HEURISTICS ON CLASS GROUPS OF NUMBER FIELDS
by

H. COHEN and H. W. LENSTRA, Jr.

§1. - Motivations

The motivation for this work came from the desire to understand heuristically
(since proofs seem out of reach at present) a number of experimental observations
about class groups of number fields, and in particular imaginary and real quadratic
fields. In turn the heuristic explanations that we obtain may help to find the way

towards a proof.

Three of these observations are as follows :

A/ The odd part of the class group of an imaginary quadratic field seems to be

quite rarely non cyclic.

y If p is a small odd prime, the proportion of imaginary quadratic fields whose
class number is divisible by p seems to be significantly greater than 1/p (for

instance 43 % for p=3, 23.5% for p=5).

Cc/ 1t seems that a definite non zero proportion of real quadratic fields of prime
discriminant (close to 76 %) has class number 1, although it is not even known

whether there are infinitely many.

The main idea, due to the second author, is that the scarcity of noncyclic groups
can be attributed to the fact that they have many automorphisms. This naturally
leads to the heuristic assumption that isomorphism classes G of abelian groups
should be weighted with a weight proportional to 1/# Aut G. This is a very natural
and common weighting factor, and it is the purpose of this paper to show that the

assumption above, plus another one to take into account the units, is sufficient to
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give very satisfactory heuristic answers of quantitative type to most natural ques -
tions about class groups. For example we find that the class number of an imagi-
nary quadratic field should be divisible by 3 with probability close to 43.987 %,
and that the proportion of real quadratic fields with class number one (having prime

discriminant) should be close to 75.446 % .

To distingu:sh clearly between theorem and conjectural statements, this paper

can be considered as having two perts. In the first part (§2 to § 7) we give theorems

about finite modules over certain Dedekind domains The second part (§8 to §10)
explaine in detail the heuristic assumptions that we make, and gives a large sample
of conjectures which follow from these heuristic assumptions using the theory de-

veloped 1n the first part

§ 2. - Notations

In what follows, A will be the ring of integers of a number field. It will be
seen that more general Dedekind domains can be used, and also direct products of
such, but for simplicity we will assume that A 1s as above. The special case
A = Z 18 of particular importance. We denote by £ the set of non zero prime 1deals
of A, and1if pcf , the norm of p 1s by defimition Np=# (A/p). The letter p

will be used only for elements of £ .

1f Gl and G2 are A -modules, we write Gls G2 to mean that G1 1s a sub-

module of G2 .
If peﬂ" and G 18 a finite A -module, then we write r (G) for the p-rank

of G, 1.e. the dimension of G/p G as an A/p-vector space,

k will be a non negative integer or « ., If k ;!eo and G 1s a finite A -module,
Bk(G) (or sﬁ(G) when the ring A must be specified) will be the number of sur-

jective A -homomorphisms from Ak to G

If G 1s a finite A -module we define the k -weight w, (G) of G, and the

k(
weight w(G) of G as follows

-k -
w, (G) = s (G) (# G (# Aut 67t
w(G) = w_(G) = (# Aut G)'l
where Aut G = Aut, G 15 the group of A -automorphisms of G.

A
For pgP we set nk(P)= (1-Np™), nm(p)z T-[ (1-Np7Y .

Il '
1=12k 1=
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If 0<b=a with a, b integers we define

a
Lpdy= a1/, (p) (o))
and if a=0 but b<0 or b>a, we set [E]p:o.

Let QA(S) be the Dedekind zeta function of the ring A . Then we set

TT ¢ o co=xTT ¢ui

C. = X l
25isk 2<i

k

A —

where y = N is the residue at s=1 of the function gA(s) (see also section 7}.

We will need the well known notion which generalises to finite A-modules G
the notion of cardinality for finite Z-modules. This has several names in the li-
terature (1St Fitting ideal [10], 0th determinantial ideal [2] for example).
We will call it the A-cardinal of G, and write XA(G) or x(G) asin [12]. It is
an ideal of A which can be defined as follows : every finite A -module G can be

written in a non canonical way
G =@ A/ai (czi ideals in A) .
i

Then we set XA(G)= , ' e, and this is canonical and does not depend on the de-
1
composition. In the case A = Z , XZ(G)= nZ where n = # G . In the general

case, # G = N(XA(G))-
We shall use the notations

5 as an abbreviation for ¥
Gla) G up to A-isomorphism, XA(G)= e
5 as an abbreviation for 3
Gla)» @, G up to A—lilsomorphism, xp(@®)=a.
®eHom , (A%, G) .

We define the k-weight wk(a) of an integral ideal o as follows :

ard we set w(e)=w_ (a).

The letter u will be used to denote a non negative integer, and it will be in our

applications the A-rank of a certain group of units (see section 8).
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§ 3. - Fundamental properties of the functions wk(G) and wk(a)

We first show :

PROPOSITION 3.1.- Let J be a projective A-module of rank k and G a finite

A-module. Set XA(G)=a

i) The number of surjective A-homomorphisms from J to G is equal to sk(G)

i) sk(G)=(Na)k L om ) /ny . (G)(p)

=
~ 2

I
b

—

w, (G)= (71 e /nk_r (G)(p)) (# Aut G)'1
ple b

iily #{H=<J: J/H~G}= (Na)k wk(G)

iv) lim w, {G)= w(G).
k++m k

Proof. - i) By inverting all the prime ideals which are not in a , one easily sees
that G is unchanged and A becomes a semilocal Dedekind ring and in particular

is a principal ideal ring. In that case i) is trivial since J ==-Ak as an A-module,

ii) It is easy to check that sk(G)= ﬁ sk(G ) where G is the p-component
of G (note that G is non trivial if gng only ipf p[ a ). Hche we may assume
that G is a p -group. Then we know (e.g. see [1],% 3, prop. 11) that if
Pe HomA(Ak, G), @ is surjective if and only if Ep. is surjective, where

- k . .
pe HomA/p aspy ., G/p G) is obtained by reduction mod. p . Hence it follows
that :

o (G)= 2P (/b ) # (pe Hom , (45, 6) /5 = 0] .

