
Capturing dynamics with noisy quantum computers
Dechant, D.S.

Citation
Dechant, D. S. (2026, February 17). Capturing dynamics with noisy quantum
computers. Retrieved from https://hdl.handle.net/1887/4290771

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4290771

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4290771

CHAPTER 5

Quantum Generative Modeling for Financial Time Series
with Temporal Correlations

5.1 Introduction
In recent years, the use of machine learning - in particular neural-network
based approaches - has expanded across many domains [48]. A particular
approach are the generative adversarial networks (GANs), in which successively
a generator and a discriminator are trained [210, 211]. The generator learns
the underlying distribution and samples from it, while the discriminator learns
to distinguish real data from generated samples. Typically, GANs are applied
in image generation [212–214], but also to other data [215].

The ability of machine learning models to generalize well relies on the avail-
ability of large datasets [48]. Data augmentation methods are techniques which
increase the training data set in order to alleviate these limitations [216]. Those
methods typically involve slightly modifying the training data, but synthetic data
generation by GANs is used as an approach for data augmentation [216, 217].

This is particularly relevant for finance, a computationally-heavy, yet difficult-
to-model field [77]. Unlike domains where there is an abundance of high-quality
data to train on, finance faces a fundamental challenge: the inherent non-
repetitive nature of financial events. For example, the time-series of a specific

The contents of this chapter have been published in Ref. [91].

133

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

asset’s price can only be observed once. A machine learning model that aims to
learn properties based on the time-series of a specific asset therefore is heavily
limited, as their ability to generalize well relies on large datasets. By learning
the underlying distribution of financial time series as well as its desired temporal
properties, one can generate new data that enables the creation of richer training
sets [218, 219]. In particular, temporal correlations such as volatility clustering
(periods of large variation are followed by periods of large variation, as do
periods of low variation) are important for single time series.

Parallel to the development of machine learning, research in quantum com-
puting and its potential application has increased. Motivated by the progress
in quantum hardware, quantum algorithms research has been focusing on vari-
ational quantum algorithms in the last decade [20]. These hybrid algorithms
consist of succinct calculations on a parameterized quantum circuit (PQC) and
a classical optimizer [21]. The PQC contains tunable and fixed gates, and
the classical optimizer calculates updated parameters based on measurements
conducted on the final quantum state of the PQC at each step, until a certain
precision or goal is reached.

Previous work proposed replacing the classical generator of a GAN with
a parameterized quantum circuit [220, 221]. Quantum circuits have been
proven to enable sampling from distributions which are intractable for classical
circuits, and so the set of distributions they access is in general different
than what classical models access. Consequently, it is expected they may be
more effective with some classes of distributions that classical models struggle
with [55, 56, 79, 222]. Subsequent studies expanded on this idea and examined if
this property can be harnessed in the context of learning financial distributions.
In particular, in [223], the idea to use QGANs for synthetic data generation
of financial time series has been proposed and tested, using a quantum circuit
Born machine, which performed better than a classical restricted Boltzmann
machine on learning the distribution of correlated asset pairs with respect to
the Wasserstein distance. However, generating financial time series which do
not only follow the same distribution as real-world data, but also show their
temporal correlations is challenging [78].

In this chapter, we develop a quantum GAN with a PQC as an expectation
value sampler-based generator and a classical neural network as a discriminator
for synthetic data generation and examine its ability in generating time series
replicating the S&P 500 index, including its distribution and temporal correla-
tions. The discrete time series spans from 20 to 40 points in time, where the
expectation value of single-qubit Pauli-X and Pauli-Z operators is interpreted
as the log return of the value of the index at each time step. The choice of
these observables will be motivated in Sec. 5.3.2. We simulate the quantum
circuits both with full-state simulations and with matrix product state (MPS)
simulations (also known as the tensor train) [224, 225]. While full-state simula-
tions are limited to short time intervals due to their exponential scaling, MPS

134

5.1 Introduction

5

simulations enable us to model longer time series by exploiting their ability to
efficiently replicate linear structures such as financial time series. In the MPS
simulations, we vary the bond dimension (also referred to as the tensor train
rank) to balance computational costs and simulation accuracy.

We show that our model generates time series whose distribution closely
matches that of the real time series. Furthermore, the generated samples show
temporal correlations, which are qualitatively similar to those observed in real-
world data. Our work shows the potential use of QGANs in learning time series
with specific temporal correlations.

This chapter is organized as follows. In Sec. 5.2, we introduce the concepts
of financial time series and its properties, as well as the concept of QGANs.
Further, we cover related work. In Sec. 5.3, we present the simulations we used.
We detail the data pre-processing as well as the quantum generator and the
matrix product state simulation. We show the results of our simulations in
Sec. 5.4, discuss them in Sec. 5.5, and conclude in Sec. 5.6.

Generator

|0⟩
U

⟨X⟩1, ⟨Z⟩1

|0⟩ ⟨X⟩2, ⟨Z⟩2

Noise z⃗
uniformly sampled

in [0, 2π]

Generator output:
Generated time series

{p(⟨X⟩1), p(⟨Z⟩1), p(⟨X⟩2), ...}

Discriminator:
How far is the generated
from the real time series?

Real
time series

Discriminator output:
Approximate Wasserstein distance between

distributions of real and generated time series

Real
Generated

Update parameters
to decrease output

Update parameters
to increase output

Figure 5.1: Structure of a generative adversarial network (GAN) used for time
series generation. The discriminator takes both the generated and real time series as
input and outputs its estimate for the Wasserstein distance W1(Pr,Pg) (see Eqs. (5.7)
and (5.8)). The generator is trained in order to bring the distribution of the generated
time series closer to the one of the real time series, the discriminator is trained
to approximate the Wasserstein distance between them. Both the generator and
discriminator are trained using different loss functions derived from the discriminator’s
output.

135

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

5.2 Background
In this section, we will introduce both financial time series and its temporal
correlations as well as generative adversarial networks, and their adaptations
based on the Wasserstein distance and with a quantum generator. Furthermore,
we will present related work.

5.2.1 Financial time series
A time series is a set of data points ordered over a given time frame, typically
at equally spaced time intervals. A financial time series is the set of financial
variables such as prices, returns and volatility of assets, indices or other financial
instruments.

An example of a financial time series is the S&P 500 index, which includes
500 of most valuable companies that are listed on US stock exchanges [75]. The
price of many instruments, such as the S&P 500 index, deviates around a mean
value that grows in time. Instead, examine the time series of the log return rt,
which is not dependent on this general market growth:

rt = log
(

St

St−1

)
, (5.1)

where St is the price of the index at time t. Simple models such as the Black-
Scholes model [81] assume a normal distribution of these log returns. However,
the distributions observed in the market have more complicated properties. The
returns of assets do not typically follow a normal distribution, their distributions
are more narrowly and spiked around the mean and have heavier tails (extreme
events are more likely), which is in contrast to the normal distribution of the
Black-Scholes model. Therefore, a main concern of research in finance is about
creating models that can mimic time series with higher accuracy, and machine
learning approaches have been increasingly explored for this case [77]. Many
observed log returns share common properties, also called stylized facts, that
originate mostly from behavior of parties that interact with the market [76].
These properties can be used in order to assess the quality of models of financial
time series. In practice, it is considerably more difficult to generate time series
that observe all of the stylized facts, than to only match the target distribution.
However, for finance practitioners it is often vital to use models which show the
stylized facts that are relevant for their use case [78] .

