
Algorithms for finite rings
Ciocanea Teodorescu, I.

Citation
Ciocanea Teodorescu, I. (2016, June 22). Algorithms for finite rings. Retrieved from
https://hdl.handle.net/1887/40676

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/40676

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/40676

Cover Page

The handle http://hdl.handle.net/1887/40676 holds various files of this Leiden University
dissertation.

Author: Ciocanea Teodorescu, I.
Title: Algorithms for finite rings
Issue Date: 2016-06-22

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/40676
https://openaccess.leidenuniv.nl/handle/1887/1�

ALGORITHMS FOR FINITE RINGS

Proefschrift
ter verkrijging van

de graad van Doctor aan de Universiteit Leiden
op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties
te verdedigen op woensdag 22 juni 2016

klokke 11:15 uur

door

Iuliana Ciocănea-Teodorescu
geboren te Boekarest, Roemenië

in 1990

Promotores: Prof. dr. Hendrik W. Lenstra (Universiteit Leiden)

Prof. dr. Karim Belabas (Université de Bordeaux)

Samenstelling van de promotiecommissie:

Dr. Owen Biesel (Universiteit Leiden)

Prof. dr. Bart de Smit (Universiteit Leiden)

Prof. dr. Teresa Krick (Universidad de Buenos Aires)

Prof. dr. Lenny Taelman (Universiteit van Amsterdam)

Dr. Wilberd van der Kallen (Universiteit Utrecht)

Prof. dr. Aad van der Vaart (Universiteit Leiden)

This work was funded by Algant-Doc Erasmus Mundus and was carried out at
Universiteit Leiden and l’Université de Bordeaux.

THÈSE
présentée à

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

par Iuliana CIOCĂNEA-TEODORESCU

POUR OBTENIR LE GRADE DE

DOCTEUR
SPECIALITÉ : Mathématiques Pures

Algorithmes pour les anneaux finis

Directeurs de recherche : Hendrik W. LENSTRA, Karim BELABAS

Soutenue le 22 juin 2016 à Leiden, devant la commission d’examen formée de :

LENSTRA, Hendrik W. Professeur Universiteit Leiden Directeur
BELABAS, Karim Professeur Université de Bordeaux Directeur
KRICK, Teresa Professeur Universidad de Buenos Aires Rapporteur
TAELMAN, Lenny Professeur Universiteit van Amsterdam Rapporteur
BIESEL, Owen Docteur Universiteit Leiden Examinateur
DE SMIT, Bart Professeur Universiteit Leiden Examinateur
VAN DER KALLEN, Wilberd Docteur Universiteit Utrecht Examinateur

“Once [the reader] explicitly gives up all practical claims,
he will realize that he can occupy himself with algorithms

without having to fear the bad dreams caused by the messy
details and dirty tricks that stand between an elegant

algorithmic idea and its practical implementation. He will
find himself in the platonic paradise of pure mathematics,
where a conceptual and concise version of an algorithm is
valued more highly than an ad hoc device that speeds it up
by a factor of ten and where words have precise meanings
that do not change with the changing world. (...) And in

his innermost self he will know that in the end his own
work will turn out to have the widest application range,

exactly because it was not done with any specific
application in mind.”

H.W. Lenstra. Algorithms in Algebraic Number Theory
(1992). BAMS, 26: 211–244

“If P = NP, then the world would be a profoundly different
place than we usually assume it to be. There would be no

special value in creative leaps, no fundamental gap between
solving a problem and recognizing the solution once it’s

found. Everyone who could appreciate a symphony would
be Mozart; everyone who could follow a step-by-step

argument would be Gauss (...).”

Scott Aaronson. Personal blog:
www.scottaaronson.com/blog/ (2006)

I died for beauty, but was scarce
Adjusted in the tomb,

When one who died for truth was lain
In an adjoining room.

Emily Dickinson. Fr 448, J 449 (1890)

Contents

Introduction i

List of symbols v

1 Background 1
1.1 Algorithms and complexity . 1
1.2 Basic ring theory . 4
1.3 Basic module theory . 5
1.4 More ring theory . 7
1.5 Idempotents . 9
1.6 More module theory . 10
1.7 Quasi-Frobenius rings . 15
1.8 Frobenius algebras and symmetric algebras 16
1.9 Duality . 17

2 Linear algebra over Z:
basic algorithms for finite abelian groups 19
2.1 Lattices . 20
2.2 Hermite and Smith normal forms . 22
2.3 Representing objects and basic constructions 26
2.4 Homomorphism groups and tensor products 33
2.5 Splitting exact sequences . 34
2.6 Torsion subgroups, exponents, orders, cyclic decompositions 35
2.7 Homomorphism groups and tensor products reconsidered 39
2.8 Projective Z/mZ-modules . 40

3 Linear algebra over Z:
basic algorithms for finite rings 45
3.1 Representing objects and basic constructions 46
3.2 Computations with ideals . 48
3.3 Computing the centre and the prime subring of a finite ring 49
3.4 Computing the Jacobson radical . 50
3.5 Other known algorithms and open questions 50

Algorithms for finite rings

4 The module isomorphism problem 53
4.1 Introduction . 53
4.2 Context . 55
4.3 MIP via non-nilpotent endomorphisms 56
4.4 MIP via an approximation of the Jacobson radical 59
4.5 Remark on implementation and performance 63

5 A miscellaneous collection of algorithms 65
5.1 Testing if a ring is a field . 65
5.2 Testing if a ring is simple . 66
5.3 Testing if a module is simple . 67
5.4 Testing if a module is projective . 67
5.5 Constructing projective covers . 68
5.6 Constructing injective hulls . 69
5.7 Testing if a module is injective . 70
5.8 Testing if a ring is quasi-Frobenius . 70
5.9 Constructive tests for existence of injective and surjective module ho-

momorphisms . 70

6 Approximating the Jacobson radical of a finite ring 75
6.1 Introduction . 75
6.2 Separability . 76
6.3 An approximation of the Jacobson radical 96
6.4 Computing the generalised prime subring 111

Bibliography 115

Index 123

Abstract 125

Résumé 126

Samenvatting 127

Acknowledgements 129

CV 130

Introduction

Throughout this text, rings are assumed to contain a unit element, but are not nec-
essarily commutative. Modules are always left-unital, unless otherwise specified.

The main goal of this PhD thesis is to develop a toolbox for working with finite
rings and finite modules within algorithms. The motivation to study problems con-
cerning finite rings and finite modules is twofold. The first reason is a theoretical
one and stems from the fundamental nature of the problems that arise. Since we are
mostly interested in viewing algorithms as mathematical objects in their own right,
the focus will be on deterministic polynomial-time algorithms. The second reason to
study these problems refers to the necessity of having as many algorithms as possible
available in computer algebra systems to deal with finite rings.

The first chapter of this thesis contains the necessary background theory on al-
gorithms, complexity, rings and modules. Chapters 2 and 3 contain a series of basic
algorithms for finitely generated abelian groups and finite rings. These will be used
implicitly and extensively in the rest of the algorithms described.

The first algorithmic problem we tackle is the module isomorphism problem. The
module isomorphism problem can be formulated as follows: design a deterministic
algorithm that, given a ring R and two left R-modulesM andN , decides in polynomial
time whether they are isomorphic, and if yes, exhibits an isomorphism.

Isomorphism problems are some of the most natural algorithmic questions. Given
two objects of the same nature, we would like to be able to tell if they are isomor-
phic, and if so, we would ideally also want to produce an isomorphism. Objects for
which isomorphism problems have been extensively studied include graphs, groups
and rings. The easy formulation of these problems and their fundamental nature does
not however entail that they have a trivial solution. In fact, for many problems of this
type, no deterministic polynomial-time algorithms are known ([11, 52, 53]).

Two intermediate results, valuable in themselves, are proved in Chapter 4:

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring R and two finite R-modules M and N , computes a maximum length R-module
C that is isomorphic to a direct summand both of M and of N . Moreover, the al-
gorithm computes direct complements of C both in M and in N , together with the
corresponding isomorphisms.

i

ii Algorithms for finite rings

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring R and a finite R-module M , computes a set of generators for M of minimum
cardinality.

Both of these theorems can be used to provide a solution for the module isomor-
phism problem.

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring R and two finite R-modules M and N , decides whether M and N are isomorphic,
and if they are, exhibits an isomorphism.

Chapter 5 contains a collection of deterministic polynomial-time algorithms for
testing properties of rings and modules.

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring R and a finite R-module M , tests whether M is

(i) projective,
(ii) injective,

(iii) simple.

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring R, tests whether R is

(i) simple,
(ii) quasi-Frobenius.

Moreover,

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring R and a finite R-module M , constructs a projective cover and an injective hull
of M .

We also discuss the algorithmic problem of constructively testing for existence of
injective and surjective homomorphisms between two finite length modules over a ring
R, i.e. the problem of testing for existence and finding such homomorphisms when
they do exist. If R is a finite-dimensional algebra over a field, this problem can be
cast in the context of matrix completion, and has been shown to be NP-hard. We
consider the case where R is a finite ring and one of the modules is either projective
or injective over R.

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring R and two finite R-modules M and N , one of which is R-projective, constructively
tests for existence of a surjective R-module homomorphism M � N .

Dually:

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring R and two finite R-modules M and N , one of which is R-injective, constructively
tests for existence of an injective R-module homomorphism M ↪→ N .

Iuliana Ciocănea-Teodorescu iii

For the remaining cases we obtain negative results:

Theorem. The problem of deciding existence of an injective module homomorphism
between two modules over a finite ring, one of which is projective over that ring, is
NP-complete.

A very important class of rings is that of semisimple rings. Let R be a ring and
M an R-module. Then M is said to be semisimple if every R-submodule of M has
a direct complement in M . A ring R is said to be semisimple if the left-regular
(or equivalently right-regular) module is semisimple. Semisimple rings have a lot of
structure: everything breaks down in an orderly fashion. Moreover, the Wedderburn
theorem gives a complete classification of such rings as finite products of matrix rings
over division rings.

The notion of semisimplicity is inextricably linked to that of the Jacobson radical
of a ring, defined as the intersection of all maximal left ideals. The Jacobson radical
of a ring R is a two-sided ideal, and we denote it by J(R). The rings R and R/ J(R)
have the same simple left modules, which suggests that a study of R/ J(R) will reveal
much of the structure of R. Moreover, if R is left-artinian, then J(R) is a nilpotent
ideal of R and R is semisimple if and only if J(R) = 0.

When trying to answer questions about left-artinian rings and modules over them,
it is often convenient to reduce the problem at hand to the semisimple case, where
structures are much more manageable, and then “lift”. This places the computation
of the Jacobson radical at the heart of many problems. While it can be done determin-
istically in polynomial time for matrix algebras over a field [15, 18, 27, 75], we cannot
expect to have a deterministic polynomial-time algorithm for the general case, since
the problem ultimately reduces to finding the squarefree part of an integer (consider
the ring Z/nZ, for some n ∈ Z>0). In Chapter 6, we attempt to deterministically con-
struct approximations of the Jacobson radical of a finite ring that are “satisfactory”
for many practical purposes, that is, two-sided nilpotent ideals such that when we
quotient the ring by them, we are left with something that is “almost” semisimple.

The notion used to approximate semisimplicity is that of separability. Given a
commutative ring R, an R-algebra S is said to be separable over R if S is projective
as an S ⊗R So-module, where So denotes the opposite ring of S. A ring is said to be
separable if it is separable as a Z-algebra.

Definition. Let A be a finite ring and jA ⊂ A an ideal. We say jA is an approximation
of the Jacobson radical of A if

(A1) jA is a two-sided nilpotent ideal of A,
(A2) A/jA is finite separable,
(A3) A/jA is projective as a module over its prime subring.

The resulting ring, A/jA, has many good properties, e.g. it has “many” projective
modules (via projectivity lift), it is quasi-Frobenius, it is isomorphic to its opposite
as rings. Moreover, finite separable rings can be classified as finite products of ma-
trix rings over certain commutative rings. We show that approximations of Jacobson
radicals can be efficiently computed.

iv Algorithms for finite rings

Theorem. There exists a deterministic polynomial-time algorithm that, given a finite
ring A, computes an approximation of the Jacobson radical of A.

We are interested in deterministic polynomial-time algorithms that produce ap-
proximations of the Jacobson radical of a finite ring and have the additional property
that, when run on two isomorphic rings, they output isomorphic approximations of
their Jacobson radicals, even when the ring isomorphism is unknown.

In fact, we exhibit not one, but two algorithms as described by the above theorem.
If we denote by F the class of finite rings, then the two families of ideals (jA)A∈F and
(j′A)A∈F , produced by the two algorithms are functorial under isomorphisms, i.e. if
φ : A→ B is an isomorphism of finite rings, then φ(jA) = jB and φ(j′A) = j′B .

List of symbols

Fq finite field with q elements

Z ring of integers

Z>0 set of positive integers

Z≥0 set of non-negative integers

|S| cardinality of a set S

Mn(R) ring of n× n matrices with entries in the ring R

Mn×m(R) set of n×m matrices with entries in the ring R

Re the enveloping algebra of R (page 76)

Ro the opposite ring of the ring R

R[G] the group ring of G over R

Max(R) set of maximal ideals of a commutative ring R

Spec(R) set of prime ideals of a commutative ring R

J(R) Jacobson radical of a ring R

Z(R) centre of a ring R

char(R) characteristic of a ring R

rad(n) the product of all primes dividing an integer n

↪→ injective map

� surjective map

M ⊗R N tensor product of M with N over R

EndR(M) ring of R-endomorphisms of M

HomR(M,N) group of R-homomorphisms from M to N

Mfg
R category of finitely generated right R-modules

MR category of right R-modules

v

vi Algorithms for finite rings

fg
RM category of finitely generated left R-modules

RM category of left R-modules

RMS R-S-bimodule M

Chapter 1

Background

This chapter introduces the terminology that will be used throughout the rest of the
text. The first section contains a brief discussion about algorithms and complexity,
followed by a list of examples of basic algorithmic questions (primality testing, integer
factorisation, coprime factorisation). The remaining sections review basic facts of ring
and module theory. We will focus on those results that are specific to noncommutative
ring theory.

The main references for this chapter are: [66, 73], for the section concerning algo-
rithms, and [56, 57, 58, 60], for the rest.

1.1 Algorithms and complexity

For an entirely formal discussion of algorithms and complexity, one needs to enter
the realm of theoretical computer science jargon. Fortunately, however, this can be
avoided, since it so happens that the intuitive notions we have of algorithms, “hard-
ness” of a computational problem, “efficiency” etc., are enough for a meaningful dis-
cussion, and complexity theory appears to be “robust” enough to allow us to work
with them.

Formally, an algorithm is a Turing machine. Intuitively, an algorithm is a sequence
of steps that takes as input a finite sequence of nonnegative integers and produces
an output in the form of another finite sequence of nonnegative integers. An integer
is represented inside an algorithm by a string of bits, and a step in the algorithm is
then a bit operation. It is also useful to have a notion of the “size” of an input. If
n ∈ Z≥0, then the length of n is taken to be length(n) := log2(n + 2), reflecting the
number of bits required to write n down in binary. The length of a negative integer m
is 1 + length(|m|) and the length of an input is the sum of the lengths of the integers
that compose it.

We would like to study the number of steps needed for an algorithm to perform
a certain task. The running time represents the number of steps required to produce

1

2 Algorithms for finite rings

an output. An algorithm is said to be polynomial-time if its running time is bounded
above by a polynomial expression in the length of the input. The running time of an
algorithm is often referred to as the complexity of the algorithm. In our case, this is
the bit-complexity, as opposed to e.g. the arithmetic complexity, where a step is taken
to be an arithmetic operation.

Naturally, we are interested in more than just performing arithmetic in Z. How-
ever, virtually any mathematical object of interest can be encoded as a sequence of
nonnegative integers. For the objects we are interested in, we will see exactly how to
do this in the following two chapters.

Throughout this text, we will be exclusively interested in deterministic polynomial-
time algorithms, i.e. algorithms in the running of which no random bit is generated.
While allowing for probabilistic algorithms (e.g. Las Vegas or Monte Carlo algorithms)
leads in practice to increased efficiency, these algorithms reveal less about the intrinsic
difficulty of the problem at hand and are thus of less theoretical interest. We shall
not think about them.

Furthermore, we will be content with being able to declare a certain algorithm as
running in polynomial time, without computing exact exponents. The main reason
for this is that we have not conceived the algorithms presented in this thesis with
the intention of also implementing them. Therefore, there are countless improvements
and randomised variations possible, which we have chosen not to explore in detail.
Computing running times of an algorithm that is deliberately non-optimal seems fu-
tile.

Algorithms are often thought of as auxiliary objects, whose main reason for ex-
istence is to facilitate experimentation within computer algebra systems, with the
purpose of confirming or invalidating hypotheses formulated in a more theoretical
setting, providing examples or guiding the mathematician’s intuition. In these cases,
one is rarely interested in the “intrinsic” difficulty of a problem. Instead, one usually
focuses one’s attention to a very particular instance of a problem and only desires
that the algorithm used to solve it output a result in a “reasonable” amount of time.

Under this paradigm, our preference for deterministic polynomial-time algorithms
seems at least odd and perhaps even outdated. However, the viewpoint that we adopt
in this thesis is that algorithms are mathematical objects per se, worthy of independent
study. The fact that a problem can be solved deterministically in polynomial time says
that the problem is not intrinsically difficult or mysterious.

1.1.1 Complexity classes

After fixing the model of computation, we may wish to classify problems based on the
rate at which they use up a certain resource, e.g. time. This gives rise to complexity
classes.

Within complexity classes, we can order the problems according to their difficulty
by using reductions. A reduction from a problem Q to a problem P is an intermediate
algorithm that, given a solution to a problem P , produces a solution to another

Iuliana Ciocănea-Teodorescu 3

problem Q. We say Q reduces to P . This formulation suggests that problem P is “at
least as hard” as Q. Intuitively, a reduction has to be an “easy” computation. We will
mainly be interested in reductions that are deterministic polynomial-time algorithms.

The problems that are maximal elements with respect to the partial ordering
induced by reductions are said to be complete for that complexity class. These prob-
lems capture the difficulty of the entire class. Moreover, the existence of a “natural”
complete problem in a complexity class guarantees that the class is not “artificial”.

The most important complexity classes are listed below, together with informal
descriptions:

1. P: consists of problems that can be solved by a deterministic polynomial-time
algorithm;

2. NP: consists of problems whose solutions can be verified deterministically in
polynomial time;

3. NP-hard: a problem A is NP-hard if every problem B in NP can be reduced to
A;

4. NP-complete: consists of problems that are both in NP and NP-hard.

Clearly P ⊆ NP. The question whether the reverse inclusion holds is at this time one
of the most important open problems in theoretical computer science.

If P 6= NP, then there exist problems that are in NP, but are neither NP-complete,
nor in P (see [73], Theorem 14.1). These are called NP-intermediate problems. How-
ever, no “natural” NP-intermediate problems are known.

1.1.2 Integer factorisation, coprime factorisation and primal-
ity testing

Perhaps the simplest question one might ask oneself is, if given a positive integer,
whether one can find a factorisation into primes. Despite its fundamental nature, the
problem of integer factorisation is notoriously difficult, which has made it the heart of
many algorithms used in cryptography. It is easy to see that integer factorisation lies
in the complexity class NP. However, no deterministic polynomial-time algorithm for
it is known. It is also not thought to be NP-complete, and is hence considered to be
a candidate for the NP-intermediate class. There is an extensive literature devoted to
a large variety of algorithms for integer factorisation (see e.g. [13, 62]).

A similar and related problem is that of finding square divisors of a given integer,
for which there is also no known deterministic polynomial-time algorithm (see [59] or
[12], Section 7.1).

Factoring into primes is out of our reach. However, given a set of integers, we can
simultaneously factor them into “coprime” factors.

Definition 1.1.1 ([8], Section 4,7). Let S be a finite set of positive integers. A coprime
base for S is a set of positive integers B such that:

4 Algorithms for finite rings

(i) 1 /∈ B,
(ii) elements of B are pairwise coprime,

(iii) each element of S can be written as a product of powers of elements of B.

Theorem 1.1.2 ([8], Algorithm 18.1). (Coprime Base Algorithm) There exists a
deterministic polynomial-time algorithm that takes as input a finite set of positive
integers S and outputs a coprime base B for S, and a factorisation of each element
of S into products of powers of elements of B.

Furthermore, primality testing has been shown to be in P.

Theorem 1.1.3 ([1]). There exists a deterministic polynomial-time algorithm that,
given n ∈ Z>1, determines if n is prime.

1.2 Basic ring theory

Definition 1.2.1. A ring is a triple (R,+, ·), where R is a set and +, · : R×R→ R
are binary operations such that:

(R1) (R,+) is an abelian group,
(R2) (R, ·) is a monoid, i.e. the operation · is associative and has an identity element,
(R3) for all x, y, z ∈ R, we have x · (y+ z) = x · y+ x · z and (x+ y) · z = x · z+ y · z.

We say (R,+, ·) is a commutative ring if, in addition (R,+, ·) satisfies

(R4) for all x, y ∈ R, we have x · y = y · x.

We denote the identity element of (R,+) by 0R, and the identity element of (R, ·) by
1R. A subring of (R,+, ·) is a subset S ⊂ R such that (S,+, ·) is itself a ring and
1R ∈ S.

Definition 1.2.2. Let R be a ring.

(i) We define the centre of R to be

Z(R) := {r ∈ R | ∀s ∈ R : rs = sr}.

(ii) We define the characteristic of R to be the integer n ∈ Z≥0 such that ker(Z →
R+, 1 7→ 1R) = nZ.

Note 1.2.3. Let R be a finite ring and let R+ denote the underlying abelian group
of R. Then

char(R) = exp(R+),

where exp(R+) is the exponent of the abelian group R+, i.e. the smallest positive
integer m such that for all r ∈ R+, the composition of r with itself m times equals
the identity element.

Definition 1.2.4. Let (R,+, ·) be a ring. A left ideal of R is subset I ⊂ R such that

Iuliana Ciocănea-Teodorescu 5

(I1) (I,+) is an abelian subgroup of (R,+),
(I2) for all r ∈ R and i ∈ I, we have ri ∈ I.

Analogously, we can define right ideals. An ideal is said to be two-sided, if it is both
right and left.

Definition 1.2.5. Let R be a ring and I ⊆ R a one-sided (or two-sided) ideal of R.
Then

(i) I is said to be nil if every element of I is nilpotent.
(ii) I is said to be nilpotent if there exists n ∈ Z>0 such that In = 0.

Definition 1.2.6. A ring R is said to be simple if R is nonzero and the only two-sided
ideals of R are 0 and R.

Definition 1.2.7. Let (R,+R, ·R), (S,+S , ·S) be two rings. A ring homomorphism
F : R → S is a homomorphism of the underlying abelian groups, such that F (1R) =
1S and for all r1, r2 ∈ R, we have F (r1 ·R r2) = F (r1) ·S F (r2). A bijective ring
homomorphism is called a ring isomorphism.

Definition 1.2.8. Let R be a ring. We define the prime subring of R to be the image
of the ring homomorphism Z→ R, given by 1 7→ 1R.

Definition 1.2.9. An algebra is a pair of rings, k and R, with k commutative,
together with a ring homomorphism ϕ : k → R such that im(ϕ) ⊆ Z(R). We then say
that R is an algebra over k.

Theorem 1.2.10 ([27], Theorem 1.1). Let R be a finite-dimensional algebra over a
field F and let n := dimF(R). Then R is isomorphic to a subalgebra of Mn(F).

Theorem 1.2.11 ([57], Theorem 3.1). Let R be a ring, n ∈ Z>0 and S = Mn(R).
Then

(i) If I is a two-sided ideal of R, then Mn(I) is a two-sided ideal of S.
(ii) Every two-sided ideal of S is of the form Mn(I), for some two-sided ideal I of

R.

1.3 Basic module theory

Definition 1.3.1. Let R be a ring. A left R-module is an abelian group (M,+),
together with an action R×M →M such that:

(M1) for all r, s ∈ R and x ∈M , we have r(sx) = (rs)x,
(M2) for all r, s ∈ R and x ∈M , we have (r + s)x = rx+ sx,
(M3) for all r ∈ R and x, y ∈M , we have r(x+ y) = rx+ ry,
(M4) for all x ∈M , we have 1Rx = x.

Analogously, we can define right R-modules. A submodule of a left R-module M is
an abelian subgroup N ⊂M such that RN ⊆ N .

6 Algorithms for finite rings

Note 1.3.2. By a module, we will always mean a left module.

Definition 1.3.3. Let R,S be two rings. An R-S-bimodule is an abelian group (M,+)
such that

(B1) M is a left R-module,
(B2) M is a right S-module,
(B3) for all x ∈M , r ∈ R and s ∈ S, we have (rm)s = r(ms).

We often write RMS for an R-S-bimodule M .

Definition 1.3.4. Let R be a ring. Then the left-regular R-module, RR, is the abelian
group (R,+), together with an action R×R→ R given by left-multiplication. We can
similarly define the right-regular R-module, RR.

Definition 1.3.5. Let R be a ring. We say an R-module M is free if M ∼=
⊕

i∈I Ri =:

R(I) as R-modules, where I is an arbitrary indexing set and Ri ∼= R for all i ∈ I.

Definition 1.3.6. Let R be a ring. We say that R has left IBN (Invariant Basis
Number) if for all n,m ∈ Z>0, whenever RR

n ∼= RR
m, we have that n = m.

Note 1.3.7 ([56], Corollary 1.2). Let R be a ring. If RR
(I) ∼= RR

(J), where R is
nonzero and I is infinite, then |I| = |J |.

Definition 1.3.8. Let R be a ring with left IBN and let M ∼= R(I) be a free R-module,
for some indexing set I. The rank of M over R, which we denote by rkR(M) is the
cardinality of I.

Example 1.3.9 ([56], Example 1.6). The following rings have left IBN: division rings,
local rings, nonzero commutative rings, nonzero left-artinian rings.

Definition 1.3.10. Let R be a ring and M,N two R-modules. A module homomor-
phism f : M → N is a homomorphism of the underlying abelian groups, such that for
all r ∈ R, we have f(rm) = rf(m).

Definition 1.3.11. Let R be a ring and M an R-module. Then

(i) M is simple if M 6= 0 and its only submodules are 0 and M .
(ii) M is indecomposable if M 6= 0 and M cannot be written as the direct sum of

two nontrivial, proper submodules.
(iii) M is semisimple if for any submodule N ≤ M , there exists C ≤ M such that

M = N ⊕ C.
(iv) M is artinian if every descending chain of submodules of M stabilizes.
(v) M is noetherian if every ascending chain of submodules of M stabilizes.

(vi) M is finitely generated over R if there exists a finite set X ⊂ M such that
M =

∑
x∈X Rx.

(vii) M has finite length if M has a finite composition series, i.e. there exists t ∈ Z≥0
and a sequence (Ni)

t
i=0 of submodules of M such that M = Nt > Nt−1 > . . . >

N1 > N0 = 0 and for all 0 ≤ i ≤ t− 1, we have that Ni+1/Ni is simple.

Iuliana Ciocănea-Teodorescu 7

Proposition 1.3.12 ([57], Theorem 19.16). (Fitting’s Lemma) Let R be a ring, M
a finite-length R-module and f ∈ EndR(M). Then there exists n ∈ Z>0 such that

M = ker(fn)⊕ im(fn).

Theorem 1.3.13 ([57], Corollary 19.22). (Krull-Remak-Schmidt Theorem) Let R be
a ring and M an R-module of finite length. Then there exist n ∈ Z>0 and indecom-
posable submodules Mi ≤M such that

M =

n⊕
i=1

Mi.

Moreover, n is uniquely determined, and the sequence (Mi)
n
i=1 is uniquely determined

up to isomorphism, and up to a permutation.

Proposition 1.3.14. Let R be a ring and I ⊂ R a two-sided ideal. Let M be an
abelian group. Then M is an R/I-module if and only if M is an R-module that is
annihilated by I.

Proof. Suppose M is an R-module that is annihilated by I. Then we can define an
R/I-module structure on M , given by R/I ×M → M , (r + I)m 7→ rm. Conversely,
if M is an R/I-module, then M is an R-module via R ×M → M , rm 7→ rm, where

: R→ R/I. Clearly M is then annihilated by I.

1.4 More ring theory

1.4.1 Menagerie of rings I

Definition 1.4.1. Let R be a ring. Then

(i) R is a division ring if R 6= 0 and for all 0 6= r ∈ R, there exists s ∈ R such that
rs = sr = 1R.

(ii) R is Dedekind-finite if every element of R that is left-invertible is also right-
invertible.

(iii) R is left-artinian (resp. right-artinian) if RR (resp. RR) is artinian.
(iv) R is left-noetherian (resp. right-noetherian) if RR (resp. RR) is noetherian.

Proposition 1.4.2 ([57], Theorem 3.3). Let D be a division ring and let R =Mn(D),
for some n ∈ Z>0. Then, up to isomorphism, R has a unique simple left module V ,
and V ∼= Dn as R-modules.

1.4.2 Semisimple rings

One of the most important class of rings is that of semisimple rings.

Theorem 1.4.3 ([57], Theorems 2.5, 2.8, Corollary 3.7). Let R be a ring. Then the
following are equivalent:

8 Algorithms for finite rings

(i) The left-regular module, RR, is semisimple.
(ii) All left R-modules are semisimple.

(iii) All left R-modules are projective.
(iv) All left R-modules are injective.

Replacing “left” with “right” gives further equivalent conditions.

Definition 1.4.4. Let R be a ring. If R satisfies any of the conditions of Theorem
1.4.3, then R is said to be a semisimple ring.

Theorem 1.4.5 ([57], Theorem 3.5). (Wedderburn’s Theorem) Let R be a ring. Then
R is semisimple if and only if

R ∼=
t∏
i=1

Mni(Di),

where t ∈ Z≥0, ni ∈ Z>0 and the Di are division rings.

Note 1.4.6. Let R be a semisimple ring. Then the isomorphism classes of simple
R-modules form a finite set. Moreover, the proof of Theorem 1.4.5 shows that

R ∼=
∏

S simple

EndEndR(S)(S),

where the product ranges over the isomorphism classes of simple R-modules.

1.4.3 The Jacobson radical

The notion of semisimplicity is inextricably linked to that of the Jacobson radical.

Definition 1.4.7. Let R be a ring. The Jacobson radical is defined as

J(R) :=
⋂
I⊂R

I max left ideal

I.

Theorem 1.4.8 ([57], Corollary 4.2). Let R be a ring. Then

J(R) =
⋂
M

M simple R-module

annR(M)

Theorem 1.4.9 ([57], Lemma 4.11, Theorems 4.12,4.14). Let R be a ring and J(R)
its Jacobson radical. Then

(i) J(R) is a two-sided ideal of R.
(ii) If I ⊂ R is a nil one-sided ideal, then I ⊆ J(R).

(iii) If R is left-artinian, then J(R) is the largest nilpotent left (resp. right) ideal of
R.

(iv) R is semisimple if and only if R is left-artinian and J(R) = 0.

Iuliana Ciocănea-Teodorescu 9

Theorem 1.4.10 ([18], Section 2). Let R be a finite-dimensional algebra of matrices
over a field F, where char(F) = 0. Then

J(R) = {r ∈ R | Tr(rs) = 0 for all s ∈ R}. (1.1)

Proposition 1.4.11 ([57], Exercise 4.12B). For any collection of rings {Ai}i∈I we
have J(

∏
iAi) =

∏
i J(Ai).

Proposition 1.4.12 ([57], Example 21.14). Let R be a ring and n ∈ Z>0. Then
J(Mn(R)) =Mn(J(R)).

Proposition 1.4.13. Let R be a ring, I ⊆ R a two-sided nilpotent ideal and M an
R-module. Then M is an R/I-modules, and M is simple over R/I if and only if it is
simple over R.

Proof. This is an easy corollary of Proposition 1.3.14.

1.4.4 Menagerie of rings II

Definition 1.4.14. Let R be a ring. Then

(i) R is semilocal if R/ J(R) is semisimple.
(ii) R is semiprimary if J(R) is nilpotent and R/ J(R) is semisimple.

(iii) R is local if R/ J(R) is a division ring.

Theorem 1.4.15 ([57], Theorem 19.1). Let R be a ring. Then R is local if and only
if R has a unique maximal left (equiv. right) ideal.

1.5 Idempotents

Definition 1.5.1. Let R be a ring. An element e ∈ R is an idempotent if e2 = e.
Two idempotents e1 and e2 are said to be orthogonal if e1e2 = e2e1 = 0.

Definition 1.5.2. Let R be a ring and e ∈ R an idempotent. Then

(i) e is central if e ∈ Z(R).
(ii) e is primitive if e 6= 0 and it cannot be written as the sum of two nonzero

orthogonal idempotents.
(iii) e is centrally primitive if e ∈ Z(R), e 6= 0 and e cannot be written as the sum

of two nonzero orthogonal central idempotents.

Definition 1.5.3. A ring R is said to be connected if R 6= 0 and the only central
idempotents in R are 0 and 1.

Theorem 1.5.4. Let R be a ring, and M an R-module.

(i) Let N,P be R-modules. Then M = N ⊕ P if and only if there exists an idem-
potent e ∈ EndR(M) such that N = e(M) and P = (1− e)(M).

10 Algorithms for finite rings

(ii) Let A,B be R-modules. Then R = A⊕B if and only if there exists an idempotent
e ∈ R such that A = Re and B = R(1− e).

(iii) ([77], Proposition 1.1.14) Let R1, R2 be two-sided ideals of R. Then R = R1×R2

if and only if there exist central orthogonal idempotents e1, e2 such that e1+e2 =
1, with Ri = Rei, for i = 1, 2.

Let R be a ring and suppose that 1 ∈ R can be written as a finite sum of orthogonal
centrally primitive idempotents. Then such a decomposition 1 = e1+. . .+en is unique
up to permutation of the summands, and R can be written as a finite product of
connected rings. Moreover, we have

R = Re1 ⊕ . . .⊕Ren.

We call this a block decomposition of R.

Theorem 1.5.5 ([57], Proposition 22.2). Let R be a left-noetherian ring. Then R has
a block decomposition.

Proposition 1.5.6. Let R be a ring. If R has a block decomposition R = Re1 + . . .+
Ren, where {ei}ni=1 is a set of orthogonal centrally primitive idempotents of sum 1,
then Z(R) has block decomposition Z(R) = Z(R)e1 + . . .+ Z(R)en.

Theorem 1.5.7 ([57], Corollary 19.19). A nonzero left-artinian ring R is local if and
only if R has no nontrivial idempotents.

Proposition 1.5.8. Let R be a left-artinian ring with Jacobson radical J(R). Then the
natural projection p : R→ R/ J(R) induces a surjective map on the set of idempotents.