A
If we set r= rp (G), then 8 /p (G/p G) is equal to the number of kxr matrices of
rank r over A/p , i.e, to the number of A/p -linearly independent r-tuples
k
(vl, vees vr) , where vie (A/p) . Since a vector space of dimension i over A/p

has (Np)i elements, we obtain :

A/p k i kr

8 G/p G) = (Np -Np)=(N

w T(G/pG) O’Silr p )= (Np) T (p) /)
On the other hand =0 vaAk » (v)ep G, and so

i
G k_(Nu)k

G/p e (Np)kr

# {cpeHomA(Ak, G)/5=0}=(%pc)k=(§

and proposition 3.1 ii) follows,
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111) Follows from the fact that if M and N are two A-modules and
?y CPZEHomA(M, N) are surjective then
Ker @, = Ker @, ® JogAut N such that ¢, =g «@, .

Finally 1v) 1s a trivial consequence of 11)

PROPOSITION 3,2.- For kl,kz;:’m and G a finite A-module

k
2
5 (@ =z s (G)s (G/G)(#G,)
kytk, G=G k10 Tk, 1 1
k +k2 k1 k2
Proof - Write A as A "x A It 1s clear that
kitk, kg
itk (&) E Z G?#{“PG HornA(A , &) /@ surjective, ¢(A 7)= Gl}
ky

kq+
=X z k # {®eHom (Al ,G) /@ surjective, 9| x,=0, ]
A L

G;SG % €Hom(A 1,G1)
cp1 surjective

It will thus suffice to prove the following lemma

LEMMA 3 3.- If CPIE HomA(:l, Gl), Cpl surjective, then
k1+k2 kz
#{pe HomA(A ,G) /9 surjective, ©® ’Aklz cp1}= skZ(G/Gl) (# Gl)
k +k2
Proof - Put E 1{CPE Hom , (A , G)/® surjective, Cp‘Aklz Cpl} and

— 2 —
F = {9,€ HomA(A ) G/Gl) ., surjective} . K
Then 1t 18 not difficult to check that the natural map obtained by restricting to A
and then reducing mod. G1 15 indeed a map from E to F . Furthermore, by
writmg down explicitly a set of representatives :n G of G/G1 , one can also

k
easily see that every cPzeF has exactly (# Gl) 2 preumages. Hence
k2
FE=FF . (#G) ",

thus proving lemma 3.3 and proposition 3.2,

GCOROLLARY 3.4.- If k #

-k
. (G) = (#Aut G)_l by (#’G/Gl) Lt Aut Gl)(;p’!AutG/Gl)w (Gl)wk (G/Gl)

172 GISG k1 2

e

Proof. - For kzifw this 1s just a restatement of proposition 3,2, and the case

ky=® follows by letting k, - +® and using proposition 3.1, 1v).



38

The following theorem, although not difficult to prove, will be very important

in the sequel :

THEOREM 3.5.- Let K and C be finite A-modules., Then for all k

z w (G # (G <G:G;~K and G/G1°‘C}=wk(K)wk(C)
G up to A-isomorphism
Proof. - We consider only k finite since the case k == follows by making k+e .
We shall count the number of pairs (H,J) of A-modules such that HcC JCAk ,
Ak/J”C » J/H =K . Note that H and J are necessarily projective modules of
rank k.

k
If we write m = #K and n= # X # C, then the number of J is (n/m) wk(C)
.. . k
{proposition 3.1 (iii)), while for a given J the number of H is equal to m wk(K)
by the same proposition. Hence the number of pairs (H,J) as above is equal to

k
n wk(K) wk(C) .

Now let H be fixed and set G = Ak/H . Then every submodule of G can be
written uniquely in the form J/H for some J suchthat HCJ CAk , hence the num -

ber of J is equal to
;;’é{clsc; G, ~K and c./cla-c}

where we have set GI= J/H .

Finally, using again proposition 3.1, we see that for a given G the number of H
such that Ak/H&G is equal to e wk(G), and Theorem 3.5 follows, (Note that
m = N(XA(K)) , (n/m)= N()(A(C)) and that if 0 G+ G- G/G1 -+ 0 is an exact

sequence then XA(G) = XA(GI) XA(G/GI) )

THEOREM 3.6.- Let a be a non zero ideal of A

i} For any kZ;!aa :
(o) = ? (Nb)_kzwk (b)wk (a bhl) .
2 Pbla 1

w.
k. +k >

1
ii} For any k, b?a wk(b)= (No)wk+1(a). In particular

% wib)=(Na) wla) .
bla
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Proof. - 1) By corollary 3.4 we have, setting b= XA(G/Gl) .

-k
W g @)= 2w (G)= ¢ (Nb) 1 o (#Aut C) w_ (C)x

172 Gle) 172 bla C(b) 2

x 3 1(# Aut K) W (K) = w(c;);#{c;lss G,~K and G/Glsc}

K(ab™) 1 G(a) 1

so using Theorem 3.5 with k=o -

-k
w, ()= (Nb) 1 v w (C) T . w (K)
kit bla c® 2 k@bl K1

-k
=% (Nb) 2w (b)w -1
bla 2 1

and (1) follows after interchanging ky and kp .
For (11) we apply (1) with k.= k, k2= 1. Note that sl(G);! 0 1f and only 1f
*
G=~A/a, where o 18 a non zeroideal of A, and sl(A/a)z #(AJa) = # Aut(A/a).
Since XA(A/a)= a and that A/a = A/b if and only 1f a=b , 1t easy follows

that
wl(u)= 1/Na

and 11) follows.

This theorem 18 best expressed in terms of Dirichlet series as follows

COROLLARY 3.7.~ (1) Let peP . Then for Re s> -1

T 3-8 -1

z w, (5) (Np) > %= (1-np7"%)

o= I!SJSlk

(1) If we set gk,A(s)z Ck(s): by wk(a)(Na)_s for Re s>0, then

¢ aE)=T | ¢, (st
k, A 151k A

where gA(s) 15 the Dedekind zeta function of A .

Proof. - Clear by induction on k .

Note that theorem 3.6 (1) follows from the identity

¢ (s) = ¢ (s+x,) (s) .
k1+k2 ke 2 Ckz 5)



COROLLARY 3.8.- Forevery k=1 :

(a --1\%‘; ET [a+01:-1]p and in particular
pile .

w(a)= ! 1 (n,Gn™" . ()
p la

: . a :
(See section 2 for notations ; p || @ means that q is the exact exponent of p

in the prime ideal decomposition of a .)

