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Abstract Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right 
heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. 
Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein 
receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH 
remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ sig
nalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, 
can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue- 
specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can 
influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions 
arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ 
signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will con
tribute to further understand the underlying processes leading to PAH and likely HHT.
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1. Introduction: pulmonary arterial 
hypertension
Pulmonary arterial hypertension (PAH) belongs to Group I in the total of 
five (I–V) groups of pulmonary hypertension. Group I is substratified in, 
among others, idiopathic PAH (IPAH) and heritable PAH (HPAH). 
HPAH has a known genetic origin, by either familial contribution or genetic 
correlation,1 while IPAH has an un-familial cause at the time of diagnosis. As 
established in the 2022 ESC/ERS Guidelines for the diagnosis and treat
ment of pulmonary hypertension, pre-capillary PH (including PAH) is de
fined by a mean pulmonary arterial pressure (mPAP) of >20 mmHg, 
pulmonary arterial wedge pressure (PAWP) of ≤15 mmHg, and pulmon
ary vascular resistance (PVR) of >2 Wood Units (WU).2 The increased 
workload on the right heart causes ventricular dilatation and hypertrophy, 
resulting in progressive right heart failure. Pulmonary vascular remodelling 
constitutes the main pathological event at the onset of PAH. Remodelling 
of the distal pulmonary arteries involves abnormal proliferation of endo
thelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts; apoptosis 
resistance of ECs; excessive EC migration that becomes dysfunctional, in 
part due to endothelial-to-mesenchymal transition (EndMT) (distal); migra
tion of SMCs (proximal); inflammatory influx of macrophages and lympho
cytes; and the formation of plexiform lesions.3–5

Although PAH is a disease caused by remodelling of the pulmonary vas
culature, end-stage patients ultimately die from right heart failure.2 To date, 
there is no approved treatment curing or reversing disease progression. 
The current treatment of PAH mainly consists of the single or combined 

administration of pulmonary vasodilators acting on the guanylate cyclase, 
endothelin, or prostacyclin pathways,6 only postponing further progres
sion and eventually requiring lung transplantation in severe cases.7

Recently, the Phase 3 clinical trial STELLAR has concluded excellent clinical 
outcomes in PAH patients using Sotatercept.8

Sex-related differences in disease prevalence and severity are known for 
PAH. The US REVEAL study showed that 80% of the PAH patients are wo
men (4:1 ratio).9,10 Comparably, multiple registries across Europe con
cluded a female bias in PAH of approximately 70% (2.3:1 ratio).11–16

Interestingly, the disease bias towards women declines by age when com
paring age groups 18–65 with >65 years old in IPAH patients.12 In addition, 
PAH disease penetrance is also defined by sex, with a 42% in females over 
14% in male HPAH patients.17 Remarkably, diagnosed PAH male patients 
are more severely burdened, with nearly a 10% reduction in 5-year survival 
rate (53%) compared to females (62.9%).9

The underlying cellular and molecular causes of these sex-related differ
ences in PAH have not yet been fully understood, although many hypoth
eses have been proposed. These often involve hormonal-based alterations, 
although metabolism, genetics, and/or the immune system might also play a 
role.18–20 In general, androgens are considered vasculo-protective and a 
contributor to pulmonary vasodilation,21 perhaps underlying the female 
predominance in PAH. On the other side, oestrogens have been reported 
to be vasculo-protective in coronary heart disease in women (reviewed in 
reference 22). In PAH, oestrogens promote right ventricle adaptation in 
women,23 which might lead to a less severe phenotype compared to 
men.24 Further, chromosomal differences also play a role, for instance, 
the Y-chromosome is thought to have vascular protective 
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gene expression profiles in PAH.25 In this review, we further discuss if sex 
determinants, i.e. sex hormones and -chromosomal effects, are a driver of 
PAH development by altering transforming growth factor-β (TGFβ) 
signalling.

2. Transforming growth factor-β 
signal transduction
Disturbances in the TGFβ signalling family contribute to PAH disease de
velopment and progression.26–28 The TGFβ family pathway drives develop
mental processes and tissue homeostasis29 within the cardiovascular 
system.28,30 In mammals, the TGFβ family is comprised of 33 structurally 
related polypeptides, including the TGFβ1–3 isoforms, the bone morpho
genetic proteins (BMP1–15), nodal, the growth and differentiation factors 
(GDFs), the activins and inhibins, and the anti-Müllerian hormone 
(AMH).31–37 The TGFβ ligands exert pleiotropic effects by controlling 
cell proliferation, migration, and differentiation in a spatial and temporal 
manner.29 Disturbed signalling can result in cancer,38 musculoskeletal dis
orders,39 fibrosis,40 and cardiovascular diseases28,41–43.

Most TGFβ family members, with BMPs being the exception,44

are secreted in an inactive form within a latent complex (reviewed in 
reference 45). These large latent complexes include the mature TGFβ poly
peptide shielded by latency-associated peptides and latent TGFβ binding 
proteins.46 These additional factors also bind to the extracellular matrix 
(ECM) or the plasma membrane via receptors like glycoprotein-A repeti
tions predominant (GARP), creating an ECM storage of accumulated latent 
TGFβ. The mature TGFβ polypeptides are released via several mechanisms 
allowing a quick functional response on demand.45

Active TGFβ ligands signal via a heterotetrameric complex of Type I and 
II serine–threonine kinase receptors (Figure 1).47 In vertebrates, seven ac
tivin like kinase (ALK)1-7 Type I receptors and five Type II receptors (TGFβ 
receptor 2 (TGFβR2), activin receptor 2A (ACVR2A), ACVR2B, bone 
morphogenetic protein receptor 2 (BMPR2), and anti-Müllerian hormone 
receptor 2 (AMHR2)) exist. Since the ligands of the TGFβ family bind with 
different affinities to their receptor complexes, the relative expression le
vel of the TGFβ family receptors may determine sensitivity of a particular 
cell type or tissue to a TGFβ ligand.48 Overall, TGFβs and activins bind with 
a high affinity to their Type II receptors, whereas BMPs and GDFs exhibit a 
high affinity for their Type I receptors.49 Co-receptors like TGFβR3 (beta
glycan) or endoglin (Figures 1 and 2) can enhance ligand binding to Type I/II 
receptors when membrane bound, but can act as ligand trap when se
creted in a soluble form.50 Next to these accessory proteins, soluble signal
ling modulators including Noggin, Gremlin, and Follistatin also exert 
regulatory effects on the TGFβ family signalling as ligand agonists or 
antagonists.51

Upon ligand–receptor interaction and receptor complex formation, the 
constitutively active Type II receptor phosphorylates and activates the 
Type I receptor. Next,  the Type I receptor kinase initiates the signal 
transduction cascade by phosphorylating intracellular downstream pro
teins, i.e. receptor regulated-SMADs (R-SMADs) (Figure 1). Generally, 
TGFβ1–3 and Activins signal by SMAD2/3 phosphorylation whereas 
BMPs, GDFs, and AMH signal via phosphorylation of SMAD1/5/8. In the 
vasculature for instance, BMP9 and -10 are important factors necessary 
for endothelial homeostasis, exhibiting a high affinity for BMPR2/ALK1 re
ceptor complexes, mainly expressed in ECs.52,53 Both ALK1/SMAD1/5/8 
and ALK5/SMAD2/3 signalling are co-regulated by endoglin in ECs.54

