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INTRODUCTION 

For many years, filamentous fungi have been used for the industrial production of a 

large variety of metabolites and proteins. A well-known example of a fungal 

bioprocess is the production of the secondary metabolite penicillin by Penicillium 

chrysogenum, developed about 60 years ago (Ligon, 2004). Fungal production 

processes of other β-lactam antibiotics as well as drugs such as hypolipidemic agents 

(e.g., lovastatin by Aspergillus terreus) (Tobert, 2003), have been developed since. 

Furthermore, many of the commercial biological production processes for organic 

acids are fungal bioprocesses, including the production of citric, gluconic, and itaconic 

acid by Aspergillus species or lactic acid by Rhizopus oryzae (Magnuson & Lasure, 

2004). Filamentous fungi also play an important role in the industrial production of 

proteins and enzymes. In particular, Trichoderma and Aspergillus species, but also 

Penicillium and Rhizopus species, are used to produce a large number of different 

enzymes, e.g., (hemi)cellulases, xylanases, chitinases, amylases, proteases, and many 

more (see the list of commercial enzymes from the Association of Manufacturers and 

Formulators of Enzyme Products1). The first industrial fungal bioprocess for proteins 

dates back even further than that for penicillin. For instance, the product takadiastase 

appeared on the market in 1894 and is in fact fungal amylase produced by Aspergillus 

oryzae (Gwynne & Devchand, 1992). 

 

Some of the above-mentioned production processes have been developed and 

optimized over a period of decades, like penicillin, citric acid and amylase; others have 

been developed more recently and are still being optimized to reach commercial 

viable production levels. This is particularly true for production of non-native proteins 

by use of genetically engineered fungal strains. This chapter discusses approaches to 

select targets for improvement of production processes, with special focus on the 

application of functional genomics technologies as an unbiased approach towards 

target selection. 

OPTIMIZATION OF FUNGAL PRODUCTION PROCESS 

The development of a fungal production process starts with the selection of a strain 

that produces the compound of interest or with the construction of such a strain. Once 

this strain is available, production levels need to be increased in order for the process 

to become economically viable. Optimization of the fungal production process, or any 

bioprocess for that matter, can be achieved by an iterative cycle of strain 

                                                           
1 http://www.amfep.org/list.html; August 24, 2010 
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improvement and/or process optimization (Fig. 1). Process optimization includes 

improving medium performance as well as identifying optimal environmental process 

parameters, such as pH, temperature, and aeration. Many techniques are available for 

process optimization: straightforward methods like the change-one-factor-at-the-time 

approach or more advanced methods using the experimental design approach, for 

which various design and optimization techniques are available (Kennedy & Krouse, 

1999; Weuster-Botz, 2000). Many of these techniques rely on prior knowledge of 

components and environmental parameters likely to affect product yields. This 

obviously means that many more components and parameters are overlooked that 

could be beneficial to bioprocess performance, but about which no prior knowledge is 

available. Similarly, strain optimizations until now mainly include alleviating 

bottlenecks identified in case-by-case studies. Often only the obvious targets for 

metabolic engineering are addressed (van der Werf, 2005). In the case of protein 

production, targeting known putative bottlenecks at the post-transcriptional stage is a 

commonly applied approach of optimizing production levels, for instance by 

alleviating blockages along the secretion pathway (Conesa et al., 2001) or by 

eliminating extracellular proteases (Braaksma & Punt, 2008). From the almost infinite 

number of genetic changes that can be introduced by overexpression or knocking out 

of genes, only those that are known from the current and generally limited knowledge 

of the metabolic pathway are selected to optimize product formation. Biological 

processes or interactions that are not currently known to be important for bioproduct 

formation or that are not yet known to exist are not taken into account. 

