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2
Yeast Analysis Platform

“ This chapter describes the yeast analysis framework we have developed to
support research in yeast biology. We start by presenting the workflow of
the system and elaborate on its various modules including segmentation,
measurement, analysis and visualization, and finally the Graphical User
Interface (GUI) that connects all these modules. A validation small scale
experiment is performed as well.

”
This chapter is based on the following publications:

• Mohamed Tleis, Ginny Anemaet, Paul van Heusden, and Fons J. Verbeek. Image analysis
platform for yeast biologists. In The 2nd International Conference on Advances in
Biomedical Engineering 2013 (ICABME’13), pages 57–60, Tripoli, Lebanon, September
2013.

• Mohamed Tleis and Fons J. Verbeek. Yeast-Cell features extraction plugin. In ImageJ
Conference 2012, Mondorf, Luxembourg, October 2012.
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2.1 Background

THE goal of this study is to address which components and processes can form an objective
and comprehensive image analysis pipeline to analyze image-based gene expression in

single cells. The developed objective image analysis platform should be applicable for live cell
imaging, thus without additional staining and should perform in an automatic way the entire
image analysis pipeline:

• Fluorescence (confocal) microscopy images.
• Detection of individual cells on the images (segmentation).
• Quantification of the fluorescent signal and other characteristics of each individual cell

(measurement).
• Statistical analysis of the measurements.
• Visualization of the measurements in several graphical ways.

To quantify expression levels of GFP-tagged reporter genes in fluorescent microscope
images, several software tools have been developed. The first step is to detect the individual
cells in the image through segmentation. Detection of cells can be performed both in the
bright-field channel as well as in the fluorescence channel(s). Until recent, a software tool
has been used for screening the yeast GFP-fusion library to investigate global cellular protein
reorganization on exposure to the alkylating agent methyl-methane-sulfonate [Maz13]. In that
image analysis software, developed in Matlab, cellular boundaries are detected after staining the
cell-wall with Alexa 647 conjugated Concanavalin A. A disadvantage of such an approach is that
additional staining is required. Another recent research implements a pipeline including high-
throughput microscopy, automated image analysis, and pattern classification through machine
learning [Cho15]. The approach followed in that research also requires staining. It uses yeast
synthetic genetic array (SGA) technology to introduce a cytosolic red fluorescent protein (RFP)
to mark cell boundaries. Moreover, a number of software tools that processes bright-field images
have been described, such as Pombex [Pen13], CellStat [Kva08] and CellSerpent [Bre11].
Pombex segments Schizosaccharomyces pombe cells in bright-field images. For S. cerevisiae,
however, Pombex is not optimal as they have different shape characteristics. CellStat is able to
segment bright-field images of S. cerevisiae, but it has a constraint on the cells to be detected,
as they must not be encapsulated by other cells [Kva08]. CellSerpent utilizes an active contour
segmentation algorithm for cell detection, where only few features are measured [Bre11].
Moreover, both CellStat and CellSerpent requires the Matlab software to be installed. In another
study, images obtained by confocal microscopy are analyzed to investigate the localization of
the plasma membrane protein Mrh1p-GFP [Bir11]. Image analysis is carried out using modules
derived from the Acapella software that is supplied with the Opera microscope that the software
is developed for, and hence the modules are not freely available.

As expression levels and subcellular localization of tagged genes are highly variable, we
will use bright-field for the detection of cells. In addition, the information from the fluorescent
datasets is given. Nevertheless, the software offers segmentation methods that works well
with fluorescence images when needed. In the next section, we describe the workflow of our
developed platform. The platform is named YeastAnalysis.
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2.2 YeastAnalysis Workflow
Image analysis was probed to accomplish further progress to complement flow cytometric
analysis for the S. cerevisiae yeast cells. This should be part of a comprehensive image
analysis platform. Such platform must have the following components: (1) Segmentation, (2)
Measurement, (3) Data analysis and visualization and (4) a graphical user interface (GUI).

The proposed workflow is depicted in Fig. 2.1. The three major components offered by
the system are shown as separate blocks connected through the GUI. In the next sections
we elaborate on each of these modules including segmentation, measurement, data analysis
and visualization and the GUI. Subsequently, a small scale validation experiment is presented
in Section 2.7. Section 2.8 discusses the hardware and software tools we used during the
development of the platform. We complete this chapter with a conclusion in Section 2.9.

