
Models of natural computation : gene assembly and membrane
systems
Brijder, R.

Citation
Brijder, R. (2008, December 3). Models of natural computation : gene assembly and
membrane systems. IPA Dissertation Series. Retrieved from
https://hdl.handle.net/1887/13345

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13345

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13345

Chapter 5

How Overlap Determines

Reduction Graphs for Gene

Assembly

Abstract
Ciliates are unicellular organisms having two types of functionally different nuclei:
micronucleus and macronucleus. Gene assembly transforms a micronucleus into
a macronucleus, thereby transforming each gene from its micronuclear form to
its macronuclear form. Within a formal intramolecular model of gene assembly
based on strings, the notion of reduction graph represents the macronuclear form
of a gene, including byproducts, given only a description of the micronuclear form
of that gene. For a more abstract model of gene assembly based on graphs, one
cannot, in general, define the notion of reduction graphs. We show that if we
restrict ourselves to the so-called realistic overlap graphs (which correspond to
genes occurring in nature), then the notion of reduction graph can be defined
in a manner equivalent to the string model. This allows one to carry over from
the string model to the graph model several results that rely on the notion of
reduction graph.

5.1 Introduction

Gene assembly is a process that takes place in unicellular organisms called ciliates,
which have two types of functionally different nuclei: micronucleus (MIC) and
macronucleus (MAC). Gene assembly transforms the genome of the MIC into the
genome of the MAC. The two genomes are dramatically different in both the
global form of their chromosomes and in the local form of single genes. During
gene assembly each gene in its MIC form gets transformed into the same gene in
its MAC form. See [12] for a detailed account of the biology of gene assembly.

100 Introduction

In this chapter we consider only intramolecular models of gene assembly – thus
here we do not consider the intermolecular models initiated by Landweber and
Kari [20], and further developed by Daley et al. [10, 9]. Among the formal mod-
els of intramolecular gene assembly the string pointer reduction system (SPRS)
and the graph pointer reduction system (GPRS), see [12], are of interest for this
chapter. The SPRS consist of three types of string rewriting rules operating on
so-called legal strings, while the GPRS consist of three types of graph rewriting
rules operating on so-called overlap graphs. The GPRS is an abstraction of the
SPRS: some information present in the SPRS is lost in the GPRS.

Realistic strings are strings that represent genes in their micronuclear form.
Legal strings are an abstraction of realistic strings. The reduction graph, which is
defined for legal strings, is a notion that describes the gene corresponding to the
legal string in its macronuclear form (along with its waste products: the substrings
“spliced out” in the process) – it is unique for a given legal string. It has been
shown that the reduction graph retains the information needed to characterize
which string negative rules (one of the three types of string rewriting rules) can
be used during the transformation of a MIC form of a gene to its MAC form [6, 4].
Therefore it would be useful to have a notion of the reduction graph also for the
GPRS. However, this is not so straightforward. We will demonstrate that, since
the GPRS loses some information concerning the application of string negative
rules, in general there is no unique reduction graph for a given overlap graph,
cf. Example 6. However, as we will show, when we restrict ourselves to “realistic”
overlap graphs then one gets a unique reduction graph. These overlap graphs are
called realistic since they correspond to (micronuclear) genes. In this chapter, we
explicitly define the notion of reduction graph for realistic overlap graphs (within
the GPRS) and show that it is equivalent to the notion of reduction graph for legal
strings (within the SPRS). Finally, we give a number of direct corollaries of this
equivalence, including an answer to an open problem formulated in Chapter 13 in
[12].

In Section 5.2 we recall some basic notions and notation concerning sets, strings
and graphs. In Section 5.3 we recall notions used in models for gene assembly, such
as legal strings, realistic strings and overlap graphs. In Section 5.4 we recall the
notion of reduction graph within the framework of SPRS and we prove some ele-
mentary properties of this graph for legal strings. In particular we establish a cal-
culus for the sets of overlapping pointers between vertices of the reduction graph.
In Section 5.5 we prove properties of the reduction graph for a more restricted
type of legal strings, the realistic strings. It is shown that reduction graphs of
realistic strings have a subgraph of a specific structure, the root subgraph. More-
over, we show (using the calculus from Section 5.4) that the existence of the
other edges in the reduction graph depends directly on the overlap graph. In Sec-
tion 5.6 we provide a convenient function for reduction graphs that allows one to
simplify reduction graphs without losing any information. In Section 5.7 we define
the reduction graph for realistic overlap graphs, and prove the main theorem of
this chapter: the equivalence of reduction graphs defined for realistic strings with

Chapter 5 101

the reduction graphs defined for realistic overlap graphs. In Section 5.8 we dis-
cuss some immediate consequences of this theorem. A conference version of this
chapter, which does not contain any proofs, was presented at FCT ’07 [7].

5.2 Notation and Terminology

In this section we recall some basic notions concerning functions, strings, and
graphs. We do this mainly to set up the basic notation and terminology for this
chapter.

The cardinality of a set X is denoted by |X |. The symmetric difference of sets
X and Y , (X\Y) ∪ (Y \X), is denoted by X ⊕ Y . Since symmetric difference is
associative, we extend it to (finite) families of sets (Xi)i∈A, and denote this by⊕

i∈A Xi. The composition of functions f : X → Y and g : Y → Z is the function
gf : X → Z such that (gf)(x) = g(f(x)) for every x ∈ X . The restriction of f to
a subset A of X is denoted by f |A.

We use λ to denote the empty string. For strings u and v, we say that v is a
substring of u if u = w1vw2, for some strings w1, w2; we also say that v occurs in
u. Also, v is a cyclic substring of u if either v is a substring of u or u = v2wv1 and
v = v1v2 for some strings v1, v2, w. We say that v is a conjugate of u if u = w1w2

and v = w2w1 for some strings w1 and w2. For a string u = x1x2 · · ·xn over Σ
with xi ∈ Σ for all i ∈ {1, . . . , n}, we say that v = xnxn−1 · · ·x1 is the reversal of
u. A homomorphism is a function ϕ : Σ∗ → Δ∗ such that ϕ(uv) = ϕ(u)ϕ(v) for
all u, v ∈ Σ∗.

We move now to graphs. A labelled graph is a 4-tuple G = (V, E, f,Γ), where
V is a finite set, E ⊆ {{x, y} | x, y ∈ V, x �= y}, and f : V → Γ. The elements
of V are called vertices and the elements of E are called edges. Function f is the
labelling function and the elements of Γ are the labels. Note that our graphs are
not directed and do not have loops.