 

 
 

Fig 1. Iterative cycle of strain improvement and/or process optimization. 
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In our research we have aimed at using a strain and process development approach 

which is not a priori hypothesis driven but relies on first acquiring data sets rich in 

information with regard to the bioprocess under study from functional genomics 

technologies and using these for target selection from the broadest possible ranges of 

expressed genes (transcriptomics), proteins (proteomics), or metabolites 

(metabolomics). In this chapter such a systems biology approach, based on the 

information gathered with functional genomics technologies and in combination with 

multivariate data analysis tools, is discussed as a method to achieve unbiased 

selection and ranking of targets for both strain improvement and bioprocess 

optimization. 

TOP-DOWN SYSTEMS BIOLOGY 

In systems biology the organism is studied as an integrated and interacting network of 

genes, proteins, and biochemical reactions. Principally, at its extreme, two approaches 

are recognized within systems biology: top-down and bottom-up systems biology 

(Bruggeman & Westerhoff, 2007). In bottom-up systems biology, biological knowledge 

is used as the starting point and a comprehensive mathematical model of the 

biological system under study is built. In fungal research metabolic stoichiometric or 

kinetic models and metabolic network topology models have been used for a systems-

level investigation of mainly P. chrysogenum and Aspergillus species (David et al., 

2006; Andersen et al., 2008a; Melzer et al., 2007; Gheshlaghi et al., 2007; Nasution et 

al., 2008). Similar to the more classical approaches for target selection, these methods 

require prior knowledge about the studied system. The models are built from known 

components only and demand an extensive knowledge of the individual parts of the 

model, and they exclude all components and reactions whose functions are not yet 

(fully) known. 

 

In contrast, in top-down systems biology, data are used as the starting point and 

statistical data mining approaches are applied to come to a comprehensive 

understanding of the biological system. The principal behind top-down systems 

biology is that molecular components that respond similarly to changes in the 

experimental conditions are somehow functionally related. No other prior 

assumptions regarding the interactions of the studied molecular components are 

required. This allows the study of complex and relatively poorly characterized 

processes and strains, as extensive knowledge of the studied organism or process is 

not necessary. In this top-down systems biology approach there is also no a priori 

focus on specific biomolecules expected to relate to the biological question. Therefore, 

this approach also enables the discovery of previously unknown or unexpected 
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relations between specific biomolecules and the biological process studied. Despite 

the potential of top-down systems biology, the great majority of scientists applying 

systems biology use a bottom-up systems biology approach. The reluctances towards 

top-down systems biology might relate to the risk of being overwhelmed by the 

enormous quantity of data that arise from functional genomics technologies such as 

metabolomics and transcriptomics. The challenge is to be able to extract relevant 

information from these data sets. Principally, the success of this approach depends on 

balancing three interlinked key factors: (i) definition of the biological question, (ii) 

experimental design, and (iii) the data analysis tool (Fig. 2). These three factors are 

discussed in more detail below. 

 

  

 
 

Fig. 2. Key conditions and their relation to a successful systems biology study. In top-down systems biology, three 

interlinked factors are crucial for success: (i) the biological question, (ii) the experimental design, and (iii) data 

analysis. 
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A clear definition of the biological question to be answered is the crucial starting point 

in any top-down systems biology research project, because only then can a suitable 

experimental setup and data analysis strategy be selected (van der Werf et al., 2005; 

Trygg et al., 2007). To explain this in more practical terms, two examples are given of 
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ways to define the biological question in a study to gain more insight in the regulation 

of the proteolytic system of Aspergillus niger. First, when this problem is approached 

on a metabolic level, the biological question could be, “Which metabolites induce 

protease activity in A. niger?” On the other hand, when this problem is approached on 

a genetic level the biological question could be stated as, “Which transcriptional 

regulators are associated with protease activity in A. niger?” In the first case 

metabolite levels are the relevant biomolecules to be measured, in the second case 

transcript levels are to be determined, and in both cases protease activities will have 

to be determined. What is important is that the biological question be translated into a 

quantifiable biomolecule level, which can be measured at different biochemical levels 