Proof. Let E ∈ R be an idempotent. Then certainly p(E) is an idempotent in R/ J(R).
Suppose e ∈ R/ J(R) is an idempotent, i.e. e2− e ∈ J(R). What we want to find is an
element satisfying x2 − x = 0 in R, which is mapped to e. Consider the polynomial
F (x) = 3x2 − 2x3. Let e1 := F (e). Then

e21 − e1 = (3e2 − 2e3)2 − (3e2 − 2e3) = (4e2 − 4e− 3)(e2 − e)2 ∈ J(R)2,

so e21 − e1 ∈ J(R)2. Moreover, e1 = e− (2e− 1)(e2 − e), so e1 ≡ e mod J(R).

We define ei := F (ei−1). By induction, we have e2i − ei ∈ J(R)2
i

and ei ≡ e
mod J(R). Since R is left-artinian, J(R) is nilpotent, so there exists n ∈ Z≥0 such
that e2n − en ∈ J(R)n = 0. Then E = en is the element we were after.

Remark 1.5.9. The key to the above proof is that e2− e is nilpotent. Hence we can
use the same lifting technique against any nil ideal of R.

1.6 More module theory

1.6.1 Schur’s Lemma, Converse Schur Lemma

Proposition 1.6.1 ([57], Lemma 3.6). (Schur’s Lemma) Let R be a ring and M a
simple module. Then EndR(M) is a division ring.

Iuliana Ciocănea-Teodorescu 11

Note 1.6.2. The converse is not necessarily true. To see this, let F be a field and
consider the ring

R =

(
F F
0 F

)
and the R-module

M = R

(
0 0
0 1

)
=

(
0 F
0 F

)
.

Then EndR(M) ∼= F , but M is not simple.

Definition 1.6.3. Let R be a ring. We say RM, the category of R-modules, satisfies
the converse of Schur’s Lemma if every R-module whose endomorphism ring is a
division ring, is in fact simple.

Theorem 1.6.4 ([71], Theorem 1.6). (Converse Schur) Let R be a semiprimary ring.
Then the category of R-modules, RM, satisfies the converse of Schur’s Lemma if and
only if R is a finite direct product of full matrix rings over local rings.

1.6.2 Nakayama’s Lemma

Theorem 1.6.5 ([57], Lemma 4.22). (Nakayama’s Lemma) Let R be a ring and
J ⊆ R a left ideal of R. Then the following are equivalent:

(i) J ⊆ J(R).
(ii) For any finitely generated left R-module M ,

J ·M = M ⇒M = 0.

(iii) For any left R-modules N ≤M such that M/N is finitely generated,

N + J ·M = M ⇒ N = M.

1.6.3 Projective and injective modules

Definition 1.6.6. Let R be a ring and P an R-module. Then P is said to be pro-
jective if for any surjective R-module homomorphism g : B � C and any R-module
homomorphism f : P → C, there exists an R-module homomorphism h : P → B such
that f = gh:

P

B C 0.

fh

g

Theorem 1.6.7 ([56], §2A). Let R be a ring and P an R-module. Then the following
are equivalent:

(i) P is projective.
(ii) P is a direct summand of a free R-module.

12 Algorithms for finite rings

(iii) Every surjective R-module homomorphism M � P splits.
(iv) The functor HomR(P,−) is exact on RM.

Finitely generated projective modules over Z and Z/nZ, for n ∈ Z>0, are easy to
describe.

Proposition 1.6.8. (i) A Z-module is finitely generated projective if and only if
it is free of finite rank.

(ii) Let p be a prime and let e ∈ Z>0. A Z/peZ-module is finitely generated projective
if and only if it is free of finite rank.

(iii) Let n ∈ Z>0. A Z/nZ-module is finitely generated projective if and only if it
is a direct sum of copies of modules of the form Z/mZ, with m | n such that
gcd(nm ,m) = 1.

Proof. Part (i) is a consequence of Z being a principal ideal domain. Part (ii) holds
since Z/peZ is a local ring.

For part (iii), note that Z/mZ is a Z/nZ-module if and only if m | n. It is now
enough to show that ifm | n, then Z/mZ is Z/nZ-projective if and only if gcd(nm ,m) =
1. Suppose n =

∏
i∈I p

ai
i , where I is a finite indexing set and all pi are distinct primes.

Then gcd(nm ,m) = 1 if and only if m =
∏
j∈J p

aj
j , for some subset J ⊆ I. But this

happens if and only if Z/mZ =
⊕

j∈J Z/p
aj
j Z, which is a direct summand of Z/nZ.

Proposition 1.6.9 ([20], Proposition 1.4). Let k be a commutative ring and let R be
a k-algebra such that R is projective as a k-module. Let M be a projective R-module.
Then M is projective over k.

Definition 1.6.10. Let R be a ring and I an R-module. Then I is said to be in-
jective if for any injective R-module homomorphism g : A ↪→ B and any R-module
homomorphism f : A → I, there exists an R-module homomorphism h : B → I such
that f = hg:

I

0 A B.

f

g

h

Definition 1.6.11. Let R be a ring. If R is injective as a left-regular (resp. right-
regular) module, we say that R is left (resp. right) self-injective.

Theorem 1.6.12 ([56], §3A; [76], Proposition 3.42). Let R be a ring and I an R-
module. Then the following are equivalent:

(i) I is injective.
(ii) Every injective R-module homomorphism I ↪→M splits.

(iii) (Baer’s Test) For all left ideals K ⊂ R, any R-homomorphism K → I can be
extended to a map R→ I.

(iv) Every short exact sequence 0 → I → M → N → 0, where M is an R-module
and N is a cyclic R-module, splits.

(v) The functor HomR(−, I) is exact on RM.

Iuliana Ciocănea-Teodorescu 13

1.6.4 Flat and finitely presented modules

Definition 1.6.13. Let R be a ring and M an R-module. We say M is flat over R
if the functor −⊗RM is exact.

Proposition 1.6.14 ([56], Proposition 4.3; [57], Theorem 23.20). Over a left-artinian
ring, the notions of projective modules and flat modules coincide.

Definition 1.6.15. Let R be a ring and M an R-module. We say M is finitely
presented over R if there is an exact sequence Rm → Rn → M → 0, for some
m,n ∈ Z≥0.

Proposition 1.6.16 ([56], Proposition 4.29). A ring R is left-noetherian if and only
if every finitely generated R-module is finitely presented.

1.6.5 Rank of a projective module

In this section, suppose R is a commutative ring. Denote by Spec(R) the set of prime
ideals of R and by Max(R) the set of maximal ideals of R. Let M be an R-module
and p ∈ Spec(R). Then we denote by Mp the localisation of M at R\p.

Proposition 1.6.17 ([58], Corollary 3.4). Let M be a finitely presented R-module.
Then the following are equivalent:

(i) M is projective over R,
(ii) for all m ∈ Max(R), we have that Mm is projective over Rm,

(iii) for all p ∈ Spec(R), we have that Mp is free over Rp.

Let P be a projective R-module. Consider the function

rkR(P) : Spec(R)→ Z, p 7→ rkRp
(Pp).

Definition 1.6.18. Let P be a projective R-module. If rkR(P) is a constant function,
then we say P has constant rank.

Proposition 1.6.19 ([58], Corollary 3.6). If R is connected, then every projective
R-module has constant rank.

1.6.6 Hom & ⊗
Let R,S, T be rings, let M be an R-S-bimodule, N an R-T -bimodule and P an S-T -
bimodule. Then

(i) HomR(RMS ,RNT) is an S-T -bimodule, where for all s ∈ S, t ∈ T , m ∈M and
f ∈ HomR(M,N), we have s · f(m) = f(ms) and (f · t)(m) = f(m)t.

(ii) HomT (RNT , SPT) is an S-R-bimodule, where for all s ∈ S, r ∈ R, n ∈ N and
g ∈ HomT (N,P), we have that s · g(n) = sg(n) and (g · r)(n) = g(rn).

(iii) RMS ⊗S SPT is an R-T -bimodule, where for all r ∈ R, t ∈ T , m ∈ M and
n ∈ N , we have r · (m⊗ n) = rm⊗ n and (m⊗ n) · t = m⊗ nt.

14 Algorithms for finite rings

Proposition 1.6.20. Let R,S be two rings, let α : R→ S be a ring homomorphism
and M an S-R-bimodule. Then

HomS(SSR, SMR) ∼= RMR,

as R-R-bimodules.

Proposition 1.6.21 ([79], Proposition 18.44). Let R,S, T be rings, let M be an R-
S-bimodule, N an S-T -bimodule and P an R-module. Then

HomR(M ⊗S N,P) ∼= HomS(N,HomR(M,P)),

as T -modules.

Proposition 1.6.22 ([58], Chapter I, Example 2.2(4), Proposition 2.13). Let R,R′ be
commutative rings, α : R→ R′ a ring homomorphism and P,Q two finitely generated
projective R-modules. Then

HomR(P,Q)⊗R R′ ∼= HomR′(P ⊗R R′, Q⊗R R′),
(P ⊗R Q)⊗R R′ ∼= (P ⊗R R′)⊗R′ (Q⊗R R′),

as R′-modules.

1.6.7 Projective covers and injective hulls

Definition 1.6.23. Let M be an R-module. A superfluous submodule of M is an
R-module S ⊆M such that

∀N ≤M : (S +N = M ⇒ N = M).

If S is a superfluous submodule of M , we write S ⊆s M .

Definition 1.6.24. Let M be an R-module. A projective cover of M is a pair (P, φ),
where P is a projective R-module, φ : P �M is an epimorphism, and ker(φ) ⊆s P .

Theorem 1.6.25 ([57], Proposition 24.10, Example 24.11(3), Theorem 24.18). Let
R be a ring.

(i) If R is left-artinian, then any R-module has a projective cover.
(ii) Let M be an R-module. Suppose (P, φ) and (P ′, φ′) are two projective covers of

M . Then there exists an isomorphism α : P ′ → P such that φ′ = φα.
(iii) Let M1, . . . ,Mn be R-modules. Suppose (Pi, φi) is a projective cover of Mi, for

all 1 ≤ i ≤ n. Then (
⊕n

i=1 Pi,
⊕n

i=1 φi) is a projective cover of
⊕n

i=1Mi.

Definition 1.6.26. Let M be an R-module. An essential extension of M is an R-
module E ⊇M such that

∀F ≤ E : (F ∩M = 0⇒ F = 0)

If E is an essential extension of M , we write M ⊆e E.

Iuliana Ciocănea-Teodorescu 15

Theorem 1.6.27 ([57], Theorem 3.30). Let R be a ring and M ⊆ I two R-modules.
Then the following are equivalent:

(i) I is maximal essential over M , i.e. I ⊇e M and no module properly containing
I can be an essential extension of M .

(ii) I is injective, and is essential over M .
(iii) I is minimal injective over M , i.e. I is injective and if I ′ is an injective module

such that M ⊆ I ′ ⊆ I, then I = I ′.

Definition 1.6.28. Let M be an R-module. An injective hull of M is an R-module
I ⊇M satisfying one of the conditions of Theorem 1.6.27.

Theorem 1.6.29 ([57], Lemma 3.29, Corollary 3.32, Example 3.38). Let R be a ring.

(i) Every R-module has an injective hull.
(ii) Let M be an R-module. Suppose I and I ′ are two injective hulls of M . Then

there exists an isomorphism I → I ′ which is the identity on M .
(iii) Let M1, . . . ,Mn be R-modules. Suppose Ij is an injective hull of Mj, for all

1 ≤ j ≤ n. Then
⊕n

j=1 Ij is an injective hull of
⊕n

j=1Mj.

Theorem 1.6.30 ([56], Lemma 3.28, Theorem 3.30). Let R be a ring and M an
R-module. Let I be an injective hull of M . Then M is injective if and only if M = I.

1.7 Quasi-Frobenius rings

Theorem 1.7.1 ([56], Theorems 15.1, 15.9, Remark 15.10). Let R be a ring. Then
the following are equivalent:

(i) R is left-noetherian and left self-injective.
(ii) R is right-noetherian and left self-injective.

(iii) R is left-noetherian and right self-injective.
(iv) R is right-noetherian and right self-injective.
(v) all projective R-modules are injective.

(vi) all injective R-module are projective.

Definition 1.7.2. Let R be a ring. If R satisfies any of the conditions of Theorem
1.7.1, then R is said to be a quasi-Frobenius ring.

Example 1.7.3. The following rings are quasi-Frobenius:

(i) fields,
(ii) Z/nZ, for n ∈ Z>0,

(iii) semisimple rings,
(iv) Mn(R), for R a quasi-Frobenius ring and n ∈ Z≥0,
(v) the group ring R[G], for R a quasi-Frobenius ring and G a finite group,

(vi) Galois rings (see Note 6.2.59).

16 Algorithms for finite rings

1.8 Frobenius algebras and symmetric algebras

Let k be a commutative ring and A a k-algebra that is finitely generated projective
as a module over k. The k-dual, Homk(A, k), is an A-A-bimodule. The left module
structure is given by

a · f = (x 7→ f(xa)),

and the right module structure is given by

f · a = (x 7→ f(ax)),

where a ∈ A and f ∈ Homk(A, k). These two actions are compatible: for any a, a′, x ∈
A, we have ((a · f) · a′)(x) = f(a′xa) = (a · (f · a′))(x).

Comparing the A-A-bimodule structures of A and Homk(A, k) leads to the follow-
ing two notions.

Definition 1.8.1. Let k be a commutative ring and A a k-algebra that is finitely
generated projective as a module over k. If A ∼= Homk(A, k) as left A-modules, then
we say A is a Frobenius algebra. If A ∼= Homk(A, k) as A-A-bimodules, then we say
A is a symmetric algebra.

Theorem 1.8.2 ([56], Theorems 16.54). Let k be a commutative ring and A a k-
algebra that is finitely generated projective as a module over k. Then A is a symmetric
algebra over k if and only if there exists a k-bilinear map B : A×A→ k such that

(i) B is symmetric, i.e. for all x, y ∈ A, we have B(x, y) = B(y, x),
(ii) B is nonsingular, i.e. the map A→ Homk(A, k), given by x 7→ (y 7→ B(x, y)) is

a k-module isomorphism,
(iii) B is associative, i.e. for all x, y, z ∈ A, we have B(xy, z) = B(x, yz),

Example 1.8.3 ([56], 16.56-59). (Symmetric algebras)

1. Let k be a field and G a finite group. Then the group ring A = k[G] is a
symmetric k-algebra. To see this, consider the map B : A × A → k given by
B(
∑
g∈G agg,

∑
h∈G bhh) =

∑
g∈G agbg−1 , where for all g ∈ G, we have ag, bg ∈

k.
2. Let k be a field and A = Mn(k), for some n ∈ Z>0. Then A is a symmetric
k-algebra. To see this, consider the map B : A × A → k, given by B(X,Y) =
tr(XY), where tr denotes the usual trace map.

3. Let k be a field. Then any finite-dimensional semisimple k-algebra is symmetric.

1.8.1 Generators and progenerators

Definition 1.8.4. Let R be a ring and M and R-module. The trace ideal of M over
R is defined to be

TR(M) :=
∑

f∈HomR(M,R)

im(f).

Iuliana Ciocănea-Teodorescu 17

Note 1.8.5. It is easy to check that TR(M) is a two-sided ideal of R.

Definition 1.8.6. Let R be a ring. An R-module M is an R-generator if TR(M) = R.
If, in addition, M is finitely generated and projective, then it is said to be an R-
progenerator.

Note 1.8.7. Over a commutative ring R, any faithful finitely generated projective
module is a progenerator. The converse also holds.

1.9 Duality

Let R be a finite ring. Denote by fg
RM and Mfg

R the categories of finitely generated
left, respectively right, R-modules.

Definition 1.9.1. Let R be a finite ring and denote by fg
RM and Mfg

R the categories
of finitely generated left and right R-modules, respectively. We define the character
functors ̂: fg

RM
 Mfg
R , M 7→ M̂ := HomZ(M,Q/Z).

The module M̂ is called the character module of M .

Theorem 1.9.2 ([56], §19C,D). Let R be a finite ring. Consider the contravariant
functors

F : fg
RM −→Mfg

R and G : Mfg
R −→

fg
RM, (1.2)

defined by taking character modules. Then G ◦ F and F ◦ G are naturally equivalent
to the identity functors, i.e. F and G define a duality between fg

RM and Mfg
R .

18 Algorithms for finite rings

Chapter 2

Linear algebra over Z:
basic algorithms for finite
abelian groups

When working algorithmically with finite-dimensional algebras over a field, we rely
on the vector space structure for our computations (most importantly for solving sys-
tems of linear equations). However, when presented with an arbitrary finite ring, we
would like to be able to handle the situation regardless of whether it contains a field
or not. In the absence of an underlying field, it is the additive group structure of the
ring in question that we wish to exploit.

This chapter lays the foundation of everything that succeeds it. At the end of it,
we will have built a toolbox for working with finite abelian groups within algorithms.
This will allow our later algorithms to have a natural proof-like flow. We will not have
to think about the bit operations that go on behind the scenes, and we will talk of
algebraic structures, rather than of the strings of integers representing them.

Our algorithms are purposely conceptual. In this way, we aim to concentrate on
the structural properties of our objects, rather than rely on seemingly random matrix
manipulations that end up giving the “right” result.

We will represent finitely generated abelian groups via generators and relations.
Correspondingly, we show how to represent group homomorphisms, subgroups and
quotients of groups. Building on this, we describe deterministic polynomial-time al-
gorithms that accomplish the following tasks in the abelian case:

1. test if a group homomorphism is injective,
2. test if a group homomorphism is surjective,
3. decide if two group homomorphisms are equal,
4. compute subgroups generated by a given finite set of elements in a group,

19

20 Algorithms for finite rings

5. compute the quotient of a group by a subgroup,
6. compute kernels, images and cokernels of group homomorphisms,
7. compute direct sums of groups,
8. compute homomorphism groups and tensor products,
9. split exact sequences,

10. compute the order of a finite group,
11. compute the torsion subgroup of a finitely generated group,
12. compute the order of a given group element,
13. compute the exponent of a finite group,
14. write a finitely generated group as a direct sum of cyclic groups.

The last of these is particularly important, as it will allow us to assume in later chap-
ters that a finite abelian group is given by specifying the sizes of its cyclic direct
summands.

Working with finitely generated abelian groups in the representation we have cho-
sen ultimately reduces to carrying out integer matrix computations. The way to keep
the entries of these matrices under control is either to employ modular techniques, or
to give the group a lattice structure and use basis reduction algorithms.

2.1 Lattices

The main references for this section are [67, 68].

Definition 2.1.1. A lattice is an additive subgroup L ⊆ Rn, where n ∈ Z≥0, for
which there exists ε ∈ R>0 such that for all x ∈ L, x 6= 0, we have 〈x, x〉 ≥ ε, where
〈·, ·〉 denotes the standard inner product on Rn. A sublattice of L is a subgroup of L.

Proposition 2.1.2 ([68], Section 2). A subset L ⊂ Rn is a lattice if and only if there
exists a set B ⊂ Rn of R-linearly independent vectors such that

L =
∑
b∈B

Zb.

A set B as in Proposition 2.1.2 is said to be a basis of L, and the cardinality of
B is the rank of L. Suppose B = {b1, . . . , bm}, for some m ∈ Z>0 and let A be the
matrix whose ith column is given by bi. The determinant of L is

det(L) := det(〈bi, bj〉)1/21≤i,j≤m = |det(A)|.

It can be shown that the rank and determinant of a lattice are well-defined.

Definition 2.1.3. Two lattices L and L′ are said to be isomorphic if there exists
a bijective Z-linear transformation τ : L → L′ such that for all x, y ∈ L, we have
〈x, y〉 = 〈τ(x), τ(y)〉. If such a transformation exists, we write L ∼= L′.

Iuliana Ciocănea-Teodorescu 21

Since most real numbers cannot be represented inside algorithms using a finite
number of bits, we will only consider lattices whose vectors are rational numbers. In
this case, we represent a lattice by giving a matrix A ∈ Mn×m(Q) of rank m. Then
L is taken to be the lattice with basis given by the m columns of A, and we write
L = L(A).

An important notion in the theory of lattices is that of a reduced basis. A precise
definition can be found in [68], Section 10. Intuitively, reduced bases can be thought
of as consisting of “short” vectors that are “nearly orthogonal”. To the notion of a
reduced basis we associate a parameter c > 4/3. Roughly speaking, c is a qualitative
measure of the reduction – the smaller the value of c, the better the reduction. When
no such parameter is specified, it is typically taken to be 2.

An algorithm that, given a lattice, produces a reduced basis thereof is called a lat-
tice basis reduction algorithm. An example of such an algorithm, that is deterministic
and runs in polynomial time, is the LLL algorithm ([63]).

Definition 2.1.4. Let L be a lattice of rank n in Rn. The dual lattice of L is given
by

L? = {x ∈ Rn | 〈x, L〉 ⊂ Z},

where 〈·, ·〉 is the standard inner product.

Note 2.1.5.

(i) The dual lattice is a lattice.
(ii) rank(L?) = rank(L) and det(L?) = det(L)−1.

(iii) L?? = L.
(iv) If L has basis given by the columns of a matrix A, then L? has basis given by

the columns of the inverse of the transpose of A.

2.1.1 Kernels, images and systems of linear equations over Z
One of the basic tools that we will use is the efficient computability of kernels and
images.

Theorem 2.1.6 ([68], Section 14). There exists a deterministic polynomial-time al-
gorithm that, given a triple (m,n, f), with n,m ∈ Z≥0 and f ∈ Mn×m(Z) a matrix
representing a group homomorphism f : Zm → Zn, computes k := rank(f) and a basis
b1, . . . , bm for Zm such that b1, . . . , bm−k is a basis for ker f and f(bm−k+1), . . . , f(bm)
is a basis for im f .

This algorithm can then be used to solve systems of linear equations over Z.

Theorem 2.1.7 ([68], Section 14). There exists a deterministic polynomial-time algo-
rithm that, given a triple (m,n, f), with n,m ∈ Z≥0 and f ∈Mn×m(Z), together with
a vector b ∈ Zn, computes the set of solutions of the equation fx = b, or determines
that there is no solution.

22 Algorithms for finite rings

2.1.2 Intersection, sum, inclusion and equality of lattices

A subgroup H ⊆ Zn is given to an algorithm by specifying a sequence of elements of
Zn that is a basis of H over Z. Note that by Theorem 2.1.6, we can recover a basis of
H from any generating set.

Proposition 2.1.8. There exists a deterministic polynomial-time algorithm that,
given n ∈ Z>0 and two subgroups H1, H2 ⊆ Zn, computes H1 ∩ H2 and H1 + H2,
together with the inclusion maps H1 ∩H2 → Hi and Hi → H1 +H2, for i = 1, 2.

Proof. Consider the group H1⊕H2, i.e. the group with elements of the form (h1, h2),
where h1 ∈ H1 and h2 ∈ H2, together with componentwise addition. Let φ : H1 ⊕
H2 → Zn be the map given by (h1, h2) 7→ h1 − h2. Then ker(φ) = H1 ∩ H2 and
im(φ) = H1 + H2, and both can be efficiently computed by Theorem 2.1.6. This
produces bases of H1 ∩H2 and H1 +H2 in terms of the standard basis of Zn.

Now H1∩H2 is equal to the image of the projection ker(φ)→ H1. This gives a basis
for H1∩H2 in terms of the basis of H1. Similarly for H2. Further, H1 = H1∩(H1+H2),
which gives a basis for H1 in terms of the basis of H1 +H2.

As a consequence of this, we are able to determine inclusion and equality of two
subgroups of Zn.

Corollary 2.1.9. There exists a deterministic polynomial-time algorithm such that,
given n ∈ Z>0 and two subgroups H1, H2 ⊆ Zn, determines whether H1 ⊆ H2.

Proof. Note that H1 ⊆ H2 if and only if H1 ∩ H2 = H1. Since H1 ∩ H2 ⊆ H1,
testing equality is equivalent to testing whether the determinants of the two lattices,
H1∩H2 and H1, are equal. Computing determinants of lattices reduces to computing
determinants of integer matrices, which can be done in polynomial time.

Corollary 2.1.10. There exists a deterministic polynomial-time algorithm such that,
given n ∈ Z>0 and two subgroups H1, H2 ⊆ Zn, determines whether H1 = H2.

2.2 Hermite and Smith normal forms

This section draws on Section 2.4 of [19].
There are two canonical forms of a matrix A that are of interest: the Hermite

normal form and the Smith normal form. These can be obtained by applying row
and column operations to A.

Definition 2.2.1. Let m,n ∈ Z>0 and A ∈Mn×m(Z). A column operation on A is
one of the following:

(i) interchanging two columns of A,
(ii) multiplying one column of A by −1,

(iii) adding a nonzero multiple of a column of A to another column.

Iuliana Ciocănea-Teodorescu 23

Note 2.2.2. (i) Each column operation corresponds to postmultiplying A with an
appropriate invertible matrix over Z.

(ii) If A′ is a matrix obtained from A via a sequence of column operations, then there
exists an invertible matrix V such that A′ = AV . Conversely, if two matrices
differ by a postmultiplied invertible matrix, then one can be obtained from the
other by a series of column operations.

(iii) Applying column operations to a square matrix does not change the absolute
value of its determinant.

Note 2.2.3. We can similarly define row operations. These correspond to premulti-
plying by a certain invertible matrix over Z.

It is easy to see that performing column operations on a matrix does not change
the lattice the columns generate.

Proposition 2.2.4. Let A,B ∈Mn×m(Z). Then the lattice generated by the columns
of A is equal to the lattice generated by the columns of B if and only if there exists
V ∈ GLm(Z) such that AV = B.

Note 2.2.5. Let F be a free Z-module of finite rank. In choosing to represent a
subgroup H ↪→ F via a matrix A ∈Mn×m(Z), we are making a choice of basis of H
and of F . Applying column operations to A corresponds to a change of basis of H,
while keeping the basis for F fixed. Applying row operations corresponds to a change
of basis of F , while keeping the basis for H fixed.

We are now ready to introduce the Hermite normal form, which is useful for
representing subgroups of Zn in a canonical way.

Definition 2.2.6. Let A = (ai,j) ∈Mn×m(Z), for some m,n ∈ Z>0. Then A is said
to be in Hermite normal form (HNF) if there exists 0 ≤ k ≤ m such that the last
m − k columns are zero and for each 1 ≤ j ≤ k, there exists an entry aij ,j > 0 such
that

(i) For all i′ < ij, we have ai′,j = 0.
(ii) For all j′ < j, we have aij ,j > aij ,j′ ≥ 0.

(iii) For all j′ < j, we have ij′ < ij.

Note 2.2.7. The nonzero entry aij ,j is called the leading coefficient of the jth column.
Informally, a matrix is in Hermite normal form if all its zero columns lie on the
right, the leading coefficients of all nonzero columns are strictly positive and have
nonnegative and strictly smaller entries to their left, and occur strictly below the
position of the leading coefficient of the previous column, if this exists.

Note 2.2.8. We have seen that applying column operations to a matrix does not
change the lattice it generates. Thus, finding the Hermite normal form of a matrix
corresponds to finding a basis of the associated lattice, such that the basis vectors can
be ordered in such a way that they have an increasing number of leading zero entries.

24 Algorithms for finite rings

Proposition 2.2.9. (i) Each integer matrix can transformed into a matrix in Her-
mite normal form by a sequence of column operations.

(ii) ([12], Section 5.3) Each integer matrix has a unique Hermite normal form, i.e.
if A = (ai,j) ∈ Mn×m(Z), then there exists a matrix V ∈ GLm(Z) such that
AV is in Hermite normal form. If there is another V ′ ∈ GLm(Z) such that AV ′

is in Hermite normal form, then AV = AV ′.

Sketch of proof of (i). Let A = (ai,j) ∈Mn×m(Z). Suppose that A has block form

A =
[
A0 0

]
,

where A0 is an n×m′ matrix, for some m′ ≤ m, with no nonzero columns. Otherwise
interchange columns to arrive at this form. Let a01, . . . , a0m′ be the entries in the
first nonzero row of A0. Then at least one a0i must be nonzero and we can ensure
that they are all nonnegative (by applying suitable column operations), so using the
extended Euclid algorithm (see [33]), we can compute g := gcd({a0i}i). This reduces
to applying a sequence of column operations at the end of which the first nonzero row
of A will be [g 0 0 . . . 0]. The matrix now has form0 0 0

g 0 0
? A1 0

 .
We proceed by computing the greatest common divisor of the entries in the first
nonzero row of A1. We perform a couple of extra column operations to ensure that
the entry to the left of the leading entry of the second column is strictly smaller
than the leading entry. We continue in this way until we attain the Hermite normal
form.

Note 2.2.10. The matrix V in Proposition 2.2.9, part (ii), need not be unique.

Note 2.2.11. Since the Hermite normal form is unique, we see that the leading entry
of the first column is the greatest common divisor of the entries in the first nonzero
row of the original matrix.

There are many algorithms available in the literature that compute the Hermite
normal form of a given integer matrix. The main difficulty in achieving polynomial
time is to keep the entries of the intermediate matrices small. The straightforward
column-operation-algorithm presented in Proposition 2.2.9 suffers from coefficient
blow-up. This can be avoided by using modular techniques, for example by work-
ing modulo an integer d, where d is chosen to be the determinant of a full rank
submatrix of A. Another way to circumvent coefficient blow-up is to employ lattice
basis reduction techniques.

For detailed accounts of deterministic polynomial-time algorithms for computing
the Hermite normal form of an integer matrix, together with a transformation matrix
V , see [16, 30, 33, 85]. We will only record their existence.

Iuliana Ciocănea-Teodorescu 25

Theorem 2.2.12 ([12], Proposition 5.4). There exists a deterministic polynomial-
time algorithm that, given a matrix A = (ai,j) ∈ Mn×m(Z), computes a matrix
V ∈ GLm(Z) such that AV is in Hermite normal form.

Note 2.2.13. Theorem 2.2.12 can also be obtained from Theorem 2.1.6 if we equip
L(A) with a suitable “length function” q : L→ R (see [68], Section 14).

The second canonical form we wish to examine is the Smith normal form.

Definition 2.2.14. Let A = (ai,j) ∈ Mn×m(Z), for some m,n ∈ Z≥0. Then A is
said to be in Smith normal form (SNF) if there exists 0 ≤ k ≤ min{n,m} such that

the last n− k rows and the last m− k columns are zero and the matrix (ai,j)
k,k
i=1,j=1

is diagonal, with ai,i > 0 for all 1 ≤ i ≤ k, and ai,i | ai+1,i+1 for all 1 ≤ i < k.

Note 2.2.15. The nonzero entries are called elementary divisors of A.

The following is a standard result.

Proposition 2.2.16. Every integer matrix has a unique Smith normal form, i.e. if
A = (ai,j) ∈ Mn×m(Z), then there exist matrices U ∈ GLn(Z) and V ∈ GLm(Z)
such that UAV is in Smith normal form. If there exist other U ′ ∈ GLn(Z) and
V ′ ∈ GLm(Z) such that U ′AV ′ is in Smith normal form, then U ′AV ′ = UAV .

Theorem 2.2.17 ([86], Section 8.2). There exists a deterministic polynomial-time
algorithm that, given a matrix A = (ai,j) ∈ Mn×m(Z), computes the Smith normal
form of A, together with transformation matrices U ∈ GLn(Z) and V ∈ GLm(Z).

The relevance of the Hermite and Smith normal forms to the study of finitely
generated abelian groups lies in the following theorem.

Theorem 2.2.18. Let n ∈ Z>0. Suppose H ⊆ Zn is a subgroup.

(i) There exists a unique full column rank matrix A in Hermite normal form such
that H is generated over Z by the columns of A.

(ii) If H has rank n, then there exists a unique square matrix A in Smith normal
form such that

Zn/H ∼=
n⊕
i=1

Z/diZ, (2.1)

as Z-modules, where d1, . . . , dn are the elementary divisors of A.

Proof. Part (i) is a consequence of Propositions 2.2.4 and 2.2.9. For a proof of part
(ii), see Theorem 2.4.13 of [19].

26 Algorithms for finite rings

2.3 Representing objects and basic constructions

Given that we wish to bound the running time of an algorithm in terms of the length
of the input, it is of crucial importance to make clear how we represent objects inside
algorithms. Different representations may lead to essentially different computational
tasks, with different complexities.

There are several ways to represent groups inside an algorithm. These include
giving a finite presentation, giving the group as a permutation group of a finite set
or a matrix group over a ring, black-box representations, or giving the group as
automorphisms of certain objects (e.g. graphs, field extensions). For more details on
group representations and the algorithmic problems they give rise to, see [35, 38].

For finitely generated abelian groups, matters simplify greatly, since these are
nothing else than Z-modules and thus can be represented by matrices.

2.3.1 Representing finite and finitely generated abelian groups

The proof of the following result can be found in any introductory algebra textbook.

Theorem 2.3.1. Let G be a finitely generated abelian group. Then:

(i) There exists k ∈ Z≥0 such that G ∼= Zk ⊕H, where H is a finite abelian group.
(ii) If G is finite, then there exist n ∈ Z>0 and a subgroup L ⊆ Zn of rank n, such

that G ∼= Zn/L.
(iii) (Fundamental Theorem of Finite Abelian Groups) If G is finite, then there exists

a unique t ∈ Z≥0 and a unique sequence of integers d1, . . . , dt ∈ Z>1 such that
d1 | d2 | . . . | dt and

G ∼=
t⊕
i=1

Z/diZ.

To represent a group G, we give the algorithm a set of generators and relations.
More precisely, suppose G has generators x1, . . . , xn and relations in G are of the form∑n
i=1 aijxi for 1 ≤ j ≤ m, where aij ∈ Z for all i, j. Then the matrix f = (aij) ∈

Mn×m(Z) is said to be a presentation matrix of G. Consider the exact sequence

Zm f−→ Zn → coker(f)→ 0,

Then coker(f) ∼= G and an element g ∈ coker(f) corresponds, in a non-unique way, to
a vector in Zn mapping to g, i.e. it is specified as a Z-linear combination of generators.

Definition 2.3.2. Let G be a finitely generated abelian group. An exact-sequence rep-
resentation of G consists of a triple (m,n, f), where m,n ∈ Z>0 and f ∈ Hom(Zm,Zn)
are such that coker(f) ∼= G.

Proposition 2.3.3. Let G be a finitely generated abelian group and let f ∈Mn×m(Z)
be a presentation matrix of G. If n = m, then G is finite if and only if det(f) 6= 0.
In this case, |G| = |det(f)|.

Iuliana Ciocănea-Teodorescu 27

Proof. This follows from Theorem 2.2.18, Theorem 2.3.1.

From now on, given a presentation matrix f for a finitely generated abelian group
G, we will identify G with coker(f).

