
Capturing dynamics with noisy quantum computers
Dechant, D.S.

Citation
Dechant, D. S. (2026, February 17). Capturing dynamics with noisy quantum
computers. Retrieved from https://hdl.handle.net/1887/4290771

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4290771

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4290771

CHAPTER 3

Error and Resource Estimates of Variational Quantum
Algorithms for Solving Differential Equations Based on

Runge-Kutta Methods

3.1 Introduction
For more than four decades, quantum computing has captivated the minds of
researchers, but significant experimental advancements have only been achieved
in recent years. We are living in the era of Noisy Intermediate-Scale Quantum
(NISQ) devices [15, 107–109], which, while capable of certain super classical
computations in principle, are also susceptible to noise and errors, preventing
them from providing substantial computational advantages over classical com-
puters. Efforts to tackle these challenges have resulted in proliferate research
lines dedicated to error correction and noise mitigation across various quantum
architectures [110]. One approach to ameliorating some of the issues involves
hybrid quantum-classical algorithms that use quantum computers to process
information, while classical computers handle the correction and optimization
processes, helping to reduce errors and improve efficiency. For example, in
variational quantum algorithms, such as the Variational Quantum Eigensolver
(VQE) or the Quantum Approximate Optimization Algorithm (QAOA), the

The contents of this chapter have been published in Ref. [46].

53

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

quantum part evaluates the cost function depending on a given set of parameters,
while the classical part optimizes these parameters to minimize the cost function.
In physical terms, the cost function is typically the energy of a Hamiltonian
that encodes the optimization task. Extracting the final result from such a
hybrid device is challenging, as errors arise both from quantum and classical
sources. A notable source of error is the measurement shot noise arising out
of the discrete nature of quantum measurements and the limited number of
measurements taken [111].

Solving differential equations (DEs) is a critical task in various scientific and
engineering fields, and several quantum computing-based proposals have been
developed to tackle this problem. First ideas [35, 36, 112] were built around the
quantum linear system algorithm [37], but they require fault-tolerant quantum
computers. Later, approaches based on variational quantum algorithms were
introduced, e.g., in Refs. [26, 113–115]. In one of the latter approaches, the
DE is mapped to an imaginary-time Schrödinger equation [116]. It is solved
by a variational algorithm, where the time evolution of a quantum state is
approximated by a variational quantum circuit and mapped to the time evolution
of the parameters of this circuit. After classically computing the parameters at
the final time step, one reinserts them into the variational quantum circuit to
prepare the evolved quantum state. This is an approach originally proposed in
Ref. [117] for quantum simulation and has attracted a lot of interest since [118–
124].

In the approach of Refs. [116, 117], the resulting time evolution of the quantum
circuit parameters has the form of an ordinary differential equation (ODE).
Classically, ODEs can be solved by time-discretization methods such as the
Euler method or the more general Runge-Kutta methods [125] (RKMs) that
can be categorized by their order p. The first proposed variational quantum
algorithm for solving differential equations based on the Euler method is shown
in Ref. [113]. Those methods approximate the time evolution by calculating
a truncated Taylor expansion at each time step, and the higher the order of
the RKM, the lower is the resulting truncation error, but the higher is the
required number of function evaluations. There are also different generalizations
of the Euler methods, like the linear multistep methods or the general linear
methods [125], which can lead to similar accuracies as RKMs with different
requirements of the number of function evaluations.

Previous works have proposed that choosing RKMs, such as the widely
used classical RKM [126] with the order p = 4 instead of the Euler method,
will also be favorable in solving the time evolution of the quantum circuit
parameters [117, 127, 128]. However, each function evaluation incorporates
evaluations of quantum circuits, making higher-order RKMs more demanding
on the quantum resources. Moreover, quantum circuit evaluations are affected
by the "shot noise bottleneck," where the error scales as O(1/N2

meas) with the
number of measurements Nmeas, introducing an additional source of error. The

54

3.1 Introduction

3

number of measurements is a precious resource in quantum computing, as it is
the most costly and time-consuming operation and as it is severely limited by
the available runtime of the device before it requires recalibration [107, 129, 130].
That is why, for the practicality of the variational algorithm, it is crucial to
minimize the total number of quantum circuit measurements.