(i.e., at the transcriptome, metabolome, proteome level). In addition, it is often 

possible to specify a quantifiable phenotype that is relevant for the biological 

question, such as protease activity in this case. It is also very important to clearly 

define this phenotype. For instance, in the production of a biological compound or 

activity, among others, the following definitions of phenotypes could be chosen for 

improvement: concentration (in grams per litre) or activity (in units per litre); specific 

concentration or activity (in grams per gram dry cell weight or in units per gram dry 

cell weight); productivity (in grams per litre per hour or in units per litre per hour); 

specific productivity (in grams per gram dry cell weight per hour or in units per gram 

dry cell weight per hour). When reducing costs of nutrients is the key goal, one could 

also think of defining the phenotype as cost of nutrients per unit product (in U.S. 

dollars per gram of product) or cost of nutrients per unit productivity (in U.S. dollars 

per gram of product formed per litre per hour) (Kennedy & Krouse, 1999). The 

biological question and its translation into a practical format strongly influence the 

other key factors of a top-down systems biology study, i.e., experimental design and 

data analysis. The experimental setup should ensure that experimental conditions that 

induce variation relevant for the biological question are selected and that data 

analysis is able to extract the information relevant to the biological question from 

functional genomics data set. 

EXPERIMENTAL DESIGN 

Based on the biological question, the experimental design of the top-down systems 

biology study should be aimed at generating large information-rich data sets in order 

for data analysis to extract relevant biological information from the data set. Not only 

experimental conditions for the experimental design should be considered, but also 

sampling, sample work-up, and the functional genomics tool to be used to analyze the 

samples. 
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Experimental conditions 

The first step in establishing how to plan and conduct the experiments is to identify 

those parameters affecting the response of the phenotype. These parameters can be 

process type (batch, fed-batch, or continuous), environmental conditions such as pH 

and nutrients, or selected strains. In the case of using various mutant strains to induce 

variation in the data set (for an example, see Askenazi et al., 2003), one should keep in 

mind that each strain may have its own bottleneck, making identification of specific 

targets for a general improvement more complex. When a phenotype relevant to the 

biological question is available, the experimental conditions should be targeted to 

induce variation in this phenotype. When it is unclear what experimental factors are 

involved in the induction of biological variation relevant to the biological problem, 

screening experiments need to be conducted to obtain more information regarding 

these experimental factors. 

 

Traditionally, one of the most frequently used approaches to study which parameters 

affect biological responses is the change-one-factor-at-a-time approach, in which one 

independent variable is studied while all others are fixed at a specific level. An 

advantage of this simple and easy method is that any change in response can be 

attributed to a specific change. On the other hand, this change-one-factor-at-a-time 

approach has some serious drawbacks, perhaps the most important being that 

possible interactions between components are ignored. As a result, this approach 

frequently fails to find optimal conditions for experiments. Another disadvantage is 

the unnecessarily large number of experiments that are required when testing more 

than a few variables. Therefore, the change-one-factor-at-a-time method is 

acknowledged to have severe shortcomings and is more and more being replaced by 

statistics-based experimental designs, also called “Design of Experiments”. For an 

initial screening of factors possibly related to the biological question, different types of 

experimental designs, so-called screening designs, are available, including the full 

factorial design (Lundstedt et al., 1998). In a full factorial design, every level of a factor 

is investigated at all levels of all other factors. Often the factors are investigated at two 

levels, requiring a number of runs equal to 2k for k factors, which results in a large 

number of experiments when many factors are investigated (Fig. 3). When the factors 

are investigated at three or more levels, requiring 3k runs in the case of three levels 

and nk runs for n levels, the number of experiments rapidly becomes impracticable. To 

reduce the number of experiments without the loss of too much information, several 

experimental designs derived from the full factorial design are available. The most 

commonly used one is the fractional factorial design (Lundstedt et al., 1998; Trygg et 

al., 2006), which requires only nk–p number of runs, with k as the number of 
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investigated factors at n different levels, and p describing the size of the fraction of the 

full factorial used. With this type of design, three-way and higher interactions are 

ignored. Another useful screening tool is the Plackett-Burman design (Plackett & 

Burman, 1946; Weuster-Botz, 2000). This experimental design is a variation on the 

fractional factorial design, but instead of ignoring only higher interactions it considers 

all interactions between factors negligible. The downside of these two last designs is 

that when interactions between factors are not negligible, they are confounded with 

the estimated effects. This means that the estimated effects and those interaction 

effects cannot be distinguished from one another.   