2.3.2 Group homomorphisms

Let G1, G2 be two finitely generated abelian groups. Suppose G1 and G2 are repre-
sented by triples (m1, n1, f1) and (m2, n2, f2) respectively. Then we have two exact
sequences:

Zm1 Zn1 G1 0

Zm2 Zn2 G2 0.

f1 π1

f2 π2

Any group homomorphism G1 → G2 is induced by a map Zn1 → Zn2 . This is the
same as saying that a group homomorphism is determined by the images of the
generators. However, not all assignments of generators correspond to well-defined
group homomorphisms. That is to say, not every map g : Zn1 → Zn2 gives rise to a
group homomorphism g : G1 → G2.

Proposition 2.3.4. There exists a deterministic polynomial-time algorithm that,
given two finitely generated abelian groups G1 and G2, represented by triples (m1, n1, f1)
and (m2, n2, f2) respectively, and a map g : Zn1 → Zn2 , decides whether or not g in-
duces a group homomorphism g : G1 → G2.

Proof. The map induced by g takes an element of G1, lifts it to Zn1 and then maps
it to G2 under π2 ◦ g. For this to be a well-defined group homomorphism, we must
ensure that it is independent of the lift to Zn1 we choose. For this, we require that
im(f1) ⊆ ker(π2 ◦ g), or equivalently, im(g ◦ f1) ⊆ im(f2).

By Theorem 2.1.6 and Corollary 2.1.9, we can compute kernels and images, and
test for inclusion, so, given a map g : Zn1 → Zn2 , we can test if g induces a group
homomorphism G1 → G2 by checking whether

im(g ◦ f1) ⊆ im(f2).

Note 2.3.5. The condition im(g ◦ f1) ⊆ im(f2) is equivalent to the existence of a
map h : Zm1 → Zm2 such that g ◦ f1 = f2 ◦ h.

Once we have ensured that we have a well-defined group homomorphism, we may
test whether it is injective or surjective.

Proposition 2.3.6. There exists a deterministic polynomial-time algorithm that,
given two finitely generated abelian groups G1 and G2, represented by triples (m1, n1, f1)
and (m2, n2, f2) respectively, and a map g : Zn1 → Zn2 inducing a group homomor-
phism g : G1 → G2, decides whether g is injective.

28 Algorithms for finite rings

Proof. For g to be injective, we require that for all x ∈ Zn1 , if g(x) ∈ im(f2), then
x ∈ im(f1), or equivalently, that

im(f1) ⊇ g−1(im(f2)).

To express this condition in terms of the maps that are part of the input, i.e. in terms
of f1, f2 and g, consider the map

− f2 + g : Zm2 ⊕ Zn1 → Zn2 , (x, y) 7→ −f2(x) + g(y). (2.2)

Let p2 : Zm2 ⊕Zn1 → Zn1 be the projection map to the second component. It is easy
to see that

g−1(im(f2)) = p2(ker(−f2 + g)).

Thus, the condition for injectivity becomes

p2(ker(−f2 + g)) ⊆ im f1,

which can be tested deterministically in polynomial time using Theorem 2.1.6 and
Corollary 2.1.9.

Proposition 2.3.7. There exists a deterministic polynomial-time algorithm that,
given two finitely generated abelian groups G1 and G2, represented by triples (m1, n1, f1)
and (m2, n2, f2) respectively, and a map g : Zn1 → Zn2 inducing a group homomor-
phism g : G1 → G2, decides whether g is surjective.

Proof. For g : G1 → G2 to be surjective, we require that for all x ∈ G2 = Zn2/ im(f2),
there exist y ∈ Zn1 such that π2 ◦ g(y) = x. This is equivalent to requiring that

∀x ∈ Zn2 , ∃y ∈ Zn1 such that g(y)− x ∈ im(f2),

which is further equivalent to the map −f2 + g defined in (2.2), being surjective. We
can check this using Theorem 2.1.6.

Proposition 2.3.8. There exists a deterministic polynomial-time algorithm that,
given two finitely generated abelian groups G1 and G2, represented by triples (m1, n1, f1)
and (m2, n2, f2) respectively, and two maps g, h : Zn1 → Zn2 inducing group homo-
morphisms g, h : G1 → G2, decides whether g = h.

Proof. The problem of deciding if two group homomorphisms are equal is equivalent to
deciding if a given group homomorphism is the zero homomorphism. Let g : G1 → G2

be a group homomorphism induced by the map g : Zn1 → Zn2 . Then g ≡ 0 if and
only if im(g) ⊆ im(f2).

Iuliana Ciocănea-Teodorescu 29

2.3.3 Subgroups and quotients

Representing subgroups

Let G be a finitely generated abelian group. To represent a subgroup H of G, we need
to represent it as a group and additionally, to produce an embedding H ↪→ G that
tells us how H sits inside G, i.e. we need to give the algorithm a triple (r, s, h) and a
map of free Z-modules g, that induces an injective map H ↪→ G.

Example 2.3.9. It is important to specify the injection: if G = Z/2Z⊕ Z/2Z, then
the subgroup Z/2Z sits inside G in three different ways.

Proposition 2.3.10. There exists a deterministic polynomial-time algorithm that,
given a finitely generated abelian group G and a finite set S ⊂ G, computes the
subgroup H ≤ G generated by S.

Proof. The desired output of the algorithm is a triple (r, s, h) representing H as a
group, together with an injective group homomorphism i : H ↪→ G. Suppose the
group G is represented by triple (m,n, f).

Let S = {s1, . . . , st} ⊂ Zn be a set of representatives of the elements of S in G.
Consider the map g : Zt → Zn given by ei 7→ si, where for 1 ≤ i ≤ t, the vector ei is
the ith canonical basis element of Zt:

Zt

Zm Zn G 0.

g

f πf

(2.3)

Consider the map (−f + g) : Zm ⊕ Zt → Zn, given by (x, y) 7→ −f(x) + g(y).
Compute ker(−f + g) = {(x, y) ∈ Zm ⊕ Zt | f(x) = g(y)} and project it to Zt via a
map p. Put r := rank(ker(−f + g)) and let φ be the matrix whose columns are the
basis vectors of ker(−f + g). The following diagram illustrates what was described
above:

Zr ker(−f + g) Zt H 0

Zm ⊕ Zt

Zm Zn G 0.

φ

∼

h

p

g

πh

i

−f+g

f πf

Put h := p◦φ. Then (r, t, h) represents H. Note that t is not necessarily the minimum
number of generators of H.

The map g induces a map i : H → G in the following way: an element of H =
Zt/ im(h) is lifted to Zt and then is mapped to G. We claim that i : H → G is an
injective group homomorphism.

30 Algorithms for finite rings

First we show that i is independent of the chosen lift to Zt. Let x ∈ H and lift it
to x+ k ∈ Zt, for some k ∈ im(h). Then g(x+ k) = g(x) + g(k). But, since k ∈ im(h),
it follows that k is the image under p of some (y, k) ∈ ker(−f + g), with y ∈ Zm.
Then g(k) = f(y). Hence πfg(k) = 0 and so g does not depend on the lift.

For injectivity, suppose i(y) = 0G, for some y ∈ H, where 0G denotes the zero
element in G. Let y be a lift of y to Zt. Then πf (g(y)) = 0G, so g(y) = f(x), for some
x ∈ Zt. But then (x, y) ∈ ker(−f + g) and so y ∈ im(p), i.e. y = 0H .

Moreover, by construction, im(i) = 〈{si}〉 = H, where si := πf (si).

Example 2.3.11. Let G be any group. If S = ∅, then t = 0, and H = 0, as expected.

Example 2.3.12. Let G = Z/2Z⊕ Z/4Z⊕ Z/4Z.

(i) Let S = {(1, 1, 2)}. Then H := 〈S〉 ∼= Z/4Z. The map g − f : Z3 ⊕ Z → Z3 is
given by (x1, x2, x3, y) 7→ (y−2x1, y−4x2, 2y−4x3), so ker(g−f) = (2, 1, 2, 4)Z.
Hence im(π) = 4Z and the subgroup H is given by (1, 1, 4 · id).

(ii) Let S = {(1, 1, 2), (0, 2, 0)}. Again, H := 〈S〉 ∼= Z/4Z. The map g−f : Z3⊕Z2 →
Z3 is given by (x1, x2, x3, y1, y2) 7→ (2y1 − 4x1, y1 + 2y2 − 4x2, 2y1 − 4x3), so
ker(g− f) = (1, 0, 1, 2, 1)Z⊕ (0, 1, 0, 0, 2)Z. Hence im(π) = (2, 1)Z⊕ (0, 2)Z and
the subgroup H is given by (2, 2, h), where h is the map represented by the
matrix (

2 1
0 2

)
.

It can be checked that the Smith normal form of this matrix has diagonal (4, 1),
so (2, 2, h) indeed represents the cyclic group of order 4.

Representing quotients

Let G be a finitely generated abelian group and let H ≤ G be a subgroup. To represent
the quotient G/H, we need to represent it as a group, which we denote by Q, and
additionally, to produce a surjection j : G� Q. Then Q ∼= G/H.

Proposition 2.3.13. There exists a deterministic polynomial-time algorithm that,
given a finitely generated abelian group G and a subgroup H ≤ G, computes the
quotient group G/H.

Proof. Suppose the group G is represented by triple (m,n, f) and H is represented
by triple (r, s, h), together with a map g : Zs → Zn inducing an injection i : H → G,
as in the previous subsection. Let g + f : Zs ⊕ Zm → Zn be the map given by

Iuliana Ciocănea-Teodorescu 31

(x, y) 7→ g(x) + f(y). Consider the following diagram

Zr Zm Zs ⊕ Zm

Zs Zn Zn

0 H G Q 0

0 0 0 .

h f g+f

g id

πg+f

i j

Then G/H is represented by triple (s+m,n, g + f).

The map g + f induces a map j : G → Q in the following way: an element of
G = Zn/ im(f) is lifted to Zn and then mapped to Q via πg+f ◦ id. We claim that
this map is a surjective group homomorphism.

To see that it is well-defined, let x ∈ G and a consider a lift of x to Zn given
by x + f(y), for some y ∈ Zm. Since f(y) ∈ im(g + f) by construction, it is sent to
zero under πg+f . Hence j is independent of the choice of lift. Surjectivity follows by
construction.

Example 2.3.14. Let G = Z/2Z⊕Z/4Z. Let H1 = Z/2Z⊕Z/2Z. Then the quotient
G/H1 is given by data

Z⊕ Z Z⊕ Z (Z⊕ Z)⊕ (Z⊕ Z)

0 Z⊕ Z Z⊕ Z Z⊕ Z 0

0 H1 G Z/2Z 0

0 0 0 .

2 0

0 2

 2 0

0 4


1 0

0 2



The presentation matrix for G/H1 is

fG/H1
=

(
1 0 2 0
0 2 0 4

)
,

whose Smith normal form has nonzero entries (2 1), and so G/H1
∼= Z/2Z.

32 Algorithms for finite rings

If we let H2 = Z/4Z, the quotient G/H2 is given by data

Z Z⊕ Z Z⊕ (Z⊕ Z)

0 Z Z⊕ Z Z⊕ Z 0

0 H2 G Z/2Z 0

0 0 0 .

(4)

2 0

0 4


0

1



Then the presentation matrix for G/H2 is

fG/H2
=

(
0 2 0
1 0 4

)
,

whose Smith normal form again has nonzero entries (2 1), and so G/H2
∼= Z/2Z.

Proposition 2.3.15. There exists a deterministic polynomial-time algorithm that,
given two finitely generated abelian groups G1 and G2, represented by triples (m1, n1, f1)
and (m2, n2, f2) respectively, and a map g : Zn1 → Zn2 , computes

(i) ker(g), together with the corresponding injective group homomorphism ker(g)→
G1,

(ii) im(g), together with the corresponding injective group homomorphism im(g)→
G2,

(iii) coker(g), together with the corresponding surjective group homomorphism G2 →
coker(g),

where g : G1 → G2 is the group homomorphism induced by g.

Proof. Kernels can be computed as:

ker(G1 → G2) = ker (Zn1/ im(f1) −→ Zn2/ im(f2))

= {x ∈ Zn1 | π2 ◦ g(x) = 0}/ im(f1)

= ker(π2 ◦ g)/ im(f1)

= p2(ker(−f2 + g))/ im(f1).

Images can be computed as:

im(G1 → G2) = im(π2 ◦ g)

= im(g)/(im(g) ∩ im(f2))

= im(−f2 + g)/ im(f2).

Iuliana Ciocănea-Teodorescu 33

Cokernels can be computed as:

coker(G1 → G2) = G2/ im(G1 → G2)

= (Zn2/ im(f2)) / (im(−f2 + g)/ im(f2))

= coker(−f2 + g).

All these computations can be carried out in polynomial time by Theorem 2.1.6 and
Proposition 2.1.8. The maps ker(g) → G1, im(g) → G2 and G2 → coker(g) can be
obtained from Propositions 2.3.10 and 2.3.13.

2.3.4 Direct sums of groups

Proposition 2.3.16. There exists a deterministic polynomial-time algorithm that,
given two finitely generated abelian group G1, G2, computes the direct sum G1 ⊕G2.

Proof. Suppose G1 and G2 are represented via triples (m1, n1, f1) and (m2, n2, f2)
respectively. Then the direct sumG1⊕G2 is represented by triple (m1+m2, n1+n2, F),
where F is an (m1 +m2)× (n1 + n2) integer matrix with block form

F =

(
f1 0
0 f2

)
.

2.4 Homomorphism groups and tensor products

In the case of free abelian groups of finite rank, the tensor product is easy to con-
struct: if {xi}ni=1 is a basis for Zn and {yi}mi=1 is a basis for Zm, then the set
{xi ⊗ yj | 1 ≤ i, j ≤ n} is a basis for Zn ⊗ Zm. Constructing homomorphism groups
of free abelian groups of finite rank is also easy, since Hom(Zm,Zn) =Mn×m(Z).

Suppose now that G1, G2 are two finitely generated abelian groups with presen-
tations

Zm1 Zn1 G1 0
f1

(2.4)

and

Zm2 Zn2 G2 0
f2

(2.5)

respectively.

Proposition 2.4.1. There exists a deterministic polynomial-time algorithm that,
given two finitely generated abelian groups G1, G2, computes

(i) the tensor product, G1⊗G2, together with the corresponding bilinear map G1×
G2 → G1 ⊗G2,

(ii) the homomorphism group, Hom(G1, G2), together with the corresponding bilin-
ear map Hom(G1, G2)×G1 → G2.

34 Algorithms for finite rings

Proof. Suppose G1, G2 have presentations (2.4) and (2.5), respectively.
Recall that tensoring is right-exact, so tensoring (2.4) with G2 and tensoring (2.5)

with Zm1 and Zn1 gives

Zm1 ⊗ Zm2 Zn1 ⊗ Zm2

Zm1 ⊗ Zn2 Zn1 ⊗ Zn2

Zm1 ⊗G2 Zn1 ⊗G2 G1 ⊗G2 0.

0 0

By construction of quotient groups (Theorem 2.3.13), it follows that G1 ⊗ G2 has
presentation given by

(Zm1 ⊗ Zn2)⊕ (Zn1 ⊗ Zm2) Zn1 ⊗ Zn2 G1 ⊗G2 0,

where the first map is given by (f1 ⊗ id) + (id⊗f2).
Applying Hom(−, G2) to (2.4) gives

0 Hom(G1, G2) Hom(Zn1 , G2) Hom(Zm1 , G2).

Hence

Hom(G1, G2) = ker
(

Hom(Zn1 , G2)
◦f1−−→ Hom(Zm1 , G2), h 7→ h ◦ f1

)
,

which can be computed using Proposition 2.3.15. Now, for k ∈ Z≥0, we have that
Hom(Zk,−) is an exact functor, so

Hom(Zk, G2) = coker
(

Hom(Zk,Zm2)
f2◦−−→ Hom(Zk,Zn2), h 7→ f2 ◦ h

)
,

which we compute for k equal to n1 and m1.
The bilinear mapsG1×G2 → G1⊗G2 and Hom(G1, G2)×G1 → G2 are represented

by listing the images of all pairs of generators, and can be readily obtained from the
above construction.

2.5 Splitting exact sequences

Consider an exact sequence of finitely generated abelian groups

0 H G K 0.i p
(2.6)

Iuliana Ciocănea-Teodorescu 35

Proposition 2.5.1. There exists a deterministic polynomial-time algorithm that,
given an exact sequence as in (2.6), decides if it is split, and if it is split, produces a
right-inverse of p and a left-inverse of i.

Proof. We consider the map

ψ : Hom(K,G)→ Hom(K,K), k 7→ p ◦ k.

Deciding if the sequence is split reduces to deciding if idK is in the image of ψ. This
can be done by solving a system of linear equations over Z (Theorem 2.1.7). If the
system has a solution, solving it will also produces a right inverse of p, i.e. an element
s ∈ Hom(K,G) such that ψ(s) = idK . Similarly, we construct a left-inverse of i.

Note 2.5.2. Suppose that the exact sequence (2.6) is right-split, i.e. there exists a
group homomorphism s : K → G such that p ◦ s = idK . Moreover, suppose that we
have found such an s. Then we know that G = i(H) ⊕ s(K), and we can construct
images of group homomorphism and direct sums of groups. The isomorphism H ⊕
K
∼−→ G is given by (h, k) 7→ i(h) + s(k), with inverse G

∼−→ H ⊕ K given by g 7→
(t(h), p(k)), where t is a left splitting of i, that is, a group homomorphism such that
t ◦ i = idH .

2.6 Torsion subgroups, exponents, orders, cyclic de-
compositions

2.6.1 Computing the order of a finite abelian group

Recall that a finitely generated abelian group G represented by triple (m,n, f) is
finite if and only if the basis of im f given by the algorithm in Theorem 2.1.6 has n
elements.

Proposition 2.6.1. There exists a deterministic polynomial-time algorithm that,
given a finitely generated abelian group G, computes the order of G.

Proof. To test if G is finite, we run the algorithm of Theorem 2.1.6 and check if the
basis of im f has n elements. If so, we compute the determinant of the matrix whose
columns are given by these n basis elements, which is then equal to |G|. Otherwise
we conclude that G has infinite order.

2.6.2 Computing the torsion subgroup of a finitely generated
abelian group

Suppose we are given a finitely generated abelian group G. We have seen that we can
determine if G is finite or not. If we find that it is not finite, we would like to find
its torsion subgroup. To do this, we introduce a construction described in [68], at the
end of Section 14.

36 Algorithms for finite rings

Theorem 2.6.2. There exists a deterministic polynomial-time algorithm that, given
a finitely generated abelian group G, determines its torsion subgroup T , and produces
an isomorphism G ∼= T ⊕G/T .

Proof. SupposeG is represented by triple (m,n, f). Let L := Zn andH = im(f) ⊆ Zn.
Suppose H ∼= Zk and let F ∈ Mn×k(Z) be a matrix whose columns are a Z-basis of
H. Consider the map

φ : L→ Hom(H,Z), φ(x)(y) = 〈x, y〉,

for x ∈ L, y ∈ H and 〈·, ·〉 the standard inner product. Then φ is represented by the
matrix F t ∈ Mk×n(Z). This is because 〈x, y〉 = ytF tx, for any x ∈ L, y ∈ H. We
denote the kernel of this map by

H⊥ := {x ∈ L | 〈x,H〉 = 0}.

Since H⊥ is the kernel of a map between two free Z-modules, Theorem 2.1.6 produces
for us a basis b1 . . . , bn of L, where b1, . . . , bn−k is a Z-basis of H⊥.

We repeat the process above by considering the map

φ′ : L→ Hom(H⊥,Z),

where the matrix representing φ′ is given by the transpose of the matrix whose
columns are b1, . . . , bn−k. We denote the kernel of this map by

H⊥⊥ := {a ∈ L | 〈a,H⊥〉 = 0} = (Q ·H) ∩ L. (2.7)

Thus,

L/H⊥⊥ ∼= (L/H)
/

(L/H)tor,

where (L/H)tor denotes the torsion subgroup of L/H. Our goal becomes to split the
exact sequence

0 H⊥⊥/H L/H L/H⊥⊥ 0, (2.8)

which we do using Proposition 2.5.1.

2.6.3 Computing the order of a group element

Theorem 2.6.3. There exists a deterministic polynomial-time algorithm that, given
a finitely generated abelian group G and an element g ∈ G, determines the order of
g.

Proof. Consider the map ψ : Z → G, given by 1 7→ g. If ψ is injective, which we can
test, then g has infinite order. Otherwise, ker(ψ) is of the form lZ, giving the order
of g in G as equal to l.

Iuliana Ciocănea-Teodorescu 37

Note 2.6.4. This result depends heavily on the way we are representing G. Suppose
G = (Z/nZ)×, for some n ∈ Z>2. Suppose we choose to represent G by only giving
the integer n. Then we can certainly carry out computations in G, but given the
element 2 ∈ G, we cannot in general efficiently compute its order without knowing
the factorisation of n, and even then it is hard.

We can use this tool to decide if two elements are equal, by simply determining if
their difference is equal to the zero element, i.e. if it has order 1.

Corollary 2.6.5. There exists a deterministic polynomial-time algorithm that, given
a finitely generated abelian group G and an element g ∈ G, determines if g = 0G.

Corollary 2.6.6. There exists a deterministic polynomial-time algorithm that, given
a finitely generated abelian group G and two elements g, h ∈ G, determines if g = h.

2.6.4 Computing the exponent of a group

The exponent of a group G is computable as the generator over Z of

ker (Z→ Hom(G,G), n 7→ (x 7→ nx)) .

However, it is also useful to be able to exhibit an element of G of order equal to the
exponent of G. To do this, we begin with a couple of preliminary results.

Lemma 2.6.7. There exists a deterministic polynomial-time algorithm that, given
a finite abelian group G and two elements x, y ∈ G of orders n and m respectively,
outputs an element z, expressed in terms of x and y, of order equal to lcm(n,m).

Proof. Using Theorem 2.6.3, compute n and m, the orders of x and y, respectively.
Apply the Coprime Base Algorithm (Theorem 1.1.2) to the set {n,m} to obtain a set
P of coprime divisors of nm and a factorisation n =

∏
p∈P p

np and m =
∏
p∈P p

mp ,
where np,mp ∈ Z≥0. Define

n′ =
∏
p∈P

np>mp

pnp and m′ =
∏
p∈P

np≤mp

pmp

Let x′ = n
n′x and y′ = m

m′ y. Since n′ and m′ are coprime, the order of z := x′ + y′ is
equal to lcm(n′,m′) = lcm(n,m).

Lemma 2.6.8. Let L = Zn and H ⊆ L a subgroup. Suppose B = {b1, . . . , bn} is a
basis of L. Then the exponent of L/H is equal to the lowest common multiple of the
orders of b1, . . . , bn in L/H.

Proof. Let e1, . . . , en be the respective orders of b1 + H, . . . , bn + H in L/H. Let
l = lcmi({ei}). By Lemma 2.6.7, there exists an element of L/H of order equal to
l, so exp(L/H) ≥ l. Moreover, since B is a basis of L, every x ∈ L/H is of the
form

∑
i αibi + H, for some αi ∈ Z. Then lx ∈ H, so x has order dividing l. Hence

exp(L/H) = l.

38 Algorithms for finite rings

This now enables us to compute the exponent of any given finite abelian group.

Theorem 2.6.9. There exists a deterministic polynomial-time algorithm such that,
given a finite abelian group G, computes the exponent of G and produces an element
g ∈ G of order equal to the exponent.

Proof. We begin by determining the order of all basis vectors of L in L/H using
Theorem 2.6.3. This gives a sequence of integers whose lowest common multiple is
the exponent of L/H. Applying Proposition 2.6.7 repeatedly, we produce an element
with the required property.

2.6.5 Writing a finitely generated abelian group as a direct
sum of cyclic groups

Let G be a finite abelian group of exponent n. Then we have seen that there exists
g ∈ G such that the order of g is n. Moreover, for any such g, the cyclic subgroup
generated by it is a direct summand of G. This suggests a method of decomposing a
finite abelian group into a direct sum of cyclic subgroups by computing the exponent
of the group, producing an element of that order, quotienting out by the subgroup it
generates and repeating the process for the remaining part.

Theorem 2.6.10. There exists a deterministic polynomial-time algorithm that, given
a finite abelian group G, produces a direct-sum-decomposition of G into cyclic sub-
groups.

Proof. Suppose G is represented by triple (m,n, f), and put L := Zn and H := im(f).
Then G = L/H. By Theorem 2.6.9, we can compute e1, the exponent of G, and
produce an element x1 ∈ G of order e1. The subgroup generated by x1 is now a
direct summand of G. We would now like to determine a subgroup G2 ≤ G such that
G ∼= G2 ⊕ Z/e1Z.

To do this, apply Proposition 2.5.1 to the exact sequence

0→ Z/e1Z→ G→ G/Zx1 → 0.

Now replace G by G2 and repeat. In the end we will have produced a positive integer
t ∈ Z>0, a sequence of integers e1, . . . , et ∈ Z>0, a sequence of subgroups G1, . . . , Gt ≤
G such that the exponent of Gi is ei, and a sequence of elements x1, . . . , xt such that
xi ∈ Gi and the order of xi is equal to ei. Moreover, we have an isomorphism

G
ψ←−
∼

t⊕
i=1

Z/eiZ,

where ψ : 1Z/eiZ 7→ xi. The algorithm requires t ≤ log2 |G| iterations.

Note 2.6.11. Another way to obtain a decomposition of G into cyclic subgroups is
to apply Theorem 2.2.17 to the presentation matrix of G.

Iuliana Ciocănea-Teodorescu 39

2.7 Homomorphism groups and tensor products re-
considered

We have already seen how to compute tensor products and homomorphism groups,
without knowing a cyclic direct sum decomposition of the groups involved. The disad-
vantage of that approach is that the number of generators produced by the algorithm
can get unnecessarily large. In this section we construct tensor products and homo-
morphism groups of finite abelian groups by making use of the fact that we can
compute a cyclic direct sum decomposition.

Suppose

G1
∼=

t1⊕
i=1

Z/ciZ and G2
∼=

t2⊕
j=1

Z/diZ, (2.9)

for some t1, t2 ∈ Z>0 and ci, dj ∈ Z>0, for all 1 ≤ i ≤ t1 and 1 ≤ j ≤ t2.

Let n,m ∈ Z>0 and d := gcd(n,m). Then we have an isomorphism

Z/nZ⊗ Z/mZ ∼−→ Z/dZ, x⊗ y 7→ xy.

Similarly, every group homomorphism φ : Z/nZ→ Z/mZ is determined by the image
of 1 in Z/mZ, which must be a multiple of m

d . This is because

nφ(1) = φ(n) ≡ 0 mod m,

and so
n

d
φ(1) ≡ 0 mod

m

d
.

Since n/d and m/d are coprime, it must be the case that φ(1) ≡ 0 mod m
d . Hence

we have an isomorphism

Hom(Z/nZ,Z/mZ)
∼−→ Z/ gcd(n,m)Z, φ 7→

(m
d

)−1
φ(1).

Proposition 2.7.1. There exists a deterministic polynomial-time algorithm that,
given two finite abelian groups G1, G2 via direct-sum representations as in (2.9), com-
putes

(i) the tensor product, G1⊗G2, together with the corresponding bilinear map G1×
G2 → G1 ⊗G2,

(ii) the homomorphism group, Hom(G1, G2), together with the corresponding bilin-
ear map Hom(G1, G2)×G1 → G2.

Proof. Note that one can always obtain a direct-sum representation using Theorem

40 Algorithms for finite rings

2.2.17. We then have that

G1 ⊗G2
∼=

(
t1⊕
i=1

Z/ciZ

)
⊗

 t2⊕
j=1

Z/diZ


∼=

t1,t2⊕
i,j=1

(Z/ciZ⊗ Z/djZ)

∼=
t1,t2⊕
i,j=1

Z/gcd(ci, dj)Z,

and all isomorphisms occurring are known and computable.
Similarly,

Hom(G1, G2) ∼= Hom

 t1⊕
i=1

Z/ciZ,
t2⊕
j=1

Z/diZ


∼=

t1,t2⊕
i,j=1

Hom(Z/ciZ,Z/djZ)

∼=
t1,t2⊕
i,j=1

Z/ gcd(ci, dj)Z,

and all isomorphisms occurring are known and computable.

2.8 Projective Z/mZ-modules

We have seen in Proposition 1.6.8, what the projective modules over Z/mZ are, for
m ∈ Z>0.

Suppose now we are given a finite abelian group A1 and we would like to find the
largest integer m | exp(A1) such that A1/mA1 is projective as a module over Z/mZ.

Proposition 2.8.1. There exists a deterministic polynomial-time algorithm that,
given a finite abelian group A1 computes the largest integer m ∈ Z>0 such that
m | exp(A1) and A1/mA1 is projective as a Z/mZ-module.

Proof. Suppose

A1
∼=
⊕
p∈P
a∈Z>0

(Z/paZ)na,p ,

where P is a set of pairwise coprime integers greater than 1 and na,p ∈ Z≥0. Note
that this is a situation we can reduce to if we first compute a decomposition of A1 as
a direct sum of cyclic subgroups using Theorem 2.6.10 and then apply the Coprime

Iuliana Ciocănea-Teodorescu 41

Base Algorithm (Theorem 1.1.2) to the set of sizes of these cyclic components. For
each p ∈ P, set

αp =

{
min{a | na,p 6= 0}, if ∃a s. t. na,p 6= 0

0, otherwise .

Let

m =
∏
p∈P

pαp .

Then

A1/mA1
∼=
⊕
p∈P

(Z/pαpZ)
∑
a na,p ,

so is projective as a Z/mZ-module.

This value of m is the largest possible. To see this, it is enough to consider the
case when P = {p} for some p ∈ Z>1. Suppose m = pβp , where βp is a positive integer
larger than αp. Then A1/mA1 will have Z/pαpZ as a direct summand and thus cannot
be projective as a Z/mZ-module.

To see maximality of m graphically, let p be a prime and consider the p-group
A1 =

⊕t
i=1 Z/peiZ, where ei ≤ ei+1 and e1 > 0. We represent A1 by the following

diagram:

pe1

pet . (2.10)

The number of vertical boxes is equal to the number of cyclic direct summands of
A1 and the height of each such box proportional to the length of the cyclic group it
represents.

To make this into a free module, we need to “cut out a rectangle”, so we need to
cut along the smallest invariant, pe1 , or along any other pe

′
, for e′ ≤ e1:

42 Algorithms for finite rings

pet

pe1

.

The remaining part is isomorphic to (Z/pe1Z)t as an abelian group.

Suppose A2 is a finite abelian group and we want to find the least integer m′ |
exp(A2) such that A2/A2[m′] is projective over Z/ exp(A2)

m′ Z, where A2[m′] = ker(A2 →
A2, x 7→ m′x).

Proposition 2.8.2. There exists a deterministic polynomial-time algorithm that,
given a finite abelian group A2 of exponent m, for some m ∈ Z>0, computes the
smallest m′ | m such that A2/A2[m′] is projective over Z/ mm′Z.

Proof. Suppose

A2
∼=
⊕
q∈Q
b∈Z>0

(
Z/qbZ

)nb,q
, (2.11)

where Q is a set of coprime integers greater than 1 and nb,q ∈ Z≥0. For each q ∈ Q,
let

µ(q) =

{
max{b | nb,q 6= 0}, if ∃b s.t. nb,q 6= 0

0, otherwise,

and

α(q) =

{
max{{b | nb,q 6= 0}\µ(q)}, if ∃b s.t. nb,q 6= 0 and b 6= µ(q)

0, otherwise.

Then µ(q) is the largest power of q occurring as the exponent of one of the cyclic
groups in the direct sum (2.11), and α(q) is the second largest power of q occurring.
Set

m′ =
∏
q∈Q

qα(q).

Then

A2/A2[m′] =
⊕
q∈Q

(
Z/qα(q)Z

)nµ(q),q
,

where n0,q := 0.
This value of m′ is the smallest possible. To see this, it is enough to consider

the case when Q = {p}, for some p ∈ Z>1. Suppose m′ = β(p), where β(q) is a

Iuliana Ciocănea-Teodorescu 43

positive integer smaller than α(q). Then A2/A2[m] will have Z/pα(q)−β(q)Z as a direct
summand, and thus cannot be projective as a Z/ mm′Z-module.

To see minimality of m′ graphically, reduce again to the p-group case. Suppose
A2 =

⊕t
i=1 Z/peiZ, where ei ≤ ei+1 and e1 > 0, and suppose that there are k copies

of Z/petZ in this sum. Then A2 is represented by a diagram like in (2.10). This time
however, to get a rectangle, we do not cut along the smallest invariant, but along the
second largest one:

pet pet

pα(p)

pet−α(p)

.

The remaining part is represented by the upper-left rectangle left unhatched, and is
isomorphic to (Z/pet−α(p)Z)k.

44 Algorithms for finite rings

Chapter 3

Linear algebra over Z:
basic algorithms for finite
rings

We have seen in the previous chapter how to represent and carry out basic computa-
tions with finite abelian groups. This enables us to deal with the underlying additive
group of a finite ring, which is crucial for all our algorithms. This chapter is a com-
pendium of basic algorithms to do with finite rings.

We will represent finite rings using “basis representations” and describe algorithms
that accomplish the following tasks:

1. compute homomorphism groups between two finite modules over a finite ring,
2. compute the ideal generated by a given set of elements,
3. compute sums, products and intersections of ideals,
4. compute the quotient of a finite ring by a two-sided ideal,
5. compute the characteristic, centre and prime subring of a finite ring.

We will also look at the problem of computing the Jacobson radical of a ring. In
the case where the given ring is a finite-dimensional algebra over a field, this can
be accomplished deterministically in polynomial time ([27, 75]). However, in general,
such a result cannot be expected, in view of our inability to compute the largest
square divisor of an integer.

Finally, we will briefly look at some other known algorithms for finite rings, and
some open algorithmic questions.

45

46 Algorithms for finite rings

3.1 Representing objects and basic constructions

3.1.1 Representing rings and modules

To represent finite rings inside algorithms, we will use basis representations. These are
considered to be the “right” representations for complexity considerations, since they
are neither too verbose (so as to make all problems quasipolynomial), nor too compact
(so as to make all problems NP-hard). For more on the different representations and
the complexity of problems on different representations, see [2, 4, 52, 53].

Definition 3.1.1. Let R be a finite ring. A basis representation of R consists of a
sequence of integers d1, . . . , dt ∈ Z>1, for some t ∈ Z≥0 such that

R+ ∼=
t⊕
i=1

(Z/diZ), (3.1)

together with a bilinear map

σ : R+ ×R+ → R+ (3.2)

(ei, ej) 7→ eiej , (3.3)

where ei is a generator of the cyclic subgroup Z/diZ, for 1 ≤ i ≤ t, and we express eiej
linearly in terms of {ei}, i.e. for each 1 ≤ i, j ≤ t we give a sequence aijk ∈ Z/dkZ,

for 1 ≤ k ≤ t, such that eiej =
∑t
k=1 aijkek.

