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CHAPTER 4

Mitigating Shot Noise in Local Overlapping Quantum
Tomography with Semidefinite Programming

4.1 Introduction

Accurately characterizing quantum states is a crucial subroutine for many tasks
in quantum computing, and can be achieved by quantum state tomography
methods [9, 160, 161]. It has applications ranging from certifying quantum
devices [162] to the design and execution of variational quantum algorithms [21].
However, the full characterization of a quantum state becomes impractical for
larger systems. This is due to an exponential growth in the number of required
measurement settings, which correspond to distinct Pauli strings. To address
this challenge, several alternative strategies have been proposed, such as classical
shadow tomography [163], which significantly reduce the number of required
measurement settings. However, even with these techniques, each measurement
setting must typically be repeated for a number of shots, Ny,eqs, to achieve the
desired accuracy, with the statistical uncertainty scaling as O(1/v/Npeas). Since
the measurements collapse the quantum state, the state must be re-prepared
for each shot.

Many applications, such as ground state optimization of local Hamiltoni-
ans [39, 164], rely on the tomography of k-qubit reduced density matrices

The contents of this chapter have been published in Ref. [90].
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(RDMs), which describe a subsystem of the full quantum state [165]. The
estimation of all k-qubit RDMs of an n-qubit system can be achieved by using
(}) - 3" distinct measurement settings [166-168]. However, even with exact
estimates of RDMs, the full characterization of a general quantum state would
entail resolving the quantum marginal problem [169], a task known to be
QMA-complete [170, 171]. These extensive measurement requirements pose a
bottleneck for applying variational quantum algorithms in scenarios requiring
high-precision results, such as in fields like computational chemistry, where a
precision of 1073 Hartree [172] (chemical accuracy) is often the target.

Recent strategies like overlapping tomography [164, 168, 173] have emerged
to minimize the total number of measurement settings while maintaining high
precision. These methods achieve this by parallelizing measurements on non-
overlapping subsystems and efficiently organizing information from measure-
ments on overlapping subsystems. However, current methods, while promising,
often overlook higher-order correlations and compatibility constraints among
RDMs, potentially limiting their accuracy.

In this chapter, we propose a novel hierarchy of data-driven semidefinite pro-
grams (SDPs) to estimate a set of overlapping reduced density matrices (RDMs)
from quantum measurements. Our approach focuses specifically on random
Pauli string measurements of n-qubit states with fixed locality. We leverage
the inherent higher-order correlations present in quantum state measurement
data—information that would be lost when estimating overlapping RDMs in-
dependently. This enables us to tighten the uncertainty intervals of the RDM
estimates for a given number of measurement shots, with particular advantages
in low-shot regimes. Such SDP relaxations are built on re-imposing partial
compatibility with the quantum marginal problem [171, 174, 175]. We further
constrain each RDM to satisfy the physical requirements of a valid density
matrix, namely unit trace and positive semidefiniteness. This comprehensive
approach yields two key benefits: it resolves the compatibility issues between
overlapping RDMs that arise in linear inversion [176], while simultaneously
enhancing the global consistency of the entire set of RDMs.

Our method demonstrates superior performance compared to standard to-
mography methods across two numerical benchmarks. In the first evaluation,
we assess the ability of our method to estimate ground-state RDMs and energies
of the 1D XY model with open boundary conditions by using random Pauli
string measurements. Under the same measurement budget, our approach
achieves more accurate energy estimates compared to conventional tomography
methods. We further validate our technique through application to algorithmic
cooling [177-179], a practical use case in near-term quantum computing where
RDMs inform quantum circuit design. In this application domain, our method
again demonstrates measurable advantages over traditional approaches that
rely on independent RDM reconstructions.

This chapter is organized as follows: Sec. 4.2 introduces quantum tomography,
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semidefinite programming, and related literature. Sec. 4.3 presents the proposed
SDP-based reconstruction method and numerical results. In Sec. 4.4, we apply
our method to algorithmic cooling. Finally, Sec. 4.5 provides conclusions and
future directions.

4.2 Background and preliminaries

4.2.1 Notations

We consider an n-qubit system whose Hilbert space is H = (C?)®". For our
mathematical representation, we outline the relevant definitions and notations
below. Let 09,1,2,3 denote, respectively, the identity matrix | and the Pauli X,
Y, Z matrices. For an n-qubit system, the identity matrix is denoted by I,,.
A vector i = (i1,142,...,7,) € {0,1,2,3}"™ := 7, is used to represent a specific
Pauli basis o3, which is a shorthand for the Pauli string 0y, ® 03, ® ... ® 05, , in
{I, X,Y, Z}™. For simplicity, we use this notation throughout the text. Note
that Pauli strings form an orthogonal basis of the R-vector space of Hermitian
matrices. We denote the set {1,...,m} by [m]. For a Hermitian matrix A, the
notation A > 0 indicates that A is positive semidefinite, i.e., all its eigenvalues
are non-negative. We denote by pap the density matrix that describes a
quantum state in the Hilbert space Hap = Ha ® Hp, where A = {a1,...,a,4}
and B = {b1,...,b g} label distinct sets of qubits in the respective subsystems.
The partial trace over subsystem A is defined as:

Tra[pan] =Y ((kl ®18)pan(|k) @ 15), (4.1)
k

where {|k)} forms an orthonormal basis of the Hilbert space H4.

