecture
for cyclic covers of the projective line of prime degree; see Theorem 4.4.1. To explain a part of
our proof, we have also found it fit to discuss the proof of the effective Shafarevich conjecture
for cyclic covers of the projective line of prime degree due to de Jong-Rémond and von Kinel
in Section 4.2.1. We finish this chapter with a discussion of a result of Levin which gives some
hope for obtaining applications of the results in this chapter to long-standing conjectures in
Diophantine geometry.

The results of this chapter form only a small part of our article with von Kénel [31]. In loc.
cit we also discuss the optimality of the constant, and we give better bounds than those presented

here.

4.1. The effective Shafarevich conjecture

In this section we follow Rémond ([51]). Firstly, we recall Faltings’ finiteness theorem for

abelian varieties.

Theorem 4.1.1. (Faltings [23]) Let K be a number field, S a finite set of finite places of K and
g an integer. Then there are only finitely many K-isomorphism classes of g-dimensional abelian

varieties over K with good reduction outside S.
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An application of Torelli’s theorem allows one to deduce the following finiteness theorem for

curves from Theorem 4.1.1.

Theorem 4.1.2. Let K be a number field, S a finite set of finite places of K and g > 2 an integer.
Then there are only finitely many K-isomorphism classes of genus g curves over K with good

reduction outside S.

We are interested in an effective version of Faltings’ finiteness theorem for curves. Let us

consider the “effective Shafarevich” conjecture as stated in [51].

Conjecture 4.1.3. (Effective Shafarevich for curves) Let K be a number field, S a finite set of
finite places of K and g > 2 an integer. Then, there exists an explicit real number c (depending
only on K, S and g) such that, for a smooth projective geometrically connected curve X of genus

g over K with good reduction outside S,
hFal,stable(X) S C.

Remark 4.1.4. Removing the word “explicit” from Conjecture 4.1.3 gives a statement equivalent
to Faltings’ finiteness theorem for curves (Theorem 4.1.2). In fact, it is clear that such a statement
follows from Faltings’ finiteness theorem. Conversely, the above conjecture (with or without the
word “explicit”) implies that, for any number field /&, finite set of finite places S of K and integer
g > 2, there are only finitely many K -isomorphism classes of genus g curves over K with semi-
stable reduction over Ok and good reduction outside S. Here we use the “Northcott property” of
the Faltings height (Theorem 1.6.5). To obtain Theorem 4.1.2, we argue as follows. For a curve
X over K of genus g > 2 with good reduction outside S, there exists a field extension L/K of
bounded degree in g and ramified only over S such that X, has semi-stable reduction over Oy..
Thus, by the Hermite-Minkowski theorem, it suffices to show that, for a finite Galois extension
L/ K and smooth projective geometrically connected curve X of genus at least two over K, there
are only finitely many curves X' over K such that X is isomorphic to X . Note that the set of
such X” is in one-to-one correspondence with H'(Gal(L/K), Aut#(X%)). Since Autz(X7) is
finite, the cohomology set
HY(Gal(L/K), Aut#(X%))

is finite. This proves Theorem 4.1.2.

4.2. The effective Shafarevich conjecture for cyclic covers

In this section we follow de Jong-Rémond ([17]).
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For a number field K, let A = |Ag/q| be its absolute discriminant. For a finite set of finite

places S of a number field K, let

Ag = Aexp <(Zlog Nkq(p) + [K : Q] log4)2) :

pes

The following theorem is the main result of loc. cit. and proves Conjecture 4.1.3 for cyclic

covers of the projective line of prime degree.

Theorem 4.2.1. (de Jong-Rémond) Let K be a number field, S a finite set of finite places of K
and g an integer. Let X be a smooth projective geometrically connected curve of genus g over K
with good reduction outside S. Suppose that there exists a finite morphism X — P such that
Xz — Plf is a cyclic cover of prime degree for some (hence any) algebraic closure K — K.
Then

Ppalstable(X) < 929 Aélsgs-

In this section we aim at explaining the main ingredients of the proof of Theorem 4.2.1. The
proof of de Jong-Rémond is obtained in five steps which we will give below. We will give the
proof of Theorem 4.2.1 at the end of this section. The first step is to replace the Faltings height
of X by the theta height hy(X) of the Jacobian of X with respect to its principal polarization
induced by the theta divisor; see [50, Definition 2.6] or [51, Section 4.a].

