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Summary

Quantum computing represents a fundamentally new paradigm of computation,
enabling approaches to problems that are intractable for classical computers.
Since currently available quantum devices are small, noisy, unreliable, and
expensive, much of today’s progress relies on theoretical analysis and classical
simulations to understand their capabilities and limitations.

Dynamics describes how the state of a system changes over time, and can be
mathematically represented by models such as differential equations or time
series. In this thesis, we investigate the application of quantum computing to
capturing such dynamics from several complementary perspectives.

In the introductory Chapter 1, we present the foundational concepts. We
introduce quantum computing, variational quantum algorithms, and shot noise.
As applications of variational quantum computing, we discuss solving differential
equations, quantum machine learning, and applications to finance. Finally, we
outline several research questions and describe the overall structure of the thesis.

In Chapter 2, we explore the role of derivatives in quantum machine learning.
We demonstrate that parameterized quantum circuits can approximate both
functions and their derivatives arbitrarily well, provided that the input data are
appropriately rescaled. Furthermore, we show that incorporating both function
values and derivative values in the training data set enhances the guaranteed
approximation of the trained quantum models, allowing approximation in
stronger norms that would otherwise be unattainable. As the dynamics of a
function are governed by its derivatives, these insights clarify how quantum
machine learning can effectively capture dynamical behavior.

In Chapter 3, we analyze a class of quantum algorithms designed to solve
differential equations. We conduct an error analysis and resource estimation,
focusing on errors arising from the classical Runge-Kutta subroutines as well as
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from shot noise in evaluating quantum circuits. We apply these estimates to a
differential equation from financial option pricing and compare how different
Runge-Kutta methods affect the total computational resources required.

Quantum state tomography is the process of reconstructing a quantum state
from measurement data and constitutes an important subroutine in many
quantum algorithms. In Chapter 4, we present a method for mitigating shot
noise in quantum state tomography by formulating both measurement data and
physical constraints as a semidefinite program. We show that, depending on
the underlying quantum state, there exist noise regimes in which our method
outperforms other state-of-the-art tomography techniques.

Finally, in Chapter 5, we demonstrate the application of quantum generative
adversarial networks to generating synthetic financial time series. We simulate
the quantum circuits using both full-state and tensor network-based simulations.
For classical models, generating synthetic financial time series that both follow
the target distributions and exhibit realistic temporal correlations remains
challenging. We show that our quantum models can qualitatively capture these
statistical and temporal properties well.
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