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Abstract. Let K C L be a fimte Galois extension of fields, of degree n Let G be the Galois group, and let
(00)) ¢ be a normal basis for Z over K An argument due to Mullin, Onyszchuk, Vanstone and Wilson (Discrete
Appl Math 22 (1988/89), 149-161) shows that the matrix that describes the map x ~ ax on this basis has
at least 2n — 1 nonzero entries If 1t contans exactly 2n — 1 nonzero entries, then the normal basis 1s said to
be optimal In the present paper we deternune all optimal normal bases In the case that K 1s finite our result
confirms a conjecture that was made by Mullin et al on the basis of a computer search

Let K C L be a finite Galois extension of fields, n the degree of the extension, and G
the Galois group. A basis of L over X is called a rormal basis if it is of the form (o0t)ycq,
with o € L. Let ()¢ be a normal basis for L over K, and let d(7, 0) € K, for o, 7 € G,
be such that

ooy = Z d(r, o)t 8]

TEG

for each ¢ € G. Summing this over o we find that

D d, o

Tr o,

0 forre G, 7 # 1,

i

Z d(r, 0)

where Tr o = L, oo € K denotes the trace of «. Since « is a unit, the matrix (d(7, )
is invertible, so for each 7 there is at least one nonzero d(7, ¢). If 7 # 1, then by the
above relations there are at least two nonzero d(7, o)’s. Thus we find that

#{(o, 7) € G X G :d(r,0) # 0} = 2n — 1.

The normal basis (60t),cq is called optimal if we have equality here.
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The argument just given and the notion of an optimal normal basis are due to Mullin,
Onyszchuk, Vanstone and Wilson {2]. They give several examples of optimal normal bases,
and they formulate a conjecture that describes all finite extensions of the field of two elements
that admit an optimal normal bases. In [1] this conjecture is extended to all finite fields.
In this present paper we confirm the conjecture, and we show that the constructions given
in [2] exhaust all optimal normal bases, even for Galois extensions of general fields.

Our result is as follows. If F is a field, we denote by F* the multiplicative group of
nonzero elements of F, and by char F the characteristic of F

THEOREM 1. Let K C L be a finite Galois extension of fields, with Galois group G, and
let a € L. Then (oat),ec is an optimal normal basis for L over K if and only if there is
a prime number p, a primitive pth root of unity { in some algebraic extension of L, and
an element ¢ € K* such that one of (i), (ii) is true:
(i) the irreducible polynomial of { over K has degree p — 1, and we have L = K({) and
a = cf;
(ii) char K = 2, the irreducible polynomial of ¢ + ¢~ over K has degree (p — 1)/2, and
we have L = K(¢ + ¢ and o = c(¢ + Y.

In case (i), the degree of L over K'is p — 1, and G is isomorphic to F;, where F,, denotes
the field of p elements. In case (ii), the prime number p is odd (because char K == 2),
the degree of L over K is (p — 1)/2, and G is isomorphic to ¥,/{+1}. In particular, we
see from the theorem that the Galois group is cyclic if there is an optimal normal basis.

In case (i) the irreducible polynomial of { over K is clearly equal to £75' X*. We remark
that, when X is a field and p 1s a prime number, we can give a necessary and sufficient
condition for the polynomial £7g' X’ to be irreducible over K. Namely, it is irreducible
over the prime field K, of K if and only if either char K = 0, or char K # 0 and char K
1s a primitive root modulo p, or char K = p = 2; and it is irreducible over K if and only
if it is irreducible over Ky and Ko($) N K = K,, where { denotes a zero of the polynomial
in an extension field of X.

The formula for the irreducible polynomial of { + ¢! over K in case (ii) is a little more
complicated. Let a { b, for nonnegative integers a and b, mean that each digit of a in
the binary system is less than or equal to the corresponding digit of b; so we have a < b
if and only if one can subtract @ from b in binary without ‘‘borrowing”. Further, write
n = (p — 1)/2. With this notation, the irreducible polynomial of { + {™' over K in case
(ii) equals I, X*, where i ranges over those nonnegative integers for which we have 2i <
n + i. To prove this, one first observes that, for any primitive pth root of unit { in any
field, one has the polynomial identity

n {(n=1)/2] no—1— i
ae-¢-¢n= 2 v ( ; ’] XD

J=1 7=0

[r/2] no— i
+ Z (_1)] [ . J] Xn——Zj.
J=0 J
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Next one uses Lucas’s theorem, which asserts that a < b if and only if the binomial coef-
ficient (%) is odd. This leads to the formula stated above. Again, we can for any field K
of characteristic 2 and for any odd prime number p = 2n + 1 give a necessary and suffi-
cient condition for the polynomial to be irreducible over K. Namely, the polynomial is
irreducible over the prime field ¥, of K if and only if the group F;/ {+1} is generated by
the image of (2 mod p); and it is irreducible over K if and only if it is irreducible over
F,and F, (y) N K = F,, where v denotes a zero of the polynomial in an extension field
of K.