Lemma 4.2.2. (Pazuki) Let g > 1 be an integer. Then, for a smooth projective geometrically

connected genus g curve X over Q, the inequality
hra(X) < 2he(X) + 2°971 (2 + max(1, he(X))
holds.

Proof. This follows from [50, Corollary 1.3]. (Note that we are working with » = 4 here in the

notation of loc. cit..) O

The second step consists of invoking an explicit upper bound for the theta height due to
Rémond ([52]). Let K be a number field, K — K an algebraic closure of K, S a finite set of
finite places and ¢ an integer. Let X be a smooth projective geometrically connected curve over
K. Let X — Pj be a finite morphism such that X7 — P% is a cyclic cover of prime degree.
Let H be the height of the finite set of cross-ratios associated to the branch points of X7 — PL;
see Section 3.3 for the definition of the height of a finite set of algebraic numbers and [17] for

the definition of the set of cross-ratios.
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Lemma 4.2.3. We have
ho(Xz) < 93360-9°89 1

Proof. The computation can be found in [17, p. 1141-1142]. O]

Thus, to prove Theorem 4.2.1, it suffices to bound H explicitly in terms of K, S and g. The

idea is to show that every cross-ratio satisfies a well-studied Diophantine equation.

Lemma 4.2.4. (de Jong-Rémond) Let b be a cross-ratio of the branch locus of X7z — Plﬁ.
Then, if L = K(b) and S" = Sy, we have that b and 1 — b are Sy -units in L.

Proof. By applying [17, Proposition 2.1] to b, 1 — b, b=* and (1 — b)~!, it follows that b, 1 — b,
b~'and (1 — b)~! are Si-integers in L. This implies that b and 1 — b are Sy -units in L. O

The fourth step consists of applying the well-established theory of logarithmic forms ([4]).

Lemma 4.2.5. (Baker-Gyory-Yu) Let L be a number field and Sy, a finite set of finite places
of L. Let d, R and P be the degree of L over Q, the regulator of L over Q and the maximum
of |INL/q(p)| as p runs over Sy. Let s = #S, + d. Then, ifband 1 — b are Sp-units in L, the
inequality

h(b) < 25(165d)* PR (1 + M)

max(1,log P)
holds.

Proof. This is an application of the main result of [28] to b. In fact, the pair (b, 1 —b) is a solution
of the equation x +y = 1 with (z,y) € Og, x Og, . (See the proof of [15, Lemme 3.1] for
details.) [l

The preceding two lemmata can be combined into giving an explicit upper bound for H.

Lemma 4.2.6. We have
H< A%’

Proof. Every cross-ratio is an Sp-unit, and by Lemma 4.2.5, the height of such an algebraic
number can explicitly bounded in terms of the degree [L : Q], the regulator of L over Q and the
maximum of |Nz,q(p)| as p runs over S;. This explicit bound implies an explicit upper bound
in terms of K, S and g. This computation requires some results from algebraic number theory;
see [17, p. 1139-1140] for the proof. ]

Proof of Theorem 4.2.1. By Lemma 4.2.2, it suffices to bound the theta height hy(X) explicitly
(in terms of K, S and g). By Lemma 4.2.3, it suffices to bound H explicitly. This is precisely
the content of Lemma 4.2.6. []
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4.3. Szpiro’s small points conjecture

We consider Szpiro’s small points conjecture; see [60], [61], [63], [64], [59].

Conjecture 4.3.1. (Szpiro’s small points conjecture) Let K be a number field, K — K an
algebraic closure of K, S a finite set of finite places of K and g > 2 an integer. Then, there
exists an explicit real number c such that, for a smooth projective geometrically connected curve

X of genus g over K with good reduction outside S, there is a point a in X (K) with

hia) < c.