We say that G is discrete if E = ∅. Labelled graph G′ = (V ′, E′, f |V ′,Γ) is
a subgraph of G if V ′ ⊆ V and E′ ⊆ EV ′ = E ∩ {{x, y} | x, y ∈ V ′, x �= y}.
If E′ = EV ′ , we say that G′ is the subgraph of G induced by V ′. A string π =
e1e2 · · · en ∈ E∗ with n ≥ 1 is a path in G if there is a v1v2 · · · vn+1 ∈ V ∗ such
that ei = {vi, vi+1} for all 1 ≤ i ≤ n. Labelled graph G is connected if there is
a path between every two vertices of G. A subgraph H of G induced by VH is a
component of G if both H is connected and for every edge e ∈ E we have either
e ⊆ VH or e ⊆ V \VH .

Labelled graphs G = (V, E, f,Γ) and G′ = (V ′, E′, f ′,Γ) are isomorphic, de-
noted by G ≈ G′, if there is a bijection α : V → V ′ such that f(v) = f ′(α(v)) for
all v ∈ V , and {x, y} ∈ E iff {α(x), α(y)} ∈ E′ for all x, y ∈ V . Any such bijection
α is then called an isomorphism from G to G′. It is important to realize that we
require that the labels of vertices identified by an isomorphism are equal.

In this chapter we will consider graphs with two sets of edges. Therefore, we
need the notion of 2-edge coloured graphs. A 2-edge coloured graph is a 5-tuple
G = (V, E1, E2, f,Γ), where both (V, E1, f,Γ) and (V, E2, f,Γ) are labelled graphs.

102 Gene Assembly in Ciliates

The basic notions and notation for labelled graphs carry over to 2-edge coloured
graphs. However, to extend the notion of isomorphism care must be taken that
the two sorts of edges are preserved. Thus, if G = (V, E1, E2, f,Γ) and G′ =
(V ′, E′1, E

′
2, f

′,Γ′) are 2-edge coloured graphs, and α is an isomorphism from G
to G′, then (x, y) ∈ Ei iff (α(x), α(y)) ∈ E′i for x, y ∈ V and i ∈ {1, 2}.

5.3 Gene Assembly in Ciliates

Two models that are used to formalize the process of gene assembly in ciliates are
the string pointer reduction system (SPRS) and the graph pointer reduction sys-
tem (GPRS). The SPRS consist of three types of string rewriting rules operating
on legal strings while the GPRS consist of three types of graph rewriting rules
operating on overlap graphs. For the purpose of this chapter it is not necessary to
recall the string and graph rewriting rules; a complete description of SPRS and
GPRS, as well as a proof of their “weak” equivalence, can be found in [12]. We do
recall the notions of legal string and overlap graph, and we also recall the notion
of realistic string.

We fix κ ≥ 2, and define the alphabet Δ = {2, 3, . . . , κ}. For D ⊆ Δ, we
define D̄ = {ā | a ∈ D} and ΠD = D ∪ D̄; also Π = ΠΔ. The elements of Π are
called pointers. We use the “bar operator” to move from Δ to Δ̄ and back from
Δ̄ to Δ. Hence, for p ∈ Π, ¯̄p = p. For p ∈ Π, we define p to be p if p ∈ Δ, and
p̄ if p ∈ Δ̄, i.e., p is the “unbarred” variant of p. For a string u = x1x2 · · ·xn

with xi ∈ Π (1 ≤ i ≤ n), the complement of u is x̄1x̄2 · · · x̄n. The inverse of u,
denoted by ū, is the complement of the reversal of u, thus ū = x̄nx̄n−1 · · · x̄1.
The domain of u, denoted by dom(u), is {p | p occurs in v}. We say that u is
a legal string if for each p ∈ dom(u), u contains exactly two occurrences from
{p, p̄}. For a pointer p and a legal string u, if both p and p̄ occur in u then we say
that both p and p̄ are positive in u; if on the other hand only p or only p̄ occurs
in u, then both p and p̄ are negative in u. So, every pointer occurring in a legal
string is either positive or negative in it. Therefore, we can define a partition of
dom(u) = pos(u) ∪ neg(u), where pos(u) = {p ∈ dom(u) | p is positive in u} and
neg(u) = {p ∈ dom(u) | p is negative in u}.

Let u = x1x2 · · ·xn be a legal string with xi ∈ Π for 1 ≤ i ≤ n. For a pointer
p ∈ Π, the p-interval of u is the substring xixi+1 · · ·xj with {xi, xj} ⊆ {p, p̄} and
1 ≤ i < j ≤ n. Substrings xi1 · · ·xj1 and xi2 · · ·xj2 overlap in u if i1 < i2 < j1 < j2
or i2 < i1 < j2 < j1. Two distinct pointers p, q ∈ Π overlap in u if the p-
interval of u overlaps with the q-interval of u. Thus, two distinct pointers p, q ∈ Π
overlap in u iff there is exactly one occurrence from {p, p̄} in the q-interval, or
equivalently, there is exactly one occurrence from {q, q̄} in the p-interval of u. Also,
for p ∈ dom(u), we denote the set of all q ∈ dom(u) such that p and q overlap in
u by Ou(p), and for 0 ≤ i ≤ j ≤ n, we denote by Ou(i, j) the set of all p ∈ dom(u)
such that there is exactly one occurrence from {p, p̄} in xi+1xi+2 · · ·xj . Also, we
define Ou(j, i) = Ou(i, j). Intuitively, Ou(i, j) is the set of p ∈ dom(u) for which
the substring between “positions” i and j in u contains exactly one representative

Chapter 5 103

3−

2− 4− 5−

Figure 5.1: The overlap graph of legal string u = 24535423.

from {p, p̄}, where position i for 0 < i < n means the “space” between xi and
xi+1 in u. For i = 0 it is the “space” to the left of x1, and for i = n it is the
“space” to the right of xn. A few elementary properties of Ou(i, j) follow. We
have Ou(i, n) = Ou(0, i) for i with 0 ≤ i ≤ n. Moreover, for i, j, k ∈ {0, . . . , n},
Ou(i, j) ⊕ Ou(j, k) = Ou(i, k); this is obvious when i < j < k, but it is valid in
general. Also, for 0 ≤ i ≤ j ≤ n, Ou(i, j) = ∅ iff xi+1 · · ·xj is a legal string.

Definition 1
Let u be a legal string. The overlap graph of u, denoted by γu, is the labelled
graph (dom(u), E, σ, {+,−}), where for p, q ∈ dom(u) with p �= q, {p, q} ∈ E iff p
and q overlap in u, and σ is defined by: σ(p) = + if p ∈ pos(u), and σ(p) = − if
p ∈ neg(u).

