
Interaction and evolutionary algorithms
Breukelaar, R.

Citation
Breukelaar, R. (2010, December 21). Interaction and evolutionary
algorithms. Retrieved from https://hdl.handle.net/1887/16262

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16262

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16262

Interaction and Evolutionary Algorithms

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 21 december 2010

klokke 11:15 uur

door

Ron Breukelaar

geboren te Winterswijk, Nederland

in 1978.

Samenstelling promotiecommissie:

promotors: Prof. Dr. T.H.W. Bäck Universiteit Leiden
Prof. Dr. J.N. Kok Universiteit Leiden

overige leden: Prof. Dr. T. Bartz-Beielstein Universität Köln
Prof. Dr. F. Arbab Universiteit Leiden
Prof. Dr. B. Katzy Universiteit Leiden

Interaction and Evolutionary Algorithms
by Ron Breukelaar
Dissertation University Leiden

This work is part of the research programme of the Foun-
dation for Fundamental Research on Matter (FOM), which
is part of the Netherlands Organisation for Scientific Re-
search (NWO). FOM Project: An evolutionary approach to
many-parameter physics, project nr.: 03TF78-2, werkgroep
FOM-L-24

Copyright c⃝2010 by Ron Breukelaar, Leiden, The Netherlands
ISBN 978-94-9109-804 8

Contents

1 Introduction 5
1.1 Evolving Interaction . 5
1.2 Interaction inside Evolution . 8
1.3 Interacting with Evolution . 9
1.4 Overview of this Thesis . 11
1.5 Overview of Publications . 12

2 Evolutionary Algorithms 15
2.1 Individuals . 16
2.2 Evolutionary Loop . 17
2.3 Selection . 19
2.4 Recombination . 22
2.5 Mutation . 23

3 Cellular Automata 27
3.1 One Dimensional Cellular Automata 28
3.2 Two Dimensional Cellular Automata 29
3.3 Multi Dimensional Neighborhoods 31
3.4 Neighborhood Size . 32

4 Inverse Design of Cellular Automata 37
4.1 Introduction . 37
4.2 Majority Problem . 40
4.3 Inverse Design of the Majority Problem 43
4.4 The Genetic Algorithm . 44
4.5 1D Experiment . 45
4.6 Different Parameters in GA . 50

Interaction and Evolutionary Algorithms

4.7 Changing the Topology . 54
4.8 Multi Dimensional CA . 57
4.9 Looking for Interaction . 61
4.10 AND / XOR problem . 64
4.11 Checkerboard Problem . 69
4.12 Bitmap Problem . 73
4.13 Conclusion . 74

5 Self-adaptive Mutation Rates in Genetic Algorithm 77
5.1 Introduction . 77
5.2 Majority Problem . 78
5.3 Genetic Algorithm . 79
5.4 Self Adaptation . 80
5.5 Experiments . 80
5.6 Self-Adaptive Experiment . 82
5.7 Battling Convergence . 84
5.8 Noise . 86
5.9 Unseen Forces . 87
5.10 MAXONE Problem . 89
5.11 Calculating Progress . 92
5.12 Calculating Survival . 99
5.13 Conclusions . 105

6 On Interactive Evolutionary Strategies 109
6.1 Introduction . 110
6.2 Evolution Strategies . 111
6.3 Interactive Evolution Strategies 114
6.4 Self-adaptation and Interaction 116
6.5 A color redesign test-case . 117
6.6 Results . 118
6.7 Conclusion . 122

7 Summary and Conclusion 123

A Generalizing Multi Dimensional Cellular Automata 127

Bibliography 131

Acknowledgements 135

Samenvatting 137

Curriculum Vitae 141

4

Chapter 1
Introduction

Evolution and Interaction are two processes in Computer Science that are
used in many algorithms to create, shape, find and optimize solutions to
real world problems. Evolution has been very successfully applied as a pow-
erful tool to solve complex search problems in fields ranging from physics,
chemistry and biology all the way to commercial application such as aircraft
fuselage design and civil engineering grading plans. Defining interaction is
a big part of algorithm design. Not only defining the inputs and outputs of
an algorithm but for a complex algorithm the interactions inside of an al-
gorithm are as important. This thesis will concentrate on where Evolution
overlaps Interaction. It will show how evolution can be used to evolve in-
teraction, how the interaction inside an evolutionary algorithm impacts its
performance and how an evolutionary algorithm can interact with humans.
By touching on these three forms of overlap this thesis tries to give insight
into the world of evolution and interaction. This chapter will give a brief
introduction on each of these three overlaps.

1.1 Evolving Interaction

With all due respect to the people that believe our earth is no older than
6,000 years, the general consensus is clear: Evolution is real. The over-
whelming evidence points to a common ancestor with apes about 5-8 million
years ago. Evolution gradually changed us from a tree climbing leaf eater
to a car driving hamburger lover. It made us walk upright, loose most of our

5

Interaction and Evolutionary Algorithms

hair and it might even have made us aware of ourselves. Evolution has per-
formed miracles, but not only for our own species. Any natural history mu-
seum has a whole collection of extinct species that appeared on this earth in
the past for no (apparent) other reason than that they evolved from slightly
different (often more primitive looking) species. Dinosaurs, birds, fish, frogs,
flies, flowers, trees, even the bacteria and single celled organisms that keep
you alive by digesting your food and protecting your skin; they all seem to
have come into being through the process of evolution. Even though our un-
derstanding of our world has been increasing almost exponentially the past
60,000 years, science will probably never fully explain why evolution exists,
but it seems to be a pretty good method to sustain life throughout changing
environmental conditions. In a way evolution is nature’s search algorithm
for improving life’s chances.

The parallel between evolution in nature and search algorithms in computer
science at first may seem like a stretch, but that is mainly due to the ‘un-
natural’ characteristics of a computer. Many sciences have been inspired by
nature and computer science in no exception to that. The field that studies
computer science (and algorithms in particular) inspired by nature is aptly
called ‘Natural Computation’. It studies for instance the intricate way the
neurons in the brain work and how abstract computer generated simula-
tions of brain cells (Neural Networks) can learn and solve problems that
seemed outside of the realm of computers before. It studies how simple cells
live and crystals grow and how to build models to simulate, predict and ap-
ply these phenomena in other fields. Natural Computation also studies the
process of evolution and in particular its application in search algorithms.
The group of algorithms in computer science inspired by evolution in nature
is called ‘Evolutionary Algorithms’.

Evolutionary Algorithms work by simulating an abstract form of natural
evolution to find a better solution to a hard problem. In nature evolution
works with a rigorous selection process. If an animal is sick or malformed
it will have more trouble staying alive and will have a smaller chance to
have offspring. This means that on average fitter individuals have more
offspring. Through the use of DNA the characteristics of the parent indi-
viduals are given to the offspring, giving this offspring a similar chance to
survive and have offspring of its own. Because small mutations are intro-
duced during the copying process of DNA, new offspring will have a slightly
higher or slightly lower chance of survival compared to their parents. The
slightly ’fitter’ ones will on average generate more offspring in the end and
this loop continues generating ever fitter individuals that are better able to
survive and produce offspring.

Evolutionary Algorithms work the same way, but instead of life forms an EA

6

Chapter 1. Introduction

is evolving answers and instead of being eaten or starvation as a selection
procedure an EA uses a computer problem as an evaluator. The answers
are in this case the ‘individuals’ and the selection procedure is called a ‘fit-
ness function’, but the rest works pretty much the same. An EA has a ‘pool’
of ‘individuals’ which each have a certain ‘fitness’ calculated by the ‘fitness
function’. A selection step selects the best individuals and they generate
new offspring in the pool. This new offspring looks a lot like their parents
but is slightly ‘mutated’, which means that in the next iteration of the algo-
rithm the total fitness of the individuals has probably increased. Which in
terms of the computer algorithm means: it found a better solution. (A more
in depth introduction to EA will be given in Chapter 2)

In nature interaction is what makes life possible. From the macrobiotic
scale of mammals and plants all the way to the microbiotic scale of sin-
gle celled organisms: without interaction the ’task’ of finding food, staying
alive and generating offspring would be totally impossible. The same way
that appearance and function of a single individual evolves in nature, so
also evolves the interaction between an individual and its environment over
time. The way an individual sees things, feels things, conveys messages to
other individuals are mostly all encoded inside DNA and evolved alongside
other traits. This is true for the evolution of sensors like eyes, nose and ears
for instance, but this is also true for interactions between different individ-
uals of the same species. A good example of evolved interactions in a species
is the ant.

An ant colony can seem chaotic and crowded and we don’t think of individ-
ual ants as being highly intelligent, yet somehow a colony of ants is able
to find shortest paths to food, coordinate attacks against enemies, nurture
thousands of babies, build bridges, air vents, flotillas and intricate tun-
nel systems. One ant might not seem very smart, but the ant colony as
a whole could easily ‘outsmart’ your average pet. The reason for this lies
in the evolved communication between the ants. Ants excrete pheromones
as a way of sending messages to other ants when they find food, or get at-
tacked for instance. The intricate rule set for which pheromone means what
message is different between different species of ant. This message system
evolved with the ant species to work best for the specific environment the
ant species is living in. This is very visible in the case of an ant colony, but
these evolved interactions are present in all forms of life including humans,
apes, bees, but also in flowers and trees, even in single celled organisms.
Interaction and cooperation seems to be a good idea if you want to stay
alive.

A Cellular Automaton is an abstraction of this interaction between single
celled organisms. In its most basic form it describes a ring of cells in the

7

Interaction and Evolutionary Algorithms

form of an array of binary values. Each cell is in a certain state (either 0
or 1) and is connected to neighboring cells (one left and one right). Time
is simulated with iterations which are applied synchronously to all cells at
once. At each iteration every cell looks at the states of its neighborhood
and decides what its next state is going to be according to a transition rule.
Usually every cell will have the same transition rule and therefore in effect
the same behavior. This gives a simple yet powerful framework to simulate
interaction which allows CA to simulate complex physical, chemical and
biological system and are known to exhibit communication.

Chapter 4 will investigate the evolution of interaction by evolving the tran-
sition rules inside a Cellular Automaton. By inverse designing the behavior
of CA we demonstrate how problems that need interaction between cells to
be solved, are solved using a generic evolutionary approach. Demonstrating
not only that interaction evolved inside of a local individual can exhibit be-
havior on a global scale, but also how this approach can be applied to real
world applications.

1.2 Interaction inside Evolution

An Evolutionary Algorithm could also be viewed as an iterative process of
interacting individuals. Generating offspring is often done using multiple
individuals and combining their traits is an interaction for instance, while
selection could be viewed as one big interaction between all the individuals
that results in finding the fittest one. The benefit of looking at evolution as
having interaction between individuals in a population is that some hard to
understand phenomena observed in EA become understandable.

A good example of a non trivial interaction inside an Evolutionary Algo-
rithm is self-adaptation. With self-adaptation some parameters for the EA
that are normally fixed or are changing using some mathematical function,
now change using the evolution itself. For instance the parameters with
which an individual is mutated (mutation amount / speed) can be part of
the individual’s description. The idea being that when a certain way of
mutating an individual is more appropriate at a certain stage of the evo-
lution, the offspring generated using that mutation will on average have a
better fitness. Which means that selection will probably select individuals
with better mutation settings which then propagate towards the offspring of
these individuals and so on. This works for mutation parameters, but also
for more complicated global parameters like selection and offspring gener-
ation. In all cases the algorithm becomes more flexible and can handle a
lot more different problems using the same settings, but some unwanted

8

Chapter 1. Introduction

behavior resulting from using this approach is harder to understand and
fix.

Chapter 5 begins with describing how self-adaptation was implemented on
one of the experiments described in Chapter 4. And although this was suc-
cessful, there were some unexpected side effects that were not easy to ex-
plain. The chapter then tries to describe the EA in terms of interacting
parts and concentrates on why self-adaptation in this EA did not work as
expected. After reproducing the same effect on a much simpler experiment
the chapter concludes that self-adaptation in this flavor of EA has a general
problem that is important to be aware of. This counter intuitive behavior of
the EA is only counter intuitive from the point of the global behavior, but
becomes understandable if the individual interactions of its parts are exam-
ined. Apart from pointing out this particular problem, it demonstrated the
power and usefulness of describing evolution in terms of interactions.

1.3 Interacting with Evolution

Computers are a big part of almost every person’s work and life nowadays,
yet despite our best efforts and intentions computers are not like humans.
This means that there is a clear disconnect in the communication between
computers and humans. We don’t understand each other. The reason we use
computers at all is for the simple fact that they are faster and more precise
than humans. This means that by using a computer we can solve problems
that are much larger and more complex than anything we have solved in
the past. We can simulate the physical world, iterate through mathemat-
ical equations and visualize virtual output in great detail. The computer
has opened up a world of possibilities that we are only just starting to uti-
lize.

The main problem in using the computer effectively is interaction. The more
complex the task is that a user wants the computer to perform, the more
complicated the interface becomes between the human and the computer.
The field that studies this interaction is amply called Human Computer In-
teraction. It studies ways to efficiently use a computer screen, a mouse, task
bar, windows, buttons, sliders, images and text to name a few. It studies how
humans like to work, what is intuitive and what is not.

When computers are running complex algorithms that take parameters and
input from the user while they are running, we are taking about a subset
of HCI: Human Algorithm Interaction. Instead of concentrating on what
the user finds intuitive, this concentrates more on how a certain algorithm

9

Interaction and Evolutionary Algorithms

can be manipulated by a user and what effect this has on the algorithm in
question. The benefit of human input to algorithms is especially apparent
when an algorithm can make use of the experience of a human specialist.
A civil engineer for instance might have acquired knowledge over the years
that is very hard to put into a computer algorithm. Not only is it hard to
define one algorithm that takes care of all exceptions the engineer has en-
countered in his work, but the engineer will also have trouble relaying all
those exceptions without having a situation to remind him. Human Algo-
rithm Interaction gives a user the ability to solve a complex problem with a
relatively simple algorithm and let a human steer that algorithm using his
expert knowledge of the problem.

A lot of complex problems have complex specific algorithms to solve the
problem. Generating such a specific algorithm usually means that a lot
of knowledge of the problem needs to be put into the algorithm and the al-
gorithm will then only work on that specific problem. With the speed of
computers and the amount of data exponentially increasing over time it is
no surprise that the problems we want to solve with our computers are be-
coming more and more complex as well. This means it is getting harder to
understand exactly what algorithm is needed to solve the problem and for
a lot of problems there is even no known algorithm that can solve them.
Evolutionary Algorithms have been successfully used in exactly these cases
where it is hard to translate the specific information about a problem into a
specific algorithm.

The powerful thing about Evolutionary Algorithms is that they don’t need
any problem specific information to find better solutions to hard problems.
That means they are a good answer to problems that are hard to solve using
conventional algorithms and almost the only answer to problems that have
no known algorithm to solve them. It also makes them a good candidate
for use in Human Algorithm Interaction. They don’t need much knowledge
to start from and have a clear path of search that can be shown at any
time during the algorithm. The human basically becomes part of the algo-
rithm which adds the human expert’s knowledge to the search process with-
out having to translate this knowledge into an algorithm itself. Chapter 6
will investigate this interaction between humans and EA and in particular
study the effect human input has on different flavors of EA.

By showing three different ways of combining Interaction with Evolution
this thesis demonstrates the power and flexibility of Evolutionary Algo-
rithms, while at the same time introducing some new and interesting find-
ings in the fields of Inverse Design of Cellular Automata, Self-Adaptation
in Genetic Algorithms and Human Algorithm Interaction.

10

Chapter 1. Introduction

1.4 Overview of this Thesis

This Section will give an overview of the thesis chapter by chapter.

Chapter 2 will give a brief introduction on Evolutionary Algorithms, on
how they work and how they are employed in this thesis.

Chapter 3 will introduce Cellular Automata in general and binary syn-
chronous Cellular Automata in particular.

Chapter 4 discusses the inverse design of Cellular Automata using a Ge-
netic Algorithm. Cellular automata are used in many fields to generate a
global behavior with local rules. Finding the rules that display a desired
behavior can be a hard task especially in real world problems. This chap-
ter proposes an improved approach to generate these transition rules for
multi dimensional cellular automata using a genetic algorithm, thus giving
a generic way to evolve global behavior with local rules, thereby mimick-
ing nature. Three different problems are solved using multi dimensional
topologies of cellular automata to show robustness, flexibility and poten-
tial. The results suggest that using multiple dimensions makes it easier to
evolve desired behavior and that combining genetic algorithms with multi
dimensional cellular automata is a very powerful way to evolve very diverse
behavior and has great potential for real world problems.

Chapter 5 will describe the findings on using self-adaptation in Genetic
Algorithms. Self-adaptation is used a lot in Evolutionary Strategies and
with great success, yet for some reason it is not the mutation adaptation of
choice for Genetic Algorithms. This chapter describes how a self-adaptive
mutation rate was used in a Genetic Algorithms to inverse design behav-
ioral rules for a Cellular Automaton. The unique characteristics of this
search space gave rise to some interesting convergence behavior that might
have implications for using self-adaptive mutation rates in other Genetic
Algorithm applications and might clarify why self-adaptation in Genetic Al-
gorithms is less successful than in Evolutionary Strategies.

Chapter 6 will discuss Evolution Strategies within the context of interac-
tive optimization. Different modes of interaction will be classified and com-
pared. A focus will be on the suitability of the approach in cases, where the
selection of individuals is done by a human user based on subjective eval-
uation. We compare the convergence dynamics of different approaches and
discuss typical patterns of user interactions observed in empirical studies.
The discussion of empirical results will be based on a survey conducted via
the world wide web. A color (pattern) redesign problem from literature will
be adopted and extended. The simplicity of the chosen problems allowed

11

Interaction and Evolutionary Algorithms

us to let a larger number of people participate in our study. The amount
of data collected makes it possible to add empirical support to our hypoth-
esis about the performance and behavior of different Interactive Evolution
Strategies and to figure out high-performing instantiations of the approach.
The behavior of the user was also compared to a deterministic selection
of the best individual by the computer. This allowed us to figure out how
much the convergence speed is affected by noise and to estimate the poten-
tial for accelerating the algorithm by means of advanced user interaction
schemes.

1.5 Overview of Publications

Below is a list of all the publications used in this thesis by chapter.

Chapter 4 is based on multiple publications including:
Ron Breukelaar and Thomas Bäck, Evolving Transition Rules for Multi Di-
mensional Cellular Automata, proceedings of Sixth International Confer-
ence on Cellular Automata for Research and Industry, ACRI 2004, Peter
M.A. Sloot, Bastien Chopard and Alfons G. Hoekstra (editors), Springer-
Verlag, LNCS 3305, pg. 182–190 (2004)

Thomas Bäck, Ron Breukelaar and Lars Willmes, Problem Solving by Evo-
lution: One of Nature’s Unconventional Programming Paradigms, pre-pro-
ceedings of Unconventional Programming Paradigms workshop, UPP 2004,
Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto and Olivier Michel
(editors), Springer-Verlag, pg. 8–13 (2005).

Ron Breukelaar and Thomas Bäck, Using a Genetic Algorithm to Evolve Be-
havior in Multi Dimensional Cellular Automata, proceedings of Genetic and
Evolutionary Computation Conference, GECCO 2005, Hans-Georg Beyer et
al. (editors), ACM 1-59593-010-8/05/0006, pg. 107–114 (2005).

Thomas Bäck, Ron Breukelaar and Lars Willmes, Inverse Design of Cel-
lular Automata by Genetic Algorithms: an Unconventional Programming
Paradigm, Unconventional Programming Paradigms: International Work-
shop UPP 2004, Revised Selected and Invited Papers, Jean-Pierre Banâtre
et al. (editors), Springer-Verlag, LNCS 3566, pg. 161–172 (2005).

Ron Breukelaar and Thomas Bäck, Using a Genetic Algorithm to Evolve
Behavior in Cellular Automata, proceedings of Computation: 4th Interna-
tional Conference, UC 2005, Sevilla, Spain, October 3 - 7, 2005., Cristian S.
Calude, Michael J. Dinneen, Gheorghe Paun, Mario J. Péréz-Jiménez and

12

Chapter 1. Introduction

Grzegorz Rozenberg (editors), Springer-Verlag, LNCS Volume 3699, pg. 1–
10 (2005).

Chapter 5 is based on:
Ron Breukelaar and Thomas Bäck, Self-adaptive Mutation Rates in Genetic
Algorithm for Inverse Design of Cellular Automata, proceedings of Genetic
and Evolutionary Computation Conference, GECCO 2008, pg. 1101–1102
(2008).

Chapter 6 is based on:
Ron Breukelaar, Michael Emmerich and Thomas Bäck, On Interactive Evo-
lution Strategies, proceeding of Applications of Evolutionary Computing,
EvoWorkshop2006: EvoINTERACT, Franz Rothlauf et al. (editors),
Springer-Verlag, LNCS Volume 3907, pg. 530–541 (2006).

13

Interaction and Evolutionary Algorithms

14

Chapter 2
Evolutionary Algorithms

Evolutionary Algorithms is the name for the algorithms in the field of Evolu-
tionary Computation which is a subfield of Natural Computing and already
exists more than 40 years. It was born from the idea to use principles of
natural evolution as a paradigm for solving search and optimization prob-
lems in high-dimensional combinatorial or continuous search spaces. The
most widely known instances are genetic algorithms [17, 18, 22], genetic
programming [26, 27], evolution strategies [33, 34, 38, 39], and evolution-
ary programming [15, 14]. A detailed introduction to all these algorithms
can be found e.g. in the Handbook of Evolutionary Computation [6], but this
chapter will give a short intro to each of them and will then go into some
depth on the algorithms used for this thesis.

Today the Evolutionary Computation field is very active. It involves fun-
damental research as well as a variety of applications in areas ranging
from data analysis and machine learning to business processes, logistics and
scheduling, technical engineering, and others. Across all these fields, evolu-
tionary algorithms have convinced practitioners by the results obtained on
hard problems that they are very powerful algorithms for such applications.
The general working principle of all instances of evolutionary algorithms is
based on a program loop that involves simplified implementations of the op-
erators mutation, recombination, selection, and fitness evaluation on a set
of candidate solutions (often called a population of individuals) for a given
problem. Next this chapter will define this evolution loop and all its parts in
a generic EA and it will show the differences between the different flavors
of EA in terms of data structure and general workings.

15

Interaction and Evolutionary Algorithms

2.1 Individuals

Every Evolutionary Algorithm (EA) works by maintaining a group of one
or more individuals as its ‘population’ (sometimes also called ‘pool’). Each
of these individuals is defined as the representation of a solution to the
problem that needs to be solved. We call the solution a ‘phenotype’ and
the representation of this solution a ‘genotype’. In some algorithms the
phenotype of an individual can be identical to the genotype, but that usually
depends on which class of algorithm is used.

One individual’s genotype is usually denoted with a vector of values a⃗, while
the phenotype of the individual is denoted with x⃗. A population of individ-
uals is usually denoted with P = {a⃗1, ..., a⃗λ}, where λ is the size of the
population. The state of an individual at time t is then denoted with a⃗(t),
so that the state of a whole population at t can be denoted with P (t) =
{a⃗1(t), ..., a⃗λ(t)}.

As mentioned before there are four main classes of EA: Genetic Algorithms,
Genetic Programming, Evolutionary Strategies and Evolutionary Program-
ming. The main distinguishing trait between these classes is the way they
represent their individual’s genotype and phenotype. Most other differences
are directly or indirectly related to these difference in representation. What
follows is a very brief and incomplete overview of some of these characteris-
tics and differences.

Genetic Algorithms (GA) usually represent an individual with a bit string
a⃗ = (a1, ..., al) ∈ {0, 1}l. The philosophy being that “if nature does it, it must
be right”. Nature represents their individuals using DNA of which a bit
string is an abstraction. Although the genotype is a binary representation,
the phenotype can have any kind of representation as long as there is a way
to ’map’ the genotype to the phenotype in order to evaluate an individual,
this mapping is then denoted as x⃗ = Υ(⃗a).

Genetic Programming (GP) traditionally represents its individuals with
a tree structure. In which each node of the tree represents an equation that
needs to be performed on the result of each of its leaves, making it pos-
sible to define and evolve mathematical equations quite efficiently. There
are different representations possible, most more complex than this one,
but in almost all cases the genotype is a direct representation of the pheno-
type.

Evolutionary Strategies (ES) usually represent their individuals with a
real valued array a⃗ = (a1, ..., al) ∈ Rl. This makes it easier to solve real
world problems where rounding a parameter due to a mapping can have a

16

Chapter 2. Evolutionary Algorithms

Figure 2.1: This figure shows the different steps in an evolutionary loop.

big impact on the accuracy of the results. The more flexible representation
opens up possibilities for more advanced mutation and recombination oper-
ators using the direction or size of previous mutation steps. Some operators
store additional values into the individual which are then considered part
of the genotype but not part of the phenotype. Except for these additional
values the phenotype is most of the time identical to the genotype.

Evolutionary Programming (EP) traditionally represents its individu-
als with a finite state machine. It looks a little bit like Genetic Program-
ming in terms of its phenotype representing a program, while it uses what
looks like an Evolutionary Strategy approach towards changing its values.
Here the genotype (the values) is not identical to the phenotype (the state
machine using these values). Evolutionary Programming looks a lot like
Evolutionary Strategies nowadays.

In this thesis only the Genetic Algorithm and the Evolutionary Strategy will
be used.

2.2 Evolutionary Loop

The evolutionary loop starts by initializing the individuals in the pop-
ulation. This can be done randomly using some uniform or Gaussian dis-
tribution or it can be started from a fixed location. Usually the initial size
(here denoted by n) of the population is also the size throughout the loop

17

Interaction and Evolutionary Algorithms

(it never changes), but there are some algorithms that break that rule (as
there are algorithms that break any rule in this brief intro).

Next the fitness of every individual in the population is calculated using a
fitness function Φ(x⃗i). Note that for some algorithms this means that the
genotype needs to be mapped to the phenotype first in which case Φ(x⃗i) =
Φ(Υa⃗i). The fitness value fi ∈ R of the individual is usually represented
with a value between 0 and 1 and is attached to the individual for later
use.

Then the a selection is made. There are many different ways of doing se-
lection and some will be discussed in more detail in Section 2.3, but the
general aim of this step is to select the ‘best’ µ individuals based on their
fitness value as parents to a new generation of λ children. The main dis-
tinction between the different selection methods is the amount of ‘luck’ a
worse individual is allowed to have. The philosophy being that searching
for the best individual sometimes means there is a need to diversify and not
concentrate too much on what is currently the best individual.

Right after the fitness is calculated the exit criteria are checked. Most
of the exit criteria are based on fitness or duration of the algorithm, but
anything is possible here. The general question that is answered: “When
does the algorithm need to stop?”. For example the two exit criteria used
in this thesis are: ‘Stop if the maximum fitness in the population reached
the optimum.’ and ‘Stop if the algorithm reached the maximum number of
generations.’ The maximum number of generations is a parameter that is
defined for each experiment separately.

The recombination step almost overlaps but follows the selection step, be-
cause recombination makes its own selection to choose which individuals
are going to make offspring. Depending on the algorithm and the repre-
sentation, recombination can mean anything from just plain copying one
individual to calculating the intermediate weighted location in a multi di-
mensional space using multiple parents. There are many different ways of
doing this and Section 2.4 introduces the ones that are used in this the-
sis.

Then mutation is applied to all newly generated individuals. The way an
individual is mutated depends heavily on how it is represented which tra-
ditionally depends on the class of algorithm that is used (as described in
Section 2.1). Section 2.5 shows the different ways mutation is used in this
thesis.

After the mutation step the resulting population of individuals can consist
of both old and new individuals. One way to notate the specific selection type

18

Chapter 2. Evolutionary Algorithms

of an algorithm is with (µ, λ) or (µ + λ) where µ stands for the number of
parents that are selected to produce offspring and λ stands for the number
of offspring that is generated each iteration (or ‘generation’). When a ’,’ is
used in the notation every generation only uses newly created individuals,
but when a ’+’ is used the parents of the offspring get copied into the next
generation as well. Using a ‘comma strategy’ makes for an algorithm that
will not easily focus too much on one solution, while a ‘plus strategy’ makes
for an algorithm that does not easily ‘throw away’ a good solution.