Proof. - We use induction on k., For k=1, wl(a)=1/No as we have seen so the
formula is true. Assume that it is true for some k=1 and let us prove it for k+1 .
First note that both sides of the formula are multiplicative functions of a , hence it
suffices to prove it for g =p o . Now by theorem 3.6 (ii) and our induction hypo-
thesis :

a. -a -8 rB+k~1
w ()= (N r (N L ]

kP p) os;gsa( b B P
Now the following lemma is well known and straightforward to prove (it is the
g-analogue of the formula

+k +k-1 +k 1 -
(B (B )+ (B for binomial coefficients, with q=(Nyp) ")

LEMMA 3.9,- Btk Btk-1 B B +tk-1
P dy =07y e J N A

Hence

6%= 0z (7] Pl )=(Np)'°‘[°”k1p=(Np)'°‘[““‘J

w
k+1 0= psq P k a "y
and so corollary 3.8 follows by induction and then letting k+» since
. a+k-1 -1
lim [ 1 = Mo ) .
ko p
(*) In the case A=2Z, this last formula was proved by a completely different

method by P. Hall [8].
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§ 4. - Some consequences of theorems 3.5 and 3.6

In this section we collect a number of almost direct consequences of theorems 3.5

and 3.6 which will be useful to us later on.

PROPOSITION 4.1.- Let a,b be (non zero) ideals of A, such that bja , and

K a finite A-module such that b= XA(K) . Then for all k :

(i) w, (G)# {GyS G : G, ~K] = w-k(ub'l) w (K)

%
G{e)
(ii)y = wk(G);{! {GISG : (;,/G1 =K 1= wk(a b'l) wk(K)

G(a)
(iii) G%u) w (G)# {Gy=G i x, (Gy)=b )= w, (a bl w, (b) .

Proof. - Clear from theorem 3.5 by summing over suitable isomorphism classes.

We now want to generalize theorems 3.5 and its consequences to the case where
G is replaced by G/Im ¢ , where o eHomA(Au, G). For this we need a new defi-

nition :

DEFINITION 4.2, - For u,k arbitrary and ¢ non zero ideal, we set :

¥ (o) W]( w ( g] 3 )
= - k,u
, (n) G) G)# Aut G and ) (s) z "‘"'—‘-"“'( a)s .

Note that Wk,u= wu,k and that w_ u= w, o and similarly for gk,u .

The first result that we need is the following :

PROPOSITION 4.3.- Let a,b be (non zero) ideals of A with bla, and K 2
finite A-module svch that XA(K)= b . Then

G(Z )Wk(g) # {chHomA(A“, G):G/Im p=K} = (N(ab'l))u w u(a b'l)wk(K) .
a 3

Proof. - The left hand side clearly equals

~1, and G/G1=- K}

) s (L) ¥ w{G#{G,=<G:G
L@t Gla) F ! 1
= 3 (N(ab'l))u #Aut L w (L) w, (L) w, (K) by theorem 3.5
L(ab-l) u k k

~1 -1
= (N(ab ))u AT (ab 7} wk(K) , and the proposition is proved.
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COROLLARY 4.4.- Let a,b,c

be (non_zero) ideals of A with be¢ Ia
K , C finite A -modules such that XA(K)= b, XA(C)z ¢ . Then

T w (G)#{G,=G/Imy : G,~K and (G/Im¢)/G, ~C]}
G, K 1 1o 2ne 1

-1 -1u -1 -1
=N(a b ¢ ") Wk,u("b ¢

and

) w, (C) w, (K).
Proof. - The left hand side clearly equals

u
L(g c);é-‘{GISL : G,~K and L/G1 C}G%‘a)wk(G)#{cpe Hom(A ', G): (G/Im @)>~L}
= . ~ - -1 -1u -1 -1
_L(ac);g{clsL.Gl K and L/G>~C}N(@b "¢ ) w G(ab e ) w, (L)

by proposition 4,3, and the result follows from theorem 3.5.
PROPOSITION 4.5.- Let a,b

be (non zero) ideals of A with bja, and K a
finite A-module such that XA(K) =b. Then

W3, O [G=5C/mp : G ~K] = N(ao™ )% w (067) w (&)
u
(ii) G(a;z . wk(G)#'{GIS G/Im ¢ : (G/Im CO)/G1=-K} = Ne b‘l)“ w,_(a b’l) w, (K)
’ Tu
(i) ¥

w (G F {G,SG/m @ :x,(G,)=b}=Nab ) w (ab 1) w (b) .
Gla), o, * 1 AT k k

THEOREM 4.6.- We have for Re s>0 :

e a® Gl g lec s

(Na)® CGeler) g (e

(s)= 2
a

€, ()
=TT A

1sj=k Salmtetd)
Proofs. - We prove proposition 4.5 (i) and theorem 4.6 simultanecusly.

If we sum the formula in corollary 4.4 over C(c) and then over all ¢a b,
it is clear that we obtain

7 (G A {G,SG/Im o : G, ~K} = flap™ !
G(a),q’uwk A e 1 THT = A8 w ()

-1u -1
where fla)= 3 N(ae¢
(a) oTa ( ) Wk,u(” yw, (c)

Now the important point is that f(a b_l) depends only on the ideal ab

1 . Hence if
we take K = {0} the trivial A-module, we have Wk(K): 1 and XA(K) =b=A
hence :

= = u -1 -1 -1
f(a)c‘;(az)’cplr'k(G)‘(Nu) Wk(a), so flab )= N(ab )u wk(ab )

and proposition 4.5 (i) follows.



Now we have just proven the identity

fa)= x Nee )% w

E (ac'l)wk(c)=(Na)“wk(a) )

k,u
In terms of Dirichlet series, this gives :

Ck, u(s-u) Ck(s) = Ck(s'u) ’
and theorem 4, 6 follows immediately.

The proofs of (ii}) and (iii) in proposition 4.5 are now trivial and left to the reader.

§5, - Some u-probabilistics and u-averages

In the beginning of this section, f{ will be a complex-valued function defined on

igomorphism classes of finite A-modules.