Note 3.1.2. We have established in Definition 2.3.2 that the default representation of
a finite abelian group is the exact-sequence representation. However, by the results of
Section 2.6.5, we may assume that R+ is in fact given by a direct-sum decomposition
into cyclic groups.

Note 3.1.3. The map σ in (3.2) will be referred to as the multiplication map of R.
Specifying σ amounts to giving t3 integers aijk, which are called structure constants.

Note 3.1.4. Given d1, . . . , dt and a sequence of t3 integers, aijk, we can check in
polynomial time whether they define a ring. This amounts to checking a series of
equalities and solving systems of linear equations over Z.

Note 3.1.5. The size of a basis representation is equal to

t∑
i=1

log2(di) · t2 = log2(|R|) · t2 ≤ log3
2(|R|), (3.4)

since t ≤ log2(|R|). Thus, when we say an algorithm with input R runs in polynomial

time, we mean that the number of bit operations is bounded above by (log2(2 + |R|))C ,
for some constant C. The 2 is added in order to accommodate the zero ring.

Iuliana Ciocănea-Teodorescu 47

To input a finite module, we give a finite abelian group (M,+) and a bilinear map

α : R+ ×M →M, (3.5)

which describes the action of R on M . For every additive generator of R and M , we
express the image in terms of the additive generators of M .

3.1.2 Representing ring and module homomorphisms

Let R1 and R2 be two finite rings. A ring homomorphism ρ : R1 → R2 is a homo-
morphism of the underlying abelian groups that sends the unit element of R1 to the
unit element of R2 and respects the multiplicative structure of the rings, i.e. for all
r, s ∈ R1, we have that

ρ(rs) = ρ(r)ρ(s). (3.6)

Proposition 3.1.6. There exists a deterministic polynomial-time algorithm that,
given two finite rings R1 and R2, and a group homomorphism ρ : R+

1 → R+
2 , de-

cides whether ρ is a ring homomorphism, and if it is, decides whether it is injective
or surjective.

Proof. As in Section 2.3.2, the map φ is given by a matrix which specifies the image
of each additive generator of R1 as a linear combination of additive generators of R2.
Given such a matrix, we can easily check if it induces a homomorphism of rings, by
verifying that the induced map preserves multiplication and sends the unit element of
one ring to the unit element of the other. This amounts to checking equalities over Z.
By Propositions 2.3.6 and 2.3.7, we can also check for injectivity or surjectivity.

Let R be a ring and M,N two R-modules. A module homomorphism φ : M → N
is a homomorphism of abelian groups which is R-linear, i.e. for all r ∈ R,m ∈M , we
have that

φ(rm) = rφ(m). (3.7)

Proposition 3.1.7. There exists a deterministic polynomial-time algorithm that,
given a finite ring R, two R-modules M and N , and a group homomorphism φ :
M → N , decides whether φ is an R-module homomorphism, and if it is, decides
whether it is injective or surjective.

Proof. As in Chapter 2, Section 2.3.2, the map φ is given by a matrix which spec-
ifies the image of each additive generator of M as a linear combination of additive
generators of N . Given such a matrix, we can easily check if it induces a module ho-
momorphism by verifying that the induced map preserves scalar multiplication. This
amounts to checking equalities over Z. By Propositions 2.3.6 and 2.3.7, we can also
check for injectivity or surjectivity.

48 Algorithms for finite rings

3.1.3 Homomorphism group

Proposition 3.1.8. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and two finite R-modules M1 and M2, computes the homo-
morphism group HomR(M1,M2).

Proof. We can certainly compute HomZ(M1,M2). Then

HomR(M1,M2) = {f ∈ HomZ(M1,M2) | f(rx) = rf(x), ∀r ∈ R,∀x ∈M1}. (3.8)

It is enough to ensure that the relation f(rx) = rf(x) holds for the additive generators
of R and M1. Consider the map

HomZ(M1,M2)→
⊕

r additive generator of R
x additive generator of M1

M2

f 7→ (f(rx)− rf(x))r,x.

Then HomR(M1,M2) is the kernel of this map, which we can compute.

3.2 Computations with ideals

Let R be a ring. A left ideal I is, in particular, a left R-module, so it is given to the
algorithm as an additive subgroup of R, together with a map R× I → I, as in (3.5).
Right ideals and two-sided ideals are given in a similar way.

3.2.1 Computing the ideal generated by a given set of elements

Proposition 3.2.1. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and a set S ⊂ R, computes the ideal generated by S in R.

Proof. Suppose S = {s1, . . . , su}. The left ideal I, generated by S in R has underly-
ing additive group generated by the set {eisj | 1 ≤ i ≤ t, 1 ≤ j ≤ k}, which can be
computed using Proposition 2.3.10. This will also produce an injective group homo-
morphism I ↪→ R specifying I+ as a subgroup of R+. To determine the R-action, we
look at the map σ : R+×R+ → R+ as in (3.2), giving the multiplicative structure of
R. Suppose eisj =

∑t
n=1 bijnen. Then

ekeisj =

(∑
m

akimem

)
sj =

∑
m,n

akimbmjnen. (3.9)

Now we express this sum as a linear combination of the eisj .

The right and two-sided ideals are dealt with in a similar manner.

Iuliana Ciocănea-Teodorescu 49

3.2.2 Sum, product and intersection of ideals

Proposition 3.2.2. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and two ideals I, J ⊂ R, computes the ideals I+J, I ∩J and IJ .

Proof. Note that (I + J)+ = I+ + J+ and (I ∩ J)+ = I+ ∩ J+, and the action of R
is induced by the ring multiplication map σ (as in (3.2)).

Suppose x1, . . . , xn is a set of additive generators of I and y1, . . . , ym is a set of
additive generators of J . Recall that IJ ⊆ J . We have that

(IJ)+ = 〈{xi · yj}i,j〉Z, (3.10)

where the product xi · yj is computed by writing each xi and yj in terms of additive
generators of R and then using the multiplication map σ to write each xi · yj as a
linear combination of additive generators of R. The action of R on (IJ)+ is again
induced by σ.

The right and two-sided ideals are dealt with in a similar manner.

3.2.3 Quotient of ring and two-sided ideal

Proposition 3.2.3. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and a two-sided ideal I, computes the quotient ring R/I.

Proof. Let I be a two-sided ideal of R. Then

(R/I)+ = R+/I+, (3.11)

which can be computed using Proposition 2.3.13. This will also produce a surjective
group homomorphism R+ � (R/I)+. The multiplication map for R/I is induced by
the multiplication map for R.

3.3 Computing the centre and the prime subring of
a finite ring

Given a finite ring, we will often want to view it as an algebra over its centre or its
prime subring. We show how to compute these.

Theorem 3.3.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R, computes its centre, prime subring and characteristic.

Proof. To compute the centre of a finite ring R, we consider the map

ψ : R+ −→
⊕

r additive generator of R

R+

s 7−→ (rs− sr)r.

50 Algorithms for finite rings

The centre of R is the kernel of ψ, which we can compute. Its ring structure is induced
by σ, the map defining multiplication in R.

To compute the prime subring of a finite ring R, we consider the map

α : Z→ R+, 1 7→ 1R.

The prime subring of R is the image of α, which we can compute. The multiplication
map is induced by σ.

The cardinality of the prime subring is the characteristic of R, which we can
also compute by taking the lowest common multiple of the sizes of the cyclic direct
summands of R+.

3.4 Computing the Jacobson radical

When dealing with problems concerning rings, it is often convenient to reduce to the
semisimple case. When the ring at hand is left-artinian, this reduces to computing
the Jacobson radical (see Theorem 1.4.9, part (iv)). Thus, the natural question to
ask is if Jacobson radicals can be efficiently computed. For our purposes, the appro-
priate version of this question is whether the Jacobson radical of a finite ring can be
computed deterministically in polynomial time.

If the given ring R is a finite-dimensional algebra over a “nice” field F, there do
exist deterministic polynomial-time algorithms that compute the Jacobson radical of
R (see [18, 27, 75]). For F a field of characteristic 0, this reduces to solving a system of
linear equations over F by Dickson’s theorem (see Theorem 1.4.10). If F is a finite field,
then Friedl and Rónyai showed how to recursively construct a sequence of ideals of R,
whose last element is equal to J(R). Using a very similar technique, Cohen, Ivanyos
and Wales generalised these results, showing how to compute the Jacobson radical
in the case that F is any field in which one can perform arithmetic and over which
one can solve semilinear equations of the form

∑k
i=1 aix

p
i = 0, where p = char(F),

k ∈ Z>0 and ai ∈ F for all 1 ≤ i ≤ k. Finite fields are examples of such fields.

Theorem 3.4.1 ([18]). There exists a deterministic polynomial-time algorithm that,
given a finite-dimensional algebra R over a field F, where F is a field over which we
can perform arithmetic and solve semilinear equations, computes the Jacobson radical
of R.

Note 3.4.2. We cannot in general expect to be able to compute the Jacobson radical
for rings not containing a field. To see this, consider rings of the form Z/nZ, with
n ∈ Z>0, for which the task ultimately reduces to finding square divisors of n. This
is not something we know how to do deterministically in polynomial time.

3.5 Other known algorithms and open questions

Rings are ubiquitous. It is thus important to have a wide range of algorithms to deal
with finite rings. This list of deterministic polynomial-time algorithms for finite rings

Iuliana Ciocănea-Teodorescu 51

however, is not as long as would be expected for such basic objects. One of the reasons
for this is that many problems for finite rings reduce to rings of the type Z/nZ, and
at this stage the fact that we cannot factor n efficiently becomes a serious issue.

The study of algorithmic problems involving automorphisms and isomorphisms of
finite rings intensified after the first deterministic polynomial-time primality test was
formulated by Agrawal, Saxena and Kayal in terms of automorphisms of a certain
finite ring (see [1]). Subsequently, the same authors studied how some of the most im-
portant open algorithmic questions, like integer factorisation, polynomial factorisation
over finite fields and graph isomorphism can be reduced to ring automorphism ques-
tions. The questions for which deterministic polynomial-time algorithms are sought
are the following:

1. Ring Isomorphism Problem

(i) Decision version: Given two finite rings, decide if they are isomorphic.
(ii) Search version: Given two finite rings, find an isomorphism if one exists.
(iii) Counting version: Given two finite rings, compute the number of isomor-

phisms between them.

2. Ring Automorphism Problem

(i) Decision version: Given a finite ring, decide if it has a nontrivial ring au-
tomorphism.

(ii) Search version: Given a finite ring, find a nontrivial automorphism if one
exists.

(iii) Counting version: Given a finite ring, compute the number of its automor-
phisms.

As far as deterministic polynomial-time algorithms are concerned, all of the above
problems are open, with the exception of the decision version of the ring automorphism
problem, which was shown to be in P in [53]. The algorithm given there relies on the
classification of rigid rings (i.e. rings with no nontrivial automorphisms).

Theorem 3.5.1 ([53], Theorem 7.1). There exists a deterministic polynomial-time
algorithm that, given a finite ring R, determines whether R has a nontrivial automor-
phism.

It is shown in [53] that both integer factorisation and the graph isomorphism
problem reduce to the counting version of the ring automorphism problem, which is
unlikely to be NP-complete. The decision version of the ring isomorphism problem is
shown to be at least as hard as the graph isomorphism problem. Moreover, integer
factorisation reduces to the search version of the ring isomorphism problem.

For finite fields, the isomorphism problem can be handled deterministically in
polynomial time.

52 Algorithms for finite rings

Theorem 3.5.2 ([65], Theorem 1.2). There exists a deterministic polynomial-time
algorithm that, given two finite fields of the same cardinality, exhibits an isomorphism
between them.

Apart from these problems, to which systematic study has been devoted, the list of
algorithms for finite rings remains quite a short one. It is one of the goals of this thesis
to expand on this list, thus supplementing the toolbox for algorithmically dealing with
finite rings.

Chapter 4

The module isomorphism
problem

Let R be a finite ring and let M1,M2 be two finite left R-modules. We present two
distinct deterministic algorithms that decide in polynomial time whether or not M1

and M2 are isomorphic, and if they are, exhibit an isomorphism. As by-products, we
are able to determine the largest isomorphic common direct summand between two
modules and the minimum number of generators of a module. By not requiring R to
contain a field, avoiding computation of the Jacobson radical and not distinguishing
between large and small characteristic, both algorithms constitute improvements to
known results. We have not attempted to implement either of the two algorithms, but
we have no reason to believe that they would not perform well in practice.

4.1 Introduction

The module isomorphism problem (MIP) can be formulated as follows: design a deter-
ministic algorithm that, given a ring R and two left R-modules M1 and M2, decides
in polynomial time whether they are isomorphic, and if yes, exhibits an isomorphism.

This problem is as fundamental as it is easily stated and has been studied exten-
sively, due both to its intrinsic theoretical value and to its broad range of applications.
As a theoretical question it is one in a long series of isomorphism problems. These
are some of the most natural questions that occur in algorithmic contexts: given two
objects “of the same nature”, one wishes to determine if they are equal, or isomor-
phic. Examples of these problems include the group isomorphism problem, the graph
isomorphism problem and the ring isomorphism (see [52, 53]). From a complexity
point of view, these problems have a special status, namely, they are thought to be
NP-intermediate, i.e. pertaining to the class consisting of problems that are known

This chapter is an extended version of the paper The module isomorphism problem for finite
rings and related results, arXiv:1512.08365v1 ([17])

53

54 Algorithms for finite rings

to be in NP, but are not known to be in P, or to be NP-complete. The class of NP-
intermediate problems is nonempty if and only if P 6= NP (see [73], Theorem 14.1).
However, even under the hypothesis that P 6= NP, no “natural” NP-intermediate
problems are known.

The practical value of the module isomorphism problem comes from viewing it in
the larger context of algorithms for finite rings. Finite rings are fundamental objects
and one wishes to have as many algorithms as possible for handling them at one’s
disposal, that is to say, in one’s computer algebra system toolbox.

A brief overview of the results related to the module isomorphism problem is
included in Section 4.2. In particular, polynomial-time algorithms for the module
isomorphism problem were given in [10, 15] for the case where R is a finite-dimensional
algebra over a field and M1,M2 are finite-dimensional modules over that field. For
our purposes, R will be a finite ring (not necessarily containing a field) and M1,M2

will be finite R-modules. We give an algorithm as described by the following theorem:

Theorem 4.1.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and two finite R-modules M1 and M2, computes a maximum length
R-module C that is isomorphic to a direct summand both of M1 and of M2. Moreover,
the algorithm computes direct complements of C both in M1 and in M2, together with
the corresponding isomorphisms.

We establish the result in Theorem 4.1.1 by a direct generalisation of the methods
given in [10], where the rings considered were finitely generated algebras over a field
and the modules were finite-dimensional over that field. This approach relies on the
ability of finding non-nilpotent elements in non-nilpotent ideals of the endomorphism
ring EndR(M1) (cf. Proposition 4.3.3). As a direct consequence of Theorem 4.1.1 we
have that:

Theorem 4.1.2. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and two finite R-modules M1 and M2, decides whether M1 and M2

are isomorphic, and if they are, exhibits an isomorphism.

In Section 3, we show how the module isomorphism problem reduces to determin-
ing freeness of rank one of a module. We then give an algorithm that computes the
minimum number of generators of a given finite module.

Theorem 4.1.3. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and a finite R-module M , computes a set for generators of M of
minimum cardinality.

In particular, we can determine if a module is cyclic or free (by comparing cardinal-
ities), which gives a second deterministic polynomial-time algorithm for the module
isomorphism problem.

It is important to note that the algorithms given here work for any finite ring, do
not distinguish between large and small characteristic and avoid computation of the

Iuliana Ciocănea-Teodorescu 55

Jacobson radical, thus constituting an improvement to known results. Moreover, the
algorithm in Theorem 4.1.3 is an interesting object per se, due to its structure and the
techniques it employs. A common approach to this type of problems is to reduce to
the semisimple case and then “lift” (e.g. [15, 42]). In our algorithm, we work as if the
ring were semisimple and we have a list, S1, . . . , St, of candidates for the isomorphism
classes of simple modules composing it. During the running of the algorithm, we allow
ourselves to be contradicted in our assumption about the simplicity of the Si, in which
case we update our list, quotient the ring by an appropriate two-sided nilpotent ideal
and start again. If we are not contradicted, we may still draw conclusions. In this way,
there is always a side-exit available and what forces an output in polynomial time is
that we cannot take the side-exit too many times.

4.2 Context

All of the results referred to in this section deal with the case where the given ring R is
a finite-dimensional algebra over a field F and the two modules are finite-dimensional
over that field.

One of the first attempts at tackling the module isomorphism problem made use
of the MeatAxe algorithm due to Parker (see [74]). Holt and Rees produce an efficient
randomized algorithm in [36], that in the case where F is finite, tests whether a module
is simple, and if it is not, produces a proper submodule. This algorithm is then used
to test for isomorphism between two modules of which one is known to be simple.
However, their method fails in the cases where the given module has a very special
structure.

The first deterministic polynomial-time algorithm for the module isomorphism
problem was presented by Chistov, Ivanyos and Karpinski in [15]. For the purpose of
their paper, F is a finite field or an algebraic number field. Their method reduces the
problem to the semisimple case by computing the Jacobson radical of R and then fur-
ther reduces the problem to testing cyclicity of modules. Because this method requires
the computation of the Jacobson radical, it does not lend itself to generalisation in
the case of general finite rings (cf. Chapter 3, Section 3.4).

The next solution to the module isomorphism problem was given by Brooksbank
and Luks in [10]. Their algorithm is based on finding nilpotent endomorphisms of
one of the modules and in fact does more than test for module isomorphism – it
produces the largest isomorphic common direct summand between two modules, i.e.
the maximal length direct summand of one of the modules, which has an isomorphic
copy as a direct summand of the other. In principle, this method works for any
underlying field, as long as we can perform arithmetic in it.

Another related result was presented by Ivanyos, Karpinski and Saxena in [42].
Their algorithm computes the minimum number of generators of a given module and
is in particular useful for testing module cyclicity. The drawback of this method is
that it distinguishes between small and large characteristic of the underlying field.

Our goal is to obtain corresponding algorithms for the case that R is a finite ring

56 Algorithms for finite rings

(not necessarily containing a field) and the given modules are also finite.

4.3 MIP via non-nilpotent endomorphisms

In this section, the algorithm of Brooksbank and Luks [10] is generalised to solve the
module isomorphism problem for finite rings and finite modules over that ring.

4.3.1 Finding non-nilpotent elements in non-nilpotent ideals

An ideal I of a ring R is said to be nil if all its elements are nilpotent. The following
is a well known fact.

Proposition 4.3.1. If R is a left-artinian ring, then a left (or right) ideal I of R is
nil if and only if it is nilpotent.

Proof. Clearly if a left (or right) ideal is nilpotent, then it is nil. For the other direction,
note that any nil left (or right) ideal of R is contained in the Jacobson radical J(R)
(see [57], Lemma 4.11). So it is enough to show that J := J(R) is nilpotent.

Suppose J is not nilpotent. Since R is left-artinian, the sequence of consecutive
powers of J must stabilize, i.e. ∃n ∈ Z>0 such that Jn = J2n 6= 0. Then there exists
a left ideal L s.t. JnL 6= 0. Suppose L is minimal with this property. Since JnL 6= 0,
there exists a ∈ L such that Jna 6= 0. Now Ra ⊆ L and Jna ⊆ L. Moreover,
0 6= Jna = JnJna and 0 6= Jna ⊆ JnRa, so by minimality of L, we have that
L = Ra = Jna. Hence a = xa, for some x ∈ Jn. It follows that a = 0 (otherwise,
1− x would be both a unit and a left zero-divisor, which is not possible). This gives
the desired contradiction.

Note 4.3.2. The “only if” direction in the statement of the previous proposition
is not true if we remove the artinianity condition. Consider the commutative ring
R = Z[x1, x2, . . .]/(x

2
1, x

2
2, . . .). Then the ideal I = (x1, x2, . . .) is nil, but I is not

nilpotent.

If R is finite, the proof of Proposition 4.3.1 can be translated into an algorithm
for finding a non-nilpotent element in a non-nilpotent left ideal of R.

Proposition 4.3.3. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and a left ideal I, determines whether or not I is nilpotent
and if it is not, produces a non-nilpotent element lying inside it.

Proof. Suppose R is a k-algebra, where k is a commutative ring (R will certainly be
an algebra over its centre or its prime subring) and let I be a non-nilpotent left ideal
of R. Since R is finite, we can find n ∈ Z>0 such that In = I2n 6= 0. Suppose In is
generated over k by a set A and over R by a set B, i.e.

In =
∑
α∈A

kα =
∑
β∈B

Rβ.

Iuliana Ciocănea-Teodorescu 57

Then 0 6= I2n =
∑

α∈A
β∈B

Rβα, so there exists b ∈ B and a ∈ A such that b · a 6= 0.

Consider the ideals Ina ⊆ Ra, where Ina 6= 0 since it contains ba. If this inclusion
is in fact an equality, then we can write a = xa, for some x ∈ In and since a 6= 0,
it must be the case that x is non-nilpotent, as required (otherwise 1 − x would be
a unit and a left zero divisor at the same time, which is impossible). Suppose now
that the inclusion is strict. Then there exists c ∈ Ina such that Inc 6= 0 (otherwise
InIna = Ina = 0, which is a contradiction, since 0 6= ba ∈ Ina). Moreover, we will
be able to find such a c among k-generators of Ina, otherwise, for all α ∈ A, we
would have that Inαa = 0, and so 0 =

∑
α∈A kI

nαa = I2na = Ina 6= 0, which is a
contradiction.

We have now produced a smaller ideal Ra) Ina ⊃ Rc such that Inc 6= 0. We
replace a by c and keep going. This process must terminate in polynomial time, since
length(Ra) ≤ length(RR) ≤ log2(|R|), and so the length of the descending chain of
ideals obtained, and hence the number of steps performed by the algorithm, is bounded
above by log2(|R|). We also note that I is nilpotent if and only if I length(RR) = 0, so
it is possible to test if I is nilpotent in polynomial time.

4.3.2 Splitters

Let R be an algebra over a commutative artinian ring k such that R is finitely gener-
ated as a k-module. Let M1 and M2 be two R-modules of finite length over k. Note
that HomR(M1,M2) is a left k-module via the action

k ×HomR(M1,M2)→ HomR(M1,M2)

(r, f) 7→ (m 7→ f(mr)),

and a right EndR(M1)-module via the action

HomR(M1,M2)× EndR(M1)→ HomR(M1,M2)

(f, g) 7→ f ◦ g.

Moreover, EndR(M1) is left (and right) artinian. In particular, all its nil ideals are
nilpotent and vice versa.

Following [10], we make the following definition:

Definition 4.3.4. Let f ∈ HomR(M1,M2). A decomposition M1 = N1 ⊕ K1, for
N1,K1 ≤ M1, is called an f -decomposition if N1 6= 0, ker(f) ≤ K1 and the image
of N1 under f , which we denote by fN1, is a direct summand of M2. If M1 has an
f -decomposition, we say that f is a splitter.

Note that the condition ker(f) ≤ K1 implies that N1
∼= fN1 = N2, so f induces

an isomorphism N1
∼= N2.

The following proposition and its proof, together with Proposition 4.3.3, allow
us to algorithmically decide if a given homomorphism f is a splitter, and if it is, to
produce an f -decomposition.

58 Algorithms for finite rings

Proposition 4.3.5. Let f ∈ HomR(M1,M2). Then f is a splitter if and only if there
exists g ∈ HomR(M2,M1) such that gf is not nilpotent.

Proof. The proof of this proposition is the same as the one given in [10], Lemma 3.3,
which treats the case when R is a finitely generated algebra over a field and M1,M2

are finite-dimensional over that field. For completeness we include the proof of the
“if” statement here.

Suppose g ∈ HomR(M2,M1) is such that gf is not nilpotent. Let s = gf and
t = fg. Since M1 and M2 have finite length over k (so are both artinian and noetherian
over R), we can apply Fitting’s Lemma (see Proposition 1.3.12) to say that M1 =
ker(sd)⊕ im(sd), M2 = ker(td)⊕ im(td), for d = max{lengthR(M1), lengthR(M2)} and
the restriction of t to im(td) is an automorphism. We have that sdM1 6= 0 since s is
not nilpotent, ker(f) ≤ ker(sd) by definition of s and

f(sdM1) = td(fM1) ⊆ tdM2 = fg(tdM2) = fsd(gM2) ⊆ f(sdM1),

so f im(sd) = f(sdM1) = tdM2 = im(td), which is what is required for f to be a
splitter.

Suppose now that we are given f ∈ HomR(M1,M2) and we wish to know whether
it is a splitter. To do this, we first compute a set C of k-generators of HomR(M2,M1).
Now consider the left ideal I of EndR(M1) generated by the set Cf = {cf | c ∈
C}. If I is nilpotent (which we can determine by Proposition 4.3.3), then since
HomR(M2,M1)f = spank(Cf) = I, we will not be able to find a non-nilpotent
element of the form gf , so f cannot be a splitter. Otherwise the algorithm of Propo-
sition 4.3.3 will produce some g ∈ HomR(M2,M1) witnessing that f is a splitter and
we can produce an f -decomposition by Proposition 4.3.5.

We now have a way of identifying splitters. But we would not like to have to
look for them over all homomorphisms. The following proposition tells us that we can
restrict our attention to a considerably smaller set.

Proposition 4.3.6. If a splitter exists, then there exists a splitter in any set of
k-module generators of HomR(M1,M2) and in any set of EndR(M1)-generators of
HomR(M1,M2).

Proof. To see that a set of EndR(M1)-module generators is enough, note that

f is not a splitter ⇐⇒ HomR(M2,M1)f ⊆ J(EndR(M1)).

Let B be a set of EndR(M1)-module generators of HomR(M1,M2). Suppose that B
does not contain any splitters. Then

HomR(M2,M1) HomR(M1,M2) =
∑
b∈B

HomR(M2,M1)bEndR(M1)

⊆ J(EndR(M1)),

and therefore HomR(M1,M2) cannot contain a splitter.
Finally, note that any set of left-k-module generators is also a set of right-EndR(M1)-

module generators.

Iuliana Ciocănea-Teodorescu 59

Putting these results together, we can construct an algorithm satisfying the re-
quirements of Theorem 4.1.1 as follows.

Proof of Theorem 4.1.1: We view R as an algebra over its prime subring k. Let C be
an auxiliary variable that at the end of the algorithm will become equal to the desired
maximal length R-module that is isomorphic to a direct summand both of M1 and of
M2. At the beginning of the algorithm, we put C equal to zero. Similarly, we define
an auxiliary variable f ∈ HomR(M1,M2) and initialise it at zero.

We compute B, a set of k-generators of HomR(M1,M2) (or a set of EndR(M1)-
module generators thereof). For each element of B, we test if it is a splitter: by Propo-
sition 4.3.6, if a splitter exists, we will find one inside B. Finding a splitter b ∈ B
also gives us a homomorphism c ∈ HomR(M2,M1) such that cb is not nilpotent, and
a decomposition M1 = N1 ⊕ K1 and M2 = N2 ⊕ K2, where N1 = im((cb)d), K1 =
ker((cb)d),N2 = im((bc)d),K2 = ker((bc)d), and d = max{lengthR(M1), lengthR(M2)}
(see Proposition 4.3.5). We make the following replacements: C := C ⊕ N1 and
f := f ⊕ (the restriction of b to N1), M1 := K1, M2 := K2, B := (set of k-module
generators of the new HomR(M1,M2)), and we repeat the process. Note that we are
all the time assuming the Krull-Remak-Schmidt Theorem (see Theorem 1.3.13), which
ensures existence and uniqueness up to isomorphism of the direct summands of M1

and M2.
The algorithm produces the following data: the R-module C and the R-module

homomorphism f such that f : C
∼−→ f(C). Put D := f(C). The algorithm also

produces injections of C and D into M1 and M2 respectively, that define them as
submodules. By splitting these injections (see Proposition 2.5.1), we can recover the
direct complements of C and D in M1 and M2 respectively, together with the corre-
sponding isomorphisms.

4.4 MIP via an approximation of the Jacobson rad-
ical

In this section, another solution to the module isomorphism problem for finite rings is
presented. We start with a problem reduction, showing that it is enough to be able to
test if a module is free of rank 1. We then construct an algorithm that, given a finite
ring and a finite module over that ring, computes a set of generators of minimum
cardinality for that module.

4.4.1 Problem reduction

Let R be a finite ring. We observe that determining whether two finite R-modules M1

and M2 are isomorphic reduces to determining if a module is free of rank one. Let
E := EndR(M1) and K := HomR(M2,M1). Note that K is a left E-module.

Proposition 4.4.1. Let R,M1,M2, E,K be as above. The following are equivalent:

(i) M1
∼= M2 as R-modules.

60 Algorithms for finite rings

(ii) E ∼= K as E-modules and the image of 1E in K under any such isomorphism
is an isomorphism between M1 and M2.

(iii) There exists an E-module isomorphism φ : E → K such that φ(1E) is an
isomorphism between M1 and M2.

Proof. The implications (ii)⇒(iii) and (iii)⇒(i) are immediate. For (i)⇒(ii), suppose
f : M2

∼−→ M1. Then E ∼= K, so let φ : E
∼−→ K be any such isomorphism. Let

λ := φ(1). Then there exists a unique ε ∈ E such that

f = φ(ε) = φ(ε · 1) = εφ(1) = ελ,

where the third equality follows by E-linearity of φ. Since f is injective, so must λ
be. Moreover, since M1 and M2 have the same length, λ must also be surjective.

Hence an algorithm that can establish freeness of rank one of a module provides a
solution to the module isomorphism problem in the following way. Given M1 and M2,
we might first test whether they have the same cardinality, otherwise it is pointless
to proceed. If the cardinalities do agree, we compute E and K, and test if E ∼= K as
E-modules (in the case that E ∼= K, we are assuming this test will also produce an
isomorphism). If this is not the case, we conclude that M1 �M2. Otherwise, suppose

we have found an isomorphism ψ : E
∼−→ K. Set λ := ψ(1E). Then by Proposition

4.4.1, we have that M1
∼= M2 if and only if λ is an isomorphism.

For the remainder of this section we will concentrate on the task of computing the
minimum number of generators of a given module. In particular, this will allow us to
test for cyclicity and, by comparing cardinalities, for freeness of rank 1.

4.4.2 Computing minimum number of generators

Let R be a left-artinian ring. Suppose, along with R, we are given a collection
S1, . . . , St of nonzero left R-modules of finite length. Ideally, we would like this collec-
tion to be a set of representatives for the isomorphism classes of simple R-modules.
However, for now, we only require that each simple R-module occurs in at least one of
the Si, i.e. it occurs as a quotient in its composition series. We can take, for example,
t = 1 and S1 = RR.

Let

a =

t⋂
i=1

annR(Si),

where annR(Si) = ker(R → EndZ(Si)). Again, ideally we would like a to be the
Jacobson radical, J(R). In reality, we only have one inclusion, namely a ⊆ J(R), since
an element of a will kill all the Si’s and so will kill all submodules, quotients and
submodules of quotients of the Si. Since every simple R-module occurs in at least
one of the Si, we have that a kills all simple R-modules, which is equivalent to being
inside the Jacobson radical. Furthermore, since R is left-artinian, J(R) is nilpotent
and hence a is nilpotent.

Iuliana Ciocănea-Teodorescu 61

We will construct an algorithm that, given R and a collection of Si, either “im-
proves” the sequence of Si or computes a and an isomorphism of R-modules

R/a
∼−→

t⊕
i=1

Saii , (4.1)

for suitable ai ∈ Z≥0. Similarly, we construct an algorithm that, when also given a
finitely generated R-module M , either “improves” the sequence of Si or computes an
isomorphism of R-modules

M/aM
∼−→

t⊕
i=1

Scii ,

for suitable ci ∈ Z≥0. Consider the quantity l(Si)
t
i=1 =

∑t
i=1(2 length(Si)−1) ∈ Z≥0.

An “improvement” in the sequence is measured by a decrease in l(Si)
t
i=1 and occurs

either when we remove one of the Si from the list (either because the list already
contains an isomorphic copy of it or because it is not needed) or when we discover a
nonzero proper submodule T of one of the Si which witnesses nonsimplicity of Si and
which we use to replace Si by Si/T and T , that now stand a better chance of being
simple. Note that the factor 2 in the expression of l(Si)

t
i=1 ensures it decreases even

when we remove an Si from the list.

Let us first write out the details of the routine that finds an isomorphism as in
(4.1). We will call this routine UPDATE and within the main algorithm we will call
it whenever we have improved on our sequence of Si’s and we want to update our a,
the sequence of ai’s and the isomorphism R/a

∼−→
⊕t

i=1 S
ai
i .

Let S = {(Si)ti=1 | t ∈ Z≥0, each Si is a nonzero finite length R-module and each
simple R-module occurs as a factor in the composition series of at least one Si}.

Proposition 4.4.2. There exists a deterministic polynomial-time algorithm that takes
as input a finite ring R and a collection of modules (Si)

t
i=1 ∈ S and outputs a sequence

of integers a1, . . . , at ∈ Z>0, a two-sided nilpotent ideal a′ of R and an isomorphism

ϕ : R/a′
∼−→
⊕t′

i=1(S′i)
ai , where t′ ∈ Z≥0, a′ =

⋂t′
i=1 annR(S′i) and (S′i)

t′
i=1 ∈ S is such

that l(S′i)
t′
i=1 ≤ l(Si)ti=1.

Proof. Let b be a left ideal of R which we will use as an intermediate variable that at
the end of the algorithm will become equal to the desired a′. We start off by setting
b = R, t′ = t, ai = 0 and S′i = Si for 1 ≤ i ≤ t, and ϕ = 0. Throughout the algorithm

ϕ : R/b
∼−→
⊕t′

i=1(S′i)
ai and

⋂t′
i=1 annR(S′i) ⊆ b will be invariant. If for all i we have

bS′i = 0, then we are done. Otherwise, we choose 1 ≤ h ≤ t′ and s ∈ S′h such that
bs 6= 0. We define

ψ : R→ S′h ⊕
t′⊕
i=1

(S′i)
ai , ψ(r) = (rs, ϕ(r)).

62 Algorithms for finite rings

Then ker(ψ) = annR(s) ∩ b (b, since b did not annihilate s. Let ψ be the map
induced by ψ on R/ ker(ψ). Then

ψ isomorphism ⇐⇒ ψ surjective ⇐⇒ S′h ⊕ {0} ⊆ im(ψ) ⇐⇒ bs = S′h.

This comes as a confirmation of our intuition: we are treating the S′i as if they were
simple, so if 0 6= bs ≤ S′h, then we would want bs to be the whole of S′h.

If ψ is surjective, we make the following replacements: ah := ah + 1, ϕ := ψ and
b := kerψ. Note that now b has smaller length than before.

