

Universiteit
Leiden
The Netherlands

Optimal normal bases

Lenstra, H.W.; Gao, S.

Citation

Lenstra, H. W., & Gao, S. (1992). Optimal normal bases. *Designs, Codes And Cryptography*, 2, 315-323. Retrieved from
<https://hdl.handle.net/1887/3836>

Version: Not Applicable (or Unknown)

License: [Leiden University Non-exclusive license](#)

Downloaded from: <https://hdl.handle.net/1887/3836>

Note: To cite this publication please use the final published version (if applicable).

Optimal Normal Bases

SHUHONG GAO

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

HENDRIK W LENSTRA, JR

Department of Mathematics, University of California, Berkeley, CA 94720

Communicated by S A Vanstone

Received June 29, 1991

Abstract. Let $K \subset L$ be a finite Galois extension of fields, of degree n . Let G be the Galois group, and let $(\sigma\alpha)_{\sigma \in G}$ be a normal basis for L over K . An argument due to Mullin, Onyszchuk, Vanstone and Wilson (*Discrete Appl. Math.* 22 (1988/89), 149–161) shows that the matrix that describes the map $x \mapsto \alpha x$ on this basis has at least $2n - 1$ nonzero entries. If it contains exactly $2n - 1$ nonzero entries, then the normal basis is said to be optimal. In the present paper we determine all optimal normal bases. In the case that K is finite our result confirms a conjecture that was made by Mullin et al. on the basis of a computer search.

Let $K \subset L$ be a finite Galois extension of fields, n the degree of the extension, and G the Galois group. A basis of L over K is called a *normal basis* if it is of the form $(\sigma\alpha)_{\sigma \in G}$, with $\alpha \in L$. Let $(\sigma\alpha)_{\sigma \in G}$ be a normal basis for L over K , and let $d(\tau, \sigma) \in K$, for $\sigma, \tau \in G$, be such that

$$\alpha \cdot \sigma\alpha = \sum_{\tau \in G} d(\tau, \sigma) \tau\alpha \quad (1)$$

for each $\sigma \in G$. Summing this over σ we find that

$$\sum_{\sigma} d(1, \sigma) = \text{Tr } \alpha,$$

$$\sum_{\sigma} d(\tau, \sigma) = 0 \quad \text{for } \tau \in G, \tau \neq 1,$$

where $\text{Tr } \alpha = \sum_{\sigma} \sigma\alpha \in K$ denotes the trace of α . Since α is a unit, the matrix $(d(\tau, \sigma))$ is invertible, so for each τ there is at least one nonzero $d(\tau, \sigma)$. If $\tau \neq 1$, then by the above relations there are at least two nonzero $d(\tau, \sigma)$'s. Thus we find that

$$\#\{(\sigma, \tau) \in G \times G : d(\tau, \sigma) \neq 0\} \geq 2n - 1.$$

The normal basis $(\sigma\alpha)_{\sigma \in G}$ is called *optimal* if we have equality here.

The argument just given and the notion of an optimal normal basis are due to Mullin, Onyszchuk, Vanstone and Wilson [2]. They give several examples of optimal normal bases, and they formulate a conjecture that describes all finite extensions of the field of two elements that admit an optimal normal bases. In [1] this conjecture is extended to all finite fields. In this present paper we confirm the conjecture, and we show that the constructions given in [2] exhaust all optimal normal bases, even for Galois extensions of general fields.

Our result is as follows. If F is a field, we denote by F^* the multiplicative group of nonzero elements of F , and by $\text{char } F$ the characteristic of F .