4.2.2 Quantum state tomography

Quantum state tomography [9, 160, 161] is a cornerstone of quantum information
science, enabling the reconstruction of quantum states through systematic
measurements on an ensemble of identical quantum states. For an n-qubit
quantum state, its density matrix, represented by p, can be fully characterized
by the following relation:

— (Z ciai> , (12)

i€z,
C; = Tr[poy]. (4.3)
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Here, C; constitutes an element of the corresponding n-qubit Bloch vector, with
Co = 1. In practical settings, Cj is not directly accessible, instead an estimate

C}; is computed by averaging over a finite number of measurements Nyeas,i
performed in the basis oj:

Nmeas,i
A 1 ~ (k)
Ci = m; -, 4.4
Nmeas,i ; ( )

where mi(k) € {1, —1} represents the k-th measurement outcome. In measuring

a particular Pauli string oy, one obtains a binary string s,, = {0,1}", from
which the outcome

mi*) = (~1)lsil] (4.5)

is calculated, with |s,,| denoting the string Hamming weight, defined as the
total count of 1s in s,,. We denote the reconstructed state as p, characterized
by the 4™ — 1 different {éi}ieln\{o}- Due to redundancies [180], it is sufficient
to simulate measurements in 3" different bases, each corresponding to a specific
Pauli string o; with i € {1,2,3}", to estimate all C;. In essence, if a string
contains a 0, then the corresponding qubits are not measured, which is equivalent
to measuring the RDM of the complementary subsystem. The measurement
data collected from the other measurements is sufficient for reconstructing this
RDM. The reconstructed state p takes the form:

Nmeas,i
1 Z 1 Z k
i€Z,\{0} meas,i T

We will refer to this method as the standard quantum state tomography. Ac-
cording to the Chernoff-Hoeffding bound, achieving an additive error € in each
C; w.r.t. the true values C; requires on the order of Nyeas & 4log(2)n/e?
shots [168] for a constant failure probability. If each C; is estimated with Nmeas
shots, then 3™ Nyeas total measurements are required, because there are 3™
non-identity Pauli strings, rendering this standard quantum state tomography
infeasible for larger n. For instance, for a 50-qubit system this would result in
3°0 ~ 7.18 x 10?2 measurement settings, and even with the Google Sycamore
chip’s 4ps [157] readout time, performing only one shot per setting would take
about 1010 years.

To ease this exponential scaling in the number of qubits n, various methods
have been proposed. Most notably, classical shadow tomography [163] provides
a way to extract certain few-body observables with a number of measurements
that grows only logarithmically in the number of those observables. Other
techniques, such as neural-network-based tomography [181], rely on sampling
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protocols and often presume certain structural features of the underlying system.
Using global mutually unbiased bases on the full Hilbert space, rather than
local Pauli product bases, the number of measurement settings required for
quantum state tomography can be reduced to 2™ + 1 [182, 183]. Furthermore,
informationally complete measurements such as symmetric informationally
complete positive operator-valued measures (SIC-POVMs) offer an alternative
that can reduce the number of measurement settings, potentially down to a
single setting, and can be combined with classical-shadow-based tomography
schemes [184].

In Sec. 4.2.4, we will present the overlapping tomography method of [168],
which can be applied for quantum state tomography of RDMs.

4.2.3 Semidefinite programming

A semidefinite programming (SDP) problem involves optimizing a linear function
subject to constraints expressed as linear matrix equalities and inequalities. The
feasible regions of an SDP are known as spectrahedra, and efficient algorithms
such as interior point methods [185, 186] can be used to solve them. In its
standard primal form, an SDP can be written as:

min (C, X) (4.7)
st. (A4, X)=0b; i=1,2,...,m,
X = 0.

where the cost matrix C', the decision matrix X, and the constraint matrices
A; are Hermitian, b is a real vector, and (-, -) denotes the Hilbert-Schmidt inner
product, defined as (X,Y) := Tr [XTY] , with XT being the Hermitian conjugate
of X. SDPs are particularly well-suited for quantum information [174], as
density matrices are positive semidefinite. For instance, the quantum marginal
problem seeks to determine whether a global state on a full system exists that is
consistent with specified marginal states on subsystems, represented as reduced
density matrices (RDMs) [171, 174, 175]. This problem can also be formulated
as an SDP, as illustrated by the following example.

Assume we have perfect knowledge of the RDMs pa3, p13, and p12, acting on
subsystems Hogz, H13, and Hio, respectively, and the goal is to find a global
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state p123 on Hi93 that is consistent with these RDMs:

min,,,,0 (4.8)
st. pi23 =0, Trlpas] =1,
Try [p123] = pos,
Try [p123] = p13,
Trs [P123] = P12-

Here, the minimization of the constant 0 is purely a formalism to match the
standard SDP form in Eq. (4.7). If the constraints cannot be satisfied, the SDP
is deemed infeasible. Despite the apparent simplicity of compatibility SDPs
like Eq. (4.8), the general problem of determining whether a state p1a3.. 5, exists
is QMA-complete [170, 171], making it computationally intractable even for
quantum computers.

To address this complexity, we relax the problem in our method by using
standard quantum state tomography estimates and accounting for their error
ranges. Additionally, reinforcement learning has been shown to improve the
selection of constraints that enforce compatibility with the quantum marginal
problem in reconstructed solutions [187].

4.2.4 Overlapping tomography and related literature

The standard quantum state tomography of a full quantum state requires a
number of measurement settings that scales as 3", where n is the number
of qubits [180]. However, if the goal is to estimate only the (}) different k-
qubit reduced density matrices (RDMs), each RDM requires only 3% different
measurement settings. The total number of measurements, however, includes
an additional overhead due to the number of shots needed to estimate each
measurement setting.