The loop is closed by taking the resulting population that comes out of the
mutation step and going back into the fitness evaluation. The new indi-
viduals will then get their fitness values which will be checked against the
exit criteria. If the exit criteria is not yet met, the selection step will again
select the ‘best’ and so on. The only way to successfully stop the loop is if
one of the exit criteria triggers. After that the result is usually one or more
individuals with the best fitness in the population.

2.3 Selection

There are many different ways to select individuals based on their fitness
value. The most popular include Probabilistic Fitness (or Roulette Wheel)
Selection, Truncation Selection, Probabilistic Rank Selection and Tourna-
ment Selection. Each has a different probability distribution for the chance
that an individual is going to be selected based on its fitness or rank in
the population. What follows is a brief description of each of these selec-
tion operators. For a detailed explanation on what each of these (and other)
selection methods are doing, see [6].

Truncation Selection is the easiest selection method there is. It selects
the µ individuals with the highest fitness, always. The drawback of this al-
gorithm is that it specializes on good individuals very quickly. That means
that the population has difficulties staying diverse, which means for some
problems that the best solution (the ‘global optimum’) will never be found
and the algorithm gets stuck on only a ‘pretty good’ solution (a ‘local opti-
mum’). This method has what is called a ‘high selection pressure’ because
the selection is deterministic and relies totally on the fitness value of the
individual relative to the entire population. This is however the most com-
mon selection method in most Evolutionary Algorithms not just because
of its simplicity. Its deterministic nature makes it easier to combine with
smart mutation and recombination operators that often have trouble with a
more stochastic selection method.

19

Interaction and Evolutionary Algorithms

(µ, λ)- and (µ + λ)-Selection is basically identical to Truncation Selection
and usually refers to its use in an ES. The two different forms are often
called a ‘comma strategy’ and a ‘plus strategy’ respectively and they refer
to the way the parents are treated in the evolutionary loop. In a comma
strategy µ parents are selected from n individuals, they recombine to gener-
ate λ children and then the parents die and only the children go to the next
generation. In that case the population size n = λ. While in a ‘plus strategy’
the µ parents also generate λ children, but then both the children and the
parents go to the next generation. Note that then n = µ+ λ. Also note that
usually only children are mutated in the evolutionary process, which leaves
the parents in the next generation unaltered.

Probabilistic Fitness Selection or Roulette Wheel Selection is one of
the probabilistic selection methods. It select a subset (could be all) of the
population and gives each a ‘pie-piece’ of a virtual roulette wheel. The size
of this ‘pie-piece’ is relative to the fitness of the individual. Then the wheel
is ‘spun’ to select individuals. The probability of individual i being selected
is then given by:

pi =
fi

n∑
j=1

fj

The main problem with this approach is that the selection probability is
very dependent on the fitness function and how a good fitness relates to a
bad fitness in the population. In most fitness functions the relative fitness
increase becomes smaller when the algorithm gets closer to the optimum.
This makes that the relative chance to select a better individual decreased
over time and that generates stagnation. For some fitness functions sub-
tracting a constant value c from each fitness value to change the relative
selection pressure improves performance:

pi =
fi − c

n∑
j=1

fj − c

Yet this makes the value of c another problem specific setting that only
improves the performance in some rare cases for certain parts of the search
space.

Probabilistic Rank Selection is another classic probabilistic selection
method. It works very similar to Probabilistic Fitness Selection except that

20

Chapter 2. Evolutionary Algorithms

now the probability of selection depends on the rank in the sorted list of all
individuals. The fittest individual gets the highest chance to be selected,
then the second fittest and so on. Usually only a subset of the population
gets a chance to be selected and the chances are fixed for each rank.

There are many different ways to distribute the selection probability over
the ranks, but linear distribution is most commonly used. Given that P (⃗a)
is ordered so that a⃗1 has the highest fitness (p1) and a⃗n has the lowest (pn),
then:

pi =
(n− i) · p1 + (i− 1) · pn

n− 1
while

n∑
i=1

pi = 1 and pi ≥ 0 ∀i ∈ {1, ..., n}

and seeing that the average probability is 1/n this implies that:

p1 =
1

n
+ c and pn =

1

n
− c while 0 ≤ c ≤ 1

n

Rank based selection methods are a lot less dependent on the fitness dis-
tribution in the population than Probabilistic Fitness based selection meth-
ods. This plus the ability to change the selection pressure with relative
ease, makes this selection operator a valid alternative to the more common
Truncation and Tournament selection methods.

Tournament Selection is a very flexible selection method that is very close
to nature. To select an individual, q (‘tournament size’) individuals are cho-
sen to take part in a ‘tournament’ with only one winner. The winner of that
tournament is the individual with the highest fitness values of the individ-
uals in the tournament and is selected as a parent. This process is repeated
µ times to select all the parents for the next generation.

Note that the q individuals for each tournament are pulled from the en-
tire population, which means that (unlike the other selection methods men-
tioned here) an individual can be selected multiple times in the same gen-
eration. In which case the individual would be copied and used as a parent
multiple times. Also note that Tournament Selection has a flexible ‘selec-
tion pressure’ through changing q. When q = 1 the selection method is a
complete random selection without any selection pressure, while with q = n
it would only select the best individual µ times.

The probability for an individual to be selected in Tournament Selection can
be defined as:

21

Interaction and Evolutionary Algorithms

pi =
1

nq
·
(
(n− i+ 1)q − (n− i)q

)
(see [5] for a proof)

Note that in this thesis only Truncation Selection (both (µ, λ) and (µ + λ))
and Tournament Selection are used.

2.4 Recombination

Like for selection, for recombination there are many different approaches,
but unlike for selection the representation of the individual has a great im-
pact on which recombination operator can be used. Because recombination
is performed in the genotype, calculating the average between two points
(‘Intermediate Recombination’) is not possible on an individual represented
by a binary array. Some popular examples of recombination are:

Copy does not really recombine anything, but does generate offspring and
therefore belongs in this step. Note that there are different ways to select
a single parent multiple times which can have a big impact on the algo-
rithm’s behavior. In this thesis we only use the copy operator to copy a
parent exactly λ

µ times, but basing this on rank or fitness or even making it
probabilistic is not uncommon.

Crossover is only used on binary representations. It generates the binary
array of the offspring by combining the binary arrays of randomly chosen
parents. This is usually done on only 2 parents, but in theory can be done
on more than 2. There are a few different ways to combine two binary ar-
rays:

• With ‘Uniform Crossover’ every single bit has an equal probability to
come from either parent.

• With ‘Single Point Crossover’ a split point is chosen at random and all
bits until that point are copied from one parent and all other bits from
the other. This only works with 2 parents.

• With ‘Multi Point Crossover’ multiple split points are chosen at ran-
dom and the source of the bits changes to the next parent with every
split point along the bit array.

Note that because parents are usually chosen randomly one parent can be
chosen multiple times. Not only for multiple offspring, but even for the same

22

Chapter 2. Evolutionary Algorithms

offspring. This means that if all parents chosen for the offspring are one and
the same, that parent is ‘copied’ without changes.

Intermediate Recombination is mostly used in Evolutionary Strategies.
It combines multiple parents by calculating the average values for each
value in the real valued arrays of the individuals. In some popular algo-
rithms a weighted average is used instead, weighted on the rank if the par-
ents in the population.

In this thesis only Copy and Crossover recombination are used.

2.5 Mutation

Mutation also comes in many different flavors and is probably the most
problem specific operator of the entire evolutionary loop. It determines
how fast and how far an evolution is able to ‘jump’ from one solution to
the next and (like recombination) is very representation dependent. Some
well known mutation operators:

Probabilistic Bit Flip flips each bit in a binary array with the same prob-
ability pm (called ‘mutation rate’). Given a⃗ = {a1, ..., an} ∈ {0, 1}n this oper-
ator can be defined as:

ai(t+ 1) =

{
ai(t) , if Ui > pm

1− ai(t) , otherwise

where Ui is a real value between 0 and 1 randomly sampled from a uniform
distribution for each bit in the bit string. This mutation is mainly used
on Genetic Algorithms and Genetic Programming, because it only works on
binary strings.

Self-adaptive Probabilistic Bit Flip works the same way as Probabilis-
tic Bit Flip, but it employs self-adaptation on the mutation rate pm. This
means it adds a separate mutation rate pmi to the representation of each
individual. Then this mutation rate evolves with the individual using their
own mutation operator and each individual uses their own mutation rate to
be mutated. Given a⃗i = {a1, ..., an} ∈ {0, 1}n and each individual having a
separate pmi this operator can be defined as:

aj(t+ 1) =

{
aj(t) , if Uj > pmi(t)

1− aj(t) , otherwise

23

Interaction and Evolutionary Algorithms

pmi(t+ 1) =
(
1 +

1− pmi(t)

pmi(t)
· exp(−γ ·N(0, 1))

)−1

where Ui is a real value between 0 and 1 randomly sampled from a uni-
form distribution for each bit in the bit string, N(0, 1) is a real value ran-
domly sampled from a Gaussian (or normal) distribution with mean 0 and
standard deviation 1 and γ is a constant to control the speed at which the
mutation rate pmi mutates.

Like Probabilistic Bit Flip, this mutation operator applies to binary strings
and is only really used on Genetic Algorithms.

Gaussian Mutation mutates a real valued individual using a random
Gaussian distributed step size. The Gaussian (or ‘normal’) distribution is
a commonly used probability distribution that has very useful symmetrical
properties that are exceptionally well suited for random mutation of real
values. The distribution is given by:

f(x) =
1√
2πσ2

e−
(x−η)2

2σ2

where η is the mean of the distribution and σ2 the ‘variance’. The Gaus-
sian distribution is symmetrical in the mean and has the added benefit that
the standard deviation σ can be input straight into the distribution. This
makes the distribution very compatible with step size mutation of real val-
ues where the distance a child mutates from a parent needs to be ‘balanced’
in order to prevent a bias towards bigger or smaller step sizes.

Gaussian Mutation is used in ES where an individual is represented by an
array of l real values: x⃗i = {x1, ..., xl} ∈ Rl. (Note that x⃗ = a⃗ in an ES)
A simple Gaussian Mutation would then mutate each value of x⃗i with a
certain ‘step size’ σ by sampling the distribution above to generate random
differences to each of the values in a⃗i. Given that sampling the Gaussian
distribution is denoted with N(η, σ), mutating x⃗ looks like:

xi(t+ 1) = xi(t) +N(0, σ)i ∀i ∈ {1, ..., l}

or for the entire pool:

x⃗i(t+ 1) = x⃗i(t) + N⃗(0, σ) ∀i ∈ {1, ..., n}

Note that this is the simplest form of Gaussian Mutation. There are a lot of
ways to improve the performance by manipulating the step size σ over time,
or through self adaptation (see below).

24

Chapter 2. Evolutionary Algorithms

Self-adaptive Gaussian Mutation has many different incarnations in
Evolutionary Strategies. The basic principle is the same as in Self-adaptive
Probabilistic Bit Flip in that the mutation rate for an individual is stored
as part of the representation of that individual and mutated with that in-
dividual. The mutation operator for Gaussian Mutation can be a lot more
complex than a simple Bit Flip operator though and each of the different
ways of mutating the object variables can be part of the mutation operators
that are evolved with the individual. There is the version where each object
variable of an individual has its own mutation rate for instance, this helps
an algorithm learn to move in one dimension, but stay where it is in an-
other. There is a version in which the direction of the mutation is a vector
that is mutated with the individual as well and there is even a very popu-
lar version in which the entire ‘covariance matrix’ is adapted to evolved a
direction in the search space. All different degrees of complexity to tackle
different order of magnitude of complexity in search spaces.

Until now there has not been one mutation operator that works every time.
A good mutation operator is usually very problem specific, but the more
problem specific information is added to the operator, the smaller the chance
becomes that the algorithm will find something unexpected. That is why in
the field of Evolutionary Computation a simple operator that does the trick
is more often than not the best one.

25

Interaction and Evolutionary Algorithms

26

Chapter 3
Cellular Automata

In the 1940s John von Neumann studied the problem of self-replicating sys-
tems at the Los Alamos National Laboratory, when his colleague Stanislaw
Ulam suggested that instead of using actual parts to make a robot that
could build itself, he would use a virtual model not unlike the model Ulam
was using to simulate crystal growth. The resulting research generated the
first so-called “Cellular Automata”. It was two dimensional using a small
neighborhood size in which each cell’s only neighbors were its four direct
neighbors in each direction and itself. This neighborhood has since been
called the “von Neumann neighborhood”. Within the CA a certain pattern
would make endless copies of itself making it the first self-replicating au-
tomata.

Thirty years later in the 1970s a CA called “The Game of Life” got a lot of
attention. This much simpler automata constructed by John Conway is able
to generate and maintain a large variety of moving and looping patterns.
Instead of the 29 states that each cell could have in von Neumann’s CA, The
Game of Life only has two states in each cell, but it uses the same small
neighborhood as Neumann used and is also two dimensional. The patterns
in this CA seem to move and merge, some even generate other patterns. The
patterns seem to be ‘alive’.

In 1983 Stephen Wolfram started investigating CA more closely and con-
centrated on an even simpler class of CA he called ‘Elementary Cellular
Automata’. These one dimensional CA have a neighborhood size of only 3
cells and only two states per cell. Wolfram showed that even in an automata
this simple there exists a high level of complexity in terms of behavior. So

27

Interaction and Evolutionary Algorithms

Figure 3.1: This figure shows the shape of a one dimensional neighborhood
of cell a with radius r = 3.

complex even that he claimed that one of the possible rules for this CA (‘rule
110’) was ‘Turing Complete’. A claim later proven by Matthew Cook around
2000 which means that it can be adapted to simulate the logic of any com-
puter algorithm given a large enough CA and enough time.

3.1 One Dimensional Cellular Automata

According to Wolfram [41] Cellular Automata (CA) are mathematical ide-
alizations of physical systems in which space and time are discrete, and
physical quantities take on a finite set of discrete values. The simplest CA
is one dimensional and looks a bit like an array of ones and zeros of width
n, where the first position of the array is linked to the last position. In other
words, defining a row of positions

C = {a1, a2, ..., an}

where C is a CA of width n and an is adjacent to a1.

The neighborhood si of ai is defined as the local set of positions with a dis-
tance to ai along the connected chain which is no more than a certain radius
(r).

si = {ai−r, ai−r+1, ..., ai, ..., ai+r−1, ai+r}

Due to the ring structure of the CA this for instance means that s2 =
{a148, a149, a1, a2, a3, a4, a5} for r = 3 and n = 149. Please note that for one
dimensional CA the size of the neighborhood is always equal to 2r+1.

The values in a CA can be altered all at the same time (synchronous) or at
different times (asynchronous). Only synchronous CA are considered in this
chapter. In the synchronous approach at every time step (t) every cell state

28

Chapter 3. Cellular Automata

in the CA is recalculated according to the states of the neighborhood using
a certain transition rule:

Θ : {0, 1}2r+1 → {0, 1}, si → Θ(si)

This rule basically is a one-to-one mapping that defines an output value
for every possible set of input values, the input values being the ‘state’ of
a neighborhood. The state of ai at time t is written as ati, the state of si at
time t as sti and the state of the entire CA C at time t as Ct so that C0 is the
initial state and

∀i ∈ {1, . . . , n} : at+1
i = Θ(sti)

This means that given Ct = {at1, ..., atn}:

Ct+1 = {Θ(st1), ...,Θ(stN)}

Because an ∈ {0, 1} the number of possible states of si equals 2|s| = 22r+1.
The transition rule Θ can be defined as the resulting state of ai for each
and every possible state of si. Because there can be 22r+1 different possible
states of si the transition rule Θ is defined by a binary string with 22r+1 bits.
The bits in the transition rule are ordered so that the state of the cell with
the lowest index in si (‘the leftmost cell in the neighborhood’) corresponds to
the most significant bit in the index of the bit in the transition rule.

Because the transition rule Θ is 22r+1 bits there are 22
2r+1

different transi-
tion rules for a one dimensional CA. For a CA with r = 3 this will already
be 22

7 ≈ 3.4× 1028. That is a lot of different behaviors for a simple automa-
ton.

3.2 Two Dimensional Cellular Automata

The two dimensional CA in this document are similar to the one dimen-
sional CA discussed so far. Instead of a row of positions, C now consist of a
grid of positions. The values are still only binary (0 or 1) and there still is
only one transition rule for all the cells. The number of cells is still finite
and therefore CA discussed here have a width w, a height h and borders.
Also the cell a now has two coordinates and the CA C looks like:

29

Interaction and Evolutionary Algorithms

(a) (b)

Figure 3.2: Two often used and well known two dimensional neighborhoods.
(a) the von Neumann neighborhood and (b) the Moore neighborhood.

C =

∣∣∣∣∣∣∣
a1,1 . . . aw,1

...
. . .

...
a1,h . . . aw,h

∣∣∣∣∣∣∣
In a one dimensional CA the leftmost cell is connected to the rightmost cell.
In the two dimensional CA this it is also common to link opposite borders.
This means that every leftmost cell a1,j is connected to the rightmost cell
aw,j in the same row and every topmost cell ai,1 is connected to the bot-
tommost cell ai,h in the same column. Note that such a CA forms a torus
structure.

The big difference between one dimensional and two dimensional CA is the
rule definition. The neighborhood of the rule is two dimensional, because
there are not only neighbors left and right of a cell, but also up and down.
That means that if r = 1, si,j mights consists of 5 positions, for instance the
four directly adjacent to ai,j plus ai,j itself.

si,j = {ai,j−1, ai−1,j , ai,j , ai+1,j , ai,j+1}

This neighborhood is often called the ‘von Neumann neighborhood’ after its
inventor. The other well known neighborhood expands the von Neumann
neighborhood with the four positions diagonally adjacent to ai,j :

si,j = {ai−1,j−1, ai,j−1, ai+1,j−1, ai−1,j , ai,j , ai+1,j , ai−1,j+1, ai,j+1, ai+1,j+1}

This neighborhood is called the ‘Moore neighborhood’ also after its inventor.
Figure 3.2 shows these two neighborhoods.

30

Chapter 3. Cellular Automata

3.3 Multi Dimensional Neighborhoods

A more formal definition of the neighborhood si,j for a two dimensional von
Neumann neighborhood is given by

si,j = {ak,l | (|k − i|+ |l − j|) ≤ r}

Note that this defines a diamond shape of cells with a diameter of 2r + 1 (r
cells on both sides and one in the center) and that the total number of cells
in s can be defined by |si,j | = 2r2 + 2r + 1. This can be generalized to a d
dimensional von Neumann neighborhood with:

sk1,k2,...,kd
= {al1,l2,...,ld |

d∑
i=1

|ki − li| ≤ r}

Note that this only holds for infinite CA or finite CA with unlinked borders,
yet if a CA is using linked borders the distance between two cells needs to
take that into account. If a CA has dimensions {e1, e2, ..., ed} and has linked
borders then

The distance between ak1,k2,...,kd
and al1,l2,...,ld is:

d∑
i=1

min(|ki − li|, ei − |ki − li|)

Therefore a d dimensional von Neumann neighborhood with linked borders
in a CA with dimensions {e1, e2, ..., ed} is defined as:

sk1,k2,...,kd
= {al1,l2,...,ld |

d∑
i=1

min(|ki − li|, ei − |ki − li|) ≤ r}

The Moore neighborhood of a two dimensional CA can be defined in a similar
way as:

si,j = {ak,l | |k − i| ≤ r, |l − j| ≤ r}

Note that this defines a square around a center cell ai,j with a width and
height of r2 + 1 (again r to both sides and one in the center) and |si,j | =
(2r+1)2 = 4r2+4r+1. This can be generalized to d dimensions with:

31

Interaction and Evolutionary Algorithms

sk1,k2,...,kd
= {al1,l2,...,ld | |ki − li| ≤ r for 1 ≤ i ≤ d}

Note that this too does not hold for finite CA with linked borders. The Moore
neighborhood of a CA with dimensions {e1, e2, ..., ed} and linked borders is
defined as:

sk1,k2,...,kd
= {al1,l2,...,ld | min(|ki − li|, ei − |ki − li|) ≤ r for 1 ≤ i ≤ d}

3.4 Neighborhood Size

The number of cells in a neighborhood is defined as S(d, r) where d equals
the number of dimensions in the CA and r is the radius of the neighborhood.
SN (d, r) defines the number of cells in a von Neumann neighborhood, while
SM (d, r) defines the number of cells in a Moore neighborhood.

In Moore neighborhood the number of cells SM (d, r) = (2r+1)d being a sim-
ple hypercube, but for the multi dimensional von Neumann neighborhood
SN (d, r) is less trivial to calculate. Note that a one dimensional von Neu-
mann neighborhood equals a normal one dimensional neighborhood and has
2r + 1 cells:

SN (1, r) = 2r + 1

Then note that a two dimensional von Neumann neighborhood can be de-
fined as a set of r2 + 1 one dimensional von Neumann neighborhoods with
sizes {1, 3, 5, ..., 2r − 1, 2r + 1, 2r − 1, ..., 5, 3, 1}, basically forming a diamond
shape. This can be put in a simple equation calculating two stepping pyra-
mids and then subtracting one of the biggest bases, fitting these pyramids
together then gives a diamond shape. This gives:

32

Chapter 3. Cellular Automata

SN (2, r) = 2
[r∑
i=0

2i+ 1
]
− (2r + 1)

= 2
[r∑
i=1

2i
]
+ 2r + 2− (2r + 1)

= 4
[r∑
i=1

i
]
+ 1

= 4
[1
2
r2 +

1

2
r
]
+ 1

= 2r2 + 2r + 1

The three dimensional von Neumann neighborhood is a little bit harder to
visualize but can be defined as 2r + 1 slices, each a two dimensional von
Neumann neighborhoods with sizes:

{SN (2, 0), SN (2, 1), ..., SN (2, r−1), SN (2, r), SN (2, r−1), ..., SN (2, 1), SN (2, 0)}

Putting that in a summation defines:

SN (3, r) = 2
[r∑
i=0

SN (2, i)
]
− SN (2, r)

= 2
[r∑
i=0

2i2 + 2i+ 1
]
− 2r2 − 2r − 1

= 2
[r∑
i=1

2i2
]
+ 2

[r∑
i=1

2i
]
+ 2r + 2− 2r2 − 2r − 1

= 4
[r∑
i=1

i2
]
+ 4

[r∑
i=1

i
]
− 2r2 + 1

= 4
[1
3
r3 +

1

2
r2 +

1

6
r
]
+ 4

[1
2
r2 +

1

2
r
]
− 2r2 + 1

=
4

3
r3 + 2r2 +

2

3
r + 2r2 + 2r − 2r2 + 1

=
4

3
r3 + 2r2 +

8

3
r + 1

Note how a pattern has emerged in which a n dimensional von Neumann
neighborhood can be defined by 2r+1 neighborhoods that have n−1 dimen-
sions. This can be done for any number of dimensions, creating a generic

33

Interaction and Evolutionary Algorithms

recursive definition of a multi dimensional von Neumann neighborhood. For
the neighborhood size this means that:

SN (d, r) = {SN (d− 1, 0), SN (d− 1, 1), ... , SN (d− 1, r − 1),

SN (d− 1, r), SN (d− 1, r − 1), ... , SN (d− 1, 1), SN (d− 1, 0)}

= 2
[r∑
i=0

SN (d− 1, i)
]
− SN (d− 1, r)

Using this equation the neighborhood sizes for the four, five and six dimen-
sional neighborhoods can be calculated using some tedious calculus that is
partially skipped here, but can be found in Appendix A. These calculations
reveal:

SN (4, r) = 2
[r∑
i=0

SN (3, i)
]
− SN (3, r)

· · ·

=
2

3
r4 +

4

3
r3 +

10

3
r2 +

8

3
r + 1

SN (5, r) = 2
[r∑
i=0

SN (4, i)
]
− SN (4, r)

· · ·

=
4

15
r5 +

2

3
r4 +

8

3
r3 +

10

3
r2 +

46

15
r + 1

SN (6, r) = 2
[r∑
i=0

SN (5, i)
]
− SN (5, r)

· · ·

=
4

45
r6 +

4

15
r5 +

14

9
r4 +

8

3
r3 +

196

45
r2 +

138

45
r + 1

Putting the resulting sizes in a table generates Table 3.1. Note how SM is
growing a lot faster than SN . Looking at the equations this can be explained
by defining the order of magnitude of both the von Neumann and Moore
neighborhoods. The von Neumann neighborhood grows each dimension by
adding an additional exponent to the equation making SN (d, r) = O(rd).
The Moore neighborhood is also clearly exponential, but the base of the
exponent is a lot bigger. Making SM (d, r) = O((2r + 1)d) which grows a lot
faster than the von Neumann neighborhood.

Also note how the von Neumann neighborhood seems to be symmetrical.
Note how Table 3.1 shows that SN (a, b) seems to be identical to SN (b, a).

34

Chapter 3. Cellular Automata

r
0 1 2 3 4 5 6

SN (1, r) 1 3 5 7 9 11 13
SN (2, r) 1 5 13 25 41 61 85
SN (3, r) 1 7 25 63 129 231 377
SN (4, r) 1 9 41 129 321 681 1289
SN (5, r) 1 11 61 231 681 1683 3653
SN (6, r) 1 13 85 377 1289 3653 8989
SM (1, r) 1 3 5 7 9 11 13
SM (2, r) 1 9 25 49 81 121 169
SM (3, r) 1 27 125 343 729 1331 2197
SM (4, r) 1 81 625 2401 6561 14641 28561
SM (5, r) 1 243 3125 16807 59049 161051 371293
SM (6, r) 1 729 15625 117649 531441 1771561 4826809

Table 3.1: The number of cells in neighborhoods in multi dimensional CA.
SN (d, r) stands for a d dimensional von Neumann neighborhood with a ra-
dius r and SM (d, r) represents a d dimensional Moore neighborhood with
radius r. Note that SN (d, r) is a lot smaller and symmetric.

This follows directly from the recursive definition of SN as follows:

SN (d, r) = 2
[r∑
i=0

SN (d− 1, i)
]
− SN (d− 1, r)

= 2
[r−1∑
i=0

SN (d− 1, i)
]
+ SN (d− 1, r)

= 2
[r−2∑
i=0

SN (d− 1, i)
]
+ SN (d− 1, r − 1)

+SN (d− 1, r − 1) + SN (d− 1, r)

= SN (d, r − 1) + SN (d− 1, r − 1) + SN (d− 1, r)

In the case where r = 1 each dimension only has two cells directly adja-
cent to the center cell, so SN (d, 1) = 2r + 1. This is symmetrical to the one
dimensional neighborhood where SN (1, r) = 2r + 1. Given the above sym-
metry this implies that the row SN (d, 2) also needs to be symmetrical to
the column SN (2, r). The same holds for all the other rows and columns so
that:

SN (a, b) = SN (b, a)

35

Interaction and Evolutionary Algorithms

36

Chapter 4
Inverse Design of Cellular
Automata

Cellular Automata are used in many fields to generate a global behavior
with local rules. Finding the rules that display a desired behavior can be a
hard task especially in real world problems. This paper proposes a generic
approach to generate these transition rules for Cellular Automata using a
Genetic Algorithm, thus giving a way to evolve global behavior with local
rules, thereby mimicking nature. Five different problems are solved using
different topologies of cellular automata and different Genetic Algorithm
parameter settings to show robustness, flexibility and potential.

4.1 Introduction

Cellular Automata have been used as the engine for simulations in fields
ranging from biology, physics and mathematics all the way to real world ap-
plication including airflow simulations, weather modeling and volcanic flow
predictions. In most cases the reason for choosing a CA for the simulations
lies in the power of defining simple local rules which exhibit complex global
behavior. Defining the behavior of flowing magma for instance is not a triv-
ial task, but it becomes a lot easier when the global problem is transformed
into a local problem by directing the speed and direction of a single particle
of magma based on its surrounding neighbor particles (as reported by Barca

37

Interaction and Evolutionary Algorithms

D. et al. [9]). The resulting sum of interactions between all the particles of
magma then represents a surprisingly accurate model of the magma flow as
a whole.