2.3 Segmentation Module
For different image modalities, different segmentation methods give different results. In our
research we identify four different type of images. In Fig. 2.1 we label these images as
Fluorescent Type A, Fluorescent Type B, Bright-field Type C and Bright-field Type D. Four
different segmentation processes are developed for each image type. As a general approach we
always follow the same segmentation path used with Type D; i.e. applying Hough Transform
and Minimal Path algorithms as the core methods. However, when results are not satisfactory,
one can always choose a different method according to the image modality. Type A fluorescent
images are those whose cells show evenly distributed fluorescent signal throughout the cell.
Example of this type are images showing the expression of BMH gene tagged with GFP as a
reporter gene. Type B fluorescent images are those whose cells show strong signal throughout
the cell or nucleus and possesses speckle noise. For example, images showing the nucleus
stained with DAPI signal, and the cytoplasm of the cell shows speckle noise throughout the
cytoplasm possibly corresponding to mitochondria. Type C images uses brightfield channel
where the cell structures are well separated and their contours are well highlighted. Example
of this type, is when the fluorescent channel is weak and its segmentation is not possible with
standard methods; then we use this brightfield channel to detect the cell objects. Type D
images represent the most sophisticated case, where the fluorescent signal is weak, and the
brightfield channel has cells clumped within other cells, or attached to budding cells, leading to
disconnected cell contours.

In this section, we discuss two types of segmentation algorithms used by the system. The
first is filter-based and the second uses Hough Transform and Minimal Path algorithms.

2.3.1 Filter-Based Methods
In these type of segmentation methods, we use one of three different filters as its core processing
followed by triangle auto-threshold, fill holes and morphological watershed algorithms. The
three different filters are the Sigma, Despeckle and Sobel. These filters will be discussed first.
Subsequently we discuss the triangle auto-threshold, fill holes and morphological watersheds.
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Figure 2.1: Workflow of the YeastAnalysis Platform.
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Sigma Filter

We use Sigma filter [Lee83, Sch07] in one of the simple segmentation methods on fluorescent
images. This filter is motivated by the sigma probability of the Gaussian distribution, and it
smooths the image noise by averaging only those neighbourhood pixels that have the intensities
within a fixed sigma range of the center pixel. Smoothing and blurring the images through
Sigma filter makes it possible to acquire binary masks that better represent the shape of the
objects. It was selected for a number of advantages including:

• Noise near edge areas will be smoothed without blurring the edge because only pixels on
one side of the edge are included in the average;

• Preservation of subtle details and linear features;

• Not sensitive to shape distortion;

• Retention of step edges and sharpening of ramp edges;

• Removal of high-contrast spot noise;

• Computationally efficient.

Figure 2.2 illustrate a sample application of sigma filter on S. cerevisiae cells.

(a) Fluorescence Image (b) Applying Sigma Filter

Figure 2.2: Applying Sigma Filter on a Fluorescence Image.

Median Filter

In some fluorescent images, there exists speckle noise, also known as salt-and-pepper kind
of noise. Since Median filters are well known as a good approach to remove such kind of
noise [Gon08], we apply a Despeckle algorithm [Ras16], which is a median filter that replaces
each pixel with the median value in its 3 x 3 neighbourhood. Figure 2.3 shows a threshold
image of yeast cell nuclei before and after the application of the Despeckle algorithm.
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(a) impulsive noise (b) Application of a Median Filter

Figure 2.3: Median Filter.

Sobel Filter

Sobel filter is a discrete differentiation operator, computing an approximation first estimate of
the gradient of the image intensity function. We use the Sobel filter to highlight and detect
the edges of the cells. At each point in the image, the result of the Sobel operator is either
the corresponding gradient vector or the norm of this vector. This vector has the important
geometrical property that it points to the direction of the greatest rate of change at a certain
location (x,y) in the image. The Sobel operator is based on convolving the image with a
3x3 filter masks. These masks are separable and integer valued in the horizontal and vertical
directions and is therefore relatively inexpensive in terms of computations [Gon08, Ras16].

Triangle auto threshold '

&

$

%
Figure 2.4: Triangle auto threshold.

In the filter-based segmentation methods, the
Triangle auto-threshold [Zac77, Ras16] is
used to obtain a binary image as shown in
Fig. 2.5(a). The threshold level in the Trian-
gle auto threshold method is determined on
the basis of the histogram of pixel intensities
as illustrated in Fig. 2.4.