DEFINITION 5.1, - We set
Wk(f;a)= z Wk(G) Gy, gk(f;s)= X Wk(f;u}(NQ)_s
Ga) o

and we define the (k,u)-average M, (f) of f as follows :

k,u
z (Nay®
Na Sx( ®) G(a)z, cpuf(G/Im ?) wk(G)

Mk u(f) =1lim -~
’ xse L (Na) b w, (G)
NQ_SX Ga),Cpu k

If k=« we will simply speak of u-average of f and write Mu(f) instead of

M (D).

o, U

Remarks. - 1) The (k,u)-average of f may not exist if the expression after the
Remarks

1im does not tend to a limit when x 9 « .

2) The denominator in the definition of M (f) is equalto

k,u

Z w, (o
Nank()

but we hawve written it in the above manner to make it clear that we are dealing with

an average {(i.e. the (k,u)-average of a function which is constant is that constant}.

3) When { is the characteristic function of a property P (i.e. f=1 if P is
¢rue, f=0 if P is false) we will speak of (k,u)-probability or u-~-probability of

P instead of (k,u)-average or u-average of f.

4) If u=0 and k== we will speak of the average of f, or the probability of

P . It should be noted that this is only a finitely additive measure, hence the word
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probability should be taken to mean exactly that in our context.

The aim of this section 18 to show how, 1n many cases, one can easily compute

(k,u) -averages and probabilities,

The most direct way 18 by using the following Tauberian theorem :

LEMMA 5.2.- If D(s)= I cfa) (Na)™® converges for Re s>0 andif D(s)-C/s
a

can be analytically continued for Re s=0 then if the c(a) are non negative we

have

57 cla) ~C Logx as x- += .,
[ 4

Note that this follows from a classical Tauberian theorem (see e.g. [15]) by
writing
5-1

-8 -
§ c(a)Ng =n§1n(N§=nc(a)) n

and then using partial summation,

Applying this to wk(a)= c(a) and using corollary 3.7 we obtain

LEMMA 5.3, -
5 T Wk(a)NCk Logx (x- +w)
Nas=x

(see notations for C.)-

In fact one can obtain a more precise estimate, but this asymptotic equality will

be sufficient for us since we only want a limat.

PROPOSITION 5.4. - Write

gk(f ; 84+u) gk(s)/gk(s+u)= E ak’u(f ; a)(ch)'s .

Then
Z a  (f;a
Ng<x X»u )
Mk u(f)= lim
! b XY
Ck Log x

Proof, - We have

L #(G/Ime (G)= r f(L) % G u . o1,
(G/mm @) w, (G) b‘f ()G(a) w,(G) # { ¥¢ Hom (A", G) : G/Im =L}

G(a),cpu a L(b
_ -1lu -1
= % £ £(L)N(ab
bla L(v) " ¥ ule b ) ()

by proposition 4.3

_ -lu -1
_b?a N(ab ) Wk,u(ab )wk(f,b) .



Hence

(s)

¥ (No)® ™% = {(G/Imeo)w (G)= (f ; s+u)
a Ga),cpu k

Ck, u Ck

= gk(s) gk(f; s+u)/gk(s+u)= o a u(f;a)(Na)_S
a 2

where we have used theorem 4.6. Hence

E Na)t r HG/me)w (G)= T a (fia)
Napsx G(u),cpu Naesx ’

and the proposition follows from remark 2 and lemma 5. 3.

COROLLARY 5.5.~ Assume that f is a non-nepative valued function on the set of

ig_isomorphism classes of finite A-modules. Assume further that gk(f ; 8)
converges for Re s> 0 and that gk(f ; 8)-C/s can be analytically continued to

Re s=0 . Then :

=

or uf0, M (=g (f5u) C/C . =¢(f;u)/¢(a)

|

=

1

or u=0, Mk,o(f) = c/ck = sli—l;no (gk(f ; s)/gk(s)) .

Proof. - From proposition 5.4 it is clear that Z (f ;a) Na -8 converges
for Re 8>0 and is asymptotic to (gk(f ;u) /gk(u))x C /s if u>0 andto C/s
if u= 0.

Since gk(u) = Cu+k/cu the corollary follows from proposition 5.4 and our

Tauberian lemma 5.2,

For our applications, we need to be able to restrict our attention to A-modules
baving only certain p-components. More precisely, in what follows we let PICP

and we call an A-module G a Pl -A-module if G= GP , with an evident notation

G = @® G ). Then in a straightforward way one can define the notion of (k,u) -
Py e P
average of a function f restricted to 631 -A-modules. The following proposition is

easy and left to the reader :

PROPOSITION 5. 6.- The (k,u)-average of a function f restricted to Py-A-mo-

dules is the same as the (k,u) -average of the function f oPl defined by

foPl(G) = f(GPI)

Essentially this proposition says that the p-components of a finite A-module

behave independently.
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The last information we need about Pl -A-modules 1s the following °

PROPOSITION 5.7.- With the notations of proposition 5.6, we have :

w(feP sa) =w(f5a) w(a,)

-1
where al 18 the Pl-part of a , and a2=aa1 , and consequently

-1

¢ (£oP ;s>=(z w (fi0)(Na) ") T | [ @-(np)7%)
ket X PR, 1)<k

pla=per,

Proof. - Set P,=P-P Then we clearly have a=g 0, with o being the § -part

1° 172

of a, and
fo H = =
wk( R i0) G(Za wk(G) f(GP ) Gz f(Gl) “’k(G1’ G):( wk(c;z)
) 1 Gylay) ACPY,
and the first formula follows. The second one 18 a formal consequence of the defi-

nition of gk(f ; 8) and of corollary 3,7.

We can now give examples of u-probabilities and u-averages. For simplieaty
we assume k=o , but of course all the results can be obtained also for finite k .
The proofs, being in general straightforward applications of the results of this

section, will be omitted or only sketched,

It should be recalled at this point that all the constants like Cm v Ny (p) etc...
that have been introduced earlier, are relative to the domain A and should more

A
properly be written Cf » Ny (p), ete... .

Example 5.8. - Let a¢R . Then for u>0 the u-average of (# G)(1 18 equal to

| ¢ G+u-a).

M (#6)")=(c/c,) |
=1

In particular, 1f w22 the u-average of #G 18 gA(u) .

Example 5.9.- (1) Let L be a Pl—group with # L= 4 . Then the u-probability

that the Pl—part of an A-module be 1somorphic to L 18 equal to .