Designing a local rule that has the right global behavior for a certain simu-
lation is not always easy. There is a danger to oversimplify the interactions
that are needed inside a CA which could result in a biased global behav-
ior resulting in flawed conclusions when using the resulting model. That is
why CA are mostly used in problems that can be easily abstracted to have a
simple well understood local rule and a complex global behavior. Using CA
in other problem areas where the local interactions are not as well under-
stood is often impossible. This chapter will outline an approach to utilize
the power of CA in problem areas where a local rule is unknown or non triv-
ial, but the wanted global behavior is well understood by utilizing the power
of evolution.

In nature this kind of global behavior through local rules is all around us.
Think about the collective drive of an ant colony for instance, or a bee hive,
a wolf pack, even the synchronized hatching of millions of turtles can be
contributed to local rules within the biological clock of an unborn turtle with
a great impact on the global behavior of a species. It is generally excepted
that these behavioral traits in animals are somehow encoded in the genes of
the individuals and are therefore subject to the evolutionary processes that
also form limbs, eyes and feathers. Many of these traits have been studied
from the point of ‘benefit to a species’ and most have a well defined path of
evolution through time.

The need for species to develop a language for instance can be contributed to
the benefit this gives in collectively undertaking a task such as alerting oth-
ers to valuable resources, attacking a larger animal or defending against
a common threat. Ants use pheromones to accomplish these tasks, bees
aerial patterns and dances, while wolves have a much more complex sys-
tem of howls and smells. Even complex hierarchical structures are used to
assign different tasks within a species to more efficiently survive and repro-
duce. Are ants, bees and wolves conscious of this far reaching and complex
global behavior of their own species? Probably not. But more importantly:
they don’t have to be.

Through biological research into these intricate social interactions between
animals, complex local rules have been found that seem to account for most
(if not all) of the global behavior of a colony, hive and pack. Some of these
local rules are even more complex than the global behaviors they generate,
yet they all seem to have evolved from the need of having these global bene-
fits as a species. It seems nature has been successful in reverse engineering

38

Chapter 4. Inverse Design of Cellular Automata

complex sets of local rules to accomplish a set global goal.

This chapter will discuss an approach that tries to mimic nature by evolv-
ing local rules of simple Cellular Automata to reverse engineer local rules
that exhibit a desired global behavior. Not only does this show that CA can
be utilized in areas where a local rule is unknown yet suspected to work or
needed, but the approach also gives new insights into the evolution of inter-
action. This chapter will introduce a range of experiments supporting both
areas of interest.

The chapter begins with describing a well known interaction problem in the
field of Cellular Automata called the ‘Majority Problem’. A brief overview
of previous work on this problem will be discussed including some work
done to inverse design this problem using a Genetic Algorithm (GA). It will
describe how these experiments were reproduced and improved upon by ex-
amining the parameter space of the GA. Next the chapter will examine the
interaction resulting from these experiments, introduce distance metrics on
a CA and show how the same experiment was used to examine different
topologies with vastly different resulting interactions. These results in-
spired the use of multi dimensional CA with again surprising results.

Then, in an effort to more clearly visualize the evolution of this global in-
teraction, three different new problems are defined. The ‘AND’ and ‘XOR’
problems evolve AND and XOR logic on a small 2D CA structure, while the
‘Checkerboard Problem’ defines a synchronization problem that implements
a checkerboard pattern that can be scaled up through different dimension-
ality and sizes. Both these problems very clearly show interaction between
cells and propagation of information evolved from nothing more than the
need to solve the problem. This research suggests that this process works
very similar to the process in nature and is a very minimalistic yet powerful
way to study the emergence and evolution of interaction.

At the end of the chapter a fifth experiment is described in which the limits
of inverse designing CA are explored by evolving transition rules that gen-
erate specific patterns in different sized CA. Multiple bitmaps are evolved
from a ‘single seed’ initial state showing that the approach is flexible and
can handle diverse tasks, while at the same time highlighting some lim-
itations and insight into which tasks are easy and which are hard for a
CA.

39

Interaction and Evolutionary Algorithms

Time

Position

0

199
0 148

Time

Position

0

199
0 148

(a) (b)

Figure 4.1: These are examples of majority problem classification by the
‘Majority Rule’. The pictures show how the rule gets stuck on ‘thick lines’ in
the time plot. Time t proceeds from top to bottom and every row corresponds
to Ct. Note that there is not much change going on after t = 5.

4.2 Majority Problem

One of the best known global problems that is (partly) solvable with local
rules is the Majority Problem. The Majority Problem can be defined as
follows:

Given a set A = {a1, ..., an} with n odd and am ∈ {0, 1} for all 1 ≤ m ≤ n,
answer the question: ‘Are there more ones than zeros in A?’.

The Majority Problem at first glace does not look like a very difficult prob-
lem to solve. It seems only a matter of counting the ones in the set and then
comparing them to the number of zeros. Yet when this problem has to be
solved within the framework of a CA it becomes a lot more difficult. This
is because the transition rule in a CA does not let a position ‘look’ past its
neighborhood. That means that each cell only ‘knows’ what is going on in
it’s own neighborhood. The only way that a CA is able to solve the Majority
Problem is if all the cells work together using some form of communica-
tion.

The Majority Problem in this thesis runs on a one dimensional synchronous
CA and, as used by other authors [29, 30], has exactly 149 cells. Every cell
in the CA can only have two states (0 or 1) and each cell has exactly the
same transition rule. The CA is iterated by applying this rule on every cell

40

Chapter 4. Inverse Design of Cellular Automata

at the same time (synchronous) over and over again until the state of the
CA (denoted with Ct) does not change anymore or the maximum number
of iteration has been reached. The maximum number of iterations is set to
320, as used by the other authors [29, 30].

A transition rule is applied to a cell by determining the current state of the
neighborhood of this cell at time t, using the rule to calculate the resulting
state the cell will need to become (0 or 1) and then changing the cell to that
state at time t+ 1. The neighborhood of a cell ai in the Majority Problem is
usually defined as the three cells to the left of ai (ai−3, ai−2, ai−1), plus (ai)
itself and the three cells to the right of ai (ai+1, ai+2, ai+3). This is called
the one dimensional neighborhood with radius r = 3. The CA used for this
problem is usually ‘linked’, meaning that the first cell of the CA a1 is linked
to the last cell in the CA an, making the neighborhood wrap around this link
as well.

Given that the relative number of ones in C0 in a simple binary CA is writ-
ten as λ, the Majority Problem can be defined as:

Find a transition rule that, given an initial state of a CA where N is odd
and a finite number of iterations to run (I), will result in an ‘all zero’ state if
λ < 0.5 and an ‘all one’ state otherwise. The ‘all zero’ state being the state in
which every cell in the CA is zero and the ‘all one’ state being a the state in
which every cell is one.

Evaluating the quality of a transition rule for this problem is done by iterat-
ing M randomly generated initial states, running the CA as described above
and then calculating the relative number of correct classifications resulting
from that run. The fitness of a transition rule is denoted with FN,M where
N is the width of the CA and M the previously mention number of randomly
generated initial states. The quality of the transition rule is then defined as
the average number of correctly classified initial states resulting in an ‘all
zero’ state if the initial state had more 0’s than 1’s and resulting in an ‘all
ones’ state otherwise.

There are different distributions in the number of ones that can be used in
the initial states. The default is a binomial distribution (its fitness denoted
with FB

N,M) where every cell in the CA has an equal (50%) chance of being
initiated with either a 1 or a 0 for every initial state. The alternative to
this distribution is a uniform distribution (its fitness denoted with FU

N,M) in
which all fractions of 0’s versus 1’s are equally represented in the distribu-
tion of initial states. The uniform distribution has some benefits towards
evolution that will be explain later in this chapter, while the binomial dis-
tribution is used to rate transition rules historically and throughout this
chapter.

41

Interaction and Evolutionary Algorithms

Time

Position

0

199
0 148

Time

Position

0

199
0 148

(a) (b)

Figure 4.2: These are examples of Majority Problem classification by the
rule found by David, Forrest and Koza. [1]. Both are correct classifications
(a) with 74 ones in the initial state, (b) with 75. Note how different ‘particles’
of information travel in straight lines and meet to form new particles.

At first glace, the most obvious transition rule is what has been called the
‘Majority Rule’. This is the rule where the output value is 1 if the number
of ones in the neighborhood is more than the number of zeros, and a zero
otherwise. This is basically the definition of the Majority Problem solved
literally in the local neighborhood. Surprisingly (or not) this does not at all
solve the problem for the global CA (as is shown in Figure 4.1). The majority
rule gets stuck in states where on the border of a thick line in the time plot
the cells can’t ‘agree’ on the global answer. When for instance the cell just
left of such a thick line is zero and because all other cells left of it in the
neighborhood are also zero, it ‘decides’ to stay that way, yet its neighbor
to the right is one and probably only sees ones on its right and therefore
decides to stay one. This way the information fails to propagate through the
CA and classification fails.

Researchers in the field of cellular automata have published many different
rules to solve this problem, one such rule is the GKL rule so named after
its inventors Gacs, Kurdyumov and Levin [16]. This rule is pretty good at
classifying the majority problem and does it for 81.6% of the test cases with
a width of 149 cells. For 17 years this was the best rule and then L. Davis
found a better one in 1995 which did 81.8%. In the same year R. Das found
a rule that did 82.178%. Then in 1996 David, Forrest and Koza found a rule
by cleverly using genetic programming that was able to classify 82.326%

42

Chapter 4. Inverse Design of Cellular Automata

correctly [1]. Figure 4.2 shows a plot of this rule in action.

Although these rules are very impressive it is believed that there is no def-
inite solution for the problem as long as the neighborhood is smaller than
the size of the CA. It is already a big accomplishment for a CA to get 70% of
all random initial states correct, for this shows there is some kind of com-
munication going on; some kind of emerging interaction.

4.3 Inverse Design of the Majority Problem

First it is important to point out that this research is not aimed at finding
better performing transition rules on the Majority Problem. Even though
such a feat would be of considerable importance to the field of Cellular Au-
tomata and Evolutionary Algorithms in general, it was never the aim of
this research. There is so much already known about the intricacies of the
Majority Problem that asking a Genetic Algorithm to come up with that
knowledge on its own is a tall order. It is even in line with this research to
admit that using a Genetic Algorithm for the inverse design of the Majority
Problem is not the best and most efficient approach to solve that problem.
For that goal making use of Genetic Programming like David, Forrest and
Koza successfully employed in 1996 [1] seems like a much more likely can-
didate.

However, in all successful transition rules discussed in Section 4.2 the gen-
eration of the rule was either entirely or in part guided by human knowledge
of the problem. The GLK rule was designed by its authors [16], as was the
Davis’ and Das’ rule. The rule by David, Forrest and Koza [1] was gener-
ated by a Genetic Programming approach, but the input to that algorithm
consisted of parts of already known good approaches which in turn were
generated by humans. The research in this chapter is not aimed at finding
better rules, but instead wants to understand more about the process of in-
verse engineering a solution to a complex problem requiring interaction. To
introduce knowledge about the problem would only make the origin of such
emerging interaction harder to verify.

The research into inverse design of transition rules in a Cellular Automa-
ton using a Genetic Algorithm was inspired by research conducted by M.
Mitchell, J. P. Crutchfield and P. T. Hraber. In [29, 30] they show that using
a simple GA to evolve transition rules for the majority problem (explained in
Section 4.2) can already give surprisingly good results without adding any
problem specific knowledge to the algorithm. About half of the rules that
were found in this research performed better than the most trivial rule and

43

Interaction and Evolutionary Algorithms

about 7 rules out of 300 rules that were found seemed to use some primitive
form of communication that worked for more than 70% of the classifications.
This is not better than rules that are made by hand, but it does show how a
GA can evolve global behavior based on local rules from scratch using only
the power of evolution.

This research uses their findings as a starting point to more thoroughly
examine how interaction can be evolved using a Genetic Algorithm. Without
ever telling the CA explicitly how to communicate we try to solve problems
that can only be tackled using some form of communication. The resulting
behavior of the CA’s show very clear interaction protocols that have emerged
solely from the use of evolution.

4.4 The Genetic Algorithm

Because CA define their behavior in the form of a binary transition rule,
they are well suited to be evolved with a genetic algorithm. As introduced
above, M. Mitchell, J. P. Crutchfield and P. T. Hraber have shown [29, 30]
that using a simple GA to evolve transition rules for the majority problem
(explained in Section 4.2) can evolve interaction in a CA. To be able to com-
pare our results we will start by using an identical setup to this research
and from there test the robustness of the approach by running a set of ex-
periments with different settings.

The GA in this chapter uses tournament selection as defined in Section 2.3
in short and in [6] more extensively. This selection involves running ‘tour-
naments’ on the population in order to determine the next generation. Ev-
ery tournament q individuals are selected at random from generation t and
the one with the highest fitness is then copied to generation t + 1. For a
population of λ individuals this process is repeated λ times and added to
generation t+ 1. In the initial experiments q = 10.

After selection is complete, recombination is applied. Recombination is
done by using single-point crossover on a subset of the population with a
crossover-rate denoted with c. In most experiments c = 0.9. Then the re-
sulting individuals are mutated using probabilistic bit flip mutation. This
works by flipping every bit in the individual with a probability pm. If not
mentioned otherwise pm = 2

l where l is the number of bits in the individ-
ual.

All the individuals in the pool are initialized at random with a uniform
distribution over the number of ones in an individual. This means that the
number of individuals with a certain number of ones will be roughly equal

44

Chapter 4. Inverse Design of Cellular Automata

to the number of individuals with a different number. This prevents the
algorithm from specializing in a particular area of the search space at the
beginning of the algorithm. The evolution ends after D generations and the
best individual of the last generation is considered to be the answer. For
most experiments D = 100.

The GA is expected to behave differently with different settings of q, c, pm
and D. This research tries to find one single approach that works in dif-
ferent experiments with only minimal changes. The Majority Problem was
used to determine some good settings, which were then used in the other
experiments.

4.5 1D Experiment

The algorithm was run for 900 runs. Note that this is three times as many
runs as was calculated in the original experiment by M. Mitchell, J. P.
Crutchfield and P. T. Hraber [29]. Afterwards FU

149,103 was calculated for
every best rule of a run. It was assumed that the best rule of a run was the
rule ranked the highest at generation 100. Note that there might be lower
ranked ‘elite’ rules in the rule pool at generation 100 that will get a higher
overall fitness than this top ranked rule. This is due to the fact that the
fitness of a rule during evolution is calculated with 100 initial states and is
therefore only a rough estimate.

In Figure 4.5 the fitness values of the 900 runs are displayed in a frequency
graph. All the fitness values are grouped into bins with a width of 0.01. The
peak around FU

149,103 ≈ 0.5 shows all the rules that did not make it further
than an ‘always all ones’ or an ‘always all zeros’ strategy. The biggest peak
is situated around FU

149,103≈0.63 and corresponds to the ‘block expanding’ al-
gorithms (as shown in Figure 4.3 and the ‘particle based’ rules are situated
where FU

149,103 > 0.71 (as shown in Figure 4.4).

Out of 900 runs 12 ‘particle based’ rules were found, that means that 1.3%
of the total runs had evolved to a ‘particle based’ rule. This is less than the
percentage M. Mitchell et al. have found [29] which was 7 out of 300 or
2.3%. This could be contributed to chance or a different definition of what
a ‘particle based’ rule exactly is. The 12 rules that are counted as ‘particle
based’ rules in this document all have a FU

149,103 > 0.7 and are clearly doing
something more than just expanding large blocks. There seem to be a lot of
different ways to send ‘particles’ from one side of the CA to the other. The in-
ner workings of one rule and its different ‘particles’ are studied in [30], but it
is not unthinkable that other rules have a totally different approach.

45

Interaction and Evolutionary Algorithms

Figure 4.3: These are examples of majority problem classification by a typi-
cal block expanding rule with N = 149 and FU

149,104 ≈ 0.65. Both (a) and (b)

are correct classifications (a) with 74 ones in the initial state, (b) with 75.
Note that in (a) there emerges a block of zeros right at the beginning. This
block is then extended throughout the CA, if the block is not found (as in (b))
the algorithm assumes it is an ‘all ones’ classification. The chance a block
of zeros occurs is bigger with more zeros in the initial state and that is why
this approach works. In (c) and (d) the algorithm has incorrectly classified
initial states with (c) 65 and (d) 85 ones.

46

Chapter 4. Inverse Design of Cellular Automata

Figure 4.4: This figure displays four correct classification of the major-
ity problem by four different particle based rules. (a) and (c) both have
FU
149,104 ≈ 0.76, (b) has FU

149,104 ≈ 0.75 and (d) has FU
149,104 ≈ 0.73 with

N = 149.

47

Interaction and Evolutionary Algorithms

Figure 4.5: This figure displays the frequency with which rules have a cer-
tain fitness value in the one dimensional experiment. The fitness bins are
0.01 in width and 900 rules are displayed.

Figure 4.6: This figure shows the effect of increasing the width of the CA
(N) from 149 to 299 in the one dimensional experiment. The fitness bins
are 0.01 in width and 900 rules are displayed.

48

Chapter 4. Inverse Design of Cellular Automata

Figure 4.7: This figure shows the average duration (DN,M) of runs for the
one dimensional algorithm. For this algorithm N = 149 and M = 103.

Fn,104 was calculated for different n of the CA. As stated in [29] ‘particle
based’ rules not only perform better than the ‘block expanding’ rules, but
their performance also is less affected by an increase of the width of the CA.
Figure 4.6 shows that the ‘block expanding’ rules shift further to the left
than the small amount of ‘particle based’ rules. This is all consistent with
the experiments conducted by M. Mitchell, J. P. Crutchfield and P. T. Hraber
[29, 30].

The duration of a run is defined as the number of iterations needed in a CA
to reach a ‘all ones’ or an ‘all zeros’ state and is denoted by DN,M where N is
the number of cells in the CA and M is the number of runs used to calculate
the average. If a rule does not reach an ‘all ones’ or an ‘all zeros’ state the
maximum duration is counted instead. D149,103 was calculated for all the
900 rules that were found. Figure 4.7 shows the average duration of these
rules against their fitness (FU

149,103).

Note that the different types of rules can clearly be seen. There is a big
group of ‘always all ones’ and ‘always all zeros’ rules around a fitness of
0.5. These rules don’t really care about the initial state and don’t have to
communicate, that is why they have a very low average duration. Next to
that group the block expanding rules are situated around a fitness of 0.63
with average durations ranging from 50 to 175. The particle based rules
are right next to the large group. This is a small group situated roughly

49

Interaction and Evolutionary Algorithms

around a fitness of 0.74 and has an average duration of about 80. These
results suggest that particle based rules all have roughly the same average
duration time, whereas block expanding rules can have a lot of different
duration times. The bigger complexity of particle based rules might be the
reason for the clustering of duration times of particle based rules.

4.6 Different Parameters in GA

The Genetic Algorithm defined in Section 4.4 has been proven to work in
inversely designing CA for the Majority Problem. This Section will describe
experiments that examine the parameters of this algorithm to find improve-
ments in terms of efficiency, performance and robustness. The knowledge
gathered in this process will help us understand how to use this algorithm
for other experiments.

The algorithm as proposed in Section 4.4 was used to evolve transition rules
for the Majority Problem. Initial parameters for the GA were the same as
introduced in Section 4.4 namely: population size λ = 100, tournament size
q = 10, crossover rate c = 0.9, mutation rate pm = 2

l = 2
128 = 0.015625 and

maximum GA generations D = 100.

Preliminary experiments as well as experiments by Packard et al. [28] and
Mitchell et al. [29, 30] suggest that it is very difficult to evolve good transi-
tion rules with a GA while using a binomial distribution over the number of
ones in the initial states. The solution for this is using a uniform distribu-
tion while evolving the rules. This distribution generates more ‘easy’ initial
states with a large difference between the number of ones and the number
of zeros, thus making it easier to train the desired behavior. The fitness
using initial states with this uniform distribution over the number of ones
is denoted with FU

N,M .

This distribution has a drawback though. Because rules are selected using
a different fitness function than the one used to test them in the end, it
seems possible that the rules will specialize in a behavior that would seem
pretty good for the uniform distribution, but very bad for the binomial dis-
tribution. To counter this effect a “gliding distribution” is introduced. This
distribution is different for every generation of the genetic algorithm. It
“glides” gently from a uniform distribution in generation 0 to a binomial
distribution in generation D. This is achieved by generating ⌊M g

D ⌋ initial
states with a binomial distribution and ⌈M(1− g

D)⌉ initial states with a uni-
form distribution, where g is the current generation. This distribution has
the benefits of the uniform distribution in the beginning of the algorithm

50

Chapter 4. Inverse Design of Cellular Automata

q
FB
149,104 2 3 5 10 20 50

0.0 - 0.5 23 0 1 0 2 3
0.5 - 0.55 37 0 0 0 2 2
0.55 - 0.6 14 6 4 1 2 4
0.6 - 0.65 25 79 69 48 52 47
0.65 - 0.7 1 16 42 50 39 40
0.7 - 0.75 0 0 0 1 3 4
0.75 - 0.8 0 0 0 0 0 0

0.8 - 1.0 0 0 0 0 0 0

Table 4.1: This table shows the fitness distribution using different values
for the tournament size q. Other settings are the same as the initial values
proposed in Section 4.4.

without the drawbacks at the end. This distribution is denoted with FG
N,M,g.

Note that FG
N,M,0 = FU

N,M and FG
N,M,D = FB

N,M .

Different parameter settings were tested on the GA. Experiments with dif-
ferent values for the mutation rate m didn’t show any real improvement
and it was concluded that m = 2

128 = 0.015625 was best. Also changing the
number of generations D did not seem to yield improvements immediately
although in theory a larger D should increase the chance of good results.
Because of the time restrictions and historical compatibility with [29, 30]
we decided to use D = 100.

Exploring different tournament sizes q values however seemed to give very
different results. Experiments with q = {2, 3, 5, 10, 20, 50} were conducted.
Each setting was run a 100 times. Results are shown in Table 4.1. Note
that these results imply that a high selection pressure is needed to gain
good results. Settings q = {2, 3, 5} don’t seem to be very good in generating
rules that exceed the 0.7 barrier, q = 10 is better, but q = {20, 50} generate
both very good results. Because q = 50 seems to produce more ‘bad’ rules
with F < 0.6, so it was decided to use q = 20 in the future.

Different crossover rates also seemed to change the results. Using the new
tournament size q = 20 four different values for c were tried: 0.6, 0.8,
0.9 and 0.95. Table 4.2 shows the results. Note that the best results are
achieved using c = 0.6, but the difference is minimal. This together with
the findings for the different mutation rates m implies that the algorithm is
robust under different mutation settings and might be usable for different
problems without changing these settings.

51

Interaction and Evolutionary Algorithms

c
FB
149,104 0.6 0.8 0.9 0.95

0.0 - 0.5 0 0 2 2
0.5 - 0.55 2 1 2 0
0.55 - 0.6 1 1 2 2
0.6 - 0.65 54 52 52 56
0.65 - 0.7 37 42 39 36
0.7 - 0.75 3 4 3 3
0.75 - 0.8 3 0 0 1

0.8 - 1.0 0 0 0 0

Table 4.2: This table shows the fitness distribution using different values
for the crossover rates c, q = 20 and other settings are the same as the
initial values proposed in Section 4.4.

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 in

di
vi

du
al

s
in

 b
in

fitness bins

Figure 4.8: This figure displays the number of transition rules found for
different fitness values. The CA used is one dimensional and has 149 cells,
a radius r = 3, a maximum duration I = 320 and a “gliding distribution” was
used for the initial states. Setting for the GA: q = 20, c = 0.6, m = 2/128,
D = 100.

52

Chapter 4. Inverse Design of Cellular Automata

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100

fit
ne

ss
 (

us
in

g
gl

id
in

g
di

st
rib

ut
io

n)

generation

Figure 4.9: This figure shows FG
149,100,g for five runs of the algorithm. Set-

tings are all as proposed in Section 4.4 except for q which is set to 20. Note
how the gliding distribution suppresses the fitness and increases the noise.

All these experiments seem to suggest that although there is some perfor-
mance gains from changing a couple of parameters to the algorithm, this
will not result in finding new results with higher fitness values. What it
does do however is show increases in the reliability with which good results
are generated by the GA. For the benefit of the experiments in the remain-
der of the chapter the following conclusions were drawn:

The ‘gliding distribution’ in the initial states of the CA did not show any
real improvement as apposed to the ‘uniform distribution’. For all other
experiments the standard ‘uniform distribution’ will be used.

Changing the tournament size q of the tournament selection had a big im-
pact on the reliability of generating good results. The results where q = 20
seem to outperform all the others, so that is the value used in the rest of the
experiments.

Changing the crossover rate had some impact as well in that the runs where
c = 0.6 seem to outperform all the other runs. Therefore c = 0.6 for the
remaining experiments in this chapter.

53

Interaction and Evolutionary Algorithms

4.7 Changing the Topology

A normal one dimensional CA (as described in Chapter 3) has a very simple
defined neighborhood: “all the cells within a certain radius r of the center
cell”. Although this seems to be the most logical neighborhood, CA can have
many different shapes each with a different behavior.

Every iteration step in a synchronous CA the state of every cell is updated
using the information in the cells of the neighborhood of that cell. That
means the way the information moves (‘travels’) through the CA is defined
by the shape of the neighborhood. Note that because the standard one di-
mensional neighborhood is symmetrical, if information travels from cell ai
to cell aj it could also travel from cell aj to cell ai. The number of itera-
tions it takes for information to travel from cell ai to cell aj can be called the
“distance between ai and aj”. If the shape of the neighborhood is different,
the distance between cells in the CA will be changed too. Not only will this
change the behavior of the CA, but it might also change the possible final
states of the CA. That means that two neighborhood shapes might perform
different on the same problem.

Intuitively, to solve a global problem with local rules information from ev-
ery cell in the CA has to travel to every other cell in the neighborhood to
be combined in a way that suits the problem. Because combining informa-
tion results in new information and the space in a CA is fixed, there will
be information loss. Therefore combining the information as fast as possi-
ble seems to be a good way to counter this information loss and solve the
problem in the best possible way. This then would mean that the distance
between two cells in the CA needs to be minimized so that the information
can be combined faster.

To examine the rate at which information is combined in a CA two metrics
are defined. The ‘maximum distance’ between two cells and the ‘average
distance’ in a CA. Because every cell has the same neighborhood shape every
cell has the same maximum distance to a cell and the same average distance
to all the cells in the CA. Note that these metrics are very dependent on the
shape of the neighborhood and the size and topology of the CA.

Given that s(ai) = {aj1, aj2, ..., ajk} is the set of all cells that are ‘neigh-
bors’ of ai, a ‘path’ can be defined an array of ‘walks’ from one neighbor to
another:

P (ai, aj , w) =
{
{p1, ..., pw}

∣∣∣ p1 = ai, pw = aj , pk+1 ∈ s(pk), ∀k ∈ {1, ..., w−1}
}

54

Chapter 4. Inverse Design of Cellular Automata

Name Physical distance Max. distance Avg. distance
Normal -3 -2 -1 0 1 2 3 25 12.79
Exponents of 2 -4 -2 -1 0 1 2 4 19 9.97
Exponents of 3 -9 -3 -1 0 1 3 9 10 5.48
Exponents of 5 -25 -5 -1 0 1 5 25 6 3.84

Table 4.3: This table shows the physical layout of the four different neigh-
borhoods used in this experiment. The maximum and average distance are
executed on a CA with 149 cells.

Note that in this definition w is the length of all paths in the set of paths
P (a1, aj , w). With that we can now define the ‘distance’ between two cells
d(ai, aj) as the length of the shortest existing path between those cells:

d(ai, aj) = min
{
w
∣∣∣P (ai, aj , w) ̸= ∅

}
− 1

The ‘maximum distance’ dmax in a CA can now be defined as maximum
distance between any two cells in the CA. This measure gives an indication
on how many iterations a CA would have to preform to propagate data from
one cell to all other cells in the CA. Because the neighborhood of each cell in
the CA is identical, the set of distances from each cell to the rest of the CA
is also identical. This means that dmax can be defined as:

dmax = max
{
d(a1, ai)

∣∣∣1 ≤ i ≤ n
}

where n is the size of the CA.

