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Abstract. Let K C L be a finite Galois extension of fields, of degree n Let G be the Galois group, and let
(σα)σ£<3 be a normal basis for L over K An argument due to Muliin, Onyszchuk, Vanstone and Wilson (Discrete
Appl Math 22 (1988/89), 149-161) shows that the matnx that describes the map χ >-» oa on this basis has
at least 2n - l nonzero entries If it contams exactly In - l nonzero entnes, then the normal basis is said to
be optimal In the present paper we determme all optimal normal bases In the case that K is finite our result
confirms a conjecture that was made by Mulhn et al on the basis of a Computer search

Let K C L be a finite Galois extension of fields, n the degree of the extension, and G
the Galois group. A basis of L over K is called a normal basis if it is of the form (σα)σίβ,
with a ζ L. Let (aa)aec be a normal basis for L over K, and let ά(τ, σ) € K, for σ, τ ζ G,
be such that

α ' oa = 2 d(r, σ)τα (Ι)
rec

for each σ ζ G. Summmg this over σ we find that

Σ d(l, σ) = Tr a,
σ

Σ d(r, <τ) = 0 for r € G, τ s« l,

σ

where Tr a - Σσ σα € K denotes the trace of a. Since a is a unit, the matnx (d(r, σ))
is invertible, so for each r there is at least one nonzero d(r, σ). If τ ^ l, then by the
above relations there are at least two nonzero d(r, a)'s. Thus we find that

#{(σ, τ) 6 G X G : d(r, σ) * 0} > 2n - 1.

The normal basis (σα)σ ίο is called optimal if we have equality here.
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The argument just given and the notion of an optimal normal basis are due to Mullin,
Onyszchuk, Vanstone and Wilson [2]. They give several examples of optimal normal bases,
and they formulate a conjecture that describes all finite extensions of the field of two elements
that admit an optimal normal bases. In [1] this conjecture is extended to all finite fields.
In this present paper we confirm the conjecture, and we show that the constructions given
in [2] exhaust all optimal normal bases, even for Galois extensions of general fields.

Our result is äs follows. If F is a field, we denote by F* the multiplicative group of
nonzero elements of F, and by char F the characteristic of F.

THEOREM l. Let K C L be a finite Galois extension of fields, with Galois group G, and
let a ζ L. Then (σα)αΐΰ is an optimal normal basis for L over K if and only ifthere is
a prime number p, a primitive pth root ofunity ξ in some algebraic extension of L, and
an element c € K* such that one of (i), (ii) is true:
(i) the irreducible polynomial of ζ over K has degree p — l, and we have L — Κ(ζ) and

a = c$;
(ii) char K = 2, the irreducible polynomial ofξ+ p 1 over K has degree (p - l)/2, and

we have L = Κ(ξ + p 1 ) and a = c(f + p 1 ) .

In case (i), the degree of L over Kis p - l, and G is isomorphic to F*, where Fp denotes
the field of p elements. In case (ii), the prime number p is odd (because char K - 2),
the degree of L over K is (p - 1)12, and G is isomorphic to F*/{±1}. In particular, we
see from the theorem that the Galois group is cyclic if there is an optimal normal basis.

In case (i) the irreducible polynomial of ζ over K is clearly equal to Ef̂ 1 X'. We remark
that, when K is a field and p is a prime number, we can give a necessary and sufficient
condition for the polynomial Σ£ο' %' to be irreducible over K. Namely, it is irreducible
over the prime field K0 of K if and only if either char K = 0, or char K 9* 0 and char K
is a primitive root modulo p, or char K = p = 2 ; and it is irreducible over K if and only
if it is irreducible over K0 and K0(f) Π K = KQ, where f denotes a zero of the polynomial
in an extension field of K.