A point a satisfying the conclusion of Conjecture 4.3.1 is called a “small point”. Roughly
speaking, the following theorem shows that the existence of a small point on X is equivalent to

an explicit upper bound for e(.X).

Theorem 4.3.2. Let X be a smooth projective connected curve over Q of genus g > 2. Then,

forall ain X(Q), the inequality
e(X) < 4g(g — Lh(a)

holds. Moreover, for any € > 0, there exists a in X (Q) such that

e(X)
h(a) < ——— +e.
4lg—1)
Proof. The first statement is due to Faltings; see Theorem 2.2.1. The second statement follows
from Faltings’ Riemann-Roch theorem (Section 1.2) and is due to Moret-Bailly; see the proof of

[48, Proposition 3.4]. [l

Remark 4.3.3. Removing the word “explicit” from Conjecture 4.3.1 gives a statement equivalent
to Faltings’ finiteness theorem for curves (Theorem 4.1.2). In fact, the Arakelov invariant e(X)
satisfies the following Northcott property. Let C' be a real number, and let ¢ > 2 be an integer.
For a number field K, there are only finitely many /K -isomorphism classes of smooth projective
connected curves X over K of genus g with semi-stable reduction over Oy and egpe(X) < C.

Thus, since e¢(X) < 4g(g — 1)h(b) for any b in X (K), to deduce Faltings’ finiteness theorem for

curves from Conjecture 4.3.1, we can argue as in Remark 4.1.4.

4.4. Szpiro’s small points conjecture for cyclic covers

The following theorem proves Szpiro’s small points conjecture (Conjecture 4.3.1) for cyclic

covers of the projective line of prime degree.
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Theorem 4.4.1. ([31, Theorem 3.1]) Let K be a number field of degree d over Q, S a finite set of
finite places of K and g an integer. Let X be a smooth projective geometrically connected curve
of genus g over K with good reduction outside S. Suppose that there exists a finite morphism
7 : X — P} such that 7% : X3 — P% is a cyclic cover of prime degree for some algebraic

closure K — K. Then there exists a in X (K) such that

7 )45(d!(29+2))32d’(29+1)2(d!(2g+1))!

1 5
ha) < % (4d1(2g + 2) A7 (29 +1)°.

Proof. We may and do assume that 0, 1, and oo are branch points of the finite morphism
7 : X — PL. Now, by Corollary 2.5.3, there exists a in X (Q) such that

degp(X)°

—g .

To bound deg;(X), we argue as in the proof Theorem 3.3.3. In fact, by Khadjavi’s effective

h(a) < 107

version of Belyi’s theorem ([35, Theorem 1.1.c]), the inequality
degp(X) < (ANHp)M 2" N qeg 7

holds, where B is the branch locus of 75, Hp is the height of the set B, and NV is the number of
elements in the orbit of B under the action of Gal(Q/Q). Let H be the height of the finite set of

cross-ratios associated to B. Note that
N <[K:Q#B, #B<29+2, degm<2g+1, Hp<H,

where the first inequality is clear, the second inequality and third inequality follow from Riemann-
Hurwitz, and the last inequality follows from the fact that every algebraic number « different
from 0 and 1 equals the cross ratio of 0, 1, co and a. By Lemma 4.2.6, H < Agg)s, where Ag is

as in Section 4.2.1. Putting these inequalities together implies the theorem. [

Remark 4.4.2. The above proof of Theorem 4.4.1 gives a very large upper bound on h(a). We

actually give a much better upper bound for i (a) in our article [31]. In fact, we prove that
h(a) < exp (u™(NsA)")

where we let d = [K : Q], A the absolute discriminant of K over Q, Ng = [],.q V., and
pu = d(5g)°. In loc. cit. we also study the optimality of the upper bound, we study points with

ves

small Néron-Tate height, and we improve its value under further restrictive assumptions on X.

