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CHAPTER 6

Conclusions

With this chapter, we conclude the thesis. We restate and conclude the research
questions outlined in Sec. 1.4 in the beginning of this thesis. Finally, we
re-outline promising directions of future work.

6.1 Research overview

This thesis dealt with several aspects of capturing dynamics with noisy quantum
computers. We introduced several concepts as well as the research questions
in Chapter 1, which we explored in Chapters 2, 3, 4, and 5. While we drew
conclusions at the end of each of Chapters 2, 3, 4, and 5, we now come back to
the specific research questions stated in the beginning of the thesis and reflect
on them based on the results derived in the earlier chapters.

The first two research questions are concerned with theoretical properties of
quantum machine learning:

Research Question 1: Can parameterized quantum circuits approrimate
functions as well as their derivatives?

In Chapter 2, which is based on the previously published work in Ref. [88], we
answered this question. We showed that parameterized quantum circuits can not
only approximate square integrable functions arbitrarily close in the L? distance,
but also other function classes and with respect to other distances. In particular,
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by answering this research question, we proved that parameterized quantum
circuits can approximate functions in the Sobolev space H* with arbitrary
precision under the Sobolev distance. Those spaces contain square-integrable
functions whose partial derivatives up to order k are also square-integrable. The
corresponding Sobolev distance is defined as the sum of the L? distances of
the function and its partial derivatives up to order k. However, parameterized
quantum circuits can only do so if certain conditions on the data input are met,
for which we also provide a trivial solution.

Research Question 2: How does an augmentation of the training data with
derivatives of the target function influence generalization in quantum machine
learning with parameterized quantum circuits?

We also answered this question in Chapter 2, which is based on the results
published in Ref. [88]. We proved a generalization bound that shows that a
generalization of the approximation of both the function and its derivatives
is possible if the training data includes not only labels of the target function,
but also of its derivatives. Furthermore, we proved that including data of the
derivatives of the target function also guarantees generalization bounds for the
supremum and LP distances. We found that the higher the dimension of the
function, the more higher-order derivatives are required in order to achieve these
bounds. These results give a theoretical explanation of earlier numerical findings
that suggested improved generalization with classical neural networks [89], and
thus also impact classical machine learning.

In the following research question, we focused on variational quantum algo-
rithms for differential equations solving:

Research Question 3: What is the total error arising in variational quantum
algorithms for solving differential equations based on Runge-Kutta methods and
which Runge-Kutta order minimizes the number of circuit evaluations needed?

In Chapter 3, we provided an extensive error analysis and determined the
resource requirements needed to achieve specific target errors, based on results
published in Ref. [46]. In particular, we derived analytical error and resource
estimates for scenarios with and without shot noise, examining shot noise in
quantum measurements and truncation errors in Runge-Kutta methods. Our
analysis did not take into account representation errors and hardware noise,
as these are specific to the instance and the used device. We evaluated the
implications of our results by applying them to two scenarios: classically solving
a 1D ordinary differential equation and solving an option pricing linear partial
differential equation with the variational algorithm, showing that the most
resource-efficient methods are of order 4 and 2, respectively. We showed that
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even those most resource-efficient methods require a number of shots multiple or-
ders of magnitude higher than what seems to be feasible on near-term quantum
computers. However, those resource estimates might be lower in practice, as sev-
eral error bounds on which these estimates are based on are not tight. Although
our study minimizes resources for the upper bound we derive, we hope that
the resulting prescription is a good heuristic for allocating resources in practice.
The results may also be of interest to the numerical analysis community as they
involve the accumulation of errors in the function description, a topic that has
hardly been explored even in the context of classical differential equation solvers.

In many variational quantum algorithms, estimating reduced density matrices
(RDMs) of the quantum system forms an important subroutine. However, this
task is challenging, among others due to the effects of shot noise stemming from
a limited number of measurements. Our following research questions therefore
asked:

Research Question 4: Is it possible to mitigate the effects of shot noise in
the quantum state tomography of reduced density matrices by enforcing physical-
ity conditions organized as semidefinite programs?