Example 1
Let u = 24535423 be a legal string. The overlap graph of u is

γ = ({2, 3, 4, 5}, {{2, 3}, {4, 3}, {5, 3}}, σ, {+,−}),

where σ(v) = − for all vertices v of γ. The overlap graph is depicted in Figure 5.1.

Let γ be the overlap graph of a legal string u. We define dom(γ) as the set
of vertices of γ, pos(γ) = {p ∈ dom(γ) | σ(p) = +}, neg(γ) = {p ∈ dom(γ) |
σ(p) = −}, and for q ∈ dom(u), Oγ(q) = {p ∈ dom(γ) | {p, q} ∈ E}. We have
dom(γ) = dom(u), pos(γ) = pos(u), neg(γ) = neg(u), and Oγ(q) = Ou(q) for all
q ∈ dom(γ) = dom(u).

We define the alphabet Θκ = {Mi, M̄i | 1 ≤ i ≤ κ}, and say that δ ∈ Θ∗κ
is a micronuclear arrangement if for each i with 1 ≤ i ≤ κ, δ contains exactly
one occurrence from {Mi, M̄i}. With each string over Θκ, we associate a unique
string over Π through the homomorphism πκ : Θ

∗
κ → Π∗ defined by: πκ(M1) = 2,

πκ(Mκ) = κ, πκ(Mi) = i(i+1) for 1 < i < κ, and πκ(M̄j) = πκ(Mj) for 1 ≤ j ≤ κ.
A string u is a realistic string if there is a micronuclear arrangement δ such that
u = πκ(δ). We then say that δ is a micronuclear arrangement for u.

Note that every realistic string is a legal string. However, not every legal string
is a realistic string. For example, a realistic string cannot have “gaps” (missing
pointers): thus 2244 is not realistic while it is legal. It is also easy to produce
examples of legal strings which do not have gaps but still are not realistic — 3322
is such an example. Realistic strings are most useful for the gene assembly models,
since only these legal strings can correspond to genes in ciliates.

104 The Reduction Graph

An overlap graph γ is called realistic if it is the overlap graph of a realistic
string. Not every overlap graph of a legal string is realistic. For example, it can
be shown that the overlap graph γ of u = 24535423 depicted in Figure 5.1 is
not realistic. In fact, one can show that it is not even realizable — there is no
isomorphism α such that α(γ) is realistic.

5.4 The Reduction Graph

We now recall the notion of a (full) reduction graph, which was first introduced
in [6].

Remark
Below we present the notion of reduction graph in a slightly modified form: we
omit the special vertices s and t, called the source vertex and target vertex respec-
tively, which did appear in the definition presented in [6]. As shown in Section 5.5,
in this way a realistic overlap graph corresponds to exactly one reduction graph.
Fortunately, several results concerning reduction graphs do not rely on the special
vertices, and therefore carry over in a straightforward way to reduction graphs as
defined here.

Definition 2
Let u = p1p2 · · · pn with p1, . . . , pn ∈ Π be a legal string. The reduction graph of
u, denoted by Ru, is the 2-edge coloured graph

(V, E1, E2, f,dom(u)),

where
V = {I1, I2, . . . , In} ∪ {I ′1, I

′
2, . . . , I

′
n},

E1 = {e1, e2, . . . , en} with ei = {I
′
i, Ii+1} for 1 ≤ i ≤ n− 1, en = {I

′
n, I1},

E2 = {{I ′i, Ij}, {Ii, I
′
j} | i, j ∈ {1, 2, . . . , n} with i �= j and pi = pj} ∪

{{Ii, Ij}, {I
′
i, I

′
j} | i, j ∈ {1, 2, . . . , n} and pi = p̄j}, and

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n.

The edges of E1 are called the reality edges, and the edges of E2 are called
the desire edges. Intuitively, the “space” between pi and pi+1 corresponds to the
reality edge ei = {I

′
i, Ii+1}. Hence, we say that i is the position of ei, denoted by

posn(ei), for all i ∈ {1, 2, . . . , n}. Note that positions are only defined for reality
edges. Since for every vertex v there is a unique reality edge e such that v ∈ e,
we also define the position of v, denoted by posn(v), as the position of e. Thus,
posn(I ′i) = posn(Ii+1) = i (while posn(I1) = n).

Chapter 5 105

I ′2
2

I2

2
I ′1

3

I1

3

I ′6
4

I6
4

I ′52

I5

2
I ′4
3

I4

3

I ′3
4

I3 4

Figure 5.2: The reduction graph of u from Example 2.

2 4 2 3 3 4

2 4 2 3 3 4

Figure 5.3: The reduction graph of u from Example 2 in the simplified represen-
tation.

106 The Reduction Graph

3 3 6 6 2 2

7 7 5 5 4 4

2 2 3 3 4 4

7 7 6 6 5 5

Figure 5.4: The reduction graph of u from Example 3.

Example 2
Let u = 324̄32̄4 be a legal string. Since 4̄32̄ can not be a substring of a realistic
string, u is not realistic. The reduction graph Ru of u is depicted in Figure 5.2.
The labels of the vertices are also shown in this figure. Note that the desire edges
corresponding to positive pointers (here 2 and 4) cross (in the figure), while those
for negative pointers are parallel.

We consider reduction graphs up to isomorphism. Therefore, the exact identity
of the vertices in a reduction graph is not essential for the problems considered in
this chapter, and in pictorial representations of reduction graphs we denote the
vertices by their labels. We also depict reality edges by double line segments to
distinguish them from the desire edges. Figure 5.3 shows the reduction graph of
Figure 5.2 in this simplified representation.

Example 3
Let u = π7(M7M1M6M3M5M2M4) = 726734563̄2̄45. Thus, unlike in the previous
example, u is a realistic string. The reduction graph is given in Figure 5.4. Note
that according to our convention, the vertices are represented by their labels.

The reduction graph is defined for legal strings. In this chapter, we show how
to directly construct the reduction graph of a realistic string from its overlap
graph. In this way we can define the reduction graph for realistic overlap graphs
in a direct way.

Next we consider sets of overlapping pointers corresponding to pairs of vertices
in reduction graphs, and we begin to develop a calculus for these sets that will
later enable us to characterize the existence of certain edges in the reduction
graph, cf. Theorem 15.

Lemma 3
Let u be a legal string. Let e = {v1, v2} be a desire edge of Ru and let p be the

Chapter 5 107

label of both v1 and v2. Then

Ou(posn(v1), posn(v2)) =

{
Ou(p) if p is negative in u,

Ou(p)⊕ {p} if p is positive in u.