Interestingly, the two splice variants short- and long-endoglin favour differ
ent Type I receptors, being S-endoglin pro-ALK5 and L-endoglin pro-ALK1 
(Figure 2).55

Once phosphorylated, the R-SMADs bind to the co-SMAD SMAD4 and 
form heterotrimeric complexes. Furthermore, Inhibitory SMADs 
(I-SMADs, SMAD6 and 7) are transcriptional targets of the TGFβ super
family and create a classical negative feedback loop interacting with and 
promoting the degradation of TGFβ receptors by e.g. SMURF1/2.57,58

SMAD4-containing heterotrimeric complexes translocate to the nu
cleus, where they associate with cell type- and pathway-induced transcrip
tion factors to modulate target gene expression.59 Different DNA motifs 
on the regulatory regions of genes have been described for the SMAD4, 
SMAD2/3, and SMAD1/5/8.57,60–62 The binding affinity of SMADs for 
DNA is relatively low and can be enhanced through association with other 
transcription factors, which may determine cell-type-specific TGFβ re
sponses.57 Therefore, the transcriptional activity induced by ligands of 
the TGFβ superfamily can be ‘fine-tuned’ at multiple levels, including the 
relative expression levels of ligands, (co)receptors, (ant)agonists, and nu
clear transcription factors that are activated in a tissue and stimulus- 
dependent manner.57,63 Many of the cell-type-specific responses to 
TGFβ ligands are attributed to the so-called non-canonical pathways. 
The non-canonical signalling may not require the Type I receptor kinase ac
tivity.64 Furthermore, although the TGFβ Type I and II receptors are 
known serine/threonine kinases, they can also phosphorylate tyrosine re
sidues and act as dual-specificity kinases. Therefore, tyrosine phosphoryl
ation may be an alternative route to mediate SMAD-independent 
signalling.65 TGFβ non-canonical signalling is often highly context depend
ent. For example in vascular settings, TGFβ-induced EndMT is also 
mediated through the activation of extracellular signal-regulated kinase 
(ERK)66 and c-Jun N-terminal kinase (JNK).67 Further, TGFβ-mediated in
hibition of primary vascular smooth muscle cell proliferation has been de
monstrated to be p38-dependent.68 Unfortunately, much is still to be 
deciphered in the context of non-canonical TGFβ signalling and PAH. 
Accordingly, in this review, we mainly focus on canonical signalling of the 
TGFβ family.

3. The TGFβ signalling family in PAH
PAH is linked to disturbances within the TGFβ signalling family pathway. 
Mutations in genes encoding for components of the TGFβ signalling cas
cade have been identified, such as ACVRL1 (encoding ALK1), ENG (encod
ing endoglin), SMAD9 (encoding SMAD8),69,70 SMAD1,69 SMAD4,69 and 
GDF2 (encoding BMP9)71 (Figure 1). The most relevant gene mutation by 
far involves the BMPR2 gene, which is affected by loss of function mutations 
in 70–80% of the HPAH and in 10–20% of the IPAH patients.72

Additionally, mutations in genes not part of the canonical TGFβ signalling 
cascade have also been reported (i.e. CAV1,73 TBX4,74 EIF2AK4,75 and 
KCKN376).

Currently, more than 650 different BMPR2 mutations have been de
scribed.77–79 These mutations may occur in non-coding regions but are 
mostly located in the coding regions containing the extracellular, trans
membrane, kinase, and cytoplasmic functional domains. Noteworthy, ap
proximately 50% of total mutations are found in the kinase domain of 
BMPR2.77,80 The different gene mutations consist of single nucleotide sub
stitutions, leading to non-sense, missense, or splice site mutations; and in
sertions or deletions causing small and partial insertions, deletions, or 
duplications. A study looking at 144 different BMPR2 mutations from a 
broad international PAH patient cohort, predicted that around 70% of 
all the mutations result in non-mediated decay of the truncated tran
scripts.80 Follow-up studies concluded similar findings.77 The resulting hap
loinsufficiency is therefore the main cause of disrupted TGFβ signalling. Still, 
PAH penetrance is low in families with mutations causing haploinsuffi
ciency. Comparing non-affected mutation carriers with PAH patients with
in the same family, Hamid et al.81 showed that the expression levels from 
the wild-type BMPR2 allele impact disease progression, with lower BMPR2 
expression levels observed in more affected individuals. Therefore, next to 
loss of BMPR2 due to genetic mutations, additional triggers to reduce en
dogenous BMPR2 expression are needed to result in pathogenic TGFβ 
signalling.

In HPAH patients carrying a BMPR2 mutation, the BMPR2 and phos
phorylated SMAD1/5/8 expression are decreased in lung tissues,42,82,83

consistent with a decreased expression of BMP transcriptional targets 
such as ID3.84 Interestingly, BMPR2 expression is also decreased in idio
pathic patients,82 which might be due to (post)transcriptional inhibition 
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of BMPR2 expression in inflammatory environments.67,85 Serum and lung 
expression of TGFβ1 and TGFβ3 ligands are increased in PAH patients,86,87

consistent with enhanced expression of a TGFβ target gene SERPINE1.88

Additionally, Activin A and its natural antagonist Follistatin and Follistatin 
Like-3 are both increased in serum of HPAH and IPAH patients,89,90 of 
which Activin A is known to be secreted by macrophages, bronchial epithe
lial cells, and lung microvascular ECs.91 Given the counterbalance between 
BMP and TGFβ signalling, it is well accepted that increased TGFβ and 
Activin A signalling in PAH results from inactivating mutations in BMP path
way components.26,92 However, recent publications have unveiled novel 
mechanisms triggered upon loss of BMPR2. Hiepen et al.93 recently 

showed that loss of BMPR2 in ECs results in the formation of a mixed- 
tetrameric receptor complex TGFβ-TGFβR2-ALK5 including a Type I 
BMP receptor. The inclusion of a Type I BMP receptor allows the activation 
of pSMAD1/5/8 signalling, while this is prevented by BMPR2 over-expres
sion. Earlier work by other groups further strengthens this hypothesis of 
mixed-TGFβ/BMP receptor complexes and subsequent activation of 
pSMAD1/5/8 upon stimulation with TGFβ or Activins.94–97 This can be a 
very relevant mechanism in PAH, as not only TGFβ1, but also Activin A le
vels are increased in serum of IPAH and HPAH patients.89,90

Loss of function mutations in ENG have been found in familial PAH pa
tients.98 IPAH patients display increased circulating and non-circulating 