-u -1 77
Lo (FAauwt Ly T ]| (n (/0 -
per,
(11) Assume that plq = pePl . Then the u-probability that the Pl -part of a group
has A-cardinality equal to g 18 equal to

(No)™Pwie) TT (g, (o) /(b)) .
pefy
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Example 5.10. - The u-probability that Gp # 0 is equal to
L-ng () /n () -

Example 5.11. - The u-probability that the £_-part of an A-module G is A~cy-

1

clic (i.e. GP ~A/a) is equal to
1

1yt N, O
per, (1-(vp) -yl Ml

In particular for u=0 and P1= # this is equal to

1y CA(2) €, (3)/ (¢, 06) €2

(recall that N is the residue at s=1 of gA(s)),

Example 5.12. - L.et ¢ be an ideal. The u-average of the number of element x in

a finite A-module whose annihilator is q equals (Nq)-u .

For example if A = Z , the u-average of the number of elements of order a=1

. - -u
in an abelian group 18 a

Proof. - Simply note that the number of xe¢ G such that Ann x=a is equalto
cp(a);,é’{Glsc 1 Gy = Ale}

where @(a)= # @a/a)* .

k
E}_a_w—w" - Call an A-module G elementary if for all p , Gp*(A/p) P
for some k=0, i.e. ifno A/p% occurin G with g>1. Then:
(i) The 0-probability that a finite A-module is elementary equals
T -1
(1 Call))
k #1, 4 (mod. 5)
k 22
(ii) The 1-probability that a finite A-module is elementary equals
y ~1
(] Calkn) ™
k#2, 3 (mod. 5)
k=2
(Example 5.13, (i) was suggested to us by D, Zagier.)

Proof. - Straightforwazrd, using the easily proven fact that

# Aut (A/p)m = (Np)m nm(p) and the two identities of Rogers-Ramanujan.



48

§ 6. - u-probabilities and u-averages involving p~-ranks

In this section we show how to obtain information on the distribution of p-ranks

of finite A-modules, where p¢cf is fixed. The first theorem is as follows :

THEOREM 6.1.- Let a be an idealof A, a = \;)(a) and r a non negative integer

such that r<¢ (otherwise the theorem is empty). Then :

; r +r a-1 atk-1
(i) Z w, (G)= w, (a) (Np)” L J [r 1]p /L Ilp
G(a)

rp(G)= r

and in particular

2
z w(G) = w(a) (Np) " *F [orb__lllp na(p)/nr(lo)
Gla)
rp(G)=r

(ii) Z wk(G)(%G)'S=El;Jp(prr(”s’TT (1-0vp) %) for Re s>-1

G up to isomorphism 1sjsr
G p-A-module
r (G)=1r
b )
and in particular if k=1r :

- 2 (
5 w (g = et TP
k 2 u (p)
same (nr(p)) -r

Proof. ~ (i) Write o -p b with pJb . Then

S oo Y
G(a) G(b) a

r (G)=r r?é(p) =)r

P 02

= g -1 s
= wk(b) ( # Aut G) nk(p)/ nk-r(p) by proposition 3.1.
G(p%)
rp(G) =r
Now it is easy to see that every p -A-module G of rank r is of the form

G:Ar/H , and by proposition 3.1 the number of such H for a given G (with
A(G) = pa‘ ) is equal to

(Np)* 7/ # Aut G) n_(p) .
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Furthermore, given H , the conditions XA(Ar/H)= pa and r (AT/H)=r are
p
equivalent to the conditions
r r a-r
Hcyp and XA(p /H) =y
(Use the multiplicativity of X on the exact sequence

0 Pr/H"—' AT/H - (A/p)T— 0 .) We obtain :

LEMMA 6.2.~ With the above notations :
w. (b)
D wmie sk S
(Np) T r
G(a) Hcy
r (G)=x X, /H) =%

Now by proposition 6.1 appliedto J = pr (hence "k''=r) this last sum is equal

to

(Np)r(a-r) wr(pa-r)z(Np)(r-l)(a-l) [Zj‘]p (corollary 3.8)

and theorem 6.1 (i) follows, using the fact that
. Q. a tk-1
W (0) = wy (o) (Np)™ /L™ 3

The rest of the assertions in the theorem follow easily from (i} and lemma 6, 2.

Applying the techniques of section 5 we easily obtain :

THEOREM 6.3. - The u-probability that the p-rank of a finite A-module is r

is equal to
IN -r(r+u)
(N'p) n, e /(nGrn_, () .
The final resuit that we want about p-ranks is the one giving the u-average of

r (G) azr (G)
(Np)p or more generally of (Np) P for a20, o integral. This will fol-

low from the following :

THEOREM 6.4, - Let o =0 be an integer, o an ideal such that pal ¢ . Then :

-u —_— r (G/Imo) ;
(Na) Z w () [ ] (p? -(Np)y) =

0<i
G(a) 1Py <a

= p) 0™ )/ )
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Proof. - We can deduce theorem 6.4 from theorem 6.1 using known ¢q-identities.
We shall use the converse approach, obtaining theorem 6.4 directly and deducing

the g-identities.

We apply proposition 4.5 (i) to K = (A/p)OL . If G is a finite A-module, the

number of submodules of G isomorphic to K is clearly equal to

( W!!AW(A/M&)-I # {CpeHomA((A/p)a , G), ¥ injective} .

p

Now if G is the subgroup of G of ele.aents annihilated by p , it is clear that

# {pe HomA((A/p)a, G), ¢ injective} = # {®c HomA((A/p)a, G’), o injective}
— r (G) ; p r (G)

=TT ((Np)P -(Np)') since G =~(A/p P

0si<a

Hence proposition 4.5 (i) gives

—_— r (G/Im @) ;
w (@ | ] ((vp)? -(Np)) =

o=si<o
Gla), ®,
= 4 ~Q - (¢
= # Aut (A/p)" N(ap™)" w(ap™) w (A/p))
and the theorem follows from proposition 3.1,

From the definition of Mk o Ve obtain immediately :

’

COROLLARY 6.5.~ We have :

rp(G) ; au
(Np “Np = Np) T 0/ ()

g

r (G)
Exar;x leG6. 6. - The u-average of (Np)p is 1+(Np)—u ; the u-average of
T ( - -
(Np) P - 1+(Np+1)(Np) ™ +(Np) 2u

As was mentioned earlier, one can easily obtain from the combination of pre-
ceding theorems some ¢-identities. We leave the proofs to the reader, noting that
they can also be proved directly very simply :

COROLLARY 6.7.- Write (q), = | | (1-¢”) . Then for k=q
k e
1=n<k

Z g(Fru)le-a) ] 1
CUNRC VS C N

G Sr<k +u q)k-a (q)k+u




In particular for k -+

(r+u) ~a) 1
}: (@), ~@Z
r2q
and with o =u =0
2
Z a /(q)i =1/(a),
r=20

§7.- An analytic digression - the function gw(s)

We study here the properties of the function ¢ (s) as a meromorphic function,
o0
They will not be needed 1n the sequel, but may give some hints for the proofs of

the conjectures that we will state in the next sections.