Several strategies have been proposed to optimize the selection of measurement
settings and minimize the total number of measurements required. In [168], a
method called quantum overlapping tomography was introduced for estimating
k-qubit RDMs. The key idea is to measure each qubit individually in a chosen
basis, allowing non-overlapping k-qubit subsystems to be measured in parallel.
Overlapping k-qubit subsystems are then reconstructed through classical post-
processing. This approach reduces the required number of measurement settings
to at most e@*) 10g2(n). The measurement selection is determined by a family
of hash functions (n, k), which partition the system into k subsystems, with
all qubits in each subsystem measured in the same basis. All k-qubit RDMs
can then be reconstructed from this carefully chosen dataset. In a similar way,
partitioning-based methods [188] lead to a scaling of the number of measurement

settings needed as O (3k logh~1 n)
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However, in many practical scenarios, such as systems with k-local Hamiltoni-
ans and nearest-neighbor interactions, only k-geometrically-local RDMs—those
involving neighboring qubits—are required. This further reduces the number of
measurement settings needed to a constant scaling with respect to the number
of qubits n [164]. Recent advances have shown, both theoretically and experi-
mentally, that leveraging graph theory can optimize this method, allowing even
k-qubit RDMs to be estimated with a number of measurement settings that
remains constant in the number of qubits n [173].

Other approaches have focused on reducing the statistical uncertainty due
to shot noise in various contexts, such as quantum state tomography [189],
ground-state estimation [190], and calculations of fidelity and von Neumann
entropy [191]. SDP has also been applied to quantum marginal problems for
tasks like ground-state estimation [192, 193], incorporating tensor network
methods [194], or imposing entropy constraints on RDMs [195].

Our method builds on the principle of measuring the entire quantum system
via product measurements on single qubits in the Pauli bases and performing
post-processing to estimate k-local RDMs. However, rather than focusing on
optimizing the selection of measurement settings, we introduce physicality and
consistency constraints on the estimated RDMs. This approach explicitly ac-
counts for the shot noise arising from a limited number of shots per measurement
setting, providing a clearer benchmark for practical applications.

4.3 SDP-assisted overlapping tomography

In this section, we introduce the SDP-assisted overlapping tomography frame-
work for estimating local RDMs of n-qubit states described by local Hamiltonians.
We begin by presenting the hypergraph representation of local Hamiltonians
in Sec. 4.3.1. In Sec. 4.3.2, we detail the core methodology of SDP-assisted
overlapping tomography. Finally, to illustrate its effectiveness, we apply the
approach to the ground states of the 1D XY model and discuss the numerical
results in Sec. 4.3.3.

4.3.1 Local Hamiltonian

The Hamiltonian of an n-qubit k-local system can be represented by a hy-
pergraph G = (Viz, Eg), where each vertex v; € Vi corresponds to a qubit,
and each hyperedge e; € Eg (connecting up to k vertices) represents a local
Hamiltonian term. Concretely, the Hamiltonian takes the form

H=> Hj (4.9)
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where m is the number of local subsystems, growing polynomially with n, and
each H; acts non-trivially on at most k qubits (i.e., it is k-local). Fig. 4.1
illustrates the hypergraph representation of a k-local Hamiltonian in a many-
body system.

Vi %) V3 V4 Vs Ve V7

o—0O——~0 e
O es

Figure 4.1: Hypergraph representation of the interaction structure of a
Hamiltonian H = Z;":l Hj. The vertices Vg = {v;}ij=, correspond to n = 7 qubits.
Each hyperedge e; € Eq = {e;};, denotes a local Hamiltonian term H;. In this
example, E¢ contains the sets {v1,v2,vs}, {vs,va}, {va,vs}, {va,v5,v6}, {vr}, hence
m = 5. Hyperedges are shown as horizontal lines linking the relevant vertices, and the
corresponding local Hamiltonian term is indicated in the legend on the right.

The hypergraph representation not only provides a visualization of the Hamil-
tonian structure but also gives a framework for reconstructing the relevant
RDMs. Once measurement results are obtained from an ensemble of identical
n-qubit states, one can reconstruct a collection of RDM estimates p; for each
local subsystem. This involves applying Eq. (4.6) to each of the m subsystems:

m

1 .
Pi =gt [ Vst + > o . (4.10)
i€, \{0} i

Here, C‘f is the estimator of C’ij =Tr [Trvc\ej [ploi| = Tr[pjoi], where p is the
true n-qubit global state and p; is the true RDM of the j-th subsystem. Note
that, each hyperedge e; = {v;,,vj,,...} corresponds to the qubits on which H;
acts. These local RDMs are of particular interest because they are sufficient to
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estimate the energy expectation values of the local Hamiltonian:

m

E=> Tr[p;Hj]. (4.11)

Jj=1

However, the reconstructed local RDMs {p; 7~y can be non-physical in
practice; e.g., they may exhibit negative eigenvalues or fail to satisfy mutual
compatibility (i.e., overlapping RDMs might not be consistent). While mutual
compatibility can only be enforced approximately in real scenarios [187], impos-
ing physicality constraints remains crucial for ensuring reliable energy estimates
and other derived properties.

4.3.2 Methodology

In this section, we present the SDP-assisted overlapping tomography framework.
Building on standard quantum tomography results, we formulate semidefi-
nite programs (SDPs) that incorporate overlapping-compatibility (OC) and
enhanced-compatibility (EC) constraints. These constraints aim to ensure the
validity and consistency of the reconstructed states, allowing us to minimize
or maximize the energy expectation within the feasible set. In essence, we
determine the minimum and maximum energies compatible with the simulated
data. By solving these SDP problems, we obtain a set of overlapping local
RDMs that are more physically valid and mutually consistent.

Semidefinite relaxations

Relaxations of polynomial optimization problems based on semidefinite con-
straints play a central role in our method, in a similar spirit as Ref. [192, 196].
In this section, we describe the construction of these constraints.