We evaluate the distance from the his-
togram at every level to the hypotenuse of
the triangle having the histogram height and
dynamic range as sides. The histogram level
having the maximum distance corresponds to
the final threshold used by this method. In
Fig. 2.4, point T corresponds to such threshold.
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The microscope we used throughout our research produce images whose histogram has a
weak bimodal distribution and a high kurtosis as it has a distinct peak near the mean, which
belongs to the low extreme of the histogram. Triangle’s method has proved its superiority for
these kind of images as it assumes a peak near one of the extremes and searches the threshold
value toward the other end [Car12]. Additionally, Triangle’s method is applied once on the
histogram and it is computationally in-expensive unlike some other threshold methods such as
the Otsu and Isodata.

The final result of the threshold operation is a binary image. Sometimes some inner parts of
the objects are not recognized as foreground pixels. Hence, we apply Fill Holes algorithm.

Fill Holes

After obtaining a binary image through threshold, the Fill Holes algorithm simply walkthrough
the pixels starting from the boundaries of the image and filling all the pixels with a background
label and stops when facing a foreground pixel. Labelling all the background pixels leaves all
the closed contours and their inner regions to be considered as foreground pixels. This operation
produces a binary mask of the cells. To separate the cells that are connected together, we apply
the morphological watersheds discussed hereafter.

Morphological watersheds

As Fig. 2.5(a) shows, the obtained binary image might have cells clumped together. For separa-
tion of such clumped cells, morphological watersheds [Gon08, Ras16] is used to obtain the final
binary mask of the cells. Figure 2.5(b) shows the same cells from Fig. 2.5(a) processed with
watersheds. The concept of watersheds is based on visualizing an image in three dimensions:
two spatial coordinates versus intensity. In such a "topographic" interpretation, we consider
three types of points: (a) points belonging to a regional minimum; (b) points at which a drop
of water, if placed at the location of any of those points, would fall with certainty to a single
minimum; and (c) points at which water would be equally likely to fall to more than one such
minimum. For a particular regional minimum, the set of points satisfying condition (b) is called
the catchment basin or watershed of that minimum. The points satisfying condition (c) form
crest lines on the topographic surface and are termed divide lines or watershed lines [Gon08].
These watershed lines are located by the algorithm to separate the clumped S. cerevisiae cells.

2.3.2 Hough Transform and Minimal Path

The second type of segmentation methods is developed to be used as a general segmentation
algorithm on bright-field images and it uses our novel Hough Transform and Minimal Path
algorithms in its core. The idea of the new method is to use Hough Transform to locate the
geometrical circles that contains part of the cell contours in a skeleton of the gradient image
where the foreground shapes are reduced to a skeleton of one pixel width. Subsequently, a
polar transformation is applied to resample the pixels surrounding the cells, and apply Minimal
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%(a) Applying Triangle Auto-threshold (b) Applying Watershed Algorithm

Figure 2.5: Threshold Image and Separating Cells.

Path algorithm to find the path (full contour) of every cell. Chapter 3 explains more about this
method. In addition, Chapter 3 describes an extension for the Hough Transform and Minimal
Path algorithm by adding a contour expansion process. This expansion offers more optimized
contours in some image modalities. The extracted contours are then used to obtain a binary
mask of every yeast cell, enabling its measurement in the overlaid fluorescence channel.

After the segmentation process, the extracted contours or the binary masks are used to
measure the individual S. cerevisiae yeast cells. The measurement is performed within the
Measurement module in the image analysis pipeline. The Measurement module is discussed
hereafter.

2.4 Measurement Module

This part of the workflow measures and describes the S. cerevisiae yeast cells for various
features and textures. Using the labelled objects from the binary masks generated during the
segmentation process, measurement of individual cells is made possible. This system provides
an option to choose from a list of features to be measured; moreover, it provides an option to
exclude outliers based on the values of the circularity feature and size of the measured cells.

In this platform, basic feature extraction techniques in image analysis are considered, while
more sophisticated techniques are studied later in Chapter 4. We categorize the basic techniques
used in this platform into two classes. The first is based on first-order statistics and the second
is based on texture measurement. In the following sub-section we start discussing the first-order
statistic features; subsequently, we discuss the basic texture measurements.
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2.4.1 First order statistics based features
By first-order statistic features, we mean all those features computed based on single pixel
values including first-order histogram based features. This is in addition to basic shape and
intensity descriptors.