In this chapter, we focus on four stylized facts: non-Gaussianity, the absence
of linear autocorrelation, volatility clustering and the leverage effect. The first
of them is describing the behavior of the time-aggregated distribution. As
written above, it is not shown in the Black-Scholes model, but is generally seen
in real-world data. The latter three stylized facts are all temporal correlations

136

5.2 Background

5

between different values of the same time series. They can be analyzed with
the help of the correlation function corr(X,Y), which for the random variables
X and Y is defined as:

corr(X,Y) = cov(X,Y)
σXσY

= ⟨(X − µX) (Y − µY)⟩
σXσY

, (5.2)

where cov(X,Y) is the covariance, σX and σY the standard deviations of the
random variables and µX and µY denote their respective means. For a sequence
of independent random variables, the autocorrelation function vanishes at
all nonzero time lags. For instance, the increments of Brownian motion are
independent and therefore exhibit zero autocorrelation. The stylized facts of
the absence of linear autocorrelation, volatility clustering and the leverage
effect each have an intuitive reason for their emergence and can be observed by
analyzing the autocorrelaiton of the absolute and identical values of the time
series.

Firstly, the current and past values of financial time series are typically not
linearly autocorrelated. At time t, this means that for all time differences τ > 0,
the expectation value E [corr(rt, rt+τ)], taken over different realizations of the
time series, is close to zero. Intuitively this comes from the fact that any trend
in the return is exploited by traders, which in turn weaken the effect. This
exploitation of traders is a corollary of the so-called efficient market hypothesis.

Secondly, the absolute returns typically do exhibit correlation that slowly
decays in time. This effect is also called volatility clustering, and can be examined
by calculating the quantity corr(|rt|, |rt+τ |). It quantifies the observation that
large changes in the price are followed by large changes, and equivalently small
changes are followed by small changes.

Thirdly, the leverage effect describes the rise in volatility when the price of
an asset sinks. It can be observed by measuring the quantity corr(|r2

t+τ |, rt).
The reader can find more details of these properties in [76].
Synthetic data generation of financial time series concerns the generation

of artificial time series that observe these stylized facts. These properties and
their importance for practitioners differ depending on the time series and the
application, and they are difficult to compare in general. Furthermore, different
models generate time series with greatly varying quality in reproducing the
stylized facts. Therefore, the resulting synthetic time series are typically assessed
qualitatively if they are able to capture those properties [78].

However, in this chapter, we provide several quantitative metrics. In order to
quantify how closely the generated time series reproduce the stylized facts of
the S&P 500 index, we define the following metrics:

EMD(θ) = 1
τmax + 1

τmax∑
τ=0

∣∣∣r(SP 500)
t+τ − r(θ)

t+τ

∣∣∣ (5.3)

137

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

EACF
id (θ) =

(
1

τmax

τmax∑
τ=1

corr
(
r

(θ)
t , r

(θ)
t+τ

)2
)1/2

(5.4)

EACF
abs (θ) =

(
1

τmax

τmax∑
τ=1

[
corr

(
|r(SP 500)

t |, |r(SP 500)
t+τ |

)
− corr

(
|r(θ)

t |, |r
(θ)
t+τ |

)]2
)1/2

(5.5)

ELev(θ) =
(

1
τmax

τmax∑
τ=1

[
corr

(
|r(SP 500)

t |2, r(SP 500)
t+τ

)
− corr

(
|r(θ)

t |2, r
(θ)
t+τ

)]2
)1/2

. (5.6)

They are quantifying non-Gaussianity, absence of linear autocorrelation, volatil-
ity clustering and leverage effect, respectively. The first is based on the earth-
movers distance, which is the discretized form of the Wasserstein distance, and
the latter quantities are derived from the correlation functions describing these
properties, as explained above. Here, the log returns of the generated time series
are written as r(θ)

t , where θ stand for the parameters and hyperparameters of
the simulated QGAN, and the log returns of the S&P 500 index are written
as r(SP 500)

t . The lower these metrics are, the closer the stylized facts of the
generated time series r(θ)

t are resembling those of the time series r(SP 500)
t .

5.2.2 Wasserstein QGAN
Generative adversarial networks (GANs) [210, 211] are unsupervised machine
learning-based methods that are powerful in generating images and have also
been successfully applied to the generation of financial time series [226]. They
consist of two neural network that compete in a game-like setup. The generator
takes random noise as input and aims to create artificial data that is indistin-
guishable from real data. Both real data from the training set and artificial
data from the generator is then fed to a discriminator which is being trained to
detect the generated data, outputting a probability of the input data being real
or fake. They are trained in an alternating fashion until the generator is able to
create data indistinguishable from real data. GANs face challenges in training
instability (one neural network overpowers the other) and mode collapse (The
GAN focuses on creating data with limited variety) [227, 228].

Those challenges can be mitigated by replacing the discriminator with a
critic that learns the Wasserstein distance between the real and generated data
distributions, in the so-called Wasserstein GAN [228]. The Wasserstein distance
between the real and generated probability measures Pr and Pg, respectively,

138

5.2 Background

5

is defined as:

W1(Pr,Pg) := inf
π∈Γ(Pr,Pg)

E(x,y)∼π (∥x− y∥) . (5.7)

Here, Γ(Pr,Pg) denotes the set of all couplings of Pr and Pg, i.e., all joint
probability measures whose marginals are Pr and Pg. And by (x, y) ∼ π, we
denote that the random pair (x, y) is distributed according to the coupling
π. Calculating this infimum is not feasible in practice, but the Kantorovich-
Rubinstein duality delivers a quantity that can be used in a machine learning
context [228, 229]:

W1(Pr,Pg) = sup
∥f∥L≤1

(
Ex∼Pr

(f(x))− Ex̃∼Pg
(f(x̃))

)
, (5.8)

where sup∥f∥L≤1 is the supremum over all 1-Lipschitz functions. The role of
the critic D is to maximise the loss function

LD(D,Pg) =Ex∼Pr
(D(x))− Ex̃∼Pg

(D(x̃)) (5.9)

+ λEx̂∼Px̂

(
(∥∇x̂D(x̂)∥2 − 1)2

)
, (5.10)

where D(x) is trained to approximate f(x) in Eq. (5.8). The latter term is a
gradient penalty regularization [230] that enforces the 1-Lipschitz condition
by a scaling parameter λ and where x̂ = ϵx + (1 − ϵ)x̃ with the random
parameter ϵ ∼ U [0, 1]. This loss function will train the critic to approximate the
Wasserstein distance between the probability distributions of real and generated
data. In contrast, the role of the generator is to maximize

LG(D,Pg) = Ex̃∼Pg (D(x̃)) . (5.11)

See Fig. 5.1 for a sketch of a Wasserstein GAN.
Quantum generative adversarial networks (QGANs) are GANs in which the

classical generator and/or the classical discriminator are replaced by a quantum
circuit [220, 221].

They are motivated by the fact that quantum circuits can learn distributions
efficiently that are hard to model by classical means [55, 56, 79, 222]. The proofs
of advantage showcase that learning can not be achieved when the distribution
is hard (generated by a quantum process). Market data is manifestly not so.
However, in other models it was shown that one can have learning separations
even if the generation of the data is classically tractable [231]. It remains an
open question if such separations can also hold for estimation value sampler
as we use here. However, even without separations it may be the case that
quantum models simply have more convenient inductive biases than classical
models and understanding those is valuable, and the interests of this work go

139

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

Layer 1 Variational Layer

|0⟩ RX(θ1) RY (θ2) RZ(θ3) RX(λ1z1) RX(θ25) RY (θ26) RZ(θ27)

|0⟩ RX(θ4) RY (θ5) RZ(θ6) RX(λ2z2) RX(θ28) RY (θ29) RZ(θ30)

|0⟩ RX(θ7) RY (θ8) RZ(θ9) RX(λ3z3) RX(θ31) RY (θ32) RZ(θ33)

|0⟩ RX(θ10) RY (θ11) RZ(θ12) RX(λ4z4) RX(θ34) RY (θ35) RZ(θ36)

Figure 5.2: Example of a parameterized quantum circuit with 4 qubits and 1 layer
used as the generator in the QGAN. Each layer consists of single-qubit Pauli rotations,
CNOT gates and data uploading gates, which upload particular realizations of the
random noise z⃗. Each element of z⃗ is uniformly sampled in [0, 2π]. For parameterized
quantum circuits with more layers, each additional layer follows layer 1 and has
the same layout. Before the measurement, there is a variational layer consisting of
single-qubit Pauli rotations. The measurements are conducted single-qubit Pauli-X
and Pauli-Z bases. The single-qubit Pauli rotations are tunable with parameters
θi and the data-uploading gates are tunable with parameters λi. This Ansatz is a
hardware-efficient Ansatz, which is commonly chosen in the field [21, 238].

into this direction.
A parameterized quantum circuit (PQC) consists of tunable and fixed gates,

and measurements at the end. The parameters of the tunable gates are updated
based on the loss function, which consists of the measurement results and the
output of the discriminator.

