
Model-driven segmentation of X-ray left ventricular angiograms
Oost, C.R.

Citation
Oost, C. R. (2008, September 30). Model-driven segmentation of X-ray left ventricular
angiograms. Retrieved from https://hdl.handle.net/1887/13121
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13121
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13121


��
‘improvement’

Chapter 3 

Multi-View Active Appearance Models: 
Application to X-Ray LV Angiography 

and Cardiac MRI 
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Abstract

This chapter describes a Multi-View Active Appearance Model (AAM) for coherent
segmentation of multiple cardiac views. Cootes’ AAM framework was adapted by 
considering shapes and intensities from multiple views as single shape and
intensity samples, while eliminating trivial difference in object pose in different
views. This way, the coherence in organ shape and intensities between different
views is modeled, and utilized during image search. The method is validated in two
substantially different and novel applications: segmentation of combined end-
diastolic and end-systolic X-ray left ventricular angiograms, and simultaneous
segmentation of a combination of four chamber, two chamber and short-axis
cardiac MR views.

3.1 Introduction 

In cardiac imaging, typically multiple acquisitions are acquired within one patient
examination following fixed imaging protocols, where images may depict different
geometrical or functional features of the heart. For instance, in cardiac MR
imaging, the short-axis, long-axis, perfusion, rest-stress and delayed enhancement
images provide complementary information about different aspects of geometry
and function of the same heart. Also, in bi-plane X-ray left ventricular (LV)
angiography, different views are acquired of the LV, which are the left anterior
oblique 60° and right anterior oblique 30°, showing the left ventricle from different
projection angles. Different time frames from an angiographic or echographic 
image sequence are other examples of such interrelated views. 

To quantify cardiac function and morphology from such image sets, a (preferably
automatic) segmentation of the heart is required. However, typically, automatic
segmentation methods focus on one subpart of a patient examination.
Segmentation is achieved for one view at a time, and the different parts of a patient
examination are treated separately. As a result, not all available information is used
to achieve a segmentation result, since additional shape information of the same
organ may be available from a different view. The goal of this work was to develop a
segmentation method that exploits existing shape and intensity redundancies and
correlations between different parts of a patient examination. Potentially, this 
increases robustness, and enforces segmentation consistency between views,
therefore yielding a better segmentation.

To realize this, we have developed the Multi-View Active Appearance Model
(AAM): an extension of Cootes’ AAM framework [1-5] that captures the coherence
and correlation between multiple parts of a patient examination. Model training
and matching are performed on multiple 2D views simultaneously, combining
information from all views to yield a segmentation result. To investigate the clinical
potential, we validate the Multi-View AAM in two substantially different, largely
unsolved segmentation problems: automatic definition of the LV contours in pairs
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of X-ray LV angiograms in ED and ES phase, and second, simultaneous LV contour
detection in a combination of short-axis, four and two chamber cardiac MR views.

3.2 Background 
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An Active Appearance Model is a statistical model of object shape and texture. The
construction of the AAM and the matching procedure are briefly introduced in this
section. A detailed description can be found in [3].

3.2.1 AAM Training

An AAM is trained on a series of representative images, in which an expert
manually segmented the object of interest. Contours are resampled in n
corresponding points, and, for the 2D case, expressed as a vector of 2n elements:

� T
nn yxyxyxyx ,,...,,,,,,x 332211� (3.1)

After Procrustes alignment of the shape vectors to eliminate trivial pose
differences, a shape model is built by applying Principal Component Analysis (PCA)
on the sample covariance matrix. Arranging the eigenvectors according to 
descending eigenvalues enables elimination of less significant eigenvectors. 

Similarly, a texture model is created by warping the training images onto the mean
shape and creating a shape free patch, from which pixel intensity vectors g are 
extracted. Texture vectors are normalized to zero average and unit variance and
PCA is performed on the sample covariance matrix, resulting in the statistical
texture model. Using the shape and texture models, the sample shapes x and
textures g can be approximated from the respective models:

ssbP�� xx   and ggbP�� gg (3.2)

where g and x represent the average texture and shape vectors, Pg  and Ps the 

texture and shape eigenvector matrices, and bg and bs the texture and shape
parameters characterizing each training sample.