THEOREM 1. *Let $K \subset L$ be a finite Galois extension of fields, with Galois group G , and let $\alpha \in L$. Then $(\sigma\alpha)_{\sigma \in G}$ is an optimal normal basis for L over K if and only if there is a prime number p , a primitive p th root of unity ζ in some algebraic extension of L , and an element $c \in K^*$ such that one of (i), (ii) is true:*

- (i) *the irreducible polynomial of ζ over K has degree $p - 1$, and we have $L = K(\zeta)$ and $\alpha = c\zeta$;*
- (ii) *$\text{char } K = 2$, the irreducible polynomial of $\zeta + \zeta^{-1}$ over K has degree $(p - 1)/2$, and we have $L = K(\zeta + \zeta^{-1})$ and $\alpha = c(\zeta + \zeta^{-1})$.*

In case (i), the degree of L over K is $p - 1$, and G is isomorphic to \mathbf{F}_p^* , where \mathbf{F}_p denotes the field of p elements. In case (ii), the prime number p is odd (because $\text{char } K = 2$), the degree of L over K is $(p - 1)/2$, and G is isomorphic to $\mathbf{F}_p^*/\{\pm 1\}$. In particular, we see from the theorem that the Galois group is cyclic if there is an optimal normal basis.

In case (i) the irreducible polynomial of ζ over K is clearly equal to $\sum_{i=0}^{p-1} X^i$. We remark that, when K is a field and p is a prime number, we can give a necessary and sufficient condition for the polynomial $\sum_{i=0}^{p-1} X^i$ to be irreducible over K . Namely, it is irreducible over the prime field K_0 of K if and only if either $\text{char } K = 0$, or $\text{char } K \neq 0$ and $\text{char } K$ is a primitive root modulo p , or $\text{char } K = p = 2$; and it is irreducible over K if and only if it is irreducible over K_0 and $K_0(\zeta) \cap K = K_0$, where ζ denotes a zero of the polynomial in an extension field of K .

The formula for the irreducible polynomial of $\zeta + \zeta^{-1}$ over K in case (ii) is a little more complicated. Let $a \prec b$, for nonnegative integers a and b , mean that each digit of a in the binary system is less than or equal to the corresponding digit of b ; so we have $a \prec b$ if and only if one can subtract a from b in binary without “borrowing”. Further, write $n = (p - 1)/2$. With this notation, the irreducible polynomial of $\zeta + \zeta^{-1}$ over K in case (ii) equals $\sum_i X^i$, where i ranges over those nonnegative integers for which we have $2i \prec n + i$. To prove this, one first observes that, for any primitive p th root of unit ζ in any field, one has the polynomial identity

$$\begin{aligned} \prod_{j=1}^n (X - \zeta^j - \zeta^{-j}) &= \sum_{j=0}^{\lfloor (n-1)/2 \rfloor} (-1)^j \begin{bmatrix} n-1-j \\ j \end{bmatrix} X^{n-(2j+1)} \\ &\quad + \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \begin{bmatrix} n-j \\ j \end{bmatrix} X^{n-2j}. \end{aligned}$$

Next one uses Lucas's theorem, which asserts that $a \nmid b$ if and only if the binomial coefficient $\binom{b}{a}$ is odd. This leads to the formula stated above. Again, we can for any field K of characteristic 2 and for any odd prime number $p = 2n + 1$ give a necessary and sufficient condition for the polynomial to be irreducible over K . Namely, the polynomial is irreducible over the prime field \mathbf{F}_2 of K if and only if the group $\mathbf{F}_p^*/\{\pm 1\}$ is generated by the image of $(2 \bmod p)$; and it is irreducible over K if and only if it is irreducible over \mathbf{F}_2 and $\mathbf{F}_2(\gamma) \cap K = \mathbf{F}_2$, where γ denotes a zero of the polynomial in an extension field of K .

We turn to the proof of the theorem. First we prove the *if* part. Let p be a prime number and ζ a primitive p th root of unity such that (i) or (ii) holds for some $c \in K^*$. Clearly, α gives rise to an optimal normal basis for L over K if and only if $c\alpha$ does. Hence without loss of generality we may assume that $c = 1$.