In this chapter, we focus on solving differential equations based on the
approach of Refs. [116, 117]. We investigate whether higher-order RKMs outper-
form the Euler method in solving the time evolution of the circuit parameters by
analyzing the different sources of error and resource requirements. Specifically,
we provide a detailed analysis of the total error of the variational quantum
algorithm for solving differential equations, defined as the trace distance between
the actual solution and the output of the variational algorithm. We explicitly
consider the truncation error associated with the chosen RKM and the shot noise
error. Other relevant sources of errors, such as circuit error (gate infidelity, bias,
SPAM errors) and the representation error (the variational circuit being able to
represent the solution at all time steps with its parameters), are assumed ideal
as they depend among others on the chosen Ansatz and problem instance [131].
We establish rigorous error bounds and use them to estimate a sufficient number
of circuit evaluations required by the algorithm for a given target error, based
on the order of the RKM. Additionally, we perform an analysis of the RKMs
under the assumption of no shot noise.

Further, we validate the resource estimates through benchmarking: the
analysis without shot noise is demonstrated with a simple ODE, while the
analysis of the variational algorithm is applied to option pricing, where the
dynamics are described by the Black-Scholes equation [26, 81]. The latter
is a partial differential equation that has attracted a lot of attention in the
variational quantum computing community [26, 128, 132]. This shows that the
application of our method is not restricted to ODEs but can also be applied to
solving partial differential equations. We directly compare the total number of
circuit evaluations required by the algorithm, depending on the order of the
chosen RKM. In this chapter, we derive rigorous error bounds that are general,
but may overestimate the true error in practice. Our resource estimates are
based on optimizing resources with respect to these upper bounds and might
therefore be overly conservative. Such an approach constitutes the optimal
parameter selection strategy, providing a guaranteed success probability.

Similar error and resource estimates have been conducted in Refs. [116, 133–
135]. However, our analysis is integrating the truncation errors of RKMs and
shot noise errors, making it comprehensive, and offers direct comparisons of
resource requirements between different RKMs and an a-priori analysis that
leads to substantial savings in the cost of the algorithms.

Our work is relevant not only to quantum algorithms that use variational
approaches but also to those that employ RKMs for solving DEs, such as
in Ref. [112, 136]. Our analysis highlights the importance of studying the

55

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

sensitivity of classical numerical methods for ODEs to perturbations in the
input function, which has hardly been explored so far.

From our results, we conclude that depending on the parameters distinct to the
problem at hand, higher-order RKMs are decreasing the resource requirements.
In the use case of option pricing via the Black-Scholes equation, we showed
that an RKM of order p = 2 is requiring the minimal number of total quantum
circuit evaluations. For other applications, even higher-order methods might be
favorable. With our thorough analysis of the involved parameters, we provide
a straightforward framework that can be applied to other use cases that can
be tackled by solving a DE in the form of Eq. (3.11) and decrease the resource
requirements of the variational algorithms by suggesting the most efficient RKM.

In the interest of making this chapter self-contained, we build up the chapter
in the following way: We begin with an introduction to the RKM and the
variational quantum algorithm from [116] and with the problem statement. In
Sec. 3.3-3.4, we show estimates of the errors and minimal resources required for
ODE solving without and with shot noise. In Sec. 3.5, we analyze parameters
of the variational algorithm that the error and resource estimates depend on.
Afterwards, we are performing numerical analyzes of a simple ODE without
shot noise and of an option pricing use case in Sec. 3.6. In Sec. 3.7, we provide
a discussion of the results and conclusions.

3.2 Preliminaries
In this chapter, we investigate the impact of different types of errors on vari-
ational quantum algorithms for solving DEs based on Runge-Kutta methods.
These algorithms are motivated by the variational quantum algorithm for imagi-
nary time evolution introduced in Ref. [116]. In the following, we firstly present
the Runge-Kutta methods, which is a family of classical methods for solving
ODEs. Secondly, we present the variational quantum algorithm for solving DEs
that are based on the Runge-Kutta methods. And thirdly, we introduce the
errors and resources that we analyze in this chapter.

3.2.1 Runge-Kutta methods
Let us consider the initial value problem, which is an ODE together with an
initial condition:

dy(τ)
dτ

= f (τ, y(τ)) (3.1)

y(τ0) = y0 ,

where τ is the time and y(τ) is an element of the image of an unknown function
in a scalar or vector form that we want to determine, and where f (τ, y(τ)) fulfills

56

3.2 Preliminaries

3

the assumptions of the Picard-Lindelöf theorem, guaranteeing the existence of
a unique solution to Eq. (3.1).

Since most of the time an analytically closed form is not viable, numerical
methods are the only way to obtain an approximate solution. A common way
of solving Eq. (3.1) is with the so-called Runge-Kutta methods (RKMs). The
RKMs are a class of methods based on the Taylor expansion of y in order to
approximate the numerical solution of the ODE at the future time step by using
evaluations of f (τ, y(τ)).