Assuming that our microscope image is a function f(x,y) of two space variables x and
y, x = 0, 1, . . . .N − 1 and y = 0, 1...M − 1. The function f(x,y) can take discrete values
i = 0, 1...L − 1, where L is the total number of intensity levels in the image. The intensity-level
histogram is a function showing the number of pixels for each intensity level in the whole image.
This function is depicted in Eq. 2.1.

h(i) =
N−1

∑
x=0

M−1

∑
y=0

δ(f(x,y), i), (2.1)

where δ(j, i) is the Kronecker delta function, depicted in Eq. 2.2. The Kronecker delta
function simply increments the intensity level histogram by the value of one at every pixel
whose intensity value j = f(x,y) is equal to that histogram intensity level i.

δ(j, i) = {
1, j = i
0, j ≠ i

(2.2)

The histogram of intensity levels is obviously a concise and simple summary of the statistical
information contained in the image. Calculation of the grey-level histogram involves all single
pixels. The histogram contains the first-order statistical information about the image. The
histogram can also be computed for a sub-image, i.e. the region of interest (RoI) of cell objects.
Different useful image features are worked out from the histogram to quantitatively describe the
first-order statistical properties of the objects. In this research, we considered many basic shape
and intensity descriptors based on the first order statistical information in the images. A list of
those features is depicted in Table 2.1.

2.4.2 Texture Measurement

An image or object texture is an important metric as it gives us information about the spatial
arrangement of intensities in that image or selected region of an image, i.e. the object. A set of
basic texture features [Gon08] is available to be measured in the measurement module. A list of
these texture features is depicted in Table 2.2.

All these measurements of features and simple feature textures are saved automatically into
a CSV (comma-separated values) file that is used at the following step to generate a report,
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Table 2.1: Features based on first order statistics.

Features Description
Size The size of a yeast cell (object) is simply the number of pixels occupied

by that cell in the image, and for SI unit, it is multiplied by the area of
one pixel in square µ-meters (width x height of pixel).

Total Intensity The total intensity of a yeast cell is the total gray-level values of the
pixels occupied by this cell, which ranges between 0 and 255 for the gray
images used.

Intensity Standard
Deviation

The standard deviation from the mean of the intensity values in each cell.

Perimeter The perimeter representation method used to estimate the perimeter of
the cell is that of Vossepoel and Smeulders [Vos82]. This representation
is based on chaincodes:

Lvs = (0.980).Ne + (1.406).No − (0.091).Nc (2.3)

where Ne, No and Nc represents the number of even codes, odd codes
and corners in the chaincode of cell boundaries [Gon08].

Density The density of a particle object is its area multiplied by the average mean
of gray-level values:

d = A ∗ µ (2.4)

where d represents density, A represents area and µ represents mean of
intensity of a measured cell.

Circularity The circularity of detected shapes [Ras16].

Circularity =
4πxSize

perimeter2 . (2.5)

Vacuole Size If the fluorescent protein is expressed by genes known to have expression
in the cytoplasm and nucleus without its vacuoles, the size of the central
vacuole can be estimated. This is computed by using a vacuole filter
algorithm that looks in the fluorescent images for a region, inside the
RoI (region of Interest) representing every cell, that forms the largest
connected region with the lowest intensity values.

Membrane
Features

Different features can be measured in the region close to the cell borders
where membrane proteins are expressed. Such features include size, total
Intensity and Intensity standard deviation.

Nucleus Features For those images that contain a nuclear stain such as DAPI, the nucleus
can be measured for all the features an individual cell could be measured
for.
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Table 2.2: Basic texture measurement.

Features Description
Variance The variance (µ2 or σ2) is a measure of intensity contrast and can be

computed from the second statistical moment.

µ2(z) =
L−1

∑
i=0

(zi −m)
2.P(zi) (2.6)

where zi is the intensity value of the histogram at location i, m is the
mean intensity value, L is the total number of intensity levels (histogram
range), and P(zi) is the corresponding histogram with i between 0 and
L − 1 [Gon08]).