The PQC can be used in different ways, for example as a quantum circuit
Born machine [223, 232, 233] or as an expectation value sampler [234–237].
The latter approach is the one which we use for our QGANs. In the former
case, a quantum circuit is used to learn an underlying distribution and every
single sample forms a bit string corresponding to the learned distribution. The
probability of each sample depends on the amplitudes of the final quantum
state. However, the precision of the generated values is limited by the discrete
nature of this approach. In contrast, the expectation value sampler identifies
expectation values of quantum circuit measurement outcomes with samples of
a distribution. The underlying randomness comes from classical noise uploaded
to the quantum circuit.

A sketch of the PQC architecture used in this chapter is given in Fig. 5.2.

5.2.3 Related work
In recent years, classical algorithms for generating synthetic financial data have
been proposed and explored, in GAN settings [78, 226, 239–241], and with other
approaches [78, 242]. A common challenge is the generation of time series that

140

5.3 Implementation

5

exhibit all stylized facts sufficiently well [78].
QGANs were introduced in [220] and [221], substituting generator and discrim-

inator with quantum circuits. Other approaches for QGANs, such as combining
a classical discriminator with a quantum generator, and their applications have
been explored as well [243, 244]. In [245] the generation of certain probability
distributions and in [246], the generation of correlated stocks has been examined.

Our work was motivated by [223], which compared the performance of gen-
erating synthetic financial data of correlated asset pairs by the two models of
restricted Boltzmann machines and quantum circuit Born machines, observing
an advantage of the quantum circuit Born machine for comparable model sizes.
Here we go beyond learning time-aggregated distributions of financial time series
as in [223], by additionally examining the temporal correlations of generated
time series. In contrast to the models used in [223], our method is based on the
expectation value sampler, which was introduced in [234], proven to be universal
in [236] and further generalized in [237]. An expectation value sampler outputs
Pauli string expectation values in the range [−1, 1], producing continuous vari-
ables. This is fundamentally different from quantum circuit Born machines,
which generate discrete bit strings according to the Born rule, and Boltzmann
machines, which also produce discrete outputs [223]. In Appendix 5.B, we
adapted our approach for learning the distribution of correlated pairs of foreign
exchanges and compare our results with the results of [223].

QGANs have also been used for other applications, such as image gen-
eration [247–250] and other discrete distributions [251], in generative chem-
istry [252], fraud detection [253], option pricing [254], and high-energy physics [255,
256]. Furthermore, other quantum machine learning strategies have been used
in learning financial time series [257].

The Wasserstein QGAN, proposed in [258, 259] by substituting both generator
and discriminator with a quantum circuit, shows improvement in training
stability and efficiency compared to QGANs based on other metrics. Our
simulations are using Wasserstein QGANs in which the generator is a PQC,
whereas the discriminator is a classical neural network. The full-state simulation
of such a Wasserstein-QGAN with gradient penalty as an application to generate
financial time series has been explored in [260] and compared to classical GANs.

5.3 Implementation
For this chapter, we aim to generate time series whose distribution approximates
the empirical distribution of real financial data. We train a Wasserstein QGAN
for generating time series based on training data originating in the time series
of the daily closing prices of the S&P 500 index [75], collected from 03.01.1950
until 29.09.2021. We use a hybrid approach, with a classical neural network as
a discriminator and a parameterized quantum circuit (PQC) as a generator.

141

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

We use a convolutional neural network as a discriminator, motivated by [239],
where it was used as the discriminator of a GAN that generates financial time
series. All its activation functions are rectified linear units, except the last single
neuron in the critic, which uses a linear activation function. The architecture
of the discriminator is detailed in Appendix 5.A.

We simulated the QGAN based on a full simulation of the PQC by using the
Tensorflow software library [261], and the QGAN based on the MPS approxima-
tion of the PQC with the JAX [262] and Quimb [263] software libraries. The
gradients are calculated via automatic differentiation. As an optimizer for the
training of the QGAN, we chose the Adam optimizer with a learning rate of
10−3. All simulations were conducted on the Alice and XMARIS computing
clusters at Leiden University.

In the following, we outline the data pre-and post-processing, the setup of the
quantum generator, the full-state simulation and the MPS simulation applied
in this chapter.

5.3.1 Data pre-and post-processing
The outputs of expectation value samplers are the expectation values of Pauli
strings which lie in the range [−1, 1]. As this is a key difference to the raw
time-series data in the form of log returns, which have unbounded support (see
Eq. (5.1)), we perform data pre-and post-processing. For that, we follow the
same approach as taken in Refs. [240, 264].

We first describe the approach for the pre-processing, which transforms the
raw time series data of the S&P 500 index into training data used in our
numerical simulations. This process consists of six steps: (i) data normalization,
(ii) the inverse Lambert-W transform, (iii) data normalization, (iv) data clipping,
(v) data rescaling and (vi) a rolling window.

(i) We normalize the time series data to have a mean of 0 and a variance of 1:

rt,(i) := r
(SP 500)
t − µr

σr
, (5.12)

where r(SP 500)
t is the original log return, calculated from the daily closing prices

St of the S&P 500 index by r
(SP 500)
t = log

(
St

St−1

)
. By µr and σr, we denote

the estimates of the mean and standard deviation of the log returns over the
whole period of collected time series data (03.01.1950-29.09.2021).

(ii) As learning a heavy-tailed distribution can be challenging due to a limited
number of samples in the tails, we implement the inverse Lambert-W transform
on the normalized log returns. This transformation will bring the heavy-tailed
distributed data closer to a Gaussian distribution. Given Lambert’s W function,
which is the inverse of z = u exp(u) with z : R→ R, we can define the following

142

5.3 Implementation

5

transform on the normalized heavy-tailed data set V = {rt,(i)}t:

Wδ(rt,(i)) := sgn(rt,(i))
(
W (r2

t,(i)δ)
δ

)1/2

(5.13)

with δ ≥ 0 a tunable parameter, sgn(rt,(i)) the sign of rt,(i) and W the
Lambert’s W function. The inverse of this function is given by rt,(i) =
Wδ(rt,(i)) exp

(
δ
2Wδ(rt,(i))2) [265]. Throughout this chapter, we pick δ = 0.5.

(iii) We normalize the transformed time series again such that it obtains a
mean of 0 and a variance of 1:

rt,(iii) :=
Wδ(rt,(i))− µ′

r

σ′
r

, (5.14)

where by µ′
r and σ′

r, we denote the estimates of the mean and standard deviation
of the transformed time series {Wδ(rt,(i)}t.

(iv) As the inverse Lambert-W transform can be ill-behaved at specific data
points, we discard outliers with large deviations outside the 0.05% tails.