In what follows we assume that A 1s the ring of integers of a number field K

of discriminant D, degree N over Q, Ty real places and 21'2 complex ones,

with r1 + 21-2 = N . Then we recall that gA(s) can be analytically continued to the
whole complex plane with a single pole at s=1, which 18 simple and with residue
r r

1
Ky =2 (2m)

ZhR/w[DI%.

where as usual h 1s the class number, R the regulator and w the number of
roots of unity 1n K, Furthermore 1f we set
s/2, -s/2 1 -5 2
A,(s)= D] 2 (n*/% r(a/2)) ((2m® Tlen Cals)
we have the functional equation
AA(S) = AA(l -s)
We want to study the function ( A(s) = gm(s) defined in corollary 3.7. We re-
call that

(o) =TT ¢ylstn) -
j=1 A

Note first that the Euler product 1s as follows

-5-3. -1

¢ =11 (1-(Np) )

pe® J'.>_1'
This 15 formally 1dentical with the Euler product for the reciprocal of the Selberg
zeta function Z(s) (see e.g. [9] ) where ® denotes in that case the set of conju-
gacy classes of primitive hyperbolic matrices, and Np 15 the norm of such a class.

Helped by this analogy (which shouldn't be pushed too far since Z(s) satisfies the
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Riemann hypothesis while gw(s) has its zeros spread out over the whole plane)
we first note that gw(s) is a meromorphic function of order 2 (more accurately,
removing the poles, (sin 1 s) gw(s) is an entire function of order 2 ). This is

easily proven and left to the reader.

Second, we can try to find a kind of functional equation for gw(s) , involving not
only I -factors, but also Barnes' I‘Z-function, as for Z(s) (see [16]). This is
easily done as a consequence of the functional equation for gA(s) itself. One such

result is as follows :

THEOREM 7.1. - Set

2 r
W (s)= ID,-(S(S+1))/4((T(§)-1 rz(s))% L5 /4 2(3-1)(s—2)/4) 1

- I
x (0(s)7 1, (0) @n)* T /2)2 ¢ (o)
and
sinZTTS
AQ(S)': W_(s) W_(-s) = 2
m C,

Then Am is an entire function of order 2 which is even and periodic of period 1,

such that /\m(n)= 1 for ngZ.

Proof. - Simply note that Wm(s)/Wm(s—l) =1 /AA(S) and hence the periodicity of

Aw is trivially equivalent to the functional equation of AA .

Remark. - It is an easy exercise to check that (1‘(‘3‘)-1 I‘Z(s))% is a (single valued)
meromorphic function on € . We choose the square root so that it is positive for

8 positive.

Having a natural periodic function at hand, it is natural to plot it for real values
of s, and this is what the first author did on a computer in the case of A = Z ,
hence D=1, r1= 1, r2= 0 . The astounding (and impossible) result was that
Aw(s) seemed to be constant equal to 1 for all real s . Of course this is absurd
since it would then have to be equal to 1 for all complex s , which is impossible

since Am(s) vanishes at all the complex zeroes (and their integer translates) of

the Riemann zeta function gz(s) .

This apparent paradox was resolved a few days later by computing the
Weierstrass product of the function Am(s) » which turns out to be particulary

simple. The result is as follows (for any domain A)



THEOREM 7.2. - 2
———— s'
ho= TT (-tne
Im p>0 sin mp

where the product is over the non trivial zeroes of gA(s) with positive imaginary

part.

The proof is left to the reader.

In the case A=2Z, we have the first zero P 1 + 14.1341i hence

2
- 2Tr 14,134
sin npl ch (TT x14,134) 3‘— x =~ 9, 1037 and it is easy to deduce
from this and known estlmates on the zeroes p , that for s real,
, A (s) - 1' < 2,10 7" . Hence one would need multiprecision arithmetic to at least

40 decimals to be able to detect that A_(s)#1!

§ 8. - The fundamental heuristic assumptions

We begin here the second part of this paper. Except if explicitly stated otherwise,
it must be considered that all the statements made in this part are conjectural.
These conjectures all derive essentially from one heuristic principle which we now

explain.

Let " be an abelian group of order N, and r,,r., chosen such that

1772

r +2r,= N . Finally we let A =A_ be the maximal order in the ring

olr] / 2 g . It is well known that AL is unique, and that it is a product of ring
of 1ntegers of number fields.

Hence, as was mentioned at the beginning of section 2, the theory developed in

part 1 is applicable to A .

Examples. - 11:1)1 If I'=2Z/NZ with N prime, then AI‘ZZ[ I:I/_]—] , the ring of inte-
gers of the N cyclotomic field.

2) For T =Z/4 Z then AF: z[ilxZ .
3) For ' =Z/2Zx Z/2Z then AL=ZXZXZ .

We will write & (or simply & when there is no ambiguity on

r: 1'1,
T Ty rz) for the set of 1somorphlsm classes of abelian extensions of D with

Galois group I', Ty real places and 2r2 complex ones. Note that 31‘ r =¢

unless T = N, r,= 0 (the totally real case) or r =0, r,= N/2 (the tota]lly

1 2
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complex case).

We assume the set of fields in & ordered by the absolute value of the discri-
minant, and in the (rare) cases of equal discriminant, any ordering will do.

If KeF and X =3 (K) 18 the prime to N part of the class group of K , 1t 1s

easy to see that X 1s a finite Ar—module. Hence, 1f {f 18 a function defined on
1somorphism classes of finite AT -modules (of order prime to N 1if necessary)

we can define the average of f on the prime to N part of the class groups as the

following limait, 1f 1t exasts

£(X(K))
Ked,|DEKIEX

M(f) lim

Xaeo 1
Ked, |DEK)|=x
where D(K) 1s the discriminant of K and ¥ (K) 1s the prime to N part of the

class group.