In Chapter 4, we answered this question, which is addressed in Ref. [90].
We proposed a method to mitigate shot noise by reinforcing certain physi-
cality constraints on RDMs. The first kind of these constraints, which we
called the enhanced-compatibility, require RDMs to be compatible with higher-
dimensional RDMs. Secondly, we included constraints that we called overlapping-
compatibility which enforce that overlapping RDMs are consistent on those
subsystems on which they overlap. We organized these compatibility constraints
in semidefinite programs to reconstruct RDMs from simulated data. Our
approach yields, on average, tighter bounds for the same number of measure-
ments compared to tomography without compatibility constraints. We further
demonstrated the versatility and efficacy of our method by integrating it into an
algorithmic cooling procedure to prepare low-energy states of local Hamiltonians.

In the last research question of this thesis, we explored quantum approaches
for generative modeling of dynamical systems of the financial market. In partic-
ular, we stated:

Research Question 5: Can quantum generative adversarial networks cap-
ture the distribution and stylized facts of financial time series on a qualitative

level?

In Chapter 5, we presented our answer to this question, based on the re-
sults shown in Ref. [91]. We trained quantum generative adversarial networks
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(QGANS), composed of a quantum generator and a classical discriminator, and
used two classical simulation approaches for the quantum generator: a full
simulation of the quantum circuits, and an approximate simulation of the latter
using matrix product states. We tested the effect of the choice of circuit depths
and bond dimensions of the matrix product state simulation on the generated
time series. Overall, the QGANs were generally successful in capturing most of
the temporal correlations observed in real financial data. But depending on the
hyperparameters of the model, the generated synthetic financial time series dif-
fered in how well they reproduced the properties of financial time series. These
differences allow selecting a model that best reproduces the desired properties
of financial time series for specific applications.

6.2 Future work

Throughout this thesis, we suggested several directions in which the results of
the thesis can be extended, at the end of each of Chapters 2, 3, 4, and 5. Let
us summarize here the most important ones.

The exploration of the expressivity and generalization of parameterized quantum
circuits in Chapter 2 motivates further study of their impact on applications
such as differential equation solving and option pricing. Further, it might be
promising to examine the role of other distances for both the expressivity and
generalization of parameterized quantum circuits.

In Chapter 3, we did not take into account representation errors and hardware
noise, although we gave several ideas and explanations in how to incorporate
them in practice. It is therefore natural to ask how to categorize these error
sources in a more systematic manner, by using techniques such as in [131]. We
determined the act of classically inverting an (in general ill-conditioned) matrix
with noisy elements as the key difficulty in this set of algorithms. Exploring
alternative ways for this step might therefore significantly improve the chances
of applying these and related algorithms for real-world use cases. It might also
be interesting to apply the ideas of Chapter 3 to classical differential solvers, as
many of those are dealing with noisy data.

The method presented in Chapter 4 can be extended by including additional
constraints, such as entropy constraints, into the SDP formulation to further
refine the reconstruction process [195]. An interesting question is to explore its
effect with other systems, such as frustration-free Hamiltonians or for quantum
chemistry calculations, as in [207, 208]. Furthermore, it might be promising
to combine our method with noise mitigation strategies and to apply it in the
optimization of other local observables, such as correlation functions.

The quantum generative adversarial networks of Chapter 5 can possibly be
applied as subroutines for applications such as option pricing [275] and risk
analysis [276]. Moreover, a possible extension of our method is to train the model
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to replicate correlated stocks of the S&P 500 index, motivated by research in
community detection [277]. We gave several ideas for this extension in Chapter 5.
We lastly suggest to explore possible improvement of the training of our model
by several ways. In particular, as the model is trained with Wasserstein loss
functions (see Egs. (5.9) and (5.11)) that are taking the distribution of the time
series into account, but not the temporal effects, an adaptation of the training
to consider them as well might lead to a better recovery of those temporal
effects.
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