Let it now first be supposed that we are in case (i). Since ζ has degree $p - 1$ over K , all primitive p th roots of unity ζ^i , $1 \leq i \leq p - 1$, must be conjugate to ζ . Also, the elements ζ^i , $0 \leq i \leq p - 2$, form a basis for L over K . Multiplying this basis by ζ , we see that the elements ζ^i , $1 \leq i \leq p - 1$, form a basis for L over K as well, so this is a normal basis. Multiplication by ζ on this basis is given by

$$\zeta \cdot \zeta^i = \zeta^{i+1} \quad (i \neq p - 1),$$

$$\zeta \cdot \zeta^{p-1} = 1 = \sum_{i=1}^{p-1} - \zeta^i.$$

It follows that the normal basis is optimal.

Next suppose that we are in case (ii), so that $\text{char } K = 2$ and $\alpha = \zeta + \zeta^{-1}$. If γ is conjugate to α over K , then a zero η of $X^2 - \gamma X + 1$ is conjugate to one of the zeroes ζ, ζ^{-1} of $X^2 - \alpha X + 1$ and is therefore a primitive p th root of unity. Then we have $\eta = \zeta^i$ for some integer i that is not divisible by p , so $\gamma = \eta + \eta^{-1} = \zeta^i + \zeta^{-i}$ for some integer i with $1 \leq i \leq (p-1)/2$. Since α has degree $(p-1)/2$, it follows that its conjugates over K are precisely the elements $\alpha_i = \zeta^i + \zeta^{-i}$ for $1 \leq i \leq (p-1)/2$. Note that for $0 < j < (p-1)/2$ we have $\alpha^j = (\zeta + \zeta^{-1})^j = \sum_{i=0}^{\lfloor (j-1)/2 \rfloor} \binom{j}{i} \alpha_{j-2i}$, and that $\alpha^0 = 1 = \sum_{i=1}^{p-1} \zeta^i = \sum_{i=1}^{(p-1)/2} \alpha_i$. This shows that the K -vector space spanned by α^j , $0 \leq j < (p-1)/2$, which is L , is contained in the K -vector space spanned by α_i , $1 \leq i \leq (p-1)/2$. By dimension considerations it follows that the elements α_i , $1 \leq i \leq (p-1)/2$, form a normal basis for L over K . Multiplication by α on this basis is given by

$$\alpha \cdot \alpha_i = \alpha_{-1} + \alpha_{i+1} \quad (1 < i < (p-1)/2),$$

$$\alpha \cdot \alpha_1 = \alpha^2 = \alpha_2,$$

$$\alpha \cdot \alpha_{(p-1)/2} = \alpha_{(p-3)/2} + \alpha_{(p-1)/2}.$$

It follows that the normal basis is optimal. This completes the proof of the *if* part of the theorem.

We begin the proof of the *only if* part with a few general remarks about normal bases. Let $K \subset L$ be a finite Galois extension of fields, with Galois group G , and let $\alpha \in L$ be such that $(\sigma\alpha)_{\sigma \in G}$ is a normal basis for L over K . Let $d(\tau, \sigma) \in K$, for $\sigma, \tau \in G$, be such that (1) holds for each $\sigma \in G$. Applying σ^{-1} to (1) we find that

$$d(\tau, \sigma) = d(\sigma^{-1} \tau, \sigma^{-1}) \quad \text{for all } \sigma, \tau \in G. \quad (2)$$

We now express multiplication by α in the dual basis. Let β be the unique element of L satisfying $\text{Tr}(\beta \cdot \alpha) = 1$ and $\text{Tr}(\beta \cdot \sigma\alpha) = 0$ for all $\sigma \in G, \sigma \neq 1$, where $\text{Tr}: L \rightarrow K$ denotes the trace map. Then for $\sigma, \tau \in G$ we have $\text{Tr}(\sigma\beta \cdot \tau\alpha) = 1$ or 0 according as $\sigma = \tau$ or $\sigma \neq \tau$. It follows that $(\sigma\beta)_{\sigma \in G}$ is also a normal basis for L over K ; it is called the *dual basis* of $(\sigma\alpha)_{\sigma \in G}$. We claim that multiplication by α is expressed in this basis by

$$\alpha \cdot \tau\beta = \sum_{\sigma \in G} d(\tau, \sigma) \sigma\beta \quad \text{for all } \tau \in G. \quad (3)$$