Figure 1 Schematic representation of the TGFβ signalling family. Ligands of the TGFβ family (TGFβ1–3, Activin A, BMP2/4/5/6/7/9/10, AMH) bind their type I 
(ALK1/2/3/4/5/6) and II (TGFβR2, ACTR2A/B, BMPR2, AMHR2) plasma membrane receptors. Soluble antagonists (Follistatin, Chordin, Noggin, Gremlin) can 
decrease ligand accessibility. Type III receptors (i.e., endoglin) can further regulate ligand–receptor complex formation. Upon Type I receptor activation, the 
intracellular signalling molecules (R-SMADs) are phosphorylated and form a heterotrimeric complex with SMAD4. ALK4/5 (stimulated by TGFβ/Activin A 
ligands) signal via SMAD2/3 whereas ALK1/2/3/6 (stimulated by BMP/AMH ligands) signal via SMAD1/5/8. R-SMAD/SMAD4 complexes translocate to the nu
cleus to regulate the activity of gene promoters. Also non-canonical signalling (JNK, ERK, p38, PI3K/Akt) can occur via TGFβ signalling. Mutations in genes 
encoding TGFβ factors have been linked to PAH development. Not all factors within the TGFβ signalling family have been incorporated in the figure for clarity 
purposes. PAH, pulmonary arterial hypertension; TGFβ, transforming growth factor-β; BMP, bone morphogenetic protein; AMH, anti-Müllerian hormone; 
CAV-1, caveolin-1; ENG, endoglin; ALK, activin receptor-like kinase; TGFβR2, TGFβ receptor 2; ACTR2, activin receptor Type II; BMPR2, BMP receptor 
Type II; SMAD, small mothers against decapentaplegic; JNK, c-jun N-terminal kinase; ERK, extracellular signal-regulated kinase; PI3K, phosphoinositide 3-kinase; 
SRE, SMAD responsive element.
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endoglin levels,86 measured in serum and in isolated ECs, respectively. This 
increased soluble endoglin is related with disturbed EC function. 
Moreover, alternative splice variants of endoglin can shift the TGFβ/BMP 
signalling balance.55 These variants differ in exon 14, and result in L-endo
glin and S-endoglin variants, where L-endoglin displays a longer intracellular 
domain.99 This intracellular domain contains phosphorylation sites for 
TGFβR2, ALK5, and ALK1.100 As shown by Lee et al.,56 increased short 
(S-)endoglin over long (L-)endoglin causes an increase in SMAD2/3 over 
SMAD1/5 phosphorylation in ECs (Figure 2). Interestingly, this disbalance 
may also occur in HPAH patients with mutations in exon 14 of the ENG 
gene, favouring the short splicing variant S-endoglin and therefore increas
ing TGFβ signalling.

Taken together, alterations in BMP receptor complexes due to, for ex
ample, loss of function mutations in BMPR2 or ENG, can disbalance the cel
lular responses to the increased circulating levels of TGFβ/Activin ligands. 
Induction of BMP-driven pSMAD1/5/8 is often described as protective in 
PAH. However, pSMAD1/5/8 signalling resulting from TGFβ or Activins in 
the absence of BMPR2 may not be beneficial as well. One explanation might 
be that TGFβ and Activin may compete with canonical BMP ligands for the 
receptors, in this case inducing mixed-tetrameric receptor complexes. These 
mixed complexes may result in less potent or more transient pSMAD1/5/8 
activation and different non-canonical signalling activation, compared with 
classical BMP-induced complexes. Further, it can lead to short-term signalling 
saturation (by e.g. SMAD4 competition). Therefore, comprehensive studies 
including not only BMPR2 downstream signalling but also other TGFβ 
branches in the context of PAH are needed, as all these different signalling 

branches may contribute to vascular remodelling and subsequent PAH 
development.93

In line with a prominent role of aberrant TGFβ signalling as underlying 
cause of PAH, the ACTR2A-Fc fusion molecule Sotatercept aims to coun
ter this imbalance by trapping soluble TGFβ ligands (Figure 3) and thereby 
restoring pathogenic TGFβ signalling.8,101 Indeed, in vitro evidence shows 
that ACTR2A-Fc treatment of pulmonary ECs reduces pSMAD2/3 while 
enhances pSMAD1/5/8 signalling. Further, pulmonary arterial thickening 
and cardiac hypertrophy were partially restored by only 2–4 weeks of 
Sotatercept treatment in PH rat models.101 The Type II receptor 
ACTR2A is able to bind many different TGFβ ligands (Figure 1) with differ
ent affinities. High affinity ligands of ACTR2A include Activin A, GDF8, and 
GDF11,49 which levels are all increased in PAH.89,90,101 Due to the promis
cuous role of ACTR2A in complex formation and binding capacity to many 
other ligands (also e.g. BMP10),49 we stress that Sotatercept’s success 
might rely on its unspecific targeting of TGFβ ligands. The balance of the 
combinatory levels of circulating TGFβ ligands in the patient and their dif
ferential affinities to Sotatercept therefore drives its pharmacological func
tion. However, Sotatercept may also reduce BMP activity, which can 
underlie the undesirable side effects observed in PAH patients involved 
in a recent clinical trial (as reviewed in reference102). For instance, the in
hibition of BMP10 by high doses of Sotatercept can interfere with BMP10 
homeostatic function on the endothelium,53 maybe resulting in telangiec
tasias (Figure 3). Furthermore, thus far this drug has been tested in patients 
on background therapy. Whether a therapeutic approach based on solely 
targeting ACTR2A ligands is successful, remains to be investigated.

Figure 2 A schematic depiction of the splice variants (A) and signalling function (B) of endoglin on TGFβ1 signalling. The short (S-) and long (L-)endoglin 
variants are alternatively spliced by excluding or including exon 14, respectively (A). Both S- and L-endoglin increases TGFβ1 signalling; however, 
S-endoglin favours ALK5 signalling where L-endoglin favours ALK1 dependent signalling (B). Therefore, as observed by,55,56 a balance shift towards 
S-endoglin increases TGFβ signalling by SMAD2/3 phosphorylation. TGF, transforming growth factor; ALK, activin-like kinase; SMAD, small mothers against 
decapentaplegic.
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4. Sex hormones and the TGFβ 
signalling family
As aforementioned, disturbed signalling induced by TGFβ family members 
constitutes a hallmark in PAH. Given the sex bias observed in this disease, it 
becomes key to understand the mechanisms by which sex-specific cues 
may fine-tune the TGFβ family signalling. Sex hormones are derived 
from cholesterol. Female sex hormones are oestrogens and progestogens, 
including oestradiol and progesterone, respectively. Male hormones are 
androgens, of which testosterone is the dominant effector. Sex steroids in
duce signal transduction by binding to their soluble nuclear receptors; oes
trogen receptor (ER), progesterone receptor (PR), and androgen receptor 
(AR). These receptors act as signal transducer and transcription factors by 
binding to DNA responsive elements (RE, ERE, PRE, ARE).103–105 In add
ition, membrane bound G-protein-coupled receptors for all these sex hor
mones exist106 which modulate non-canonical TGFβ signalling pathways.