Smoothness The variance (σ2) is used to establish the descriptor of relative smooth-
ness (S):

S(z) = 1 −
1

1 + σ2(z)
(2.7)

This measure is zero for areas of constant intensities where the variance is
zero there, and it approaches 1 for large values of the variance [Gon08].

Skewness The skewness (µ3) of the intensity histogram which is the third statistical
moment.

µ3(z) =
L−1

∑
i=0

(zi −m)
3.P(zi) (2.8)

A negative skewness means that most of the pixel values are high and
thus concentrated at the right side of the histogram. A positive skewness
means that most of the pixel values are low and thus concentrated at the
left side of the histogram [Gon08].

Uniformity The uniformity (U) has a maximum value for a cell image in which all
intensity levels are equal [Gon08].

U(z) =
L−1

∑
i=0
P2

(zi) (2.9)

Entropy The Entropy (e), which is a measure of variability, is zero for constant
images [Gon08].

e(z) = −
L−1

∑
i=0
P(zi).log2P(zi) (2.10)
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or to be inspected manually. More advanced sophisticated feature extraction techniques are
considered in our research to improve the recognition of objects after the segmentation process
and to discriminate yeast cells into different categories with the purpose of identifying subtle
patterns. These sophisticated features are explained in Chapter 4.

2.5 Data Analysis and Visualization Module
After measurement, usually molecular biologists would like to compare two classes of cells to
study any significant changes in cell size or fluorescence intensity in cells having a certain gene
mutation or cultured in a different medium (ex. 2M NaCl, 50mM KCl, etc...). The changes in
features of cells in different conditions are compared usually to wild-type cells. To assist in
achieving this goal of comparison, our system generates automatically a report in pdf format
including basic statistics about the experiment and graph charts to visualize the results.

The statistical information created into the report includes counts of the cells belonging to
different cultures, the mean value of their surface area, and fluorescence intensity along with its
standard deviations. The unpaired student t-test is performed to report the t-value and p-value
to assist in recognizing the significant of the difference between two different cell samples.

The module in the yeast analysis pipeline performs statistical descriptive data analysis.
More advanced analysis of the measurement data is considered in Chapter 4. Such advanced
analysis makes use of machine learning techniques. This machine learning approach is used
to improve the segmentation process. It also makes use of a similar approach to discriminate
various cell conditions aiming at identifying subtle patterns.

The process of data analysis would not provide significant details for users without some
visualization tools. This platform offers some data visualization techniques to assist biologists
in extracting meaningful information from their experiments. A very frequently used graph
chart in yeast cell biology are those scatter plots that visualize the different values of cell surface
area on one axis against fluorescence intensity on the other, with a different label for each cell
culture. Figure 2.6(a) depicts a sample of such plot. A scatter plot is typically used to compare
between two observations represented by two variables to study their correlation, and determine
if the two variables exhibit the same or opposite direction. Other visualization options available
are charts visualizing one attribute of the cells in one chart, as a Pareto chart (cf. Fig. 2.6(b)), a
scatter plot visualizing the Gaussian density distribution of the data for the two cell cultures
(cf. Fig. 2.6(c)), or a box and whiskers plot to facilitate the analysis of the range of data (cf.
Fig. 2.6(d)).
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(a) Scatter Plot (b) Pareto Chart

(c) Scatter Plot of one attribute (d) Box and Whiskers Plot

Figure 2.6: Graph Charts to visualize measurement.

2.6 System GUI

The graphical user interface is a necessary tool that connects the workflow components together.
In its basic structure, the GUI is composed of the different modules mentioned in the workflow
in Fig. 2.1. These modules are provided as separate tabs in a user friendly interface. Figure 2.7
depicts the interfaces of the GUI. Figure 2.7(a) shows the interface where a user can set the
segmentation method and parameters to perform the segmentation process. Figure 2.7(b)
depicts the interface in the measure tab, where users can specify the channels and features
to be processed. Figure 2.7(c) shows the data analysis part, where one can set multiple pairs
of keywords corresponding to different cell strains or cultures. The last tab in the GUI is
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an interface to set the directory of the input images as well as the output directories of the
segmentation, measurement and analysis results. Besides being implemented as a stand-alone
desktop application, this GUI was also implemented as a plugin for the imageJ software [Tle12].