The formula for the irreducible polynomial of ξ + p 1 over K in case (ii) is a little more
complicated. Let a -{ b, for nonnegative integers a and b, mean that each digit of a in
the binary System is less than or equal to the corresponding digit of b; so we have a ^ b
if and only if one can subtract a from b in binary without "borrowing". Further, write
n = (p - l)/2. With this notation, the irreducible polynomial of f + p 1 over K in case
(ii) equals Σ, X', where i ranges over those nonnegative integers for which we have 2i ~{
n + i. To prove this, one first observes that, for any primitive pth root of unit f in any
field, one has the polynomial identity

n [(fl-l)/2]

;=i j=0

[n/2]

+ Σ ( - ι χ ΐ η : ; \x-2j·
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Next one uses Lucas's theorem, which asserts that a -^ bif and only if the binomial coef-
ficient (*) is odd. This leads to the formula stated above. Again, we can for any field K
of characteristic 2 and for any odd prime number p = 2n + l give a necessary and suffi-
cient condition for the polynomial to be irreducible over K. Namely, the polynomial is
irreducible over the prime field F 2 of K if and only if the group F*/{±1} is generated by
the image of (2 mod /?); and it is irreducible over K if and only if it is irreducible over
F 2 and F 2 (γ) Π Κ = F 2 , where γ denotes a zero of the polynomial in an extension field
of K.

We turn to the proof of the theorem. First we prove the z/part. Letp be a prime number
and £ a primitive püi root of unity such that (i) or (ii) holds for come c 6 K*. Clearly,
α gives rise to an optimal normal basis for L over K if and only if ca. does. Hence without
loss of generality we may assume that c = 1.

Let it now first be supposed that we are in case (i). Since £ has degree p - l over K,
all primitive pth roots of unity £', l < z < p — l, must be conjugate to £. Also, the
elements £', 0 < z < p - 2, form a basis for L over K. Multiplying this basis by £, we
see that the elements £', l < z < p - l, form a basis for L over K äs well, so this is
a normal basis. Multiplication by £ on this basis is given by

£ · r = r+1 α * P - υ,
/>-!

r · f-1 = ι = Σ - f·
; = 1

It follows that the normal basis is optimal.
Next suppose that we are in case (ii), so that char K = 2 and et = £ + £~ !. If γ is

conjugate to α over K, then a zero η of X2 — jX + l is conjugate to one of the zeroes
£, £~! of X2 — oX + l and is therefore a primitive pth root of unity. Then we have η
= £' for some integer z that is not divisible by p, so γ = -η + η~ι = £ ' + £" ' for some
integer i with ! < / < ( / > - l)/2. Since α has degree (p — l)/2, it follows that its con-
jugates over K are precisely the elements «, = £' + £~' for l < z < (p — l)/2. Note
that for 0 < j < (p - l)/2 we have « · ' = ( £ + f ~V = E,[=i7o~1)/2] ({) o,_2„ and that a°
= l = E/L"!1 £' = £/ff1)/2 a,. This shows that the /sT-vector space spanned by α·7, Ο <

j < (p - l)/2, which is L, is contained in the Ä"-vector space spanned by a„ l < z <
(p - l)/2. By dimension coasiderations it follows that the elements a„ l < z' < (p —
l)/2, form a normal basis ibr L over ÄT. Multiplication by α on this basis is given by

(l < i < (P ~ l)/2),

α · αϊ = α2 = a2,

It follows that the normal basis is optimal. This completes the proof of the i/part of the

theorem.
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We begin the proof of the only ifpart with a few general remarks about normal bases.
Let K C L be a fmite Galois extension of fields, with Galois group G, and let α € L be
such that (aa.)aiG is a normal basis for L over K. Let ά(τ, σ) 6 ίΓ, for σ, τ ζ G, be such
that (1) holds for each σ € G. Applying σ"1 to (1) we find that

ά(τ, σ) = ά(σ~ι τ, σ'1) for all σ, τ € G. (2)

We now express multiplication by α in the dual basis. Let β be the unique element of L
satisfying Tr(ß · a) = l and TrOS · σα) = 0 for all σ 6 G, σ ;* l, where Tr: L -+ K
denotes the trace map. Then for σ, r € G we have 2? (σ/3 · τα.) = l or 0 according äs σ
= τ OT σ ^ r.lt follows that (σβ)σίΟ is also a normal basis for L over Ä"; it is called the
dual basis of (σα) σ € θ . We claim that multiplication by α is expressed in this basis by

a . Tß = Σ d(r, σ) σβ for all τ ζ G. (3)