Proof
Let u = p1p2 . . . pn with p1, p2, . . . , pn ∈ Π and let i and j be such that i < j and
p = pi = pj . Without loss of generality, we can assume posn(v1) < posn(v2). Then,
v1 ∈ {Ii, I

′
i} and v2 ∈ {Ij , I

′
j}, hence posn(v1) ∈ {i−1, i} and posn(v2) ∈ {j−1, j}.

First, assume that p is negative in u. Then, by the definition of reduction
graph, the following two cases are possible:

1. e = {Ii, I
′
j}, thus Ou(posn(Ii), posn(I

′
j)) = Ou(i− 1, j) = Ou(p),

2. e = {I ′i, Ij}, thus Ou(posn(Ii), posn(I
′
j−1)) = Ou(i, j − 1) = Ou(p),

Thus in both cases we have Ou(posn(v1), posn(v2)) = Ou(p).
Now, assume that p is positive in u. Then, by the definition of reduction graph,

the following two cases are possible:

1. e = {Ii, Ij}, thus Ou(posn(Ii), posn(Ij)) = Ou(i− 1, j − 1) = Ou(p)⊕ {p},

2. e = {I ′i, I
′
j}, thus Ou(posn(I

′
i), posn(I

′
j)) = Ou(i, j) = Ou(p)⊕ {p},

Thus in both cases we have Ou(i1, i2) = Ou(p)⊕ {p}.

Let u be a legal string. For P ⊆ dom(u), we define Πu(P) = (pos(u) ∩ P) ⊕(⊕
t∈P Ou(t)

)
. Similarly, we define Πγ(P) for an overlap graph γ (by replacing u

by γ in the definition).
The following result follows by iteratively applying Lemma 3 and using the

definition of Πu(P).

Corollary 4
Let u be a legal string. Let

p0 p1 p1 p2 p2 .. pn pn pn+1

be a subgraph of Ru, and let e1 (e2, resp.) be the leftmost (rightmost, resp.) edge.
Then Ou(posn(e1), posn(e2)) = Πu(P) with P = {p1, . . . , pn}.

Note that, in the above, e1 and e2 are reality edges and therefore posn(e1) and
posn(e2) are defined.

By the definition of reduction graph the following lemma holds.

Lemma 5
Let u be a legal string. If Ii and I ′i are vertices ofRu, then Ou(posn(Ii), posn(I

′
i)) =

{p}, where p is the label of Ii and I ′i.

108 The Reduction Graph of Realistic Strings

2− 4−

3−

6− 5−

Figure 5.5: The overlap graph of both legal strings u and v from Example 5.

Example 4
We again consider the legal string u = 324̄32̄4 and its reduction graph Ru from
Example 2. Desire edge e = {I ′2, I

′
5} with vertices labelled by 2 is connected to

reality edges {I ′2, I3} and {I ′5, I6} with positions 2 and 5 respectively. By Lemma 3,
we have Ou(2, 5) = Ou(2)⊕ {2} = {2, 3, 4}. This can of course also be verified by
directly considering the corresponding substring 4̄32̄ between positions 2 and 5 of
u. Also, since I2 and I ′2 with positions 1 and 2 respectively are labelled by 2, by
Lemma 5 we have Ou(1, 2) = {2}.

5.5 The Reduction Graph of Realistic Strings

The next theorem asserts that the overlap graph γ for a realistic string u retains
all information of Ru (up to isomorphism). In this chapter, we give a method to
determine Ru (up to isomorphism), from γ. Of course, the naive method is to first
determine a legal string u corresponding to γ and then to determine the reduction
graph of u. However, we present a method that allows one to construct Ru in a
direct way from γ.

Theorem 6
Let u and v be realistic strings. If γu = γv, then Ru ≈ Rv.

Proof
By Theorem 1 in [19] (or Theorem 10.2 in [12]), we have γu = γv iff v can
be obtained from u by a composition of reversal, complement and conjugation
operations. By the definition of reduction graph it is clear that the reduction
graph is invariant under these operations (up to isomorphism). Thus, Ru ≈ Rv.

This theorem does not hold for legal strings in general — the next two exam-
ples illustrate that legal strings having the same overlap graph can have different
reduction graphs up to isomorphism.

Example 5
Let u = 2653562434 and v = h(u), where h is the homomorphism that inter-
changes 5 and 6. Thus, v = 2563652434. Note that both u and v are not realistic,
because substrings 535 of u and 636 of v can obviously not be substrings of re-
alistic strings. The overlap graph of u is depicted in Figure 5.5. From Figure 5.5

Chapter 5 109

2 6 5 6

2 6 5 6

2 4 4 3 3 5

2 4 4 3 3 5

Figure 5.6: The reduction graph of u from Example 5.

2 3 4 2 2 3

2 3 4 4 4 3

Figure 5.7: The reduction graph of u from Example 6.

and the fact that v is obtained from u by renumbering 5 and 6, it follows that
the overlap graphs of u and v are equal. The reduction graph Ru of u is depicted
in Figure 5.6. The reduction graph Rv of v is obtained from Ru by renumbering
the labels of the vertices according to h. Clearly, Ru �≈ Rv.

Example 6
Let u = πκ(M1M2M3M4) = 223344 be a realistic string and let v = 234432 be
a legal string. Note that v is not realistic. Legal strings u and v have the same
overlap graph γ (γ = ({2, 3, 4}, ∅, σ, {+,−}), where σ(v) = − for v ∈ {2, 3, 4}).
The reduction graph Ru of u is depicted in Figure 5.7, and the reduction graph
Rv of v is depicted in Figure 5.8. Note that Ru has a component consisting of six
vertices, while Rv does not have such a component. Therefore, Ru �≈ Rv.

2 4 2 3 3 4

2 4 2 3 3 4

Figure 5.8: The reduction graph of v from Example 6.

110 The Reduction Graph of Realistic Strings

For realistic strings the reduction graph has a special form. This is seen as
follows. For 1 < i < κ the symbol Mi (or M̄i) in the micronuclear arrangement
defines two pointers pi and pi+1 (or p̄i+1 and p̄i) in the corresponding realistic
string u. At the same time the substring pipi+1 (or p̄i+1p̄i, respectively) of u
corresponding to Mi (or M̄i, respectively) defines four vertices Ij , I

′
j , Ij+1, I

′
j+1 in

Ru. It is easily verified (cf. Theorem 8 below) that the “middle” two vertices I ′j
and Ij+1, labelled by pi and pi+1 respectively, are connected by a reality edge and
I ′j (Ij+1, respectively) is connected by a desire edge to a “middle vertex” resulting
from Mi−1 or M̄i−1 (Mi+1 or M̄i+1, respectively). This leads to the following
definition.