'

&

$

%

(a) Segmentation Tab (b) Measure Tab

(c) Data Analysis Tab (d) I/O Tab

Figure 2.7: GUI of the Yeast Analysis platform.
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2.7 Workflow validation
To validate YeastAnalysis platform, a small scale experiment is performed to compare two
cell cultures. The first sample belonging to a strain of cells having a mutation in the BMH1
gene and expressing Nha1 protein attached to a green fluorescent protein (GFP). This cell
strain is labelled ∆bmh1 Nha1-GFP. The second sample is from a wildtype cell strain ex-
pressing Nha1 protein attached to GFP. This strain is labelled BY4741 Nha1-GFP. A set of
18 images are acquired with a Zeiss LSM5 Exciter confocal microscope. From the segmen-
tation, 188 cells are detected using our novel segmentation method on the bright-field image
channels; i.e. Hough Transform followed by Circular Shortest Path (HCSP). More details
about this method are explained in Chapter 3. Ensuing segmentation, the cells are measured
for various features and all the measurements are written to a CSV file. The measurements
are then analyzed automatically to generate a report including graph charts and statistics.'

&

$

%
Figure 2.8: Sample report from the

experiment analysis.

Such charts are shown in Fig. 2.6. Example of the
statistical information automatically generated into the
report is shown in Fig. 2.8.

Having a look at the chart and the statistics, and
specifically the p-values of the cell size and intensity,
reveals meaningful information. It is clearly visible
that mutant cells belonging to the ∆bmh1 Nha1-GFP
strain are smaller and have less GFP fluorescence than
the wildtype cells in BY4741 Nha1-GFP strain. The
results obtained using the image analysis platform we
developed in our research are in good correspondence
with the flow cytometry test. Figure 2.9 reveals these
results obtained by flow cytometry.'

&

$

%
Figure 2.9: Results of the Flow Cytometry test.
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2.8 Development of YeastAnalysis

The hardware used in the development of YeastAnalysis is a desktop computer equipped with
an Intel® Core™ i7-2600 CPU @ 3.40GHz × 8 processor, and 16 GB of memory installed
with the Ubuntu 12.04 LTS operating system. The software is written in Java using JDK-1.7
including a variety of open-source packages. An ImageJ library package [Ras16] is utilized
to access some existing functions such as the Watershed Algorithm, Fill Holes Algorithm and
Overlays feature. ImageJ plugins are also imported, such as the Sigma-Filter-Plus which is an
implementation of the sigma filter [Sch07]. The output of measurement was integrated with
spreadsheet applications through Java Excel API [jex16]. The t-test and statistical analysis
of these measurements are performed with the support of the Apache commons Mathematics
library [apa16]. Visualization of statistical results was made possible with the JfreeChart
API [jfr16]. Creation of the Pdf reports was done with iText programmable pdf software [ite16].
Moreover, for drawing of the ground-truth images we used the TDR software package [Ver04].
YeastAnalysis and a manual are available for download from [git16].

2.9 Conclusion

In this chapter, we addressed the components and processes that builds up an automatic image
analysis pipeline for the objective analysis of gene expression in single cells, i.e. yeast cells. We
designed a workflow for this pipeline. This workflow is composed of a segmentation module,
a measurement module, a data analysis and visualization module and a GUI connecting the
aforementioned modules.

The segmentation module has various segmentation and image processing algorithms
adopted in this system including the sigma filter based method, median filter based method,
Sobel filter based method and Hough Transform and Minimal Path algorithms. Including as well
the post-processing methods such as Triangle, fill holes and watershed. After the segmentation
phase, there is the measurement phase. The measurement module has various features that could
be selected and measured. These features are categorized into first-order statistical features and
basic texture measurements based on the histogram intensities. After the measurement phase,
comes the data analysis and visualization phase. In this part, the statistical descriptive data
analysis that is performed include the computation of basic statistical metrics and Student’s
t-test for statistical analysis. The GUI of the developed image analysis platform connects the
various modules as separate tabs. There is also a room to add new components. Finally, the
platform is validated in a small scale experiment; the analysis of a study experiment revealed
decreased expression of the Nha1 protein in a yeast strain having a mutation in the BMH1 gene
compared to the wildtype strain.

The results demonstrate that this platform can potentially contribute to the improvement
of the objective analysis and diagnosis of gene expression studies in yeast. It reveals an
advantageous comprehensive image analysis platform that can be used in the laboratory assisting
in analyzing experiments.