Similarly the ‘average distance’ davg can be defined as the average distance
from one cell to all other cells in the CA.

davg =
1

n

n∑
i=1

d(a1, ai)

An experiment was conducted to compare different neighborhood shapes
in combination with the previously introduced Majority Problem (see Sec-
tion 4.2) and measure what the impact of the different neighborhoods is on
the performance. In order to test the performance of a neighborhood shape
a GA was used to search for a good transition rule that solves the Majority
Problem.

In this experiment four different neighborhoods were tested. The first one
was the standard one dimensional neighborhood including cells 1, 2 and 3

55

Interaction and Evolutionary Algorithms

 0

 50

 100

 150

 200

 0.4 0.5 0.6 0.7 0.8 0.9

du
ra

tio
n

fitness

normal
using exponents of 2
using exponents of 3
using exponents of 5

Figure 4.10: This figure shows all the rules found with the four different
neighborhoods. Note how the fitness goes up and the duration goes down if
the neighborhood is wider. The fitness is calculated using F149,103 .

on both sides of the center cell. The other three were chosen to minimize
the distance between cells in the neighborhood and include the cells with a
physical distance of an integer to the power of 0, 1 and 2. The three integers
chosen for this are 2, 3 and 5 (all prime). Table 4.3 gives an overview of the
layout of the four neighborhoods.

For every neighborhood 100 runs are calculated with the GA as described in
Section 4.4. Unsurprisingly the results of the normal neighborhood matched
that of results in Section 4.5 and are only a little bit better than the results
in [29, 30]. The rest of the results are a lot less trivial though. The neigh-
borhood with “exponent of 2” is performing slightly better than the normal
neighborhood, whereas “exponents of 3” performs a lot better with more
than half of the rules topping 0.7 and about 10% over 0.75. And “exponents
of 5” is even better with all the rules found being above 0.7 and some even
topping 0.8 with the best at 0.813 coming very close to the best rule found on
the Majority Problem. Furthermore the average number of iterations that
a rule needs to classify an initial state gets smaller the higher the exponent
is.

Figure 4.10 shows the best rule from all the runs. Note how the fitness goes
up and the duration goes down if the neighborhood is wider. These results
support the claim that the shape of the neighborhood is very important for
the performance of the CA and that decreasing the distance between cells in

56

Chapter 4. Inverse Design of Cellular Automata

the CA increases the performance and decreases the duration. Both these
characteristics seem to be a direct result from decreasing the distance be-
tween cells in the CA.

4.8 Multi Dimensional CA

Inspired by the finding that the topology of the neighborhood in a CA has
a great impact on the performance of that CA in the Majority Problem, an
experiment was conducted to test the effect of dimensionality on the results.
Both two dimensional and three dimensional CA’s were used to evolve tran-
sition rules on the Majority Problem. This Section first gives an introduc-
tion into the differences between one dimensional and multi dimensional
CA and continues with some results on experiments for inversely designing
CA for these topologies.

This chapter will not give an extensive introduction to multidimensional
CA, for that please read Chapter 3. The most simple two dimensional CA
can be viewed as a grid of positions a(i, j) (i ∈ {1, ..., w}, j ∈ {1, ..., h}) instead
of a row in the one dimensional case. The borders of this CA are connected
in such a way that every first cell in a row a(1, j) is connected to the last
cell a(w, j) and every first cell in a column a(i, 1) is connected the last cell
in that column a(i, h). This topology is also known as a ’torus’ or ’donut’
shape.

There are two neighborhoods that are often used in this two dimensional
space, namely the von Neumann neighborhood and the Moore neighborhood
(as introduced in Section 3, both named after their inventors.

These neighborhoods can be extended to have a larger radius and more di-
mensions if defined in terms of distance: Every cell in a neighborhood has a
path to the center cell that is equal or less than r steps to ‘adjacent’ cells. In
a CA with d dimensions and their sizes e1, e2, ..., ed, cells a(i1, i2, ..., id) and
b(j1, j2, ..., jd) are ‘adjacent’ in a von Neumann neighborhood if

d∑
k=1

min(|ik − jk|, ek − |ik − jk|) = 1

In a Moore neighborhood cells are ‘adjacent’ if

min(|ik − jk|, ek − |ik − jk|) ≤ 1 for 1 ≤ k ≤ d and a ̸= b

57

Interaction and Evolutionary Algorithms

Note that a one dimensional von Neumann neighborhood is equal to a one
dimensional Moore neighborhood.

Transition rules are defined in the same way as in the one dimensional CA
where every bit in the index of the bitstring represents one input cell in the
neighborhood. The cells in the neighborhood are numbered from 1 to n in an
iterative way over the d dimensions. This means cells are numbered from
left to right (dimension 1), then top to bottom (dimension 2), then front to
back (dimension 3) and then from start to finish in the fourth dimension
and so on. Note that this means that the center cell independent of the
dimensionality of the CA is always numbered n+1

2 .

The number of cells in these neighborhoods grows very fast if r or d is in-
creased. Table 3.1 in Chapter 3 clearly shows that the Moore neighborhood
grows a lot faster than the von Neumann neighborhood. In this chapter we
will use a few different combinations and explore their differences.

Rules are defined with the same rows of bits (R) as defined in the one di-
mensional case. For a von Neumann neighborhood a rule can be defined
with 25 = 32 bits and a rule for a Moore neighborhood needs 29 = 512 bits.
This makes the Moore rule more powerful, for it has a bigger search space.
Yet, this also means that searching in that space might take more time and
finding anything might be a lot more difficult. In [24] the authors discour-
age the use of the Moore neighborhood, yet in Section 4.10 and Section 4.12
results clearly show successes using the Moore neighborhood, regardless of
the larger search space.

In a one dimensional CA the leftmost cell is connected to the rightmost cell.
In the two dimensional CA this is mimicked by linking every cell on the left
edge of the CA to the cell on the right edge of the CA in the same row and
link every cell at the top edge of the CA to the cell on the bottom edge in the
same column.

Preliminary experiments showed that it took much more time to evolve
rules for the Moore neighborhood than for the von Neumann neighborhood.
The tests that were done with the Moore neighborhood also did not result
in any encouraging results, this being in line with [24]. That is why the
von Neumann neighborhood was chosen for this experiment. Because this
neighborhood consists of five cells, the search space for CA rules is a lot
smaller than in the one dimensional experiment where 7 cells were used.
Instead of the 27 = 128 bits in the rule, R now consists of 25 = 32 bits, thus
drastically decreasing the search space from 2128 to 232 possible rules, which
is now 2(128−32) = 296 times smaller!

Using a smaller search space makes that the transition rules are a lot less

58

Chapter 4. Inverse Design of Cellular Automata

0

5

10

15

20

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 r

ul
es

 in
 fi

tn
es

s
bi

n

Fitness of the rules (using bins with a width of 0.01)

one dimensional CA
two dimensional CA

Figure 4.11: This figure displays the number of rules that have a certain
fitness value in the two dimensional experiment and compares this to the
one dimensional experiment. The fitness bins are 0.01 in width and for both
algorithms F169,103 is calculated for 300 rules.

complex. This has pros and cons. On the one hand this means that it can
be expected that the global behavior of the rules in the CA is a lot sim-
pler, meaning less pattern states and less different communication possibil-
ities. On the other side this also means that the GA will search in a smaller
search space and will probably have a higher chance of getting close to an
optimum.

For this experiment we used a CA with width = 13 and height = 13. This
means that these CA have 13 × 13 = 169 cells (N) and are 169 − 149 = 20
cells larger than the one dimensional CA used before.

Using a larger CA to test the rules also makes the task harder for a CA
to get to an ‘all ones’ or ‘all zeros’ state. If the CA can not get into these
states in time, the classification is counted as a failure. But in order to get
as close as possible to a fair comparison the two dimensional CA needs to
be a square and at least the same size as the one dimensional CA, which
makes 13× 13 the closest option.

In theory if ‘information’ were to ‘travel’ through the CA, it can do this
only with a maximum step size equal to the radius of the neighborhood.
Because the borders are linked, ‘information’ could travel in one direction
and end up at the same position as it started from after i iterations where
i = min(width,height)/r. In the two dimensional experiment this sums up

59

Interaction and Evolutionary Algorithms

Figure 4.12: This figure shows a correct classification of the Majority Prob-
lem by a two dimensional CA with both width and height equal to 13 and
λ = 84/169. The transition rule was one of the best tested in the experiment
and scored F169,103 = 0.715.

to 13/1 = 13 iterations compared to the 149/3 = 49.7 for a comparable one
dimensional CA. This is a good indication that the maximum number of it-
erations I does not need to be as high as it was for the one dimensional
experiment and that will speed up the algorithm, therefore I was set to
50.

This algorithm was run 300 times and each winning rule was tested by cal-
culating FN,M using F169,103 . These results are plotted against results of our
own one dimensional experiments in Figure 4.11. The striking difference
between this distribution of fitness and the distribution of fitness in the one
dimensional experiment is the absence of the peak around FN,M ≈ 0.5 in
the two dimensional results. In the new results almost all the evolved rules
have a fitness above 0.58. The average fitness is approximately 0.66 and the
best rules have a fitness above 0.7. That is all very surprising taking into
account that the experiment used the smaller von Neumann neighborhood
and a bigger CA.

The Majority Problem is a good example of a problem that forces cells in
a CA to ‘communicate’ with another. The communication ‘particles’ can
be seen in the one dimensional experiment, but are not easily spotted in
the two dimensional experiment. That does not mean there are no ‘parti-
cles’ traveling in the two dimensional CA, because it might be very hard to
identify these particles. In a two dimensional CA ‘particles’ are no longer
restricted to traveling in only one direction, but can travel to multiple di-
rections at the same time. Traveling particles in two dimensional CA can
therefore look like expanding areas with a distinct border. But there might
be multiple particles traveling at the same time, meeting each other and
thereby creating new particles. This is why communication between cells in
a two dimensional CA is not very visible in the Majority Problem, although
results show that this communication is present.

60

Chapter 4. Inverse Design of Cellular Automata

Time

Position

0

199
0 148

Time

Position

0

199
0 148

(a) (b)

Figure 4.13: This figure shows two one dimensional CA correctly classify-
ing the Majority Problem using transition rules evolved with the GA. Note
the triangular structure in the space time plot depicting the moving and
combining ‘particles’ in the two different transition rules.

4.9 Looking for Interaction

Up until now the only proof that interaction is evolved with the use of a
Genetic Algorithm is the resulting behavior of the CA on the Majority Prob-
lem and because the Majority Problem is considered to need some form of
interaction between cells, the evolution of that interaction seems implied,
but not proved. This Section takes a closer look at the resulting behavior
inside the CA and tries to find where this interaction takes place.

Figure 4.13 shows two runs of two different transition rules in a one di-
mensional CA. Both use a neighborhood with r = 3 and are synchronous.
Although they seem to have slightly different ways to solve the problem,
the general principle seems to be based on making different patterns in the
1D space and then propagating these patterns to the left and right through
time at different speeds. Some patterns dissolve over time and when two
patterns meet they seem to generate new patterns.

These patterns could be viewed as ‘states’, because when a cell is part of
a certain pattern it stays part of that pattern until the edge of the pattern
passes of the cell. Note that this does not mean that the cell stays the same
value while being part of a pattern. Some patterns shift inside of their
own area. The edges of the patterns seem to have many different shapes
and move at different speeds through the CA. These speeds then govern the

61

Interaction and Evolutionary Algorithms

timing for the different edges to meet and generate new patterns. The level
of ‘blackness’ of a certain pattern seems to say something about the message
it is trying to propagate to the rest of the CA. The ‘blacker’ the pattern, the
more the pattern seems to ‘convince’ the rest of the CA that it should also
become black. This approach seems very close to the approaches used in the
best known rules for solving the Majority Problem [1, 16].

So where does the interaction take place in these CA? Of course every cell
in the CA is interacting with every cell in its neighborhood and reacts to
that interaction, but that is basically the definition of the CA. Not every
interaction between a cell and its neighborhood contains the same amount
of information though. The interactions inside these CA when trying to
solve the Majority Problem can be divided into two categories:

• ‘Static interactions’: interactions between cells to maintain a pattern
(or state) in the CA.

• ‘Moving interactions’: interactions between cells to propagate a pat-
tern (or state) change through the CA.

Static interaction are basically there to maintain a certain state inside a
cell. This can of course be very complex especially if there are many differ-
ent states used by the approach, while at the same time there can only be
two states in a cell. These static interactions could be viewed as ‘forming
a base’ to use for the more complicated moving interactions that solve the
problem. In a way the moving interactions are like ‘messages’ or ‘particles’
that move through the CA and spread the word to individual cells. Inter-
action is visible where two particles collide and form other particles. These
collisions of particles define the behavior of the CA and can be viewed as the
‘evolved intelligence’ in these experiments.

Going from one dimensional to two dimensional CA changes the way states
and interactions are used to solve the Majority Problem. Instead of only
two directions there are now at least four directions information can travel
through the CA. That said, the interactions between cells are surprisingly
similar. Figure 4.14 shows a time plot of a two dimensional 50 × 50 CA
correctly classifying the Majority Problem on an initial state with more
0’s than 1’s. The figure shows the plots of every fifth iteration. (on t =
{1, 6, 11, ..., 71}) Note that the rule used in this run was evolved using much
smaller CA (13 × 13), showing that the approach is robust for different CA
sizes.

The static interactions are immediately apparent in the form of patterns
generated in the shape of areas in the CA. Because the von Neumann neigh-
borhood only has 5 cells, the number of different patterns that can be gen-

62

Chapter 4. Inverse Design of Cellular Automata

Figure 4.14: This figure shows the time plot of a 50 × 50 CA using the von
Neumann neighborhood correctly classifying the Majority Problem with a
transition rule that was evolved using a 13× 13 CA showing the robustness
of the approach. The plots were generated using a 5 iteration interval (plots
at t = {1, 6, 11, ..., 76}). Right after the last plot in this figure the CA came
in an ‘all zero state’.

63

Interaction and Evolutionary Algorithms

erated is less than in the one dimensional r = 3 neighborhood, but the addi-
tional directions that the information can travel seems to make up for that.
The moving interactions in the two dimensional CA are no longer ‘particles’
in the form of a few cells, but rather boundaries of areas of a certain pattern.
These boundaries seem to move and cascade into each other, sometimes cre-
ating new patterned areas in the process. Some try to expand, some collapse
on top of themselves, but all seem to interact in a hard to understand, de-
ceiving chaos solving this seemingly trivial Majority Problem.

The behavior shown in Figure 4.14 is defined by a transition rule with 32
bits, which can be considered a very simple automaton. The problem it is
trying to solve also seems (maybe deceptively) simple and the workings of
the CA itself are close to trivial and well understood, but the actual interac-
tions and ‘the way it all works together’ is a lot harder to fully understand.
The interactions are there, they are visible, they work and have emerged
solely from the use of an evolutionary process, but they are so complex that
it is hard to fully identify what kind of intelligence has actually emerged
from the EA.

4.10 AND / XOR problem

In order to study the evolution of interaction more closely, a new experiment
was conducted. Instead of trying to show the power of the evolutionary
approach by defining a hard problem, this experiment was instead directed
towards visualizing an evolved interaction by defining a very basic problem
while at the same time making sure interaction was mandatory to solve the
problem.

A genetic algorithm was used to evolve rules for two dimensional CA to
make those CA behave like the binary functions AND and XOR. These op-
erators both have two input values and one output value which can only be
determined if both input values are known. This is unlike the OR operator
for example where the output value is always one if one or more of the input
values is one, so if only one input value is known to be one then the value of
the other input value is not needed. This distinction may look trivial, but it
is important in order to force the CA to combine the two values and thereby
communicate and that is exactly what this experiment aims to do.

The AND Problem

To show the communications in a CA the information that needs to be com-
bined must be initialized as far apart as possible. The following problem
definition takes this into account:

64

Chapter 4. Inverse Design of Cellular Automata

Figure 4.15: This figure displays the iterations of a CA solving the AND
problem. Every row shows the iteration of the rule using a different initial
state. Note that in the first column (t = 0) the initial states are clearly
visible and in the last column the coloring matches the output of an AND
port.

Given a square CA with two ‘input cells’, one top left and one bottom right:
find a rule that iterates the CA so that after I iterations the CA is in an ‘all
one’ state if both the ‘input cells’ were one in the initial state and in an ‘all
zero’ state otherwise.

Small two dimensional CA were used with a width and a height of 5 cells
and the maximum number of iterations I was set to 10. The borders of the
CA were unconnected to allow a larger virtual distance between the two cor-
ner cells. This means that the leftmost cell in a row was not connected to
the rightmost cell in the same row and the topmost cell was not connected
to the bottommost cell (in contrast to the connections made in the Majority
Problem experiment). Instead, every cell on the border of the CA was con-
nected to so called ‘zero-cells’. These ‘zero-cells’ stay zero whatever happens
and are never recalculated.

When using two input cells, there are four different initial states. These
states are written as S(v1,v2) where v1 and v2 are the two binary input values.
All cells other than the two input cells are initialized with zero.

The fitness of a rule is defined as the total number of cells that have the
correct values after I iterations. The number of ones in iteration t is written
as Ot

(v1,v2)
. The total fitness of the AND problem is defined as f = (N −

OI
(0,0))+(N −OI

(0,1))+(N −OI
(1,0))+OI

(1,1). This makes the maximum fitness
equal to 4× 5× 5 = 100.

In this experiment a slightly different variation of the same Genetic Al-
gorithm described in Section 4.4 was used. It uses Truncation Selection
instead of Tournament Selection by first sorting the rules according to their

65

Interaction and Evolutionary Algorithms

Table 4.4: Fitness values found in the AND problem.

Number of runs
Neumann Moore

Fitness with crossover without crossover with crossover without crossover
100 0 0 31 21

98-99 0 0 41 54
95-97 0 0 14 25
90-94 77 93 14 0
80-89 23 7 0 0
70-79 0 0 0 0
< 70 0 0 0 0

fitness and then selecting the top 10% of the rules as ‘elite’ rules, copy-
ing them without changes to the next generation. Every ‘elite’ rule is then
copied nine times or is used in single-point crossover to make the other 90%
of the population. Both copying and cross-over were tested and compared.
The newly generated rules are mutated and also used in the next genera-
tion. (When using cross-over, 90% of the rules were effected: c = 0.9) The
algorithm stops if it finds a rule with f = 100 (the highest possible fitness)
or it reaches 1000 generations (D = 1000).

Like in previous experiments Probabilistic Bit Flip Mutation was used. This
is done by flipping every bit in the rule with a probability m. In preliminary
experiments a number of different values of m were tested. Setting m to a
rather high value of 0.05 turned out to be the most effective choice, which
seems to confirm our insight (and is also in line with Bäck [5]) that with in-
creasing selection pressure higher mutation rates than the usual 1

l (l being
the length of the binary string) are performing better.

The algorithm was run 100 runs with and without single-point crossover
and using both the von Neumann and the Moore neighborhoods. The results
are shown in Table 4.4.

Although rules evolved with the von Neumann neighborhood are not able to
solve the problem perfectly, it is already surprising that it finds rules which
work for 93%, for such a rule only misplaces 7 cells in the final state. All
the other 93 cells have the right value. This suggests that the information
was combined, but the rule could not fill or empty the whole square using
the same logic.

The Moore neighborhood is clearly more powerful and was able to solve the
problem perfectly. The rules that are able to do this clearly show communi-
cational behavior in the form of ‘traveling’ information and processing this
information at points where information ‘particles’ meet.

66

Chapter 4. Inverse Design of Cellular Automata

Figure 4.16: This figure displays the iterations of a CA solving the XOR
problem. Every row shows the iteration of the rule using a different initial
state. Note that in the first column (t = 0) the initial states are clearly
visible and in the last column the coloring matches the output of an XOR
port.

It is also surprising that using crossover in combination with a Neumann
neighborhood does not outperform the same algorithm without the crossover.
This may be due to the order of the bits in the transition rule and their
meaning. This is worth exploring in future work. Maybe using other forms
of crossover might give better results in combination with multi dimen-
sional CA.

The XOR Problem

The XOR Problem is not much different from the AND problem. The same
genetic algorithm and the same CA setup was used. The only difference is
the fitness function. The XOR problem is defined as follows:

Given a square CA with two ‘input cells’, one top left and one bottom right:
find a rule that iterates the CA so that after I iterations the CA is in an ‘all
one’ state if only one of the ‘input cells’ was one in the initial state and in an
‘all zero’ state otherwise.

This means that the total fitness of the XOR problem is defined as f =
(N −OI

(0,0)) +OI
(0,1) +OI

(1,0) + (N −OI
(1,1)).

The algorithm was run with pm = 0.05 for a maximum of 1000 generations
for 100 runs with both Neumann and Moore neighborhoods with and with-
out single point crossover. The results are shown in Table 4.5.

These results support earlier findings in suggesting that single-point cross-
over does not really improve the performance when used in a two dimen-
sional CA. The results show that the algorithm using only mutation has
found ways to solve this rather difficult communicational problem. The
von Neumann neighborhood seems unable to perform for 100%, yet it came

67

Interaction and Evolutionary Algorithms

Table 4.5: Fitness values found in the XOR problem.

Number of runs
Neumann Moore

Fitness with crossover without crossover with crossover without crossover
100 0 0 0 1

98-99 0 0 4 4
95-97 0 0 7 6
90-94 2 1 19 21
80-89 76 96 69 66
70-79 18 3 1 2
< 70 4 0 0 0

rather close with one rule classifying the problem for 92%. The algorithm
found one transition rule using the Moore neighborhood that is able to solve
the problem for the full 100%. This rule depicted in Figure 4.16 shows clear
signs of ‘traveling particles’ and is another example of how a local rule can
trigger global behavior using interaction.

Figures 4.15 and 4.16 clearly show interaction in the form of ‘particles’ mov-
ing from the two initial corners to the center where they combine to form
the behavior of the two logical ports. It seems that the hardest part of the
problem is not to combine the data in the beginning, but to propagate the
result reliably throughout the CA. Figure 4.16 shows very clearly how at
t = 2 the XOR problem is already solved in the center cell of the CA while
all the other cells are in a zero state. In the AND problem that decision is a
little bit less obvious, but the way the particles travel is very visible in (0, 1)
and (1, 0). In both cases the propagation of the particle does not meet an-
other particle and just disappears when the other side of the CA is reached.
Only in the (1, 1) row there is an interaction that results in a formation that
grows and fills the entire CA.

Both the AND and XOR experiments show very clearly evolution of interac-
tion on a very small scale. The way these experiments are able to show the
actual pieces of information travel through a CA and interact is new and a
lot clearer than can ever be observed in the Majority Problem.

Evolving interaction with nothing more than a problem definition that needs
global information proves once more that evolution is very capable of in-
versely designing complex protocols and languages without any input from
‘outside’. The evolution of language and communication in nature seems to
be no more (and no less) miraculous than the diversity and complexity of
its species. It seems reasonable to think they are part of one and the same
evolutionary process.

68

Chapter 4. Inverse Design of Cellular Automata

4.11 Checkerboard Problem

To verify that the approach of inverse engineering Cellular Automata using
a Genetic Algorithm works for many different problems, another experi-
ment was set up. The aim of this experiment was to evolve a transition rule
that lets a CA generate a checkerboard pattern. The idea being that cells
inside the CA only know the states their neighbors are in and will have to
decide which part of the checkerboard pattern they need to be based only on
that limited information.

The nice thing about this problem is that it is independent of the number of
dimension of the CA. The checkerboard pattern can be defined as “a pattern
in which every direct neighbor of every cell has the opposite value of that cell.”
This means that fixing the value of one cell in the CA implies the values of
every other cell in the CA. Which means that there are only two opposite
checkerboard patterns possible, independent of dimensionality or size. The
experiment aims to evolve a behavior in the cells that can successfully ‘ne-
gotiate and come to an agreement’ on which of the two patterns needs to be
displayed.

The checkerboard problem can be defined as follows:

Find a transition rule that, given an initial state of a CA, iterates this CA to
a stable ‘checkerboard pattern’ within I iterations.

In a one dimensional CA a checkerboard pattern could look like:

{0, 1, 0, 1, ..., 1, 0, 1}

Note that the first cell and the last cell are linked and should therefore also
have different values. The problem is more intuitive in a two dimensional
CA where cells are not only connected horizontally, but also vertically and
the desired state therefore resembles a checkerboard. The problem can even
be imagined in three dimensional CA where the end result should resemble
a stack of checkerboards where every odd board in the stack is turned 90
degrees. In theory this problem is extendable to higher dimensional spaces,
we will test our approach with d = {1, 2, 3}.

Just like in the Majority Problem the Checkerboard Problem used multiple
initial states to determine the fitness of a transition rule. The fitness of a
transition rule is measured by the relative number of directly adjacent cells
in the end state that have an inverted value.

The same GA was used as in the Majority Problem, even the parameters
have the same values (that is: optimal values as used in the last experi-
ments). That means: q = 20, c = 0.6, pm = 2

l and D = 100. Note that pm

69

Interaction and Evolutionary Algorithms

Time

Position

0

199
0 148

Time

Position

0

199
0 148

(a) (b)

Figure 4.17: This figure shows two one dimensional CA iteration for the
checkerboard problem. Note that (a) does not result in a perfect pattern,
whereas (b) does.

is different for two dimensional CA, because S is a lot smaller. The number
of cells in a dimension of the CA needs to be even, else a perfect checker-
board pattern will be impossible. CA with 150, 122 and 63 cells were used for
d = 1, 2 and 3 respectively.

The algorithm was run 100 times for all three topologies also used in the
Majority Problem: the one dimensional CA with r = 3, the two dimensional
CA with a von Neumann neighborhood with r = 1 (5 cells) and the three
dimensional CA also with a von Neumann neighborhood with r = 1 (7 cells).
For all three runs the same parameters were used as in the last experiments
on the Majority Problem. Note that m has different values for different
topologies, because this variable is dependent on the number of cells in a
neighborhood S and was always set to 2

2S
. This means that for the one and

three dimensional CA m = 2
27 = 2

128 = 0.015625 and for the two dimensional
CA m = 2

25 = 2
32 = 0.625.

In the one dimensional experiment all the runs resulted in transition rules
with FB

150,103 > 0.95 and the best rule has a fitness of 0.999. The two di-
mensional experiment had similar results with about 80% of the runs with
FB
122,103 > 0.95 and the best rule with a fitness FB

122,103 = 0.994. Note that
these results are achieved with a lot smaller neighborhood. In the three di-
mensional experiment however all the runs (except two) evolved rules with
fitness values FB

63,103 > 0.996. Some of the rules even registered a perfect
fitness for all the 104 random initial states.

70

Chapter 4. Inverse Design of Cellular Automata

Figure 4.18: This figure shows a correct two dimensional CA iteration for
the checkerboard problem. It starts top left with a random initialization of
a 10 × 10 CA, iterates from left to right, top to bottom and ends up with a
perfect checkerboard pattern in the end state.

The Genetic Algorithm did not seem to have any problems evolving the
Checkerboard Pattern in a CA. The plot in Figure 4.19 shows complex in-
teractions that evolved to solve this problem. It shows how a 50 × 50 CA
was randomly initialized and run with a von Neumann transition rule that
was evolved on a 13×13 CA, supporting earlier findings (in Section 4.9) that
imply that the rules generated with this approach are robust with respect
to the size of the CA. It shows how initially the rule generates local checker-
board patterns that expand and then touch to form the two opposing ideas
on how to build a pattern. The boundaries of these patterns are then mov-
ing and merging to become smaller and smaller and in the end disappear to
leave a perfect checker board pattern.