Consider a local Hamiltonian associated with hypergraph G = (Vg, Eg).
For each hyperedge e¢; € Eq, we introduce the decision variables for the SDP
problem as

1 ~
P =gt | Vel + > oy : (4.12)
€7\, \ {0} )
where
Cle|¢i—d.6+d]|. vielm), vieT,,\{o}. (4.13)

Here, index j labels the local subsystem associated with the hyperedge e;, and
€] is a relaxation variable associated to j-th local subsystem. It is proportional
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to the variance of C’f, scaled by a coefficient «, i.e., € = aVar(C‘f). The value
of a relates to the probability that the unbiased estimator C’f (of Trlp;oi])
lies within the chosen confidence interval, following Chernoff bound arguments.
Throughout, tildes () denote SDP decision variables, while hats (*) denote
results obtained directly from the raw data during standard quantum state
tomography.

Moreover, we introduce the semidefinite constraints

pi =0, Vjelm, (4.14)

and the overlapping-compatibility (OC) and enhanced-compatibility (EC) con-
straints

R = Uj jrcim) R (Pjs Pjr) » (4.15)
G =V jrem) 9 (s, 05) (4.16)

respectively. Specifically, R(ﬁj, ﬁj/) is the set of matrix equality constraints
ensuring that the local RDMs are consistent on the intersection of their respective
supports:

R (), bjr) = {Tre;\e, [95] = Tre e, [95] = 0}, (4.17)

while g(,aj, ﬁj/) is the set of constraints that require the existence of a larger
RDM p whose marginals agree on the variables indexed by 7 and j:

G(pj, p51) = {p = 0, Txe, [p] = pjr, Tre,, [P = ps}- (4.18)

Note that the dimension of p can freely be chosen and that the definition of
G in Eq. (4.18) is just one possible choice; in practice, there is a hierarchy of
possible relaxations forming a partially ordered set. The optimal choice of G for
a given computational budget is non-trivial, and one can achieve varying degrees
of performance by judiciously selecting or refining these constraints [187, 197].

SDP problem formulation

The relaxations defined in the previous sub-section allow us to specify a feasible
set of local RDMs. In this chapter, we focus on finding the minimum and
maximum energies consistent with the simulated data used to estimate the
tomographic local RDMs {p;}. Specifically, we consider the following optimiza-
tion problem for determining the optimal state that minimizes (or maximizes)
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the energy under these constraints:

min(max)y ZTr piH (4.19)

s.t. O € [Cg —d,¢{ +d|. vjelmland Vie T, \ {0},

ﬁj t 07 VJ € [m]a
ZUY.

Note that Eq. (4.19) does not yet incorporate all the SDP constraints derived
from the quantum marginal problem needed to solve the above problem, as it
only includes the initial-order EC constraints. Obtaining the exact solution
requires higher-order EC constraints, but adding these leads to exponential
growth in computational complexity [187, 197]. In large many-body systems, our
formulation effectively discards higher-order constraints as n grows but k£ remains
fixed, which loosens the energy bounds. Depending on the specific system, one
may selectively include higher-level constraints that are most relevant for the
problem at hand, here being the estimation of the minimum and maximum
energy compatible with the measurement data [194]. Such strategies (especially
the reinforcement-learning-based [187] and the renormalization-based [194] ones)
can naturally be incorporated in our framework thereby allowing for even tighter
estimates, but this would impair the fairness of the benchmarking of our method.
Hence, in the rest of the chapter we proceed with the straightforward approach.

Because shot noise affects the data, setting €/ = 0 (i.e., assuming no error)
typically makes the SDP infeasible. Allowing a tolerance e{ around the estimated
quantities provides a search region for solutions. As more data is collected, the
e-values shrink, thereby reducing the volume of the feasible set. Since the true
state arises from a valid quantum system (satisfying the quantum marginal
problem at all hierarchy levels), the resulting energy bounds become more
accurate with increased data.

Studies on ground-state scenario

Semidefinite relaxations have long been used to investigate ground-state prop-
erties of many-body systems [192, 196]. We now examine the performance
of SDP-assisted overlapping tomography in estimating ground states of local
Hamiltonians.

Fig. 4.2 illustrates two feasible sets under the same search region but with or
without EC constraints. These feasible sets are defined by all RDMs satisfying
both the overlapping- (#) and enhanced-compatibility (¢) constraints or only
the overlapping (#£) constraints, respectively, while the search region refers
to the intersection of positive semidefinite cones restricted by the confidence
intervals in Eq. (4.13). Introducing EC constraints narrows the feasible set and
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@ Tomographic estimate ) @ Ground state p (with energy E,)
Search region of SDP \ Global Hamiltonian
SDP feasible set SDP solution
(Overlapping Compatibility) (Overlapping Compatibility)
SDP feasible set SDP solution
(Overlapping & Enhanced © (Overlapping & Enhanced
Compatibility) Compatibility)

Figure 4.2: Feasible set for the SDP problem. An n-qubit system with RDM
p and energy E,; (shown in red) undergoes tomography, resulting in an approxi-
mate RDM p with energy F (black). The shaded gray region represents the (high-
dimensional) search space. The yellow spectrahedron depicts the feasible set with
only overlapping-compatibility (OC) constraints, whereas the green spectrahedron
also includes enhanced-compatibility (EC).

yields tighter lower and upper bounds on ground-state energy estimate E'g:

Tr [Hpoo=e] > Tr [HpOC |, (4.20)
Tr [Hpg0re] < Tr [HAL] (4.21)

The variable ¢/ = a Var(C/) in Eq. (4.13) defines the search region explored
by the SDP, thereby controlling the confidence interval for the ground-state
energy estimate. Different a-values yield different search regions, visualized in
Fig. 4.3. The spectrahedra illustrates the feasible set after imposing positive
semidefiniteness, OC, and EC constraints. The true state p (red) and its
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estimated counterpart p (black) are included for comparison. Crucially, when
the search region is large enough within the feasible set to capture the true
RDMs p, we obtain upper and lower bounds on the ground energy estimate E,:

min

Te[H pr (a0)] < By < Tr[H prx (1)) (4.22)

where ag > ag.