Definition 7
Let u be a legal string and let κ = |dom(u)|+ 1. If Ru contains a subgraph L of
the following form:

2 2 3 3 .. κ κ

where the vertices in the figure are represented by their labels, then we say that
u is rooted and L is called a root subgraph of Ru.

Example 7
The realistic string u with dom(u) = {2, 3, . . . , 7} from Example 3 is rooted be-
cause the reduction graph of u, depicted in Figure 5.4, contains the subgraph

2 2 3 3 .. 7 7

The next theorem shows that indeed every realistic string is rooted.

Theorem 8
Every realistic string is rooted.

Proof
Consider a micronuclear arrangement for a realistic string u. Let κ = |dom(u)|+1.
By the definition of πκ, there is a reality edge ei (corresponding to either πκ(Mi) =
i(i+1) or πκ(Mi) = (i+ 1) i) connecting a vertex labelled by i to a vertex labelled
by i+1 for each 2 ≤ i < κ. It suffices to prove that there is a desire edge connecting
ei to ei+1 for each 2 ≤ i < κ − 1. This can easily be seen by checking the four
cases where ei corresponds to either πκ(Mi) or πκ(Mi), and ei+1 corresponds to
either πκ(Mi+1) or πκ(Mi+1).

In the remainder of this chapter, we denote |dom(u)|+ 1 just by κ for rooted
strings, whenever the rooted string u is understood from the context of consid-
erations. The reduction graph of a realistic string may have more than one root
subgraph: it is easy to verify that realistic string 234 · · ·κ234 · · ·κ for κ ≥ 2 has
two root subgraphs.

Example 2 shows that not every rooted string is realistic. The results in the
remainder of this chapter that consider realistic strings also hold for rooted strings,

Chapter 5 111

since we will not be using any properties of realistic string that are not true for
rooted strings in general.

For a given root subgraph L, it is convenient to uniquely identify every reality
edge containing a vertex of L. This is done through the following definition.

Definition 9
Let u be a rooted string and let L be a root subgraph of Ru. We define rsposL,k

for 2 ≤ k < κ as the position of the edge of L that has vertices labelled by
k and k + 1. We define rsposL,1 (rsposL,κ, resp.) as the position of the edge of
Ru not in L containing a vertex of L labelled by 2 (κ, resp.). When κ = 2, to
ensure that rsposL,1 and rsposL,κ are well defined, we additionally require that
rsposL,1 < rsposL,κ.

Thus, rsposL,k (for 1 ≤ k ≤ κ) uniquely identifies every reality edge containing a
vertex of L. If it is clear which root subgraph L is meant, we simply write rsposk

instead of rsposL,k for 1 ≤ k ≤ κ.
The next lemma is essential to prove the main result (Theorem 15) of this

chapter.

Lemma 10
Let u be a rooted string. Let L be a root subgraph of Ru. Let i and j be positions
of reality edges in Ru that are not edges of L. Then Ou(i, j) = ∅ iff i = j.

Proof
The reverse implication is trivially satisfied. We now prove the forward implica-
tion. The reality edge ek (for 2 ≤ k < κ) in L with vertices labelled by k and
k + 1 corresponds to a cyclic substring M̃k ∈ {p1p2, p2p1 | p1 ∈ {k, k}, p2 ∈
{k + 1, k + 1}} of u. Let k1 and k2 with 2 ≤ k1 < k2 < κ. If k1 + 1 = k2, then
reality edges ek1

and ek2
are connected by a desire edge (by the definition of L).

Therefore, pointer k2 common in M̃k1
and M̃k2

originates from two different oc-
currences in u. If on the other hand k1 + 1 �= k2, then M̃k1

and M̃k2
do not have

a letter in common. Therefore, in both cases, M̃k1
and M̃k2

are disjoint cyclic
substrings of u. Thus the M̃k for 2 ≤ k < κ are pairwise disjoint cyclic substrings
of u.

Without loss of generality assume i ≤ j. Let u = u1u2 · · ·un with ui ∈ Π. Since
u is a legal string, every ul for 1 ≤ l ≤ n is either part of a M̃k (with 2 ≤ k < κ) or
in {2, 2̄, κ, κ̄}. Consider u′ = ui+1ui+2 · · ·uj. Since i and j are positions of reality
edges in Ru that are not edges of L, we have u′ = M̃k1

M̃k2
· · · M̃km

for some
distinct k1, k2, . . . , km ∈ {1, 2, . . . , κ}, where M̃1 ∈ {2, 2̄} and M̃κ ∈ {κ, κ̄}.

It suffices to prove that u′ = λ. Assume to the contrary that u′ �= λ. Then
there is a 1 ≤ l ≤ κ such that M̃l is a substring of u′. Because Ou(i, j) = ∅, we
know that u′ is legal. If l > 1, then M̃l−1 is also a substring of u′, otherwise u′

would not be a legal string. Similarly, if l < κ, then M̃l+1 is also a substring of u′.
By iteration, we conclude that u′ = u. Therefore, i = 0. This is a contradiction,
since 0 cannot be a position of a reality edge. Thus, u′ = λ.

112 The Reduction Graph of Realistic Strings

Lemma 11
Let u be a rooted string. Let L be a root subgraph of Ru. If Ii and I ′i are vertices
of Ru, then exactly one of Ii and I ′i belongs to L.

Proof
By the definition of reduction graph, Ii and I ′i have a common vertex label p but
are not connected by a desire edge. Therefore, Ii and I ′i do not both belong to
L. Now, if Ii and I ′i both do not belong to L, then the other vertices labelled
by p, which are Ij and I ′j for some j, both belong to L – a contradiction by the
previous argument. Therefore, either Ii or I ′i belongs to L, and the other one does
not belong to L.

The following result captures the main idea that allows for the determination
of the reduction graph from the overlap graph only. It relies heavily on the previous
lemmas.

Very roughly, the intuition is that there is a reality edge with vertices labelled
by p and q outside a fixed root subgraph L precisely when: we can make a “sidestep
over” p in the underlying string u “into” L and then “walk over” L to q and finally
make a sidestep over q in u in such a way that the accumulated overlap is the
empty set.

Theorem 12
Let u be a rooted string, let L be a root subgraph of Ru, and let p, q ∈ dom(u)
with p < q. There is a reality edge e inRu with both vertices not in L, one labelled
by p and the other by q iff Πu(P) = {p, q} where P = {p+ 1, . . . , q − 1} ∪ P ′ for
some P ′ ⊆ {p, q}.