If ψ is not surjective, we replace S′h by S′h/bs, t
′ by t′ + 1 and put S′t′+1 := bs

and at′+1 := 0. In addition, we replace ϕ by the composition π ◦ ϕ, where π is the

canonical map π :
⊕t′

i=1[old(S′i)
old ai]→

⊕t′+1
i=1 [new(S′i)

new ai] and we replace b by the
kernel of our new ϕ. Note that the new b will contain the old b, but the improvement
is now sitting in the new S′i.

Consider the quantity l(S′i)
t′
i=1 =

∑t′

i=1(2 length(S′i)− 1). Then 0 ≤ t′ ≤ l(S′i)
t′
i=1,

since each S′i has length at least 1. Also, l(S′i)
t′
i=1 is bounded above by its initial value.

At each iteration of the algorithm, we either see a decrease in the value of l(S′i)
t′
i=1,

when we improve our sequence, or we see a decrease in the length of b, whose length
is initially equal to length(R). Since length(R) ≤ log2(|R|) (recall that R was finite),
the algorithm runs in polynomial time.

We now turn to the main algorithm:

Theorem 4.4.3. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and a finite R-module M , computes a set of generators for M of
minimum cardinality.

Proof. We begin by running the UPDATE algorithm presented in Proposition 4.4.2
with input t = 1 and S1 = RR. Let X = {x1, . . . , xd} be a set of R-generators of
M . Then X = {xi + aM | 1 ≤ i ≤ d} generates M/aM over R/a. This gives a
surjective homomorphism (R/a)d ∼=

⊕t
i=1 S

aid
i � M/aM . Relabel the Si to get a

map
⊕

i∈I Si � M/aM . We would like to find a subset J ⊆ I for which this map
becomes an isomorphism. In this process, the standard proof of its existence in the
case where the Si are simple (see [60], Chapter XVII, Lemma 2.1) may produce a
witness of nonsimplicity of some Si, in which case we refine the sequence and call the
UPDATE subroutine to start over. In the end, we will have produced an isomorphism⊕t

i=1 S
ci
i
∼−→ M/aM , for some ci ∈ Z>0 (note that the ideal a may now be different

from the one we started with).
Let n = maxi{d ciai e}. If for all i 6= h we have HomR(Si, Sh) = 0, then there is a

surjective map (R/a)n �M/aM and n is minimal with this property. Since a ⊆ J(R),
we can lift this to a map Rn � M and produce n generators of M . If, however, for
some i 6= h we have that HomR(Si, Sh) contains a nonzero element f , then we can
once again refine our sequence (either using ker(f) 6= 0 or im(f) 6= Sh or removing
one of Si or Sh from the list if they are isomorphic) and start over by calling the
UPDATE routine on our newly improved sequence.

Iuliana Ciocănea-Teodorescu 63

To establish the running time, consider again the quantity

l(Si)
t
i=1 =

t∑
i=1

(2 length(Si)− 1).

At each iteration of the algorithm, we either produce an output or we improve on our
sequence, which results in a decrease in l(Si)

t
i=1.

Note 4.4.4. As we have described the algorithm in Theorem 4.4.3, after we have
improved our sequence, calling the UPDATE subroutine overwrites our so far acquired
knowledge about a. There is possibly a way of saving some of this information by
running a modified version of the UPDATE routine, which would thus make the main
algorithm slightly more efficient. However, being more precise about this here would
obscure the idea of the algorithm.

4.5 Remark on implementation and performance

Since our goal was to place the module isomorphism problem in the complexity class
P, we have not been concerned with calculating running time exponents or performing
a detailed complexity analysis. A more careful organisation of the subroutines of the
algorithms presented, or indeed considering randomised variations thereof may yield
better running times, but such endeavours are beyond our scope at this moment.

64 Algorithms for finite rings

Chapter 5

A miscellaneous collection of
algorithms

5.1 Testing if a ring is a field

One basic question we may ask ourselves when presented with a finite ring is if it is
not in fact a field.

Lemma 5.1.1. Let p be a prime and R a finite commutative Fp-algebra. Then the
following are equivalent:

(i) The map F : R→ R given by x 7→ xp is injective.
(ii) R has no nonzero nilpotent elements.

(iii) R is a field.

Proof. Note that F is an Fp-linear map.
(i)⇒(ii): Suppose there exists 0 6= x ∈ R and n ∈ Z>1 such that xn−1 6= 0 and

xn = 0. Choose d ∈ Z≥0 maximal such that dp < n. Then (d+ 1)p ≥ n and d+ 1 < n,
so 0 6= xd+1 ∈ ker(F).

(ii)⇒(iii): If R has no nonzero nilpotent elements, then R is semisimple (see The-
orem 1.4.9, part (iii)). Since R is commutative, it must be a field.

(iii)⇒(i) is clear.

Theorem 5.1.2. There exists a deterministic polynomial-time algorithm that, given
a finite ring R, determines whether or not R is a field.

Proof. If char(R) is not a prime or R is not commutative, then R is not a field. This
can be tested using Theorem 1.1.3 and Theorem 3.3.1. Otherwise R is a commutative
F-algebra and we use Lemma 5.1.1, part (i) to test whether it is a field.

Note 5.1.3. Another deterministic polynomial-time algorithm for testing if a finite
ring is a field is given in [4], Section 5, Theorem 4.

65

66 Algorithms for finite rings

Note 5.1.4. A deterministic polynomial-time algorithm for the case where R+ =
(Z/pZ)n, for some prime p and some n ∈ Z>0 is given in [23], Section 4.

5.2 Testing if a ring is simple

We have seen in Theorem 1.1.3 that primality testing is in P. It is therefore natural
to ask whether we can construct a deterministic polynomial-time algorithm which
decides whether a finite ring is simple.

Lemma 5.2.1. Let R be a semisimple ring. Then the centre of R is a field if and
only if R is simple.

Proof. Since R is semisimple, it is a finite product of simple rings. Hence the centre
of R is the product of the centres of these simple rings, and so, is a finite product of
fields. This product is then a field itself if and only if R was simple to begin with.

Theorem 5.2.2. There exists a deterministic polynomial-time algorithm that, given
a finite ring R, determines whether R is simple, and if it is, outputs a prime p and
two positive integers m and n such that R ∼=Mn(Fpm).

Proof. Compute k := Z(R) and test if it is a field using Theorem 5.1.2. If k is not a
field, then R cannot be simple. If it is a field, then R is a finite-dimensional algebra
over k, and we can compute its Jacobson radical using Theorem 3.4.1. If J(R) 6= 0,
then R cannot be simple. If J(R) = 0, then R is a semisimple algebra whose centre is
a field, which by Lemma 5.2.1 implies R is simple. Proceed by computing m ∈ Z>0,
the dimension of k over Fp, and n ∈ Z>0, the size of the matrix ring, both of which
can be done in polynomial time.

Note 5.2.3. Given two finite rings R and R′, we can now decide if they are simple
and isomorphic: simply compare the size of the matrices which will be produced by
Theorem 5.2.2 and test if the centres of R and R′ are isomorphic fields, using Theorem
3.5.2.

The algorithm above does not explicitly exhibit an isomorphism between R and
Mn(Z(R)). We can use Theorem 3.5.2 to get an isomorphism of fields Z(R) ∼= Fpm ,
for some m ∈ Z>0, but we can say no more than that.

The problem of exhibiting an isomorphism R ∼=Mn(Z(R)) is often referred to as
the explicit isomorphism problem, and has received recent attention in [45, 46]. In the
case that Z(R) is a finite field and n is a power of 2, this problem has a deterministic
polynomial-time solution. In general, the problem of finding an isomorphism between
finite algebras over finite fields is not believed to be NP-hard, but is at least as hard
as the graph isomorphism problem ([41, 52]).

Iuliana Ciocănea-Teodorescu 67

5.3 Testing if a module is simple

Testing simplicity of a module can also be done in polynomial time.

Theorem 5.3.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and a finite R-module M , determines whether M is simple or not.

Proof. By Schur’s Lemma (Theorem 1.6.1), if M is simple, then EndR(M) is a division
ring, so we start by computing n := char(EndR(M)) = exp(M+) using Theorem 3.3.1.
If n is not a prime, then we conclude that M is not simple. Otherwise, if n is a prime,
then nR is a two-sided ideal in R, and R′ := R/nR is an algebra over a finite field, so
we may compute its Jacobson radical using Theorem 3.4.1. Now M is an R′-module,
since nR annihilates M .

If J(R′) does not annihilate M , then M is not simple over R′, and hence M is not
simple over R. Otherwise, M is an R′/ J(R′)-module and by Theorem 1.6.4, it is now
enough to test whether EndR′/ J(R′)(M) is a field, which can be done by Theorem
5.1.2.

Second proof. Alternatively, compute

I := ann(M) = ker(R→ EndZ(M+), r 7→ r ·m),

where “·” denotes the action of R on M . Then M is a faithful R/I-module and so if
M is simple, we claim that R/I is simple as a ring. To see this, suppose M is simple.
Then the Jacobson radical of R/I annihilates M , but since M is faithful, J(R/I) = 0,
hence R/I is semisimple. Now M is a faithful simple module over a semisimple ring,
so R/I must in fact be simple.

We thus begin by testing simplicity of R/I as a ring, using Theorem 5.2.2. If R/I
is not simple, then M cannot be simple and we are done. Otherwise, the algorithm
in Theorem 5.2.2 will output a prime p, and two integers m,n such that R/I ∼=
Mn(Fpm) as rings. Now, by Theorem 1.4.2, the only simple Mn(Fpm)-module, up
to isomorphism, is (Fpm)n, and the other modules over Mn(Fpm) are direct sums of
(Fpm)n. Moreover, R/I-modules are exactly the R-modules annihilated by I. Hence
M is simple over R if and only if |M | = pnm.

5.4 Testing if a module is projective

For many future algorithms it will be very useful to be able to test if a module is
projective.

Theorem 5.4.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and a R-module M , together with a generating set of cardinality d,
for some d ∈ Z≥0, determines if M is R-projective or not, and if it is, produces a
splitting of the natural surjection Rd �M .

Proof. Recall that M is projective if and only if the natural surjection f : Rd � M
has a left inverse. The latter can be tested using Proposition 2.5.1, which will also
produce a left inverse.

68 Algorithms for finite rings

Second proof. Another way to determine whether M is projective comes as a conse-
quence of Theorem 4.1.1, since M is projective if and only if M is a direct summand
of Rd. We compute the largest isomorphic common direct summand of Rd and M ,
say S. If M ∼= S, then M is projective and the isomorphism M → S, which is also
produced by the algorithm, induces a splitting of Rd →M . Otherwise the algorithms
concludes that M is not projective.

5.5 Constructing projective covers

Recall the definition of a projective cover given in Definition 1.6.24 and the fact that
over left-artinian rings, all modules have a projective cover, unique up to isomorphism
(Theorem 1.6.25).

Theorem 5.5.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and a finite R-module M , outputs a projective cover of M .

Proof. Use the algorithm in the proof of Theorem 4.1.3 to construct a sequence of
R-modules (Si)

t
i=1, two sequences of integers (ai)

t
i=1 and (ci)

t
i=1, and a two-sided

nilpotent ideal a such that

R/a ∼=
t⊕
i=1

Saii and M/aM ∼=
t⊕
i=1

Scii ,

where for all 1 ≤ i ≤ t, we have that ai > 0 and ci ≥ 0. Relabel, to write R/a ∼=⊕
i∈I Si and M/aM ∼=

⊕
j∈J Sj . Then for each j ∈ J we have a surjective map

gj : M � Sj , such that aM =
⋂
j∈J ker(gj).

For each j ∈ J , pick j′ ∈ I such that Sj ∼= Sj′ . Since Sj′ is a direct summand
of R/a, there exists an idempotent ej ∈ R/a such that Sj′ ∼= (R/a)ej (see Theorem
1.5.4). To find ej , look at the image of 1 under the isomorphism R/a ∼=

⊕
i∈I Si and

identify the entry corresponding to j′. Replace all other entries by zeros and let ej be
the preimage of this element under the same isomorphism.

Thus, the decomposition R/a ∼=
⊕

i∈I Si gives rise to a sequence of idempotent
elements e1, . . . , e|J| in R/a such that for all j ∈ J we have Sj′ ∼= (R/a)ej .

By Proposition 1.5.8, these idempotents can then be lifted deterministically in
polynomial time to idempotents e1, . . . , e|J| in R. For all j ∈ J , let Pj = Rej . Since
ej is an idempotent in R, we can write R = Rej ⊕ R(1 − ej), so Pj is projective.
Hence we can construct a sequence of maps fj such that for each j ∈ J the following
diagram commutes:

Pj

M Sj ,

πj
fj

gj

where πj : Pj → Sj is the natural projection map. This can be done by solving a
system of linear equations over R. Let P =

⊕
j∈J Pj and let f : P →M be the direct

sum of the fj .

Iuliana Ciocănea-Teodorescu 69

We claim that for each j ∈ J , the pair (Pj , πj) is a projective cover of Sj . Clearly
πj is surjective and Pj is projective. We need to show that ker(πj) ⊆s Pj . Let N ≤ Pj
be a submodule such that ker(πj) + N = Pj . By construction, ker(πj) = aPj . Since
a ⊆ J(R), by Nakayama’s Lemma we must have N = Pj . Since taking projective
covers commutes with direct sums, (P,

⊕
j∈J πj) is a projective cover for M/aM .

Since a is nilpotent, f is surjective and (P, f) is a projective cover of M .

5.6 Constructing injective hulls

Recall the definition of injective hulls given in Definition 1.6.28 and the fact that in-
jective hulls exist for modules over any ring. Moreover, two injective hulls of a module
M are isomorphic (Theorems 1.6.29).

To construct injective hulls, we will make use of the character module (see Defi-
nition 1.9.1). Recall that for a finite ring R, the character functor defines a duality

between fg
RM and Mfg

R . (see Theorem 1.9.2). Moreover, the following holds.

Proposition 5.6.1. Let R be a left-noetherian ring and M a finitely generated R-
module. Then

(i) M is projective in RM if and only if M is projective in fg
RM.

(ii) M is injective in RM if and only if M is injective in fg
RM.

Proof. The “only if” directions of both (i) and (ii) are clear. We prove the converse
statements below.

Suppose M is projective in RM. Then M is a direct summand of a finitely gener-
ated free R-module, so it is projective in fg

RM.

Suppose M is injective in RM. Since R is left-noetherian, all its left ideals are
finitely generated. Hence by Theorem 1.6.12, part (iii) (Baer’s test), M is injective in
fg
RM.

Note 5.6.2. The left-noetherian condition on R is not needed for part (i).

Corollary 5.6.3. Let R be a finite ring and M an R-module. Then M is injective
over R if and only if M̂ is projective over Ro, the opposite ring of R.

Note 5.6.4. If R is a finite ring and M is a finite R-module, then we may take

M̂ = HomZ(M,
1

e
Z/Z), (5.1)

where e is a multiple of exp(M+).

Theorem 5.6.5. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and a finite R-module M , computes an injective hull of M .

70 Algorithms for finite rings

Proof. Compute M̂ = HomZ(M, 1eZ/Z), where e is a multiple of exp(M+). Using

Theorem 5.5.1, compute a projective cover (P, f) of M̂ over Ro. Now set I := P̂ =
HomZ(P, 1

e′Z/Z), where e′ is a multiple of exp(P+). Then (I, g) is an injective hull

of M by Theorem 1.9.2. The algorithm also produces a map g :
̂̂
M ↪→ I, given by

precomposition with f , such that im(g) ⊇e I.

5.7 Testing if a module is injective

Recall that a module is injective if and only if it is isomorphic to its injective hull
(Theorem 1.6.30).

Theorem 5.7.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and a finite R-module M , determines if M is injective.

Proof. Construct an injective hull I of M using Theorem 5.6.5. Now check if the map
g : M ↪→ I produced by Theorem 5.6.5 is bijective.

5.8 Testing if a ring is quasi-Frobenius

Recall that a finite ring R is quasi-Frobenius if R is left self-injective (Theorem 1.7.1,
Definition 1.7.2).

Theorem 5.8.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R, determines whether R is quasi-Frobenius.

Proof. Use Theorem 5.7.1 to determine if the left-regular R-module RR is injective.

5.9 Constructive tests for existence of injective and
surjective module homomorphisms

In this section we discuss the algorithmic problem of testing for existence and of
finding injective and surjective homomorphisms between two finite length modules
over a ring R. If R is a finite-dimensional algebra over a field, this problem can be
cast in the context of matrix completion, and has been shown to be NP-hard in [42].
In view of the results of [10, 15] and of Theorem 4.1.2, this result is striking. It is not
however an isolated type of result: the subgraph isomorphism problem is an NP-hard
problem, while the graph isomorphism problem is believed to be NP-intermediate.

While in the general case, testing constructively for existence of injective and sur-
jective module homomorphisms is NP-hard, with certain restrictions on the modules
considered, the problem turns out to be tractable. We are interested in the case where
R is a finite ring and one of the modules is either projective or injective over R, for
which the problem simplifies somewhat.

Iuliana Ciocănea-Teodorescu 71

Theorem 5.9.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and two finite R-modules M and N , one of which is projective, deter-
mines whether there exists a surjection M � N . If one exists, the algorithm exhibits
one such.

Proof. If N is projective, then it suffices to test whether N is a direct summand of
M , which can be done by Theorem 4.1.3. This will also produce a surjection M � N .

If M is projective, then we proceed by constructing a projective cover (P, f) of N .
Note that existence of a surjection M � N is equivalent to existence of a surjection
M � P . If there exists a surjection M � P , simply compose it with f to get a
surjection M � N . Conversely, if there exists a surjection M � N , then, since P is a
projective cover of N , there exists a surjective map g : M � P making the following
diagram commute

P

M N.

f
g

This reduces the problem to the previous case.

Second proof for the case where M is projective. If M is projective, we can also de-
cide existence of a surjection M → N in a more direct manner. Use the algorithm
in the proof of Theorem 4.1.3 to construct a two-sided nilpotent ideal a ⊂ R and a
sequence of R-modules (Si)

t
i=1 that is “compatible” both with M and with N , i.e.

such that

M/aM ∼=
t⊕
i=1

Saii and N/aN ∼=
t⊕
i=1

Sbii ,

for some ai, bi ∈ Z≥0. This is done by running the algorithm in the proof of Theorem
4.1.3 on the ring R and the module M , and including N as one of the candidates for
the isomorphism classes of simple R-modules in the UPDATE subroutine. Note that,
by construction, the algorithm ensures that for all i 6= j, we have HomR(Si, Sj) = 0.

We claim that existence of a surjectionM/aM � N/aN , which can be easily tested
by comparing ai and bi for each 1 ≤ i ≤ t, is equivalent to existence of a surjection
M → N . If there exists a surjection M → N , then clearly it induces a surjection
M/aM � N/aN . Conversely, if there exists a surjection f : M/aM � N/aN , then,
since M is projective, there exists a map f : M → N making the following diagram
commute:

M N

M/aM N/aN,

f

f

and f is surjective since a is nilpotent.

Note 5.9.2. The case where M ∼= Rn, for some n ∈ Z>0 can be settled using the
algorithm for computing the minimum number of generators of a module, given in
Theorem 4.1.3.

72 Algorithms for finite rings

Dually to Theorem 5.9.1, we have the following result:

Theorem 5.9.3. There exists a deterministic polynomial-time algorithm that, given a
finite ring R and two finite R-modules M and N , one of which is injective, determines
whether or not there exists an injection M ↪→ N . If one exists, the algorithm exhibits
one such.

Proof. Let k := 1
eZ/Z, where e ∈ Z>0 is a multiple of exp(M+) and exp(N+), and

apply Theorem 5.9.1 to modules Homk(N, k) and Homk(M,k).

The remaining cases, not treated by Theorems 5.9.1 and 5.9.3, are constructive
tests for existence of the following R-module homomorphisms:

• P ↪→M , for P a projective module,

• M ↪→ P , for P a projective module,

and their respective duals,

• N � I, for I an injective module,

• I � N , for I an injective module.

Mimicking the construction given in the proof of Theorem 1.2 of [42], we settle
these as being NP-hard, even when R is a finite local commutative ring and P = R.
This is done by a reduction from an instance of the nonsingular matrix completion
problem, which is known to be NP-hard.

The nonsingular matrix completion problem is an algorithmic question that can
be formulated as follows: given a square matrix A, whose entries are homogeneous
linear polynomials in F[x1, . . . , xn], for some field F, decide if there exist values from
F that can be assigned to the variables x1, . . . , xn, so as to make A nonsingular. The
constructive version of this problem asks for values of x1, . . . , xn making A nonsingular
to be exhibited.

Nonsingular matrix completion problems arise naturally in spaces of linear trans-
formations. Let n ∈ Z>0 and F be a field. Let A ⊂ Mn(F) be a linear subspace and
let {A1, . . . , Am} be a basis of A over F. Deciding existence of (resp. finding) a non-
singular matrix in A is equivalent to deciding existence of (resp. finding) a sequence
c1, . . . , cm ∈ F such that

∑m
i=1 ciAi is nonsingular.

The complexity of the nonsingular matrix completion problem is very much de-
pendent on the size of the field F (see [40, 42]). If F is “large enough”, then the
Schwartz-Zippel lemma (see [81, 89]) provides an efficient randomized solution. How-
ever, over finite fields, nonsingular matrix completion is NP-complete ([14, 40]).

Theorem 5.9.4. There exists a deterministic polynomial-time reduction from the
decision (resp. constructive) version of nonsingular matrix completion to the problem
of deciding existence of (resp. finding) an injective module homomorphism from a
finite commutative local ring R containing a field, to an R-module M .

Iuliana Ciocănea-Teodorescu 73

Proof. Let F be a finite field and let U, V be two finite-dimensional F-vector spaces
of the same dimension. Let 0 6= L ≤ HomF(U, V) be a linear subspace. Consider the
ring

R = F⊕ U,

with componentwise addition and multiplication given by

(a, x)(b, y) = (ab, ay + bx).

Then R is a commutative local ring, with maximal ideal U , and U2 = 0.
Put

M = L⊕ V.

We make M into an R-module by defining an action:

(a, u) · (l, v) := (al, av + l(u)),

for all a ∈ F, u ∈ U , l ∈ L and v ∈ V .
Note that any homomorphism R → M is determined by the image of 1R. Let

ψ : R → M be an R-module homomorphism, and suppose 1 7→ (l, v), for some
(l, v) ∈M . Then

im(ψ) = F(l, v) + (0, lU)

and ψ ∈ HomR(R,M) is injective if and only if l ∈ L is an isomorphism.

Theorem 5.9.5. There exists a deterministic polynomial-time reduction from the
decision (resp. constructive) version of nonsingular matrix completion to the problem
of deciding existence of (resp. finding) an injective module homomorphism from an
R-module M to R, where R is a finite commutative local ring containing a field.

Proof. Let F be a finite field and let U, V be two finite-dimensional F-vector spaces
of the same dimension. Let 0 6= L ⊆ HomF(U, V) be a linear subspace. Consider the
ring

R = F⊕ L⊕ U ⊕ V,

with componentwise addition and multiplication given by

(f, l, u, v) · (f ′, l′, u′, v′) = (ff ′, f l′ + f ′l, fu′ + f ′u, fv′ + fv + l(u′) + l′(u)).

Then R is a commutative ring with unique maximal ideal L⊕U ⊕V . Note that L⊕V
is a two-sided ideal in R. Put

M := R/(L⊕ V) ∼= F⊕ U.

Note that U2 = 0, so M also has the structure of a local commutative ring, with
maximal ideal U .

Note that
HomR(M,R) ∼= annR(L⊕ V) = L⊕ U0 ⊕ V, (5.2)

74 Algorithms for finite rings

where U0 =
⋂
f∈L ker(f) and the isomorphism in (5.2) is given by mapping f 7→ f(1).

Let φ be an R-module homomorphism. Then φ corresponds uniquely to an element
(0, l0, u0, v0) ∈ L⊕ U0 ⊕ V and

im(φ) ∼= F(0, l0, u0, v0) + (0, 0, 0, l0U).

Hence φ ∈ HomR(M,R) is injective if and only if l0 ∈ L is an isomorphism.

We consider now another weaker variant of the problem of testing constructively
for injective and surjective module homomorphisms. Suppose we are given a finite
ring R and two modules M and N . Instead of looking for a surjection M � N , we
may ask if there is an integer k such that there exists a surjective homomorphism
f : Mk � N . If such a pair (k, f) exists, we would like to exhibit it. Note that we do
not ask for k to be minimal with this property. This problem turns out to have an
easy solution.

Theorem 5.9.6. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and two finite R-modules M,N , decides if there exists a pair (k, f),
where k ∈ Z≥0 and f : Mk → N is a surjective R-module homomorphism. If it exists,
the algorithm exhibits such a pair.

Proof. Compute a set S of Z-generators of HomR(M,N). If N =
∑
f∈S f(M), then

output (|S|,
∑
f∈S f). Otherwise conclude that there does not exist a pair as required.

Dually, we have the following result:

Theorem 5.9.7. There exists a deterministic polynomial-time algorithm that, given
a finite ring R and two finite R-modules M,N , decides if there exists a pair (k, f),
where k ∈ Z≥0 and f : M → Nk is an injective R-module homomorphism. If it exists,
the algorithm exhibits such a pair.

Proof. Compute a set S of Z-generators of HomR(M,N). If
⋂
f∈S ker(f) = {0}, then

output (|S|,
∏
f∈S f). Otherwise conclude that there does not exist a pair as required.

Chapter 6

Approximating the Jacobson
radical of a finite ring

When trying to answer questions about left-artinian rings and modules over them, it
is often convenient to reduce the problem at hand to the semisimple case, where struc-
tures are much more manageable, and then “lift”. However, this approach requires
the computation of the Jacobson radical of the ring, which we cannot efficiently carry
out in general. But how “close” can we get to semisimplicity with a deterministic
polynomial-time algorithm in the case of finite rings?

In this chapter, we give two deterministic polynomial-time algorithms that, given
a finite ring A, produce two-sided nilpotent ideals jA, such that A/jA is “almost
semisimple”. We think of such ideals jA as approximations to the Jacobson radical.

6.1 Introduction

When considering the module isomorphism problem for finite rings, not being able to
compute Jacobson radicals was the main obstacle in the way of generalising methods
that had worked in the case of finite-dimensional algebras over finite fields (cf. [15]).
The side-exit algorithm of Theorem 4.1.3 was designed to construct an approxima-
tion of the Jacobson radical which was good enough for the purpose at hand, namely
determining the minimum number of generators of a module. Motivated by this, we
design deterministic polynomial-time algorithms that compute good working approxi-
mations of the Jacobson radical of a finite ring, that is, two-sided nilpotent ideals such
that when we quotient the ring by them, we are left with something that is “almost”
semisimple.

The notion we will use to approximate semisimplicity is that of separability. Given
a commutative ring R, an R-algebra S is said to be separable over R if S is projective
as an S ⊗R So-module, where So denotes the opposite ring of S. A ring is said to
be separable if it is separable as a Z-algebra. Section 6.2 explores the structure and
properties of separable algebras and attempts to make an argument for why they

75

76 Algorithms for finite rings

are a good “approximation” to semisimple algebras. Section 6.2.6 gives a complete
classification of finite rings that are separable over Z, as finite products of matrix
rings over certain commutative rings.

It turns out that finite separable rings are automatically projective over a certain
subring, which we will refer to as the generalised prime subring (see Section 6.2.5).
With this in mind, we make the following definition.

Definition 6.1.1. Let A be a finite ring. We say an ideal jA ⊂ A is an approximation
of the Jacobson radical of A if it satisfies the following conditions:

(A1) jA is a nilpotent two-sided ideal of A,
(A2) A/jA is separable,
(A3) The prime subring and generalised prime subring of A/jA coincide.

If jA is an approximation of the Jacobson radical of A, then the ring A/jA has
many of the good properties that semisimple rings have: it has “many” projective
and injective modules, it is quasi-Frobenius, it is a symmetric algebra over its prime
subring and it is isomorphic to a product of matrix rings over commutative local rings.
However, as opposed to semisimplicity, which can be neither tested nor enforced (see
Note 3.4.2), separability is a much friendlier notion in algorithmic contexts. In Sections
6.3 and 6.4, we prove the following results.

Theorem 6.1.2. There exists a deterministic polynomial-time algorithm that, given
a finite ring A, computes an approximation of the Jacobson radical of A.

We prove Theorem 6.1.2 by exhibiting two algorithms that produce approxima-
tions of Jacobson radicals of finite rings.

Proposition 6.1.3. Let F be the class of finite rings. The two families of ideals
(jA)A∈F and (j′A)A∈F , produced by the two algorithms described in the proof of Theo-
rem 6.1.2 are functorial under isomorphisms, i.e. if φ : A→ B is an isomorphism of
finite rings, then φ(jA) = jB and φ(j′A) = j′B.

Theorem 6.1.4. There exists a deterministic polynomial-time algorithm that, given
a finite ring A, computes the generalised prime subring of A.

In Section 6.3.6, we look at some basic examples of the running of these algorithms.

6.2 Separability

6.2.1 Separable algebras

We begin with a study of separable algebras and some of their basic properties.
We argue that the notion of separability is a good starting point in our quest to
approximate semisimplicity. The main references for this section are [20, 54].

Definition 6.2.1. Let R be a commutative ring and S an R-algebra. We say S is
separable over R if S is projective as a module over Se := S⊗R So, where So denotes
the opposite ring of S and the module structure is given by (s ⊗ s′)t = sts′, for
s, s′, t ∈ S.

Iuliana Ciocănea-Teodorescu 77

Note 6.2.2. For any R-algebra S, the ring Se is called the enveloping algebra of S,
which justifies the choice of notation. A left Se-module is the same as an S-S-bimodule
whose induced R-structures coincide.

Let φ : Se → S be the Se-module homomorphism given by a ⊗ a′ 7→ aa′. Note
that ker(φ) is then generated as an Se-module by elements of the form s⊗ 1− 1⊗ s.

Theorem 6.2.3 ([20], Chapter II, Proposition 1.1). Let R be a commutative ring and
S an R-algebra. Then the following are equivalent:

(i) S is separable over R.

(ii) The exact sequence of Se-modules 0→ ker(φ)→ Se φ−→ S → 0 splits.
(iii) There exists an element e ∈ Se such that φ(e) = 1 and ∀s ∈ S, (s⊗1)e = (1⊗s)e.

Note 6.2.4. The element e in (iii) is necessarily an idempotent, since e2 − e =
(e− (1⊗1))e ∈ ker(φ)e = 0, and it is referred to as a separability idempotent. It arises
as the image of 1 ∈ S under a splitting of φ and is in general not unique.

Note 6.2.5.

(i) Let τ : Se → (So)e be the map given by x ⊗ y 7→ y ⊗ x. Then τ is a ring
isomorphism. For this, note that for all x1, x1, y1, y2 ∈ S:

τ((x1 ⊗ y1)(x2 ⊗ y2)) = τ(x1x2 ⊗ y2y1) = y2y1 ⊗ x1x2

and
τ(x1 ⊗ y1)τ(x2 ⊗ y2) = (y1 ⊗ x1)(y2 ⊗ x2) = y2y1 ⊗ x1x2.

(ii) The map τ ′ : Se → Se given by x ⊗ y 7→ y ⊗ x is an involutive ring anti-
automorphism, since (τ ′)2 = id and τ ′((x1 ⊗ y1)(x2 ⊗ y2)) = y2y1 ⊗ x1x2 =
(y2 ⊗ x2)(y1 ⊗ x1) = τ ′(x2 ⊗ y2)τ ′(x1 ⊗ y1). A separability idempotent that
satisfies τ ′(e) = e is called a symmetric separability idempotent.

Proposition 6.2.6. Let R be a commutative ring and S be a separable R-algebra.
Then So is a separable R-algebra.

Proof. Let Se = S ⊗R So and (So)e = So ⊗R S. Consider the two exact sequences

0 Se S 0

0 (So)e So 0,

φ

τ

σ

id

ψ

where φ : Se → S is given by φ(s⊗s′) = ss′, ψ : (So)e → So is given by ψ(s′⊗s) = ss′

and τ is the ring isomorphism described in Note 6.2.5. Let σ be a splitting of φ, which
exists since S is a separable algebra over R. It is easy to see that the above diagram
commutes and since σ is Se-linear, τ ◦ σ is (So)e-linear. Hence τ ◦ σ gives a splitting
of ψ, showing that So is separable over R.

78 Algorithms for finite rings

Note 6.2.7. If e is a separability idempotent of S over R, then τ(e) is a separability
idempotent of So over R.

The following proposition describes separability over fields.

Theorem 6.2.8.

(i) ([54], Chapter III, Proposition 3.4). Let R ⊂ S be a finite field extension. Then
S is separable over R if and only if for all s ∈ S, the minimal polynomial of s
over R has distinct roots in a splitting field over R.

(ii) ([20], Chapter II, Theorem 2.5). Let R be a field and S an R-algebra. Then S
is separable over R if and only if S is finite-dimensional over R and for every
field extension R ⊂ K, we have that S ⊗R K is semisimple.

(iii) ([54], Chapter III, Theorem 3.1). Let R be a field and S an R-algebra. Then
S is separable over R if and only if S is isomorphic to an algebra of the form∏n
i=1Mni(Di), for some n ∈ Z≥0 and ni ∈ Z>0, with Di finite-dimensional

division algebras over R and Z(Di) ⊃ R finite-dimensional separable field ex-
tensions.

Corollary 6.2.9. A separable algebra over a field is semisimple.

Proof. Put K = R in Proposition 6.2.8, part (ii).

Since finite extensions of perfect fields are separable, semisimplicity and separa-
bility are equivalent notions for finite-dimensional algebras over perfect fields.

Corollary 6.2.10. Let R be a perfect field and S a finite-dimensional R-algebra.
Then S is a separable R-algebra if and only if S is semisimple.

Example 6.2.11. Let R be a commutative ring and let n ∈ Z≥0. Then the matrix
ring Mn(R) is a separable R-algebra. To see this, let Eij denote the matrix with
(i, j)th entry equal to 1 and all other entries equal to 0. Then for any fixed i, the
element ei =

∑n
j=1Eij ⊗ Eji is a separability idempotent.

Example 6.2.12. Let R be a commutative ring and let G be a finite group such that
|G| is a unit in R. Then the group algebra R[G] is a separable R-algebra. To see that,
note that e := |G|−1

∑
g∈G g ⊗ g−1 is a separability idempotent.

Parts (i) and (ii) of Proposition 6.2.8 establish that the definition of separability
is compatible with the classical definitions of separability in the cases of finite field
extensions and finite-dimensional algebras over a field. The reason the extra finiteness
condition is required is that separable algebras, as we have defined them, turn out to
have a lot of structure, as shown in the following series of results.