To prove this, it suffices to observe that the coefficient of $\alpha \cdot \tau\beta$ at $\sigma\beta$ is given by

$$\text{Tr}((\alpha \cdot \tau\beta) \cdot \sigma\alpha) = \text{Tr}((\alpha \cdot \sigma\alpha) \cdot \tau\beta) = \text{Tr} \left[\sum_{\rho \in G} d(\rho, \sigma) \rho\alpha \cdot \tau\beta \right] = d(\tau, \sigma).$$

Let it now be assumed that $(\sigma\alpha)_{\sigma \in G}$ is an optimal normal basis for L over K . As we saw at the beginning of this paper this means the following. First of all, for each $\tau \in G, \tau \neq 1$, there are exactly two elements $\sigma \in G$ for which $d(\tau, \sigma)$ is nonzero, and these two nonzero elements add up to zero. Secondly, there is exactly one element $\sigma \in G$ for which $d(1, \sigma)$ is nonzero, and denoting this element by μ we have $d(1, \mu) = \text{Tr} \alpha$. By (3), we can express the first property by saying that

$$\text{for each } \tau \in G, \tau \neq 1, \text{ the element } \alpha \cdot \tau\beta \text{ equals} \\ \text{an element of } K^* \text{ times the difference of two distinct conjugates of } \beta. \quad (4)$$

Likewise, the second property is equivalent to $\alpha \cdot \beta = (\text{Tr} \alpha) \mu\beta$, where $\mu \in G$. Replacing α by $c\alpha$ for $c = -1/\text{Tr} \alpha$ we may, without loss of generality, assume that $\text{Tr} \alpha = -1$. Then we have

$$\alpha \cdot \beta = -\mu\beta. \quad (5)$$

Also, from $(\text{Tr} \alpha)(\text{Tr} \beta) = \sum_{\sigma, \tau} \sigma\alpha \cdot \tau\beta = \sum_p \text{Tr}(\alpha \cdot \rho\beta) = 1$ we see that we have $\text{Tr} \beta = -1$.

If $\mu = 1$ then from (5) we see that $\alpha = -1$, so that $L = K$. Then we are in case (i) of the theorem, and $p = 2$, if $\text{char } K \neq 2$, and we are in case (ii) of the theorem, with $p = 3$, if $\text{char } K = 2$. Let it henceforth be assumed that $\mu \neq 1$.

We first deal with the case that $\mu^2 = 1$. From (5) we see that $\alpha = -\mu\beta/\beta$, so $\mu\alpha = -\mu^2\beta/\mu\beta = -\beta/\mu\beta = 1/\alpha$. Therefore we have

$$\alpha \cdot \mu\alpha = 1 = -Tr \alpha = \sum_{\sigma \in G} -\sigma\alpha.$$

This shows that $d(\sigma, \mu) = -1$ for all $\sigma \in G$. By (3) and (4) this implies that for each $\sigma \neq 1$ there is a unique $\sigma^* \neq \mu$ such that

$$\alpha \cdot \sigma\beta = \alpha^*\beta - \mu\beta.$$

If $\sigma \neq \tau$ then $\alpha \cdot \sigma\beta \neq \alpha \cdot \tau\beta$, so $\sigma^* \neq \tau^*$. Therefore $\sigma \mapsto \sigma^*$ is a bijective map from $G - \{1\}$ to $G - \{\mu\}$. Hence each $\sigma^* \neq \mu$ occurs exactly once, and again using (3) we see that