From the shape and texture models, an AAM is created by concatenating the shape
and texture parameter vectors: 
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W denotes a weight factor coupling the shape and texture coefficients.
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After a final PCA over the set of appearance vectors b the resulting AAM can be
written as: 

Qcb � (3.4)

in which Q is the matrix containing the eigenvectors and c denotes the appearance
parameters for the combined model. 

Matching the model to an unseen image involves minimizing the root mean square
error between the model generated image and the target image, within the
boundaries of statistically plausible model limits. To drive the model matching
iterations the parameter update steps are computed from the residual images

ms0 ggg �� , where gs denotes the target image, and gm the model synthesized 

image. By applying known parameter perturbations on model, pose and texture,
gradient matrices Rc, Rp and Rt can be estimated for model, pose and texture
respectively. In our approach, we adopted the direct gradient method by Cootes et
al. [5].

3.2.2 AAM Matching

From the current estimate of the model parameters c0 and the parameter 
derivatives for the model, texture and pose parameters (matrices Rc, Rt & Rp

respectively), Cootes describes an iterative matching algorithm, consisting of the
following steps [2]: 

1) Calculate the residual between target image and model patch ms0 ggg ��

2) Calculate the RMS error from the difference-vector
2

00 g��E

3) Using the pre-computed gradient matrices, determine the model
parameter update 0g�� cRc � , pose update  and texture update 0g�� pRp �

0g�� tRt �

4) Set k = 1 and determine a new estimate for the model parameters 
ckcc �� 01 , pose parameters pkpp �� 01  and texture parameters

tktt �� 01

5) Calculate a new model based on c1, p1 & t1

6) Determine a new difference-vector and calculate its RMS error E1,

7) If E1 < E0, select c1, p1 & t1 as the new parameter vectors, else try k = 1.5, k = 
0.5, k = 0.25 etc. and go to step 4 
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Repeat until convergence (either using a fixed number of iterations, or until no 
improvement is achieved).

3.2.3 Medical Applications of AAMs

Since introduction, several successful medical applications of AAMs in medical
image segmentation have been presented. Initially, Cootes has demonstrated the
application of 2D AAMs on finding structures in brain MR images [2], and knee
cartilage in MR images [3]. In 2D cardiac MR images, Mitchell et al. successfully
applied AAMs to segment the left and right ventricle [6]. Thodberg [7] applied a 2D 
AAM to reconstruct bones in hand radiographs. Bosch et al. applied a 2D + time 
AAM to segment endocardial borders in echocardiography [8], introducing a
correction method to compensate for non-Gaussian intensity distributions in
echocardiographic images. Beichel et al. described a semi-3D AAM extension
applied to the segmentation of the diaphragm dome in 3D CT data [9]. Mitchell et
al. described a full 3D AAM extension, and applied it to 3D cardiac MR data and 2D
+ time echocardiograms [10]. 
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In many of the applications mentioned here, Active Appearance Models have been
shown to outperform other segmentation approaches for two reasons: 

�� They combine correlated intensity and shape knowledge, thus maximally
integrating a priori knowledge, resulting in highly robust performance. 

�� They model the relationship between expert contours and underlying
image data, and are therefore capable of reproducing expert contour
drawing behavior.

3.3 Multi-View Active Appearance Models 

The Multi-View AAM presented here is designed to exploit the existing correlation
between different views of the same object. It is derived from Cootes’ work on 
coupled view AAMs [4], where a frontal and a side view of a face are segmented
simultaneously by building separate models for each view, and a combined model
for both views. During matching, segmentation is performed using single view
models, however shape constraints are applied from a combined model. The
approach presented here differs in that the organ shape is modeled simultaneously
for all views from the start, contrary to only imposing model constraints from a 
combined model.