Proposition 6.2.13 ([20], Chapter II, Proposition 2.1). Let R be a commutative ring
and S a separable R-algebra. Suppose that S is projective as an R-module. Then S is
finitely generated as an R-module.

Proposition 6.2.14 ([20], Chapter II, Proposition 1.12, Theorem 3.8). Let R be a
commutative ring.

Iuliana Ciocănea-Teodorescu 79

(i) Let A be a separable commutative algebra over R. Suppose S is a separable
A-algebra. Then S is an R-algebra and it is separable over R.

(ii) Let S be a separable R-algebra and A be any R-subalgebra of the centre of S.
Then S is separable over A.

(iii) Suppose S is an R-algebra. Then S is separable over R if and only if S is
separable over its centre, and its centre is separable over R.

Proposition 6.2.15 ([54], Chapter III, Theorem 5.1). Let S be a ring. If S is sepa-
rable over its centre, then S is projective as a module over its centre.

Proposition 6.2.16 ([54], Chapter III, Proposition 1.7).

(i) Let R be a commutative ring and R1, R2 be two commutative R-algebras. Let
S1 be a separable R1-algebra and S2 a separable R2-algebra. Then S1 ⊗R S2 is
a separable R1 ⊗R R2-algebra, with (r1 ⊗ r2)(s1 ⊗ s2) = r1s1 ⊗ r2s2. Moreover,
Z(S1 ⊗ S2) = Z(S1)⊗ Z(S2).

(ii) Let R1, R2 be two commutative rings. Let S1 be an R1-algebra and S2 an R2-
algebra. Then S1 × S2 is separable over R1 × R2 if and only if S1 is separable
over R1 and S2 is separable over R2.

(iii) Let R be a commutative ring and S1, S2 two R-algebras. Then S1×S2 is separable
over R if and only if both S1 and S2 are separable over R.

Corollary 6.2.17. Let R be a commutative ring, R′ a commutative R-algebra and S
a separable R-algebra. Then S ⊗R R′ is separable over over R′.

Proof. In Proposition 6.2.16, part (i), take R1 := R, R2 := R′, S1 := S and S2 :=
R′.

Theorem 6.2.18 ([20], Chapter II, Theorem 7.1). Let R be a commutative ring and
S an R-algebra that is finitely generated as an R-module. Then the following are
equivalent:

(i) S is separable over R.
(ii) For every maximal ideal m of R, we have that S ⊗R Rm is separable over Rm .

(iii) For every maximal ideal m of R, the quotient S/mS is separable over R/m.

Separability is testable deterministically in polynomial time (cf. Note 3.4.2).

Theorem 6.2.19. There exists a deterministic polynomial-time algorithm that, given
a finite commutative ring R and a finite R-algebra S, decides whether or not S is
separable over R.

Proof. Using Proposition 2.4.1, we compute the enveloping algebra Se = S ⊗R So,
after which we test projectivity of S over Se using Theorem 5.4.1.

80 Algorithms for finite rings

6.2.2 Azumaya and finite-étale algebras

There are two distinguished classes of separable algebras that deserve special atten-
tion: Azumaya and finite-étale algebras.

Recall the definition of a progenerator (Definition 1.8.6).

Theorem 6.2.20 ([54], Chapter III, Theorem 6.1, [20], Chapter II, Theorem 3.4).
Let R be a commutative ring and S an R-algebra. Then the following are equivalent.

(i) S is separable over R and Z(S) = R.
(ii) S is an R-progenerator and the map α : Se → EndR(S), given by s⊗ s′ 7→ (f :

t 7→ sts′), is an isomorphism of R-algebras.
(iii) S is an Se-progenerator and Z(S) = R.
(iv) There exist an R-algebra T and an R-progenerator P such that S ⊗R T ∼=

EndR(P) as R-algebras.

Definition 6.2.21. An R-algebra S satisfying the conditions of Theorem 6.2.20 is
called an Azumaya algebra over R.

Note 6.2.22. From Theorem 6.2.20, part (ii), it is easy to see that if S is Azumaya
over R, then So is also Azumaya over R. This gives another, more conceptual way
of showing that separability is stable under taking opposites. Suppose S is separable
as an algebra over a commutative ring R. Then S is Azumaya over Z(S) and Z(S) is
separable over R. Now Ro = R and Z(S) = Z(So). So Z(So) is separable over Ro and
So is Azumaya over Z(So). Hence So is separable over R, by Theorem 6.2.14, part
(iii).

Example 6.2.23 ([26], §8). Over a field, an algebra is Azumaya if and only if it is
central simple.

Example 6.2.24 ([20], Chapter II, Proposition 4.1). Let R be a commutative ring.
Then the endomorphism ring of any R-progenerator is Azumaya over R.

Proposition 6.2.25 ([80], Proposition 3.9). Let R be a commutative ring and A an
R-algebra that is Azumaya of constant rank over R. Then there exists a faithfully flat
ring extension S of R, and n ∈ Z>0 such that A⊗R S ∼=Mn(S).

Corollary 6.2.26. Let R be a commutative ring and A an Azumaya R-algebra. Then
the rank of A over R, as a function on Spec(R), is a square.

Proof. This follows from Proposition 6.2.25 and the fact that extension of scalars does
not change the rank.

In the commutative setting, the notion we are interested in is that of a finite-étale
algebra.

Definition 6.2.27. Let R be a commutative ring. An R-algebra S is finite-étale over
R if S is commutative, separable as an R-algebra and projective as an R-module.

Iuliana Ciocănea-Teodorescu 81

We state a couple of results describing the behaviour of finite-étale algebras and
Azumaya algebras with respect to tensor products and direct products. These are
consequences of Proposition 6.2.16.

Proposition 6.2.28. Let R be a commutative ring and let R1, R2 be two commutative
R-algebras.

(i) Let S1 be an Azumaya R1-algebra and S2 an Azumaya R2-algebra. Then S1⊗R
S2 is Azumaya over R1 ⊗R R2.

(ii) Let S1 be a finite-étale R1-algebra and S2 a finite-étale R2-algebra. Then S1⊗R
S2 is finite-étale over R1 ⊗R R2.

Corollary 6.2.29. Let R be a commutative ring and R′ a commutative R-algebra.

(i) Let S be an Azumaya R-algebra. Then S ⊗R R′ is Azumaya over R′.
(ii) Let S be a finite-étale R-algebra. Then S ⊗R R′ is finite-étale over R′.

Proposition 6.2.30. Let R1, R2 be two commutative rings. Let S1 be an R1-algebra
and S2 an R2-algebra. Then

(i) S1×S2 is Azumaya over R1×R2 if and only if S1 is Azumaya over R1 and S2

is Azumaya over R2.
(ii) S1 × S2 is finite étale over R1 ×R2 if and only if S1 is finite-étale over R1 and

S2 is finite-étale over R2.

Moreover, if R := R1 = R2, then S1 × S2 is finite étale over R if and only if S1 and
S2 are both finite-étale over R.

Note 6.2.31. If R := R1 = R2 6= 0 and S1, S2 are Azumaya R-algebras, then S1×S2

is not Azumaya over R.

6.2.3 The Brauer group

For a commutative ring R, we can define an equivalence relation on the collection of
Azumaya R-algebras such that the equivalence classes form an abelian group with
binary operation given by taking tensor products over R.

Definition 6.2.32. Let R be a commutative ring. Let B(R) be a collection of Azumaya
R-algebras such that every Azumaya R-algebra is isomorphic to exactly one element
of B(R). Let

Bo(R) = {A ∈ B | A ∼= EndR(P) as R-algebras, for some R-progenerator P}.

Define an equivalence relation ∼ on B(R) by:

A ∼ B ⇐⇒ there exist Y, Z ∈ Bo(R) such that A⊗R Y ∼= B ⊗R Z as R-algebras.

Denote by [A] the equivalence class of A ∈ B(R) under ∼. The set of all such equiv-
alence classes, denoted by Br(R), together with binary operation given by [A] · [B] =
[A ⊗R B] is an abelian group called the Brauer group of R. The identity is given by
[R] and inverses are given by [A]−1 = [Ao].

82 Algorithms for finite rings

Note 6.2.33. Since all Azumaya R-algebras are finitely generated projective as R-
modules, B(R) is indeed a set. It is also easy to check that ∼ is an equivalence relation
and that Br(R) is an abelian group.

Example 6.2.34. (Brauer groups)

1. If k is a finite field, Br(k) is trivial (see [82], Chapter X, §7).
2. Br(Z) is trivial (see [26], page 196).
3. If k is a finite commutative ring, then Br(k) is trivial (see [87], Proposition 4.1).

For more on Brauer groups, see [20], Chapter III, Section 5.

6.2.4 Separable projective algebras

It is often convenient to look at algebras that are both finitely generated projective
as modules and separable as algebras over the underlying commutative ring.

Definition 6.2.35. Let R be a commutative ring. An R-algebra S that is separable
as an R-algebra and projective as an R-module is said to be separable projective over
R.

This notion can be linked to the notions of Azumaya and finite-étale.

Theorem 6.2.36. Let k be a commutative ring and S a k-algebra. Let R := Z(S).
Then the following are equivalent:

(i) S is Azumaya over R and R is finite-étale over k.
(ii) S is separable projective over k.

Proof. (i)⇒(ii) By Theorem 6.2.20, part (i), Definition 6.2.27 and Proposition 6.2.14,
part (iii), we have that S is separable as a k-algebra. From Corollary 6.2.15 we know
that S is projective as an R-module and so by transitivity of projectivity, S is pro-
jective as a k-module.

(ii)⇒(i) By Proposition 6.2.14, part (ii), we have that S is separable over R so it
is Azumaya over R, and R is separable over k. All that remains to be established is
that R is projective as a k-module.

From Theorem 6.2.20 we know that S is an R-progenerator, so

R =
∑

f∈HomR(S,R)

f(S).

Since S is finitely generated and projective as an R-module, HomR(S,R) is finitely
generated as an R-module, so we can restrict the sum to a finite set of generators.
In particular, there exists a surjective R-homomorphism Sn � R for some n ∈ Z>0.
But R is R-projective, so this map splits, giving Sn ∼= R ⊕Q for some R-module Q.
Now S is k-projective by hypothesis, so Sn is also k-projective and since R is a direct
summand of Sn, we have that R is also k-projective.

Iuliana Ciocănea-Teodorescu 83

Over a semisimple ring, every module is projective. The following proposition says
that a separable projective algebra over a commutative ring has “many” projective
modules.

Theorem 6.2.37 ([31], Proposition 2.3). Let R be a commutative ring, S a separable
R-algebra and M a finitely generated S-module. Then any exact sequence of S-modules
0→M1 →M2 →M → 0 that splits over R, splits over S.

Proposition 6.2.38. Let R be a commutative ring and S a separable R-algebra that
is projective as an R-module. Let M be an S-module. Then

M is projective as an S-module ⇐⇒ M is projective as an R-module. (6.1)

Proof. (⇒) This direction is easy and follows by transitivity of projectivity: M is
S-projective and S is R-projective, so M is R-projective.

(⇐) This direction follows from Theorem 6.2.37, Proposition 5.6.1 and Note 5.6.2.

Note 6.2.39. The “if” direction of (6.1) is a strong statement and only requires S
to be separable over R. We will refer to this property as “projectivity lift”. Another
proof of this fact is also given in [20], Chapter II, Proposition 2.3, which uses the
existence and properties of the separability idempotent. We sketch it here. Suppose
M is an R-projective S-module. Let f : N →M be an S-module epimorphism. Since
M is R-projective, there exists R-homomorphism g : M → N such that fg = idM .
Note that HomR(M,N) is an Se-module via (a ⊗ b) · φ(m) = aφ(bm). Suppose e
is a separability idempotent for S. Then e · g is an S-module homomorphism and
f(e · g) = idM . Hence M is S-projective.

Proposition 6.2.40. Let R be a commutative ring and S a separable R-algebra that
is projective as an R-module. Let M be an S-module. Then

M is injective as an S-module ⇐⇒ M is injective as an R-module. (6.2)

Proof. (⇒) Recall from Proposition 1.6.20 that HomS(SSR, SMR) ∼= RMR, so it
is enough to show that HomS(S,M) is injective as an R-module. By tensor-hom
adjunction (see Section 1.6.6), we have

HomR(−,HomS(S,M)) ∼= HomS(S ⊗R −,M).

Since S is projective over R, the functor S ⊗R − is exact, and since M is injective
over S, the functor HomS(−,M) is exact. Hence HomR(−,HomS(S,M)) is exact, i.e.
HomS(S,M) is an injective R-module.

(⇐) Consider an exact sequence of S-modules 0 → I → M → C → 0, where M
is an S-module and C is a cyclic S-module. Since I is R-injective the sequence is
R-split, so because C is cyclic over S, the sequence is S-split by Theorem 6.2.37. The
result now follows from Theorem 1.6.12, part (iv), which states that I is an injective
S-module if and only if every short exact sequence 0→ I → M → C → 0, where M
is an S-module and C is a cyclic S-module, is S-split.

84 Algorithms for finite rings

Note 6.2.41. We will refer to the property induced by the “if” direction as “injec-
tivity lift”.

Corollary 6.2.42. Let S be a finite ring that is separable projective over its prime
subring. Then S is a quasi-Frobenius ring.

Proof. Since S is finite, its prime subring is isomorphic to R = Z/nZ, where n =
char(S) ∈ Z>0. Since R is quasi-Frobenius (see Example 1.7.3), an R-module is injec-
tive if and only if it is projective. Since S admits both projectivity and injectivity lift
fromR by Propositions 6.2.38 and 6.2.40, it follows that S itself is quasi-Frobenius.

We record some other properties of separable projective algebras.

Proposition 6.2.43. Let A be a finite semisimple ring. Then A is separable projective
over its prime subring.

Proof. Since A is semisimple, the characteristic of A is squarefree. By Proposition
6.2.16, part (ii), Proposition 1.6.9 and the fact that A is semisimple, we may assume
that A has prime subring Fp, for some prime p, and that A ∼= Mn(D), for some
n ∈ Z>0, where D is a finite field extension of Fp. Now A is separable projective over
D by Example 6.2.23 and D is separable projective over Fp, since finite extensions of
perfect fields are separable. Hence A is separable projective over Fp.

Theorem 6.2.44. Let A be a nonzero finite ring. Then A is semisimple if and only
if A is separable projective over its prime subring and char(A) is squarefree.

Proof. Let n := char(A). The “if” direction follows from Proposition 6.2.43 and the
fact that for any d ∈ Z>0 such that d2 | n, we have 0 6= n

dA ⊆ J(A). The other
direction follows from Theorem 6.2.18, part (iii) and Proposition 6.2.16, part (ii).

Moreover, separable projective algebras that are faithful as modules over the base
ring, are symmetric (see Definition 1.8.1 and Theorem 1.8.2).

Theorem 6.2.45 ([24], Theorem 4.2). Let k be a commutative ring and A a separable
projective k-algebra that is faithful as a module over k. Then A is a symmetric k-
algebra.

6.2.5 Separable rings

Let A be a ring. Then A is a Z-algebra, as well as an algebra over its prime subring.
By Proposition 6.2.14, parts (i) and (ii), we have that A is separable over Z if and
only if A is separable over its prime subring.

Definition 6.2.46. We say a ring is separable if it is separable as a Z-algebra.

Theorem 6.2.47. There exists a deterministic polynomial-time algorithm that, given
a finite ring A, decides whether or not it is separable.

Proof. We begin by computing the prime subring of A using Theorem 3.3.1, and then
use Theorem 5.4.1 to test separability over the prime subring.

Iuliana Ciocănea-Teodorescu 85

Suppose A1, A2 are two finite rings that are separable projective over their prime
subrings. Then it is not necessarily true that A1×A2 will also be separable projective
over its prime subring. However, the class of separable rings is closed under taking
products by Proposition 6.2.16, part (iii). Being closed under taking products is also
an important property of the class of semisimple rings. For a finite ring A, we would
like to identify a subring S ⊂ A such that A is separable over Z if and only if A is
separable projective over S. That is the aim of this section.

Let A be a finite ring. Then A has a unique block decomposition, A =
∏
i∈I Ai,

where I is the set of centrally primitive idempotents of A and each Ai is connected
(see Definition 1.5.3, Theorem 1.5.5), and hence has prime power characteristic (see
Theorem 1.5.5). We group together the Ai according to their characteristics to get

A =
∏
i∈I

Ai =
∏

p prime
e∈Z>0

 ∏
i

char(Ai)=p
e

Ai

 . (6.3)

Let

Bp,e :=
∏
i

char(Ai)=p
e

Ai.

Definition 6.2.48. Let A be a finite ring. We define the generalised prime subring
of A, denoted by PA, to be the product of the prime subrings of Bp,e.

Proposition 6.2.49. Let A be a finite ring and let k be its prime subring. Then PA
is separable as a k-algebra.

Proof. The ring PA is a product of rings, each of which is separable over k by Propo-
sition 6.2.16, part (ii). The result now follows from Proposition 6.2.16, part (iii).

Lemma 6.2.50. Let A be a finite ring. Then PA = PZ(A).

Proof. This follows since a block decomposition of A induces a block decomposition
of Z(A) (see Theorem 1.5.6), together with the fact that any ring has the same prime
subring as its centre.

Proposition 6.2.51. Let A be a finite separable ring. Then A is projective as a
module over PA.

Proof. By Proposition 6.2.16 we may assume that A is connected. Further, by Propo-
sition 6.2.13 and Proposition 6.2.14, part (iii), we may assume that A is commutative.
Hence A is local. Suppose A has prime subring Z/pnZ, for some prime p and some
n ∈ Z>0. Then A/pA is a separable Fp-algebra. By Corollary 6.2.9, we have that
A/pA is semisimple, so it must be a finite field extension of Fp. Suppose the degree
of this extension is d. We are left with showing that A+ ∼= (Z/pnZ)d.

86 Algorithms for finite rings

Consider the map A → pn−1A, given by f : a 7→ pn−1a. This map is surjective.
Moreover, pA ⊆ ker(f). Since A/pA is a field, pA is a maximal ideal of A, so it must
be the case that pA = ker(f). Hence |A/pA| = |pn−1A| = pd.

Since A/pA ∼= Fdp as Fp-vector spaces, we may choose a basis {a1, . . . , ad} ⊂ A of
A/pA over Fp. Since pnA = 0, it follows that {a1, . . . , ad} generate A over Z/pnZ.
Then the map (Z/pnZ)d � A, given by sending the generator of the ith copy of
Z/pnZ to ai, is surjective. To see that it is also injective it is enough to show that
the cardinalities agree. Consider the chain of ideals A ⊃ pA ⊃ . . . ⊃ pn−1A ⊃ {0}.
Since |piA/pi+1A| = pd, for all 0 ≤ i ≤ n − 1, we have that |A| = pnd. Hence
(Z/pnZ)d ∼= A.

Theorem 6.2.52. Let A be a finite ring. Then A is separable if and only if A is
separable projective over PA.

Proof. Let k be the prime subring of A. The “only if” direction follows from Propo-
sition 6.2.49 and the fact that A is separable over Z if and only if it is separable over
k. The “if” direction follows from Proposition 6.2.14, parts (i), (ii) and Proposition
6.2.51.

Note 6.2.53. If A is separable, but not finite, it is not necessarily projective over any
proper subring. To see this, consider the Z-algebra Q. Then Q is certainly separable
over Z, since Q⊗Z Q ∼= Q, but it cannot be projective over any proper subring, since
then it would have to be finitely generated over it (see Proposition 6.2.13).

Suppose R ⊆ Q is a subring such that Q is finitely generated as a module over
R. Then Q is integral over R, i.e. for every q ∈ Q, there exists a monic polynomial
f ∈ R[X] such that f(q) = 0. But then it is easy to see that Q∗ ∩R = R∗, where R∗

denotes the unit group of R. Hence R∗ = R\{0}, so R is a field and then it must be
the case that R = Q.

6.2.6 Classification of finite separable rings

For finite-dimensional semisimple algebras over a field and separable algebras over a
field, we have explicit descriptions in terms of matrix rings over certain division rings
(see Theorem 1.4.5 and Theorem 6.2.8, part (iii), respectively). The aim of this section
is to provide a similar classification result for finite separable rings. It turns out that
finite separable rings are isomorphic to products of finitely many matrix algebras over
certain special commutative rings, called Witt rings.

Recall that a ring C is said to be connected (or indecomposable) if C has exactly
two central idempotents, namely 0 and 1. Note that a connected ring is nonzero.

Here, we develop the theory concerning Witt rings that we require. We restrict
our attention to truncated Witt rings over finite fields, as this is a sufficient level of
generality for our purposes. For more on Witt rings, see Chapter II: §6 of [82] or
Chapter VI: Exercises 46-51 of [60].

Iuliana Ciocănea-Teodorescu 87

Let p be a prime and e ∈ Z>0. Let

C = category of finite local commutative Z/peZ-algebras,

D = category of finite fields of characteristic p,

and consider the covariant functor

Red : C −→ D

A 7−→ ARed := A/
√

0A, (6.4)

where
√

0A denotes the nilradical of A (which equals the maximal ideal of A).

Theorem 6.2.54. The functor Red has a left adjoint.

Proof. We will show that if R ∈ D, then there exists a pair (We(R), ϕ), with We(R) ∈
C and ϕ : R → We(R)Red a ring homomorphism, such that for every A ∈ C and

every ring homomorphism R
f−→ ARed, there exists a unique ring homomorphism

F : We(R)
F−→ A such that f = FRed ◦ ϕ, i.e. such that the following diagram

commutes:
R

We(R)Red ARed

We(R) A.

ϕ f

FRed

∃!F

Moreover, ϕ is an isomorphism, and the pair (We(R), ϕ) is unique up to unique
isomorphism.

We may assume that R = Fp[X]/(g(X)), where g(X) ∈ Z/peZ is a monic polyno-
mial of degree d, for some d ∈ Z>0, and g(X) := (g(X) mod p) ∈ Fp[X] is irreducible.

Let We(R) = (Z/peZ)[X]/(g(X)). Then We(R)Red
∼= R. Let ϕ : R

∼−→ We(R)Red

be the natural isomorphism. We are left with showing that for all A ∈ D and
f : R → ARed, there is a unique F : We(R) → A, making the following diagram
commute:

R ARed

We(R) A.

f

∃!F

This follows from Hensel’s lemma. The last part follows by properties of universal
objects.

This shows that there is a functor

We : D −→ C

R 7−→We(R)

that is left adjoint to Red.

88 Algorithms for finite rings

Definition 6.2.55. Let p be a prime and d, e ∈ Z>0. The e-truncated Witt ring of
Fpd is defined to be We(Fpd).

Note 6.2.56. The ring We(Fpd) has cardinality pde.

Example 6.2.57. We have W1(Fpd) = Fpd and We(Fp) = Z/peZ.

From the above construction, we have the following result.

Proposition 6.2.58. Let p be a prime and e, d ∈ Z>0. Then the ring We(Fpd) is

local, with maximal ideal pWe(Fpd), which has cardinality pd(e−1). Moreover, the set
of ideals of We(Fpd) is {pi We(Fpd) | 0 ≤ i ≤ e}.

Note 6.2.59. Another way of constructing Witt rings is via Galois theory for com-
mutative rings. In the case of finite rings, the notion of a Witt ring is then replaced
by that of a Galois ring. This is the more common terminology in literature on sepa-
rability (see [9, 20]).

Proposition 6.2.60. Let R be a finite commutative ring. Then R is local separable
if and only if R ∼= We(Fpd), for some prime p and some e, d ∈ Z>0.

Proof. For the “only if” direction, suppose that R is local separable. Then it has prime
power characteristic, pe, for some prime p and some e ∈ Z>0. By Theorem 6.2.18,
part (iii), we have that R is separable over Z/peZ if and only if R/pR is separable
over Fp. By Corollary 6.2.9, we have that R/pR is semisimple. Hence R/pR ∼= Fpd .
We have the following commutative diagram:

R Fpd

Z/peZ Fp.

By the proof of Theorem 6.2.54, we have that R ∼= We(Fpd).
The “if” direction follows by construction of truncated Witt rings.

We can now turn to the classification of finite separable rings. By Proposition
6.2.16, part (ii) it suffices to classify finite connected separable rings.

Proposition 6.2.61. Let P be the set of primes. There is a bijection between the sets

{finite commutative local separable rings}/∼= ←→ P × Z>0 × Z>0,

where
[A] 7−→ (p, d, e), (6.5)

if for m, the maximal ideal of A, we have

char(A/m) = p,

[A/m : Fp] = d,

char(A) = pe.

Iuliana Ciocănea-Teodorescu 89

The inverse of the map in (6.5) is given by

We(Fpd)←− [(p, d, e). (6.6)

Proof. This is a consequence of Theorem 6.2.54, Definition 6.2.55 and Proposition
6.2.60.

Theorem 6.2.62. Let P denote the set of primes. Then there is a bijection between
the sets

{finite connected separable rings}/∼= ←→ P × Z>0 × Z>0 × Z>0,

where
[A] 7−→ (p, d, e, n), (6.7)

if

|A| = pden
2

,

|Z(A)| = pde,

|Z(A)/pZ(A)| = pd.

The inverse of the map in (6.7) is given by

Mn(We(Fpd))←− [(p, d, e, n). (6.8)

Proof. By Theorem 6.2.52, a finite connected ring is separable if and only if it is
separable projective over its prime subring, which by Theorem 6.2.36 is equivalent to
being Azumaya over its centre and its centre being separable over its prime subring.
Given Proposition 6.2.61, we are thus left with classifying Azumaya algebras over
truncated Witt rings.

The map given in (6.7) is well-defined, since We(Fpd) is a local ring, and hence
the degree of any Azumaya We(Fpd)-algebra is well-defined and is a square (Corollary
6.2.26). Injectivity follows from Example 6.2.34, part 3. Surjectivity follows from the
fact that matrix rings over commutative rings are separable (Example 6.2.11).

Note that an Azumaya algebra over a commutative local ring is free as a module
over that ring (since projective modules over local rings are free). The fact that the
maps (6.7) and (6.8) are mutual inverses now follows from Proposition 6.2.61, Theorem
6.2.20, part (ii), and Example 6.2.34, part 3.

Corollary 6.2.63. Let A be a finite separable ring. Then A ∼= Ao as rings.

We know from Theorem 1.2.11 that for R a commutative ring, n ∈ Z>0 and
S = Mn(R), every two-sided ideal of S is of the form Mn(I), for some two-sided
ideal I of R. Conversely, if I is a two-sided ideal of R, thenMn(I) is a two-sided ideal
of S.

Corollary 6.2.64. The set of two-sided ideals of a finite connected separable ring is
in bijection with the set of ideals of its prime subring.

Proof. Recall from Proposition 6.2.58 that all ideals of We(Fpd), where p is a prime,
are generated by powers of p. In particular, there are exactly e+1 ideals, with maximal
ideal generated by p. The result now follows from Theorem 6.2.62.

90 Algorithms for finite rings

6.2.7 The trace map and the trace radical

In this section we introduce the notions of trace map and trace ideal, which are closely
related to separability.

Let k be a commutative ring and P a finitely generated k-module. Consider the
map

Homk(P, k)⊗k P
ϕ−→Endk(P), f ⊗ x 7→ (y 7→ f(y)x). (6.9)

Then ϕ induces a map

� : (Homk(P, k)⊗k P)× (Homk(P, k)⊗k P) −→ Homk(P, k)⊗k P,
(f ⊗ x, g ⊗ y) 7−→ f(y)g ⊗ x, (6.10)

which makes the following diagram commute:

Endk(P)× Endk(P) Endk(P)

(Homk(P, k)⊗k P)× (Homk(P, k)⊗k P) Homk(P, k)⊗k P.

composition

�

ϕ×ϕ ϕ (6.11)

Recall the definition of a dual basis.

Lemma 6.2.65 ([57], Lemma 2.9, Remark 2.11). (Dual Basis Lemma) Let k be a
ring and let P be a k-module. Then

(i) P is projective if and only if there exists a collection {xi, fi}i∈I for some index
set I, with xi ∈ P and fi ∈ Homk(P, k) such that

∀x ∈ P : fi(x) = 0 for almost all i, and x =

n∑
i=1

fi(x)xi.

(ii) P is finitely generated projective if and only if there exist n ∈ Z>0 and a collec-
tion {xi, fi}ni=1 with xi ∈ P and fi ∈ Homk(P, k) such that

∀x ∈ P : x =

n∑
i=1

fi(x)xi,

i.e.

ϕ

(
n∑
i=1

fi ⊗ xi

)
= idP ,

where ϕ is the map defined in (6.9).

Note 6.2.66. Part (ii) above is equivalent to requiring 1 ∈ im(ϕ), where ϕ is the
map defined in (6.9).

Iuliana Ciocănea-Teodorescu 91

Definition 6.2.67. Let k be a ring and P a projective k-module. A collection {xi, fi}i
as described in the previous lemma is called a dual basis of P .

Lemma 6.2.68. Let k be a commutative ring, M a k-module and N a finitely gen-
erated projective k-module. Then

ψ : Homk(M,k)⊗k N → Homk(M,N),

f ⊗ x 7→ (y 7→ f(y)x)

is a k-module isomorphism.

Proof. If N = k, then ψ is clearly an isomorphism. Then, by properties of tensor
products and Hom’s, for any n ∈ Z>0, we have thatN = kn also gives an isomorphism.
But then ψ remains an isomorphism for N a finitely generated projective k-module,
since then N is a direct summand of some multiple of k.

Note 6.2.69. Lemma 6.2.68 remains true if it is M that is finitely generated projec-
tive as a k-module (the proof of this follows the same lines).

Now let P be a finitely generated projective k-module. Then the map ϕ as defined
in (6.9) is an isomorphism. Further, if we consider the map

Homk(P, k)⊗k P
ψ−→ k, f ⊗ x 7→ f(x), (6.12)

then we get an induced map trP/k := ψϕ−1:

Homk(P, k)⊗k P Endk(P).

k

∼

trP/k

(6.13)

Definition 6.2.70. Let k be a commutative ring and P a finitely generated projective
k-module. Then the map trP/k of diagram (6.13) is called the trace of P over k. The
quantity rkP/k := trP/k(id) is called the Hattori-Stallings rank of P over k.

Proposition 6.2.71. Let k be a commutative ring and P a finitely generated k-
module. Then P is projective if and only if Homk(P, k)⊗k P is a ring with multipli-
cation given by �, as defined in (6.10).

Proof. If P is finitely generated projective, then Homk(P, k) ⊗k P ∼= Endk(P), so it
is a ring and the map � is simply composition of maps by diagram (6.11).

For the other direction, note that Homk(P, k) ⊗k P being a ring implies the
existence of an element α =

∑n
i=1 fi ⊗ xi ∈ Homk(P, k) ⊗k P such that for all

β ∈ Homk(P, k)⊗k P , we have �(α, β) = β. But then for any x ∈ P ,

id⊗x = �(

n∑
i=1

fi ⊗ xi, id⊗x) =

n∑
i=1

fi(x) id⊗xi,

92 Algorithms for finite rings

Applying ψ (as defined in (6.12))to both sides, we get

x =

n∑
i=1

fi(x)xi.

Hence {xi, fi}ni=1 is a dual basis of P and so P is finitely generated projective by
Lemma 6.2.65.

The following result says that the trace map trP/k behaves “as expected”.

Proposition 6.2.72 ([7], Section 1). Let k be a commutative ring and P a finitely
generated projective k-module.

(i) Let e1, e2 ∈ Endk(P). Then trP/k(e1 + e2) = trP/k(e1) + trP/k(e2).
(ii) Let e ∈ Endk(P) and c ∈ k. Then trP/k(ce) = c trP/k(e).

(iii) Let e1, e2 ∈ Endk(P). Then trP/k(e1 ◦ e2) = trP/k(e2 ◦ e1).
(iv) (The trace is compatible with base change) Let k′ be a commutative ring and

α : k → k′ a ring homomorphism. Let P ′ = P ⊗k k′ and e ∈ Endk(P). Then

trP ′/k′(e⊗k 1k′) = α(trP/k(e)).

Let us now consider the case when P is in fact a k-algebra.

Definition 6.2.73. Let k be a commutative ring and let A be a k-algebra that is
finitely generated and projective as a k-module. Then the map A→ Endk(A) given by
a 7→ (x 7→ ax) induces a map TrA/k : A→ k in the following diagram:

Homk(A, k)⊗k A Endk(A) A.

k

∼

trA/k
TrA/k

We call TrA/k the trace map of A over k.

Note 6.2.74. It is easy to see that TrA/k is a k-module homomorphism. Moreover,
by Proposition 6.2.72, part (iii), for all a, b ∈ A, we have TrA/k(ab) = TrA/k(ba).

We give a second definition of the trace map, using a more element-oriented ap-
proach.

Definition 6.2.75. Let k be a commutative ring and A a k-algebra that is finitely
generated projective as a k-module. Let {xi, fi} be a dual basis of A over k. We define

trA/k : Endk(A)→ k, g 7→
n∑
i=1

fi(g(xi))

and

TrA/k : A→ k, r 7→
n∑
i=1

fi(rxi).

Iuliana Ciocănea-Teodorescu 93

Note 6.2.76. The above definition is independent of the choice of dual basis. One
way to see this is the following proposition.

Proposition 6.2.77. The two definitions of TrA/k agree.

Proof. Let {ai, fi}ni=1 be a dual basis of A as a finitely generated projective module

over k. Let Tr
(1)
A/k be the trace map as in Definition 6.2.73 and Tr

(2)
A/k, the trace map

as in Definition 6.2.75. For any a ∈ A, consider the two trace maps:

A Endk(A) k

Tr
(1)
A/k : a ea := (x 7→ ax) trA/k(ea)

Tr
(2)
Ak

: a
∑n
i=1 fi(aai).

Consider the element
∑n
i=1 fi ⊗ aai ∈ Homk(A, k)⊗k A. This maps to

(y 7→
n∑
i=1

fi(y)aai =

n∑
i=1

afi(y)ai = ay) = ea

under the isomorphism ϕ : Homk(A, k) ⊗k A
∼−→ Endk(A), which in turn maps to

trA/k(a) = Tr
(1)
A/k(a) ∈ k. Also, it maps to

∑n
i=1 fi(aai) ∈ k under ψ : Homk(A, k)⊗k

A→ k. Hence Tr
(1)
A/k(a) = trA/k(ea) =

∑n
i=1 fi(aai) = Tr

(2)
A/k(a).

Example 6.2.78. Let k be a commutative ring and let A be a k-algebra such that
A ∼= kn as k-modules, for some n ∈ Z>0. Let B = {bi | 1 ≤ i ≤ n} be a basis of A over
k. Then a dual basis of A over k is given by {bi, fi}ni=1, where fj :

∑n
i=1 aibi 7→ aj . It

is easy to see that TrA/k(1) = n · 1.

Example 6.2.79. Let k be a commutative ring and let A =Mn(k). Then

TrA/k = n · (usual trace).