(v) Afterwards, we linearly map the data to the interval [−1, 1]. Let min and
max denote the minimum and maximum values of the set {rt,(iv)}t, respectively.
The transformation is given by

rt,(v) = 2
rt,(iv) −min
max−min − 1 , (5.15)

where {rt,(iv)}t is the time series obtained after step (iv).
(vi) After these transformations of the log returns of the S&P 500 index, we

divide the time series into smaller batches. We achieve this by applying a rolling
window of window length m and stride s to the time series, which divides it
into multiple subsequences. This creates subsequences with length m, which
overlap and consequently correlate if the stride is shorter than the length of the
window, s < m. For each of these subsequences, we then compute its probability
distribution, which constitutes a sample of the training data set. Although
the correlation between training samples is not ideal, the more extensive set
of training samples can be beneficial for model performance. Throughout all
simulations shown in this chapter, we used a stride of s = 5 and a window
length of m = 20 and m = 40.

One sample of the resulting training data set is thus a subsequence of length
20 or 40 of the transformed time series of daily log returns of the S&P 500
index.

Each generated sample consists of the expectation values of 2n Pauli operators,
{rt,P QC}2n

t=1 = {⟨X⟩1, ⟨Z⟩1, ⟨X⟩2, ⟨Z⟩2, ...} from a PQC with n qubits (see
Sec. 5.3.2), which are then post-processed by taking the following steps: (i)∗

143

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

data rescaling, (ii)∗ data renormalization, (iii)∗ forward Lambert transform,
(iv)∗ data renormalization.

(i)∗ The data is rescaled by reversing step (v) in the pre-processing: The
inverse mapping is given by

rt,(i)∗ = rt,P QC + 1
2 (max−min) + min , (5.16)

where {rt,P QC}2n
t=1 are the measured expectation values.

(ii)∗ The resulting set is normalized by reverting step (iii):

rt,(ii)∗ = σ′
r rt,(i)∗ + µ′

r , (5.17)

where µ′
r and σ′

r are calculated in the pre-processing step (iii).
(iii)∗ The inverse Lambert-W transformation is reversed by applying

rt,(iii)∗ = rt,(ii)∗ exp
(
δ r2

t,(ii)∗

2

)
, (5.18)

where δ is the parameter that we fix to 1/2 throughout the chapter.
(iv)∗ Finally, we also reverse the first normalization:

rt,gen = rt,(iv)∗ = σr rt,(iii)∗ + µr , (5.19)

where µr and σr are the mean and standard deviation of the original time series.
At the end of the post-processing, each sample is a time series of length 2n,

which we write as:

rgen = {r1, r2, r3, r4, ..., r2n}
= {p(⟨X⟩1), p(⟨Z⟩1), ..., p(⟨X⟩2n), p(⟨Z⟩2n)} , (5.20)

where by p(·) we denote the post-processing.

5.3.2 Quantum generator and full-state simulation
As a generator of the QGAN, we chose a PQC with an architecture that is
sketched in Fig. 5.2, based on the hardware efficient Ansatz [21, 238]. The qubits
are initialized in the |0⟩ state. Each layer consists of single-qubit Pauli rotations,
CNOT gates connecting nearest neighbors and noise encoding gates. The latter
encode each a uniformly distributed noise sample with single-qubit rotations
with trainable parameters. Such circuit architectures suffer from barren plateaus
when scaled up in the number of qubits and layers [266]. Therefore, we do not
consider them to be scalable in their current form. Instead, our investigation
should be understood as establishing lower bounds on what can be achieved

144

5.3 Implementation

5

with quantum circuits: if these perform well at small scales, it motivates efforts
to refine them for improved trainability at larger scales. Conversely, if they fail
to perform even at small scales, this indicates that the application may be less
promising than one might have hoped.

In Sec. 5.4, we present results from training circuits with 10 and 20 qubits and
between 1 and 18 layers. This choice of the number of qubits and layers makes
the QGANs classically simulatable. After the n-th layer, we apply single-qubit
Pauli rotations and we measure each qubit in two bases: the Pauli-Z basis
and the Pauli-X basis. We chose these measurements in order to enable the
simulation of longer time series using fewer qubits. The exact consequences
in terms of expressivity and potential greater sampling costs was discussed
in [236, 267].

For the training of the QGAN and the analysis of the generated data at
the end of the training, which we present in Sec. 5.4, we create samples of
generated time series, each with a different random noise input. First, we
collect the expectation values {⟨X⟩1, ⟨Z⟩1, ⟨X⟩2, ⟨Z⟩2, ...} at the end of the
PQC, where ⟨X⟩i, ⟨Z⟩i ∈ [−1, 1] are the expectation values of the measurement
in the Pauli-X and Pauli-Z basis on the i-th qubit, respectively. Subsequently,
we post-process the data as described in Sec. 5.3.1. After the post-processing,
the obtained set {p(⟨X⟩1), p(⟨Z⟩1), p(⟨X⟩2), p(⟨Z⟩2), ...}, where p(·) stands as
the post-processing map, constitutes one sample of a generated time series rgen
(see also Eq. (5.20)). A circuit of n qubits thus generates a time series of length
2n. By generating multiple such time series samples from different random
noise inputs, the QGAN approximates the empirical distribution of time series
of the same window length in the training data.

The first part of our simulations is based on the full-state simulation of
PQC. Let |ψfull⟩ be the quantum state that describes the state at the end of
the parameterized quantum circuit (PQC) used in our quantum generative
adversarial network (QGAN). In the computational basis, it takes the form

|ψfull⟩ ≈
∑

i1,i2,...,in

ci1,i2,...,in |i1, i2, ..., in⟩ , (5.21)

where ij ∈ {0, 1}. The number of coefficients ci1,i2,...,in
of this state, and thus

the memory requirement, scales exponentially with the number of qubits n.
Moreover, the time cost of the classical full-state simulation scales linearly with
the number of layers. This makes the full-state simulation quickly infeasible.

5.3.3 Matrix product state simulation
For being able to simulate PQC with a higher number of layers and qubits,
we use matrix product states (MPS) as efficient approximation methods under
some circumstances [224, 225, 268], which in the context of machine learning

145

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

is also called the tensor-train decomposition [269]. They provide a compact
representation of quantum states with limited entanglement and have been
extensively used in physics [268]. This makes them well suited for simulating
quantum states that are prepared by the PQC used in our QGAN.

An MPS represents an n-qubit quantum state |ψfull⟩ as a product of local
tensors [268]:

|ψfull⟩ =
∑

i1,...,in

A
[1]
i1
A

[2]
i2
· · ·A[n]

in
|i1i2 · · · in⟩ , (5.22)

where each A
[k]
ik

is a χk−1 × χk-dimensional tensor. We call χk the bond
dimensions of the MPS that controls the amount of entanglement the MPS can
represent. The contraction of these tensors yields the amplitude corresponding
to each computational basis state. For simplicity, we choose A[1]

i1
as 1 × χ-

dimensional, A[n]
in

χ× 1-dimensional, and each remaining tensor A[k]
ik

with the
dimensions χ× χ. Such an MPS is described by (2n− 1)χ2 + 2χ coefficients,
which for constant χ scales linearly in the number of qubits, making it more
efficient than the full-state simulation with 2n coefficients. Fig. 5.3 provides a
sketch of an MPS representation.

|ψ⟩

i1 i2 i3 i4

≈ A[1] A[2] A[3] A[4]
χ χ χ

i1 i2 i3 i4

Figure 5.3: A matrix product state (MPS) consists of a chain of local tensors A[j]

connected by virtual bonds of dimension χ, each with a physical leg representing a
qubit index. A virtual bond represents a sum over a particular index of the tensors.
The left term represents the state ψ, which lives in a 4-qubit space, and the right term
shows its MPS approximation.