We turn to the proof of the theorem. First we prove the if part. Let p be a prime number
and { a primitive pth root of unity such that (i) or (ii) holds for come ¢ € K. Clearly,
« gives rise to an optimal normal basis for L over K if and only if co does. Hence without
loss of generality we may assume that ¢ = 1.

Let it now first be supposed that we are in case (i). Since { has degree p — 1 over K,
all primitive pth roots of unity {*, 1 < i < p — 1, must be conjugate to {. Also, the
elements {*, 0 < i < p — 2, form a basis for L over K. Multiplying this basis by {, we
see that the elements {', 1 < i < p — 1, form a basis for L over X as well, so this is
a normal basis. Multiplication by { on this basis is given by

cre=gtt @ #p -0,

p=-1
crerl=1= 20 - ¢

=1

It follows that the normal basis is optimal.

Next suppose that we are in case (ji), so that char K = 2 and @ = { + LIy s
conjugate to « over K, then a zero 5 of X*> — 4X + 1 is conjugate to one of the zeroes
&, ¢l of X2 — aX + 1 and is therefore a primitive pth root of unity. Then we have 7
= {* for some integer i that is not divisible by p, soy = 5 + 77 = ¢+ 7 for some
integer i with 1 < i < (p — 1)/2. Since o has degree (p — 1)/2, it follows that its con-
jugates over K are precisely the elements o, = {' + (' for 1 < i < (p — 1)/2. Note
that for 0 < j < (p — D2 wehave o/ = (¢ + ¢ ) = B (J) oy, and that o®
=1=I ¢ = L8 D2 o, This shows that the K-vector space spanned by o/, 0 <
j < (p — 1)/2, which is L, is contained in the K-vector space spanned by o, 1 =< i <
(p — 1)/2. By dimension considerations it follows that the elements o, 1 < i < (p —
1)/2, form a normal basis for L over K. Multiplication by o on this basis is given by

ooy = o) ooy 1 <i< ((p-— D2,

2
oo = o = o,

Q- Q-1 = Kp-3)2 + op-n-

It follows that the normal basis is optimal. This completes the proof of the if part of the
theorem.
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We begin the proof of the only if part with a few general remarks about normal bases.
Let K C L be a finite Galois extension of fields, with Galois group G, and let o € L be
such that (oo, is a normal basis for L over K. Let d(7, o) € K, for o, 7 € G, be such
that (1) holds for each 0 € G. Applying o lto (1) we find that

d(r,0) =d(@ 7,07 foraloe, 7€G. @

We now express multiplication by « in the dual basis. Let § be the unique element of L
satisfying T#r(8+ o) = 1 and Tr(B - oo) = O for all 0 € G, 0 # 1, where 7r: L —» K
denotes the trace map. Then for o, 7 € G we have Tr(of * 7o) = 1 or 0 according as ¢
= ror o # 7. It follows that (683),¢c is also a normal basis for L over K it is called the
dual basis of (00),¢c- We claim that multiplication by « is expressed in this basis by

a8 = p,d(r, 9o  foral 7€ G. ©)
a€G

To prove this, it suffices to observe that the coefficient of o + 78 at o8 is given by

Tr((a » 78) * o) = Tr({e * oa) * 78) = Tr [ > dp. o)po - Tﬂ] = d(r, 0).

peG

Let it now be assumed that (o), is an optimal normal basis for L over K. As we saw
at the beginning of this paper this means the following. First of all, for each 7 € G, 7 #
1, there are exactly two elements o € G for which d(7, o) is nonzero, and these two nonzero
elements add up to zero. Secondly, there is exactly one element ¢ € G for which d(l, o)
is nonzero, and denoting this element by u we have d(1, ) = Tr «. By (3), we can express
the first property by saying that

for each 7 € G, 7 # 1, the element o * 73 equals
an element of K* times the difference of two distinct conjugates of 3. )

Likewise, the second property is equivalent to o * 8 = (Tr @) uB, where p € G. Replacing
a by ca for ¢ = —1/Tr o we may, without loss of generality, assume that 7r o = —1.
Then we have

o ff = —pb. ®

Also, from (Tr o) (Ir B) = L, oo * 78 = L, Tr( * pB) = 1 we see that we have
Tr B = —1.