Example 6.2.80. Let A be a finite-dimensional algebra over a field k. Then nilpotent
elements of A have trace zero. This is because nilpotent matrices over a field have
trace zero.

Example 6.2.81. Let A be a finite-dimensional algebra over a field Fp, where p is
a prime and let S be a finite A-module. Since S is a vector space over Fp, we have
a ring homomorphism ρ : A → EndFp(S) given by sending an element a ∈ A to the

endomorphism of S corresponding to the action of a on S. Define Tr(S) : A → Fp to

be the map trS/Fp ◦ρ, where trS/Fp is the trace of S over Fp. Note that Tr(A) = TrA/Fp

94 Algorithms for finite rings

is the usual trace map, as defined in 6.2.73. If 0 → S → T → U → 0 is an exact
sequence of A-modules, then

Tr(T) = Tr(S) + Tr(U) .

To see this, suppose C1, C2 are bases for S and U respectively. Then the matrix of
Tr(T) can be represented as an upper triangular block matrix, where the two diagonal
blocks are the matrices of Tr(S) and Tr(U) with respect to C1 and C2 respectively.
Moreover, if a basis of T contains a basis of S, then the rest is a basis of U .

Definition 6.2.82. Let k be a commutative ring and A a k-algebra that is finitely
generated projective as a k-module. The trace radical of A over k is the kernel of the
right A-module homomorphism:

ψ : A→ Homk(A, k), a 7→ TrA/k ·a := (x 7→ TrA/k(ax)). (6.14)

In other words,

IA/k := {a ∈ A | TrA/k(aA) = 0}.

Note 6.2.83.

(i) By Proposition 6.2.72, part (iii), the trace radical is a two-sided ideal.
(ii) By Proposition 6.2.72, part (iii), if TrA/k generates Homk(A, k) as a right A-

module, then it generates it as a left A-module.
(iii) Suppose k is a field. Since dimk(A) = dimk(Homk(A, k)), we have that A ·

TrA/k = Homk(A, k) if and only if IA/k = 0.

Lemma 6.2.84. Let A be a finite ring. Suppose A =
∏l
i=1Ai, for some l ∈ Z>0 and

Ai finite rings. Let ni := char(Ai) and suppose that for all i 6= j we have gcd(ni, nj) =
1 and that each Ai is free as a module over Z/niZ. Then

IA/(Z/ char(A)Z) =
∏
i

IA/(Z/niZ).

Proof. Write k := Z/ char(A)Z. First note that char(A) =
∏
i ni and that A is indeed

projective over k, so that IA/k is well-defined. The result now follows from Proposition
6.2.72, part (iv).

Theorem 6.2.85. There exists a deterministic polynomial-time algorithm that, given
a finite commutative ring k and a finite k-algebra A that is projective as a k-module,
computes the trace radical IA/k.

Proof. We begin by computing Homk(A, k), using Proposition 2.4.1. Then IA/k is
computed as the kernel of the map ψ from Definition 6.2.82.

Iuliana Ciocănea-Teodorescu 95

6.2.8 Strongly separable algebras

We now study the connections between the trace radical and separability.

Proposition 6.2.86 ([64], Proposition 6.11). Let k be a commutative ring and R
a commutative k-algebra. Then R is finite-étale over k if and only if R is finitely
generated projective as a module over k and TrR/k generates Homk(R, k).

Note 6.2.87. This is usually taken to be the definition of finite-étale.

Let k be a commutative ring. We would like to characterise k-algebras A that
are finitely generated and projective as k-modules and have the property that TrA/k
generates Homk(A, k) as a right A-module, but are not necessarily commutative.

Theorem 6.2.88 ([21], Theorem 1, [49], Theorem 3.4). Let k be a commutative ring
and let A be a k-algebra with centre R := Z(A) such that A is a finitely generated
projective k-module. Then the following are equivalent:

(i) The trace map TrA/k generates Homk(A, k) as a right A-module.
(ii) A is k-separable and A = R ⊕ [A,A] as R-modules, where [A,A] is the R-

submodule of A generated by elements of the form ab− ba, with a, b ∈ A.
(iii) A is k-separable and TrA/R(1) is a unit in k · 1A, the image of k in R.
(iv) A has a symmetric separability idempotent over k.

Definition 6.2.89. An algebra satisfying any of the conditions of Theorem 6.2.88 is
called a strongly separable algebra.

Note 6.2.90. We see that strongly separable algebras are a special kind of symmetric
algebras, namely ones for which a nonsingular, symmetric, associative bilinear map
B : A×A→ k is given by B(a, b) = TrA/k(ba). We have seen in Theorem 6.2.45 that
any separable algebra that is finitely generated, projective and faithful as a module
over its base ring is symmetric, but the trace map need not be nonsingular, and thus
may not give rise to such a map B.

Example 6.2.91. Let k be a finite field and let A =Mn(k). Suppose char k divides
n. Then A is separable (and symmetric) over k, but TrA/k = n · (the usual trace) = 0,
so A is not strongly separable over k. To see that A is a symmetric k-algebra, we
must look at the usual trace map, which we denote by tr0. Consider the map B :
A × A → k given by B(a, b) = tr0(ab). This is now bilinear, symmetric, associative
and nonsingular, as required for it to witness the fact that A is symmetric as a k-
algebra.

Example 6.2.92. (Strongly separable algebras)

1. Let n ∈ Z>0 and k be a commutative ring. If n · 1 is a unit in k, then
Mn(k) is strongly separable over k with symmetric separability idempotent
n−1

∑n
i,j=1Eij ⊗ Eji, where Eij denotes the n × n matrix whose (i, j)th entry

is equal to 1 and all other entries are equal to 0.

96 Algorithms for finite rings

2. Let n ∈ Z>0 and k be a finite commutative ring. Put A =Mn(k). If n · 1 is not
a unit in k, then n · 1 is a zero-divisor. Since TrA/k = n · (usual trace), we have
that IA/k 6= 0 and hence A is not strongly separable.

3. Let G be a finite group, k a commutative ring, and put A := kG. If |G| is
a unit in k, then A is strongly separable over k, with symmetric separability
idempotent |G|−1

∑
g∈G g ⊗ g−1.

4. ([3], Corollary 3.1) Let k be a field with char(k) = 0 and A a k-algebra. Then
A is strongly separable if and only if it is finite-dimensional and semisimple.

6.3 An approximation of the Jacobson radical

We have seen in Sections 6.2.4 and 6.2.5 that separable projective algebras and sepa-
rable rings have many nice properties. Until now, however, we have mainly stayed on
theoretical ground. We would now like to be able to algorithmically reduce any finite
ring to this “state”. In other words, given a finite ring, we would like to quotient out
by some two-sided ideal and obtain a ring that is separable. Our goal in a perfect
world would have been to quotient out by the Jacobson radical and obtain a semisim-
ple ring. Since computing the Jacobson radical is in general out of our reach (see Note
3.4.2), we will have to content ourselves with quotienting out by something that is
almost the Jacobson radical and obtaining something that is almost semisimple, more
precisely, something that is separable.

6.3.1 Defining an approximation

Definition 6.3.1. Let A be a finite ring and jA ⊂ A an ideal. We say jA is an
approximation of the Jacobson radical of A if

(A1) jA is a two-sided nilpotent ideal of A.
(A2) A/jA is finite separable.
(A3) The prime subring and generalised prime subring of A/jA coincide.

Note 6.3.2. Let A be a finite ring. Then by Theorem 1.4.9, Proposition 6.2.43 and
Theorem 6.2.52, the Jacobson radical is an approximation of itself.

Note 6.3.3. Approximations of Jacobson radicals are not unique. Let p be a prime
and let A = Z/p2Z. Then A is finite separable with prime subring and generalised
prime subring equal to Z/p2Z. Hence 0 and J(A) = pZ/p2Z are both approximations
of the Jacobson radical of A.

Theorem 6.3.4. Let A be a finite ring and jA a two-sided ideal of A such that jA is
nilpotent and A/jA is separable projective over its prime subring. Suppose, moreover,
that the characteristic of A is a power of some prime p. Then

(A/jA)/(p(A/jA)) = A/ J(A),

and
(A/jA)+ ∼= (Z/peZ)r,

Iuliana Ciocănea-Teodorescu 97

where r = dimFp(A/ J(A)) and e ∈ Z>0 is such that pe = char(A/jA).

Proof. Let e ∈ Z>0 and p be a prime such that char(A/jA) = pe. First note that, since
A/jA is separable over Z/peZ, we have that (A/pA)/((jA + pA)/pA) is semisimple by
Corollary 6.2.10 and Theorem 6.2.18, part (iii). This implies that (jA + pA)/pA) ⊇
J(A/pA). Moreover, jA is nilpotent. We thus have that (jA + pA)/pA = J(A/pA).
Hence

(A/jA)/(p(A/jA)) = (A/pA)/((jA + pA)/pA)

= (A/pA)/ J(A/pA)

= A/ J(A).

By Nakayama’s Lemma, the minimum number of generators of A/jA as a Z/peZ-
module is equal to the dimension of A/ J(A) over Fp. But A/jA is projective over
Z/peZ, so it is free of finite rank. Thus the rank of A/jA as a Z/peZ-module is equal
to dimFp(A/ J(A)).

Example 6.3.5. Let p be a prime and M an Fp-vector space of dimension 1. Let

A = Z/p2Z⊕M

be the ring with componentwise addition and multiplication given by

(a, x) · (b, y) = (ab, ay + bx).

In particular, A is a commutative ring with M2 = 0. Moreover, J(A) = pZ/p2Z⊕M .
For any approximation j of the Jacobson radical of A we must have A/j ∼= Z/p2Z

or A/j ∼= Fp. If A/j ∼= Fp, then it must be the case that j = J(A).
Let S be the set of all approximations of the Jacobson radical of A. We have

bijections between the following sets

S\{J(A)} ←→ {ring homomorphisms A→ Z/p2Z}
←→ {group homomorphisms M → pZ/p2Z}.

The latter set has p elements and each of these gives rise to an approximation of the
Jacobson radical of A of the same size.

Note 6.3.6. Example 6.3.5 shows that, even though the set of all approximations
of the Jacobson radical of a finite ring always has a maximal element with respect
to inclusion, given by the Jacobson radical, it does not necessarily have a minimal
element.

The aim of this section is to describe deterministic polynomial-time algorithms
that produce approximations of the Jacobson radical of a finite ring. We are interested
in algorithms that have the additional property that, when run on two isomorphic
rings, they output isomorphic approximations of their Jacobson radicals (induced by
the same isomorphism), even when the ring isomorphism is unknown (cf. Section 3.5).

98 Algorithms for finite rings

We will treat rings in a differentiated manner, depending on the size of the primes
dividing their characteristic. We define convenient notions of “small” and “large”
primes that allow us to split the ring into two parts and deal with them separately.
The case of small primes is easy to deal with, since we can actually compute the
Jacobson radical and thus arrange for genuine semisimplicity. The case of large primes
requires more work and what allows us to deal with them is Theorem 6.2.88, part (iii).

6.3.2 Trace radical vs. Jacobson radical

We start by proving a series of results about the trace ideal (see Definition 6.2.73)
that we will make use of within our algorithms.

Proposition 6.3.7. Let A be a finite-dimensional algebra over a field k. Then the
trace ideal IA/k contains the Jacobson radical J(A).

Proof. Since A is left-artinian, its Jacobson radical is nilpotent and so by Example
6.2.80, all its elements lie in IA/k.

Theorem 6.3.8. Let A be a finite-dimensional algebra over the finite field Fp, where
p is a prime and p > dimFp(A). Then IA/Fp = J(A).

Proof. The inclusion J(A) ⊆ IA/Fp is given by Proposition 6.3.7. For the other inclu-
sion, use Example 6.2.81 and induction to write

TrA/Fp =
∑

S simple
up to ∼=

lengthS(A) · Tr(S), (6.15)

where the sum is taken over isomorphism classes of simple A-modules and lengthS(A)
is the number of times that S occurs in a composition series of A.

Recall from Note 1.4.6 that

A/ J(A) ∼=
∏

S simple
up to ∼=

EndEndA(S)(S) (6.16)

as Fp-algebras. Since IA/Fp is a two-sided ideal of A (by Note 6.2.83) and IA/Fp ⊇ J(A),
we have that IA/Fp/ J(A) is a two-sided ideal of A/ J(A), and so it is a subproduct of
(6.16).

Suppose IA/Fp 6= J(A). Then there is at least one simple S0 occurring in this
subproduct. Then IA/Fp contains all elements of A that act as 0 on all simple A-
modules not isomorphic to S0. Consider such an element that acts as 1 on S0 and
as 0 on all other simples. Since it lies in the product of (6.16), it is represented by
an element r ∈ A. Then by (6.15), the trace of r is lengthS0

(A) · dimFp(S0). This
quantity is strictly positive and less than or equal to dimFp(A), so, for p > dimFp(A),
it is nonzero in Fp. Hence r /∈ IA/Fp , giving a contradiction.

Iuliana Ciocănea-Teodorescu 99

Corollary 6.3.9. There exists a deterministic polynomial-time algorithm that, given
a finite algebra over a finite field Fp, where p is a prime satisfying p > dimFp(A),
computes the Jacobson radical J(A).

Proof. From Theorem 6.3.8 we have IA/Fp = J(A), and the trace ideal can be com-
puted deterministically in polynomial time by Theorem 6.2.85.

Note 6.3.10. We already knew this ([18, 27]).

Definition 6.3.11. Let A be a finite ring and let n := char(A). We say a prime p | n
is a small prime for A if p ≤ dimFp(A/pA). We say a prime p | n is a large prime for
A if p > dimFp(A/pA).

Note 6.3.12. When it is clear what ring we are referring to, we will simply refer to
a prime as being large or small.

Note 6.3.13. Let A be a finite ring. Then a prime p | char(A) is large if the number
of cyclic direct summands of A+ of size divisible by p (a quantity which is independent
of the decomposition), is larger than p.

Proposition 6.3.14. Let A be a finite ring and let m be its characteristic. Suppose
m is divisible only by large primes and that A is projective as a Z/mZ-module. Let

n′ = rad(m) :=
∏
p|m

p prime

p.

Then n′A ⊆ J(A) and

J(A)/n′A = J(A/n′A)

= I(A/n′A)/(Z/n′Z)

=
(
IA/(Z/mZ) :

m

n′
A
)
/n′A, (6.17)

where IA/(Z/mZ) is the trace radical of A over Z/mZ, as before, and(
IA/(Z/mZ) :

m

n′
A
)

:= {x ∈ A | m
n′
x ∈ IA/(Z/mZ)}.

Proof. To simplify notation, we write IA := IA/(Z/mZ) and IA/n′A := I(A/n′A)/(Z/n′Z).
We will use similar abbreviations for the trace maps. Note that A/n′A is projective
as a module over Z/n′Z, so the trace map and the trace radical are well-defined.

It is easy to see that n′A is nilpotent in A, since some power of n′ is divisible by
m. The first equality of (6.17) follows since n′A is nilpotent and the second equality
follows by Proposition 1.4.11, Theorem 6.3.8 and Lemma 6.2.84. For the last part,

100 Algorithms for finite rings

note that by Proposition 6.2.72, part (iv), we have TrA/n′A ≡ TrA mod n′. Hence

x+ n′A ∈ IA/n′A ⇐⇒ TrA/n′A((A/n′A)(x+ n′A)) = 0

⇐⇒ TrA/n′A(Ax+ n′A) = 0

⇐⇒ TrA(Ax) ⊂ n′Z/mZ

⇐⇒ m

n′
TrA(Ax) = 0

⇐⇒ m

n′
x ∈ IA

⇐⇒ x+ n′A ∈
(
IA :

m

n′
A
)
/n′A.

Proposition 6.3.15. Let A be a finite ring and let char(A) := pe, for some prime p
and some e ∈ Z>0. Suppose that A is free as a Z/peZ-module and p is a large prime.
Let B := A/IA/(Z/peZ) and let 0 < e′ ≤ e. Then

(i) if B is free as a Z/peZ-module, then B is separable over Z/peZ.
(ii) if B/B[pe−e

′
] is free as a Z/pe′Z-module, then B/B[pe−e

′
] is separable over

Z/pe′Z, where B[pe−e
′
] = ker(B → B, b 7→ pe−e

′
b).

Proof. (i) Since B is free over Z/peZ, by Theorem 6.2.18, part (iii), we have that B
is separable over Z/peZ if and only if B/pB is separable over Fp. By Theorem 6.3.8,
since p > dimFp(A/pA), we have

B/pB = (A/pA)/I(A/pA)/Fp = (A/pA)/ J(A/pA),

so B/pB is semisimple, and thus B is separable over Z/peZ (see Corollary 6.2.9).
(ii) Let C := B/B[pe−e

′
] and consider the canonical map π : A � C. First note

that

ker(π) := ker(A� B := A/IA/(Z/peZ) � C := B/B[pe−e
′
])

= (IA/(Z/peZ) : pe−e
′
A),

where

(IA/(Z/peZ) : pe−e
′
A) := {x ∈ A | pe−e

′
x ∈ IA/(Z/peZ)}.

Further,

π−1C[pe
′−1] = {x ∈ A | pe

′−1x ∈ (IA/(Z/peZ) : pe−e
′
A)}

= (IA/(Z/peZ) : pe−1A).

Since C is free as a Z/pe′Z-module, we have that C[pe
′−1] = pC, so

π−1C[pe
′−1] = pA+ ker(π).

Iuliana Ciocănea-Teodorescu 101

Hence

(IA/(Z/peZ) : pe−e
′
A) + pA = (IA/(Z/peZ) : pe−1A). (6.18)

Since C is free as a Z/pe′Z-module, by Theorem 6.2.18, part (iii), we have that C is
separable over Z/pe′Z if and only if C/pC is semisimple. But, since p is large,

C/pC = (A/pA)/((IA/(Z/peZ) : pe−e
′
A) + pA)/pA)

= (A/pA)/(IA/(Z/peZ) : pe−1A)/pA), by (6.18)

= (A/pA)/I(A/pA)/Fp , by (6.17)

= (A/pA)/ J(A/pA), by Theorem 6.3.8.

Proposition 6.3.16. Let A be a finite ring and let n := char(A). Suppose that A is
projective as a Z/nZ-module. If all primes p dividing n are large, then IA/(Z/nZ) ⊆
J(A).

Proof. Let S be a simple A-module. Then S has exponent p for some prime p | n.
So S is a simple module over A/pA. By Proposition 6.2.72, part (iv), the following
diagram commutes:

A A/pA

Z/nZ Fp.

TrA/(Z/nZ) Tr(A/pA)/Fp

Since p is large, by Theorem 6.3.8 we have

(IA/(Z/nZ) + pA)/pA ⊆ J(A/pA). (6.19)

Let i ∈ IA/(Z/nZ). By (6.19), the image of i in A/pA lies in J(A/pA), so it annihilates
all simple A/pA-modules. In particular, it annihilates S. Hence i annihilates all simple
A-modules. So i ∈ J(A).

Proposition 6.3.17. Let A be a finite ring and let m := char(A). Suppose A is
projective over Z/mZ and that all primes dividing m are large. Then char(A) =
char(A/IA/(Z/mZ)).

Proof. Write I := IA/(Z/mZ). By Proposition 6.2.72, for all primes p | m, we have
that TrA/(Z/mZ)(1) ≡ dimFp(A/pA) mod p. Since all primes dividing m are large, we
have p > dimFp(A/pA), and so p - TrA/(Z/mZ)(1) for all p | m. Hence TrA/(Z/mZ)(1)
is a unit in A. Now by Proposition 6.3.16 we have I ⊆ J(A), so TrA/(Z/mZ)(1) /∈ I,
otherwise it would be a nilpotent element of A. Hence TrA/(Z/mZ)(1) is an element of
additive order m in A/I.

102 Algorithms for finite rings

6.3.3 Separating small primes from large primes

To develop algorithms from the theory in the previous sections, we first need to address
the problem of separating small primes from large primes.

Proposition 6.3.18. There exists a deterministic polynomial-time algorithm that,
given a finite ring A of characteristic n, outputs two positive integers n1 and n2, such
that:

(i) n1 · n2 = n,
(ii) gcd(n1, n2) = 1,

(iii) all primes dividing n1 are small and all primes dividing n2 are large.

Moreover, the algorithm produces a prime factorisation of n1.

Proof. Suppose the finite abelian group A+ is given to the algorithm as the direct
sum of cyclic groups A+ ∼=

⊕t
i=1 Z/diZ, where for all 1 ≤ i ≤ t, we have di ∈ Z>1.

Let S := {p | p prime, p ≤ t}. Note that if a prime p is small, then certainly p ≤ t,
since dimFp(A/pA) = #{i | p | di} ≤ t. So the set S will certainly contain all small
primes. Now we decide which of the primes which occur in the factorisation of the di
are actually small, by checking the condition p ≤ dimFp(A/pA). Finally, we gather all
small primes, with their exponents, into n1.

To see that the algorithm is polynomial-time, note that t ≤ log2(|A|).

Note 6.3.19. In the process of running the algorithm of Proposition 6.3.18, we have
obtained a complete factorisation of n1, i.e. we know what all the small primes dividing
n are, and what their multiplicities are. Note that any two isomorphic rings have the
same small primes, with the same multiplicities.

Lemma 6.3.20. There exists a deterministic polynomial-time algorithm that, given
a finite ring A, computes a two-sided nilpotent ideal I of A and two positive integers
n′1 and n′2 such that

(i) n′1 · n′2 = char(A/I),
(ii) gcd(n′1, n

′
2) = 1,

(iii) all primes dividing n′1 are small for A/I and all primes dividing n′2 are large
for A/I,

(iv) n′1 is squarefree.

Proof. We start by computing the characteristic of A using Theorem 3.3.1 and then
apply Proposition 6.3.18 to compute n1 and n2, i.e. to separate small primes for A
from large primes for A. This also gives a complete factorisation of n1. Let m ∈ Z>1

be the largest integer such that m2 | n1 and write n = m · l. Then lA 6= 0, but
(lA)2 = 0, so we have found a nilpotent two-sided ideal, I = lA ⊂ A. Put n′1 = n1/m
and n′2 = n2. Note also that the small (resp. large) primes for A are the same as the
small (resp. large) primes for A/I.

Iuliana Ciocănea-Teodorescu 103

Theorem 6.3.21. There exists a deterministic polynomial-time algorithm that, given
a finite ring A, computes a two-sided nilpotent ideal i such that

A/i ∼= A1 ×A/n2A,

where A1 is semisimple and all primes dividing n2 are large for A/i.

Proof. By Lemma 6.3.20, we may write

A/I ∼= A/n1A×A/n2A,

for some two-sided nilpotent ideal I ⊆ A, where n2 is divisible only by large primes
for A/I and n1 is squarefree. For each prime p | n1, the ring A/pA is an algebra over
Fp, so by Theorem 3.4.1 we may compute its Jacobson radical and factor it out of A,
making the first component genuinely semisimple.

6.3.4 Algorithms

Theorem 6.3.22. There exists a deterministic polynomial-time algorithm that, given
a finite ring A, computes an approximation of the Jacobson radical of A.

Proof. By Theorem 6.3.21, we may assume that char(A) is only divisible by large
primes, i.e. for all primes p | n, we have p > dimFp(A/pA). We proceed by building
a sequence of rings that will terminate with a strongly separable ring (see Theorem
6.2.88 and Definition 6.2.89). We start by putting

A0 := A.

To continue, we would like to make use of the trace and the trace radical and for
this, we must ensure that we are working with a projective module. We thus quotient
out by a multiple of A0 to get

A1 := A0/mA0,

where m | char(A) is such that mA0 is a nilpotent two-sided ideal of A0, and A1 is
projective as a module over Z/mZ. The way to do this deterministically in polynomial
time has been described in Proposition 2.8.1.

We proceed by computing the trace radical I := IA1/(Z/mZ) using Theorem 6.2.85.
By Proposition 6.3.8, we have I ⊆ J(A1). The next term in our sequence is

A2 := A1/I.

If I = 0, then the map

φ : A1 → HomZ/mZ(A1,Z/mZ)

a 7→ (a · TrA1/(Z/mZ) : b 7→ TrA1/(Z/mZ)(ba))

104 Algorithms for finite rings

is injective, and since A1 is a finite projective Z/mZ-module, φ is an isomorphism of
Z/mZ-modules, i.e. the trace map generates HomZ/mZ(A1,Z/mZ) as a left module,
which is equivalent to A being strongly separable over Z/mZ by Theorem 6.2.88.

If I 6= 0, then we treat A2 as we did A0, i.e. we make it projective as a module
and calculate the trace radical of the resulting ring. We continue in this manner until
the trace radical becomes equal to 0. In the end we will have produced a strongly
separable algebra over its prime subring.

By Proposition 2.8.1, for every prime p dividing the characteristic of the final ring,
a unique power of p occurs as an invariant of the underlying abelian group of the ring.
Hence the generalised prime subring of the final ring is equal to its prime subring.

Set jA to be the kernel of the map induced by the successive quotienting. Since
length(Ai) < length(Ai−1), for all i, the algorithm terminates in polynomial time.

Note 6.3.23. Suppose char(A) = n =
∏t
i=1 p

ei
i , for some n ∈ Z>0, pi distinct primes

and ei ∈ Z>0. Then the number of iterations performed by the algorithm is bounded
above by

∑t
i=1 ei − t. This is because at each step we have to make the ring at hand

projective over its prime subring in such a way that the radical of the characteristic
is not changed.

Calculating the trace radical over and over again is a costly operation. There is
a more economic way of proceeding, which we describe in the remaining part of this
section. We begin with an auxiliary result.

Proposition 6.3.24. Let A be a finite ring and let char(A) := m, for some m ∈ Z>0.
Suppose that A is projective as a Z/mZ-module and that all primes dividing m are
large. Let B := A/IA/(Z/mZ). Let m′ | m be such that rad(m) = rad(m/m′) and
B/B[m′] is projective as a Z/ mm′Z-module. Then B[m′] is nilpotent and B/B[m′] is
separable over Z/ mm′Z.

Proof. Let p be a prime dividing m. Suppose its exponent in the prime factorisation of
m is e, and its exponent in the prime factorisation ofm′ is e−e′ ≥ 0. Let C := B/B[m′]
and ϕ : A→ B := A/IA/(Z/mZ) be the canonical map. Then

ϕ−1(B[pe−e
′
]) = {x ∈ A | pe−e

′
x ∈ IA/(Z/peZ)}

=
(
IA/(Z/peZ) : pe−e

′
A
)
.

We have already seen in Propositions 6.3.15 and 6.3.14 that

(IA/(Z/peZ) : pe−e
′
A) + pA = (IA/(Z/peZ) : pe−1A). (6.20)

and
(ϕ−1(B[pe−e

′
]) + pA)/pA = J(A/pA),

so that ϕ−1(B[pe−e
′
]) is nilpotent, and hence B[pe−e

′
] is nilpotent.

Glueing along all primes (using Lemma 6.2.84), we get that(
ϕ−1(B[m′]) + n′A

)
/n′A = J(A/n′A), (6.21)

Iuliana Ciocănea-Teodorescu 105

and B[m′] is nilpotent. Hence C/n′C = (A/n′A)/ J(A/n′A) is semisimple. In partic-
ular, since n′ is squarefree, C/n′C is separable over Z/n′Z, by Theorem 6.2.44. Since
n′ = rad(m) = rad(m/m′), we have by Theorem 6.2.18, part (iii) and Proposition
6.2.16, part (ii), that C is separable over Z/ mm′Z.

Second proof of Theorem 6.3.22. By Theorem 6.3.21, we may assume that the char-
acteristic of A is only divisible by large primes. We will construct a sequence of rings
that terminates at a separable state. We begin as in the proof of Theorem 6.3.22:

A0 := A, A1 := A0/mA0, A2 := A1/IA1/(Z/mZ),

where m | char(A0) is such that mA0 is a two-sided nilpotent ideal of A0, and A1 is
projective over Z/mZ. We then proceed by putting

A3 := A2/A2[m′],

where m′ is computed using the deterministic polynomial-time algorithm described
in Proposition 2.8.2. Then m′ | m is the least integer such that A3 is projective over
Z/ mm′Z. By Proposition 6.3.24 (taking B := A2 and C := A3), the ideal A2[m′] is
nilpotent and A3 is separable over Z/ mm′Z.

By Propositions 2.8.1 and 2.8.2, for every prime p dividing the characteristic of
the final ring, a unique power of p occurs as an invariant of the underlying abelian
group of the ring. Hence the generalised prime subring of the final ring is equal to its
prime subring.

Set jA = ker(A→ A3) under the map induced by the successive quotienting.

Note 6.3.25. A natural question that arises is whether we have to compute any trace
radical at all, i.e. whether given a finite ring A, the ideal given by A[m′] is not already
an approximation of the Jacobson radical. The answer is no. To see this, consider the
ring A = Z/pZ × Z/p2Z, where p is a prime. Then charA = p2 and m′ = p. Now
dimFp(A/ J(A)) = 2, but A/A[m′] ∼= Fp has rank 1 < 2. This contradicts Theorem
6.3.4.

We can also produce a connected example of this type of failure. Let p be a prime
and consider the ring A = (Z/p2Z)[X]/(pX2, X3). Then char(A) = p2 and m′ = p.
Again, dimFp(A/ J(A)) = 3, but dimFp(A/A[m′]) = 2.

6.3.5 An illustration

For more clarity, let us explore a graphical illustration of the above results. For sim-
plicity, we restrict to the case that m = pe for some large prime p and some e ∈ Z>0.
Suppose

A+ ∼=
t⊕
i=1

Z/peiZ,

where ei+1 ≥ ei, e1 > 0 and e = et. We will represent finite abelian p-groups by

106 Algorithms for finite rings

pe1

pet ,

where the number of vertical boxes is equal to the number of cyclic direct summands
of A and the height of each such box is equal to the corresponding invariant. Now any
finitely generated projective Z/peZ-module is free of finite rank, so is represented by
a rectangle. To make A projective over its prime subring, we quotient out by pe1A,
where pe1 is the smallest nonzero invariant appearing in the decomposition of A+ (or
by pe

′
A, for any e′ ≤ e1).

pet

pe1

.

Suppose we have already made A projective as a module over Z/mZ, so that now
A+ ∼= (Z/peZ)t. Then the next step in the algorithm is to quotient out by the trace
radical to obtain A2 := A/IA with quotient map ϕ : A → A2. We represent this
graphically as:

pe

pei

IA

,

Iuliana Ciocănea-Teodorescu 107

where the shaded lower-right part represents the trace radical. Note that the trace
radical must touch the bottom line since when quotienting out by the trace radical,
the characteristic remains unchanged (see Proposition 6.3.17). However, it may not
touch the top line.

In the first algorithm, we proceed by making the remaining A2 := A/IA projective
over its prime subring, which we achieve by quotienting out by peiA2. This corresponds
to looking at the upper-left grey rectangle in the first picture below, which we now
treat as our initial box. In the second algorithm we proceed directly by quotienting
out by A2[pe−e

′
], where pe−e

′
is the second largest invariant in A2 (or by quotienting

out by A2[pe−f], for any 0 < f ≤ e′). This leaves us looking at the upper-left grey
rectangle in the second picture below, which is now separable projective over its prime
subring by the second proof of Theorem 6.3.22.

pe

pei

pe

pe−e′ IAIA

pe
′

.

Note 6.3.26. The equality in (6.20) can be easily seen from the following diagram,
since both sides of the equality are represented by the upper-left grey area left un-
hatched:

pe

pe−e′ IA
ϕ
−1 (

A 2
[p
e−
e
′])

pA

pe
′

.

108 Algorithms for finite rings

6.3.6 Examples

In this section we look at some specific instances of trace computation and running
of the algorithms given as proofs of Theorem 6.3.22. We will only consider examples
where the characteristic of the given ring is divisible exclusively by large primes.

Note 6.3.27. If A is a finite ring of prime characteristic, then by Theorem 6.2.44,
both our algorithms will output the Jacobson radical of A.

Note that rings that are finite products rings of the form Z/nZ, with n ∈ Z>0 and
componentwise addition and multiplication, are separable over their prime subrings
(see Proposition 6.2.16, part (iii)). Thus, if they are projective over their prime sub-
ring, they are strongly separable over their prime subring (see Proposition 6.2.86), so
their trace ideal is trivial.

Example 6.3.28 (Integers modulo n). Let A = (Z/5Z)2× (Z/32Z). Note that 5 > 2
and 3 > 1, so the primes occurring are large. The prime subring of A is k = Z/45Z
and A is projective as a k-module and hence A is strongly separable over k. Thus, if A
is given to the algorithms proving Theorem 6.3.22, they will find that IA/(Z/45Z) = 0,
and will therefore output jA = 0.

It is easy to check that a projective basis of A over k is given by {Fi, xi}3i=1, where

F1 : (a, b, c) 7→ 9a, F2 : (a, b, c) 7→ 9b, F3 : (a, b, c) 7→ 5c,

and

x1 = (4, 0, 0), x2 = (0, 4, 0), x3 = (0, 0, 2).

Hence by Definition 6.2.75,

TrA/(Z/45Z)(a, b, c) = 9 · 4a+ 9 · 4b+ 5 · 2c,

and so TrA/(Z/45Z)(1) = 82, which is indeed congruent to (2 mod 5) and to (1
mod 9), as predicted by Proposition 6.2.72. Moreover, 82 ≡ 37 mod 45, so that
TrA/(Z/45Z)(1) is a unit in Z/45Z (cf. Theorem 6.2.88, part (iii)).

Example 6.3.29. Consider again the ring of Example 6.3.5,

A = Z/p2Z⊕M,

where p > 2 is a prime, M is a 1-dimensional Fp-vector space, addition is componen-
twise and multiplication is given by

(a, x) · (b, y) = (ab, ay + bx).

Then A is a commutative local ring with maximal ideal pZ/p2Z⊕M . The first step
of our algorithms gives A1 := Z/pZ⊕M . Then IA1/Fp = M and A2 := Z/pZ. Hence
both algorithms output jA = pA+M .

Iuliana Ciocănea-Teodorescu 109

Example 6.3.30 (Group rings). Let k = Z/nZ, for some n ∈ Z>0, and G a finite
group. Let A = k[G] be the group ring of G over k. We know from Example 6.2.92,
part (3), that if |G| · 1 is a unit in k, then A is strongly separable over k. Suppose all
primes dividing n are large. Then p > dimFp(A/pA) = dimFp(Fp[G]) = |G|, so |G| is
a unit in k and our algorithms output jA = 0.

Let k = Z/nZ and A = Mm(k), for some m ∈ Z>0. We know from Example
6.2.92, parts 1 and 2, that Mm(k) is strongly separable if and only if m is a unit in
k. Moreover, TrA/k = m · (usual trace).