 

 

Fig. 3. Full factorial designs, with two factors (A) or three factors (B) investigated at two different levels. 

 

Based on this first phase, the main factors relevant to the biological question under 
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factorial designs, or D-optimal designs, a computer-aided design method (Kennedy & 

Krouse, 1999; Trygg et al., 2006; Lundstedt et al., 1998). On top of that, response 

surface methodology can be applied to generate a data set with an evenly distributed 

variation. Response surface methodology is commonly used in industry for process 

optimization (Dobrev et al., 2007; Li et al., 2007). Based on a set of designed 

experiments, e.g., from a factorial design, a model that predicts the biological response 

to different levels of the various factors included in the study is built. In contrast, from 

such a model, conditions that will result in various levels of the relevant biological 
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Selection of a functional genomics tool 

Selection of the functional genomics tool to be used in a top-down systems biology 

study depends on the level at which the biological phenomena relevant for the 

biological question occur. With transcriptomics the expression levels of mRNA under a 

given condition are examined. The transcriptome reacts very fast, within in a few 

minutes, to environmental changes. This makes transcriptomics a very suitable tool to 

study the cell exposed to changing environmental conditions, such as the addition of 

toxic or chemical compounds (Arvas et al., 2006; Guillemette et al., 2007) or transfer 

from one medium to another (Yuan et al., 2006). However, mRNA levels do not 

directly correlate to the levels of the encoded protein, due to post-transcriptional 

regulation steps at the level of mRNA stability, processing, and translation. Therefore, 

transcriptomics is only an indirect approach to study the function of a cell. On the 

other hand, the proteome and the metabolome together determine the actual function 

of the cell (the phenotype) (Oliver, 2000). 

 

The proteome, meaning all proteins present at a given moment under defined 

environmental conditions, gives an indication of which metabolic pathways occur 

under those conditions (Kim et al., 2007a), as for many proteins are enzymes that 

catalyze biochemical reactions. In contrast to transcriptomics, quantitative proteomics 

is still far from being a comprehensive analysis tool, mainly due to the limited 

dynamic detection range and poor reproducibility of proteomic analysis. Because of 

this there is a very strong bias towards identifying only the more abundant proteins in 

a complex proteome sample. Nonetheless, to study post-translational modifications of 

proteins, such as phosporylation and glycosylation, proteomics is the most obvious 

tool of choice (Fryksdale et al., 2002; Kim et al., 2007b).  

 

The metabolome of the cell, i.e., all metabolites present in a cell at a certain moment, 

provides valuable information about the regulatory or catalytic properties of either 

mRNA or enzyme, as metabolites are downstream of all genome and proteome 

regulatory structures (Oldiges et al., 2007). As the metabolome is closest to the 

phenotype of a cell, it will be most relevant in order to understand biological 

functioning. Similar to what was noted above for proteomics, full coverage of the 

complete metabolome is not (yet) accomplished by the available analytical platforms, 

although some metabolomics platform are approaching the ultimate goal of providing 

a universal platform for the comprehensive and quantitative analysis of microbial 

metabolomes (van der Werf et al., 2007). 
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Sampling strategy 