FUNDAMENTAL ASSUMPTIONS 8.1 - For all "reasonable' functions f (including

probably non negative functions) we have

(1) (Complex guadratic case) If r,=0, r,=1 then M(f) 1s the O-average of

f restricted to Ar—modules of order prime to N [ Here in fact AT =% ,N=2.]

(2) (Totally real case) If r.= N, r,= 0 then M(f) 1s the 1-average of f

restricted to A_ -modules of order prime to N .

r

For lack of experimental evidence, we do not make any assumptions in the total-
ly complex case, except when N=2 ., We hope to come back to this in another paper
(see also section 10). Note also that in both cases, we take the u-average, where

u 18 the AI‘ -rank of the groups of units

In the next section we will give some consequences of these fundamental assumptions.

In the rest of this section we would like to try to justify them.

The first assumption, for the complex quadratic case, 18 exactly the assump-
tion mentioned 1n section 1, 1.e. weighting 1somorphism classes of abelian groups
G with weight proportional to 1/# Aut G. Since the number of group structures
on a set with n elements which are 1somorphicto G 158 n! /;{f Aut G, the as-

sumption above, for a given n, boils down to giving equal weight to each group

structure However for different n it 1s difficult to compare. Hence 1t would
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seem that one could define the O-average of f as

T pn) » {G) w(G)
n< x G(n Z)

Z ¢ X w(G)
n=x G(nZ)

Mo(f,w) = lim

X %

for some function ¢ . Luckily, it turns out that for quite a wide class of functions
y , including for instance the non zero polynomials, Mo(f, y) is independent of

y , whence the choice = 1.

It is much more difficult to justify the second assumption, Let us assume N=2
(i.e. the real quadratic case), the case of general N being a reasonable extra-
polation from this case. Then it is well known that in terms of binary quadratic
forms the class group can be obtained as follows : Consider the set of reduced bi-
nary quadratic forms having the right discriminant, This set is finite. In the ima-
ginary quadratic case, composition of quadratic forms gives a group law on this
set, and the group is exactly the class group. In the real quadratic case this is not
true for several reasons which all boil down to the fact that the group of units
is of rank 1 instead of 0 . However in some sense which can be made precise,
composition gives a group-like structure to this set, if we neglect a logarithmic
number of reductions to be done. Furthermore this set breaks into cycles under the
reduction operation, and in some sense one can interpret the principal cycle as
being a "cyclic subgroup' ; finally the cycles do not have necessarily the same num-
pber of forms, but their length (in the sense of [11] or [13] } is the same, i.e. the
regulator R . The number of these cycles being the class number, our heuristic
assumption can be retormulated in the following way : the class group of a real qua-
dratic field is of the form G/<o> , where G is a "random'" group, weighted as
usual with 1/# Aut G, and ¢ is a random element in G (we denote by <o>
the cyclic subgroup of G generated by 0 ). The group G can then be thought of

as the "group' of reduced quadratic forms, and <0> as the principal cycle.
Another way of saying this is that we are trying to give a group theoretical inter-
pretation of the trivial equality h = hR /R .
The "explanations" above have been put on more solid ground by the second
author [11], and under this interpretation one should try to extend the techniques of

the preceding sections to compact groups.

A very analogous situation was suggested to us by B. Gross. Let p be a fixed

prime, and consider the set of imaginary quadratic fields K where p splits
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p=pP . Then almost by definition I}C(OK[ 1/pd)=~ LK?(OK)/<p>, where

oK[ 1/p1={xeK/p x <O }. This is exactly of the type G/<o>, and G is
weighted with 1/#’ Aut G if we assume assumption 1, and {p } is random in
K(OK) . Tables of such class groups reveal a striking similarity with tables of class

groups of real quadratic fields.

§9. - Consequences of the heuristic assumptions

It must be again emphasized that all the results in this section are conjectural,
except noted otherwise, No '"proofs' are given since the conjectures are trivial

consequences of the assumptions and the work done in the first part of the paper.

I. ~ Complex guadratic fields

Here X will denote the odd part of the class group, h = #3X , 'J"Cp will be the
p-part of ¥ , rp(}C) will be the p-rank of X , where p is always an odd prime.

All constants and zeta functions are relativeto A = Z .

(C 1) The probability that ¥ is cyclic is equal to
€(2) ¢(3)/(3¢(6) C n (2)) > 97.7575 % .

(C 2) The probability that p divides h is equal to

-1 -2 5 -
fp) =1-n (p)=p +p -p AR

In particular
£(3)=>=43.987% ; £(5)=~ 23,9679 ; £(7) ~16.320 %

(C3) The probability that }_~Z/9Z is close to 9.335 %

" :*(Z/smz "1.167 %
" s~ (Z/3 z)’ " 0.005 %
" i, ~ (2/3z)* v 2.3x 1070
" Ky =~ Z/252Z " 3.802 %
, ;= (z/52)° " 0.158 %

(The exact formulas can easily be obtained from example 5.9 (i).).

(C 4) Let n be odd. The average number of elements of K of order exactly

equal to n is 1,

(C 5) The probability that rp(’&C) =r is equal to

2
P on (e T T (1-p-2
T

Isk<




(C 6) The average of
e,
. [l (" -p)
Si<a
r (0

where o a fixed integer, i; ecéual to 1. In particular the average of p P
)

is equal to 2 and that of p P is equalto p+3.

It is a consequence of a theorem of Heilbronn-Davenport (see [5]) that the

£ (K}
average of 33 is equal to 2 . Thus (C 6) is true for a=1,p=3.

II. - Real quadratic fields

We keep the same notations as in the complex case. All the conjectural state-

ments made in that case have an analog here. We give a few :

(C 7) The probability that p divides h is equal to

— k-2 -3 -4 -
1-|] @Q-p)=p “+p +p -p -...
k=2

(C 8) Let n be odd. The average number of elements of J{ of order exactly

equal to n is 1/n .

(C 9) The probability that rp(K)= r is equal to

- +1 — P U
T o o) TT o™ TT -5
1sk=r 1=k=r+l

(C 10) The average of

o=i<a
where o is a fixed integer, is equal to p—a . In particular the average of

r (I -1 2r _ .
pP( ) is equal to 1+p ~ and thatof p p ) is equal to 2+p1+p2

It is again a con?equence of a theorem of Heilbronn-Davenport (see [5]) that
r

the average of 3 3 is equal to 4/3 . Thus (C 10) is true for a=1, p=3 .