Oestrogens have strong implications in vascular diseases and promote car
diovascular protection.107,108 Frump et al.109 showed that 17β-oestradiol 
substantially improves right ventricular function in the Sugen-Hypoxia 
(SuHx) PH rat model, and they further linked ERα signalling in the right ven
tricle to protective adaptation in PAH in a BMPR2-dependent manner.110

Although less characterized than oestrogens, progestogens, and androgens 
are also cardiovascular active, and play a substantial role in vascular health 
and disease.111–114 While the effect of sex hormones on the (pulmonary) 
vasculature is well appreciated,111,115,116 the molecular mechanisms under
lying their functions remain elusive. Both sex hormones and TGFβ family 
members exert a tight control of the vasculature also in pathogenic condi
tions like PAH.26,116,117 For comprehensive understanding of the TGFβ 
and sex-hormone crosstalk, we will summarize the molecular mechanisms 

described so far, mainly in vascular cells. Unfortunately, most mechanistic 
studies have been performed in non-vascular settings. Given that sex hor
mones act on many non-cardiovascular tissues, influencing systemic levels 
of circulating TGFβ components and hence indirectly the cardiovascular sys
tem, we will learn from studies performed in non-vascular tissues and discuss 
how the crosstalk between TGFβ signalling and sex hormones may be applic
able to vascular biology and PAH.

4.1 Oestrogens
Oestrogen signalling involves several members of the TGFβ family pathway 
in a vascular context (Table 1). As such, transcriptome analysis of human 
umbilical vein endothelial cells (HUVECs) showed that the expression of 
ACVRL1 (encoding ALK1), and latent-transforming growth factor beta- 
binding protein 3 (LTBP3) are increased in response to exogenous oestra
diol, while CAV2 (caveolin-2), a negative regulator of TGFβ1-induced ALK5/ 
SMAD2/3 signalling in ECs,132 and SMURF2 are decreased, partially over
lapping the transcriptome of TGFβ1-stimulated cells.119 Additionally, 
administration of the selective oestrogen receptor modulator (SERM) 
Raloxifene increased the protein expression of ALK1 and endoglin in 
ECs,118 hence favouring SMAD1/5/8 over SMAD2/3 signalling. SERMs 
can have an agonistic and antagonistic effect, depending on the tissue 
type and availability of oestrogen receptors.133 These effects have been ex
tensively studied in mammary and skeletal tissues but are underexplored in 
the cardiovascular system, which is evidently necessary in the context of 
PAH therapy.

The plasma membrane G-protein-coupled oestrogen receptor (GPER, or 
GPR30) is an important mediator of oestrogen-induced signalling in vascular 
aetiologies.134,135 Interestingly, GPER activation by oestradiol or the GPER 
agonist G1 increased SMAD1/5/8 phosphorylation and the downstream 

Figure 3 Sotatercept (ACTR2A-Fc) sequesters TGFβ ligands to restore the disbalanced signalling in PAH. The soluble ligands activin A, GDF8/11 and 
TGFβ1/3 are elevated in PAH causing increased SMAD2/3 phosphorylation over SMAD1/5/8 signalling. This disturbed TGFβ signalling underlies increased pul
monary arterial thickening with a subsequent rise in pulmonary arterial pressure and right ventricle hypertrophy. Treatment with Sotatercept normalizes the 
signalling imbalance by shielding soluble TGFβ ligands, resulting in a decrease in pulmonary arterial thickening and right ventricle hypertrophy. *Low affinity 
inhibition of BMP10 by Sotatercept might disturb endothelial homeostasis and subsequently causing telangiectasias. TGF, transforming growth factor; GDF, 
growth differentiation factor; BMP, bone morphogenetic protein; ALK, activin receptor-like kinase; ACTR2, activin receptor Type II; BMPR2, BMP receptor 
Type II; SMAD, small mothers against decapentaplegic.
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target ID1 in HUVECs.136 These effects can be inhibited by a G-protein path
way inhibitor, indicating a specific role for canonical GPER signalling. This 
study suggests for the first time a crosstalk between GPER and canonical 
TGFβ signalling in ECs, and therefore more research is encouraged. 
Activation of GPER induces Src, MAPK, and PI3K/Akt signalling via transacti
vation of the epidermal growth factor receptor (EGFR) pathway.137 GPER 
modulates hypoxia-inducible factor (HIF) and vascular endothelial growth 
factor (VEGF) signalling, which makes it an interesting receptor to target in 

the endothelium.106 In addition, oestrogen-GPER signalling enhances 
Notch-mediated epithelial-to-mesenchymal transition (EMT),106,138 a pro
cess resembling EndMT (functionally relevant in PAH, as described above). 
Importantly, all these non-canonical TGFβ signalling routes (Figure 1) have 
shown to impact PAH development.139–142

Oestrogens influence PAH disease development and are thought to be 
an important driver causing the sex bias in PAH. As such, decreased ex
pression of an important 2-hydroxyestrogen (2-OHE) catalyst, CYP1B1, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 An overview of studies investigating transcriptional effects of the different sex hormones on targets within the TGFβ signalling cascade. The 
table shows increased or decreased expression, at which level it has been investigated, in which model or cell type and the specific metabolite used

Hormone Expression ↑/↓ Level of expression Model (tissue)/cell type Metabolite Ref.

Estrogens ↑ ALK1 mRNA and protein mRNA HMEC-1 HUVECs Raloxifene 17β-oestradiol 118,119

↑ ALK5 Promoter 

Protein

Rat osteoblasts Oestradiol 120

↑ BMP2 mRNA Mouse MSCs 17β-Oestradiol 121

↑ BMP6 Promoter Osteoblasts/MCF-7 17β-Oestradiol 122

↑ BMPR2 Protein RV Su-Hx rat 
RVCM WT/Su-Hx rats

17β-Oestradiol 
PPT

110

↑ endoglin mRNA and protein HMEC-1 Raloxifene 118

↑ LTBP3 mRNA HUVECs 17β-Oestradiol 119

↑ TGFβ3 Promoter and mRNA Rat (bone) 17β-Oestradiol 

Raloxifene

123

↓ BMPR2 mRNA 
Protein 

Protein

Wild-type mice 
HPASMC 

Su-Hx rat

17β-Oestradiol 
17β-Oestradiol 

Anastrozole

124–126

↓ ID Protein HPASMC 17β-Oestradiol 125

↓ SMURF2 mRNA HUVECs 17β-Oestradiol 119

Progestogens ↓ CTGF 

(TGFβ1 induced)

Promoter 

mRNA 
Protein

A549 (lung epithelial cells) Progesterone 127

↓ PAI-1 

(TGFβ1 induced)

Promoter MLECs (mink lung epithelial cells) Progesterone 127

↓ TAGLN 

(TGFβ1 induced)

Promoter 

mRNA 

Protein

A549 Progesterone 127

Androgens ↑ BMPR2 mRNA PAH HPASMC DHEA 128

↑ BMP7 mRNA Stellate cells Testosterone 129

↑ Chordin mRNA (array) Stellate cells Testosterone 129

↑ FST Protein Stellate cells Testosterone 129

↑ Noggin mRNA (array) Stellate cells Testosterone 129

↑ SMAD7 mRNA Stellate cells Testosterone 129

↓ ACVR2A mRNA Stellate cells Testosterone 129

↓ BMP2 mRNA (array) Stellate cells Testosterone 129

↓ BMP4 mRNA (array) Stellate cells Testosterone 129

↓ Nodal mRNA (array) Stellate cells Testosterone 129

↓ PAI-1 mRNA (array) Stellate cells Testosterone 129

↓ SMAD2/3 Protein Rat (kidney) Testosterone propionate 130

↓ SMAD4 Protein Rat (kidney) Testosterone propionate 130

↓ SMURF1 mRNA (array) Stellate cells Testosterone 129

↓ TGFβ1 mRNA 
Protein

Stellate cells 
Rat (kidney)