If o = 1 then from (5) we see that o = —1, so that L = K. Then we are in case (i)
of the theorem, and p = 2, if char K # 2, and we are in case (ii) of the theorem, with
p = 3, if char K = 2. Let it henceforth be assumed that u # 1.

We first deal with the case that y®> = 1. From (5) we see that « = —pu@/@, so por =
—p*B/uB = —pB/uB = lo. Therefore we have
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a‘p.oc=1=—Tra=Z—aa.
0€G

This shows that d(o, p) = —1 for all ¢ € G. By (3) and (4) this implies that for each
o # 1 there is a unique ¢ # p such that

a* o =a'B — u.

o rtheno-of # o+ 18,50 0 3 7°. Therefore ¢ — ¢" is a bijective map from
G — {1} to G — {u}. Hence each ¢" 5 u occurs exactly once, and again using (3) we
see that

a0 a=o0a foro #pu,
a - po = 1.

It follows that the set {1} U {oo : ¢ € G} is closed under multiplication by «. Since
it is also closed under the action of G, we conclude that it is a multiplicative group of
order n + 1. This implies that "*! = 1, and we also have o # 1. Hence « is a zero
of X* + ... + X + 1. Since « has degree n over KX, the polynomial X" + ... + X
+ 1 is irreducible over K. Therefore n + 1 is a prime number. This shows that we are
in case (i) of the theorem.
For the rest of the proof we assume that u> > 1. By (5) we have d(1, ¢) = —1 or 0
according as ¢ = p or ¢ # p. Hence from (2) we find that
-1 ifo=p"",
d(o, 0) = ©)
0 if o # p k.

Therefore o + p~'3 has a term —p '3, and from p™' 5 1 and (4) we see that there exists
A € G such that

apTB=M-ple, NEp 0]

We shall prove that we have

char K = 2, ®
a*pl = MB + 8, )
A = pA. (10)

Before we give the proof of these properties we show how they lead to a proof of the theorem.
Applying p to (7) and comparing the result to (9) we find by (8) and (10) that pc * 8
= o - pB, which is the same as
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alB = p(alB). 11)

Multiplying (11) and (5) we find by (8) that &® = pa. By induction on k one deduces
from this that u*o = o> for every nonnegative integer k. If we take for k the order of
¢, then we find that azk = , which by the theory of finite fields means that « is algebraic
of degree dividing k over the prime field F, of K. Therefore we have k = order p = #G
= [L: K] = [K(a) : K] = k. We must have equality everywhere, so p generates G. By
(11), this implies that /3 € X, then since 7r o = Tr § = —1 we have in fact o = 8.
Thus from (1) and (3) we see that

d(U, T) = d(T, G) for all o, 7€ G. (12)

Let now { be a zero of X? — oX + 1 in some algebraic extension of L, so that { + !
= o. Since « is algebraic over F,, the same is true for {, so the multiplicative order of
¢ is finite and odd; let it be 2m + 1. For each integer i, write v, = ' + ¢, so that
vo = O and y; = a. We have v, = v, if and only if the zeroes {*, { ™" of X2 — v, X + 1
coincide with the zeroes {7, {7 of X* — v, X + 1, if and only if i = +j mod 2m + 1.

Hence there are exactly m different nonzero elements among the e namely Ti> V2> -
.- Bach of the n conjugates of « is of the form p/o = o = g” + ¢ = ~,; for some
integer j, and therefore occurs among the y,. This implies that n < m. We show that »
= m by proving that, conversely, every nonzero v, is a conjugate of «.. This is done by
induction on i. We have v; = a and v, = po, so it suffices to take 3 = i < m. We have

QY2 = (g‘ + g‘_l) . (;1—2 + 5‘2_1) = Yi-1 + Yi-35

where by the induction hypothesis each of y,_,, 7,—; is conjugate to «, and v,_5 is either
conjugate to o or equal to zero. Thus when « - v, is expressed in the normal basis
(0t)geq, then v,_; occurs with a coefficient 1. By (12), this implies that when o * 7y,
is expressed in the same basis, v,  likewise occurs with a coefficient 1. Hence from (4)
(with 8 = a) and v,_; # « we see that o * v, is equal to the sum of v,_, and some
other conjugate of «. But since we have « * v, = y,—; + 7,, that other conjugate of «
must be v,. This completes the inductive proof that all nonzero vy, are conjugate to « and
that n = m.