4.5. Zhang’s lower bound for ¢(X)

In this section we prove a slightly stronger version of Szpiro’s small points conjecture for

cyclic covers of prime degree of the projective line.

62



Theorem 4.5.1. ([31, Theorem 3.1]) Let K be a number field, S a finite set of finite places of K
and g an integer. Let X be a smooth projective geometrically connected curve of genus g over K
with good reduction outside S. Suppose that there exists a finite morphism X — P such that
Xz — P% is a cyclic cover of prime degree. Then there are infinitely many a in X (K ) with

45(d!(2g+2))32# 9t =2(dl(2g+1))!
h(a) <2107 (4d!(2g + 2)A§‘9>5) ’ T 29+ 1)°.

To prove Theorem 4.5.1, we will apply the following result of Zhang.

Theorem 4.5.2. There are infinitely many points a in X (Q) such that

e(X)
") < 3=

Proof. This follows from [69, Theorem 6.3]. [l

Proof of Theorem 4.5.1. Theorem 4.5.1 is a consequence of Theorem 4.4.1 and the above result of

Zhang. In fact, by Zhang’s result and Faltings’ inequality ([24, Theorem 5]), there are infinitely

many points a in X (Q) such that, for all b in X (Q), the inequality
h(a) < 4g(g — 1)e(X) < 2gh(b)

holds. OJ

4.6. Diophantine applications of the effective Shafarevich conjecture (af-

ter Levin)

In this section we follow Levin ([39]). Faltings proved the Mordell conjecture via the Sha-
farevich conjecture. In fact, in [49] Parshin famously proved that the Shafarevich conjecture for

curves (Theorem 4.1.2) implies Mordell’s conjecture.

Theorem 4.6.1. (Faltings) For a number field K and smooth projective geometrically connected

curve X over K of genus at least two, the set X (K) of K -rational points on X is finite.

Rémond proved that the effective Shafarevich conjecture (Conjecture 4.1.3) implies an “ef-
fective version of the Mordell conjecture”. His proof relies on Kodaira’s construction. For the
sake of brevity, we only state a consequence of Rémond’s result. We refer the reader to [51,

Théoreme 5.3] for a more precise statement.

Theorem 4.6.2. ([51, Théoreme 5.3]) Assume Conjecture 4.1.3. Let K be a number field and
X a smooth projective geometrically connected curve over K of genus g > 2. Then there exists

an explicit real number c such that, for all a € X (K), we have

h(a) < c.
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Remark 4.6.3. An explicit expression for c is given in [51, Théoreme 5.3].

It is natural to ask whether “weak versions” of the effective Shafarevich conjecture have
Diophantine applications. For instance, one could ask whether Theorem 4.2.1 implies “a weak
effective version of the Mordell conjecture”. Currently, no such implication is known. Never-
theless, it seems reasonable to suspect that some “weak version” of the effective Shafarevich

conjecture implies some version of Siegel’s theorem.

Theorem 4.6.4. (Siegel) Let X be a smooth quasi-projective curve over a number field K, S
a finite set of places of K containing the archimedean places, O g the ring of S-integers, and
f € K(X). If X is a rational curve, then we assume further that f has at least three distinct

poles. Then the set of S-integral points of X with respect to f,
X(f,K,5) ={a e X(K) | f(a) € Oks}
is finite.

In general, there is no quantitative version of Siegel’s theorem known, i.e., there is no known
algorithm for explicitly computing the set X (f, K, S). Of course, in some special cases there are
known techniques for effectively computing X (f, K, S); see [39, Section 1]. This ineffectivity

arises in the classical proofs of Siegel’ theorem from the use of Roth’s theorem.