Testosterone 
Testosterone propionate

129,130

↓ TGFβR2 mRNA Stellate cells Testosterone 129

AMH ↓ ALK2 Protein Lung epithelial cells AMH (expressed) 131

↓ ALK3 Protein Lung epithelial cells AMH (expressed) 131

↓ BMPR2 Protein Lung epithelial cells AMH (expressed) 131
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may be a second-hit favouring PAH development in female HPAH pa
tients.143 In blood isolated lymphoblastoid cells, this enzyme showed a 
10-fold decreased expression in affected compared to unaffected female 
BMPR2 mutation carriers.143 As a follow-up, Austin et al.144 showed that 
female BMPR2 mutation carriers have a 4-fold decreased disease pene
trance when expressing the N453S CYP1B1 variant compared to wild- 
type. Further, they observed a decreased urinary 2-OHE/16α-OHE metab
olite ratio in affected female BMPR2 mutation carriers. Unexpectedly, the 
enzymatic function of CYP1B1 was unrelated to 2-OHE levels but pre
dominantly caused by increased levels of 16α-OHE (although highly vari
able).144 This study therefore demonstrates the importance of 
oestrogen metabolites in PAH disease penetrance in women.

Indeed, Mair et al.125 found that basal BMPR2 protein levels in female 
non-PAH hPASMCs are lower compared to male cells. BMP4-induced 
pSMAD1/5/8 and ID1/3 expression was lower in female than in male 
hPASMCs. Interestingly, administration of exogenous oestradiol to male 
hPASMCs decreased ID1/3 expression to levels comparable to female 
cells.125 Consistently, oestrogen-ERα activation was reported to downre
gulate BMPR2 expression in pulmonary microvascular ECs (MVECs) via an 
ERE in the promoter of BMPR2.124 Moreover, inhibition of oestrogen syn
thesis by the aromatase inhibitor anastrozole alleviated experimental PAH 
in a SuHx rat model by restoring BMPR2 expression.126 Conversely, in the 
right ventricle of multiple PH rat models and cultured rat right ventricle 
cardiomyocytes, E2-ERα signalling increased BMPR2 expression.110

Further, basal BMPR2 levels were higher in female right ventricle samples 
compared to males. Interestingly, they showed a direct interaction be
tween ERα and BMPR2, which improved cardiac function via Apelin upre
gulation. In this study, Frump et al. also showed a protective effect of E2, or 
an ERα agonist, by preventing PH disease development in multiple PH rat 
models, driven via this BMPR2/Apelin-axis. Compared to human control 
samples, IPAH patients showed decreased ERα levels in the right ven
tricle.110 Taken together, oestrogens decrease BMPR2 expression in the 
vasculature but promote BMPR2 levels in the right heart. This cell type- 
dependent effect can explain female predominance and increased male se
verity in PAH.

Circulating sex hormones may be also secreted by and affect non- 
cardiovascular tissues, which in turn may impact the cardiovascular system 
indirectly. Through this angle, multiple studies have been performed using 
non-vascular cell models like MCF-7 and HEK293 that could help us to un
veil the mechanistic crosstalk between TGFβ and sex hormones (summar
ized in Table 1). Researchers have shown that ERα/β can directly bind, 
inhibit, and recruit protein degradation systems (by e.g. SMURF1) to 
SMAD2/3 in an oestrogen-dependent manner (Figure 4).145–148 BMP sti
mulated SMAD1/5/8 phosphorylation was also reduced by oestrogen 
treatment in the same non-vascular cell lines.149 To add complexity to 
this oestrogen-TGFβ crosstalk, SMADs can also be a cofactor for sex- 
hormone receptor-mediated transcription.150,151 Evidently, as these stud
ies made use of non-vascular cells, there is a need to confirm their findings 
towards vascular biology in the context of PAH.

In conclusion, accumulating evidence indicates that oestrogens can regu
late canonical TGFβ signalling by directly altering the expression of TGFβ 
receptors and signalling modulators, at the transcriptional and protein le
vel. Moreover, oestrogen signalling via GPER may indirectly modulate 
TGFβ non-canonical routes (Figure 4).

4.2 Progestogens
Progestogens may positively impact the cardiovascular system,152 by nega
tively regulating the hyperproliferation of ECs and SMCs.112,153,154

Progesterone induces a strong vasodilating response compared to oestra
diol and testosterone in male and female rat coronary and pulmonary ar
teries ex vivo.114 Congruently, low progesterone levels correlate with 
increased risk of PAH in men.155 To date, a direct link between progesto
gens and TGFβ signalling (including BMPR2 regulation) in cardiovascular 
cells is underexplored. In epithelial cells, progesterone inhibits 
TGFβ1-induced SMAD3 phosphorylation in a dose-dependent manner,127

and antagonizes TGFβ1-mediated upregulation of the target genes CTGF, 

transgelin, and PAI-1. In human granulosa cells, BMP-15-induced signalling 
via BMPR2 and ALK6 was shown to suppress progesterone production,156

although likely indirectly. In addition, Activin A repressed progesterone 
synthesis in the reproductive system,157,158 which might explain low pro
gestogen levels in male PAH patients,155 as Activin A plasma levels are in
creased.89 Similarly, BMP4 and BMP7 also suppressed progesterone 
synthesis in Granulosa-Lutein cells.159 The crosstalk between progester
one and TGFβ signalling is most likely cell type and context dependent.

In summary, although functional progesterone responses on vascular 
cells are well described, data regarding crosstalk between progestogens 
and TGFβ signalling in this context is lacking, and more research is needed 
to further understand the sex-related differences in PAH.

4.3 Androgens
Androgens have been proposed as a therapeutic treatment for PH,116,160

because of its quick beneficial vasodilatory effect on the pulmonary vascu
lature21 and its protective effect on right ventricle adaptation and func
tion.160,161 Androgens classical mode of action involves gene 
transcriptional responses through intracellular binding to AR,113,162,163 ex
pressed in PASMCs and ECs. The androgen-induced vasodilation response 
occurs within 20 minutes after androgen administration.21,114 As a direct 
effector, testosterone can antagonize calcium channels in SMCs, thereby 
triggering a fast cellular response, not mediated by classical 
AR-dependent gene transcription. The androgen metabolite DHEA is 
shown to restore cardiac remodelling and increase right ventricular func
tion in rat models for experimentally induced PAH.128,160 Further, 
DHEA treatment of PAH patient-derived PASMCs increased BMPR2 
mRNA expression,128 explaining an increased disease penetrance in indivi
duals with low DHEA-S levels.164–166 Therefore, DHEA (or 
DHEA-sulphate, -S) treatment is currently investigated in a clinical 
setting.161

Beyond the vasculature, androgens are described to modulate TGFβ sig
nalling at multiple levels (Figure 4 and Table 1). Also mechanistically, in pros
tate cancer cell lines such as LNCaP and PC3 cells, dihydrotestosterone 
(DHT)-induced AR transactivation can form a complex with SMAD3 
and SMAD4, where SMAD3/AR complexes promote transcription via 
DNA binding to AREs, while SMAD3/SMAD4/AR complexes inhibit an
drogen target gene expression.150 Hayes et al.167 observed a repression 
of androgen target gene expression by SMAD3/AR complexes, by direct 
binding of the MH2 domain of SMAD3 with the transcription activation do
main of the AR. Interestingly, the androgen-driven inhibitory effects on 
gene transcription are not specific for the TGFβ branch of the family, 
but also BMP signalling and its downstream targets are inhibited upon 
DHT treatment in e.g. intestinal stromal cells.168 Furthermore, phosphory
lated SMAD1 interacts with AR to suppress its transcriptional function,169

indicating that androgens may regulate both TGFβ and BMP signalling path
ways and vice versa (Figure 4).