The Multi-View model is constructed by aligning the training shapes for different
views separately, and concatenating the aligned shape vectors xi for each of the N
views. A shape vector for N frames is defined as: 

� �TT
N

TT xxx �,,x 21� (3.5)
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By applying a PCA on the sample covariance matrix of the combined shapes, a 
shape model is computed for all frames simultaneously. The principal model
components represent shape variations, which are intrinsically coupled for all
views.

For the intensity model, the same applies: an image patch is warped on the average
shape for view i and sampled into an intensity vector gi, the intensity vectors for 
each single frame are normalized to zero mean and unit variance, and
concatenated:

� �TT
N

TT ggg ,,,g 21 �� (3.6)

Analogous to the single frame AAM, a PCA is applied to the sample covariance
matrices of the concatenated intensity sample vectors, and subsequently each
training sample is expressed as a set of shape- and appearance coefficients. A
combined model is computed from the combined shape-intensity sample vectors.
In the combined model, the shape and appearance of both views are strongly
interrelated, as is illustrated in Figure 3.1.

Figure 3.1: First mode of variation for a left ventricle Multi-View AAM, constructed from 70 ED-ES
X-ray LV angiograms. Upper row = ED, lower row = ES. The correlation in shape between ED and ES is
clearly visible. Also the texture variation, describing mainly the local contrast between the LV and it’s
embedding around the mitral valve, shows clear similarities for ED and ES.

Estimation of the gradient matrices for computing parameter updates during image
matching is performed by applying perturbations on the model, pose, and texture
parameters, and measuring their effect on the residual images. Because of the
correlations between views in the model, a disturbance in an individual model
parameter yields residual images in all views simultaneously. The pose parameters
however, are perturbed for each view separately: the model is trained to
accommodate for trivial differences in object pose in each view, whereas the shape
and intensity gradients are correlated for all views. 
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Figure 3.2: X-ray LV angiography example images for ED (upper row) and ES (lower row). From
left to right: well defined LV, poor contrast, inhomogeneous distribution of the contrast agent (most
apparent in ED) and presence of a diaphragm overlapping the LV. 

In the matching procedure, the pose transformation for each view is also applied
separately, whereas the model coefficients intrinsically influence multiple frames at 
a time. Hence, the allowed shape and intensity deformations are coupled for all 
frames, whereas pose parameter vectors for each view are optimized
independently. This is a significant difference as compared to the coupled view
AAMs by Cootes et al., where separately trained 2D models are matched to each
separate view, and subsequently only the appearance constraints are imposed from
a combined appearance model [4].

3.4 Experimental Validation

To determine the clinical utility of the Multi-View AAMs, we investigated two
issues:

�� To what extent can information from different frames improve overall
segmentation performance. To address this, we have tested the Multi-View
AAM on X-ray left ventricular angiography images in the ED and ES phase. 
Though other segmentation methods for LV angiograms have been 
reported [11,12], these images are notoriously difficult to segment,
especially the ES phase. This is mainly due to the fact that in ES a large
amount of the contrast agent has already been ejected, therefore border
definition of the ventricle is rather poor. For this modality, we expect that
the better LV shape definition in ED frames improves the segmentation of 
ES frames. 
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�� The potential of the Multi-View AAM to segment substantially different
geometrical shapes in multiple views. To evaluate this, we selected a
combination of cardiac MR short-axis and long-axis views. To our 
knowledge, this is the first report of an automatic contour detection for 
endo- and epicardial contours in long-axis cardiac MR views. 

3.4.1 X-Ray LV Angiography 

The effectiveness of the Multi-View AAM was tested on ED-ES pairs of clinically
representative LV angiograms from 70 infarct patients, 140 images in total. Apart
from high quality images with good LV definition in both ED and ES, images were
selected, in which frequently appearing acquisition artifacts were present (poor LV
contrast, inhomogeneous distribution of the contrast agent, presence of a 
diaphragm overlapping the LV). Figure 3.2 shows representative examples.
An expert manually defined contours in both frames, and point correspondence
was defined based on three prominent landmarks: both aortic valve points and the
apex. Every contour was equidistantly resampled to 60 points. 14 leave-five-out
models were trained on 65 out of 70 ED-ES image pairs, leaving out 5 sets for 
testing purposes. To speed up the training and matching process and to reduce
model dimensionality, all images were subsampled by a factor of 4. 