We simulate the quantum circuit using MPS in the following way: We start
with the trivial tensor corresponding to the initial state of the circuit |0⟩n.
Then, we apply each layer sequentially to the MPS, on which single-qubit Pauli
rotations are trivially applied. After each CNOT gate, we recalculate the tensors
by singular value decompositions (SVD) [270]. We partition the system into left
and right parts and apply SVD, truncate the number of singular values to the
bond dimension χk, and the left unitary multiplied with the truncated singular
value matrix forms the tensor A[k]

ik
. After applying every layer in this way, we

get an MPS approximation of the output state |ψfull⟩ of the PQC.
To assess the quality of the MPS approximation for systems that can efficiently

146

5.3 Implementation

5

be simulated with the full-state, we compute the fidelity between the full
quantum state |ψfull⟩, obtained from an exact state vector simulation, and the
MPS-approximated state |ψMPS⟩:

F = | ⟨ψfull| |ψMPS⟩ |2. (5.23)

We evaluate this fidelity for various values of the maximum bond dimension
χ. As shown in Fig. 5.4, the fidelity increases with χ, indicating improved
approximation accuracy. For a higher number of layers, the PQC increases
the entanglement across the qubits, which decreases the fidelity for fixed bond
dimension. For sufficiently large χ (χ = 32 for 10 qubits), the MPS becomes
numerically indistinguishable from the full-state [271].

In general, for a higher number of layers and qubits, it is not possible anymore
to calculate this fidelity as it is not feasible to simulate the full-state. Instead, one
can calculate the fidelity between MPS simulations of different bond dimensions,
and choose the lowest bond dimension at which this fidelity does not increase
anymore.

2 4 6 8 10 12 14 16 18 20
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Bo
nd

 D
im

en
sio

n

Figure 5.4: Fidelity between the exact quantum state prepared by a PQC consisting
of 10 qubits, in the architecture as sketched in Fig. 5.2 and the MPS approximation
as a function of the depth of the PQC, for different bond dimensions χ.

147

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

This tunability of the bond dimension provides a practical trade-off between
simulation efficiency and accuracy. In the context of training the QGAN, where
the PQC must be evaluated many times, moderate bond dimensions already
yield sufficiently high fidelity while significantly reducing computational cost.

5.4 Results
In this section, we describe the results of our simulations. We simulated the
parameterized quantum circuit (PQC) with the architecture shown in Fig. 5.2
in two ways, as described in Sec. 5.3. First, we performed full-state simulations
for systems with up to 10 qubits and up to 6 layers. Second, we used matrix
product state (MPS) simulations for systems with 10 and 20 qubits and between
1 and 18 layers. We performed 5 runs for each of these simulations, and describe
their results in separate subsections. The results are discussed in Sec. 5.5.

5.4.1 Full-state simulation
For the full-state simulation, we chose a PQC consisting of 10 qubits and 8
layers. Therefore, for the generation of the training set from the historical
S&P 500 time series, we set the window size to 20. In 5 runs, we trained a
QGAN for 7900 epochs, and plotted the metrics of the generated time series of
the best out of these 5 runs in Fig. 5.5. For this figure (and also for Figs. 5.8,
5.9, 5.11 and 5.12), we generated 1500 samples (each with different random
noise inputs) of the time series, and calculate the correlations as the average of
all samples and of all pairs of lags in each time series. The confidence intervals
are calculated as in [272, p.51].

In (a), we plot the probability density functions and in (b) the quantile-
quantile plot of both the S&P 500 index and the generated time series. In
(c)-(h), we plot the metrics absolute autocorrelation, linear autocorrelation
and the leverage effect, as an indication of the stylized facts as described in
Sec. 5.2.1. The Subfigures (c), (e) and (g) show the metrics of the S&P 500
index and the Subfigures (d), (f) and (h) the metrics of the generated time
series, respectively. Confidence intervals are calculated as in [272].

The generated time series closely resembles the distribution of the S&P 500
index, as shown in Subfigures (a) and (b). Similar to the S&P 500 index, the
generated time series shows a weaker, but decaying absolute autocorrelation
(Subfigures (c) and (d)) and does not show linear autocorrelation (Subfigures
(e) and (f)). The leverage effect, which is negative and increasing in the S&P 500
index (Subfigure (g), is also reproduced in a weaker way in the generated time
series (Subfigure (h)). As can be seen in Fig. 5.6, both the loss function and
the temporal metrics decrease with the number of epochs, indicating stable
training of the QGAN.

148

5.4 Results

5

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Log returns

0

20

40

60

P
D

F
PDF of generated log returns

S&P 500
Generated

0.04 0.02 0.00 0.02 0.04
Quantiles generated

0.04

0.02

0.00

0.02

0.04

Q
ua

nt
ile

s
S

P
50

0

QQ plot generated log returns

0 5 10 15 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
C

F

ACF for absolute S&P 500 log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
C

F

ACF for absolute generated log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.10

0.05

0.00

0.05

0.10

A
C

F

ACF for S&P 500 log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.10

0.05

0.00

0.05

0.10

A
C

F

ACF for generated log returns

2 confidence interval
Autocorrelation

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for S&P 500 log returns

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for generated log returns

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Metrics of the stylized facts for a synthetic time series of window size 20
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC based on the architecture shown in Fig. 5.2 consisting of 10
qubits and 8 layers, simulated with the full-state approach.

149

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5
0 1000 2000 3000 4000 5000 6000 7000 8000

Epoch

10
4

10
3

E
M

D

10
4

10
3

10
2

10
1

Te
m

po
ra

l m
et

ric
 lo

ss

EMD
EACF

abs ()
EACF

id ()
ELev()

Figure 5.6: Wasserstein loss as defined in Eq.(5.9) (here called the EMD) and metrics
corresponding to the temporal correlations as described in Sec. 5.2.1 in the training of
the QGAN in the full-state simulation with 10 qubits and 8 layers (see Fig. 5.5 for the
final metrics), depending on the number of epochs. We show the mean and standard
deviation of the 5 training runs.

150

5.4 Results

5

We show the metrics of the best out of 5 runs that correspond to the time
series as shown in Fig. 5.5 in column (a) of Table 5.1.

Metrics (a) (b) (c) (d) (e)
EMD 3.3 · 10−4 6.1 · 10−4 2.7 · 10−4 2.9 · 10−4 4.2 · 10−3

EACF
id (θ) 1.9 · 10−3 2.4 · 10−3 1.5 · 10−3 4.5 · 10−4 1.1 · 10−3

EACF
abs (θ) 3.7 · 10−2 5.5 · 10−2 0.15 0.31 0.99
ELev(θ) 6.6 · 10−3 5.8 · 10−3 4.7 · 10−3 2.2 · 10−2 4.4 · 10−2

Table 5.1: Comparison of different metrics defined in Eqs. (5.3)-(5.6) for the best out
of the 5 runs of (a) the full-state simulation with 10 qubits and 8 layers as in Figs. 5.5
and 5.6, (b) the full-state simulation with 10 qubits and 8 layers with a different
circuit architecture as described in Appendix 5.C, (c) the full-state simulation with
10 qubits and 8 layers based on a circuit with CZ gates instead of CNOT gates as
described in Appendix 5.D, (d) the MPS simulation with 10 qubits, 18 layers and a
bond dimension 32 as in Figs. 5.8 and 5.7, (e) the MPS simulation with 20 qubits, 6
layers and a bond dimension 70 as in Fig. 5.9.