A general blueprint of RKMs with s stages can be outlined as follows: For
simplicity, let us set τ0 = 0. We divide the time interval τ ∈ [0, T], T > 0
into Nτ time steps denoted by τn, n ∈ {1, ..., Nτ}. We assume the step size
∆τ = τn − τn−1 = T/Nτ to be constant and denote the computed solution at
the n-th time step by y(τn). Using Eq. (3.1) and the solution y(τn) at the n-th
time step, we can compute y(τn+1) in the following way (see Ref. [137, p.907]):

y(τn+1) = y(τn) + ∆τ
s∑

i=1
biki , (3.2)

where the calculation of the latter function is done in s stages

k1 = f(τn, y(τn)), (3.3)
k2 = f(τn + c2∆τ, y(τn) + a21k1∆τ),
k3 = f(τn + c3∆τ, y(τn) + (a31k1 + a32k2)∆τ),

...
ks = f(τn + cs∆τ, y(τn) + (as1k1 + as2k2 + · · ·+ as,s−1ks−1)∆τ).

The constants ai,j (1 ≤ j < i ≤ s), bi (1 ≤ i ≤ s) and ci (2 ≤ i ≤ s) are
specific for each RKM. In order to be consistent, the constants have to satisfy

s∑
i=1

bi = 1, and
i−1∑
j=1

ai,j = ci, for 2 ≤ i ≤ s. (3.4)

For later analysis, we define the maxima of these parameters for a specific RKM
in the following way:

bmax = max
i
|bi|, (3.5)

amax = max
i,j
|ai,j | . (3.6)

The simplest RKM is the Euler method (s = 1), which approximates the

57

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

function in one stage iteratively as follows:

y(τi + ∆τ) = y(τi) + ∆τf (τi, y(τi)) . (3.7)

The estimation error ℓi induced at each time step τi due to the truncation
of the Taylor series is referred to as the local truncation error (LTE) of the
method. RKMs are classified according to the error scaling of their LTE. A
RKM is said to have an order p if the LTE is bounded by an error that scales
as O(∆τp+1). Generally, the order and the number of stages of an RKM are
related by s = p for 1 ≤ p ≤ 4, and s > p for p ≥ 5. This discrepancy is due to
the fact that finding the coefficients ai,j , bi and ci becomes increasingly difficult
for higher values of p as it involves solving a system of non-linear equations
that becomes more complicated for higher p. For higher-order methods this
can only be achieved with an increasingly higher number of stages s. To the
best of our knowledge, there is no closed formula for calculating the minimum
number of stages required for a specific order. The relations up to order p = 10
are provided in Table 3.1.

Order p Number of stages s
5 6
6 7
7 9
8 11
9 13
10 16

Table 3.1: Relation between order and the minimum number of stages of RKMs [125,
138, 139]

The following theorem provides an upper bound on the LTE of a p-th order
RKM:

Theorem 3.1. (See Ref. [140, p.180]) The LTE ℓn of the p-th order RKM at
the step n ∈ [1, Nτ] is bounded by

∥ℓn∥ = ∥y(τn)− yn∥ ≤ ∆τp+1KLp
fτM +O(∆τp+2) , (3.8)

where ∥ · ∥ denotes a norm, which can be any norm on the state space (e.g.,
Euclidean, maximum, or 1-norm), as the bound is independent of the specific
choice. Here, yn is the RKM approximation of y(τn) calculated at step n,
assumed that the value y(τn−1) is exact. Further, K > 0 is a constant depending
on the chosen RKM and f(τn, y(τn)) can be upper bounded by M > 0 and is
Lipschitz-continuous with respect to the first variable, such that the following

58

3.2 Preliminaries

3

bounds hold:

∥f(τn, y(τn))∥ ≤M,

∥∥∥∥∂f(τn, y(τn))
∂τ

∥∥∥∥ ≤ Lfτ , . . . , (3.9)∥∥∥∥∂if(τn, y(τn))
∂τ i

∥∥∥∥ ≤ Li
fτ

M i−1 , (3.10)

for all 1 ≤ i ≤ p, 0 < τn < T and f(τn, y(τn)) := ∂y(τ)
∂τ

∣∣∣
τn

.

Unless stated otherwise, the same norm is used consistently throughout the
analysis for states, errors, Lipschitz bounds, and the corresponding induced
operator norms. Since all norms on finite-dimensional spaces are equivalent,
the order of the error bounds remains unaffected by the specific choice of norm,
with only the constants differing. In our setting, we use the trace norm for
quantum states and the Euclidean (2-)norm, together with its induced operator
norm, for all other quantities.