To prove this, it suffices to observe that the coefficient of α · τ/3 at σβ is given by

7>((α · τβ) · σα) = Tr((a · σα) · τβ) = Tr d(p. σ)ρα · τβ = ά(τ, σ).
^- ptG J

Let it now be assumed that (aa)a(:G is an optimal normal basis for L over K. As we saw
at the beginning of this paper this means the following. First of all, for each τ € G, τ ^
l, there are exactly two elements σ € G for which d(r, σ) is nonzero, and these two nonzero
elements add up to zero. Secondly, there is exactly one element σ € G for which d(l, a)
is nonzero, and denoting this element by μ we have d(l, μ) = Tr a. By (3), we can express
the first property by saying that

for each τ ζ G, τ j* l, the element α · τβ equals
an element of K* times the difference of two distinct conjugates of ß. (4)

Likewise, the second property is equivalent to α · β = (Tr α)μβ, where μ 6 G. Replacing
a by ca. for c = —1/2? a. we may, without loss of generality, assume that Tr a. = — 1.
Then we have

α · β = ~μβ. (5)

Also, from (Tr a) (Tr β) = Σσ>τ σα · τβ = Σρ Tr(a · ρβ) = l we see that we have
Tr β = - 1 .

If μ = l then from (5) we see that α = —l, so that L = K. Then we are in case (i)
of the theorem, and p = 2, if char K ^ 2, and we are in case (ii) of the theorem, with
p = 3, if char K = 2. Let it henceforth be assumed that μ ^ l.

We first deal with the case that μ2 = 1. From (5) we see that α = -μβ/β, so μα =
-μ2β/μβ = -βΐμβ - U a. Therefore we have
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α · μ α = 1 = —Tra = ^ j —σα.
cr6G

This shows that d(a, μ) = - l for all σ e G. By (3) and (4) this implies that for each
σ j£ l there is a unique σ* τ* μ such that

α · σβ = α*β - μβ.

If σ 5* τ then α · σβ τ± α · τ/3, so σ* ?£ τ*. Therefore σ ·-> σ* is a bijective map from
G - { l } t o G - {μ}. Hence each σ* ?* μ occurs exactly once, and again using (3) we
see that

* „ *
α · σ α = σα for σ ^ μ,

α · μα = 1.

It follows that the set {1} U {σα : σ € G} is closed under multiplication by a. Since
it is also closed under the action of G, we conclude that it is a multiplicative group of
order n + 1. This implies that a"+1 = l, and we also have α τ* 1. Hence α is a zero
of X" + . . . + X + l . Since α has degree n over K, the polynomial X" + . . . + X
+ l is irreducible over K. Therefore n + l is a prime number. This shows that we are
in case (i) of the theorem.

For the rest of the proof we assume that μ2 ^ 1. By (5) we have d(l, σ) = - l or 0
according äs σ = μ or σ ^ μ. Hence from (2) we find that

Γ - l if σ = μ"1,
d(a, σ) = \ (6)

[_0 if σ * μ~ι.

Therefore α · μ~ιβ has a term -μ'ιβ, and from μ"1 ?* l and (4) we see that there exists
λ e G such that

α ' μ'1β = λ/3 - μ"1/?, λ ?ί μ~1. (7)

We shall prove that we haVe

char K = 2, (8)

α·μβ = \μβ + β, (9)

λμ = μλ. (10)

Before we give the proof of these properties we show how they lead to a proof of the theorem.

Applying μ to (7) and comparing the result to (9) we find by (8) and (10) that μα · β

- a · μβ, which is the same äs
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α/β = μ(α!β). (11)

Multiplying (11) and (5) we find by (8) that a2 = μα. By induction on k one deduces
from this that μ*α = α 2 for every nonnegative integer k. If we take for k the order of
μ, then we find that a = a, which by the theory of finite fields means that a is algebraic
of degree dividing k over the prime field F 2 of K. Therefore we have k = order μ < #G
= [L : K] = [K(a) : K] < k. We must have equality every where, so μ generates G. By
(11), this implies that a/ß € K, then since Tr a = Tr β = - l we have in fact a = ß.
Thus from (1) and (3) we see that

d(a, r) = d(r, a) for all σ, τ € G. (12)