Example 6.3.31 (Matrix rings). The smallest example of a matrix ring over a com-
mutative ring whose characteristic is divisible only by large primes is A = M2(F5).
In this case, A is simple, but since the primes occurring are large, the algorithms will
not be able to detect this. Since 2 is a unit in F5, the ring A is strongly separable, so
the algorithms will output jA = 0.

6.3.7 Remarks

Functoriality

Proposition 6.3.32. Let F be the class of finite rings. The two families of ideals
(jA)A∈F and (j′A)A∈F , produced by the two algorithms described in the two proofs of
Theorem 6.1.2 are functorial under isomorphisms, i.e. if φ : A→ B is an isomorphism
of finite rings, then φ(jA) = jB and φ(j′A) = j′B.

Proof. It is clear by construction (Propositions 2.8.1 and 2.8.2) that two isomorphic
rings will yield the samem andm′. Trace ideals are compatible with ring isomorphisms
by Proposition 6.2.72, part (iv).

Comparison between proofs of Theorem 6.3.22

We have already noted that the algorithm given in the second proof of Theorem 6.3.22
performs only 3 steps. But what can we say about the number of iterations (trace
radical computations) needed in the first algorithm?

If A is a finite ring, let us write jA1 for the approximation of the Jacobson radical
of A produced by the first proof of Theorem 6.3.22, and jA2 for the approximation of
the Jacobson radical of A produced by the second proof. So far we have only seen
examples where jA1 = jA2 . A natural question to ask is how j1 and j2 compare (with
respect to inclusion), or indeed whether they are comparable at all.

We give partial answers to these questions in this section.

Let e ∈ Z>0 and let p > 2 be a prime. Let e′ ∈ Z>0 be such that 2e′ < e. Set

A = (Z/peZ) [X]/(X2 − pe
′
X).

110 Algorithms for finite rings

Since A is already projective over its prime subring, in the notation of our algorithms,
we have A0 := A = A1. Write k := Z/peZ, TrA := TrA/k and IA := IA/k. Then

TrA(1) = 2,

TrA(X) = pe
′
.

The matrix representing the map

A→ Hom(A,Z/peZ)

is then given by

F =

(
2 pe

′

pe
′

p2e
′

)
.

Note that by Theorem 6.3.4, the rank of A/jA1 and that of A/jA2 must be equal to 1.
Suppose that e = 2e′N + r, for some N ∈ Z>0 and some 1 ≤ r ≤ 2e′. Then

jA1 =

(
pr, X − pe

′

2

)
(6.22)

and

jA2 =

(
p2e
′
, X − pe

′

2

)
. (6.23)

This example illustrates three remarks:
Remark I. The number of iterations performed by the first algorithm is unbounded.

To see this, note that

IA = k · pe−2e
′

(
X − pe

′

2

)

and the rank of A/IA is still 2. For the next trace radical computation, we simply re-
place e by e−2e′. Hence if e > 2e′N , then the first algorithm performs at least N trace
radical computations. Graphically, the algorithm computing jA1 can be represented by
the following diagram:

pe

pe−2e′

pe−4e′

......

Algorithm 1

IA1

IA3

IA5

Iuliana Ciocănea-Teodorescu 111

Remark II. The cardinality of A/jA2 may be larger than the cardinality of A/jA1 .
Compare (6.22) with (6.23).

Remark III. It is possible that jA2 ⊆ jA1 .
Compare (6.22) with (6.23).

Good properties

We summarize the good properties of the ring A/jA, where jA is an approximation of
the Jacobson radical of A.

Theorem 6.3.33. Let A be a finite ring and jA an approximation of the Jacobson
radical of A. Then

(i) A/jA is separable,
(ii) the prime subring and the generalised prime subring of A/jA coincide,

(iii) A/jA admits projectivity and injectivity lift from its prime subring,
(iv) A/jA is a quasi-Frobenius ring,
(v) A/jA is a symmetric algebra over its prime subring.

Applications and further questions

The exploration of possible applications of the computation of an approximation of
the Jacobson radical of a finite ring is a problem for future research. We record here
an application to testing simplicity of a finite module M over a finite ring R. More
basic algorithms for this were given in Chapter 5, Section 5.3.

Third proof of Theorem 5.3.1. We begin by computing an approximation jR of the
Jacobson radical of R using either of the proofs of Theorem 6.3.22. By Proposition
1.3.14, it is enough to test whether M is simple as an R/jR-module, which by Theorem
1.6.4 reduces to testing whether EndR/jR(M) is a field. This can be done by Theorem
5.1.2.

It is also an interesting question to decide if for a finite ring A, we have jA2 ⊆ jA1
in general. This has not been contradicted by the examples we have considered.

6.4 Computing the generalised prime subring

Let A be a finite ring and denote its generalised prime subring by PA (see Definition
6.2.48). The two algorithms proving Theorem 6.3.22 each produce approximations jA
of the Jacobson radical of A. In particular, the prime subring of the ring A/jA is
equal to its generalised prime subring (see Definition 6.3.1). In what follows, we give
a deterministic polynomial-time algorithm that, given a finite ring A, computes PA.

By Lemma 6.2.50, the generalised prime subring of a finite ring is equal to the
generalised prime subring of its centre. Hence we may restrict to the case that A is a

112 Algorithms for finite rings

finite commutative ring. Then

A =
∏

m maximal

Am,

where the product is taken over maximal ideals of A and Am denotes the localisation
of A at m. Let em be the primitive idempotent corresponding to Am. Then em has
order a prime power, equal to exp(A+

m).

Let Q = {exp(A+
m) | m ⊆ A maximal ideal}. Define a map Z>0 → A, q 7→ eq,

where

eq =
∑

exp(A+
m)=q

em. (6.24)

Note that if q ∈ Z>0\Q, then eq = 0. Moreover,∑
q∈Q

eq = 1.

Let

B :=
∑
q∈Q

Zeq ∼=
∏
q∈Q

Z/qZ. (6.25)

Then B is a subring of A, since the eq are orthogonal idempotents of sum 1 (see
Theorem 1.5.4). It is easy to see from Definition 6.2.48 that B = PA.

Proposition 6.4.1. Let A be a finite commutative ring such that

A+ ∼=
⊕
d∈D

(Z/dZ)
nd .

where nd ∈ Z>0 for all d ∈ D. For d ∈ D, let A[d] = ker(A→ A, a 7→ da) and

Id :=
⋂
n

A[d]n.

Then for all d ∈ D, there exists a unique element fd ∈ Id such that for all x ∈ Id, we
have fdx = x. Moreover,

PA =
∑
d∈D

Zfd.

Proof. Let d ∈ D. First note that A[d] is an ideal of A, and hence so is Id. Note that

A[d] =
∏
m

Am[d] =

 ∏
m

exp(A+
m)|d

Am

×
 ∏

m
exp(A+

m)-d

ad,m

 ,

Iuliana Ciocănea-Teodorescu 113

for some ideal ad,m (Am contained in the maximal ideal of Am. Then

Id =

 ∏
m

exp(A+
m)|d

Am

× 0,

and the identity in the first factor is
∑
q∈Q
q|d

eq. Let

fd :=
∑
q∈Q
q|d

eq. (6.26)

For uniqueness, suppose f ′d ∈ Id is another element such that for all x ∈ Id, we have
f ′dx = x. Then fd = f ′dfd = fd.

We claim that if eq 6= 0, then there exists d ∈ D such that d is exactly divisible
by q, i.e. q | d and gcd(q, d/q) = 1. This is because if eq 6= 0, then there exists m such
that exp(A+

m) = q and Z/qZ is a direct summand of A+
m, and hence of A+.

Further, we claim that for every d ∈ D and every prime p | d, we have that∑
i

pi|d

epi ∈
∑
d∈D

Zfd.

To see this, let d ∈ D and suppose d = d1d2, where d1, d2 ∈ Z>0 and (d1, d2) = 1.
Then fd = fd1 + fd2 , so Zfd ⊆ Zfd1 + Zfd2 . Moreover, the additive orders of fd1 and
fd2 are coprime, and so the additive order of fd1 + fd2 is equal to the additive order
of fd. Hence Zfd ⊆ Zfd1 + Zfd2 . Suppose that for some prime p and some r ∈ Z>0,
we have that pr divides d exactly. Take d1 = pr. Then fd1 =

∑
0≤i≤r epi ∈ Zfd, as

required.
We now show that

∑
d∈D Zfd = B, where B is as in (6.25). That

∑
d∈D Zfd ⊆ B

follows from (6.26). For the other inclusion, we will show that for all q = pr, with p
a prime and r ∈ Z>0, we have eq ∈

∑
d∈D Zfd. Fix a prime p. If eq = 0, then we are

done. Otherwise, pick d ∈ D that is exactly divisible by q. Then epr +
∑

1≤i<r epi ∈∑
d∈D Zfd. By induction on r, we have eq ∈

∑
d∈D Zfd.

Note 6.4.2. Proposition 6.4.1 is true for any choice of D. However, if we choose D
such that d1 | d2 | . . . | dt, where t = |D|, then the relations between the fdi become
simpler. First note that fdi is an idempotent for every 1 ≤ i ≤ t. To make them
orthogonal, put f ′di := fdi − fdi−1 for every 1 < i ≤ t. Let si be the order of f ′di . Then

PA =

t∑
i=1

Zf ′di ∼=
t∏
i=1

Z/siZ

as rings.

114 Algorithms for finite rings

Theorem 6.4.3. There exists a deterministic polynomial-time algorithm that, given
a finite ring A, computes the generalised prime subring PA.

Proof. Since PZ(A) = PA, we may assume A = Z(A). Suppose A+ is given to the
algorithm as

A+ ∼=
⊕
d∈D

(Z/dZ)nd ,

where nd ∈ Z>0. By computing the Smith normal form of the corresponding group
presentation matrix, we can ensure that for D = {d1, . . . , dt}, we have d1 | d2 | . . . | dt
and d1 6= ±1. For each 1 ≤ i ≤ t, compute fdi , as in Proposition 6.4.1. Turn the set
{fdi}1≤i≤t into a set of orthogonal idempotents as in Note 6.4.2. Let si be the order
of f ′di . The output of the algorithm consists of the set {si}1≤i≤t, together with a map∏

1≤i≤t Z/siZ→ A, given by 1(Z/siZ) 7→ fdi .

Note 6.4.4. If the elements of D are not assumed to divide each other, then the addi-
tive relations between the fd can be computed by solving systems of linear equations
over Z.

The computation of the generalised prime subring gives another way of testing
whether a finite ring is separable.

Second proof of Theorem 6.2.19. By Theorem 6.2.52, a finite ring is separable if and
only if it is separable projective over its generalised prime subring. So compute PA
using Theorem 6.4.3 and then test projectivity of A over PA using Theorem 5.4.1.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Ann. of Math, 2:781–793,
2002.

[2] M. Agrawal and N. Saxena. Automorphisms of finite rings and applications to
complexity of problems. In Volker Diekert and Bruno Durand, editors, STACS
2005, volume 3404 of Lecture Notes in Computer Science, pages 1–17. Springer
Berlin Heidelberg, 2005.

[3] M. Aguiar. A note on strongly separable algebras. Bolet́ın de la Academia
Nacional de Ciencias (Córdoba, Argentina), special issue in honor of Orlando
Villamayor(65):51–60, 2000.

[4] V. Arvind, B. Das, and P. Mukhopadhyay. The complexity of black-box ring
problems. In Computing and Combinatorics, volume 4112 of Lecture Notes in
Computer Science, pages 126–135. Springer Berlin Heidelberg, 2006.

[5] M. Auslander and O. Goldman. The Brauer group of a commutative ring. Trans.
Am. Math. Soc., 97:367–409, 1961.

[6] L. Babai. Graph isomorphism in quasipolynomial time. preprint,
arXiv:1512.03547, 2015.

[7] H. Bass. Traces and Euler characteristics. Lecture Note Series. Cambridge Uni-
versity Press, 1979.

[8] D.J. Bernstein. Factoring into coprimes in essentially linear time. J. Algorithms,
54(1):1–30, 2005.

[9] G. Bini and F. Flamini. Finite Commutative Rings and Their Applications. The
Springer International Series in Engineering and Computer Science. Springer US,
2012.

[10] P.A. Brooksbank and E.M. Luks. Testing isomorphism of modules. Journal of
Algebra, 320(11):4020–4029, 2008.

[11] P.A. Brooksbank and J.B. Wilson. The module isomorphism problem reconsid-
ered. Journal of Algebra, 421:541–559, 2015. Special issue in memory of Ákos
Seress.

115

116 Algorithms for finite rings

[12] J.A. Buchmann and H.W. Lenstra. Approximating rings of integers in number
fields. Journal de théorie des nombres de Bordeaux, 6(2):221–260, 1994.

[13] J.P. Buhler and P. Stevenhagen. Algorithmic Number Theory: Lattices, Num-
ber Fields, Curves and Cryptography. Mathematical Sciences Research Institute
Publications. Cambridge University Press, 2008.

[14] J.F. Buss, G.S. Frandsen, and J.O. Shallit. The computational complexity of
some problems of linear algebra. Journal of Computer and System Sciences,
58(3):572–596, 1999.

[15] A. Chistov, G. Ivanyos, and M. Karpinski. Polynomial time algorithms for mod-
ules over finite dimensional algebras. In Proceedings of the 1997 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’97, pages 68–74,
New York, USA, 1997. ACM.

[16] T.-W.J. Chou and G.E. Collins. Algorithms for the solution of systems of linear
diophantine equations. SIAM Journal on Computing, 11(4):687–708, 1982.

[17] I. Ciocănea-Teodorescu. The module isomorphism for finite rings and related
results. preprint, arXiv:1512.08365v1, 2015.

[18] A.M. Cohen, G. Ivanyos, and D.B. Wales. Finding the radical of an algebra of
linear transformations. Journal of Pure and Applied Algebra, 117-118:177–193,
1997.

[19] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate
Texts in Mathematics. Springer, 1993.

[20] F. DeMeyer and E. Ingraham. Separable algebras over commutative rings. Lecture
Notes in Mathematics. Springer, Berlin, 1971.

[21] F.R. DeMeyer. The trace map and separable algebras. Osaka Journal of Math-
ematics, 3(1):7–11, 1966.

[22] L.E. Dickson. Algebras and their arithmetics. Bulletin of the American Mathe-
matical Society, 30(5-6):247–257, 1924.

[23] R. Eggermont. Modellen voor eindige lichamen. Bachelor thesis. Mathematical
Institute, Leiden University, 2009.

[24] S. Endo and Y. Watanabe. On separable algebras over a commutative ring.
Osaka Journal of Mathematics, 4(2):233–242, 1967.

[25] S. Endo and Y. Watanabe. The centers of semi-simple algebras over a commu-
tative ring. ii. Nagoya Mathematical Journal, 39:1–6, 1970.

[26] B. Farb and R.K. Dennis. Noncommutative Algebra. Graduate Texts in Mathe-
matics. Springer New York, 2012.

Iuliana Ciocănea-Teodorescu 117

[27] K. Friedl and L. Rónyai. Polynomial time solutions of some problems of com-
putational algebra. In Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, STOC ’85, pages 153–162, New York, NY, USA, 1985.
ACM.

[28] T. Fritzsche. The Brauer group of character rings. Journal of Algebra, 361(0):37–
40, 2012.

[29] G. Ganske and B.R. McDonald. Finite local rings. Rocky Mountain J. Math.,
3(4):521–540, 1973.

[30] J.L. Hafner and K.S. McCurley. Asymptotically fast triangulation of matri-
ces over rings. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’90, pages 194–200, Philadelphia, PA, USA, 1990.
Society for Industrial and Applied Mathematics.

[31] A. Hattori. Semisimple algebras over a commutative ring. Journal of the Math-
ematical Society of Japan, 15(4):404–419, 1963.

[32] A. Hattori. On strongly separable algebras. Osaka Journal of Mathematics,
2(2):369–372, 1965.

[33] G. Havas, B.S. Majewski, and K.R. Matthews. Extended GCD and Hermite
normal form algorithms via lattice basis reduction. Experiment. Math., 7(2):125–
136, 1998.

[34] G. Higman. On a conjecture of Nagata. Proceedings of the Cambridge Philosoph-
ical Society, 52(Part I), January 1956.

[35] M. Hitz, J. Grabmeier, E. Kaltofen, and V. Weispfenning. Computer Algebra
Handbook: Foundations · Applications · Systems. SpringerLink : Bücher. Springer
Berlin Heidelberg, 2012.

[36] D. F. Holt and S. Rees. Testing modules for irreducibility. Journal of the Aus-
tralian Mathematical Society (Series A), 57:1–16, 8 1994.

[37] D.F. Holt. The meataxe as a tool in computational group theory. In R.T. Curtis
and R.A. Wilson, editors, The Atlas of Finite Groups - Ten Years on, pages
74–81. Cambridge University Press, 1998. Cambridge Books Online.

[38] D.F. Holt, B. Eick, and E.A. O’Brien. Handbook of Computational Group Theory.
Discrete Mathematics and Its Applications. CRC Press, 2005.

[39] G. Ivanyos. Modules and maximum rank matrix completion. Presented at
the Combinatorics, Groups, Algorithms, and Complexity Conference, Columbus,
Ohio, March 21-25, 2010.

[40] G. Ivanyos, M. Karpinski, Y. Qiao, and M. Santha. Generalized Wong sequences
and their applications to Edmonds’ problems. Journal of Computer and System
Sciences, 81(7):1373–1386, 2015.

118 Algorithms for finite rings

[41] G. Ivanyos, M. Karpinski, L. Rónyai, and N. Saxena. Trading GRH for algebra:
Algorithms for factoring polynomials and related structures. Math. Comput.,
81(277):493–531, 2012.

[42] G. Ivanyos, M. Karpinski, and N. Saxena. Deterministic polynomial time al-
gorithms for matrix completion problems. SIAM J. Comput., 39(8):3736–3751,
2010.

[43] G. Ivanyos and K.M. Lux. Treating the exceptional cases of the meataxe. Ex-
perimental Mathematics, 9(3):373–381, 2000.

[44] G. Ivanyos and L. Rónyai. Computations in Associative and Lie Algebras, vol-
ume 4 of Algorithms and Computation in Mathematics. Springer Berlin Heidel-
berg, 1999.

[45] G. Ivanyos, L. Rónyai, and J. Schicho. Splitting full matrix algebras over algebraic
number fields. Journal of Algebra, 354(1):211–223, 2012.

[46] G. Ivanyos, L. Rónyai, and J. Schicho. Improved algorithms for splitting full
matrix algebras. JP Journal of Algebra, Number Theory and Applications,
28(2):141–156, 2013.

[47] N. Jacobson. Lie Algebras. Dover Books on Mathematics Series. Dover, 1979.

[48] N. Jacobson. Basic algebra II. Basic Algebra. Dover Publications, Incorporated,
2009.

[49] L. Kadison and A.A. Stolin. Separability and Hopf algebras. Algebra and Its
Applications: International Conference [on] Algebra and Its Applications, March
25-28, 1999, Ohio University, Athens. American Mathematical Society, 2000.

[50] T. Kanzaki. Special type of separable algebra over a commutative ring. Proc.
Japan Acad., 40(10):781–786, 1964.

[51] I. Kaplansky. Rings with a polynomial identity. Bulletin of the American Math-
ematical Society, 54(6):575–580, 1948.

[52] N. Kayal and N. Saxena. On the ring isomorphism and automorphism problems.
IEEE Conference on Computational Complexity, pages 2–12.

[53] N. Kayal and N. Saxena. Complexity of ring morphism problems. Computational
Complexity, 15(4):342–390, June 2006.

[54] M.-A. Knus and M. Ojanguren. Théorie de la descente et algèbres d’Azumaya.
Lecture Notes in Mathematics, Vol. 389. Springer-Verlag, Berlin, 1974.

[55] N. Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag New
York, Inc., New York, NY, USA, 1987.

[56] T.Y. Lam. Lectures on Modules and Rings. Graduate Texts in Mathematics.
Springer New York, 1999.

Iuliana Ciocănea-Teodorescu 119

[57] T.Y. Lam. A First Course in Noncommutative Rings. Graduate Texts in Math-
ematics. Springer, 2001.

[58] T.Y. Lam. Serre’s Problem on Projective Modules. Springer Monographs in
Mathematics. Springer Berlin Heidelberg, 2010.

[59] S. Landau. Some remarks on computing the square parts of integers. Information
and Computation, 78(3):246 – 253, 1988.

[60] S. Lang. Algebra. Graduate Texts in Mathematics. Springer New York, 2002.

[61] A.K. Lenstra. Factorization of polynomials. In Computational methods in number
theory, Mathematical Centre Tracts 154-155, pages 169–198, Amsterdam, 1984.
Mathematisch Centrum.

[62] A.K. Lenstra. Integer factoring. Designs, Codes and Cryptography, 19(2):101–
128, 2000.

[63] A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515–534, 1982.

[64] H.W. Lenstra. Galois Theory for Schemes. Course notes avail-
able from the server of the Universiteit Leiden Mathematics Department,
http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf. Electronic third edi-
tion: 2008.

[65] H.W. Lenstra. Finding isomorphisms between finite fields. Mathematics of Com-
putation, 56(193):329–347, 1991.

[66] H.W. Lenstra. Algorithms in algebraic number theory. Bull. Amer. Math. Soc.,
26:211–244, 1992.

[67] H.W. Lenstra. Flags and lattice basis reduction. In In Proceedings of the third
European congress of mathematics. Birkhuser, 2001.

[68] H.W. Lenstra. Lattices. In Algorithmic number theory: lattices, number fields,
curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 127–181.
Cambridge Univ. Press, Cambridge, 2008.

[69] K.M. Lux and M. Szöke. Computing homomorphism spaces between modules
over finite dimensional algebras. Experiment. Math., 12(1):91–98, 2003.

[70] K.M. Lux and M. Szöke. Computing decompositions of modules over finite-
dimensional algebras. Experiment. Math., 16(1):1–6, 2007.

[71] G. Marks and M. Schmidmeier. Extensions of simple modules and the converse
of Schur’s lemma. In Advances in Ring Theory, Trends in Mathematics, pages
229–237. Birkhäuser Basel, 2010.

[72] M. Orzech and C. Small. The Brauer group of commutative rings. Number v. 11
in Lecture notes in pure and applied mathematics. M. Dekker, 1975.

120 Algorithms for finite rings

[73] C.H. Papadimitriou. Computational Complexity. Theoretical computer science.
Addison-Wesley, 1994.

[74] R. Parker. The computer calculation of modular characters (the meat-axe).
Computational Group Theory, pages 267–274, 1984.

[75] L. Rónyai. Computing the structure of finite algebras. J. Symb. Comput.,
9(3):355–373, March 1990.

[76] J. Rotman. An Introduction to Homological Algebra. Universitext. Springer New
York, 2008.

[77] L.H. Rowen. Ring Theory. Number v. 1 in Pure and Applied Mathematics.
Academic Press, 1988.

[78] L.H. Rowen. Ring Theory. Number v. 2 in Pure and Applied Mathematics.
Academic Press, 1988.

[79] L.H. Rowen. Graduate Algebra: Noncommutative View. Graduate Algebra.
American Mathematical Society, 2008.

[80] D.J. Saltman. Lectures on Division Algebras. Number 94 in CBMS Regional
Conference Series. American Mathematical Soc., 1999.

[81] J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. J. ACM, 27(4):701–717, October 1980.

[82] J.P. Serre. Local Fields. Graduate Texts in Mathematics. Springer New York,
1995.

[83] M. Staromiejski. Polynomial-time locality tests for finite rings. Journal of Alge-
bra, 379(0):441–452, 2013.

[84] A. Storjohann. Computation of Hermite and Smith Normal Forms of Matrices.
Master’s thesis, Department of Computer Science, University of Waterloo, 1994.

[85] A. Storjohann. Near optimal algorithms for computing smith normal forms of in-
teger matrices. In Proceedings of the 1996 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’96, pages 267–274, New York, NY, USA,
1996. ACM.

[86] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Department
of Computer Science, Swiss Federal Institute of Technology, 2000.

[87] M. Szymik. The Brauer group of Burnside rings. Journal of Algebra, 324(9):2589–
2593, 2010.

[88] J.A. Wood. Duality for modules over finite rings and applications to coding
theory. American Journal of Mathematics, 121:555–575, 1999.

Iuliana Ciocănea-Teodorescu 121

[89] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of
the International Symposium on on Symbolic and Algebraic Computation, EU-
ROSAM ’79, pages 216–226, London, UK, 1979. Springer-Verlag.

122 Algorithms for finite rings

Index

NP, 3
NP-complete, 3, 51, 72
NP-hard, 3, 70
NP-intermediate, 3, 53, 70
P, 3

algebra, 5
Azumaya, 80
finite-étale, 80
Frobenius, 16
separable, 76
separable projective, 82, 86
strongly separable, 95
symmetric, 16, 95, 111

basis representation, 46
bimodule, 6, 13, 77
block decomposition, 10
Brauer group, 81

character functor, 17, 69
complexity class, 2
coprime base algorithm, 4, 41

dual basis, 91
duality, 69

essential extension, 14

Fitting’s lemma, 7, 58
Fundamental theorem of finite abelian

groups, 26

generator, 16

Hermite normal form, 23

idempotents, 9
injective hull, 15, 69
injectivity lift, 84, 111

Jacobson radical, 8, 50, 59, 98
approximation of, 96, 103, 111

Krull-Remak-Schmidt theorem, 7

lattice, 20
LLL, 21

MeatAxe, 55
module, 5

artinian, 6
finite length, 6
finitely presented, 13
flat, 13
injective, 12, 69, 70, 72
left/right-regular, 6
noetherian, 6
projective, 11, 40, 42, 67, 71, 72,

82, 85
semisimple, 6
simple, 6, 67

Nakayama’s lemma, 11
nil

ideal, 5, 56
nilpotent

ideal, 5, 8, 56
nonsingular matrix completion, 72

progenerator, 17, 80
projective cover, 14, 68
projectivity lift, 83, 111

123

124 Algorithms for finite rings

rank
Hattori-Stallings, 91
of a projective module, 13

ring, 4
centre of, 4, 49
characteristic of, 4, 49
connected, 9, 86
division ring, 7
Galois, 88
generalised prime subring, 85,

111
left-artinian, 56
left/right artinian, 7
left/right noetherian, 7
local, 9
prime subring, 5, 49
quasi-Frobenius, 15, 70, 84, 111
semilocal, 9

semiprimary, 9
semisimple, 8, 55, 78, 84
separable, 84, 111
simple, 5, 66
Witt, 86

running time, 1

Schur’s lemma, 10
converse Schur, 11

Smith normal form, 25
splitter, 57
superfluous submodule, 14

trace, 92, 95
of a projective module, 91
trace radical, 94, 98

Turing machine, 1

Wedderburn theorem, 8

Algorithms for finite rings –
Abstract

In this thesis we are interested in describing algorithms that answer questions arising
in ring and module theory. Our focus is on deterministic polynomial-time algorithms
and rings and modules that are finite.

The first three chapters prepare the ground for the rest of the text by introducing
the underlying ring and module theory, and providing a compendium of algorithms
that allow us to perform basic computations with finite abelian groups and finite
rings.

The first main result of this thesis concerns the module isomorphism problem: we
describe two distinct algorithms that, given a finite ring R and two finite R-modules
M and N , determine whether M and N are isomorphic. If they are, the algorithms
exhibit such an isomorphism.

In addition, we show how to compute a set of generators of minimal cardinality
for a given module, and how to construct projective covers and injective hulls. We
also describe tests for module simplicity, projectivity, and injectivity, and constructive
tests for existence of surjective module homomorphisms between two finite modules,
one of which is projective. As a negative result, we show that the problem of testing
for existence of injective module homomorphisms between two finite modules, one of
which is projective, is NP-complete.

The last part of the thesis is concerned with finding a good working approximation
of the Jacobson radical of a finite ring, that is, a two-sided nilpotent ideal such that the
corresponding quotient ring is “almost” semisimple. The notion we use to approximate
semisimplicity is that of separability.

125

Algorithmes pour les anneaux
finis – Résumé

Cette thèse s’attache à décrire des algorithmes qui répondent à des questions provenant
de la théorie des anneaux et des modules. Nous restreindrons essentiellement notre
étude à des algorithmes déterministes, en temps polynomial, ainsi qu’aux anneaux et
modules finis.

Les trois premiers chapitres préparent le terrain pour le reste du texte. Nous y
rappelons les notions nécessaires de la théorie des modules et des anneaux, et nous
présentons une collection d’algorithmes qui permettent de réaliser des calculs dans les
groupes abéliens et les anneaux finis.

Le premier des principaux résultats de cette thèse concerne le problème de l’isomor-
phisme entre modules : nous décrivons deux algorithmes distincts qui, étant donné
un anneau fini R et deux R-modules M et N finis, déterminent si M et N sont
isomorphes. S’ils le sont, les deux algorithmes exhibent un tel isomorphisme.

De plus, nous montrons comment calculer un ensemble de générateurs de taille
minimale pour un module donné, et comment construire des couvertures projectives
et des enveloppes injectives. Nous décrivons ensuite des tests mettant en évidence
le caractère simple, projectif ou injectif d’un module, ainsi qu’un test constructif de
l’existence d’un homomorphisme de modules surjectif entre deux modules finis, l’un
d’entre eux étant projectif. Par contraste, nous montrons le résultat négatif suivant :
le problème consistant à tester l’existence d’un homomorphisme de modules injectif
entre deux modules, l’un des deux étant projectif, est NP-complet.

La dernière partie de cette thèse concerne le problème de l’approximation du
radical de Jacobson d’un anneau fini. Il s’agit de déterminer un idéal bilatère nilpotent
tel que l’anneau quotient correspondant soit “presque” semi-simple. La notion de
“semi-simplicité approchée” que nous utilisons est la séparabilité.

126

Algoritmen voor eindige
ringen – Samenvatting

We zijn in dit proefschrift gëınteresseerd in het beschrijven van algoritmen voor prob-
lemen over ringen en modulen. De nadruk ligt op deterministische algoritmen die in
polynomiale tijd werken, en op ringen en modulen die eindig zijn.

De eerste drie hoofdstukken leggen de basis voor de rest: we behandelen voorkennis
over ringen en modulen, en stellen een compendium van algoritmen samen die ons
basisbewerkingen op eindige abelse groepen en eindige ringen laten uitvoeren.

Het eerste hoofdresultaat van dit proefschrift betreft het isomorfieprobleem voor
modulen: we beschrijven twee verschillende algoritmen die voor een eindige ring R
en twee eindige R-modulen M en N , in polynomiale tijd beslissen of er een R-
moduulisomorfisme tussen M en N bestaat. Als er zo’n isomorfisme bestaat, wordt
het door de algoritmen berekend.

Verder laten we zien hoe men een verzameling voortbrengers van minimale grootte
voor een gegeven moduul kan berekenen, en hoe men projectieve overdekkingen en
injectieve omhulsels kan berekenen. We beschrijven ook methoden om te toetsen of een
moduul simpel, projectief of injectief is, en constructieve tests voor het bestaan van
een surjectief moduulhomomorfisme tussen twee modulen, waarvan er een projectief is.
Als negatief resultaat, laten we zien dat testen of er een injectief moduulhomomorfisme
bestaat tussen twee modulen, waarvan er een projectief is, NP-volledig is.

Het laatste deel van dit proefschrift is erop gericht, een goede benadering voor het
Jacobson-radicaal te vinden, dat wil zeggen, een tweezijdig nilpotent ideaal waarvan
de resulterende quotiëntring “bijna” semisimpel is. Het begrip dat we gebruiken om
semisimpliciteit te benaderen is separabiliteit.

127

128 Algorithms for finite rings

Acknowledgements

I would like to thank...

Professor Hendrik Lenstra, for his inspiring guidance.
Professor Karim Belabas, for being so generous with his time.
Dr. Gábor Ivanyos, for many useful comments regarding my work.
Professor Peter Stevenhagen.
Professor Bart de Smit.
Raphael Hochard, for the French translation of the abstract of this thesis (page 126).

my parents.

Dr. Radu Gaba, Mihai Bălună and Professor Oliver Riordan, my mathematical parents.

Erik Thörnblad.
Pınar Kılıçer, Dino Festi, Martin Djukanovic, Abtien Javanpeykar and Valerio Dose.
Djordjo Milovic.
Maarten Kampert.

Lucian Corchiş.
Dr. Alvaro Guevara.
Romina Lupşeneanu.

129

CV

Iuliana Ciocănea-Teodorescu was born June 2nd 1990 in Bucharest, Romania. From
1997 to 2004 she was simultaneously a student of the Goethe German College and the
George Enescu Music High School (piano studies), in Bucharest (Romania). In 2009
she graduated from the Mihai Viteazul National College in Bucharest.

Between 2009 and 2013 she was a student of the University of Oxford (UK), where
she completed her bachelor’s and master’s studies in mathematics. Her master’s thesis,
entitled “Of Galois groups in polynomial time” was supervised by Professor Jonathan
Pila.

In 2012 she obtained a DAAD RISE scholarship to undertake a research internship
of three months within the Section of Systems Neuroscience, Faculty of Medicine,
Dresden University of Technology, Germany.

In 2013 she was awarded an ALGANT-DOC scholarship and started her PhD
under the joint supervision of Hendrik W. Lenstra (Leiden University, Netherlands)
and Karim Belabas (University of Bordeaux, France).

130

	Introduction
	List of symbols
	Background
	Algorithms and complexity
	Basic ring theory
	Basic module theory
	More ring theory
	Idempotents
	More module theory
	Quasi-Frobenius rings
	Frobenius algebras and symmetric algebras
	Duality

	Linear algebra over Z: basic algorithms for finite abelian groups
	Lattices
	Hermite and Smith normal forms
	Representing objects and basic constructions
	Homomorphism groups and tensor products
	Splitting exact sequences
	Torsion subgroups, exponents, orders, cyclic decompositions
	Homomorphism groups and tensor products reconsidered
	Projective Z/mZ-modules

	Linear algebra over Z: basic algorithms for finite rings
	Representing objects and basic constructions
	Computations with ideals
	Computing the centre and the prime subring of a finite ring
	Computing the Jacobson radical
	Other known algorithms and open questions

	The module isomorphism problem
	Introduction
	Context
	MIP via non-nilpotent endomorphisms
	MIP via an approximation of the Jacobson radical
	Remark on implementation and performance

	A miscellaneous collection of algorithms
	Testing if a ring is a field
	Testing if a ring is simple
	Testing if a module is simple
	Testing if a module is projective
	Constructing projective covers
	Constructing injective hulls
	Testing if a module is injective
	Testing if a ring is quasi-Frobenius
	Constructive tests for existence of injective and surjective module homomorphisms

	Approximating the Jacobson radical of a finite ring
	Introduction
	Separability
	An approximation of the Jacobson radical
	Computing the generalised prime subring

	Bibliography
	Index
	Abstract
	Résumé
	Samenvatting
	Acknowledgements
	CV