$$\alpha \cdot \sigma^* \alpha = \sigma\alpha \quad \text{for } \sigma^* \neq \mu,$$

$$\alpha \cdot \mu\alpha = 1.$$

It follows that the set $\{1\} \cup \{\sigma\alpha : \sigma \in G\}$ is closed under multiplication by α . Since it is also closed under the action of G , we conclude that it is a multiplicative group of order $n + 1$. This implies that $\alpha^{n+1} = 1$, and we also have $\alpha \neq 1$. Hence α is a zero of $X^n + \dots + X + 1$. Since α has degree n over K , the polynomial $X^n + \dots + X + 1$ is irreducible over K . Therefore $n + 1$ is a prime number. This shows that we are in case (i) of the theorem.

For the rest of the proof we assume that $\mu^2 \neq 1$. By (5) we have $d(1, \sigma) = -1$ or 0 according as $\sigma = \mu$ or $\sigma \neq \mu$. Hence from (2) we find that

$$d(\sigma, \sigma) = \begin{cases} -1 & \text{if } \sigma = \mu^{-1}, \\ 0 & \text{if } \sigma \neq \mu^{-1}. \end{cases} \quad (6)$$

Therefore $\alpha \cdot \mu^{-1}\beta$ has a term $-\mu^{-1}\beta$, and from $\mu^{-1} \neq 1$ and (4) we see that there exists $\lambda \in G$ such that

$$\alpha \cdot \mu^{-1}\beta = \lambda\beta - \mu^{-1}\beta, \quad \lambda \neq \mu^{-1}. \quad (7)$$

We shall prove that we have

$$\text{char } K = 2, \quad (8)$$

$$\alpha \cdot \mu\beta = \lambda\mu\beta + \beta, \quad (9)$$

$$\lambda\mu = \mu\lambda. \quad (10)$$

Before we give the proof of these properties we show how they lead to a proof of the theorem.

Applying μ to (7) and comparing the result to (9) we find by (8) and (10) that $\mu\alpha \cdot \beta = \alpha \cdot \mu\beta$, which is the same as

$$\alpha/\beta = \mu(\alpha/\beta). \quad (11)$$

Multiplying (11) and (5) we find by (8) that $\alpha^2 = \mu\alpha$. By induction on k one deduces from this that $\mu^k\alpha = \alpha^{2^k}$ for every nonnegative integer k . If we take for k the order of μ , then we find that $\alpha^{2^k} = \alpha$, which by the theory of finite fields means that α is algebraic of degree dividing k over the prime field \mathbf{F}_2 of K . Therefore we have $k = \text{order } \mu \leq \#G = [L : K] = [K(\alpha) : K] \leq k$. We must have equality everywhere, so μ generates G . By (11), this implies that $\alpha/\beta \in K$, then since $\text{Tr } \alpha = \text{Tr } \beta = -1$ we have in fact $\alpha = \beta$. Thus from (1) and (3) we see that

$$d(\sigma, \tau) = d(\tau, \sigma) \quad \text{for all } \sigma, \tau \in G. \quad (12)$$

Let now ζ be a zero of $X^2 - \alpha X + 1$ in some algebraic extension of L , so that $\zeta + \zeta^{-1} = \alpha$. Since α is algebraic over \mathbf{F}_2 , the same is true for ζ , so the multiplicative order of ζ is finite and odd; let it be $2m + 1$. For each integer i , write $\gamma_i = \zeta^i + \zeta^{-i}$, so that $\gamma_0 = 0$ and $\gamma_1 = \alpha$. We have $\gamma_i = \gamma_j$ if and only if the zeroes ζ^i, ζ^{-i} of $X^2 - \gamma_i X + 1$ coincide with the zeroes ζ^j, ζ^{-j} of $X^2 - \gamma_j X + 1$, if and only if $i \equiv \pm j \pmod{2m + 1}$. Hence there are exactly m different nonzero elements among the γ_i , namely $\gamma_1, \gamma_2, \dots, \gamma_m$. Each of the n conjugates of α is of the form $\mu^j\alpha = \alpha^{2^j} = \zeta^{2^j} + \zeta^{-2^j} = \gamma_{2^j}$ for some integer j , and therefore occurs among the γ_i . This implies that $n \leq m$. We show that $n = m$ by proving that, conversely, every nonzero γ_i is a conjugate of α . This is done by induction on i . We have $\gamma_1 = \alpha$ and $\gamma_2 = \mu\alpha$, so it suffices to take $3 \leq i \leq m$. We have