Let now fbe a zero of X2 - aX + l in some algebraic extension of L, so that ξ + f ~'
= a. Since a is algebraic over F 2 , the same is true for ζ, so the multiplicative order of
ξ is finite and odd; let it be Im + 1. For each integer i, write 7, = ζ' + ζ~', so that
7o = 0 and 7! = a. We have 7, = γ, if and only if the zeroes f, f "Of ^i2 — y,X + l
coincide with the zeroes ζ1, ζ~} of X2 - jj X + l, if and only if i = +J mod 2« + 1.
Hence there are exactly m different nonzero elements among the y„ namely γ 1 ; j 2 , · · ·,
ym. Each of the n conjugates of α is of the form μ-Όι = a2' = ξ2' + ξ"2' = j2> for some
integer j , and therefore occurs among the 7,. This implies that n < m. We show that n
= m by proving that, conversely, every nonzero 7, is a conjugate of a. This is done by
induction on i. We have 71 = a and γ 2 = μα, so it suffices to take 3 < i < m. We have

« ' Ύ,-2 = (f + Γ 1 ) ' (f'~~2 + f2~') = Ύ.-ι + 7.-3>

where by the induction hypothesis each of γ,_2, γ,-ι is conjugate to a, and γ,_3 is either
conjugate to a. or equal to zero. Thus when a. · 7,~2 is expressed in the normal basis
(σ°0σ€θ, then 7,_, occurs with a coefficient 1. By (12), this implies that when a · y,^
is expressed in the same basis, γ,_2 likewise occurs with a coefficient 1. Hence from (4)
(with β = α) and γ,_ι ?ί α we see that α · γ,_ι is equal to the sum of γ,_2 and some
other conjugate of a. But since we have α · γ,-ι = γ,-2 + Tu that other conjugate of α
must be γ,. This completes the inductive proof that all nonzero 7, are conjugate to α and
that n = m.

From the fact that each nonzero 7, equals a conjugate μ}α of α it follows that for each
integer i that is not divisible by 2m + l there is an integer; such that i = ±2J mod Im
+ l. In particular, every integer i that is not divisible by 2m + l is relatively prime to
2m + l, so 2m + l is a prime number. Thus with/? = 2m + l we see that all assertions
of (ii) have been proved.

It remains to prove (8), (9), and (10). The hypotheses are that α gives rise to an optimal
normal basis with Tr a = —l, that β gives rise to the corresponding dual basis, that μ
and λ satisfy (5) and (7), and that μ2 & 1. The main technique of the proof is to use the
obvious identity pa. · (σα · τβ) = σα · (pa · τβ) for several choices of p, σ, τ 6 G.

From (5) we see that

μα·(α·β) = μα· (~μβ) = - μ(α · β) = μ2β,
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and from (7) we obtain

a ' (μα · β) = a · μ(α · μ~1β) =

α · μ(\β - μ~* β) = α · μλβ - α ' β = α · μλβ + μβ.

Therefore we have

α · μλβ = μ2β - μβ. (13)

From μ ^ μ~ι and (6) we see that α(μ, μ) = Ο, so (13) implies that

λ * 1. ( 1 4 )

By (2) and (7) we have α(λ~ι μ~\ λ~ι) = ά(μ~ι, λ) = 1. Also, λ ' 1 μ"1 * l by (7),
so from (4) we obtain

α · λ" 1 μ~ι β = ίΓ 1 β - κβ for some κ ζ G, κ τ* λ" 1 . (15)

We have λ "V" 1 ^ μ"1 bY (14), so (6) gives

κ * X ' V " 1 · (16)

From (7) and (15) we obtain

λα · (α · μ"1 /S) = λα · (Λ/3 - μ~ιβ) = \(α · β - α ' \~ιμ-1 β) = - \μβ - β + \κβ,

and (15) gives

α · (λα · μ~ι β) = α · λ (α · λ"1 μ^1 β) = α - (β - \κβ) = - μβ - α · λκβ.