Algorithm 4.1: SDP-assisted tomography on ground states

Input: T identical ground-state preparations, Hamiltonian
H = ZTZI Hj, hyperparameters b > A > 0, where A is the
tolerance.
Output: Local RDM estimates {ﬁJS»DP 7=, that minimize the energy,
and the corresponding minimum energy E’g.
Perform standard quantum state tomography to obtain estimated local
RDMs {p; 7, with the precision given by 7" samples;
repeat
Solve the SDP problem described by Eq.(4.19) with decision variables
{pj}7L, and coefficient a = b;
Denote the feasible set as F;
b+ 2b;
until F # (;
Initialize a = 0;
while |a — b| > A do
oo —a+ @;
Solve the SDP problem described by Eq.(4.19) with decision variables
{p;}jL, and coefficient a = ao;
Denote the feasible set as F;
if 7 # 0 then
Denote the solution as S = argming; 1 >~ Tr [p; Hjl;
b <+ ap;
else
L a + Qo;

{AﬁjS‘DP};‘nﬂ «— §;
Ey Z;nzl Tr[ﬁgS‘DPHj];

We employ a bisection method (Alg. 4.1) to identify the smallest «g (within
a tolerance Ag) for which the feasible set is non-empty, and analogously for
a1 using a maximization variant. This allows us to establish the bounds of
Eq. (4.22) on E,.
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® Tomographic estimate p @ Ground state p (E,)

‘ Search region & feasible set SDP solution

(smaller @) (smaller @)
Search region & feasible set SDP solution
(larger a) (larger o)
I Exp. Avg. Global Hamiltonian
_v_confidence interval

Figure 4.3: An illustrative depiction of the SDP feasibility region. The true RDM p
with energy F, of Hamiltonian H (red) and its tomographic estimate p (black) lie
within a search region of adjustable size (dashed circle) determined by the coefficient
a. The feasible set under overlapping-compatibility (OC) and enhanced-compatibility
(EC) constraints appears as a shaded spectrahedron. The blue interval indicates the
confidence interval for the average of the energy obtained by standard quantum state
tomography from the simulated data.

4.3.3 Numerical simulations

In this section, we present numerical results for estimating the ground-state
energy of the 1D-chain XY model [198]. We also compare the estimation
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accuracy achieved by standard tomography to that of the proposed SDP-assisted
tomography.

Problem description

The Hamiltonian of the 1D-chain XY model is given by

n—1 n—1
He =) Hj=JY (X;Xjp1 +Y;Yj). (4.23)
=1 j=1

where H; is the local two-qubit Hamiltonian term capturing the interaction
between qubits 7 and j + 1. Here, n denotes the total number of qubits, and J
is the interaction strength. The subscript 'C’ stands for ’chain’. This model is
frustrated, meaning that the global ground state of H- does not simultaneously
minimize the energy of each local term H;.

Although the accuracy of ground-state energy estimation through tomography
is fundamentally limited by the number of ground-state samples, introducing
additional constraints can significantly tighten the resulting confidence interval.
In the context of the XY model Hg, the overlapping- (OC) and enhanced-
compatibility (EC) constraints in Eq. (4.19) take the form

Ko =Ujein—1) Ro (P> Pj+1) 5 (4.24)
Yo = VUjem—219c (P, Pjs1) » (4.25)
respectively, with
Re (95, pj+1) = {Tryy [pj] = Tryjioy [pj41] = 0}, (4.26)
Go (pjs pj+1) = 1P = 0, Tryyy [p] = pjr1, Trijyay [0 = P} (4.27)

Here, p; is the SDP decision variable corresponding to the two-qubit subsystem
of qubits (j,7+ 1), and p is a three-qubit SDP variable spanning qubits j, j + 1,
and j + 2. The subscript in the partial trace indicates which qubit is being
traced out.

Note that the energy function can be computed from the 2-qubit RDMs in
a natural way, but also equivalently from the 3-qubit RDMs that stem from
the ECs, either by taking their partial traces (which are compatible with the
2-qubit RDMSs, by construction) or by extending the Hamiltonian terms to a
larger Hilbert space (by appropriately tensoring them with identity operators).

Explanation on the results

For the SDP-assisted tomography, we are firstly given a number of identical
copies of the XY model ground state, as in Eq. (4.23). We perform a series

121



4 Mitigating Shot Noise in Local Overlapping Quantum Tomography with
Semidefinite Programming

-1.51 n=3 —274 n=4

—4 n=7 n=8 Bt -\*

T T T T T T T T
102 103 104 10° 102 103 104 10°
Number of samples Number of samples
—— Ground state energy —— Upper bound of 99% CI SDP max. Sol. (overlapping) ~—+— SDP max. Sol. (Overlapping+Enhanced)
------ SDP Relaxation —— Lower bound of 99% CI SDP min. Sol. (Overlapping) ~ —+— SDP min. Sol. (Overlapping+Enhanced)

Figure 4.4: Tightening expectation value confidence interval via SDP-
assisted quantum tomography. Ground-state energy estimates for the XY model
(J =1) with n =3,4,5,6,7,8 qubits against the number of state samples. The red
solid lines indicate the exact ground-state energy; the red dashed lines are lower
bounds from the relaxation method. The blue curves show the 99% confidence interval
upper and lower bounds for standard quantum tomography. The yellow (green)
curves give the results of SDP minimization with tolerance parameters Ao = 0.1, and
maximization with tolerance parameters Ag = 0.001, under OC (OC+EC) constraints,
respectively. In each plot, the two green curves can be interpreted as the upper and
lower energy bounds using SDP-enhanced quantum tomography.

of measurements in randomly chosen Pauli basis oj, with i uniformly sampled
from {1,2,3}". From these measurement outcomes, we reconstruct the local
RDMs via standard tomography and estimate the ground-state energy through
Eq. (4.11). We then apply our SDP-based post-processing to refine these
ground-state energy estimates.