$$\alpha \cdot \gamma_{i-2} = (\zeta + \zeta^{-1}) \cdot (\zeta^{i-2} + \zeta^{2-i}) = \gamma_{i-1} + \gamma_{i-3},$$

where by the induction hypothesis each of $\gamma_{i-2}, \gamma_{i-1}$ is conjugate to α , and γ_{i-3} is either conjugate to α or equal to zero. Thus when $\alpha \cdot \gamma_{i-2}$ is expressed in the normal basis $(\sigma\alpha)_{\sigma \in G}$, then γ_{i-1} occurs with a coefficient 1. By (12), this implies that when $\alpha \cdot \gamma_{i-1}$ is expressed in the same basis, γ_{i-2} likewise occurs with a coefficient 1. Hence from (4) (with $\beta = \alpha$) and $\gamma_{i-1} \neq \alpha$ we see that $\alpha \cdot \gamma_{i-1}$ is equal to the sum of γ_{i-2} and some other conjugate of α . But since we have $\alpha \cdot \gamma_{i-1} = \gamma_{i-2} + \gamma_i$, that other conjugate of α must be γ_i . This completes the inductive proof that all nonzero γ_i are conjugate to α and that $n = m$.

From the fact that each nonzero γ_i equals a conjugate $\mu^j\alpha$ of α it follows that for each integer i that is not divisible by $2m + 1$ there is an integer j such that $i \equiv \pm 2^j \pmod{2m + 1}$. In particular, every integer i that is not divisible by $2m + 1$ is relatively prime to $2m + 1$, so $2m + 1$ is a prime number. Thus with $p = 2m + 1$ we see that all assertions of (ii) have been proved.

It remains to prove (8), (9), and (10). The hypotheses are that α gives rise to an optimal normal basis with $\text{Tr } \alpha = -1$, that β gives rise to the corresponding dual basis, that μ and λ satisfy (5) and (7), and that $\mu^2 \neq 1$. The main technique of the proof is to use the obvious identity $\rho\alpha \cdot (\sigma\alpha \cdot \tau\beta) = \sigma\alpha \cdot (\rho\alpha \cdot \tau\beta)$ for several choices of $\rho, \sigma, \tau \in G$.

From (5) we see that

$$\mu\alpha \cdot (\alpha \cdot \beta) = \mu\alpha \cdot (-\mu\beta) = -\mu(\alpha \cdot \beta) = \mu^2\beta,$$

and from (7) we obtain

$$\begin{aligned}\alpha \cdot (\mu\alpha \cdot \beta) &= \alpha \cdot \mu(\alpha \cdot \mu^{-1}\beta) = \\ \alpha \cdot \mu(\lambda\beta - \mu^{-1}\beta) &= \alpha \cdot \mu\lambda\beta - \alpha \cdot \beta = \alpha \cdot \mu\lambda\beta + \mu\beta.\end{aligned}$$