The static particles are very clear in this one: “If I already have a checker-
board pattern in my neighborhood, do nothing.” The moving particles are
then of course the moving boundaries that are like ‘rubber bands’ collaps-
ing on themselfs. Looking at different rules reveals that there are different
ways for these rubber bands to collapse, one more efficient than the other,
but all of them seem to work by keeping one end still and moving the corners
of the other end in a certain direction. The interactions to make this happen
are maybe a little bit more apparent here than in the Majority Problem, but
a lot less apparent than in the AND and XOR Problems.

Yet again it is shown how our approach is able to evolve a complex local
interaction model to solve a global problem using nothing but the global
problem definition for an Evolutionary Algorithm.

71

Interaction and Evolutionary Algorithms

Figure 4.19: This figure shows the time plot of a 50 × 50 CA using the von
Neumann neighborhood generating a Checkerboard Pattern with a transi-
tion rule that was evolved using a 13× 13 CA showing again the robustness
of the approach. The plots were generated using a 5 iteration interval (plots
at t = {1, 6, 11, ..., 101}). Right after the last plot in this figure the CA came
in an ‘all zero state’.

72

Chapter 4. Inverse Design of Cellular Automata

Figure 4.20: The bitmaps used in the pattern generation experiment.

4.12 Bitmap Problem

The problems defined in this chapter so far have all had one thing in com-
mon: they all had a very simple global problem definition. And although
the problems were all very hard to solve from the local point of view of a
single cell, it might be argued that the simplicity of the global problem im-
pacted the performance of our approach. In order to find the limitations of
using a GA to inverse design transition rules for a CA a new experiment
was conducted.

The aim of this experiment is to evolve rules for two dimensional CA that
generate patterns (or bitmaps).

The Bitmap Problem is defined as follows: Given an initial state and a spe-
cific desired end state: find a rule that iterates from the initial state to the de-
sired state in less than I iterations. Note that this does not require the num-
ber of iterations between the initial and the desired state to be fixed.

The CA used in this experiment is not very different from the one used in the
AND/XOR experiment (Section 4.10). In preliminary experiments we tried
different sizes of CA, but decided to concentrate on small square bitmaps
with a width and a height of 5 cells (as done in Section 4.10). To make the
problem harder and to stay in line with earlier experiments the CA have
unconnected borders like in Section 4.10. The von Neumann neighborhood
was chosen instead of the Moore neighborhood and therefore sn consist of 5
cells (r = 1) and a rule can be described with 25 = 32 bits. The searchspace
therefore is 232 = 4, 294, 967, 296.

After testing different initial states, the ‘single seed’ state was chosen and
defined as the state in which all the positions in the CA are zero except
the position (⌊width/2⌋, ⌊height/2⌋) which is one. For the GA we used the
same algorithm as we used in the AND and XOR experiments. Because this
experiment uses a Neumann neighborhood and the AND and XOR experi-
ments suggested that the combination between the von Neumann neighbor-
hood and single point crossover was not a good idea, this experiment used
only mutation. Like in Section 4.10 mutation is performed by flipping every
bit in the rule with a probability pm. After some preliminary experiments a

73

Interaction and Evolutionary Algorithms

Table 4.6: Number of successful rules found per bitmap.

Successful rules
Bitmap (out of a 100)
‘square’ 80

‘hourglass’ 77
‘heart’ 35
‘smiley’ 7
‘letter’ 9

mutation rate of 2/l = 2/32 seemed too high and the mutation rate was set
to pm = 1/32 = 0.03125.

In trying to be as diverse as possible five totally different bitmaps were
chosen, they are shown in Figure 4.20. The algorithm was run 100 times
for every bitmap for a maximum of 5000 generations. The algorithm was
able to find a rule for all the bitmaps, but some bitmaps seemed a bit more
difficult than others. Table 4.6 shows the number of successful rules for
every bitmap. Note that symmetrical bitmaps seem to be easier to generate
then asymmetric ones.

Although this experiment is fairly simple, it does show that a GA can be
used to evolve transition rules in two dimensional CA that are able to gen-
erate patterns even with a simple von Neumann neighborhood. Ongoing
experiments with bigger CA suggest that they don’t differ much from these
small ones, although the restrictions on what can be generated from a single-
seed state using only a von Neumann neighborhood seem to be bigger when
size of the CA increases.

4.13 Conclusion

This chapter shows how Genetic Algorithms can be used to evolve transition
rules for Cellular Automata. It shows how these Cellular Automata clearly
exhibit interaction and how this implies that the interaction is evolved us-
ing nothing but the problem definition. A generic approach is introduced to
inversely design local rules with the aim to find global behavior. This ap-
proach is shown to be robust in terms of algorithm parameters and flexible
in terms of Cellular Automata topology.

The approach was applied on the Majority Problem in different topologies.
Different offsets between neighbors in a one dimensional neighborhood were
tested. Results show how spreading out the neighborhood in an exponential
way seems to improve the performance of the algorithm. Two new distance

74

Chapter 4. Inverse Design of Cellular Automata

Figure 4.21: This figure shows some iteration paths of successful transition
rules.

metrics were introduced: ‘maximum distance’ and ‘average distance’. Re-
sults suggest that these metric between cells can be used to understand the
performance differences between the experiments.

Different dimension CA were tested using the Majority Problem. The re-
sults show three dimensional CA outperforming two dimensional and two
dimensional outperforming one dimensional CA. Even though the CA size
had to be increased to run the Majority Problem on a multi dimensional
CA and the transition rules in the two dimensional experiment were 1

4 the
length of that of the one dimensional version, the problem seemed to be
easier to solve for multi dimensional CA.

The interactions within the CA were investigated and although it is clear
that interactions are there it is hard to visualize these interactions in the
Majority Problem especially in the multi dimensional CA. That is why the
more constrained AND and XOR problems were introduced. Experiments
were conducted to evolve transition rules that mimic the behavior of logical
AND and XOR ports. Results show how the use of both the von Neumann
and the Moore neighborhood successfully resulted in rules that solved these
problems. The Moore neighborhood outperformed the von Neumann neigh-
borhood and was able to generate a few rules that solved the problem of fill-
ing the CA with the right answer for a full 100%. The resulting time plots
show a very clear ‘particle’ movement and interaction. Proving that very
distinct interaction on a local level was evolved using the only the global
desired behavior.

75

Interaction and Evolutionary Algorithms

Solving the Checkerboard Problem was another example of the flexibility of
the approach and resulted in some nice examples of evolved interactions on
the one and two dimensional plots. Most successful transition rules seem to
use a ‘rubber band particle’ to decide which checkerboard pattern is going
to be used globally. This rubber band then tries to shrink and reduce the
area inside of it until it evaporates. Rules generated using a small 13 × 13
CA also work on a larger 50× 50 CA proving that the approach is capable of
evolving generic rules invariant in the size of the CA.

The Bitmap Problem tested the limits of the approach. Transition rules
to generate multiple different bitmaps were evolved. Symmetric bitmaps
seem easier to evolve than non symmetrical ones, but for all 5 × 5 bitmaps
successful rules were found. This shows that the approach can solve many
different problems and mimic many different behaviors.

Not only has this chapter researched a generic way of inversely designing
transition rules for Cellular Automata using a Genetic Algorithm, it has
also shed some light on the Evolution of Interaction. Not only showing that
it is possible, but also how it is possible and which criteria have an effect on
the performance of the evolution. These findings might be valuable to re-
search into the evolution of language in humans and animals, while at the
same time having applications in the field of Grid Computing, Image Pro-
cessing, various Biology research areas and of course in the fields of Cellular
Automata and Evolutionary Algorithms itself.

76

Chapter 5
Self-adaptive Mutation Rates
in Genetic Algorithm

Self-adaptation of mutation rates has been used with great success in Evo-
lutionary Strategies in both research and real world applications. For Ge-
netic Algorithms however, it is not (yet) the mutation rate adaptation of
choice. This chapter describes how a self-adaptive mutation rate was used
in a Genetic Algorithms to inversely design behavioral rules for a Cellu-
lar Automaton. The unique characteristics of this search space gave rise
to some interesting convergence behavior that might have implications for
using self-adaptive mutation rates in other Genetic Algorithm applications
and might clarify why self-adaptation in Genetic Algorithms is less success-
ful than in Evolutionary Strategies.

5.1 Introduction

Self-adaptation of mutation rates has been used with great success in Evolu-
tionary Strategies in both research and real world applications. For Genetic
Algorithms however it is not the mutation rate adaptation of choice. There
are a few studies ([4, 3, 12] among others) on how self-adaptation could be
employed in Genetic Algorithms, yet there still seems to be a lot we can
learn about this combination.

This chapter investigates the impact of self adaptation on the inverse de-

77

Interaction and Evolutionary Algorithms

sign of Cellular Automata rules. It described a comparison of fixed muta-
tion rates with self-adaptation and tries to see if self-adaptation of mutation
rates in GA can be used in a noisy fitness function like the Majority Prob-
lem. This problem in particular, and inverse design of behavior rules in
general, are known to be very noisy and seem to have a very “rugged” fit-
ness landscape. Both these characteristics make the Majority Problem a
prime candidate to test the limits of applying self adaptation of mutation
rates in GA, while at the same time exploring the use of self adaptation on
inverse design of CA for the first time.

5.2 Majority Problem

Section 4.2 gives an extensive introduction into the Majority Problem, so
this chapter will not attempt the same. Instead this section give a brief
overview of the problem.

The Majority Problem can be defined as follows:

Given a set A = {a1, ..., an} with n odd and am ∈ {0, 1} for all 1 ≤ m ≤ n,
answer the question: ‘Are there more ones than zeros in A?’.

Given that the relative number of ones in C0 is written as η, in a simple
binary CA the Majority Problem can be defined as:

Find a transition rule that, given an initial state of a CA with N odd and a
finite number of iterations to run (I), will result in an ‘all zero’ state if η < 0.5
and an ‘all one’ state otherwise. The ‘all zero’ state being the state in which
every cell in the CA is zero and the ‘all one’ state being the state in which
every cell is one.

Evaluating a transition rule for this problem is done by iterating M ran-
domly generated initial states and calculating the relative number of correct
classification. The fitness of a transition rule is denoted with FN,M where
N is the width of the CA. The fitness can be calculated with different dis-
tributions over the number of ones in the initial state, but the default is a
binomial distribution (denoted with FB

N,M) where every cell in the CA has a
50% chance of being initiated with a one for every initial state.

A uniform distribution over the number of ones is used while evolving the
rules in the GA. This distribution generates more ‘easy’ initial states with
a large difference between the number of ones and the number of zeros,
thus making it easier to train the desired behavior. The fitness using initial
states with this uniform distribution over the number of ones is denoted

78

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

with FU
N,M . Experiments described in this chapter all use this distribu-

tion.

5.3 Genetic Algorithm

The genetic algorithm that is used in this article is based on algorithms
used in Mitchell et al. [29, 30] and Breukelaar et al. [11, 7].

The genetic algorithm for all experiments is a (10, 100) strategy where 100
stands for the number of individuals in the pool and 10 for the number of
parents that is selected from that pool. Parents are selected by choosing
the ten fittest individuals from the population. Every parent is then copied
ten times every generation (making 100 children) and all individuals are
mutated using a mutation operator.

Unlike previous experiments, no crossover was used in these experiments.
Not only have earlier results by Breukelaar et al. [11, 7] (see Chapter 4)
shown that the impact of crossover on the Majority Problem is minimal, but
investigating the effect of self-adaptation is also a lot easier without taking
into account crossover.

The algorithm uses a comma strategy. This is also different from previous
experiments, which used a plus strategy. Preliminary experiments seem to
suggest that self-adaptation of mutation rates in GA do not work very well
in a plus strategy. This probably has to do with the success rate in the al-
gorithm and the fact that the mutation rate only changes if the individual
is mutated. In a plus (or elitist) strategy the parents are not mutated and
copied to the next generation without any changes. If the success rate in
the algorithm goes down, these elite individuals will drown out any form of
diversity while at the same time keeping the mutation rate identical and
probably too high. Using a plus strategy with self adaptation is probably
possible if this effect can be countered somehow and this is worth investigat-
ing in the future, but by choosing a comma strategy this problem is evaded.
Every surviving individual is mutated every generation, which results in
a dynamic mutation rate that evolves at the same time as the individuals
object values, thus forcing the algorithm to select the best mutation rate at
different stages in the optimization.

79

Interaction and Evolutionary Algorithms

5.4 Self Adaptation

In this chapter a self-adaptive method will be used as first proposed by Bäck
et al. [5] which suggests to add a floating point value to every individual to
represent their individual mutation rates. The mutation rate is mutated
every generation using the following formula:

pm(t+ 1) =
(
1 +

1− pm(t)

pm(t)
· exp(−γ ·N(0, 1))

)−1

Where pm(t) is the parents mutation rate at generation t, pm(t+ 1) the new
mutation rate and γ is a constant to impact the convergence speed of the
mutation rate (usually set to 0.22). N(0, 1) represents a random sample
taken from a normal distribution with mean 0 and standard deviation 1.
The individual bit string will then be mutated using a probabilistic bit flip
operator using the new mutation rate pm(t+ 1).

If the mutation rate pm ever drops below 1/l, the rate will be adjusted to
1/l exactly, the idea being that a mutation rate below 1/l does not change
the population and therefore does not make sense in a comma strategy. The
impact of this and other aspects of the self-adaptive mutation rate will be
discussed at the end of Section 5.5.

The initial value for the mutation rate in all experiments in this chapter will
be pm = 0.5. This is probably way too high, but the self-adaptive nature of
the algorithm should have no problem adapting this rate to a more optimal
value, which will both show the power of self adaptation and its successful
implementation into the inverse design of cellular automata.

5.5 Experiments

In order to put the self-adaptive mutation rate results into context three dif-
ferent fixed mutation rates were also run in this experiment: pm = 2/l, pm =
4/l and pm = 8/l, where n is the length of the bit string. Because all the bit
strings are 128 bits long, this gives p = [0.015625, 0.03125, 0.0625] for the
three fixed mutation rates.

The Majority Problem was run on a one dimensional CA with 149 cells.
The cells were initialized with 100 initial states uniformly distributed in
the number of ones (there were the same number of initial states for each
number of cells set). The CA was updated synchronously and was run until
no cell would change or 320 steps were reached.

80

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m = 2/128
m = 4/128
m = 8/128

Figure 5.1: A comparison of fitness distributions FB
149,1000 of three fixed mu-

tation rates after 100 generations, 100 runs each.

First the algorithm was run 100 times for all three of the fixed mutation
rates to be able to compare the performance. The GA was run for 100 gen-
erations every time. The resulting best individuals of the runs were then
measured using the initial states with the normal distribution. These new
fitnesses of the individual runs were sorted and then put in groups of width
0.01 in the fitness space. This then gives a frequency graph of the occurrence
of a certain fitness value. Figure 5.1 represents the three experiments and
their distribution on fitness after 100 generations.

Note how in figure 5.1 the setting with mutation rate pm = 4/l seems to
have outperformed the other two, for it has the highest number of fitness
values between 0.6 and 0.7. The setting with mutation rate pm = 2/l seems
stuck on a local optimum around 0.5, and the setting with mutation rate
pm = 8/l is all over the place with the fitness value.

In order to find out if the setting with mutation rate pm = 2/l really gets
stuck, that experiment was extended to a length of 200 generations per
run. Figure 5.2 shows that after 200 generations the mutation rate of pm =
2/l has about the same fitness distribution as the run with pm = 4/l had
after 100 generations. Both runs were still improving at the end and could
possibly improve more beyond the 200 generations. Note that this is the
average fitness over 100 runs, it says very little about the quality of the
individual solutions or how close they come to a global optimum. What can

81

Interaction and Evolutionary Algorithms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m = 2/l
m = 4/l

Figure 5.2: A comparison of fitness distributions FB
149,1000 of two fixed muta-

tion rates (p = 4/l and p = 2/l) after 100 and 200 generations respectively,
100 runs each. Note that the fitness distribution of p = 4/l after 100 gen-
erations is almost identical to the fitness distribution of p = 2/l after 200
generations.

be learned from this is that a mutation rate of pm = 4/l seems to be the best,
especially at the beginning of the run. A lower rate will get there eventually,
but half the rate takes twice the time.

5.6 Self-Adaptive Experiment

Next the self-adaptive mutation rate was used. The rest of the algorithm
was kept totally identical in order to compare the self-adaptive method to
the fixed rates. After some preliminary results it was decided to let all the
self-adaptive algorithms run for 200 generations to see not only the short
term, but also the longer term effects. Figure 5.3 shows the average fit-
ness of all the 100 runs over the generations of the self-adaptive strategy
compared to the fixed strategy with pm = 2/l.

The big difference between the self-adaptive mutation runs and runs with
a fixed rate can be found in the beginning. The self-adaptive method does
not settle on a fitness of 0.5 straight away, while the fixed mutation rate
almost immediately jumps to a fitness of 0.5 and stays there. This can be

82

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

p = 2/n
self adaptive

Figure 5.3: This figure shows the average fitness of the self-adaptive muta-
tion versus the slowest fixed mutation rates tested (pm = 2/l). Notice how
the self-adaptive method does not start at 0.5 in the same way as the fixed
mutation does.

contributed to the initialization of the CA in combination with the low muta-
tion rate of the fixed mutation. Initializing rules with a uniform distribution
in the number of ones makes for at least one rule with all ones and at least
one rule with all zeros. Both these rules have a trivial behavior that makes
the entire CA either ones or zeros in the first step. Because this classifies
on average half of the initial states correctly, the fitness is 0.5. The self-
adaptive method starts with a much higher mutation rate of 0.5 however
and this kills these trivial rules straight away, bringing the average fitness
down for the first twenty generations.

Yet even though the self-adaptive method does not start out at a fitness of
0.5, it catches up very quickly. It climbs very fast in the beginning and then
stagnates after about 140 generations. In comparison the lowest fixed rate
that was tested keeps on going until it eventually catches up with the self-
adaptive strategy around generation 175. And more importantly, the fixed
mutation rate does not show any sign of stagnation within these 200 gener-
ations and promises to continue upwards at least another 50 generations or
so.

In order to understand what is going on figure 5.4 shows the average muta-
tion rate of the self-adaptive method compared to the three fixed mutation

83

Interaction and Evolutionary Algorithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200

SA gamma=0.22
SA gamma 0.11

p = 2/n
p = 4/n
p = 8/n

Figure 5.4: Shows the average mutation rate of the self-adaptive methods
compared to the three fixed mutation rates. Notice how the self-adaptive
mutation rates dives fast and constant towards its minimum value 1/l.

rates. And the important thing to notice here is that not only the mutation
rate goes down quickly and constantly, but it hits the minimum of p = 1/l as
early as generation 50. This is surprising given the fact that in the first 100
generations a mutation rate of p = 4/l and even p = 8/l clearly outperforms
p = 2/l. Mutation using those settings should have been better during this
part of the algorithm and self-adaptive mutation should have evolved into
something close to this mutation rate. There clearly is another force at work
here pulling the mutation rate down.

Some small side-experiments showed that running the self-adaptive algo-
rithm without the 1/l minimum keeps on decreasing the mutation rate to far
below 1/l. This is surprising because intuitively a mutation rate of p = 1/l
would always outperform a mutation rate lower than 1/l, but that does not
seem to be the case here.

5.7 Battling Convergence

In order to counter the rapid convergence, it was decided to lower the γ
value in the self-adaptive mutation rule. A lower gamma would translate
into a slower rate of change in the mutation rate and to be sure to provoke

84

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

p = 2/n
SA with gamma=0.22
SA with gamma=0.11

Figure 5.5: Shows the average fitness of the two self-adaptive mutation ex-
periments with different γ settings versus the slowest fixed mutation rates
tested (p = 2/l). Notice how the self-adaptive method does not start at 0.5
in the same as the fixed mutation does.

a response from the algorithm, it was decided to half the γ value to 0.11. A
new experiment was run with 100 runs, 200 generations, 100 initial states
and a self-adaptive mutation rule with γ = 0.11.

This clearly improved the performance of the algorithm and it outperformed
the fixed mutation rate. Figure 5.5 shows this new experiment compared to
the other two experiments that were run with 200 generations. It shows
clearly how the self-adaptive method with γ = 0.11 takes a little longer
to catch up with the fixed mutation rate, but when it does it shoots past
the self-adaptive method with γ = 0.22. This implies that the self-adaptive
method with γ = 0.22 converges too fast and gets stuck on a local optimum.
But as mentioned earlier there is no clear reason why the algorithm should
do this, other than an (until now) unknown force pulling on the mutation
rate.

Although this experiment with a different γ-setting improved on the former
experiment, the new results also stagnate after 100 generations. Figure 5.4
shows the average mutation of the five different mutation rates throughout
the runs. Note that while both runs with γ = 0.22 and γ = 0.11 seem to adapt
their mutation rates, they both adapt the mutation rate to an irrational low
value at a fitness that is known to work a lot better with a higher fixed

85

Interaction and Evolutionary Algorithms

mutation rate. Now there could always be a local optimum that a GA gets
stuck on, but these graphs represent averages and one would expect the
distribution of local optima to be identical for both self-adaptive and fixed
mutation.

This seems to prove that self adaptation of mutation rates to inversely de-
sign Cellular Automata works, but that there is a reason the adaptation
prematurely converges to a rate that seems a lot lower than expected. It
almost seems to ’give up’ too soon. The rest of this chapter will investigate
in more detail what force is at work here.

5.8 Noise

One possible explanation for the early convergence is noise. The Major-
ity Problem fitness function is calculated by “measuring” how often a rule
classifies something correctly. This is done on random initialized CA states
and that means that the fitness function could get “unlucky” and classify
a rule slightly better or worse than it can actually perform. This then in
turn would lower the selection pressure and the chance of selecting wrong
mutation rate changes would increase. At least that is the working hypoth-
esis.

To test this hypothesis we conducted an experiment in which we took the
original self-adapting method with γ = 0.22 and increased the number of
initial states used in the fitness function from 100 to 250 to dampen noise.
Furthermore the number of generations for the GA was increased to 500, so
that stagnation would be better visible.

Figure 5.6 shows the results of this experiment. The effect on the conver-
gence was very limited. It hit the same stagnation at almost the same time
and it can be clearly seen that this stagnation is there to stay. The algorithm
no longer improves, not even after 500 generations. Although this does not
conclusively prove that noise is not a problem here it does show that noise
is not main reason behind this stagnation.

If it is not the noise that is causing this convergence and changing the γ set-
ting only delays the same behavior, there has to be another reason why self-
adaptation has such a big problem with this search space. The next Sections
speculate in some more detail what might be happening to self-adaptation
for it to converge prematurely in the case of a “rugged” combinatorial fitness
landscape like the Majority Problem.

86

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

SA 100 initial states
SA 250 initial states

Figure 5.6: This figure shows the average fitness of the two self-adaptive
mutation experiments with different noise levels. The noise level was de-
creased by increasing the number of initial states that was used by the Ma-
jority Problem. Note that the impact of reducing the noise has almost no
effect.

5.9 Unseen Forces

All the experiments in this chapter have been using a comma strategy in
which every individual in the population is mutated every generation, yet
that does not mean all the parents in the population are destroyed every
generation. Even though every individual is mutated, there is always the
possibility that none of the bits in an individual are flipped.

Let pclone be the chance that an individual is not changed by mutation.
Then:

pclone = (1− p)n

where p is the mutation rate and n is the bit string length. This means
that for p = 1/l (minimum allowed in experiments) and n = 128 (true for all
experiments):

pclone = (1− 1

128
)128 ≈ 0.3664

87

Interaction and Evolutionary Algorithms

Every parent in the experiments above was copied 10 times. This means
that if the mutation rate is p = 1/l for an individual and that individual
is chosen to be a parent, then on average 3 to 4 copies of this parent will
reside unaltered in the next generation. This makes the comma strategy
effectively some kind of “probabilistic plus strategy”.

With fixed mutation rates this effect is not a very big deal, for it will in worse
case slow down the algorithm, but when self-adaptive mutation is employed
an interesting effect emerges.

An important aspect of the self-adaptive mutation rule is that the muta-
tion rate should have the same probability to change up, as it has to change
down. This ensures that the search for an optimal mutation rate is not bi-
ased in any one direction. The experiments in this chapter suggest that
the self-adaptive mutation used, seems to have such a bias. Surprisingly
the “probabilistic plus strategy” as explained above could create such a
bias.

As mentioned before every parent in the experiments was copied ten times
and right before the bit flip mutation is employed, the mutation rates are
themselves mutated. If the mutation rate of a child is decreased its pclone
increases and it is more likely to stay identical than a child of which the
mutation rate is increased. This simple fact implies that the average mu-
tation rate of the children that are unchanged is lower than the mutation
rate of their parent and the average mutation rate of the changed children
is higher than that of their parent.

At the beginning of the algorithm there are still a lot of improvements to be
made and they are relatively easy to find. The success rate of the algorithm
is high. In a “rugged” landscape however, the success rate of a Genetic
Algorithm might go down drastically. In a comma strategy the fitness of
the next generation is allowed to be lower than that of the previous one,
but if pclone is high enough, clones will be generated such that the fitness
will not easily go down. This means that the harder it becomes to find an
improvement, the more appealing it will be to stay in the same location. The
cloned individuals will get a comparatively high fitness and will be chosen
over most mutated individuals. Because the mutation rates of the clones are
very likely to be lower than their parents, the mutation rate will decrease
and only make it harder to leave the comfort of the “couch”. The algorithm
will grind to a premature halt.

Due to the similarities with the addictive properties of TV and the comfort
giving properties of a couch, this effect will from here on be called the ‘Couch
Potato Effect’. It is very likely that an effect as described above is the cause
for the stagnation seen in the experiments in this article. The Majority

88

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

Problem is known to have a “rugged” landscape and the “success rate” might
be low enough to cause this kind of premature convergence.

5.10 MAXONE Problem

To make sure that the premature stagnation is caused by the cloning of
individuals and not by other reasons for premature stagnation as described
by Rudolph, G. [36] and Salomon, R. [37], a new and simpler experiment was
conducted. The previous research mentioned above mainly concentrated
on reasons of stagnation due to local optima. The ‘Couch Potato Effect’ as
described in Section 5.9 implies that stagnation could occur even if there
would be only one optimum.

One of the simplest binary fitness functions is called the MAXONE Problem.
It can be defined as follows:

Given a bit string of a fixed size n, find the bit string that has the largest
number of ones.

The answer to this problem is of course trivial (the bit string consisting of
all ones) and since no Cellular Automata or inverse design is used in this
experiment, any Genetic Algorithm should not have much trouble finding
that exact answer. This Section does not try to show the power or versatility
of GA, but rather examine whether the “Couch Potato” effect is real and how
big this effect is on a simple problem like the MAXONE Problem.

The same Genetic Algorithm as described in Section 5.3 was used with the
same self adaptive mutation, but in order to simplify the analysis of the
results, a (1, 5)-strategy was chosen. This means that for each generation
only one parent is selected, which is then copied five times while the parent
itself is discarded. All five children are mutated in exactly the same way as
described in Section 5.3.

The aim of this experiment was to test whether the effect of the self adaptive
mutation on GA can be analyzed in more detail using a simpler approach
to see if the ’couch potato’ effect exists in a simple experiment and if so,
how big it is. In order to get a baseline for the optimal mutation rate, this
experiment was also run using different fixed mutation rates. The mutation
rates used are: {0.1/l, 0.2/l, 0.5/l, 1/l, 2/l, 4/l, 8/l}. Note that a mutation rate
of 0.1/l seems very low, but preliminary results indicated that this value was
needed in the baseline.

The experiment was run 1000 times, each run with a maximum of 1000
generations. The bit string size l was set to 128 for all experiment. Fig-

89

Interaction and Evolutionary Algorithms

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

nu
m

be
r

of
 ’z

er
os

’ i
n

bi
t s

tr
in

g
(n

=
12

8)

generations

self adaptive
p=0.1/128
p=0.2/128
p=0.5/128

p=1/128
p=2/128
p=4/128
p=8/128

Figure 5.7: This figure shows the average fitness of runs for different fixed
mutation rates p = { 8

128 ,
4

128 ,
2

128 ,
1

128 ,
0.5
128 ,

0.2
128 ,

0.1
128} and self adaptive muta-

tion rate. Each line is the average of 1000 runs of the GA as described
in Section 5.10. Note how although self-adaptation of the mutation rates
seems to work, its performance is worse than half the fixed mutation rates.

ure 5.7 shows the average number of ‘zeros’ in the bit strings over all 1000
runs.