The Wasserstein QGAN does not explicitly account for temporal effects, so
any such structure in the generated time series must result from other aspects
of the model. To investigate the influence of the PQC architecture on these
temporal effects, we trained a QGAN with a different PQC and present the
results in Appendix 5.C. We indeed see that the absolute autocorrelation of
the generated time series increases at larger time lags, and the leverage effect
is less pronounced in comparison to the time series generated in Fig. 5.5. In
contrast, no substantial difference in the quantile-quantile plots and the absolute
autocorrelation can be observed. See Table 5.1 for a comparison of the metrics,
which are higher than for the simulation shown in Fig. 5.5 apart from the
leverage effect.

We also trained a QGAN with the full-state simulation based on a circuit
that uses control-Z (CZ) gates instead of CNOT gates, and show the results in
Appendix 5.D. The absolute autocorrelation decreases faster, and the leverage
effect is more closely pronounced compared with the results shown in Fig. 5.5.

Additionally, to compare with the results of a GAN based on a quantum
circuit Born machine [223], we trained the QGAN (based on the circuit with
CZ gates instead of CNOT gates) on generating currency pairs; the results are
shown in Appendix 5.B.

We analyze these results in Sec. 5.5.
As explained in Sec. 5.3, full-state simulation of PQCs quickly becomes

infeasible as the number of layers and qubits increases. In the following, we
describe MPS-based simulations, which make it feasible to simulate PQCs with
larger numbers of layers and qubits.

151

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

5.4.2 MPS simulation
For the MPS simulation, we first chose a PQC of 10 qubits, with a varying
number of layers (1, 5, 10 and 18) and different bond dimensions (1, 8, 16, 24
and 32) of the MPS. The MPS simulation of PQCs with 10 qubits generates
time series with the same window size as the full-state simulation, making the
results directly comparable. For higher numbers of layers and bond dimensions
below χ = 32, the MPS simulation is also faster than the full-state simulation.

For higher bond dimensions and number of layers, the training time in the
MPS simulation increases, and the stylized facts of the generated time series
vary considerably for each choice of the number of layers and bond dimension.
See in Appendix 5.E for a comparison of the Wasserstein distance and metrics
for the temporal effects for simulations of different numbers of layers and bond
dimensions. In Fig. 5.8, we show the metrics of a generated time series from a
well-performing QGAN that is trained for 7032 epochs, whose PQC consists of
18 layers and is simulated as an MPS with bond dimension 32. The metrics of
this generated time series are shown in column (c) of Table 5.1. We chose to
show the results for this particular model, as they match the stylized facts of
the time series of the S&P 500 index qualitatively well, and as it proves that it
is possible to train a QGAN for which the PQCs in the MPS simulation has
more layers than what would be feasible with the full-state simulation.

The quantile-quantile plot shows that the generated time series matches the
distribution of the S&P 500 index closely. In contrast to the time series generated
with the full-state simulation shown in Fig. 5.5, the absolute autocorrelation
(Subfigure (d)) that indicates volatility clustering is lower, but also decreasing
for all time lags. Also the leverage effect is weaker than in the time series
generated by the full-state simulation. The quantitative metrics decrease more
slowly during training compared to the full-state simulation, as can be seen in
Fig. 5.7.

Across the QGANs trained with different numbers of layers and bond dimen-
sions in the MPS simulation, we generally observe that the generated time series
reproduces the distribution, absence of linear autocorrelation, and volatility
clustering, while the leverage effect is less pronounced.

In order to show that MPS can also be used for simulating QGANs that can
generate time series with a larger window, we trained a QGAN with the MPS
simulation of a PQC that consists of 20 qubits. Such a simulation would be
infeasible with full-state simulation. We show the results of this simulation
in Fig. 5.9 and in column (d) of Table 5.1. Since increasing the number of
qubits and the bond dimension raises the time required to train each epoch, the
QGAN is trained for only 650 epochs.

In the following section, we will analyze and compare the results of the
different simulations shown here.

152

5.4 Results

50 1000 2000 3000 4000 5000 6000 7000 8000
Epoch

10
4

10
3

E
M

D

10
4

10
3

10
2

10
1

10
0

Te
m

po
ra

l m
et

ric
 lo

ss

EMD
EACF

abs ()
EACF

id ()
ELev()

Figure 5.7: Wasserstein loss as defined in Eq. (5.9) (here called the EMD) and
metrics corresponding to the temporal correlations as described in Sec. 5.2.1 in the
training of the QGAN in the MPS simulation with 10 qubits, 18 layers and a bond
dimension of 32 (see Fig. 5.8 for the final metrics), depending on the number of epochs.
We show the mean and standard deviation of the 5 training runs.

153

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Log returns

0

10

20

30

40

50

60
P

D
F

PDF of generated log returns

S&P 500
Generated

0.04 0.02 0.00 0.02 0.04
Quantiles generated

0.04

0.02

0.00

0.02

0.04

Q
ua

nt
ile

s
S

P
50

0

QQ plot generated log returns

0 5 10 15 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
C

F

ACF for absolute S&P 500 log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
C

F

ACF for absolute generated log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.10

0.05

0.00

0.05

0.10

A
C

F

ACF for S&P 500 log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.10

0.05

0.00

0.05

0.10

A
C

F

ACF for generated log returns

2 confidence interval
Autocorrelation

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for S&P 500 log returns

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for generated log returns

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Metrics of the stylized facts for a synthetic time series of window size 20
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC consisting of 10 qubits and 18 layers, simulated with the MPS
approach with bond dimension 32.

154

5.4 Results

5

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Log returns

0

100

200

300

400

500
PD

F
PDF of generated log returns

S&P 500
Generated

0.04 0.02 0.00 0.02 0.04
Quantiles generated

0.04

0.02

0.00

0.02

0.04

Qu
an

til
es

 S
P

50
0

QQ plot generated log returns

0 10 20 30 40
Lag

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

AC
F

ACF for absolute S&P 500 log returns
2 confidence interval
Autocorrelation

0 10 20 30 40
Lag

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

AC
F

ACF for absolute generated log returns
2 confidence interval
Autocorrelation

0 10 20 30 40
Lag

0.10

0.05

0.00

0.05

0.10

AC
F

ACF for S&P 500 log returns
2 confidence interval
Autocorrelation

0 10 20 30 40
Lag

0.10

0.05

0.00

0.05

0.10

AC
F

ACF for generated log returns
2 confidence interval
Autocorrelation

0 10 20 30 40
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for S&P 500 log returns

0 10 20 30 40
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for generated log returns

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9: Metrics of the stylized facts for a synthetic time series of window size 40
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC consisting of 20 qubits and 7 layers, simulated with then MPS
approach with bond dimension 70.

155

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

5.5 Analysis of the results
In all simulations, the probability distributions of the generated time series
closely resembles the distribution of the S&P 500 index. The temporal correla-
tions show significant differences between the simulations. While the absence
of linear autocorrelations is visible in all simulated time series, their absolute
autocorrelation (indicating volatility clustering) and the leverage are of different
quality.

The full-state simulation (see Fig. 5.5) shows both effects, even though the
absolute autocorrelation and the leverage effect are weaker than in the S&P 500
index.

The MPS simulation with 10 qubits, 18 layers, and bond dimension 32 (see
Fig. 5.8) shows even weaker absolute autocorrelation and leverage effect.

Adding a CNOT gate between the first and the last qubits in each layer
and performing the full-state simulation, leads to an increase in the qubit
correlation (see Appendix 5.C). This might be a reason for the observation that
the absolute autocorrelation of the generated time series increases at larger time
lags. However, the leverage effect is pronounced weaker, and the other stylized
facts do not differ substantially compared to the simulation shown in Fig. 5.5.
Furthermore, in particular the Wasserstein loss is higher, as shown in Table 5.1,
showing that the model generates time series that are further away from the
real probability distribution. This proves that the architecture of the circuit
indeed plays an important role on the quality of the generated time series.