Therefore we have

$$\alpha \cdot \mu\lambda\beta = \mu^2\beta - \mu\beta. \quad (13)$$

From $\mu \neq \mu^{-1}$ and (6) we see that $d(\mu, \mu) = 0$, so (13) implies that

$$\lambda \neq 1. \quad (14)$$

By (2) and (7) we have $d(\lambda^{-1}\mu^{-1}, \lambda^{-1}) = d(\mu^{-1}, \lambda) = 1$. Also, $\lambda^{-1}\mu^{-1} \neq 1$ by (7), so from (4) we obtain

$$\alpha \cdot \lambda^{-1}\mu^{-1}\beta = \lambda^{-1}\beta - \kappa\beta \quad \text{for some } \kappa \in G, \kappa \neq \lambda^{-1}. \quad (15)$$

We have $\lambda^{-1}\mu^{-1} \neq \mu^{-1}$ by (14), so (6) gives

$$\kappa \neq \lambda^{-1}\mu^{-1}. \quad (16)$$

From (7) and (15) we obtain

$$\lambda\alpha \cdot (\alpha \cdot \mu^{-1}\beta) = \lambda\alpha \cdot (\lambda\beta - \mu^{-1}\beta) = \lambda(\alpha \cdot \beta - \alpha \cdot \lambda^{-1}\mu^{-1}\beta) = -\lambda\mu\beta - \beta + \lambda\kappa\beta,$$

and (15) gives

$$\alpha \cdot (\lambda\alpha \cdot \mu^{-1}\beta) = \alpha \cdot \lambda(\alpha \cdot \lambda^{-1}\mu^{-1}\beta) = \alpha \cdot (\beta - \lambda\kappa\beta) = -\mu\beta - \alpha \cdot \lambda\kappa\beta.$$

Therefore we have

$$\alpha \cdot \lambda\kappa\beta = -\mu\beta + \lambda\mu\beta + \beta - \lambda\kappa\beta. \quad (17)$$

By (16) we have $\lambda\kappa \neq \mu^{-1}$, so by (6) the term $-\lambda\kappa\beta$ does not appear in $\alpha \cdot \lambda\kappa\beta$. It must therefore be cancelled by one of the other terms of (17). We have $\lambda\kappa \neq 1$ by (15), so it is not cancelled by β . Therefore it is cancelled either by $\lambda\mu\beta$ or by $-\mu\beta$. We shall derive a contradiction from the hypothesis that it is cancelled by $\lambda\mu\beta$; this will prove that it is cancelled by $-\mu\beta$.

Suppose therefore that $\lambda\kappa\beta = \lambda\mu\beta$. Then we have $\kappa = \mu$, so (17) gives

$$\alpha \cdot \lambda\mu\beta = \beta - \mu\beta. \quad (18)$$

By (2) and (18) we have $d(\mu^{-1}\lambda\mu, \mu^{-1}) = d(\lambda\mu, \mu) = -1$, and since by (14) we have $\mu^{-1}\lambda\mu \neq 1$ it follows that

$$\alpha \cdot \mu^{-1} \lambda \mu \beta = \nu \beta - \mu^{-1} \beta, \quad \text{for some } \nu \in G, \nu \neq \mu^{-1}. \quad (19)$$

Now we have on the one hand

$$\alpha \cdot (\mu \alpha \cdot \lambda \mu \beta) = \alpha \cdot \mu (\alpha \cdot \mu^{-1} \lambda \mu \beta) = \alpha \cdot \mu (\nu \beta - \mu^{-1} \beta) = \alpha \cdot \mu \nu \beta + \mu \beta,$$

by (19), and on the other hand

$$\mu \alpha \cdot (\alpha \cdot \lambda \mu \beta) = \mu \alpha \cdot (\beta - \mu \beta) = \mu (\alpha \cdot \mu^{-1} \beta - \alpha \cdot \beta) = \mu \lambda \beta - \beta + \mu^2 \beta,$$

by (18) and (7). This leads to

$$\alpha \cdot \mu \nu \beta = \mu \lambda \beta - \beta + \mu^2 \beta - \mu \beta.$$

Since 1, μ , μ^2 are pairwise distinct, the term $\mu \lambda \beta$ must be cancelled by one of the other three terms. Therefore $\mu \lambda \in \{1, \mu, \mu^2\}$, so λ belongs to the subgroup generated by μ , and therefore $\lambda \mu = \mu \lambda$. But then (13) and (18) give $\mu^2 = 1$, contradicting our hypothesis.