Proof
We first prove the forward implication. Let e = {v1, v2} with v1 labelled by p,
v2 labelled by q, and posn(e) = i. Thus e = {I ′i, Ii+1}. We assume that v1 = I ′i
and v2 = Ii+1, the other case is proved similarly. Let i1 = posn(Ii) and i2 =
posn(I ′i+1). By Lemma 5, Ou(i, i1) = {p} and Ou(i2, i) = {q}. By Lemma 11, Ii

(labelled by p) and I ′i+1 (labelled by q) belong to L. Thus i1 ∈ {rsposp−1, rsposp}
and i2 ∈ {rsposq−1, rsposq}. By applying Corollary 4 on L, we have Ou(i1, i2) =
Πu(P) with P = {p + 1, . . . , q − 1} ∪ P ′ for some P ′ ⊆ {p, q}. By definition of
Ou(i, j) we have

∅ = Ou(i, i) = Ou(i, i1)⊕ Ou(i1, i2)⊕Ou(i2, i)

Since p �= q, we have {p} ⊕ {q} = {p, q}, and the desired result follows.
We now prove the reverse implication. By applying Corollary 4 on L, we have

Ou(i1, i2) = Πu(P) for some i1 ∈ {rsposp−1, rsposp} and i2 ∈ {rsposq−1, rsposq}
(depending on P ′). By Lemma 5, there is a vertex v1 (v2, resp.) labelled by p (q,
resp.) with position i (j, resp.) such that Ou(i, i1) = {p} and Ou(i2, j) = {q}. By
Lemma 11 these vertices are not in L. We have now

∅ = Ou(i, i1)⊕Ou(i1, i2)⊕Ou(i2, j) = Ou(i, j)

Chapter 5 113

By Lemma 10, Ou(i, j) = ∅ implies that i = j. Thus, there is a reality edge
{v1, v2} in Ru (with position i), such that v1 is labelled by p and v2 is labelled
by q and both are not vertices of L.

Let γu be the overlap graph of some legal string u. Clearly we have pos(u) =
pos(γu) and for all p ∈ dom(u) = dom(γu), Ou(p) = Oγu

(p). Thus by Theorem 12
we can determine, given the overlap graph of a rooted string u, if there is a reality
edge in Ru with both vertices outside L that connects a vertex labelled by p to
a vertex labelled by q. We will extend this result to completely determine the
reduction graph given the overlap graph of a rooted string (or a realistic string in
particular).

5.6 Compressing the Reduction Graph

In this section we define the cps function. The cps function simplifies reduction
graphs by replacing the subgraph p p by a single vertex labelled by p. In this
way, one can simplify reduction graphs without “losing information”. We define
cps for a general family of graphs G which includes all reduction graphs. The
formal definitions of G and cps are given below.

Let G be the set of 2-edge coloured graphs G = (V, E1, E2, f,Γ) such that
f(v1) = f(v2) for all {v1, v2} ∈ E2. Note that for a reduction graph Ru, we have
Ru ∈ G because both vertices of a desire edge have the same label. For all G ∈ G,
cps(G) is obtained from G by considering the second set of edges as vertices in
the labelled graph. Thus, for the case when G is a reduction graph, the function
cps “compresses” the desire edges to vertices.

Definition 13
The function cps from G to the set of labelled graphs is defined as follows. If
G = (V, E1, E2, f,Γ) ∈ G, then

cps(G) = (E2, E
′
1, f

′,Γ)

is a labelled graph, where

E′1 = {{e1, e2} ⊆ E2 | ∃v1, v2 ∈ V : v1 ∈ e1, v2 ∈ e2, e1 �= e2 and {v1, v2} ∈ E1},

and for e ∈ E2: f ′(e) = f(v) with v ∈ e.

Note that f ′ is well defined, because for all {v1, v2} ∈ E2, it holds that f(v1) =
f(v2).

Example 8
We are again considering the realistic string u defined in Example 3. The reduction
graph of Ru is depicted in Figure 5.4. The labelled graph cps(Ru) is depicted in
Figure 5.9. Since this graph has just one set of edges, the reality edges are depicted
by single line segments rather than double line segments as we did for reduction
graphs.

114 From Overlap Graph to Reduction Graph

3 6 2

7 5 4

2 3 4

7 6 5

Figure 5.9: The labelled graph cps(Ru), where Ru is defined in Example 8.

It is not hard to see that for reduction graphsRu andRv, we haveRu ≈ Rv iff
cps(Ru) ≈ cps(Rv). In this sense, the cps function allows one to simplify reduction
graphs without losing information.

5.7 From Overlap Graph to Reduction Graph

In this section we define (compressed) reduction graphs for realistic overlap graphs,
inspired by the characterization from Theorem 12, and then demonstrate their
equivalence to reduction graphs for realistic strings.

Definition 14
Let γ = (Domγ , Eγ , σ, {+,−}) be a realistic overlap graph and let κ = |Domγ |+1.
The reduction graph of γ, denoted by Rγ , is a labelled graph

Rγ = (V, E, f, Domγ),

where
V = {Jp, J

′
p | 2 ≤ p ≤ κ},

f(Jp) = f(J ′p) = p, for 2 ≤ p ≤ κ, and

e ∈ E iff one of the following conditions hold:

1. e = {J ′p, J
′
p+1} and 2 ≤ p < κ.

2. e = {Jp, Jq}, 2 ≤ p < q ≤ κ, and Πγ(P) = {p, q}, where P = {p+1, . . . , q−
1} ∪ P ′ for some P ′ ⊆ {p, q}.

3. e = {J ′2, Jp}, 2 ≤ p ≤ κ, and Πγ(P) = {p}, where P = {2, . . . , p − 1} ∪ P ′

for some P ′ ⊆ {p}.

Chapter 5 115

2+

5− 4− 7−

3+

6−

Figure 5.10: The overlap graph γ of a realistic string (used in Example 9).

4. e = {J ′κ, Jp}, 2 ≤ p ≤ κ, and Πγ(P) = {p}, where P = {p+ 1, . . . , κ} ∪ P ′

for some P ′ ⊆ {p}.

5. e = {J ′2, J
′
κ}, κ > 3, and Πγ(P) = ∅, where P = {2, . . . , κ}.