The sampling strategy is part of the experimental setup and describes when and how 

samples for the functional genomics analysis are collected. It embraces two main 

issues, namely, collecting the sample at a time point where the biological response 

relevant to the biological question is present and ensuring that levels of biomolecules 

remain unchanged from the moment of sampling. Concerning this first issue, if it is 

unknown beforehand which phases during the cultivation contain information related 

to the biological question, the sampling protocol should cover all possibly relevant 

growth phases and phase transitions (Trygg et al., 2007). At the same time, practical 

matters have to be considered as well. For instance, the sampling volumes can limit 

the number of obtainable samples, or the costs of sample analysis can influence the 

sampling strategy. In the case of continuous cultures, time issues are of no importance, 

but due to technical difficulties this fermentation technique is not as commonly 

applied in fungal research as it is in research involving other microorganisms. Besides, 

with the application of continuous cultures the approach is quite different, as time is 

no longer a factor, excluding longitudinal effects (e.g., induction or other perturbations 

during the fermentation process). In addition, it should be noted that although the 

process conditions are fixed during continuous cultures, changes in the production 

organism are frequently observed (Swift et al., 1998; Withers et al., 1995), making 

continuous cultures prone to transitions, albeit of a different kind. 

 

The second issue relates to the high turnover of mRNA and metabolites (for proteins 

this is not so much of an issue), risking the introduction of unwanted changes in RNA 

or metabolite levels during sample harvesting or work-up. In order to obtain samples 

that reflect the state of the cell under the environmental conditions at the time of 

harvesting, rapid sampling (Nasution et al., 2006) and immediate inactivation 

(quenching) of the cellular metabolism are a necessity. In the literature, the quenching 

methods used for filamentous fungi mainly include rapid filtration followed by 

immediate freezing of the cells (mostly used for transcriptomics samples) (David et 

al., 2006) or dilution of the cells in a methanol solution of -45 °C (more often used for 

metabolomics samples) (Ruijter & Visser, 1996; Nasution et al., 2006; 

Kouskoumvekaki et al., 2008). 

 

After quenching the cells, conditions should be maintained during sample work-up in 

order to prevent changes in the metabolite composition of RNA levels due to residual 

enzymatic activity present in the samples. Extraction of RNA from mycelium is often 

accomplished by disruption of the cells by either grinding under liquid nitrogen using 

a mortar and pestle (Kimura et al., 2008; Foreman et al., 2003) or bead-milling at 
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temperatures of approximately 4 °C (Andersen et al., 2008b), followed by a standard 

RNA isolation protocol. Extraction of proteins is done in a similar way, without the 

stringent control of temperature (Carberry et al., 2006). For fungal metabolomics 

samples, two methods in particular have been described for extracting metabolites 

from the cells. The first is boiling the cells in an ethanol-buffer solution and 

subsequent reduction of the volume by evaporation in a rotavapor (Nasution et al., 

2006). The second is chloroform extraction at -45 °C (Ruijter & Visser, 1996). 

 

A final issue to consider as part of the sampling strategy is replicates. As the total 

variation in data set is the sum of technical, uninduced biological, and induced 

biological variation, repeated measurements may be necessary to estimate the 

individual contributions of these various parts. However, in general the biological 

variation is much larger than variation induced by sample work-up or variation in the 

analytical method (van den Berg et al., 2006). This makes repeating the experimental 

procedure with identical samples not very worthwhile in most cases. Some biological 

replicates will have to be included in the experimental design to estimate the overall 

uninduced biological variation due to small differences between biological conditions 

or biological variability. In this way, the induced biological variation can be 

established, as calculated on the basis of the differences between the experimental 

conditions. 

 

Based on the various aspects of the experimental setup discussed above, it becomes 

clear that it is necessary to balance the demands from the biological question and the 

data analysis on one side with practical considerations on the other. 