We conclude that the term $\lambda \kappa \beta$ in (17) is cancelled by $-\mu \beta$, that is, $-\mu \beta - \lambda \kappa \beta = 0$. This implies that $\mu = \lambda \kappa$ and $2\mu \beta = 0$. This proves (8), and (17) gives (9). From (15) we obtain

$$\alpha \cdot \lambda^{-1} \mu^{-1} \beta = \lambda^{-1} \beta + \lambda^{-1} \mu \beta. \quad (20)$$

Combining this with (2) we find that $d(\mu^{-2}, \mu^{-1} \lambda) = d(\lambda^{-1} \mu^{-1}, \lambda^{-1} \mu) = 1$, and since $\mu^{-2} \neq 1$ this gives

$$\alpha \cdot \mu^{-2} \beta = \mu^{-1} \lambda \beta + \nu \beta \quad \text{for some } \nu \in G.$$

This implies that

$$\lambda \alpha \cdot (\mu \alpha \cdot \mu^{-1} \beta) = \lambda \alpha \cdot \mu (\alpha \cdot \mu^{-2} \beta) = \lambda \alpha \cdot \mu (\mu^{-1} \lambda \beta + \nu \beta) = \lambda \mu \beta + \lambda \alpha \cdot \mu \nu \beta,$$

whereas (20) and (7) lead to

$$\begin{aligned} \mu \alpha \cdot (\lambda \alpha \cdot \mu^{-1} \beta) &= \mu \alpha \cdot \lambda (\alpha \cdot \lambda^{-1} \mu^{-1} \beta) = \mu \alpha \cdot \lambda (\lambda^{-1} \beta + \lambda^{-1} \mu \beta) \\ &= \mu (\alpha \cdot \mu^{-1} \beta + \alpha \cdot \beta) = \mu (\lambda \beta + \mu^{-1} \beta + \mu \beta) = \mu \lambda \beta + \beta - \mu^2 \beta. \end{aligned}$$

Therefore we have

$$\lambda \alpha \cdot \mu \nu \beta = \lambda \mu \beta + \mu \lambda \beta + \beta + \mu^2 \beta.$$

This is conjugate to $\alpha \cdot \lambda^{-1} \mu \nu \beta$, so two terms on the right must cancel. From $1 \notin \{\lambda \mu, \mu \lambda, \mu^2\}$ it follows that β does not cancel any of the other terms. Hence two of $\lambda \mu \beta$, $\mu \lambda \beta$, $\mu^2 \beta$ must cancel, so that we have $\lambda \mu = \mu \lambda$, or $\mu \lambda = \mu^2$, or $\mu^2 = \lambda \mu$. In each of the three cases λ and μ commute. This proves (10), which completes the proof of the theorem.

Acknowledgments

Shuhong Gao acknowledges his Ph.D. supervisor Ronald C. Mullin for his help and continuous encouragement; he received partial financial assistance from NSERC grant # OGP0003071. Hendrik Lenstra, Jr. is grateful to the Institute for Advanced Study in Princeton, the Institute for Computer Research at the University of Waterloo, and the Université de Franche-Comté in Besançon for providing hospitality and support while this work was being done; he was supported by NSF under Grant No. DMS 90-02939.

References

- 1 R C Mullin, A characterization of the extremal distributions of optimal normal bases, *Proc. Marshall Hall Memorial Conference*, Burlington, Vermont, 1990, to appear
- 2 R C Mullin, I M Onyszchuk, S A Vanstone, and R M Wilson, Optimal normal bases in $GF(p^n)$, *Discrete Appl. Math.* Vol 22 (1988/89), pp 149-161