The QGAN simulated with the full-state simulation which is based on a
circuit that uses control-Z (CZ) gates instead of CNOT gates in Appendix 5.D,
shows a faster decreasing absolute autocorrelation but more clearly pronounced
leverage effect.

We benchmarked the QGAN with a full-state simulation against a quantum
circuit Born machine in modeling the time-aggregated distribution of foreign
exchange pairs yielding a better approximation of those distributions (see
Appendix 5.B).

Using the MPS simulation, we also trained a QGAN with 20 qubits, 5 layers,
and a bond dimension of 70 (see Fig. 5.9). This demonstrates that MPS
can handle QGANs of greater complexity than those feasible with full-state
simulation. However, the training of QGANs with PQCs of a higher number of
layers and qubits and MPS of higher bond dimensions increases the number of
epochs needed in the training. Additionally, each training epoch takes a longer
time for these more complex models. For an equal computational cost, the
generated time series therefore does not resemble the distributions and temporal
effects of the target time series as closely as in the simulations with 10 qubits.
But, by using a PQC with 20 qubits, it is possible to simulate time series with
a larger window size of 40.

We remark that the loss landscapes differ significantly between full-state and

156

5.6 Conclusions

5

MPS simulations due to their different approximation and simulation structure.
The difference in the quality of the generated time series can be partially
attributed to the different features of the loss landscape.

Compared to the classical GAN experiments in [260], which use multi-layer
dense neural networks as generators and either a multi-layer dense or convolu-
tional neural network as discriminator (with the same specifications as described
in Appendix 5.A), both of our quantum simulation methods yield qualitatively
improved results, particularly with respect to the Wasserstein distance and
volatility clustering, as observed in the plots of the stylized facts. Note that
the window size used in the classical experiments differs from ours, which may
influence the comparison.

5.6 Conclusions
We constructed a Wasserstein quantum generative adversarial network (QGAN)
with a classical convolutional network as a discriminator and an expectation
value sampler based on a parameterized quantum circuit (PQC) as a generator,
in order to assess whether these quantum architectures have suitable inductive
biases for generating synthetic financial time series known to be problematic for
classical models. This approach leverages the PQC architecture to intrinsically
capture temporal correlations in the time series, while the QGANs are trained
solely on matching the aggregated distribution of the time series, by using a
discriminator which learns the Wasserstein distance between the distributions
of the generated time series and of the training data. We simulated a PQC
with 10 qubits and 8 layers with a full-state simulation and a PQC with 10 and
20 qubits and with up to 18 layers as an approximation by a matrix product
state (MPS) simulations with bond dimensions of up to 70. The latter approach
allowed us to simulate PQCs with a higher number of layers and qubits, which
makes it possible to train the generation of longer time series.

We compare the generated time series qualitatively with the S&P 500 index
by their distributions and their temporal correlations, also called the stylized
facts. These stylized facts are typically assessed qualitatively rather than
quantitatively [78].

In this chapter, we showed that our trained QGANs generate time series that
match the desired distributions and exhibit some of the temporal correlations
seen in financial time series, such as in the S&P 500 index. Simulating the PQC
with full-state simulations and MPS simulations yield different results, with
circuit depth and the MPS bond dimension further influencing the performance.
The three simulations performed with the full-state simulation show different
behavior in particular of the absolute autocorrelation of the generated time
series, indicating different qualities in capturing volatility clustering. The QGAN
using the PQC given in Fig. 5.2 shows the closest match of this property (see

157

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

Fig. 5.5), whereas PQC architectures where an additional CNOT gate is added
at the end of each layer leads to an increase in the absolute autocorrelation
for higher time lags (see Fig. 5.11). Using CZ gates instead of CNOT gates
in the PQC causes a quicker decrease of this effect (see Fig. 5.12). The MPS
approach leads to weaker absolute autocorrelation and leverage effect compared
to the full-state simulation (compare Fig. 5.5 and 5.8), but is able to simulate
QGANs with a longer time window (see Fig. 5.9). Both simulation methods
motivate the study of quantum hardware in their ability to generate financial
time series with stylized facts. Our work has already motivated studies in which
the effect of such generated data on the training of neural networks has been
explored [273, 274].

The application of these QGANs as subroutines for applications such as option
pricing [275] and risk analysis [276] can be explored as well. Furthermore, a
possible extension of our method is to train the model to replicate correlated
stocks of the S&P 500 index, motivated by research in community detection [277].
This could possibly be achieved by either learning the underlying distributions
(in a similar way as done in Appendix 5.B), or by learning the individual time
series similar to the ones in Sec. 5.4. As the number of qubits restricts the
number of time steps and the number of stocks that can be generated, one could
examine if quantum generators consisting of circuits on qudits can be successful,
as that enables more independent measurements on each qudit. Specifically for
qudits, not only superconducting qubits form a suitable experimental platform,
but also trapped ions, neutral atoms and integrated photonics are excellent
candidates for manipulating higher-dimensional quantum information [278, 279].

An improvement of the training of the QGANs could be achieved in several
ways. Firstly, the effects of shot noise [237] in the training of the quantum
generator could be explored. Secondly, different design choices, like choosing a
different classical or quantum discriminator in the QGAN, diffusion model [242],
or quantum long-short time memory models [280] might lead to different results.
Thirdly, as the QGAN is trained with Wasserstein loss functions (see Eqs. (5.9)
and (5.11)) that are taking the distribution of the time series into account, but
not the temporal effects, an adaption of the training to consider them as well
might lead to a better recovery of those temporal effects. In particular, it might
be possible to not only gain a better match in the absolute autocorrelation and
leverage effect, but also in the exact reproduction of the autocorrelation. Lastly,
one could try different definitions of the quantum Wasserstein distance [281]
that give theoretical improvements over the qualitative accuracy.

5.7 Code availability
The code supporting this chapter is available at the following repository: https:
//github.com/LucasAugustusvd/Quantum-Finance

158

https://github.com/LucasAugustusvd/Quantum-Finance
https://github.com/LucasAugustusvd/Quantum-Finance

5.A Architecture of the discriminator

5

5.A Architecture of the discriminator
We trained the classical discriminator in our QGAN simulations with a convolu-
tional neural network. Table 5.2 summarizes its properties and hyperparameters.
This choice is motivated by [239], where it successfully was applied as a discrim-
inator of a GAN that generates financial time series.

Table 5.2: Hyperparameters and properties of the convolutional neural network used
as the discriminator in the QGANs.

5.B Comparison with quantum circuit Born
machine

In [223], a QGAN is constructed where the quantum generator was used as
a quantum circuit Born machine. It was trained to generate distributions
of foreign exchange pairs, producing samples that better matched the true

159

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

distributions than those from a classical restricted Boltzmann machine with a
comparable model size.

We also trained our QGAN, where the quantum circuit consisting of 4
qubits and 4 layers, is simulated with the full-state approach with CZ gates
(instead of CNOT gates compared to Fig. 5.2), in reproducing the same pairs
of foreign exchanges as in [223]. We trained the single-qubit Pauli-X and
Pauli-Z observables on the distributions of the EUR/USD and the GBP/USD
foreign exchange log returns, respectively. Fig. 5.10 shows the quantile-quantile
plot comparing samples from our trained model with the target distribution.
Our trained QGAN samples match the target distribution more closely than

0.02 0.01 0.00 0.01 0.02
Quantiles generated fx

0.02

0.01

0.00

0.01

0.02

Qu
an

til
es

 E
UR

/U
SD

EUR/USD QQ plot

0.02 0.01 0.00 0.01 0.02
Quantiles generated fx

0.02

0.01

0.00

0.01

0.02

Qu
an

til
es

 G
BP

/U
SD

GBP/USD QQ plot

Figure 5.10: Quantile-quantile plot comparing samples from the trained QGAN
model with a PQC of 4 qubits and 4 layers to the target distribution of EUR/USD
and GBP/USD log returns.

the results for the quantum circuit Born machine and the classical restricted
Boltzmann machine shown in Fig. 10 of [223], while using fewer qubits than
used for the quantum circuit Born machine. This difference to the results from
the quantum circuit Born machine comes from to the discrete nature of that
model, which has naturally a higher imprecision of generated samples compared
to the expectation value sampler used in our model.