Therefore we have

α · λκβ = - μβ + λμβ + β - λκβ. (17)

By (16) we have λ/c ^ μ"1, so by (6) the term -λκβ does not appear in α · λκβ. It must
therefore be cancelled by one of the other terms of (17). We have λ/c ^ l by (15), so it
is not cancelled by ß. Thereiore it is cancelled either by λμβ or by —μβ. We shall derive
a contradiction from the hypothesis that it is cancelled by λμβ; this will prove that it is
cancelled by -μβ.

Suppose therefore that λκβ = λμβ. Then we have κ = μ, so (17) gives

α · λμβ = β - μβ. (18)

By (2) and (18) we have ά(μ~~ι λμ, μ~ι) = ά(λμ, μ) = - l , and since by (14) we have
μ^λμ jt\ it follows that
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α · μ ' 1 λμβ = vß - μ~ιβ, for some v € G, v * μ~ι. (19)

Now we have on the one band

a. · (μα · λμβ) = a · μ(α · μ~]λμ/3) = a · μ(νβ - μ~1β) = α · μνβ + μβ,

by (19), and on the other band

μα -(α· λμβ) = μα · (β - μβ) = μ (α · μ'1 β - α · β) = μλβ - β + μ2β,

by (18) and (7). This leads to

a · μνβ = μ\β - β + μ2β - μβ.

Since 1, μ, μ2 are pairwise distinct, the term μλβ must be cancelled by one of the other
three terms. Therefore μλ € {l, μ, μ2}, so λ belongs to the subgroup generated by μ, and
therefore λμ = μλ. But then (13) and (18) give μ2 = l, contradicting our hypothesis.

We conclude that the term λκβ in (17) is cancelled by —μβ, that is, -μβ - λκβ =
0. This implies that μ = λκ and 2μβ = 0. This proves (8), and (17) gives (9). From (15)
we obtain

= λ~ιβ + λ~ιμβ. (20)

Combining this with (2) we find that ά(μ~2, μ~ιλ) = α(λ~ιμ~ι, λ~ιμ) = 1> a n d since
μ~2 j*· l this gives

α · μ~2β = μ"ιλβ + vß for some v € G.

This implies that

λα · (μα. · μ~ιβ) = λα · μ(α · μ~2β) = λα · μ(μ~1λβ + νβ) = λμβ + λα · μνβ,

whereas (20) and (7) lead to

μα · (λα · μ~ιβ) = μα · λ (α · λ~ιμ~ιβ) = μα · λ(λ~ιβ + λ~ιμβ)

= μ (α · μ~ιβ + α · β) = μ(λβ + μ~1β + μβ) = μλβ + β - μ2β.

Therefore we have

λα · μνβ = λμβ + μλβ + β + μ2β.

This is conjugate to α · λ~ιμνβ, so two terms on the right must cancel. From l $ {λμ,
μλ, μ2} it follows that β does not cancel any of the other terms. Hence two of λμβ, μλβ,
μ2 β must cancel, so that we have λμ = μλ, or μλ = μ2, or μ2 = λμ. In each of the three
cases λ and μ commute. This proves (10), which completes the proof of the theorem.



OPTIMAL NORMAL BASES 323

Acknowledgments

Shuhong Gao acknowledges bis Ph.D. Supervisor Ronald C. Mullin for his help and con-
tmuous encouragement; he received partial financial assistance from NSERC grant #
OGP0003071. Hendrik Lenstra, Jr. is grateful to the Institute for Advanced Study in
Pnnceton, the Institute for Computer Research at the Umversity of Waterloo, and the Univer-
site de Franche-Comte in Besangen for providmg hospitahty and support while this work
was bemg done; he was supported by NSF under GrantNo. DMS 90-02939.

References

I R C Mullm, A charactenzation of th extremal distnbutions of optimal normal bases, Proc Marshall Hall
Memorial Conference, Burlington, Vermont, 1990, to appear

2 RC Muliin, I M Onyszchuk, S A Vanstone, and R M Wilson, Optimal normal bases m GF(p"), Discrete
Appl Math Vol 22 (1988/89), pp 149-161