The plots in Fig. 4.4 show the resulting confidence intervals for the ground-
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state energy as a function of the number of samples, for n = 3,4,5,6,7,8. In
each subplot, the red solid line indicates the exact ground-state energy from
Eq. (4.23) obtained by exact diagonalization, while the blue region marks the
99% confidence interval from standard tomography. The green curves represent
the solutions of Alg. 4.1 applied to SDP minimization and maximization (with
OC+EC constraints, Egs. (4.26) and (4.27)) and two different tolerances Ag =
0.1 and A; = 0.001. This choice is motivated by the fact that there is a strong
asymmetry between upper and lower bounds when tomographing the ground
state. In contrast, the yellow curves illustrate the SDP results with only OC
constraints (Eq. (4.26)).

Comparing the yellow and green curves marked with triangles shows that
adding EC constraints substantially tightens the lower bound obtained by SDP
minimization. When the sample size is small, the tomographic RDM j can
significantly diverge from the true RDM p, creating bias in the SDP energy
bound in the presence of large statistical noise. Together with the fact that the
probability of failure in estimating the true ground state is higher in extremely-
low-shot regimes, this fact makes it much more likely for the green curves marked
with triangles to exceed the exact ground-state energy. However, as the number
of samples grows, the SDP-assisted approach narrows the confidence interval
more effectively than standard tomography. This improvement is especially clear
in the zoomed-in subplots, where the green curve, representing SDP-assisted
(OC+EC) bounds, spans a narrower range for (H) than the blue curve from
standard quantum state tomography. Notably, SDP-assisted tomography can
reduce the required number of samples by a factor of 10! to 102 compared to
standard quantum state tomography, while achieving the same level of precision
in lower-bounding the energy.

The red dashed lines represent lower bounds obtained via an existing relax-
ation method [196]. Such approaches optimize the ground-state energy under
only a subset of the constraints that we use, thus guaranteeing a strict, al-
beit potentially conservative, bound. While such relaxations have successfully
established lower bounds for the ground-state energies of local Hamiltonians
in many-body settings [187, 194, 196, 199-202], the accuracy of these bounds
tends to degrade for larger problem sizes. This shortfall arises from omitting
higher-level EC constraints to keep the computational effort manageable.

All numerical simulations were performed using Qiskit [203] for quantum
simulations and CVXPY [204, 205] to solve SDP formulations using the SCS
optimizer.

4.4 Application

In this section, we demonstrate how to integrate our SDP-assisted tomogra-
phy into a variational procedure for preparing and characterizing low-energy
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states of local Hamiltonians. Specifically, we embed SDP-assisted tomography
within the algorithmic cooling (AC) method [177-179] to heuristically mini-
mize the energy of a target quantum Hamiltonian. Sec. 4.4.1 introduces AC,
and Sec. 4.4.2 explains how SDP-assisted tomography is incorporated into the
AC workflow. Numerical results for the 1D-chain XY model are presented in
Sec. 4.4.3, comparing the performance of AC both with and without semidefinite
programming.

4.4.1 Algorithmic cooling

Algorithmic cooling (AC) aims to prepare a low-energy state |¢) of an n-
qubit quantum system governed by a local Hamiltonian H, using near-term
quantum devices. The AC method is adapted to the practical capabilities of
the experimental setup, which can differ considerably across platforms. Thus,
we do not assume access to arbitrary unitaries; instead, we denote by h the set
of Hermitian operators h for which e~*** can be implemented natively on the
device. The unitary e~?* is implemented by turning on an interaction given
by h for an amount of time ¢. We also assume, without loss of generality, that
each h € h does not commute with H (Hamiltonian of XY model). Fig. 4.5
outlines the AC workflow.

Optimization step

We now describe the optimization routine in AC, which incrementally builds a
shallow circuit to prepare a low-energy state for local Hamiltonians. We begin
by introducing the cooling principle.

Counsider a Hamiltonian H of the form in Eq. (4.9) and an operator h € h

such that [H,h] # 0 and, for simplicity, h> = I. The last assumption can be
relaxed [151]. Given an initial quantum state |to),
|5 (1)) =" [vo) (4.28)

= (cos(t)l — isin(t)h) lto)

we define the energy function:

En(t) = (¥o (1) H [v5 (1)) (4.29)
=cos?(t)(H) + icos(t)sin(t){[h, H]) + sin?(t)(hHh).

By using trigonometric identities, one finds
En(t) = (H) + Asin®(t) + £ sin(2t), (4.30)

where (-) indicates the expectation value in [ig), A := (hHh — H), and B :=
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Figure 4.5: Conceptual diagram of algorithmic cooling (AC) Algorithmic
cooling iteratively constructs a quantum circuit that prepares a low-energy state
of a local Hamiltonian. Initially, the circuit is the identity, and the trial state
is |to) = Uo|0)®". Each iteration generates an ensemble of identical states for
tomography, yielding local RDMs that guide the choice of a new layer of gates (see
Sec. 4.4.1), which is appended to form the next circuit.

i([h, H]). The minimum of Fj(t) occurs at
1 -B
tr = 3 arctan R (4.31)
yielding
1
By () = (H) + 5 (a-vazyp) . (4.32)