5.C Full-state simulation: alternative circuit
architecture

In addition to the PQC shown in Fig. 5.2, we trained a QGAN using a modified
PQC architecture simulated with the full-state approach. In order to increase

160

5.D Full-state simulation: CZ gates instead of CNOT gates

5

long-range qubit correlations, we added a CNOT gate between the first and
10th qubit in each layer of the PQC (results in Fig. 5.11). Subfigure (d) shows
that this architectural change increases the absolute autocorrelation at larger
time lags. The metrics of the generated time series are shown in column (b) of
Table 5.1.

5.D Full-state simulation: CZ gates instead of
CNOT gates

In Fig. 5.12 , we show the results of a full-state simulation using a circuit
architecture in which the CNOT gates were substituted with control-Z (CZ)
gates. Compare with the architecture sketched in Fig. 5.2 and the corresponding
simulations shown in Figs. 5.5 and 5.6. Subfigure (d) shows that this archi-
tectural change leads to a faster decrease in the absolute autocorrelation. The
metrics of the generated time series are shown in column (c) of Table 5.1.

5.E MPS simulations for different numbers of
layers and bond dimensions

In Fig. 5.13, we show the quantitative metrics of training a QGAN where the
PQC consisting of 10 qubits are simulated with the MPS approach for 1, 5, 10
and 18 layers and bond dimensions of 1, 8, 16, 24 and 32. See Sec. 5.4.2. Note
that a bond dimension of 32 is giving an exact MPS approximation of the
10-qubit state.

161

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Log returns

0

20

40

60
P

D
F

PDF of generated log returns

S&P 500
Generated

0.04 0.02 0.00 0.02 0.04
Quantiles generated

0.04

0.02

0.00

0.02

0.04

Q
ua

nt
ile

s
S

P
50

0

QQ plot generated log returns

0 5 10 15 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
C

F

ACF for absolute S&P 500 log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
C

F

ACF for absolute generated log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.10

0.05

0.00

0.05

0.10

A
C

F

ACF for S&P 500 log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.10

0.05

0.00

0.05

0.10

A
C

F

ACF for generated log returns

2 confidence interval
Autocorrelation

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for S&P 500 log returns

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for generated log returns

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11: Metrics of the stylized facts for a synthetic time series of window size 20
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC consisting of 10 qubits and 8 layers, simulated with the
full-state approach. Contrary to the PQC used in Fig. 5.5, we added an additional
CNOT gate between the first and the 10th qubit in each layer.

162

5.E MPS simulations for different numbers of layers and bond dimensions

5

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Log returns

0

10

20

30

40

50

60
P

D
F

PDF of generated log returns

S&P 500
Generated

0.04 0.02 0.00 0.02 0.04
Quantiles generated

0.04

0.02

0.00

0.02

0.04

Q
ua

nt
ile

s
S

P
50

0

QQ plot generated log returns

0 5 10 15 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
C

F

ACF for absolute S&P 500 log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
C

F

ACF for absolute generated log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.10

0.05

0.00

0.05

0.10

A
C

F

ACF for S&P 500 log returns

2 confidence interval
Autocorrelation

0 5 10 15 20
Lag

0.10

0.05

0.00

0.05

0.10

A
C

F

ACF for generated log returns

2 confidence interval
Autocorrelation

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for S&P 500 log returns

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Lag

0.100

0.075

0.050

0.025

0.000

0.025

0.050

L(
)

Leverage effect for generated log returns

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Metrics of the stylized facts for a synthetic time series of window size 20
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC based on the architecture shown in Fig. 5.2 consisting of 10
qubits and 8 layers and CZ gates instead of CNOT gates, simulated with the full-state
approach.

163

5 Quantum Generative Modeling for Financial Time Series with Temporal
Correlations

5

0
500

1000
1500

2000
2500

3000
0.0020

0.0025

0.0030

0.0035

0.0040
EMD

: 1, Depth: 1

0.0

0.2

0.4

0.6

0.8

Temporal metric loss

0
500

1000
1500

2000
2500

3000
0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

EMD

: 8, Depth: 1

0
500

1000
1500

2000
2500

3000

: 16, Depth: 1

0.0

0.2

0.4

0.6

0.8

Temporal metric loss

0
500

1000
1500

2000
2500

3000
0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

EMD

: 24, Depth: 1

0
500

1000
1500

2000
2500

3000

: 32, Depth: 1

0.0

0.2

0.4

0.6

0.8

Temporal metric loss

0
2000

4000
6000

8000

0.002

0.003

0.004

0.005

0.006

0.007

EMD

: 1, Depth: 5

0.0

0.1

0.2

0.3

0.4

0.5

Temporal metric loss

0
2000

4000
6000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

EMD

: 8, Depth: 5

0
250

500
750

1000
1250

: 16, Depth: 5

0.0

0.1

0.2

0.3

0.4

Temporal metric loss

0
1000

2000
3000

4000

0.001

0.002

0.003

0.004

0.005

0.006

EMD

: 24, Depth: 5

0
2000

4000
6000

8000

: 32, Depth: 5

0.0

0.1

0.2

0.3

0.4

0.5

Temporal metric loss

0
2000

4000
6000

8000
0.001

0.002

0.003

0.004

0.005

0.006

0.007

EMD

: 1, Depth: 10

0.0

0.1

0.2

0.3

0.4

0.5

Temporal metric loss

0
2000

4000
6000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

EMD

: 8, Depth: 10

0
1000

2000
3000

4000
5000

6000

: 16, Depth: 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Temporal metric loss

0
2000

4000
6000

8000
0.000

0.001

0.002

0.003

0.004

0.005

0.006

EMD

: 24, Depth: 10

0
2000

4000
6000

8000

: 32, Depth: 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Temporal metric loss

0
1000

2000
3000

4000
5000

6000
Epoch

0.00525

0.00550

0.00575

0.00600

0.00625

0.00650

EMD

: 1, Depth: 18

0.0

0.2

0.4

0.6

0.8

Temporal metric loss

0
2000

4000
6000

8000
Epoch

0.001

0.002

0.003

0.004

0.005

0.006

0.007

EMD

: 8, Depth: 18

0
500

1000
1500

2000
2500

Epoch : 16, Depth: 18

0.0

0.1

0.2

0.3

0.4

Temporal metric loss

0
2000

4000
6000

Epoch

0.000

0.001

0.002

0.003

0.004

0.005

0.006

EMD

: 24, Depth: 18

0
2000

4000
6000

Epoch : 32, Depth: 18

0.0

0.1

0.1

0.1

0.2

0.2

0.3

Temporal metric loss

EM
D

E
ACF
abs (

)
E

ACF
id

(
)

E
Lev (

)

F
igure

5.13:
W

asserstein
loss

as
defined

in
E

q.
(5.9)

(here
called

the
E

M
D

)
and

m
etrics

corresponding
to

the
tem

poral
correlations

as
described

in
Sec.5.2.1

in
the

training
ofthe

Q
G

A
N

in
the

M
P

S
sim

ulation
w

ith
10

qubits,1
,5
,10

and
18

layers
and

bond
dim

ensions
χ

of1
,8
,16

,24
and

32,depending
on

the
num

ber
ofepochs.

164