3.4.2 Cardiac MRI

To assess the performance of the Multi-View AAM method for simultaneous
segmentation of several different cardiac views with a different geometric 
definition, the method was evaluated on a commonly acquired combination of 
cardiac MR views. Usually, during acquisition of a routine cardiac MR patient
exam, a two chamber view, a four chamber view and a short-axis stack are acquired
following strictly defined acquisition protocols, allowing an optimal depiction of LV
anatomy. Following this protocol, image data was acquired from 29 patients with
various cardiac pathologies.
The Multi-View AAM was constructed based on the ED two chamber view, the ED
four chamber view and the ED mid-ventricular short-axis slice. Endo- and
epicardial contours were drawn manually by an expert observer in all views. To 
maximize the amount of evaluation data, validation and training was performed
using a leave-one-out approach. The initial position for the model matching was
manually set by indicating the apex and base in the long-axis views, and the LV 
midpoint in the short-axis views. 

3.4.3 Evaluation Method

Matching results for each patient study were first qualitatively scored to three
categories: matching success for all views, failure in one view and failure in more 
than one view. Failures were reported and excluded from quantitative evaluation.
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Figure 3.3: Two successful matches for ED (left) and ES (right). Black dotted lines denote the 
manual contours, white dotted lines represent the model contours. Note that even with inhomogeneous
contrast agent distribution (ES image top, ED image below), contours are accurately determined.

On the successful matches, quantitative comparison with expert contours was 
performed on: 

�� point-to-curve border positioning errors for the contours as compared to
the manually defined expert contours, calculated  separately for each view. 

�� endocardial contour area for each frame separately. 

�� for the LV angio application, area ejection fraction.

Linear regression was used to determine relationships between manually traced
and computer determined values. A two-tailed paired samples t-test was applied to
area measurements from automatic and manual contours to investigate systematic
errors. A p-value smaller than 0.05 was considered significant.

3.4.4 Results 

For the LV angiographic study, the Multi-View AAM yielded borders that agreed
closely with the expert defined outlines in both ED and ES in 56 out of 70 patients.
In 10 cases, partial failure was observed, where the contour in one frame clearly
failed. In 4 cases,  neither ED nor ES contours were correctly detected.  In total, 122
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Figure 3.4: Area regression plots for ED (left) and ES (middle) and area ejection fraction (right).
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Figure 3.5: Area regression plots for four chamber (left), short-axis (middle) and two chamber
(right) cardiac MR views.

Border positioning errors [pixels] 

MRI 2 Chamber 1.7 � 0.8

MRI 4 Chamber 1.5 � 0.7 

MRI Short axis 1.4 � 0.7 

LV angio ED 6.5 � 2.8 

LV angio ES 8.0 � 3.7 

Table 3.1: Point-to-curve border positioning errors in pixels for the cardiac MR and LV
angiography validation studies.
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out of 140 images (87%) were successfully segmented, whereas in the other 18
images, manual interaction was required. 

In general, for the successful matches, contours showed an excellent agreement
with the manually defined contours, even in compelling images with artifacts such
as LV-diaphragm overlap, and partial filling. In Figure 3.3, two representative
examples of automatically detected contours are given. Border position errors were 
generally small, and are given in Table 3.1. Area and ejection fraction regressions
are given in Figure 3.4. In both ED and ES phases, area errors were slightly, but 
statistically significantly underestimated (p<0.001, relative error for ED 3.5%, for 
ES 9.4%). The area ejection fraction was slightly overestimated (relative error 7%,
p=0.003).
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The cardiac MR validation yielded 27 successful matches out of 29, and in 2 cases
partial failure was observed, where the model drifted away from the LV boundaries
in one of the three views. No total failures occurred. Examples of automatically
detected contours in the cardiac MR views are given in Figure 3.6. For the contours
from successful matches (87 out of 89 images in total, 98%), area correlations
between manually and automatically detected contours are given in Figure 3.5, and
border positioning errors in Table 3.1. In a paired samples t-test, differences 
between manually and automatically determined endocardial contour areas were
found statistically insignificant for all three views (p>0.7 for all views).