An algorithm that constructs Rγ is efficiently implemented by observing that
Πγ(P) only needs to be calculated for all intervals P = [i, j] = {i, . . . , j} with
i ≤ j and i, j ∈ {2, . . . , κ}. These values can be stored in an upper-triangular
matrix A = (ai,j) having ai,j = Πγ([i, j]). Note that A can be defined recursively
as follows: we have ai,j = ai,j−1 ⊕ aj,j if i < j, and ai,i = Oγ(i) if i is negative in
γ, and ai,i = Oγ(i)⊕{i} if i is positive in γ. After calculating A, we can obtain the
edges ofRγ . If 2 < i and j < κ, then ai,j ∈ {{i, j}, {i−1, j}, {i, j+1}, {i−1, j+1}}
iff there is an edge e = {Jp, Jq} with ai,j = {p, q}. The cases 2 = i or j = κ are
handled similarly.

Example 9
The overlap graph γ in Figure 5.10 is realistic. Indeed, realistic string u =

π7(M7M1M6M3M5M2M4) = 726734563̄2̄45 introduced in Example 3 has this
overlap graph. Clearly, the reduction graph Rγ of γ has the edges {J ′p, J

′
p+1} for

2 ≤ p < 7.

Now to obtain the remaining edges, we construct the upper-triangular matrix
A = (ai,j) having ai,j = Πγ([i, j]) with i ≤ j and i, j ∈ {2, . . . , κ} (as discussed
above, this can be done recursively). This matrix is given below, where the entries
corresponding to edges of Rγ are underlined.

116 From Overlap Graph to Reduction Graph

3 6 2

7 5 4

2 3 4

7 6 5

Figure 5.11: The reduction graph Rγ of the overlap graph γ from Example 9.

Πγ([i, j]) 2 3 4 5 6 7
2 {2, 4, 5, 7} {2, 3, 6, 7} {5, 7} {2, 3, 4, 5, 6, 7} {2, 6} ∅

3 {3, 4, 5, 6} {2, 4} {3, 6} {4, 5, 6, 7} {2, 4, 5, 7}

4 {2, 3, 5, 6} {4, 5} {3, 7} {2, 3, 6, 7}

5 {2, 3, 4, 6} {2, 5, 6, 7} {5, 7}

6 {3, 4, 5, 7} {2, 3, 4, 5, 6, 7}
7 {2, 6}

From matrix A we see that, a2,7 = ∅ corresponds to edge {J ′2, J
′
7}, while the

other underlined values {2, 4}, {4, 5}, {5, 7}, {3, 7}, {3, 6}, and {2, 6} correspond
to edges {J2, J4}, {J4, J5}, . . . , {J2, J6}, respectively.

We have now completely determined Rγ ; it is shown in Figure 5.11 (again, as
we have done for reduction graphs of legal strings, in the figures the vertices of
reduction graphs of realistic overlap graphs are represented by their labels).

Figures 5.9 and 5.11 show that, for u = 726734563̄2̄45, cps(Ru) ≈ Rγ . The
next theorem shows that this is a general property for realistic strings u.

Theorem 15
Let u be a realistic string. Then, cps(Ru) ≈ Rγu

.

Proof
Let κ = |dom(u)| + 1, let γ = γu, let Rγ = (Vγ , Eγ , fγ , dom(γ)), let Ru =
cps(Ru) = (Vu, Eu, fu, dom(u)), and let L be a root subgraph of Ru. Recall that
the elements of Vu are the desire edges of Ru.

Let h : Vu → Vγ defined by

h(v) =

{
Jfu(v) if v is not an edge of L,

J ′fu(v) if v is an edge of L.

Chapter 5 117

We will show that h is an isomorphism from Ru to Rγ . Since for every l ∈ dom(u)
there exists exactly one desire edge v of Ru that belongs to L with fu(v) = l and
there exists exactly one desire edge v of Ru that does not belong to L with
fu(v) = l, it follows that h is one-to-one and onto. Also, it is clear from the
definition of fγ that fu(v) = fγ(h(v)). Thus, it suffices to prove that {v1, v2} ∈
Eu ⇔ {h(v1), h(v2)} ∈ Eγ .

We first prove the forward implication {v1, v2} ∈ Eu ⇒ {h(v1), h(v2)} ∈ Eγ .
Let {v1, v2} ∈ Eu, let p = fu(v1) and let q = fu(v2). Clearly, v1 �= v2. By the
definition of cps, there is a reality edge ẽ = {ṽ1, ṽ2} of Ru with ṽ1 ∈ v1 and
ṽ2 ∈ v2 (and thus ṽ1 and ṽ2 are labelled by p and q in Ru, respectively). Let i
be the position of ẽ. We consider four cases (remember that v1 and v2 are both
desire edges of Ru):

1. Assume that ẽ belongs to L. Then clearly, v1 and v2 are edges of L. Without
loss of generality, we can assume that p ≤ q. From the structure of root
subgraph and the fact that ẽ is a reality edge of Ru in L, it follows that
q = p+1. Now, h(v1) = J ′p and h(v2) = J ′q = J ′p+1. By the first condition of
Definition 14, it follows that {h(v1), h(v2)} = {J

′
p, J

′
p+1} ∈ Eγ . This proves

the first case. In the remaining cases, ẽ does not belong to L.

2. Assume that v1 and v2 are both not edges of L (thus ẽ does not belong to
L). Now by Theorem 12 and the second condition of Definition 14, it follows
that {h(v1), h(v2)} = {Jp, Jq} ∈ Eγ . This proves the second case.

3. Assume that either v1 or v2 is an edge of L and that the other one is not an
edge of L (thus ẽ does not belong to L). We follow the same line of reasoning
as we did in Theorem 12. Without loss of generality, we can assume that v1

is not an edge of L and that v2 is an edge of L. Clearly,

∅ = Ou(i, i) = Ou(i, i1)⊕Ou(i1, i)

for each position i1. By the structure of L we know that q = 2 or q = κ.
Let q = 2 (q = κ, resp.). By Lemma 5 and Lemma 11, we can choose i1 ∈
{rsposp−1, rsposp} such that Ou(i1, i) = {p}. By applying Corollary 4 to L,
we get Ou(i, i1) = Πu(P) with P = {2, . . . , p−1}∪P ′ (P = {p+1, . . . , κ}∪P ′,
resp.) for some P ′ ⊆ {p}. By the third (fourth, resp.) condition of Defin-
ition 14, it follows that {h(v1), h(v2)} = {J ′2, Jq} ∈ Eγ ({h(v1), h(v2)} =
{J ′κ, Jq} ∈ Eγ , resp.). This proves the third case.