From the fact that each nonzero v, equals a conjugate /o of « it follows that for each
integer i that is not divisible by 2m + 1 there is an integer j such that i = 42/ mod 2m
+ 1. In particular, every integer i that is not divisible by 2m + 1 is relatively prime to
2m + 1, s0 2m + 1 is a prime number. Thus with p = 2m + 1 we see that all assertions
of (ii) have been proved.

It remains to prove (8), (9), and (10). The hypotheses are that « gives rise to an optimal
normal basis with 7r o« = —1, that 8 gives rise to the corresponding dual basis, that p
and A satisfy (5) and (7), and that y* # 1. The main technique of the proof is to use the
obvious identity p« * (0« * 78) = oo * (pa + 73) for several choices of p, 0, 7 € G.

From (5) we see that

pa s (@ B) = pa s (—pB) = — pla - B) = 4B,
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and from (7) we obtain
at(pa ) =a pla-plp) =
a pM —p' B =a N —a B = a-pu\d + ub.
Therefore we have
o uhg = B — ub. (13)
From p # p™' and (6) we see that d(u, u) = 0, so (13) implies that
A% 1 (14)

By (2) and (7) we have Q™" ™, A7y = g, A) = 1. Also, N1 7l = 1 by (),
so from (4) we obtain

a NTptg=a'B — k8 forsomex € G, k # AL (15)
We have N p™! # u7! by (14), so (6) gives

Kk #Z N luml (16)
From (7) and (15) we obtain
M (@ p™B)y=Ra M8 —pu'B)=Na"B—aNu"8) =~ B — B+ B,
and (15) gives

arQap @) =aMa N8 =a (B -MB) = = pf — a- Mp.
Therefore we have

o MfB = — uf + MB + B — M. an

By (16) we have \x # p ', so by (6) the term —\«x8 does not appear in « * k8. It must
therefore be cancelled by one of the other terms of (17). We have Ak # 1 by (15), so it
is not cancelled by 8. Therelore it is cancelled either by A8 or by —uB. We shall derive
a contradiction from the hypothesis that it is cancelled by Au83; this will prove that it is

cancelled by —ug.
Suppose therefore that Ax@ = Apf. Then we have « = u, so (17) gives

o MB =B — ub. (18)

By (2) and (18) we have d(p™! \u, phy = dQ\u, ) = -1, and since by (14) we have
p 2\ #1 it follows that
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ap ' A\uB =v8 — p7'8, forsomer€ G, v # puh 19)
Now we have on the one hand

o (pos M) = v pla s p T INuB) = ac p(B ~ pTIB) = a - B + ub,
by (19), and on the other hand

pa s (o MB) = pa- (B — pB) =pla-p ' B —a ) =N — B + 428,
by (18) and (7). This leads to

o B = N8 — B + u*B — uB.

Since 1, u, u? are pairwise distinct, the term u\3 must be cancelled by one of the other
three terms. Therefore ph € {1, i, #*}, so X belongs to the subgroup generated by p, and
therefore Ay = pA. But then (13) and (18) give u? = 1, contradicting our hypothesis.

We conclude that the term Akf in (17) is cancelled by —puf, that is, —pB — AS =
0. This implies that 4 = Ak and 2u8 = 0. This proves (8), and (17) gives (9). From (15)
we obtain

o N T = NI+ AT ug. (20)

Combining this with (2) we find that d(u ™2, p7'N = d\"'x™!, A"'u) = 1, and since
p? # 1 this gives

a w8 =p" N8 +v8  for some » € G.
This implies that
A s (o p7IB) = A s plo s T8 = Nt p(TINB + vB) = B + ha - B,
whereas (20) and (7) lead to
pa s Oa s p™'8) = pa s Mo s Np7IB) = pa s AATIB + NTIpB)

=pla-p B+ a-B)=puM8 + p7IB + uB) = pA8 + B — 436

Therefore we have

Ao = MaB + phB + B + u?B.

This is conjugate to o * A "'upg, so two terms on the right must cancel. From 1 ¢ {\u,
g, p2} it follows that 8 does not cancel any of the other terms. Hence two of Au@, u\g,
4?8 must cancel, so that we have Ay = p\, or pX = p?, or p? = . In each of the three
cases A and u commute. This proves (10), which completes the proof of the theorem.
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