Note that there is a slight ambiguity in the definition of t* given in Eq. (4.31):
the minimum is achieved at any t* satisfying cos (2t*) = A/vV A% 4+ B? and
sin (2t*) = —B/v/A? 4+ B2. Choosing the opposite sign leads to a maximum at
t* +7/2,

En (t* +7/2) = (H) + (A +V/AZ T Bz) /2. (4.33)

Therefore, if A and B can be accurately estimated, applying the interaction
given by h (or —h) for a period of time |¢*| will decrease the energy of |1g) by
an amount of % (\/ A2+ B? — A). Since H is local, the value of A and B can
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be extracted from measurements on only a constant number of qubits:

A= > (hHjh — Hj), (4.34)
j:supp(H;Nh)#D

B = > i ([h, Hj]) . (4.35)

j:supp(H;Nh)#D

Here, supp(H; Nh) = supp(H,;) Nsupp(h), and supp(-) C [n] denotes the qubits
on which an operator acts non-trivially.

Because each update step is chosen to locally decrease energy, the energy
function forms a monotonically decreasing sequence (assuming we have access
to exact RDMs {p;}2;) that is bounded by below, guaranteeing convergence
(albeit not necessarily to the true ground state). The algorithmic cooling
approach is thus a heuristic strategy that can fail for several reasons: h may
be too small to reach the global ground state from the initial state; choosing
unitaries in certain orders could lead to local minima; or noisy RDM estimates
might produce suboptimal energy updates.

Nonetheless, AC provides a flexible, greedy technique for variationally reduc-
ing energy. Integrating SDP-assisted tomography can enhance the accuracy of
local RDM estimates, thereby improving the reliability and efficiency of each
iteration.

Algorithmic cooling circuit compilation

This subsection explains how we construct the layout of the variational circuit
by integrating the optimization step from Sec. 4.4.1 into the algorithmic cooling
(AC) method. Note that there are many ways to construct the heuristic, each
with a different performance depending on the problem. Here, we outline a
specific one for illustrative purposes.

We begin with an empty circuit, Yo = |, and an initial trial state |1)g).
At each step, we consider all available operators h € h, selecting the one
that yields the greatest energy reduction. We then append the corresponding
unitary Uy = ekt to the circuit, ensuring a strictly decreasing energy at
each iteration. Although this approach guarantees monotonic improvement, it
may not fully exploit device capabilities.

To make better use of circuit depth, we group gates into layers Vi,..., V.
Each layer V; = U, ll e Ulk U le consists of K; parallel unitaries, with disjoint
supports,

supp (Ulk) N supp (Ulk,) =0, V1<kk <K, (4.36)
The overall circuit is then Uz = Vi, - - - V4, allowing for a more efficient arrange-

ment while still achieving a steady decrease in energy.
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To optimize a layer V;, one could iteratively:
1. Select an operator h, compute t*, and update V; < Vj e~ ",
2. Repeat for the next operator »’, finding ¢'*, and so on.

However, each new operator choice requires a full state preparation and mea-
surement cycle. Since H is local, it can become more resource-efficient to
collect a suitable set of RDMs for the current layout of V; and then perform
all unitary updates for that layer classically, rather than measuring after every
single addition of e~"*"

In Alg. 4.2, we present a more refined approach that avoids predefining the
circuit layout. Instead, at each iteration, the algorithm greedily selects the
operator h* and corresponding t* that produce the largest energy decrease. The
selection is restricted to operators whose supports are disjoint from any non-
trivial gates already in the layer. This ensures the circuit grows incrementally
while maintaining a clear and consistent reduction in energy at each step.

Algorithm 4.2: Algorithmic cooling

Input: Initial state |1g), Hamiltonian H = Z;n:l H;, operator set hy,
maximum number of iterations L.

Output: Quantum circuit Ue.

Initialize the system to |¢g) and set Uo = I;

[+ 0

repeat

Prepare an ensemble of identical states Uc |1)o) and perform standard
quantum state tomography to obtain local RDMs {p; };

h«hy V<1

while h # () do

Estimate the parameters A (Eq. (4.34)) and B (Eq. (4.35)) for
every h € h with local RDMs {p;}, respectively;

Select the h* and t* that maximize the energy decrease
% (\/A2 + B? — A)7 c.f. Eq. (4.32);

Vit eV

pi = e pie M e {p));

| b h\ {heh | supp(h) N supp(h?) £ 0};

Uc +— ViU

l+<1+1;

until [ = L;
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4.4.2 Embedding SDP-assisted tomography

In practice, the set of possible operators h can be extremely large. Rather
than testing each h € h individually, one can instead perform tomography
on the reduced density matrices (RDMs) of relevant qubit subsets. Although
tomography itself is expensive, if both the Hamiltonian H and the unitaries to
be optimized are local, then the quantities (hH;h — H;) and ([h, H,;]) needed
to identify the optimal unitary e~“*" depend only on the RDMs of supp(H,) U
supp(h), which is constant for every j. These expectation values from Eqs. (4.34)—
(4.35) can be computed via

(hH;h — H;) = Tr[p, (hH;h — H;)], (4.37)
i([h, Hj]) = i Tx[py [h, Hj]], (4.38)

where p, is a collection of relevant RDMs of the current global state |¢),

Pr = Tr[n]\(supp(Hj)Usupp(h))(|7/)><1p|)' (439)

To obtain the relevant RDMs, one first performs state tomography. However,
due to shot noise, the raw tomographic local RDMs may become non-physical.
To address this, one can formulate an SDP (Eq. (4.19)) to recover locally
consistent RDMs that minimize the energy while preserving physicality. These
SDP-refined RDMs are then provided to the algorithmic cooling (AC) method
(Alg. 4.2), guiding the optimization parameters for each cooling step.