In conclusion, androgens and TGFβ crosstalk via direct AR and SMAD 
interactions and indirectly via transcriptional regulation through AREs 
(Figure 4). The vast majority of these data result from studies using prostate 
cancer or other non-vascular models but may very well be applicable to 
PAH. For example, testosterone administration increased the expression 
of the circulating TGFβ regulators Follistatin, Chordin, and Noggin expres
sion in muscle stellate cells129 (Table 1), which may impact distant organs, 
including the heart and the pulmonary vasculature. PAH patients exhibit in
creased Activin A and Follistatin circulating levels,89 and Activin A levels 
correlate with increased mortality. Higher androgen-mediated Follistatin 
in males could potentially suppress high amounts of Activin A in PAH 
and might contribute to the lower prevalence in men.170 The decrease 
in androgens with age would lead to decreased Follistatin levels with in
creased active Activin A levels and disturbed TGFβ and BMP signalling bal
ance as consequence. In line, the sex-biased disease prevalence in PAH also 
decreases upon ageing.12 Following this hypothesis, one might warrant the 
prescription of (Activin A) ligand traps like Sotatercept. Indeed, as de
scribed earlier, clinical trials have been performed treating Sotatercept 
to PAH patients with striking results.8,171
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Taking into consideration the TGFβ/BMP balance and the effects 
sex hormones have on TGFβ signalling components, including BMPR2, 
one could assume that BMPR2 expression levels are higher in men com
pared to women. Low androgen levels with a corresponding drop in 
BMPR2 expression could initiate PAH development, as low DHEA-S levels 
are correlated with worse disease outcome in male PAH patients.166

Further, high androgen-driven Follistatin levels in men might protect 
from pathogenic signalling by e.g. Activin A in PAH. Taken together, this de
lineates a higher incidence in PAH development in predominantly younger 
women but also a more severe disease outcome in men with low DHEA 
levels.166

4.4 Anti-Müllerian hormone
AMH is expressed in follicular sertoli and ovarian granulosa cells and is 
known to be a circulating hormone throughout life, although declining 
with age. AMH is a TGFβ family member that binds its dedicated TGFβ 
Type II receptor AMHR2,172 also expressed in the human heart.173

Associated Type I receptors include ALK2, -3 and -6, thereby involving 
BMP-like downstream signalling (Figure 1).37,172 Although typically linked 
with sexual dimorphisms174 and female fertility, other studies indicate 
AMH to have cardiovascular regulatory properties. Since 2012, high levels 
of AMH have been correlated with cardiovascular protection,175 de
creased plaque diameter in non-human primates,176 and decreased male 
aortic diameter, which are all risk factors for aneurysm.177 More recently, 

in the Doetinchem Cohort Study, they found that decreasing AMH 
trajectories are associated with a substantial elevated risk of CVD in 
women.178

A potential role of AMH in PAH was recently suggested in a case 
report study179 describing a novel loss-of-function BMPR2 mutation 
in exon 2 associated with IPAH development. The resulting BMPR2 mutant 
protein is unable to translocate to the plasma membrane. Comprehensive 
analysis of the TGFβ/BMP signalling signature in peripheral blood mono
nuclear cells (BPMCs) of this patient confirmed low BMPR2 expression le
vels, and increased expression of AMHR2, ALK1, ALK3, and ALK6 protein 
levels, whereas TGFβ receptors remained unchanged.179 Noteworthy, in
creased SMAD1/5 and SMAD2/3 phosphorylation was observed upon 
BMP2 and TGFβ stimulation. Furthermore, mRNA expression of the 
BMP target genes ID1, SMAD6, and STAT1 was increased, suggesting that 
BMP signalling was not compromised due to the BMPR2 mutation, at least 
in PBMCs. The expression of AMHR2 in PBMCs supports the hypothesis 
that AMH affects inflammation responses and therefore influences 
PAH. Indeed, higher circulating AMH levels has been correlated with 
the reduced inflammation marker C-reactive protein in men.180

Disturbed inflammatory responses have been proposed as an additional 
driver of PAH development,181 therefore, reducing inflammation via in
creased AMH signalling in BMPR2 mutant carriers might be beneficial in 
PAH. In this case report however, increased AMHR2 not necessarily 
proves increased signalling as functional AMHR2 ligands activity was not 
quantified.

Figure 4 Signalling crosstalk of sex hormones and TGFβ signalling. The membrane permeable sex hormones androgens, progestogens, and oestrogens bind 
their nuclear receptors androgen receptor (AR), progestogen receptor (PR), and oestrogen receptor (ER), respectively. Oestrogens also bind the membrane 
receptor G-protein-coupled oestrogen receptor (GPER). Sex-hormones crosstalk on three different levels with TGFβ signalling. (1) The activated nuclear re
ceptors can directly interact with SMADs to inhibit downstream signalling. Oestrogen-ER signalling has been associated with SMURF1-mediated proteasomal 
degradation of SMADs. (2) All sex-hormones have shown to regulate TGFβ target genes, via their corresponding responsive elements. (3) The 
oestrogen-GPER signalling cascade includes routes overlapping non-canonical TGFβ signalling routes. TGFβ, transforming growth factor-β; BMP, bone mor
phogenetic protein; AMH, anti-Müllerian hormone; AR/PR/ER, androgen/progestogen/oestrogen receptor; GPER, G-protein-coupled oestrogen receptor; 
SRE/ARE/PRE/ERE, SMAD/androgen/progestogen/oestrogen responsive element; SMAD, small mothers against decapentaplegic; SMURF, SMAD specific ubi
quitin ligase.
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Studies using lung cancer epithelial cells reported a crosstalk between 
AMHR2 and BMPR2 causing enhanced SMAD2/3 phosphorylation upon 
loss of AMH or AMHR2,131 possibly via mixed-heteromeric receptor com
plexes driven by BMP ligands.93 Correspondingly, in these cancerous epi
thelial cells, siRNA depletion of AMH or AMHR2 drives EMT,131

suggesting inhibitory functions of AMH in EMT. Early in life, males show 
higher AMH levels than females, but women have higher AMH levels 
throughout life.177 To date, relevant data in relation to the pulmonary vas
culature are lacking, but if the mechanisms described above for AMH are 
applicable to vascular cells too, unravelling the role of AMH in the vascula
ture might help understand PAH disease development.

4.5 Sex hormonal therapy and the clinic
The crosstalk between oestrogens and androgens and the TGFβ signalling 
family is relatively well described in the vascular system. The findings de
scribed in previous chapters indicated a protective effect of androgens, 
by increasing BMPR2 expression and circulating Follistatin levels, and oes
trogens being an additional risk factor, by decreasing BMPR2 levels in the 
vasculature but cardioprotective in the heart. Correspondingly, targeting 
sex-hormone signalling in PAH is a strategy applied within the clinic by mul
tiple groups.