Note how mutation rates of 8/l, 4/l, 2/l and even 1/l seem to stagnate on
various locations in the search space, while 0.5/l and 0.2/l both seem to find
the optimum all the time (the one quicker than the other) and 0.1/l seems
too slow to find the optimum in the maximum 1000 generations. The reason
that the high mutation rates stagnate is probably due to the comma strat-
egy. The parents are not used in the next generation and this means that a
high mutation rate can throw away valuable steps into the right direction.
The higher the mutation rate, the bigger the chance that information is
thrown away that way. This is also the reason that the best performing mu-
tation rate seems to be 0.5/l and that this is below the minimum suggested
by [4].

Also note that the self adaptive runs started out on a good fitness value
going parallel to 8/l, but then they flatten out fairly quickly, stagnating to
become even worse then 0.1/l. What is going on here? Could this be the
same effect as viewed in the inverse design task earlier this chapter? Could

90

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0.0001

 0.001

 0.01

 0.1

 0 200 400 600 800 1000

m
ut

at
io

n
ra

te

generation

self adaptive
0.1/128
0.2/128
0.5/128

1/128
2/128
4/128
8/128

Figure 5.8: This figure shows how the average self adaptive mutation rate
compares to the fixed mutation rates on a logarithmic scale. The mutation
rate is an average of 1000 runs as described in Section 5.10 and concerns
the same experiment as displayed in Figure 5.7. Note how the self adaptive
mutation rate decreases very quickly and continues to go down even after it
went below 0.1

128 . This is surprising because Figure 5.7 shows how 0.5
128 clearly

outperforms lower mutation rates.

this be the “Couch Potato Effect”?

Figure 5.8 shows the average mutation rate of the self adaptive mutation
runs plotted against the fixed mutation rates. Note how the self adaptive
mutation rates goes down rapidly right past all the fixed rates and ends up
at about half that of the lowest fixed rate used. That is unexpected to say
the least. Self adaptive mutation rates should be trying to find the best rate
during the run. Instead it finds a reason to stagnate on a rate that is 10
times lower and still falling. What is the reason for this?

The nice thing about the MAXONE problem is that probabilities and opti-
mal mutation rates can be calculated exactly. These exact calculations can
then be compared to the results generated from the experiment to figure
out what is going on and what effect is causing self-adaptation to perform
poorly. The next Section tries to do exactly that.

91

Interaction and Evolutionary Algorithms

5.11 Calculating Progress

Bäck shows in [5] a detailed analysis of the MAXONE Problem (under the
name ‘the Counting Ones Problem’) in which the exact probabilities of suc-
cess, stagnation and failure are calculated. It concentrates on a theoretical
analysis of the convergence velocity and reports on empirical evidence that
supports these results. This thesis will use this analysis as a starting point
to try and explain why self adaptation in GA seems to converge prema-
turely. It differs from the research in [5] in that instead of concentrating
on the convergence velocity of the population as a whole, in Section 5.12 it
concentrates on the ‘chance to be selected’ of a single individual taking into
account the fitness of the other individuals in the pool. This difference in
approach allows us to shed some light on what it takes for an individual to
survive in a population and how this could negatively effect self adaptation
of mutation rates.

In order to calculate the exact chance of successful mutation of a bit string
with length n in the MAXONE Problem, the bit string needs to be defined a
bit more abstract. Let the bit string B be defined as a set of n0 zeros and n1

ones, then n0 + n1 = n and the fitness of B is defined as exactly n1 (or n1

n to
make the fitness fall between 0 and 1). Then a successful mutation can be
defined as a mutation after which the new number of ones n′

1 is bigger than
n1.

The problem with calculating the exact chance for a successful mutation is
that there are many different ways to make a mutation successful. If one
zero changes into a one and that is the only change in the string then the
mutation is successful, but if three zeros turn into ones and two or less ones
turn into zeros, the mutation is also successful. In order to help calculate
the chance for a successful mutation an intermediate chance is defined as
the chance that exactly i bits flip in k bits of the bit string:

pexactly(i, k) =

(
k
i

)
(pm)i · (1− pm)k−i

where pm is the mutation rate of the probabilistic bit flip mutations opera-
tor.

Now a successful mutation can be defined as a mutation in which ‘more zeros
were mutated into ones than ones into zeros’. Which is the same as saying
‘the exact number of bits flipped in n0 bits of the bit string is higher than the
exact number of bits flipped in n1 bits of the bit string’. The chance for this
last definition to happen can be defined in the following summation:

92

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

pr
ob

ab
ili

ty
 o

f a
t l

ea
st

 1
 s

uc
ce

ss
fu

l m
ut

at
io

n
in

 5
 c

hi
ld

re
n

number of ones in bit string (n1)

p=0.1/128
p=0.2/128
p=0.5/128

p=1/128
p=2/128
p=4/128
p=8/128

Figure 5.9: This figure shows the probability of at least one success-
ful mutation given a population size λ = 5 and a bit string l = 128
for all different number of ones n1 and different mutation rates p =
{ 8
128 ,

4
128 ,

2
128 ,

1
128 ,

0.5
128 ,

0.2
128 ,

0.1
128}. Note how p = { 8

128 ,
4

128 ,
2

128 ,
1

128} each have
the highest success probability for different intervals of n1.

psuccess =

n0∑
i=1

[
pexactly(i, n0) ·

min(i−1,n1)∑
j=0

pexactly(j, n1)
]

or to write this as a function of the number of ones n1 (because n0 + n1 =
n):

psuccess =

n−n1∑
i=1

[
pexactly(i, n− n1) ·

min(i−1,n1)∑
j=0

pexactly(j, n1)
]

In exactly the same way the chance of an unsuccessful mutation can be
defined as ‘the exact number of bits flipped in n0 bits of the bit string is
lower than the exact number of bits flipped in n1 bits of the bit string’. Then
keeping in mind that n1 = n− n0 this gives:

93

Interaction and Evolutionary Algorithms

punsuccess =

n−n1∑
i=0

[
pexactly(i, n− n1) ·

n1∑
j=i+1

pexactly(j, n1)
]

Then there is the possibility that the mutation of the bit string does not
change the number of ones at all. This happens when ‘the exact number of
bits flipped in n0 bits is identical to the exact number flipped in n1 bits. Or
to use the notation of the previous chances:

psame =

min(n−n1,n1)∑
i=0

[
pexactly(i, n− n1) · pexactly(i, n1)

]
Note that psuccess + punsuccess + psame = 1. Also note that the chance that no
bits are flipped (pclone) is part of psame.

These are the chances for different outcomes of the mutation for only one
individual. In order to say something about the success rate of the Genetic
Algorithm, these chances need to be applied on the entire pool of individuals.
There are three different types of generations for a GA:

• It was ‘successful’: The generation generates at least one individual
with a better fitness than its parent.

• It was ‘unsuccessful’: All children in this generation have worse fitness
than their parent.

• It is the ‘same’: At least one individual in this generation has the same
fitness as its parent and non are successful.

The chances for these three different types are:

pgen success = 1− (1− psuccess)
λ

pgen unsuccess = (punsuccess)
λ

pgen same = 1− pgen success − pgen unsuccess

where λ is the number of children created. Note that pgen same can not easily
be expressed in psuccess and psame because these chances are dependent and
the ‘chance that non are successful given that at least one has the same
fitness’ is not that easy to calculate (although possible) and would in the
end be identical to the simpler definition above.

The chance for a successful generation depends heavily on the number of
bits that are already correct (n1). Figure 5.9 shows the success rate pgen success

94

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

pr
ob

ab
ili

ty
 o

f w
or

se
 fi

tn
es

s
in

 a
ll

5
in

di
vi

du
al

s

number of ones in bit string (n1)

p=0.1/128
p=0.2/128
p=0.5/128

p=1/128
p=2/128
p=4/128
p=8/128

Figure 5.10: This figure shows the probability of having only unsuccess-
ful mutations given a population size λ = 5 and a bit string l = 128
for all different number of ones n1 and different mutation rates p =
{ 8
128 ,

4
128 ,

2
128 ,

1
128 ,

0.5
128 ,

0.2
128 ,

0.1
128}. Note how this probability is almost 0 for

p = { 0.5
128 ,

0.2
128 ,

0.1
128} and increased with higher mutation rates and n1.

95

Interaction and Evolutionary Algorithms

for all different number of ‘ones’ (n1) and different mutation rates (p). Note
how if the number of ’ones’ is low, higher mutation rates have more suc-
cess, but when the number of ’ones’ is high, lower mutation rates have more
success.

Figure 5.10 shows the same set of mutation rates for all number of ‘ones’
(n1), but this time the chance for an unsuccessful generation pgen unsuccess is
plotted. Note how low mutation rates don’t seem to have much chance for
an unsuccessful generation, while higher mutation rates only seem to have
unsuccessful generation when the number of ‘ones’ outnumber the number
of ‘zeros’ (n1 > n0).

Because the GA is using a comma (or ‘non elitist’) strategy the success of
the algorithm is not only dependent on how often the mutation generates
favorable results, but it also depends on how often that algorithm throws
that result away the next generation. So in order to calculate the success
rate of the entire algorithm both pgen success and pgen unsuccess need to be
taken into account. For this the ‘progress rate’ P is defined as:

P = pgen success − pgen unsuccess

Note that this rate has values ranging from −1 to 1, where positive numbers
imply the algorithm will get closer to the optimum and negative numbers
imply the population will drift away from the optimum. This also means
that where P = 0 the algorithm will have trouble making any progress and
will probably get stuck.

Also note that unlike the convergence speed investigated by Baeck in [5]
this ‘progress rate’ does not take into account the magnitude of the changes
made by the mutation. This simplification can be justified by the assump-
tion that the stagnation effect that this section is investigating occurs when
the mutation rate pm falls below 1/l and the chance of a change in fitness
of two or more is getting unlikely. By making the assumption that the size
of the fitness change is less important than the direction of the change, the
interaction through selection between the individuals in the population can
be studied more easily.

Figure 5.11 shows this rate for different mutation rates for all different val-
ues of n1. Note that this plots the calculated progress of the GA as described
earlier, a different algorithm might of course have a different behavior. The
plot shows a lot of interesting information though. Most important of all: it
predicts what the best mutation rate is for a given number of ‘ones’ (n1) by
showing which mutation rate has the highest progress rate at a given n1.
Surprisingly (although expected after the experiments), when n1 becomes

96

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100 120

th
e

ca
lc

ul
at

ed
 s

uc
ce

ss
 r

at
e

number of ones in bit string (n1)

p=0.1/128
p=0.2/128
p=0.5/128

p=1/128
p=2/128
p=4/128
p=8/128

Figure 5.11: This figure displays the ‘success rate’ (P = pgen success −
pgen unsuccess) for λ = 5 and l = 128 for all different values of n1 and mutation
rates p = { 8

128 ,
4

128 ,
2

128 ,
1

128 ,
0.5
128 ,

0.2
128 ,

0.1
128}. Note how in contrast to Figure 5.9

here p = 0.5
128 starts to outperform all other mutation rates for n1 > 115.

97

Interaction and Evolutionary Algorithms

high, the best mutation rate (0.5/l) is lower than the classical minimum
mutation rate 1/l.

The intersections in the plot represent the places in the search space where
the performance of a lower mutation rate becomes better than the higher
one. Where the 8/l line meets the 4/l line for instance (around n1 = 67) the
mutation rate p = 4/l starts to outperform p = 8/l. Until that point p = 8/l
was the best performing mutation rate. Then around n1 = 73 it starts to be-
come better to use p = 2/l and around n1 = 88 p = 1/l seems best. That lasts
up to n1 = 113 at which point p = 0.5/l becomes the best progress rate and
stays best until the optimum is reached. Figure 5.7 shows these progress
differences between different mutation rates in the form of the ‘rate of de-
scent’. The steeper the line goes down, the bigger its progress. Note that
exactly at the values of n1 where the progress rates intersect in Figure 5.11
the steepness of the corresponding lines is identical in Figure 5.7. The cal-
culated progress rate seems to confirm the experimental results.

Figure 5.11 also shows at which n1 the progress rates becomes negative.
This only happens to p = {8/l, 4/l, 2/l, 1/l} and not to p = {0.5/l, 0.2/l, 0.1/l}.
The mutation rate p = 8/l yields a negative progress rate at n1 = 88, p = 4/l
at n1 = 98, p = 2/l at n1 = 110 and p = 1/l at n1 = 122. Or to express
that in number of zeros: n0 = {40, 30, 18, 6}. Note how these locations in the
search space correspond exactly with where the different mutation rates
stagnate in Figure 5.7. The progress rate calculation seems to confirm that
these mutation rates are too high to get to the optimum reliably. The (1, 5)
strategy used in this experiment needs a lower mutation rate to keep the
algorithm from throwing away good mutations. This corresponds with the
‘Hidden Elitist Strategy’ discussed in Section 5.9.

The calculation of the progress rate seems to confirm what the experiments
in Section 5.10 and earlier in this chapter suggested: self adaptation in a ge-
netic algorithm does not adapt to the best mutation rate for the algorithm.
The mutation rate with the highest progress rate at different points in the
search space corresponds with the performance of the different mutation
rates in the experimental results, while the stagnations in the same results
corresponds perfectly with locations where progress rate P is 0. Both ap-
proaches have the same conclusion: no mutation rates below p = 0.5/l are
optimal or needed for convergence. Why then does self adaptation go all the
way down to values like 0.05/l? The next Section aims to answer this ques-
tion by investigating the individual’s chance of survival and the way that
impact mutation rates.

98

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

5.12 Calculating Survival

Now that it is clear that self adaptation adapts to the wrong value, it might
be time to look at exactly what value it is asked to adapt to. Up until now
the ‘success rate’ of the algorithm has been defined as ‘the speed at which
an algorithm gets closer to the optimum’ (or ‘convergence speed’), ‘success’
from the point of the algorithm. Next this Section will try to define ‘success’
from the point of an individual. This can be better defined as ‘the chance to
be selected’. All the individuals ever ‘want’ to do is increase the chance to
survive and create offspring. At first glace the two definitions of success are
identical or at least closely related. If the individual wants to be selected
it needs to perform best in its generation, which means its offspring will
perform similarly, but will need to outperform its siblings. All seems to
point to the standard self-adaptive methodology that would only promote
‘speed’ in the algorithm, but there is a difference as will become clear later
in this Section.

A genetic algorithm is very complex iterative loop in which many situa-
tions can occur, that is why the following calculations make two assump-
tion:

• Two individuals that both have been successfully mutated have an
equal opportunity to be selected.

• Also two individuals that both have been unsuccessfully mutated have
an equal opportunity to be selected.

• The entire pool of individuals except the one we are calculating chances
for, uses the same mutation rate.

Note that in the experiment the fitness of both individuals dictates the or-
der in which they are selected. Because this Section is mostly investigating
what happens with low mutation rates with a small pool size, these assump-
tions don’t really impact the conclusions. Also note that if two individuals
both do not change their fitness, they do have an equal opportunity to be
selected, also in the experiment.

The state of the other individuals in the population is very important to the
chance for an individual to be selected. This is the only time there is inter-
action between individuals of the same generation (apart from crossover).
An individual might already have a fitness calculated before selection oc-
curs, but selection puts this fitness in perspective. In a way, the fitness of
an individual is totally unimportant to its survival, it is the ‘relative fitness’
that will determine the individual’s fate.

99

Interaction and Evolutionary Algorithms

There are many different states the pool of individuals can be in, but the
assumptions made at the beginning of this Section simplify these down to a
couple. To be able to calculate the chance to be selected, two mutation rates
are defined: pindm is the mutation rate of the individual we are calculating
our chance for and p is the mutation rate used for all the other individuals
in the pool. This makes it possible to say something about the direction self-
adaptation would like to go in respect to a certain mutation rate in the rest
of the pool. In the experiment every individual of course has their own mu-
tation rate and simplifying this with just one rate will have a slight impact
on the results, but given that p could be viewed as the ‘average mutation of
the rest of the pool’, the impact should be minimal.

Using both pind and p different chances for successful mutation, identical
fitness and unsuccessful mutation can be calculated similar to Section 5.11.
The chances using pind will be denoted with pindsuccess, pindsame and pindunsuccess

respectively, whereas the chances using p will be denoted in the normal
way.

The chance for an individual to be selected can be split up into three differ-
ent independent chances:

• The chance that the individual was successfully mutated and is se-
lected (pindsuccess select).

• The chance that the individual has the same fitness as its parent, but
is still selected (pindsame select).

• The chance that the individual was unsuccessfully mutated, but is still
selected (pindunsuccess select).

The chance that the individual was successfully mutated and is selected
depends on the number of other individuals that were also successfully mu-
tated. The following summation walks each different number of other suc-
cessful individuals and takes into account the permutations possible in each
case:

pindsuccess select = pindsuccess ·
λ−1∑
i=0

[1

i+ 1

(
λ− 1
i

)
· (psuccess)i · (1− psuccess)

λ−1−i
]

Note how the division by i+ 1 takes care of the ‘equal chance’ to be selected
from the group of successful individual.

A similar equation is needed to calculate the chance that the individual is
selected while it has the same fitness as its parents denoted with pindsame select.
The chances used are a bit different though. Instead of only caring about

100

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120

pr
ob

ab
ili

ty

number of ones in bit string (n1)

successful and selected
same fitness and selected

unsuccess and selected
total

Figure 5.12: This figure shows the different probabilities of an individual
to be selected in a population of λ = 5 for all different number of ones n1 if
all individuals get mutated with p = 8

128 . Note how even though for bigger
n1 the probability for selection on success goes down an the probability for
selection when unsuccessful goes up, the total probability stays identical to
1
λ , which makes sense because all individuals are mutated with the same
mutation rate.

101

Interaction and Evolutionary Algorithms

‘success’, this time no individual should have been mutated successfully.
Otherwise that individual would have been selected instead of the one we
are calculating this chance for, therefore psame and punsuccess are used to
calculated the chance:

pindsame select = pindsame ·
λ−1∑
i=0

[1

i+ 1

(
λ− 1
i

)
· (psame)

i · (punsuccess)λ−1−i
]

In order to be selected after an unsuccessful mutation, all other individu-
als in the pool also need to have had unsuccessful mutations. Given the
assumption that all unsuccessful mutation have an equal chance of being
selected, the following simpler equation follows:

pindunsuccess select =
pindunsuccess · (punsuccess)λ−1

λ

Now the total chance for an individual to be selected is of course nothing
more than the summation of the three chances above:

pindselect = pindsuccess select + pindsame select + pindunsuccess select

Figure 5.12 shows the three chances and total plotted for the case where
p = pind = 8

l . Note that in this case the total chance of being selected is
exactly identical to 0.2. This makes sense because the other individuals in
the population have exactly the same mutation rate and therefore the same
chance to be selected independent of n1. Since λ = 5 this chance is 0.2.
Also note where pindsuccess intersects pindunsuccess. This point corresponds exactly
again with the location in the search space where p = 8

l stagnates in the
experiments.

Now to find out at what point changing the mutation rate makes sense,
figure 5.13 shows the three chances and the total plotted for the case where
p = 8

l but pind = 4
l . Note this plot is interesting for a lot of reasons, but

mostly because it shows exactly where it is beneficial for an individual to go
to a lower mutation rate and how much more beneficial this is. At n1 = 67
pindselect crosses the 0.2 line and stays above that line for the rest of the graph.
This means that if n1 > 67 it is more beneficial for an individual to use
p = 4

l than p = 8
l . This is exactly the value that was found in Section 5.11

and seems to contradict the existence of a ‘Couch Potato Effect’.

But when lower mutation rates are plotted, something unexpected happens:
a lower mutation rate always seems to be better! Figure 5.14 shows what

102

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120

pr
ob

ab
ili

ty
 (

p=
8/

12
8

an
d

p^
in

d=
4/

12
8)

number of ones in bit string (n1)

0.2
successful and selected

same fitness and selected
unsuccess and selected

total

Figure 5.13: This figure shows the individual probabilities of an individual
to be selected in a population of λ = 5 for all different number of ones n1

if the individual gets mutated with p = 4
128 and all other individuals get

mutated with p = 8
128 . Note how for lower values of n1 the probability of

selection is lower than 1
λ = 0.2, but for n1 > 67 the probability of selection

becomes higher than average (> 0.2) mainly due to the probability to be
selected with an unsuccessful mutation.

103

Interaction and Evolutionary Algorithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120

pr
ob

ab
ili

ty

number of ones in bit string (n1)

0.2
p=8/128 and p^ind=4/128
p=4/128 and p^ind=2/128
p=2/128 and p^ind=1/128

p=1/128 and p^ind=0.5/128
p=0.5/128 and p^ind=0.2/128
p=0.2/128 and p^ind=0.1/128

Figure 5.14: This figure shows the probability for an individual to be se-
lected when λ = 5, l = 128, the individual is mutated with pind and all
other individuals with p for all values of n1 and mutation rates (p, pind) =
{(8

128 ,
4

128), (
4

128 ,
2

128), (
2

128 ,
1

128), (
1

128 ,
0.5
128), (

0.5
128 ,

0.2
128), (

0.2
128 ,

0.1
128)}. Note how for

each of these situations the lower mutation rate outperforms the higher
mutation rate for bigger values of n1. This is even true for the case where
pind = 0.1

128 and p = 0.2
128 which implies that in a population with a mutation

rate p = 0.2
128 and n1 > 100 lowering an individual’s mutation rate gives that

individual a higher chance to survive, even though previous results have
shown that this decreases the convergence speed.

104

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

happens in each of the used mutation rates when the individual has the
next lower mutation rate. So for p = 8/l it shows pind = 4/l, for p = 4/l
it shows pind = 2/l and so on until for p = 0.2/l it shows pind = 0.1/l.
Note that for each subsequent smaller mutation rate, the next smaller step
seems to generate a higher selection chance around the area that mutation
rate would be employed. This plot basically says: ‘when n1 > 100 a lower
mutation rate is always better!’ This is not at all what Section 5.11 predicted
should happen to optimize the progress. It seems we have found our culprit
for the premature slowdown of the GA. Somehow it is ‘survival’.

To find the reason for this counter intuitive result figure 5.15 plots the three
probabilities and total for the case where p = 0.5/l and pind = 0.1/l. As re-
ported above the chance for an individual to survive goes up dramatically
for cases where n1 > 100 when the mutation rate of that individual is much
lower than the mutation rate of the individuals in the pool, but the fig-
ure shows a surprising origin of this chance. It is the chance to have ‘the
same fitness as its parent and being selected’ pindsame that goes up drastically.
Throughout the search space, but especially closer to the optimum, pindsame is
the main reason that 0.1/l outperforms 0.5/l.

With a mutation rate as low as 0.1/l the chance of ‘mutating two or more
bits in the bit string and getting the same fitness’ is a lot smaller than the
‘chance of changing no bits’ (which automatically gives the same fitness).
This means that pindsame mostly consist of ‘the chance to stay in the same
location and get selected’, or ‘selected clones’. As the plots show it is easier
to clone individuals if the mutation rate is lower, which means that from the
perspective of an individual, in order to have the highest chance to survive
it needs to try and stop moving, stay where it is, and at least it will not loose
the fitness its parent gave to it.

5.13 Conclusions

This chapter shows how self-adaptive mutation rates have been successfully
applied to the inverse design of transition rules for Cellular Automata. The
mutation rates adapted from an initial very high rate to a level that was
usable to run the Genetic Algorithm.

Self-adaptive mutation rates as it was applied here however, did have some
problems with the complexities of the search space of the Majority Problem.
In particular a premature convergence was measured that did not seem to
be the effect of any speed setting of the algorithm or noise level of the fitness
function.

105

Interaction and Evolutionary Algorithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120

pr
ob

ab
ili

ty
 (

p=
0.

5/
12

8
an

d
p^

in
d=

0.
1/

12
8)

number of ones in bit string (n1)

0.2
successful and selected

same fitness and selected
unsuccess and selected

total

Figure 5.15: This figure shows the different probabilities for an individual
to be selected when λ = 5, l = 128, the individual is mutated with pind = 0.1

128
and all other individuals with p = 0.5

128 for all values of n1. Note how this
clearly shows that for n1 > 100 the probability for selection is above average
which implies that lowering the mutation rate in a population with p = 0.5

128
is increasing the probability of survival for the individual. Also note how
for n1 > 100 the biggest part of this probability comes from the probability
to be selected when the individual’s fitness is unchanged. This implies that
self adaptation will keep on decreasing the mutation rate and the GA will
stagnate.

106

Chapter 5. Self-adaptive Mutation Rates in Genetic Algorithm

A second experiment was introduced to try and explain the effect measured
in the first. The MAXONE Problem was used to show how even in a much
simpler experiment the same premature convergence is possible. This stag-
nation was compared to fixed mutation rate runs and shown to be caused
by a premature drop in the mutation rate by the self adaptation.

The progress rate for the MAXONE Problem was calculated for different
fixed mutation rates and fit the experiments exactly. The self-adaptive mu-
tation rate dropped way below the calculated optimal mutation rate proving
self-adaptation to stagnate prematurely without any local optima.

Next the chance of survival for a single individual was calculated and that
showed a totally different picture. The calculations showed that, if the suc-
cess rate is below a certain point, it is much more beneficial for an individual
to stay unchanged. This result proves the existence of a stagnating force in
self adaptation in GA and shows once more how complex the interactions
between individuals in an Evolutionary Algorithm can be.

This effect of ‘survival of the laziest’ deserves the name ‘Couch Potato Ef-
fect’. It is not unthinkable (although not proved) that this effect caused
the premature convergence in the inverse design experiment earlier in the
chapter and it is very likely that a similar force will have a substantial ef-
fect everywhere self-adaptation is used in genetic algorithms. All it needs is
a comma (or ‘non-elitist’) strategy, a low success rate and a chance to ‘stay
put’. This research implies that a similar effect is likely in any application
of self-adaptive mutation rates in Genetic Algorithms.

Further research is needed to understand how this relates to studies of pre-
mature convergence in Evolutionary Strategies in difficult topologies. Look-
ing at a way to map the binary search space used in GA to a simplified real
valued search space with the same dimensionality in an ES could help here.
It might also be valuable to investigate the difference between stagnation
of local optima and stagnation on high dimensional rough functions. What
are the similarities and what are the differences?

As of yet our research has not yielded any counter measure for the Couch
Potato Effect and further research into this area seems warranted. Possible
counteractions could include: increasing the population size (which should
make the effect smaller), using a plus strategy (which might pose a prob-
lem for self-adaptation when selecting parents of previous generations) or
maybe even change the selection method to never include the ‘Couch Pota-
toes’ (which might destroy self-adaptation all together). All approaches that
need further study, but non of which seem immediate answers to this eas-
ily underestimated problem of the global behavior of an evolutionary loop
based on the local interactions of its individuals.

107

Interaction and Evolutionary Algorithms

108

Chapter 6
On Interactive Evolutionary
Strategies

In this chapter we discuss evolution strategies in the context of interactive
optimization. Different ways of interaction will be compared and classified.
A focus will be on the suitability of the approach in cases, where the se-
lection of individuals is done by a human expert based on some subjective
criteria. First of all, this chapter will study the behavior of the step-size
adaptation mechanism, which might be seen as the most distinguishing fea-
ture of evolution strategies as compared to other evolutionary algorithms.
Moreover, we compare the convergence dynamics of different approaches,
and discuss typical patterns of user interactions as observed in empirical
studies.

The discussion of empirical results will be based on a survey conducted via
the world wide web. Color (pattern) redesign problems were chosen as test
case. The simplicity of the chosen problems allowed us to let a large num-
ber of people participate in our study. The amount of data collected made
it possible to add statistical support to our hypothesis about the perfor-
mance and behavior of different interactive evolution strategies, and last
but not least helped us to figure out high-performing instantiations of the
approach.