4.4.3 Numerical simulations

We now present numerical simulations of the AC procedure for approximating
the ground state of the 1D-chain XY model (a frustrated Hamiltonian), specified
by Eq. (4.23). We consider two initial states: (a) the uniform superposition
|+)®™ and (b) a Hartree Fock (mean-field) product state, which corresponds
to the product state of minimal energy, which can be obtained efficiently in
one dimension [206], thereby providing an in principle better initialization. We
employ Alg. 4.2 that iteratively prepares the ground state and we restrict the
set of available operators h to geometrically local Pauli operators.

Figs. 4.5a and 4.5D illustrates the results for different pairs (n,ns), where n
(number of qubits) ranges from 3 to 8 and ng (number of samples per iteration)
takes values 10!, 102,103, 10%. Each iteration uses n, samples per iteration to
estimate the necessary parameters for cooling either using standard tomography
or SDP-assisted tomography. Within each subplot, the red line marks the exact
ground-state energy. Two variants of AC method are simulated: (i) the blue
curve corresponds to AC with standard tomography, using tomographically
reconstructed local RDMs to compute energy, and (ii) the orange curve depicts
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AC with SDP-refined RDMs, still using their reconstructed expectation value
for energy. The green curve shows the SDP lower-bound on the energy at each
iteration, representing the minimal energy compatible with the measured data
under the chosen constraints. Each method is repeated 25 times, and the shaded
areas around the curves indicate one-sided standard deviation.

Figs. 4.5a and 4.5b also showcase three noteworthy regimes: For a low number
of measurements (~ 10?), the monotonicity property, especially of the AC with
tomography, is broken. This is due to the shot noise being too dominant and
confusing the heuristic of the AC. For the |+)®" as an initial state, and for
ns = 102, we observe a sudden dip in energy for the AC with tomography,
followed by a steady increase in energy, as iterations progress. This is due
to the AC adding gates that are not sufficiently close to optimal, because
of the limitations in precision. In contrast, the behavior of AC with SDP
is qualitatively closer to monotonicity, especially in the first few iterations,
although ultimately converging to a similar value as the AC with tomography.
For the |HF) as initial state, both AC with tomography and AC with SDP
have the same phenomena, but the energy scales are much lower as we begin
from the lowest-energy product state.

For a higher number of measurements (~ 10%), the AC with SDP performs
better compared to the AC with tomography. This showcases a sweet-spot regime
where our approach proves more advantageous, as this behavior is consistent
across different system sizes and both initializations considered. However, for
an even larger number of measurements (~ 10%), the performance of the two
methods becomes similar. This is likely because, with more measurement
data, the estimates provided by standard tomography are increasingly physical,
leaving less room for the SDP to correct non-physicality. In the absence of shot
noise, the performance of both methods is identical by construction.

It is worth noting that the number of samples used in our numerical simula-
tions is significantly lower than in typical physical experiments, which highlights
the efficiency of the approach, though it introduces some limitations. It should
be noted that there is no guaranteed advantage of the orange curve (AC with
SDP-optimized local RDMs) over the blue curve (AC with local RDMs obtained
via tomography) in any single simulation. This is because AC is a heuristic
method, and its performance depends on various factors, such as the initial
state, measurement settings, and other parameters. However, in some settings,
the blue and orange curve have non-overlapping shaded areas. Additionally,
by construction, the green curve (AC with SDP-optimized local RDMs and
minimized energy) provides a lower bound on the orange curve.
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Figure 4.5a: Algorithmic cooling results for a 1D-chain XY model (frustrated
Hamiltonian), initialized in |+)®". Energy expectation values are shown as a function
of cooling iterations using standard tomography and SDP methods.
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Figure 4.5b: Algorithmic cooling results for a 1D-chain XY model (frustrated
Hamiltonian), initialized in |HF’). Energy expectation values are shown as a function
of cooling iterations using standard tomography and SDP methods.
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4.5 Conclusion and outlook

In this chapter, we introduced a semidefinite programming (SDP)-assisted
technique for reconstructing overlapping reduced density matrices (RDMs)
from experimental measurement data, effectively addressing the challenges
posed by shot noise in near-term quantum computing. By enforcing overlapping-
compatibility (OC) and enhanced-compatibility (EC) constraints on local RDMs
through a polynomial-sized SDP problem, our method alleviates the impact of
limited measurements and ensures the consistency of the reconstructed local
RDMs. As a result, our approach not only enhances the accuracy of local
observable estimates but also provides tighter confidence intervals compared to
standard tomographic procedures.

To illustrate its effectiveness, we applied SDP-assisted tomography within a
variational quantum algorithm, algorithmic cooling (AC), aimed at heuristically
preparing low-energy states of local Hamiltonians. Numerical simulations of
a 1D-chain XY model demonstrated the advantages of our approach in terms
of both accuracy and resource efficiency. These findings indicate that SDP-
assisted tomography can serve as a valuable asset for boosting the performance
of variational quantum algorithms and other quantum information processing
tasks in the near term.

Looking ahead, a promising direction for future research is the incorporation
of additional constraints, such as entropy constraints, into the SDP formulation
to further refine the reconstruction process [195]. It would also be interesting to
extend the SDP-assisted tomography framework to more complex many-body
systems and investigate its behavior on frustration-free Hamiltonians. Applying
it to specific quantum chemistry calculations might be promising, as done in a
similar way in Refs. [207, 208]. In addition, exploiting the framework to optimize
other local observables, such as correlation functions, is another potential area
of exploration. Another open question is the effect of systematic errors on
the application of our method, and how strategies such as those presented in
Ref. [209] can help to reduce them.

Finally, examining how SDP-based methods can be combined with noise
mitigation strategies on quantum hardware could offer valuable insights for
practical enhancements in near-term quantum computing.

132