A number of results are uninteresting in the complex case (for example the
analogue of (C 11) would say that the probability that ¥ =L is equal to 0, which

ig true since the class number tends to infinity).

(c11) If L isa group of odd order 4 , the probability that ¥} be isomor-

phic to I, is equal to

(2¢ C_n_(2) #Aut L)l
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In particular, if p(4) is the probability that #HK =14, we have :
p(1)>=75.446 % ; p(3)~ 12.574 %; p(5)~3.772% ;

p(7)=~1.796% ; p(9)~1.572% .
If we make the extra assumption that fields with prime discriminants behave like
the others with respect to the odd part of the class group, then p(4) is the proba-

bility that h=4 when one restricts to prime discriminants.

(C 12) (Suggested by C. Hooley) Call h(p) the class number of 0R(,/P).

Then, when p is restricted to the primes congruentto 1 mod. 4, and x + = :

1
a) The probability that h(p) >x is asymptotic to T

b) % hip) ~x/8 .
pr

III. - Higher degree fields

We give two examples :

(C 13) For cyclic cubic extensions (i.e. T =Z/3%Z, r,=3, r =0,

Al"= z[ i/T] ) the probability that the class number is divlisible bzy 2 (or by 4,
which is the same) is equal to
-1 (-4 ~8.1959 .
k=2
(C 14) For totally real extensions of prime degree p (including p=2) (here
r=Z/p%Z, TSP r2=0 s AF=Z[ %]) the probability that the prim:. to p part
of the class number is 1, is equal to

(1-p1) / (n_(® o ()

I'1¢
k=2 (V1)

. p
where is the Dedekind zeta function of the cyclotomic field ©{,/1) .

‘oz
One can easily check that the above probability tends to 1 as p » . This would
imply that, at least for Z/p Z -extensions, the non triviality of the class group
comes only from the p-part. In fact, if we assume that we can restrict to prime
conductors (as we did in the real quadratic case) the probability above is the pro-
bability that h=1, when restricted to prime conductor. Hence, contrary to popular
opinions, the proportion of class number 1 fields would seem to increase (and
tend to 1) among fields of prime conductor. Apparently this had already been

predicted by C. L. Siegel. (We thank D. Shanks for this information). Tables
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seem to agree with this + we have seen that the probability 18 75.446 % 1n the real
quadratic case, and 1t 18 close to 85.0 % 1in the cyclic cubic case, and both are close

to the observed data ([14], [7] ). We lack sufficient data in the cyclic quintic case.

§10. - Discussion of the conjectures. Further work

A) All the conjectures that we make are 1n close agreement with existing tables
(£31, (41, [el, [7], [14]). Furthermore a conjecture like (C 5) helps to explain
why class groups with high 3-rank (for mmstance) are difficult to find to our

12 e 373% 7.10’18.

knowledge, the record s 3-rank 5, and we have 3—25 =10

This can help to give an indication of the difficulty of finding 3 - rank 6 .

B) A very nice fact 18 that two particular cases of our conjectures
((C6), a=1,p=3 and (C10), a=1, p=3) are wmn fact theorems, due to Heilbronn-
Davenport, Since all the conjectures are consequences of a single heuristic principle,

this gives strong support for this principle, hence for the rest of the conjectures.

C) By a completely different heuristic method, C. Hooley has also conjectured

(C 12). (Personal communication)

D) We can try to obtain statistical information on class groups of complex qua-
dratic orders and not only on maximal orders. A prior:, the only information

available 1s the formula for the class number

n) <[ T] (1-E)/0)1n)
L)t
{ prime

where D 1s a fundamental discriminant
With a nilve assumption of probabilistic independence, one can obtain from (c2)

the following conjecture

(C'2) The probability that p divides the class number of a complex quadratic

order (p an odd prime) 18 equal to

f'(P)=1-(1-p—3)n (P‘_—l- (1_({1_1)/2{’3))( 1 if p>3
® ,{,Eﬂ:l (mod p) 11/12 1f p=3
{4 prime, {>2
This gives for example
£1(3)~52 4664 % ; £'(5)=25.1301% , f'(7)=16.9271 % ,

1n reasonable agreement with the tables.
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E) It 1s interesting to notice that in many cases, the observed probabilities or
averages do not oscillate around the predicted value, but seem to have a generally
monotonic behavior (taken in a very wide sense) towards the predicted limit For
example, the probability that 3|h 18 around 42.5 or 43 % instead of 43,987 %
for discriminants less than ]09 (private communication of C. P, Schnorr) while
in the real quadratic case with prime discriminant the proportion of class number 1

seems to decrease very slowly, and 18 still around 77 % for D= 107 ([14]1y.

F) In the totally complex case r =0, r2=N/2 , for which we have not given

1
any assumptions except for N=2, J. Martinet (private communication) has sug-
gested the following : if K 18 such a field let Ko be its maximal real subfield.
Then the O-average of f should be the average of f taken on the relative class

group, 1 e. classes cg€} suchthat cc=1 mn X, where denotes complex conju-

gation.

G) It would be very interesting to extend the above conjectures to non abelian T,
and 1 fact more generally to non Galois extensions of 1. The first case to consider,
for which plenty of tables are available, 1s the case of non cyclic cubics, either

with r1=1 , r2=l , or totally real.

The behavior of the N-part, while certainly not random, should also be investi-

gated.

H) In most of the conjectures, values of the function ¢ (8) or of an Euler
w©
factor of that function occur (see typically (C2), (C11)). Since we believe these
conjectures to be true at least in the complex quadratic case, we are led to believe

that any proof of these conjectures must use analytic functions of order 2 like Cm(s)’

and 1n fact maybe gm(s) itself,

A confirmation of this belief comes from the fact that the only cases where the
conjectures have indeed been proved using existing mathematical tools (the Heilbronn-
Davenport theorems) are also the only cases mn which the result does not contan
Euler factors or values of functions of order 2 (with the exception of C 12, but
here the difficulty lies probably 1n dealing waith the regulator). It would mn fact be
very interesting to know 1if the Heilbronn-Davenport results can be extended to

proving C 6 or C10 with p=3 and @=2 or with p=5 and q=1 .
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