Baird et al. showed that lower levels of dehydroepiandrosterone- 
sulphate (DHEA-S, a prohormone for androgens and oestrogens) and 
higher levels of E2 were associated with severe PAH in men164 and in post- 
menopausal women.165 This profile caused a worsened disease outcome, 
suggesting substantial roles of these sex hormones in disease progression 
and response.164 In a recent study analysing a large Dutch PAH cohort, low 
DHEA-S levels in male and female PAH patients were confirmed.166 These 
studies validated a clinical trial to evaluate the effect of DHEA-S administra
tion in PAH (EDIPHY: NCT03648385).161 Targeting high oestrogen levels 
also seems a possible treatment option for PAH, as oestrogen inhibition by 
anastrozole (aromatase inhibitor) and fulvestrant (ER antagonist) pre
vented and reversed PAH development in BMPR2 mutant mice.182 A small 
proof-of-concept trial using fulvestrant on five PAH patients showed an in
creasing trend of the primary outcome 6-minute walking distance compar
ing baseline with 9 weeks of treatment, although not significant 
(NCT02911844).183 Two clinical studies are being conducted using ana
strozole in PAH. The first small Phase 2 clinical trial of anastrozole in 
PAH patients showed a 40% reduction of oestrogen plasma levels, a 
good safety profile and a significant increased 6-minute walking distance. 
However, other PAH clinical outcome measures remained unchanged 
(NCT01545336).184 A larger follow-up trial has been recently performed 
(PHANTOM: NCT03229499). While we still wait for the final data to be 
published, the preliminary results presented at the American Thoracic 
Society International Conference 2023 revealed no significant improve
ment in 6-minute walking distance after 6 months, NT-proBNP levels or 
echocardiographic parameters in individuals treated with anostrozole.185

Importantly, oestrogens show a protective effect on the right heart by in
creasing BMPR2 levels.110 Therefore, this might raise concerns when apply
ing anti-oestrogen therapies. However, PHANTOM showed that 
decreasing oestrogen levels did not have adverse effects on the right heart 
of PAH patients. Of course, potential systemic effects of anti-oestrogen 
therapy should be carefully evaluated, particularly when treating repro
ductive aged women.

In this regard, pregnancy has been associated with increased risk of PAH 
development in BMPR2 mutation carriers, as patients have been diagnosed 
with PAH after pregnancy.186 Disease severity is also higher peri- and post- 
partum,187 resulting in a mortality of pregnant PAH patients of around 11– 
25%.2 These observations can easily be linked to drastic haemodynamic 
changes during pregnancy,187 but the long-term effects of hormonal 
changes are often not considered. As such, oestrogens and progestogens 
rise dramatically during pregnancy. As already described, this affects the 
TGFβ family signalling pathway in different manners. Hence, sex-hormonal 
changes during pregnancy might enhance TGFβ signalling dysregulation (by 

an additional drop of BMPR2 levels in the vasculature) and subsequent PAH 
development and severity.

Taken together, these studies underline the importance of sex hor
mones in PAH disease initiation and progression (in pregnancy) and set 
the stage for clinical (anti-)hormone therapies for PAH, although context- 
dependent cellular and molecular mechanisms driving these effects are still 
incompletely understood.

5. Genetic-related sex differences 
and the TGFβ signalling family
The X and Y sex chromosomes contain specific genetic information which 
might differentially regulate the TGFβ signalling family in males and females. 
Although most of the genes expressed from the Y-chromosome encode 
for proteins required during gonad development, some factors also have 
roles outside the reproductive system. In females, expression levels of 
genes located on the X-chromosome are regulated by the inactivation of 
one of the two X-chromosomes. As we will discuss below, in some occa
sions this process can be disturbed, leading to enhanced gene expression 
due to increased genetic load. In this section, we elaborate on X- and 
Y-linked genes in relation to the TGFβ signalling family in PAH.

5.1 Y-chromosomal expression
The Y-chromosome is a relatively small chromosome containing a low 
number of genes in comparison with other mammalian chromosomes. 
There are 568 genes harboured on the Y-chromosome, of which only 
71 have protein encoding potential.188 Multiple genes encode proteins of 
the same protein families, leaving only 27 non-related proteins encoded 
on the Y-chromosome. In a mouse model for PAH, Umar et al.25 found 
that the Y-chromosome protects disease development, unrelated to go
nadal sex (testes or ovaries), suggesting an important role for 
Y-chromosomal expression in preventing PAH development. Of all 
Y-chromosomal genes, the sex-determining region Y (SRY) gene is the 
most studied.189 SRY is a DNA-binding transcription factor regulating 
gene expression at the early initiation of testes development, but SRY 
also functions outside the reproductive system.190 As such, SRY directly 
binds the promoter of BMPR2 to upregulate BMPR2 expression in PAH fi
broblasts.191 As females lack SRY, this BMPR2 transcriptional regulation 
does not occur. Correspondingly, BMPR2 mRNA levels in male PAH 
patient-derived lymphocytes are higher compared to female equals.124

Further, SRY may indirectly modulate the TGFβ family signalling by inter
acting with AR thereby dampening testosterone-induced transcription.192

Of all the genes found on the Y-chromosome in PAH patients, eight genes 
showed decreased expression in diseased lung tissues.25 One of these genes 
is USP9Y, a ubiquitin-associated hydrolase preventing ubiquitin-dependent 
degradation of proteins including SMAD4, thereby increasing TGFβ signalling 
(see reference 193 and ENSG00000114374). Another downregulated 
Y-linked gene in PAH lungs is the ATP-dependent RNA helicase 
DDX3Y.25 Although DDX3Y interacts with SMAD2 and SMAD3,194 the 
functional consequence of this interaction is unknown. In summary, 
Y-specific expression profiles may alter the signal transduction induced 
by TGFβ family members (Figure 5B) and might prevent the initiation and 
progression of PAH. How these interactions with the TGFβ family results 
in changes of cellular behaviour needs still to be deciphered.

5.2 X-chromosome inactivation
The X-chromosome contains over 1200 genes. In females, the expression 
of X-linked genes is tightly regulated by X-chromosomal inactivation. This 
process is necessary for genetic dosage, leading to similar gene expression 
levels of X-linked genes in female XX cells compared to XY male cells.195

Silencing of the X-chromosome is mediated by the long non-coding RNA 
(lncRNA) antisense pair X-inactive specific transcript (XIST) and TSIX 
(XIST, opposite strand). While XIST shields (thereby silences) one of the 
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X-chromosomes, TSIX impairs the inactivation of the active 
X-chromosome through complementary binding to XIST. Furthermore, 
epigenetic modifications of the XIST locus can cause XIST silencing.196 In 
addition, the lncRNA X-active specific transcript (XACT) coats the active 
X-chromosome and also antagonizes XIST.197 Most genes on the inacti
vated X-chromosome remain silenced; however, 15–25% of X-linked 
genes escape this silencing process (known as ‘escapees’).198 These esca
pees have been linked to sex differences in diseases like auto-immune dis
eases and cancers.199

Recently, in the EHitsn-KOITSN+/− PAH mouse model for plexiform ar
teriopathy, Xist expression levels were increased in female PAH mice com
pared to the male mice or female WT mice.200 Noteworthy, female 
EHitsn-KOITSN+/− mice showed worsened vascular remodelling compared 
to their male equals. While no difference in Xist levels were observed in 
the SuHx PAH rat model, increased Xist expression was observed in hu
man female PAH lungs compared to healthy subjects. Taken together, 
the upregulations of the lncRNA Xist/XIST may explain the sexual di
morphism in vascular remodelling and therefore highlights the importance 
of X-chromosome inactivation in the sex bias in PAH.