DATA ANALYSIS 

After having generated data sets under several different conditions with hundreds or 

thousands of proteins, mRNAs, or metabolites, the remaining challenge is to extract 

information about the biological question from these enormous data sets. Multivariate 

data analysis (MVDA) tools are preferably used, as those tools take into consideration 

the intrinsic interdependency of the biomolecules. But before the data sets can be 

analyzed by MVDA tools, the data output from the various functional genomics 

methods often requires data pretreatment. 
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Data pretreatment methods 

In addition to the specific preprocessing steps of the data output from the various 

genomic methods, such as deconvolution of data files generated by gas 

chromatography-mass spectrometry for metabolomics (van der Werf et al., 2005) or 

normalization of cDNA microarrays (Leung & Cavalieri, 2003), another critical step 

before applying MVDA tools is data pretreatment of the data sets. Data pretreatment 

procedures correct for the influence of factors such as the abundance of a biomolecule 

or the magnitude of the change, which are generally not a reflection for the 

importance of a biomolecule (van den Berg et al., 2006). Appropriate data 

pretreatment methods will articulate the biological information content and will 

consequently allow more relevant biological interpretation of the data set. Three 

classes of data pretreatment methods can be distinguished: centring, scaling, and 

transformation. The last two methods are always applied in combination with 

centring. In MVDA, mean-centring and autoscaling are the two most commonly used 

data pretreatment methods. With mean centring, the average level of a biomolecule is 

subtracted from each individual experiment, thereby adjusting for differences in the 

offset between high-abundance and low-abundance biomolecules. With autoscaling, 

the values are subsequently divided by the standard deviation of each biomolecule, 

adjusting for disparities in increase/decrease differences between the various 

biomolecules. In addition to these two methods, range scaling holds great promise, as 

the mean centred values are not divided by a statistical measure for data spread, as is 

the case with autoscaling, but by a biological measure, namely, the biological range. 

The biological range is the difference between the minimal and maximal levels 

reached by a certain biomolecule in a set of experiments. In Fig. 4 the effect of data 

pretreatment on principal component analysis (PCA) results of a metabolomics data 

set of Trichoderma reesei is shown (van der Werf et al., unpublished data). With data 

pretreatment the biological information content in the data set is accentuated. In this 

particular case, it is range scaling that especially emphasizes the biological variation 

among the different biological groups. This data pretreatment method allows a clear 

separation of these different groups, whereas no grouping or a less obvious grouping 

is observed in the data sets when the other two methods are used.   

 

MVDA tools 

Choices in data analysis strategy are influenced by the biological question, the 

characteristics of the experimental design, the behaviour of the relevant biomolecules, 

and the dimensions of the data set. There are various MVDA methods that address 

different biological questions. In general, these methods can be divided in two main 
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groups, namely, unsupervised methods and supervised methods. Unsupervised 

methods include PCA (Jackson, 1991; Jolliffe, 2002) or hierarchical clustering analysis 

(Eisen et al., 1998) that visualize relations/patterns in data sets without prior 

knowledge.  

 

 

 
 

Fig. 4. The effect of mean scaling, autoscaling, or range scaling of metabolomics data sets on PCA data results. 

The data sets are derived from research related to induction of cellulase activity in T. reesei (van der Werf et al., 

unpublished data). The metabolomes of three groups of samples (no enzyme production, increasing productivity, 

and decreasing productivity) were analyzed and pretreated with these three different approaches and 

subsequently analyzed by PCA. 
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Supervised methods, which include regression methods such as partial least squares 

(Geladi & Kowalski, 1986) and principal component regression (Mardia et al., 1979) 

or classification  methods such as partial least squares-discriminant analysis (Barker 

& Rayens, 2003) and principal component discriminant analysis (Hoogerbrugge et al., 

1983), do the same as unsupervised methods while at the same time prior knowledge 

about one or more biological properties of the data set are taken into consideration. 

Discriminant methods are particularly suitable for samples with no quantifiable 

phenotype other than the presence or absence of a certain biological characteristic, 

e.g., morphological traits such as colour or hyperbranching or certain environmental 

conditions or perturbations. For discriminant methods, this means that the samples 

are divided in (biological) groups, e.g., a group of samples from the wild-type strain 

and a group of samples from a mutant. Although each sample within such a biological 

group is designated as equal, there will always be biomolecules correlating to specific 

groups that are irrelevant to the biological question under study (so-called chance 

correlations). Therefore, when it is possible to express the phenotype as a numerical 

figure, this is preferred as the risk of chance correlations is reduced when analyzing 

such data with regression methods. Regression methods find correlations between a 

numerical phenotype response and the biomolecule composition for the different 

samples in the data set. Regression methods are preferably applied to a set of 

experiments with large and evenly distributed variation in the biological response of 

interest.  