Theorem 4.6.5. (Roth [53]) Let 0 be a real algebraic number of degree d > 2. For all € > 0,
there are only finitely many rational numbers p/q, with p, q € Z coprime, such that

1
|q|2+e'

67 <
q

Currently, Roth’s theorem remains ineffective. That is, if 6 is a real algebraic number of

degree d > 2, there is no known algorithm (in general!) for explicitly computing the set of
rational numbers p/q such that |0 — p/q| < M++

An interesting result of Levin shows that an effective version of the Shafarevich conjecture

for hyperelliptic Jacobians has Diophantine applications. In fact, Levin proves that an effective

Shafarevich conjecture for hyperelliptic Jacobians implies an effective version of Siegel’s theo-

rem for integral points on hyperelliptic curves. We interpret his result as to give some hope for

obtaining applications of the results in this chapter to effective Diophantine conjectures such as

Siegel’s theorem.

Theorem 4.6.6. (/39, Theorem 3] ) Let g > 2 be an integer. Suppose that, for any number field
K and finite set of finite places S of K the set of K-isomorphism classes of hyperelliptic curves

C over K of genus g with good reduction outside S is effectively computable (e.g., an explicit
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hyperelliptic Weierstrass equation for each such curve is given). Then for any number field K,
any finite set of places S of K, any hyperelliptic curve X over K of genus g, and any rational
function f in K(X), the set of S-integral points with respect to f,

X(f,K,S5) ={ae X(K) | f(a) € Oks}
is effectively computable.

Levin’s proof uses a slight variation on Parshin’s proof of the well-known implication men-
tioned before “Shafarevich implies Mordell”. It remains to be seen whether one can use Parshin-
type constructions to obtain applications of the results in this chapter to effective Diophantine

conjectures.
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Samenvatting

Zij Q het lichaam van rationale getallen en Q — Q een algebraische afsluiting van Q. In dit
proefschrift bestuderen wij krommen over Q en bewijzen wij ongelijkheden voor Arakelovinva-
rianten geassocieerd aan een kromme over Q.

Zij X een kromme over Q van geslacht g > 1 met Belyigraad deg ;(X). Wij bewijzen in dit
proefschrift dat de Faltingshoogte A, (X) van X voldoet aan de ongelijkheid

hpat(X) < 10” degp(X)".

Met andere woorden, de Faltingshoogte van een kromme is polynomiaal begrensd in de Belyi-

graad. Wij laten ook zien dat de discriminant A(X') van X voldoet aan de ongelijkheid
A(X) <107 degg(X)".

Deze twee ongelijkheden generalizeren wij als volgt. Zij h(X) een Arakelovinvariant van X

zoals gedefinieerd in het proefschrift. Dan geldt er dat
h(X) < 10°degg(X)".

Het belang van expliciete ongelijkheden voor Arakelovinvarianten werd voor het eerst opge-
merkt door Parshin in de jaren tachtig. Men kan laten zien dat een expliciete bovengrens voor
de Faltingshoogte van een kromme over een getallenlichaam K, van gegeven geslacht en slechte
reductie over de getallenring O van K, een effectieve versie van de stelling van Faltings (quon-
dam Mordell’s vermoeden) zou impliceren. In deze algemeenheid zijn dergelijke bovengrenzen
niet bekend. Desalniettemin bewijzen wij in dit proefschrift dergelijke bovengrenzen voor cy-
clische overdekkingen van priemgraad van de projectieve lijn PL.. Wij bewijzen hiermee een
speciaal geval van Szpiro’s small points conjecture.

Polynomiale ongelijkheden voor Arakelovinvarianten worden op een cruciale wijze toegepast
in het werk van Peter Bruin, Jean-Marc Couveignes en Bas Edixhoven betreffende computati-
onale aspecten van modulaire vormen en Galoisrepresentaties. De bovengenoemden vereisten

polynomiale grenzen voor Arakelovinvarianten van modulaire krommen. Het eindproduct van
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dit proefschrift is een veralgemenisering van de ongelijkheden voor Arakelovinvarianten van
modulaire krommen in termen van hun niveau.