109

Interaction and Evolutionary Algorithms

6.1 Introduction

The research field of human-algorithm interaction (HAI) puts forward the
involvement of human beings in the algorithmic solution processes. In con-
trast to human computer interaction the focus of this technology is on com-
putational processes that are assisted by users. In contrast to interactive
software like text processing systems or drawing software, the main struc-
ture of the solution process for the higher level task is still governed the
algorithm, The user has to assist the algorithm at some stages, that call
for decisions based on subjective preferences, or that require the insights of
experts in a problem, the formalization of which is often very difficult.

On a very global level we propose to distinguish between reactive or proac-
tive interaction, i.e. user feedback requested by the algorithm, or optional
interventions by the users into an autonomously running algorithm. An
example for reactive feedback could be the request of an optimization algo-
rithm on the subjective evaluation of solutions by means of the user. Con-
trarily, an example for proactive feedback would be given, if the user halts
an optimization algorithm that is in a phase of stagnation, changes some
parameters, and lets it continue with the changed settings. A boundary
case for proactive feedback, would be, if the user simply decides to finish an
algorithm and pushes some ’stop’ button that terminates it.

Among the few algorithmic classes that already integrates the user in the
computational process, interactive evolutionary algorithms are one of the
most well known. Applications range from arts [2] and music [23], to in-
dustrial engineering applications [31, 13], mixture optimization [21], and
prototyping in product design [8]. An excellent overview on applications of
IEA was given by Banzhaf [8] and more recently by Takagi et al. [40].

In this chapter we will mainly focus on the discussion of interactive variants
of evolution strategies (ES) [39, 34]. ES are instantiations of evolutionary
algorithms that are mainly used for the purpose of parameter optimization.
In particular they feature self-adaptive parameters of the stochastic distri-
bution used in the mutation. This allows to minimize the effort of the user
when working with these evolutionary algorithms, as for many other EA
the choice of the adequate parameters can cause a significant problem for
the unexperienced user. Moreover, the self-adaptation makes it possible to
automatically scale the behavior of the variation operator between a more
exploratory coarse sampling or a finer sampling, which is needed to achieve
a high approximation accuracy to the optimum in the end.

Evolution strategies have been already successfully applied for interactive
optimization in parametric design. In particular the pioneering work of

110

Chapter 6. On Interactive Evolutionary Strategies

Herdy [20, 21] in this field should be mentioned here, who applied inter-
active variants of the evolution strategy to various problems ranging from
the design of color mixtures to the search for coffee mixtures that meet a
desired taste.

However, we believe that there are still many open questions with regard
to interactive evolution strategies. For example the step-size adaptation
deserves further attention, and the ‘typical’ behavior of the user. Moreover,
it is an interesting question how a theory of interactive evolution strategies
might look like. In this chapter, we intend to provide contributions to these
questions. In particular we discuss new methods of how to conduct research
in interactive evolution strategies, analyze the user behavior in the selection
process and study the feasibility of the self-adaptive step size adaptation
within this context.

We will base our discussion on a representative problem for interactive evo-
lution. The problem we have chosen is the re-design of RGB colors by means
of subjective evolution. The problem can be easily increased by using color
patterns instead of single patterns. Moreover, it can be easily explained to
people participating in experimental studies, and thus can be readily used
for collecting statistical data in math experiments. In the studies presented
in this chapter, a survey conducted via the world wide web served us to gain
a larger amount of data, which allowed us to better support the hypothesis
about the algorithms’ behavior and performance.

As it can be concluded from this introduction, the contribution of this chap-
ter is not only to be seen as a presentation of new empirical results, but also
to a fair extend as a discussion of a general research methodology in the
field of interactive evolutionary algorithms.

The structure of this chapter is as follows: After a short introduction to evo-
lution strategies (Section 6.2) we will present a survey on interactive evolu-
tion strategies (Section 6.3). We continue with a discussion of self-adaptive
features 6.4 in evolution strategies and discuss their role in interactive evo-
lution strategies. Finally, in Section 6.5, we report on first statistical studies
of self-adaptive IES on color (pattern) redesign problems. The chapter con-
cludes (Section 6.7) with a summary of first results and an outline of some
open questions for future research.

6.2 Evolution Strategies

The main loop of the evolution strategy is displayed in algorithm 1. Firstly,
the algorithm initializes a population (multi-set) P0 of µ individuals (objec-

111

Interaction and Evolutionary Algorithms

tive function vectors and mutation parameters) randomly (e.g. uniformly
distributed within the parameter space). P0 forms a starting populations,
and within the subsequent generational loop a series of new populations
(Pt)i=1,2,... is generated by means of a stochastic process:

Algorithm 1 (µ, κ, λ)-Evolution Strategy
1: t← 0
2: P0 = initµ()
3: while terminate() = false do
4: Qt ← generateµ→λ(Pt) /* Generate λ new variations based on Pt */
5: Pt+1 ← selectκλ→µ(Pt ∪Qt) /* Select µ ’best’ individuals */
6: t← t+ 1
7: end while
8: return Pt

First λ random variations of individuals in Pt are generated by means of
a variation operator, the details of which will be described later. The new
variants form the population Qt, the so-called offspring population. Then,
among all individuals in Pt and Qt the best µ individuals are selected by
means of a selection criterion. The parameter κ stands for the maximum
number of generations a parent of a previous generation can be selected as
a parent for this generation. Note that this means that if κ = ∞ the algo-
rithm is a pure ‘plus strategy’ and all µ parents can be selected for the next
generation, while if κ < ∞ only those individuals are taken into account
that have been generated in an iteration t0 with t0 > t − κ and if κ = 0
the algorithm is a pure ‘comma strategy’. The selection process is usually
governed by an objective function f : I → R, i.e. the µ best solutions with
regard to this function are selected. However, it is not always necessary
to have an objective function, and it suffices to establish a ranking on the
merged population or just to have some criterion that can extract the µ best
solutions from all other solutions.

Note, that the stochastic process defined by the series (P1)i=1,2,... has the
Markov property, if we consider the selection criterion to be fixed. This
means that the stochastic distribution of Pt+1 is determined by the popula-
tion Pt.

The variation-selection process is meant to drive the populations into re-
gions of better solutions as t increases. However, there is no criterion that
can be used to determine whether the best region has been found (except in
cases with a pre-defined goal or bound on the objective space). Hence the
process is usually terminated in case of stagnation or if the user decides to
stop it, because of his/her time constraints.

112

Chapter 6. On Interactive Evolutionary Strategies

An operator that deserves some further attention in the evolution strat-
egy is the variation operator that is used to generate offspring. Let us
first repeat that individuals within the evolution strategy consist of a vec-
tor of decision variables x = (x1, . . . , xnx) ∈ Rnx and a vector of param-
eters of the mutation distributions (often referred to as step-size vector)
s = (s1, . . . , sns) ∈ Rns .

A variation of this vector is generated via a mutation of the step-size vector
and the subsequent mutation of the vector of decision variables using the
new mutation parameters. As an example let us discuss the so called 3-
point mutation operator first introduced by Rechenberg [33, 34], that works
with a single step-size, i.e. ns = 1 is described in algorithm 2.

Algorithm 2 Generate λ offspring via 3-point mutation
1: Q = ∅
2: for i ∈ 1 . . . λ do
3: choose (x, s) randomly out of Pt

4: u ← uniform(0, 1) // uniformly distributed random number between
0 and 1

5: s′1 ←

 s1α if u < 1
3

s1/α if u > 2
3

s1 otherwise
6: for j ∈ {1, . . . , nx} do
7: x′

j = xj + s1normal(0, 1)
8: /* normal(0,1) generates standard normal distributed random num-

ber */
9: end for

10: end for
11: Q = Q ∪ {(x′, s′)}

In order to generate a new individual, first the step-size of the given indi-
vidual is multiplied by a constant factor, the value of which can be 1, α or
1/α depending on a random number. Then this step-size of the new indi-
vidual is used to obtain the decision variables of the new individual. These
are obtained by adding an offset to the corresponding value of the original
individual. The value of this offset is determined by a random number that
is gaussian distributed with mean value 0 and standard deviation s1. The
idea behind this mutation operator is that decision variable vectors that are
generated with a favorable step-size are more likely to be part of the next
generation, and thus also the information about the step size that was used
to generate them is transferred to that generation. The process of mutative
step-size adaptation was investigated in detail by Beyer et al. [10]. Due to
his findings, simple adaptation rules like the 2-point or 3-point mutatation

113

Interaction and Evolutionary Algorithms

for the step sizes serve well, if the population is small and only a few iter-
ations of the algorithm can be afforded. For a higher number of iterations,
say tmax >> 100, more sophisticated adaptation mechanisms should be con-
sidered for the parameters of the mutation. State of the art techniques
include the individual step size adaptation by Schwefel [39] and the covari-
ance matrix adaptation (CMA) by Hansen and Ostermeier [19]. Note, that
in order to allow for a mutative step-size adaptation, a surplus of offspring
individuals needs to be generated in each generation. The recommended
ratio of µ/λ ≃ 1/7 leads to a good average performance of evolution strategy
in many cases [39].

6.3 Interactive Evolution Strategies

There are many possibilities to integrate user interaction in the evolution
strategy. In general, we can distinguish between reactive and proactive
feedback. Reactive feedback is feedback requested by the algorithm, e.g.

• the user might be asked for evaluation (grading) of offspring individu-
als

• the user is asked for selecting individuals

• the user is asked for generating variants

In contrast to this, proactive feedback denotes an optional intervention by
the user, e.g.:

• he/she might change the step-size parameter actively, after watching
the search process stagnate)

• he/she might insert a new individual into the population or actively
change the parameters of an individuals (manual mutation)

In this chapter we are more interesting in strategies with reactive feedback
and the only proactive feedback will be given, when the user decides to stop
the search process.

Probably the most simple form of reactive feedback that might be given by
the user is to simple select the best individual(s) out of a population, as
suggested by Herdy [20]. A more complicated scheme of subjective evalua-
tion would be a grading procedure, where the user has to provide a grade to
each individual. Note, that the information the user has to provide in each
iteration, consists of λ numbers in case of grading, and µ numbers, namely
the numbers of the best solutions, in case of selecting the best variant. As
λ≫ µ, the latter seems to be a favorable choice.

114

Chapter 6. On Interactive Evolutionary Strategies

A selection procedure following this strategy is described by the simple al-
gorithm:

• The algorithm presents the λ new solutions from Qt and the µ solu-
tions from Pt that have not exceeded a maximal age of κ generations
to the user.

• The user decides which one of them are the best µ solutions and these
form the new population.

A theoretical analysis of such kind of processes involves different kind of
complications. First of all we need to find an adequate model. A model
that is frequently used for the analysis of evolution strategies is that of a
Markov chain. A Markov chain can be viewed as an autonomous stochastic
automaton (S, Pr : S × S → [0, 1]), where S denotes a state space, and Pr
denotes a function that assigns a probability to each state transition, such
that ∀s ∈ S :

∑
s′∈S Pr(s, s′) = 1. By setting S = Iµ evolutionary algorithms

on a finite search space can be modeled as Markov chains. This allows to
obtain results about the limit behavior and average behavior on some test
problems.

It was suggested by Rudolph [35], to extend this model to a stochastic mealy
automaton with deterministic output, in order to model interactive evo-
lution strategies. Such an automaton would be denoted with (S,X, Pr :
S×S×X → [0, 1]), where X denotes a set of input symbols. Now, the proba-
bility function Pr(S,X, Pr : S × S) assigns a probability value to each state,
input pair (s, x) ∈ S,X. Accordingly, the function Pr : S ×X → S must obey∑

(s,x)∈S×X Pr(s, x, s′) = 1.

An interesting observation is now, that given a stream of inputs, the be-
havior of this strategy breaks down to a Markov chain, whereby the input
stream becomes part of the deterministic formulation of Pr. This, for exam-
ple, provides us with a means to analyze the best case behavior of a strategy
for some target function f , by minimizing the mean convergence time tconv
over all possible user inputs:

E(t∗conv(f)) = min
w∈X∗

E(tconv(w, f)) (6.1)

This convergence time of an ’ideal user’ could be compared to the real behav-
ior of a user in order to assess the performance of the user interaction and
judge if this is the weak point of the algorithm. If so, further measures to
support the user interaction might be considered, like user modeling, a bet-
ter presentation of the variants or even the request of further information
from the user.

115

Interaction and Evolutionary Algorithms

However, even for quite simple variant of interactive evolution strategies,
the computation of an ideal user behavior might be a challenging task.
From a more abstract point of view, the input of the user in an interac-
tive evolution strategy with subjective selection is a set of disjoint indices
{i1, . . . , iµ} ⊂ {1, . . . , µ + λ}. Accordingly, he/she has

(
λ+µ
µ

)
possibilities

of choice, the value of which reduces to λ in case of a ’comma’ strategy
with µ = 1. Hence, in case of t time steps there are already λt possible
input streams that need to be considered. Hence, without any simplify-
ing assumptions the determination of the ideal user behavior will be in-
tractable, even in cases where E(tconv(w, f)) can be obtained, the computa-
tion of which might in itself also cause severe computational effort.

In summary, it seems that only in a few, very simple cases it will be possible
to get meaningful results from a convergence theory of interactive evolution
strategies and empirical results will likely play an important part in the dy-
namic convergence theory of these algorithms, even if we assume the ’ideal
user’.

6.4 Self-adaptation and Interaction

One of the main research questions addressed in this chapter is, whether
self-adaptive mechanisms of the ES can be utilized also for the interactive
ES. With regard to this, there are some important differences between the
standard ES and the interactive ES.

First of all, for the standard ES in continuous spaces, the precision of an op-
timum approximation can, in principle, get arbitrarily close. In applications
of the interactive evolution strategy, the subjective nature of the objective
function usually prevents an arbitrarily close approximation of some solu-
tion. The reason for this is that in many cases the user will not be able to
measure arbitrarily small differences in quality. For example, when com-
paring two colors, a human user will perceive two colors as equal if their
distance is below a just noticeable difference (JND). The concept of JNDs
is quite frequently discussed in the field of psycho-physics, a subbranch of
cognitive psychology [25]. It is notable, that the JND depends on the inten-
sity and complexity of the stimulus presented to the user. Moreover, it has
been found that the lower the difference between two stimuli and the more
complex the stimuli are, the more time it takes for the user to decide upon
the similarity of two patterns. We will come back to this result, when we
discuss the empirical results of our experiments.

Another difference between the standard ES and the ES with subjective se-

116

Chapter 6. On Interactive Evolutionary Strategies

lection criterion is that the user’s attention level will decrease after a while.
For a theory of attention we refer to the work of [32]. Hence, the number
of experiments is usually very limited and very fast step-size adaptation
mechanisms have to be found, and only a few parameters of the mutation
distribution can be adapted.

Moreover, the amount of interaction should be minimized, e.g. by choosing a
simple selection scheme. This might prevent the use of step-size adaptation
strategies that demand for numerical values of the fitness function value. A
performance measure would be based on the number of selections made by
the user, rather than on the number of function evaluations, and even the
time spend on the selection needs to be considered.

Taking all the above into consideration, the experiments discussed below
are designed to be short in duration and minimal in the amount and com-
plexity of interactions needed by the user. Yet in all experiments the user is
the only selection operator in the algorithm.

6.5 A color redesign test-case

To study the effect of a human as fitness function and selection mechanism,
a small experiment was constructed. An evolutionary algorithm was imple-
mented in the form of a JAVA applet for the simple problem of finding the
RGB values of a certain color or combination of colors (see figure 6.1). In
this experiment the user selects one color or color pattern out of several al-
ternatives that is closest to a given target color. This selection is then used
as a parent for the next generation of alternatives that the user can choose
from. When the user thinks the algorithm will not improve the results any
more he can choose to stop the search by clicking the ’Done’ button. All data
collected in this applet is then send to a database and can be used for this
research.

A one dimensional experiment was run using squares with only one color
and a two dimensional experiment was done by having a left and a right
color in the same square. (see figure 6.1) Comparing these two experiments
might give insight into the scalability of this type of experiment.

The whole LIACS faculty at the University of Leiden was asked to help with
this experiment by running this applet in a web browser. About 200 runs
were collected this way and the findings in the chapter are based on these
runs. This experiment was then also run using an ideal user in the form
of a computer program that would always select the color with the smallest
Euclidian distance to the target color. Having data on both a deterministic

117

Interaction and Evolutionary Algorithms

selection compared to a human selection mechanism gives some insight into
how ideal a normal user is and how an evolutionary algorithm reacts on this
difference.

Two different algorithms were used. One with a fixed step size and one
with an self adapting step size. Three different step sizes were used in the
fixed algorithm: 10, 20 and 40. Note that RGB values can range from 0
to 255, that makes the relative step sizes approximately 0.039, 0.078 and
0.156. For the self adaptation the Rechenberg algorithm with three groups
is used with α = 1.3. That means that every generation three different
groups of offspring is generated, one with a step size equal to the parent,
one with a step size 1.3 times larger and one with a step size 1.3 times
smaller. In the one dimensional algorithms a population size of 9 was used,
in the two dimensional this was increased to 16 so that the user might have
more alternatives to choose from with the harder problem.

When the applet is started an algorithm is randomly selected for that run.
The user will only know what algorithm was selected after the experiment
so that the user will not be influenced by that knowledge. The random
generation was done in such a way that 50% of the runs were done with
the Rechenberg algorithm and 16.667% of the runs for everyone of the three
fixed step size algorithm.

The target color was fixed in all the experiments to make them comparable
and was chosen to be [R = 220, G = 140, B = 50] so that every component
of the color was not 0 or 255 and not equal or close to any other component.
This happened to be a brownish version of orange.

6.6 Results

First results we obtained from our internet application are displayed in fig-
ures 6.2 and 6.3. Next, we will discuss these results one by one.

Figure 6.2 shows the average function values for the different strategies.
Note that not all runs had the same length. Some people put more effort
into finding a better result than others. This is all part of the effect of
using humans instead of a computer. This does influence the quality of
the average value and conclusions based on this data should take this into
account.

The one dimensional plot in figure 6.2 shows that self adaptation seems to
outperform all the other algorithms, with human selection as well as with

118

Chapter 6. On Interactive Evolutionary Strategies

Figure 6.1: Subjective selection dialogue with user: The upper figures show
the initial color patterns (single color (l) and two-color test case (r)) and
the lower figures show color patterns at a later stage of the evolution. The
bigger box on the left hand side displays the respective target color, and in
its center a small box is placed displaying the selected color. Once the user
presses the NEXT bottom a selection gets confirmed and a new population
will be generated and displayed. If the user is finally satisfied with the
result he/she presses the Done button, in order to stop the process.

119

Interaction and Evolutionary Algorithms

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

A
ve

ra
ge

 R
M

S
 d

is
ta

nc
e

Number of iterations (selections)

Self-adaptive
Fixed Step-Size 10
Fixed Step-Size 20
Fixed Step-Size 40

Computer SA
Computer Fixed 10

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50
A

ve
ra

ge
 R

M
S

 d
is

ta
nc

e
Number of iterations (selections)

Self-adaptive
Fixed Step-Size 10
Fixed Step-Size 20
Fixed Step-Size 40

Computer SA
Computer Fixed 10

Figure 6.2: The convergence behavior of different ES obtained in the online
experiment. The left figure displays results for a single RGB color, and the
right figure shows the results for two different RGB colors. Each line is an
average of all the runs with these settings.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

M
ea

n
st

ep
 s

iz
e

Number of iterations (selections)

Single Color
Two Color

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

R
M

S
 o

f s
ep

ar
at

e
co

lo
rs

Number of iterations (selections)

Left color
Right color

Figure 6.3: The left plot show step-size adaptation in interactive evolution
strategy for single color and two-color example. The right plot displays the
history of a typical run of the two color problem. The distance of the two
colors to the target color is displayed over the number of iterations. Note
the divergence of the left color after 20 iterations.

120

Chapter 6. On Interactive Evolutionary Strategies

the computer selection. The fixed algorithm with step size 20 seems to con-
verge a lot faster in the beginning though and stagnate after 10 iterations.
This effect is also very plain with the computer selection, there the fixed
step size outperforms self adaptation until generation 10 where self adap-
tation closes the gap and overtakes. The computer selection was also run on
the three different fixed step sized, but step size 10 was by far the best in
both the one dimensional and the two dimensional case.

The two dimensional plot is a bit different though. Here a fixed step size
of 20 seems to be the better choice. The self adaptive runs start out the
best here but after 20 iterations the step size seems to increase for con-
vergence stagnates. This is a weird effect that only seems to occur with
the self-adaptation in the two dimensional case if human selection is used.
In the case of the computer selection this effect is totally absent and self-
adaptation outperforms all the fixed step sizes.

In an effort to explain this effect figure 6.3 (right) shows the error of both
colors separately in a typical run of self adaptation using human selection.
Note how both errors seem to converge nicely up until generation 20. From
that point onward only the right color seems to converge to an optimum
whereas the left color is actually moving away from the optimum. This
suggests that this shows how a human might try to use a certain strategy to
optimize two dimensions. In this case it seems the user tried to optimize the
right color first and worry about the left color later. Although this seems a
feasible strategy, the self-adaptive algorithm has some problems with that.
The total error goes up, the step size is stagnating and even increasing a bit
(as figure 6.3 (left) shows).

What figure 6.3 also shows is that the step sizes are decreasing at the same
rate in the one dimensional problem as they do in the two dimensional prob-
lem. It seems though that in the two dimensional problem the step size
starts off a bit higher.

The fact that the computer selection outperforms the human selection is
not very surprising. The human fitness and selection method seems to be
very non-deterministic and could be viewed as a noisy fitness function. But
there seems to be more to it than just adding noise to the fitness function.
The results suggest humans use strategies that are based on some outside
knowledge or even feelings that influences self adaptation in an unfavorable
way.

121

Interaction and Evolutionary Algorithms

6.7 Conclusion

This chapter contributed to the analysis of interactive Evolution Strategies
(IEA) with subjective selection criteria. The approach has been related to
the context of human algorithm interaction. Differences between interac-
tive evolutions to non-interactive ones were pointed out, including a discus-
sion of different ways to analyze these methods.

A main focus of our research was to find out if the feature of self-adaptive
step sizes, that is essential to evolution strategies, works also within the
context of IEA. A color (pattern) re-design example was utilized for empiri-
cal research and by means of an online experiment a significant amount of
data was gathered.

The results clearly indicate the benefit of the step-size adaptation. Strate-
gies that work with step-size adaptation turned out to be more robust and
diminish the risk to choose a completely wrong step size. Yet the results
also show that human selection can not be treated as just another noisy
function.

An interesting insight we got from the results was that for more complex
target definitions (2 color example) the user starts to use a strategy, e.g.
to first optimize the first color and then the second. Such kind of user be-
havior has rarely been addressed in the context of interactive evolutionary
algorithms and deserves further attention.

122

Chapter 7
Summary and Conclusion

This chapter gives an overview of all the important conclusions in the thesis
chapter by chapter. For a more in depth discussion on these conclusions see
the chapters themselves.

Chapter 4 shows how Genetic Algorithms can be used to evolve transition
rules for Cellular Automata. It shows how these Cellular Automata clearly
exhibit interaction and how this implies that the interaction is evolved us-
ing nothing but the problem definition. A generic approach is introduced to
inversely design local rules with the aim to find global behavior. This ap-
proach is shown to be robust in terms of algorithm parameters and flexible
in terms of Cellular Automata topology.

The approach was applied on the Majority Problem in different topologies.
Different offsets between neighbors in a one dimensional neighborhood were
tested. Results show how spreading out the neighborhood in an exponential
way seems to improve the performance of the algorithm. Two new distance
metrics were introduced: ‘maximum distance’ and ‘average distance’. Re-
sults suggest that these metric between cells can be used to understand the
performance differences between the experiments.

Different dimension CA were tested using the Majority Problem. The re-
sults show three dimensional CA outperforming two dimensional and two
dimensional outperforming one dimensional CA. Even though the CA size
had to be increased to run the Majority Problem on a multi dimensional
CA and the transition rules in the two dimensional experiment were 1

4 the
length of that of the one dimensional version, the problem seemed to be

123

Interaction and Evolutionary Algorithms

easier to solve for multi dimensional CA.

The interactions within the CA were investigated and although it is clear
that interactions are there it is hard to visualize these interactions in the
Majority Problem especially in the multi dimensional CA. That is why the
more constrained AND and XOR problems were introduced. Experiments
were conducted to evolve transition rules that mimic the behavior of logical
AND and XOR ports. Results show how the use of both the von Neumann
and the Moore neighborhood successfully resulted in rules that solved these
problems. The Moore neighborhood outperformed the von Neumann neigh-
borhood and was able to generate a few rules that solved the problem of fill-
ing the CA with the right answer for a full 100%. The resulting time plots
show a very clear ‘particle’ movement and interaction. Proving that very
distinct interaction on a local level was evolved using the only the global
desired behavior.

Solving the Checkerboard Problem was another example of the flexibility of
the approach and resulted in some nice examples of evolved interactions on
the one and two dimensional plots. Most successful transition rules seem to
use a ‘rubber band particle’ to decide which checkerboard pattern is going
to be used globally. This rubber band then tries to shrink and reduce the
area inside of it until it evaporates. Rules generated using a small 13 × 13
CA also work on a larger 50× 50 CA proving that the approach is capable of
evolving generic rules invariant in the size of the CA.

The Bitmap Problem tested the limits of the approach. Transition rules
to generate multiple different bitmaps were evolved. Symmetric bitmaps
seem easier to evolve than non symmetrical ones, but for all 5 × 5 bitmaps
successful rules were found. This shows that the approach can solve many
different problems and mimic many different behaviors.

Not only has this chapter researched a generic way of inversely designing
transition rules for Cellular Automata using a Genetic Algorithm, it has
also shed some light on the Evolution of Interaction. Not only showing that
it is possible, but also how it is possible and which criteria have an effect on
the performance of the evolution. These findings might be valuable to re-
search into the evolution of language in humans and animals, while at the
same time having applications in the field of Grid Computing, Image Pro-
cessing, various Biology research areas and of course in the fields of Cellular
Automata and Evolutionary Algorithms itself.

Chapter 5 shows how self-adaptive mutation rates have been successfully
applied to the inverse design of transition rules for Cellular Automata. The
mutation rates adapted from an initial very high rate to a level that was
usable to run the Genetic Algorithm.

124

Chapter 7. Summary and Conclusion

Self-adaptive mutation rates as it was applied here however, did have some
problems with the complexities of the search space of the Majority Problem.
In particular a premature convergence was measured that did not seem to
be the effect of any speed setting of the algorithm or noise level of the fitness
function.

A second experiment was introduced to try and explain the effect measured
in the first. The MAXONE Problem was used to show how even in a much
simpler experiment the same premature convergence is possible. This stag-
nation was compared to fixed mutation rate runs and shown to be caused
by a premature drop in the mutation rate by the self adaptation.

The progress rate for the MAXONE Problem was calculated for different
fixed mutation rates and fit the experiments exactly. The self-adaptive mu-
tation rate dropped way below the calculated optimal mutation rate proving
self-adaptation to stagnate prematurely without any local optima.

Next the chance of survival for a single individual was calculated and that
showed a totally different picture. The calculations showed how that, if the
success rate is below a certain point, it is much more beneficial for an indi-
vidual to stay unchanged. This result proves the existence of a stagnating
force in self adaptation in GA and shows once more how complex the inter-
actions between individuals in an Evolutionary Algorithm can be.

This effect of ‘survival of the laziest’ deserves the name ‘Couch Potato Ef-
fect’. It is not unthinkable (although not proved) that this effect caused
the premature convergence in the inverse design experiment earlier in the
chapter and it is very likely that a similar force will have a substantial ef-
fect everywhere self-adaptation is used in genetic algorithms. All it needs is
a comma (or ‘non-elitist’) strategy, a low success rate and a chance to ‘stay
put’. This research implies that a similar effect is likely in any application
of self-adaptive mutation rates in Genetic Algorithms.