Figure 3.6: Automatically detected contours (white dotted lines) for two patients (top and bottom
row) in a four chamber (left), short-axis (middle) and two chamber view.
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3.5 Discussion and Conclusions 

In general, the presented Multi-View AAM yielded good results in two challenging
clinical segmentation problems. Contours were detected with a minimal user
interaction to initially position the model, and showed high agreement with
manually defined contours. Especially in ES LV angiograms, segmentation results
were very good compared to other segmentation methods reported for this
modality [11,12].  This good performance in ES images can mainly be attributed to
the coupling of information from both ED and ES. 

In LV angiography, a success rate of 87% was achieved. Matching failure mainly
occurred in cases where contrast was extremely low, when there was a significant
overlap between the LV and the diaphragm or in cases of large dilated areas near 
the apex, as is illustrated in Figure 3.7.

Figure 3.7: Examples of segmentation failures for ED (upper row) and ES (lower row), due to poor
contrast (left), overlap between LV and diaphragm (middle) and large dilated areas near the apex
(right). The black dotted lines denote the manual contours, the white dotted lines represent the model
contours.

Comparison between manually and automatically derived area measurements
showed a good correlation, though a slight underestimation of LV area in both ED
and ES was present. This underestimation is mainly caused by the lack of dynamic
information: a manual observer draws the contours in ED and ES after reviewing
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the whole dynamic sequence, whereas automatically generated borders are only
based on ED and ES views. When manually examining an entire image run, this 
motion is used to decide on the border location of the ventricle, especially in 
“problem areas”; therefore the manual borders are generally drawn slightly wider
around the ventricle than visually apparent in only ED and ES. Also, since
interpretation and contour drawing in LV angiograms is highly subjective, an 
assessment of intra- and inter-observer variation inherent to manual contour
drawing is ongoing, to compare the accuracy and reproducibility of the automated
method for different experts.
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The cardiac MR study showed a significantly higher success rate than the LV
angiography study: in 98% of the images, a successful match was achieved. This
can mainly be attributed to the better definition of the ventricle in cardiac MR
views. Though acquisition related artifacts were present in some patient studies
(surface coil intensity gradients), overall LV endo- and epicardial contour definition
is significantly stronger in the cardiac MR study. Area calculations, which serve as a 
basis for LV volume estimates, did not differ statistically significantly between
manual and automatic analysis. Also for this application, border positioning errors
were small (comparable to errors reported in [6]), and well within clinically
acceptable margins.

In this study we have tested the Multi-View AAM robustness and performance from 
a manually set initial position, yielding good results. However, we foresee a further 
increase in robustness by also coupling the scale of the object in all views, since this
is correlated as well between views. This is a topic of current research. Moreover,
future research will focus on analysis of Multi-View AAM shape parameters to
distinguish between pathologies. We expect the coupling of shape information from
different parts of a patient examination to enhance pathology identification. For
cardiac MR, methods to automatically position the initial models based on a 
geometrical thorax template model [13] will be investigated.

In summary, we conclude that the Multi-View AAM presented here combines a 
high robustness with clinically acceptable accuracy. It demonstrated good
automatic segmentation results for two substantially different and novel clinical
applications. A cardiac MR case study showed the utility to simultaneously segment 
different geometrical shapes, and a case study on X-ray LV angiography proving
that poor ventricle definition in one view (ES) can be resolved by information from
a corresponding (ED) view.
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