 

In addition, validation of the data analysis results is of crucial importance, as it will 

provide an indication for the risk that correlations were found by chance due to the 

relatively low number of samples in relation to the large number of measured 

biomolecules. As multivariate statistical methods were developed for data sets 

containing many samples and few variables, this is a serious risk. Frequently applied 

data analysis validation strategies in top-down systems biology are cross validation, 

permutation, jackknifing, and bootstrapping (Rubingh et al., 2006; Westerhuis et al., 

2008; Efron & Tibshirani, 1993). Based on the results of these validation steps, the 

reliability of the obtained models is established. Finally, a list of biomolecules can be 

obtained with the largest contribution to the model, i.e., those with the highest 

absolute regression factor. The biomolecules with the highest ranking are considered 

to be most relevant to the studied biological phenomenon.  

 

Biological interpretation 

Based on the list of biomolecules identified by the MVDA tools as being important in 

relation to the question under study, targets for improvement of the production 
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process have to be selected. There is a possibility with MVDA tools that biomolecules 

that do not show an unambiguous interaction with the specific biological question will 

be identified. Therefore, one of the first steps is to go back to the original data sets and 

examine fluctuation of the concentration of the biomolecule in relation to the studied 

phenotype. Moreover, not all biomolecules that exhibit an apparently strong 

interaction with the studied phenotype are biologically related to it. For that reason, 

as much information as possible should be acquired about the biological function of 

these biomolecules in the context of the biological question under study. From this 

knowledge, biological hypotheses will have to be formulated and new experiments 

will have to be setup to test them. For targets from transcriptomics studies, this can be 

quite straightforward, by either overexpression or deletion of the designated relevant 

genes, depending on a positive or negative correlation to the phenotype. On the other 

hand, several options for the ultimate improvement of the process are possible for 

targets identified in metabolomics studies. An easy way to increase product levels 

might be the addition or omission to the growth medium of a relevant metabolite 

identified by data analysis. This approach bears the risk that the transport of the 

compound into the cell will limit its suitability. More complex is the segue from a 

relevant metabolite identified by using metabolomics relevant to a gene target for 

metabolic engineering. This requires knowledge about the metabolic pathway(s) 

involving the metabolite and its putative (allosteric) regulatory effects. Even then, it is 

not straightforward to translate this knowledge into a gene target. For instance, when 

a positive correlation between the product of interest and an intermediate in the 

biosynthesis route for the product is observed (increase in the concentration of this 

intermediate correlates with elevated product levels), the enzyme converting the 

intermediate is not active enough and the corresponding gene should therefore be 

overexpressed. In another example elevated product levels correlate with increased 

levels of an intermediate via a side reaction. Elimination of this competitive pathway 

by deletion of the corresponding gene should result in an increased flux through the 

biosynthetic pathway of interest and thus elevated levels of the desired product. 

CONCLUSIONS 

The available selection methods for relevant targets for fungal strain and process 

development, or for that matter any microbial production process, have been very 

successful in numerous cases. However, the exclusion of all biological processes or 

interactions that are not currently known to exist has been shown to hamper further 

improvement while using these approaches. Recently introduced functional genomics 

technologies in combination with MVDA tools enable an open and comprehensive top-

down systems biology approach towards target selection. Nevertheless, the success of 
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such an approach depends heavily on a systematic study covering all aspects, from a 

clear description of the biological question up to statistical data analysis. As this 

involves knowledge beyond the biologist expertise (e.g., biostatistics), the assistance 

of experts in those fields will be indispensable. Due to its unbiased nature, a successful 

top-down system biology approach will provide a new boost in the ongoing cycle of 

bioprocess optimization. 

  

 