4. Assume that both v1 and v2 are edges of L, but ẽ does not belong to L.
Again, we follow the same line of reasoning as we did in Theorem 12. With-
out loss of generality, we can assume that p ≤ q. By the structure of L,
we know that p = 2 and q = κ > 3. By applying Corollary 4 to L, we
get ∅ = Ou(i, i) = Πu(P) with P = {2, . . . , κ}. By the fifth condition of
Definition 14, it follows that {h(v1), h(v2)} = {J ′2, J

′
κ} ∈ Eγ . This proves

the last case.

118 From Overlap Graph to Reduction Graph

This proves the forward implication.
We now prove the reverse implication {v1, v2} ∈ Eγ ⇒ {h−1(v1), h

−1(v2)} ∈
Eu, where h−1, the inverse of h, is given by:

h−1(Jp) is the unique v ∈ Vu with fu(v) = p that is not an edge of L,
h−1(J ′p) is the unique v ∈ Vu with fu(v) = p that is an edge of L,

for 2 ≤ p ≤ κ. Let e ∈ Eγ . We consider each of the five types of edges in the
definition of reduction graph of an overlap graph.

1. Assume e is of the first type. Then e = {J ′p, J
′
p+1} for some p with 2 ≤ p < κ.

Since h−1(J ′p) is the desire edge of L with both vertices labelled by p and
h−1(J ′p+1) is the desire edge of L with both vertices labelled by p + 1, it
follows, by the definition of root subgraph, that h−1(J ′p) and h−1(J ′p+1) are
connected by a reality edge in L. Thus, we have {h−1(J ′p), h

−1(J ′p+1)} ∈ Eu.
This proves the reverse implication when e is of the first type (in Defini-
tion 14).

2. Assume e is of the second type. Then e = {Jp, Jq} for some p and q with
2 ≤ p < q ≤ κ and Πu(P) = Πγ(P) = {p, q} with P = {p+1, . . . , q−1}∪P ′

for some P ′ ⊆ {p, q}. By Theorem 12, there is a reality edge {w1, w2} in
Ru, such that w1 has label p and w2 has label q and both are not vertices of
L. By the definition of cps, we have a {w′1, w

′
2} ∈ Eu such that fu(w

′
1) = p

(fu(w
′
2) = q, resp.) and w′1 (w′2, resp.) is not an edge of L. Therefore w′1 =

h−1(Jp) and w′2 = h−1(Jq). This proves the reverse implication when e is of
the second type.

3. The last three cases are proved similarly.

This proves the reverse implication.
Altogether, we have shown that h is an isomorphism from Ru to Rγ .

Example 10
Consider again realistic string u = 726734563̄2̄45 from Example 9 (and Exam-
ple 3). The reduction graph Rγ of the overlap graph of u is given in Figure 5.11.
Recall that the reduction graph Ru of u is given in Figure 5.4. It is easy to see
that after applying cps to Ru one obtains a graph that is indeed isomorphic to
Rγ .

Formally, we have not yet constructed (up to isomorphism) the reduction graph
Ru of a realistic string u from its overlap graph. We have “only” constructed
cps(Ru) (up to isomorphism). However, it is clear that Ru can easily be obtained
from cps(Ru) (up to isomorphism) by considering the edges as reality edges and
replacing every vertex by a desire edge of the same label.

Chapter 5 119

5.8 Consequences

We can now apply our main theorem, Theorem 15, to carry over results that rely
on the notion of reduction graph for legal strings. To illustrate this, we characterize
successfulness for realistic overlap graphs in any given S ⊆ {Gnr, Gpr, Gdr}. To
accomplish this, we also use results from [13] (or Chapter 13 in [12]). The notions
of successful reduction, string negative rule and graph negative rule used in this
section are defined in [12].

First we restate a theorem of [6].

Theorem 16
Let u be a legal string, and N be the number of components in Ru. Then every
successful reduction of u has exactly N − 1 string negative rules.

Due to the “weak equivalence” of the string pointer reduction system and the graph
pointer reduction system, proved in Chapter 11 of [12], we can, using Theorem 15,
restate Theorem 16 in terms of graph reduction rules.

Theorem 17
Let γ be a realistic overlap graph, and N be the number of components in Rγ .
Then every successful reduction of γ has exactly N − 1 graph negative rules.

As an immediate consequence we get the following corollary. It provides an answer
to an open problem formulated in Chapter 13 in [12]: to provide a graph theoretic
characterization of successfulness in {Gpr, Gdr}. However, note that our answer
is only for the case where γ is a realistic overlap graph.

Corollary 18
Let γ be a realistic overlap graph. Then γ is successful in {Gpr, Gdr} iff Rγ is
connected.

Example 11
Every successful reduction of the overlap graph of Example 9 has exactly one
graph negative rule. For example gnr2 gpr4 gpr5 gpr7 gpr6 gpr3 is a successful
reduction of this overlap graph.

With the help of [13] (or Chapter 13 in [12]) and Corollary 18, we are ready
to complete the characterization of successfulness for realistic overlap graphs in
any given S ⊆ {Gnr, Gpr, Gdr}.

Theorem 19
Let γ be a realistic overlap graph. Then γ is successful in:

• {Gnr} iff γ is a discrete graph with only negative vertices.

• {Gnr, Gpr} iff each component of γ that consists of more than one vertex
contains a positive vertex.

• {Gnr, Gdr} iff all vertices of γ are negative.

120 Discussion

• {Gnr, Gpr, Gdr}.

• {Gdr} iff all vertices of γ are negative and Rγ is connected.

• {Gpr} iff each component of γ contains a positive vertex and Rγ is con-
nected.

• {Gpr, Gdr} iff Rγ is connected.

Proof
The cases where Gnr ∈ S (cf. the first four cases in the theorem) are known
from [13], and case {Gpr, Gdr} holds by Corollary 18. Case {Gdr} ({Gpr}, resp.)
is obtained by combining the results of cases {Gnr, Gdr} ({Gnr, Gpr}, resp.)
and {Gpr, Gdr}. Note that if γ has an isolated negative vertex, then Rγ is not
connected.

5.9 Discussion

We have shown a way to directly construct the reduction graph of a realistic
string (up to isomorphism) from its overlap graph γ. This allows one to (directly)
determine the number n of graph negative rules that are necessary to reduce γ
successfully. Surprisingly, although a lot a structural information is lost in the
overlap graph (compared to a string representation), this information can be re-
trieved from the overlap graph via its reduction graph. The main result allows for a
complete characterization of successfulness of γ in any given S ⊆ {Gnr, Gpr, Gdr}
by extending [13] for the cases where Gnr �∈ S. It remains an open problem to
find a (direct) method to determine this number n for overlap graphs γ in general
(not just for realistic overlap graphs).