Het is zeer aannemelijk dat de methodes van Bruin, Couveignes en Edixhoven kunnen worden
gegeneralizeerd om de Galoisrepresentaties geassocieerd aan een oppervlak over QQ te bepalen.
Onze bijdrage aan dit probleem is een bewijs van een vermoeden van Edixhoven, de Jong en
Schepers. Wij bewijzen dat, als X een kromme is over Q, B een eindige verzameling gesloten

puntenis op X en Y — X een overdekking is van graad d onvertakt over X — B, de ongelijkheid
hFal(Y) < C<X7 B) ’ d7

geldt, met ¢(X, B) een reéel getal dat alleen athangt van X en B. Dit resultaat zal hopelijk
worden toegepast om te bewijzen dat er een polynomiaal algoritme is dat de étale cohomologie

als Galoisrepresentatie van een oppervlak over QQ bepaalt.
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Résumé

Soient Q le corps des nombres rationnels et Q — Q une cloture algébrique de Q. Dans
cette thése nous considérons des courbes sur Q. Nous montrons des inégalités pour les invariants
arakeloviens d’une courbe sur Q.

Soit X une courbe sur Q de genre g > 1 et de degré de Belyi degz(X). Nous montrons dans
cette thése que la hauteur de Faltings hp, (X ) de X satisfait I’inégalité

hpat(X) < 10” deg(X)".

C’est-a-dire, la hauteur de Faltings d’une courbe est bornée par un polyndme en le degré du

Belyi. De plus, nous prouvons que le discriminant A(X) de X satisfait I’inégalité
A(X) <107 degg(X)".

Nous généralisons les deux inégalités ci-dessus de la maniére suivante. En effet, si h(X) est un

invariant arakeloviens associé a X (comme défini dans cette these), nous montrons que
h(X) < 10°degg(X)".

Soient K un corps de nombres, g > 2 un entier et S un ensemble fini de places finies de K.
Parshin a remarqué en premier I’importance d’une majoration explicite en K, g et S de I’invariant
arakelovien e(.X') pour toutes les courbes X sur K de genre g et de bonne réduction en dehors
de S. En effet, il a montré qu’un tel résultat impliquerait une version effective du théoreme de
Faltings (quondam la conjecture de Mordell). Malheureusement, il est tres difficile de démontrer
de telles inégalités. Dans cette these nous déduisons de nos inégalités citées ci-dessus un résultat
plus faible que celui espéré par Parshin. En effet, nous montrons une majoration explicite pour
e(X) si X est un revétement cyclique de la droite projective de degré premier. Nous démontrons
en particulier la conjecture des petits points de Szpiro pour ces courbes.

Dans les travaux de Peter Bruin, Jean-Marc Couveignes et Bas Edixhoven sur le calcul de
coefficients de formes modulaires et représentations galoisiennes, il s’avére important de borner

des invariants arakeloviens des courbes modulaires X (n) dans le niveau n. Le produit final de
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cette these est une généralisation des inégalités pour les courbes modulaires obtenues par les
mathématiciens mentionnés ci-dessus. En effet, en remplacgant la courbe modulaire X;(n) de
niveau n par une courbe X quelconque définie sur Q et en remplacant le niveau n par le degré de
Belyi de X, le résultat principal de cette these implique la généralisation énoncée précédemment.

Il semble possible que les méthodes de Bruin, Couveignes et Edixhoven puissent étre géné-
ralisées pour calculer les représentations galoisiennes associé€ a une surface sur Q. Notre contri-
bution a ce probleme est une démonstration d’une conjecture de Edixhoven, de Jong et Schepers
sur la hauteur de Faltings d’un revétement de la droite projective. En d’autres termes, nous dé-
montrons le résultat suivant. Soient X une courbe sur Q, B un ensemble fini de points fermés
de X et Y — X un revétement fini de degré d qui est étale au-dessus de X'\ B. Alors, on a
I’inégalité

hea(Y) < ¢(X,B) - d".

Ici ¢(X, B) est un nombre réel qui dépend uniquement de X et de B. Nous espérons que ce

résultat sera utile dans le calcul des représentations galoisiennes associées a une surface sur Q.
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