Several studies suggest an interplay with Xist and BMP/TGFβ signalling. 
Genetic knockdown of ACVR1B (ALK4), BMPR2, and SMAD2 inhibits the 
expression of Xist in mouse fibroblasts.201 BMP signalling was found to 
induce and maintain the expression of XIST, while TGFβ signalling served 
as an antagonist. Furthermore, TGFβ signalling induced TSIX expression 
in dermal fibroblasts.202 Although specific XIST/TSIX expression levels 
are suggestive for X-chromosomal silencing, deeper comprehensive 
studies are needed for conclusive results. Nevertheless, dysregulation 
of TGFβ/BMP signalling could impact the chance of genes on the 
X-chromosome to escape gene silencing, thereby contributing to sex dif
ferences in PAH pathology.

The genetic impact on PAH development suggest a protective role for 
specific genes expressed from the Y-chromosome.25 The 
Y-chromosomal expressed SRY transcription factor upregulates BMPR2 

expression in PAH fibroblasts.191 As discussed above, TGFβ signalling 
can influence X-chromosomal inactivation in females, further enhancing 
TGFβ signalling disbalance in PAH. These observations strengthen the 
link between sex hormones, sex-related genetics, disturbed TGFβ signal
ling, and PAH disease development.

6. Hereditary haemorrhagic 
telangiectasia
The genetic background and disease aetiology in Hereditary Hemorrhagic 
Telangiectasia (HHT) (or Rendu–Osler–Weber syndrome) and HPAH pa
tients sometimes overlap.203 Interestingly, there is also a sex bias observed 
in HHT although this is less pronounced compared to PAH. Therefore, 
many findings in this review are also relevant in a HHT context, which 
we shortly highlight in this section.

HHT is a vascular disorder presenting with malformed vessels leading to 
telangiectasia (spider veins), haemorrhages, and arteriovenous malforma
tions (AVMs).204 Similarly as HPAH, HHT originates in people harbouring 
loss-of-function mutations in genes encoding BMP receptors, i.e. ACVRL1 
(ALK1: HHT2) and ENG (endoglin: HHT1).98,205 It is thought that de
creased BMP signalling causes endothelial dysfunction, leading to the mal
formed vasculature in HHT.206,207 Sex differences in HHT present 
mainly by more severe symptoms in women compared to men (increased 
pulmonary and hepatic AVMs),208,209 although some small registry studies 
describe a female predominance.210–212

In this review, we explored sex differences in the TGFβ signalling family 
in PAH, but our discussion may have implications for HHT too. For in
stance, administration of Raloxifene increases ALK1 and ENG expression 
in ECs118 and is therefore proposed as treatment option for HHT (re
viewed in reference 213). Another SERM, Tamoxifen, showed promising ef
fects in a clinical trial reducing severe epistaxis.214 There is a marked 

Figure 5 Genetics sex-related differences on the TGFβ signalling family in health and PAH. (A) In females, proper X-chromosome inactivation results in 
healthy genetic output leading to a balanced TGFβ/BMP signalling. However, disturbances in X-chromosome inactivation results in dysregulated genes (esca
pees) and increased genetic output which might cause a diseased disbalance in TGFβ/BMP signalling. (B) In males, SRY has been linked to increased BMPR2 
expression, while USP9Y is an ubiquitin-dependent hydrolase that targets SMAD4. TGFβ, transforming growth factor-β, BMP, bone morphogenetic protein; 
SMAD, small mothers against decapentaplegic; SRY, sex-determining region of Y; USP9Y, ubiquitin specific peptidase 9 Y-linked; BMPR2, BMP receptor Type 2.
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influence of sex in pulmonary and hepatic vascular malformations in HHT, 
suggesting organ or tissue-specific features in comparison with other or
gans.215 It might be that expression levels of sex-hormone receptors in 
hepatic or pulmonary ECs makes these cells more sensitive to circulating 
sex hormones. This review highlights three levels on which sex hormones 
can alter TGFβ signalling (Figure 4). Further research on these organ- 
specific endothelial effects is warranted to delineate the sex bias in HHT.

7. Discussion and concluding remarks
PAH is a cardiovascular disease with a clear sex bias towards increased fe
male predominance and more severe male phenotype. The molecular 
causes of this bias are incompletely understood. This review therefore ex
plored sex differences in the TGFβ signalling family to understand the sex 
bias in PAH (and by extension in HHT).

We have emphasized that hormonal and genetic sex differences may 
regulate the TGFβ signalling family in different ways to contribute to 
PAH. Noteworthy, many of the mechanistic findings described above ori
ginate from non-vascular cell models, hence translation into PAH should be 
done carefully. Future studies should be performed aiming to investigate 
sex-specific effects on the TGFβ signalling family in a cardiovascular setting. 
Often, sex-related genetics are not taken into account while investigating 
sex hormonal effects on TGFβ signalling. For instance, researchers should 
include karyotypes of the cells or tissues studied. We further stress the im
portance of implementing sex-related genetics in sex-hormone-based 
studies.

In the meantime, we can anticipate that personalized treatments will 
progressively become more relevant in clinical decision-making, and there
fore sex-related components need to be addressed accordingly. We high
light sex-specific features like hormones and genetic differences in relation 
to the TGFβ signalling pathway in pulmonary vascular diseases. These find
ings could implicate differential treatments based on sex, e.g. hormonal 
therapy like tamoxifen, raloxifene, anastrozole, or DHEA-S, of which the 
latter two clinical trials are discussed in this review (Section 4.5). These 
trials are eligible for all sexes although, depending on the study outcomes, 
sex-customized treatments should not be overlooked. Adverse effects of 
hormone therapies might be overcome by the development of next- 
generation SERMs like LY2066948.133,216 Unfortunately, anastrozole (anti- 
oestrogen) therapy in PAH showed lack of efficacy following the prelimin
ary clinical data.185 Conversely, pre-clinical evidence shows that oestrogen 
administration also ameliorates PAH outcome in a tissue-specific manner, 
by targeting the right heart.110 Oestrogen therapy targeting the heart, as an 
organ-specific treatment, might therefore be a promising treatment op
tion, especially in men showing less right ventricular adaptation.

Overall, sex-specific differences in the TGFβ signalling family 
potentially explain sex differences in PAH. Many aspects of sex-related 
crosstalk with the TGFβ signalling family within the cardiovascular 
system are incompletely understood and more research is therefore 
warranted. Sex-specific determinants are becoming increasingly 
important for biomarker identification, drug development and therefore, 
to find a definitive cure for PAH.
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