Further research is needed to understand how this relates to studies of pre-
mature convergence in Evolutionary Strategies in difficult topologies. Look-
ing at a way to map the binary search space used in GA to a simplified real
valued search space with the same dimensionality in an ES could help here.
It might also be valuable to investigate the difference between stagnation
of local optima and stagnation on high dimensional rough functions. What
are the similarities and what are the differences?

As of yet our research has not yielded any counter measure for the Couch
Potato Effect and further research into this area seems warranted. Possible
counteractions could include: increasing the population size (which should
make the effect smaller), using a plus strategy (which might pose a prob-

125

Interaction and Evolutionary Algorithms

lem for self-adaptation when selecting parents of previous generations) or
maybe even change the selection method to never include the ‘Couch Pota-
toes’ (which might destroy self-adaptation all together). All approaches that
need further study, but non of which seem immediate answers to this eas-
ily underestimated problem of the global behavior of an evolutionary loop
based on the local interactions of its individuals.

Chapter 6 not only gave a brief overview and definition of the field of Inter-
active Evolution Strategies, but it also contributed to this field by applying
self-adaptive mutation rates to a simple IES. A color (pattern) re-design
example was utilized for empirical research and by means of an online ex-
periment a significant amount of data was gathered.

It clearly showed the benefits of step-size adaptation in that it seems more
robust and diminishes the risk to choose the wrong step-size. Yet the results
also show that human selection can not be treated as just another noisy
function.

More importantly the results showed that employing a human as a selection
function can be a very powerful way to incorporate expert knowledge into an
evolutionary process, but it can also be very unpredictable. In the two color
experiment for instance, many users started to match one color first before
thinking about matching the other color. This had unpredicted effects on
the self-adaptation and these need further attention.

Interacting with an Evolutionary Algorithm is a very powerful way to incor-
porate the knowledge of an expert into the search capabilities of the com-
puter, but it is not an effortless fusion. Many evolutionary processes and op-
erators designed for Evolutionary Algorithms are designed with predictable
selection and fitness evaluation in mind. A human is not that predictable
and certainly not deterministic in nature. Generating more robust algo-
rithms and interfaces to close the gap between the human and the machine
seems a worthwhile effort and IEA looks to be at the forefront of that work.
The robustness and ease of use of self-adaptation seem prime reasons to
consider it a good candidate for real world applications in the future.

By showing three different ways of combining Interaction with Evolution
this thesis has demonstrated the power and flexibility of Evolutionary Algo-
rithms, while at the same time introducing some new and interesting find-
ings in the fields of Inverse Design of Cellular Automata, Self-Adaptation
in Genetic Algorithms and Human Algorithm Interaction.

126

Appendix A
Generalizing Multi
Dimensional Cellular
Automata

In the introduction chapter to Cellular Automata (Chapter 3) a generaliza-
tion to multi dimensional CA is given in which the von Neumann and Moore
neighborhoods are defined for different radii r and dimensions d. Some cal-
culations in that chapter to calculate the size of these neighborhoods were
omitted for readability. This appendix lists these calculations.

SN (1, r) = 2r + 1

SN (2, r) = 2
[r∑
i=0

2i+ 1
]
− (2r + 1)

= 2
[r∑
i=1

2i
]
+ 2r + 2− (2r + 1)

= 4
[r∑
i=1

i
]
+ 1

= 4
[1
2
r2 +

1

2
r
]
+ 1

= 2r2 + 2r + 1

127

Interaction and Evolutionary Algorithms

SN (3, r) = 2
[r∑
i=0

SN (2, i)
]
− SN (2, r)

= 2
[r∑
i=0

2i2 + 2i+ 1
]
− 2r2 − 2r − 1

= 2
[r∑
i=1

2i2
]
+ 2

[r∑
i=1

2i
]
+ 2r + 2− 2r2 − 2r − 1

= 4
[r∑
i=1

i2
]
+ 4

[r∑
i=1

i
]
− 2r2 + 1

= 4
[1
3
r3 +

1

2
r2 +

1

6
r
]
+ 4

[1
2
r2 +

1

2
r
]
− 2r2 + 1

=
4

3
r3 + 2r2 +

2

3
r + 2r2 + 2r − 2r2 + 1

=
4

3
r3 + 2r2 +

8

3
r + 1

SN (4, r) = 2
[r∑
i=0

SN (3, i)
]
− SN (3, r)

= 2
[r∑
i=0

4

3
i3 + 2i2 +

8

3
i+ 1

]
− 4

3
r3 − 2r2 − 8

3
r − 1

= 2
[r∑
i=1

4

3
i3
]
+ 2

[r∑
i=1

2i2
]
+ 2

[r∑
i=1

8

3
i
]
+ 2r + 2

− 4

3
r3 − 2r2 − 8

3
r − 1

=
8

3

[r∑
i=1

i3
]
+ 4

[r∑
i=1

i2
]
+

16

3

[r∑
i=1

i
]
− 4

3
r3 − 2r2 − 2

3
r + 1

=
8

3

[1
4
r4 +

1

2
r3 +

1

4
r2
]
+ 4

[1
3
r3 +

1

2
r2 +

1

6
r
]
+

16

3

[1
2
r2 +

1

2
r
]

− 4

3
r3 − 2r2 − 2

3
r + 1

=
[2
3
r4 +

4

3
r3 +

2

3
r2
]
+

[4
3
r3 + 2r2 +

2

3
r
]
+

[8
3
r2 +

8

3
r
]

− 4

3
r3 − 2r2 − 2

3
r + 1

=
2

3
r4 +

4

3
r3 +

10

3
r2 +

8

3
r + 1

128

Appendix A. Generalizing Multi Dimensional Cellular Automata

SN (5, r) = 2
[r∑
i=0

SN (4, i)
]
− SN (4, r)

= 2
[r∑
i=0

2

3
i4 +

4

3
i3 +

10

3
i2 +

8

3
i+ 1

]
− 2

3
r4 − 4

3
r3 − 10

3
r2 − 8

3
r − 1

= 2
[r∑
i=1

2

3
i4
]
+ 2

[r∑
i=1

4

3
i3
]
+ 2

[r∑
i=1

10

3
i2
]
+ 2

[r∑
i=1

8

3
i
]
+ 2r + 2

−2

3
r4 − 4

3
r3 − 10

3
r2 − 8

3
r − 1

=
4

3

[r∑
i=1

i4
]
+

8

3

[r∑
i=1

i3
]
+

20

3

[r∑
i=1

i2
]
+

16

3

[r∑
i=1

i
]

− 2

3
r4 − 4

3
r3 − 10

3
r2 − 2

3
r + 1

=
4

3

[1
5
r5 +

1

2
r4 +

1

3
r3 − 1

30
r
]
+

8

3

[1
4
r4 +

1

2
r3 +

1

4
r2
]

+
20

3

[1
3
r3 +

1

2
r2 +

1

6
r
]
+

16

3

[1
2
r2 +

1

2
r
]

− 2

3
r4 − 4

3
r3 − 10

3
r2 − 2

3
r + 1

=
[4

15
r5 +

2

3
r4 +

4

9
r3 − 4

90
r
]
+
[2
3
r4 +

4

3
r3 +

2

3
r2
]

+
[20
9
r3 +

10

3
r2 +

10

9
r
]
+

[8
3
r2 +

8

3
r
]

− 2

3
r4 − 4

3
r3 − 10

3
r2 − 2

3
r + 1

=
4

15
r5 +

[2
3
+

2

3
− 2

3

]
r4 +

[4
9
+

4

3
+

20

9
− 4

3

]
r3

+
[2
3
+

10

3
+

8

3
− 10

3

]
r2 +

[
− 4

90
+

10

9
+

8

3
− 2

3

]
r + 1

=
4

15
r5 +

2

3
r4 +

8

3
r3 +

10

3
r2 +

46

15
r + 1

129

Interaction and Evolutionary Algorithms

SN (6, r) = 2
[r∑
i=0

SN (5, i)
]
− SN (5, r)

= 2
[r∑
i=0

4

15
i5 +

2

3
i4 +

8

3
i3 +

10

3
i2 +

46

15
i+ 1

]
− 4

15
r5 − 2

3
r4 − 8

3
r3 − 10

3
r2 − 46

15
r − 1

= 2
[r∑
i=1

4

15
i5
]
+ 2

[r∑
i=1

2

3
i4
]
+ 2

[r∑
i=1

8

3
i3
]
+ 2

[r∑
i=1

10

3
i2
]
+ 2

[r∑
i=1

46

15
i
]

+ 2r + 2− 4

15
r5 − 2

3
r4 − 8

3
r3 − 10

3
r2 − 46

15
r − 1

=
8

15

[r∑
i=1

i5
]
+

4

3

[r∑
i=1

i4
]
+

16

3

[r∑
i=1

i3
]
+

20

3

[r∑
i=1

i2
]
+

92

15

[r∑
i=1

i
]

− 4

15
r5 − 2

3
r4 − 8

3
r3 − 10

3
r2 − 16

15
r + 1

=
8

15

[1
6
r6 +

1

2
r5 +

5

12
r4 − 1

12
r2
]
+

4

3

[1
5
r5 +

1

2
r4 +

1

3
r3 − 1

30
r
]

+
16

3

[1
4
r4 +

1

2
r3 +

1

4
r2
]
+

20

3

[1
3
r3 +

1

2
r2 +

1

6
r
]

+
92

15

[1
2
r2 +

1

2
r
]
− 4

15
r5 − 2

3
r4 − 8

3
r3 − 10

3
r2 − 16

15
r + 1

=
[4

45
r6 +

4

15
r5 +

2

9
r4 − 2

45
r2
]
+
[4

15
r5 +

2

3
r4 +

4

9
r3 − 2

45
r
]

+
[4
3
r4 +

8

3
r3 +

4

3
r2
]
+

[20
9
r3 +

10

3
r2 +

10

9
r
]

+
[46
15

r2 +
46

15
r
]
− 4

15
r5 − 2

3
r4 − 8

3
r3 − 10

3
r2 − 16

15
r + 1

=
4

45
r6 +

[4

15
+

4

15
− 4

15

]
r5 +

[2
9
+

2

3
+

4

3
− 2

3

]
r4

+
[4
9
+

8

3
+

20

9
− 8

3

]
r3 +

[
− 2

45
+

4

3
+

10

3
+

46

15
− 10

3

]
r2

+
[
− 2

45
+

10

9
+

46

15
− 16

15

]
r + 1

=
4

45
r6 +

4

15
r5 +

14

9
r4 +

8

3
r3 +

196

45
r2 +

138

45
r + 1

130

Bibliography

[1] D. Andre, F. H. Bennett, and J. R. Koza. Discovery by genetic pro-
gramming of a cellular automata rule that is better than any known
rule for the majority classification problem. Technical report, Stanford
University, 1996.

[2] P. J. Angeline. Evolving fractal movies. In J. R. Koza, D. E. Goldberg,
Fogel D. B., and Riolo R. L., editors, 1st Annual Conference on Generic
Programming, pages 503–511, Stanford University, July 1996.

[3] T. Bäck. Self-adaptation in genetic algorithms. In Toward a Practice of
Autonomous Systems: Proceedings of the first European Conference on
Artificial Life, pages 263–271, Cambridge, MA, USA, 1992. MIT Press.

[4] T. Bäck and M. Schutz. Intelligent mutation rate control in canonical
genetic algorithms. In Proceedings of the 9th International Symposium,
ISMIS 96, pages 158–167, Berlin, 1996. Springer-Verlag.

[5] Th. Bäck. Evolutionary Algorithm in Theory and Practice. Oxford Uni-
versity Press, 1996.

[6] Th. Bäck, D. B. Fogel, and editors Michalewicz, Z., editors. Handbook
of Evolutionary Computation. Oxford University Press and Institute of
Physics Publishing, Bristol/New York, 1997.

[7] Th. Bäck, Breukelaar R., and Willmes L. Inverse design of cellu-
lar automata by genetic algorithms: an unconventional programming
paradigm. UPP proceedings in the ’Hot Topics’ subline of LNCS, 2005.

131

Interaction and Evolutionary Algorithms

[8] W. Banzhaf. Interactive evolution. in: Handbook of Evolutionary Com-
putation (T. Bäck,, D. Fogel, and Z. Michalewicz), chapter C2.10, pp.
1-5. Oxford University Press, 1997.

[9] D. Barca, G. M. Crisci, S. Gregorio, and C. Nicoletta. Cellular automata
for simulating lava flows: A method and examples of the etnean erup-
tions. Transport Theory and Statistical Physics, 23(1):195 – 232, 1994.

[10] H.-G. Beyer. The Theory of Evolution Strategies. Springer, Berlin, 2001.

[11] R. Breukelaar and Th. Bäck. Evolving transition rules for multi dimen-
sional cellular automata. In 6th International Conference on Cellular
Automata for Research and Industry, ACRI, Amsterdam, The Nether-
lands, 2004. Springer.

[12] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in
evolutionary algorithms. Evolutionary Computation, IEEE Transac-
tions on Evolutionary Computation, 3(2):124–141, July 1999.

[13] B. Filipic and D. Juricic. An interactive genetic algorithm for controller
parameter optimization. In International Conference on Artificial Neu-
ral Nets and Genetic Algorithms, pages 458–462, Innsbruck, Austria,
2003.

[14] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, New York, 1995.

[15] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence through Sim-
ulated Evolution. John Wiley and Sons, 1966.

[16] P. Gacs, G. L. Kurdyumov, and L. A. Levin. One dimensional uniform
arrays that wash out finite islands. Problemy Peredachi Informatsii,
14:92–96, 1978.

[17] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

[18] D. E. Goldberg. The Design of Invocation:Lessons from and for Compe-
tent Genetic Algorithms. Kluwer Academic Publishers, 2002.

[19] N. Hansen and A. Ostermeier. Completley derandomized selfadapta-
tion in evolution strategies. Evolutionary Computation, 9(2):159–195,
2001.

[20] M. Herdy. Evolution strategies with subjective selection. In Parallel
Problem Solving from Nature - PPSN IV, pages 22–31, Germany, 1996.
Springer.

132

Bibliography

[21] M. Herdy. Evolutionary optimization based on subjective selection -
evolving blends of coffee. In 5th European Congresson Intelligent Tech-
niques and Soft Computing EUFIT’97, pages 640–644, 1997.

[22] J. H. Holland. Adaptation in Natural and Artificial Systems. The Uni-
versity of Michigan Press, Ann Arbor, 1975.

[23] D. Horowitz. Generating rhythms with genetic algorithms. In Interna-
tional Computer Music Conference, pages 142–143, Aarhus Denmark,
1994.

[24] S. Inverso, D. Kunkle, and C. Merrigan. Evolution-
ary methods for 2-d cellular automata computation.
www.cs.rit.edu/˜drk4633/mypapers/gacaProj.pdf, 2002.

[25] Anderson J.R. Cognitive Psychology and its implications. Worth Pub-
lishers, UK, 2004.

[26] J. R. Koza. Genetic Programming: On the Programming of Computers
by Natural Selection. MIT Press, Cambridge, MA, 1992.

[27] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and
G. Lanza. Genetic Programming IV: Routine Human-Competitive Ma-
chine Intelligence. Kluwer Academic Publishers, 2003.

[28] W. Li, N. H. Packard, and C. G. Langton. Transition phenomena in
cellular automata rule space. Physica D, 45:77–94, 1990.

[29] M. Mitchell and J.P. Crutchfield. The evolution of emergent compu-
tation. Technical report, Proceedings of the National Academy of Sci-
ences, SFI Technical Report 94-03-012, 1994.

[30] M. Mitchell, J.P. Crutchfield, and P.T. Hraber. Evolving cellular au-
tomata to perform computations: Mechanisms and impediments. Phys-
ica D, 75:361–391, 1994.

[31] I. C. Parmee and C. R. Bonham. Cluster oriented genetic algorithms to
support designer/evolutionary computation. In Proceedings of CEC’99,
pages 546–555, Washington D.C., USA, 1999.

[32] J. Reason. Human Error. Cambridge University Press, Cambridge UK,
1990.

[33] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Fromman-Holzboog Ver-
lag, Stuttgart, 1973.

[34] I. Rechenberg. Evolutionsstrategie ’94. Fromman-Holzboog Verlag,
Stuttgart, 1994.

133

Interaction and Evolutionary Algorithms

[35] G. Rudolph. On interactive evolutionary algorithms and stochastic
mealy automata. In Parallel Problem Solving from Nature - PPSN
IV, pages 218–226, 1996.

[36] G. Rudolph. Self-adaptive mutations may lead to premature conver-
gence. Evolutionary Computation, IEEE Transactions, 5(4):410 – 414,
August 2001.

[37] R. Salomon. The curse of high-dimensional search spaces: observing
premature convergence in unimodal functions. In Evolutionary Com-
putation, CEC2004, pages 918 – 923, 2004.

[38] H. P. Schwefel. Numerische optimierung von computer-modellen mit-
tels der evolutionsstrategie. Interdisciplinary Systems Research, 26,
1977.

[39] H. P. Schwefel. Evolution and Optimum Seeking. Wiley, New York,
1995.

[40] H. Takagi. Interactive evolutionary computation: Fusion of the capa-
bilities of ec optimization and human evaluation. In Proceedings of the
IEEE, pages 1275–1296, 2001. vol.89, no.9.

[41] S. Wolfram. Statistical mechanics of cellular automata. Reviews of
Modern Physics, 55, 1983.

134

Acknowledgments

As is true for so many pleasant surprises in life, this dissertation would not
have been possible without a string of now seemingly unlikely events, all of
which I will be forever thankful for. I am for instance thankful for my art
teacher convincing me that painting was not my calling, for my first intern-
ship convincing me I was certainly not going to work right away, thankful
for studying to be boring enough to start taking long walks in nature, and
for nature finally showing me what I had been studying for.

This dissertation would not have been possible without the network of PhD
students and staff at LIACS. I would like to thank in particular Ofer Shir,
Michael Emmerich and Rui Li for their invaluable insights and companion-
ship.

I thank the FOM foundation for partially funding this research, I thank
BLUERIDGE Analytics Inc. for giving me the opportunity to pursue my
PhD while being under full employment in America and I thank the LIACS
institute for having the patience needed for this arrangement.

I do not believe my interest in evolution was a genetic trait, yet I know
that without the continuous trust and support from my family (my mom in
particular) I would not be where I am right now.

My distinction between friends and family has blurred over the years as I
believe only good friendships have the power to, which makes me thank a
few people in particular. Anne, thank you for so much, but especially for
helping me think. Lennert, thanks for helping me enjoy thinking. Tess,
thanks for giving me a reason to think.

135

Interaction and Evolutionary Algorithms

136

Samenvatting

Evolutie en Interactie zijn twee processen die veelvuldig gebruikt worden
om oplossingen te creeren, vorm te geven, te vinden en te optimalizeren
voor problemen in de wetenschap en industrie. Zo is evolutie bijvoorbeeld
succesvol toegepast als een zoekalgoritme in onderzoeksgebieden als natu-
urkunde, scheikunde en biologie, maar ook in commerciele applicaties zoals
viegtuig aerodynamica en grondwerken in de bouw. Het definieren van in-
teractie is een belangrijk onderdeel van het ontwerpen van dergelijke algo-
ritmen. Niet alleen zijn de definities van de startwaarden en de antwoorden
belangrijk, maar ook de interacties tussen de verschillende onderdelen bin-
nen in een algoritme.

Dit proefschrift houdt zich bezig met de het onderzoeksgebied waar evolutie
en interactie elkaar overlappen. Het onderzoekt hoe evolutie in staat is om
een interactie te creeren, het onderzoekt hoe de interactie binnenin een evo-
lutionair algoritme invloed heeft op de efficientie van dat algoritme en het
laat zien hoe de mens met een evolutionair algoritme kan communiseren.
Door deze drie vormen van overlap te behandelen, probeert dit proefschrift
inzicht te geven in de wereld van evolutie en interactie.

Evolutionaire Algoritmen

Evolutionaire algoritmen (EA) gebruiken het natuurlijke evolutie principe
om betere antwoorden te vinden voor moeilijke problemen. In de natuur
werkt evolutie met behulp van een rigoreuze selectie. Als een dier ziek is
of verminkt, zal het meer moeite hebben om in leven te blijven en heeft
daardoor een kleinere kans om zich voort te planten. Dit betekent dat in

137

Interaction and Evolutionary Algorithms

het algemeen fittere individuen meer nakomelingen hebben. Door het ge-
bruik van DNA worde de karakteristieken van de ouders doorgegeven aan
de kinderen en dit geeft de nakomelingen een vergelijkbare kans op over-
leven. Dit process zorgt er in theorie voor dat elke nieuwe generatie beter
in staat is om te overleven en zich voor te planten.

Evolutionaire algoritmen werken precies hetzelfde, maar in plaats van dieren
en planten gebruikt een EA antwoorden en oplossingen en in plaats van
honger of verminking gebruikt een EA probleemdefinities om individuen te
evalueren. De antwoorden heten nog steeds ‘individuen’, de selectie pro-
cedure heet een ‘fitness functie’ en het princiepe is precies hetzelfde. Een
EA heeft een ‘pool’ (groep) met antwoorden (individuen) voor een bepaald
probleem welke allemaal een ‘fitness waarde’ krijgen toegekend door een
‘fitness functie’. Een selectie stap in het algoritme selecteert de beste indi-
viduen en gebruikt die om nieuwe antwoorden te maken voor een volgende
stap in het algoritme. Deze nieuwe antwoorden lijken erg op de oude (beste)
antwoorden, maar zijn een klein beetje veranderd (‘gemuteerd’). Doordat de
slechtste antwoorden weggegooid zijn en de nieuwe antwoorden veel lijken
op de beste antwoorden, gaat de gemiddelde fitness waarde van de antwoor-
den omhoog en is het EA in staat steeds betere antwoorden te vinden voor
een moeilijk probleem.

Evolutie van Interactie

Een Cellulaire Automaat (CA) is een abstract model dat de interactie tussen
enkelcellige organismen beschrijft. In de simpelste vorm beschrijft het een
ring van cellen in de vorm van een array (rij) met binaire waarden. Elke
cel in die array heeft een waarde (0 of 1) en heeft een connectie met de twee
buur-cellen (een links en een rechts). Tijd wordt gesimuleerd door stapsge-
wijze interacties tussen de cellen die allemaal tegelijktijd (synchroon) plaats
vinden. Elke stap krijgt elke cel een nieuwe waarde gebaseerd op de waar-
den van de cellen in de buurt door het toepassen van een transitieregel. Het
is gebruikelijk dat elke cel dezelfde transitieregel heeft en daardoor het-
zelfde ‘gedrag’. Dit simpele maar krachtige model is in staat om complexe
interacties te simuleren en is daardoor succesvol toegepast in verschillende
natuurkundige, scheikundige en biologische applicaties.

De interactie (en daardoor het ‘gedrag’) van een dergelijk CA is vastgelegd
in de transitieregel en deze wordt vaak door experts in het betreffende
vakgebied ontworpen om het juiste gedrag te kunnen simuleren. Dit proef-
schrift beschrijft een manier om evolutionaire algoritmen dit gedrag te laten
ontwerpen, zodat enkel een beschrijving van het probleem in combinatie

138

Samenvatting

met het toepassen van evolutie genoeg is om het probleem op te lossen.
De generieke methode beschreven in Hoofdstuk 4 laat niet alleen zien dat
een dergelijke aanpak werkt voor verschillende communicatieve problemen,
maar geeft ook een intrigerend inzicht in hoe interactie kan ontstaan vanuit
niets meer dan evolutie en een probleemstelling.

Interactie in Evolutie

Zelf-regulatie (‘self-adaptation’) is een goed voorbeeld van interactie bin-
nenin een evolutionair algoritme. Met zelf-regulatie kunnen sommige waar-
den in een EA die normaal niet veranderen of veranderen aan de hand van
een wiskundige formule, nu veranderen door het gebruik van evolutie. Zo
kan bijvoorbeeld de mate waarin een individu gemuteerd wordt (‘mutatie-
snelheid’) deel uit maken van het individu zelf, zodat de individu die de
beste mutatie-snelheid heeft ook de grootste kans heeft om het beste gemu-
teerd en daardoor geselecteerd te worden, wat dus uiteindelijk een zelf-
regulerende mutatie-snelheid tot gevolg heeft. Dit werkt voor waarden als
de mutatie-snelheid, maar ook voor meer complexe waarden in andere stap-
pen van een EA. In alle gevallen zorgt het voor flexibelere EA die een grotere
verscheidenheid van problemen kunnen oplossen, maar er zijn een aantal
mogelijke complicaties die moeilijk te begrijpen of oplossen zijn.

Hoofdstuk 5 beschrijft hoe zelf-regulatie is toegepast op de experimenten
uit Hoofdstuk 4. Ook al waren deze experimenten succesvol, ze hadden een
aantal onverwachte bijwerkingen als gevolg. Door ditzelfde effect in een
veel simpeler experiment te dupliceren, onderzoekt dit proefschrift de limie-
ten van zelf-regulatie en vindt een algemeen probleem dat alleen duidelijk
naar voren komt als de interactie binnenin een EA tussen verschillende in-
dividuen bestudeerd wordt. Naast het naarvoren brengen van dit probleem,
laat dit onderzoek ook het belang zien van het beschrijven van algoritmen
in interacties.

Interactie met Evolutie

Veel complexe problemen hebben specifieke complexe algoritmen om het
probleem op te lossen. Het ontwerpen van een dergelijk specifiek algoritme
betekent vaak dat veel specieke informatie in het algoritme gestopt moeten
worden en dat het algoritme dan alleen werkt voor het specifieke prob-
leem. Met steeds sneller wordende computers en een exponentiële groei in

139

Interaction and Evolutionary Algorithms

data opslag is het geen verrassing dat de problemen die we met computers
proberen op te lossen ook steeds complexer worden. Dit betekent dat het ook
steeds moeilijker wordt het juiste algoritme te ontwerpen om die groeiende
problemen op te lossen, om maar te zwijgen over te problemen waar een
specifiek algoritme onvindbaar of onmogelijk is. Hoofdstuk 6 geeft een ko-
rte introductie in een onderzoeksgebied dat dit probeert aan te pakken door
de expert deel uit te laten maken van het algoritme. Human Algorithm In-
teraction (HAI - ‘Mens Algoritme Interactie’) richt zich op de mogelijkheden
om algoritmen te ‘sturen’ door een expert gebruiker. Door de mens deel uit
te laten maken van een algoritme, is het niet langer nodig om alle specifieke
informatie in het algoritme zelf te vertalen. In plaats daarvan dan de mens
de rol van ‘controleur’ of soms ‘data bank’ op zich nemen.

Evolutionaire algoritmen zijn uitermate geschikt voor de gevallen waar het
moeilijk (of onmogelijk) is specifieke informatie te gebruiken om een speci-
fiek algoritme te ontwerpen en zijn om diezelfde reden ook geschikt voor het
gebruik in HAI. Hoofdstuk 6 onderzoekt hoe EA gebruikt kunnen worden
voor HAI en identificeert een aantal problemen en potentiele oplossing met
betrekking tot de waarneming en analyse limieten van de mens en wat voor
een effect die kunnen hebben op een EA.

140

Curriculum Vitae

Ron Breukelaar was born on the 1st of December 1978 in Winterswijk, The
Netherlands. He completed his HAVO (high school) degree in 1996 on the
Schaersvoorde College in Aalten, The Netherlands. He immediately started
his Bachelor in Computer Science on the HIO (college degree) in Enschede,
The Netherlands, which he completed in 2000.

He then moved to Leiden, The Netherlands, to pursue a Master degree in
Computer Science at the LIACS institute of Leiden University, which he
completed in 2004 with a major in Natural Computing. He started his
PhD that same year joining the project “An evolutionary approach to many-
parameter physics” funded by the FOM foundation (project nr.: 03TF78-
2, werkgroep FOM-L-24) and set out to apply Evolutionary Algorithms to
high-dimensional optimization problems in physics.

In 2007 he moved to Charlotte, NC, USA, to develop full fledged optimiza-
tion solutions for conceptual civil engineering problems at BLUERIDGE An-
alytics Inc., while in parallel continuing work on his PhD as summarized in
this dissertation.

141