We are estimating the constants K,M and Lfτ in Secs. 3.6.1 and 3.6.2 for
the specific examples of DEs that we cover numerically in Sec. 3.6.

3.2.2 Variational quantum algorithm for solving
differential equations

In this section, we present the variational algorithm for solving linear differential
equations of the following type:

dy(τ)
dτ

= −H · y(τ) (3.11)

y(τ0) = y0 , (3.12)

where y(τ) ∈ Cd is a vector and H a d × d-dimensional matrix. We assume
w.l.o.g. that d is a power of 2 and that H is Hermitian. This differential equation
is a special case of the initial value problem as stated in Eq. (3.1).

It is possible to map a wide variety of DEs to Eq. (3.11), such as stochastic DEs
(see Ref. [128]), the Black-Scholes partial DE (see our analysis in Sec. 3.6.2 and
Ref. [26]), or other linear partial DEs (see Ref. [141]). Typically, this mapping
involves a discretization of the underlying space and differential operators
onto a grid [26, 128, 141], but it is also possible to encode the solution via
spectral methods like Chebyshev polynomials or in Fourier basis (see for example
Ref. [44], although they use a different quantum algorithm).

If d is not a power of 2, it is always possible to embed H and y(τ) into
higher-dimensional spaces, such that the assumption holds. The resulting higher
dimensional space into which y(τ) is embedded is less than a factor of 2 larger

59

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

than the original space.
If H is not Hermitian, several strategies can be applied: For some differential

equations, it is possible to apply changes of variables in order to transform H to
a Hermitian matrix, such as the transformation done in Ref. [26]. Alternatively,
it is possible to divide any matrix H into a Hermitian and an anti-Hermitian
part, which effectively leads to a doubling in the number of circuit evaluations,
as demonstrated in Ref. [142]. It is also possible to use the technique shown
in Ref. [143] that gives a mapping from Eq. (3.11) with a non-Hermitian H to
the real time Schrödinger equation, which one can solve with the variational
algorithm introduced in Ref. [117]. Further, there exists a generalization of the
variational algorithm for imaginary time evolution that we present here which can
be applied to linear differential equations with non-Hermitian matricesH without
the need to embed them first into higher-dimensional Hilbert spaces [144]. Note
that our analysis can easily be adapted to this generalized variational algorithm,
as well as to the variational algorithm solving the real time Schrödinger equation.

The variational quantum algorithm that solves Eq. (3.11), is based on the
variational quantum algorithm for imaginary time evolution introduced in
Ref. [116]. Therefore, we firstly bring Eq. (3.11) into the form of quantum
imaginary time evolution.

For the rest of the chapter, we assume that H is Hermitian. The matrix H
can thus be decomposed in the following way:

H =
N∑

m=1
λmσm . (3.13)

Here, {λm}N
m=1 ∈ R are the decomposition coefficients and {σm}N

m=1 are the
Pauli strings, which are tensor products of single qubit Pauli matrices and the
identity. This possible decomposition always exists and is unique, since the
collection of d2 Pauli strings form an orthogonal basis for Hermitian operators
acting on a d dimensional Hilbert space. The operator H plays the role of the
Hamiltonian of a quantum system. Effectively replacing the real time parameter
t from the Schrödinger equation with −iτ , where τ is a real number, Eq. (3.11)
can then be considered as a Schrödinger equation in imaginary time.

Let us further realize the function y(τ) as a quantum state |ψ(τ)⟩ ∈ Cd and
the initial condition y(τ0) = y0 as a state |ψ(0)⟩ ∈ Cd. That can be done by
normalizing the entries of the vector y(τ) and by subsequently encoding the
resulting entries as the amplitudes of |ψ(τ)⟩:

|ψ(τ)⟩ =
d−1∑
i=0

y(τ)i√
∥y(τ)∥2

2
|i⟩ , (3.14)

where {|i⟩}d−1
i=0 is the computational basis.

60

3.2 Preliminaries

3

The problem of solving Eq. (3.11) then comes down to simulating the cor-
responding non-unitary time evolution V (τ) = e−Hτ that solves the following
equation:

d |ψ(τ)⟩
dτ

= −H · |ψ(τ)⟩ (3.15)

with the initial state |ψ(0)⟩ at time τ = 0. The goal is then to calculate the
evolved state |ψ(T)⟩ at time T , which can be calculated from the initial state
as:

|ψ(T)⟩ = γ(T)V (T) |ψ(0)⟩ , (3.16)

with the normalization γ(τ) = (⟨ψ(0)|V (2T) |ψ(0)⟩)−1/2
. (3.17)

While reading out the amplitudes of |ψ(T)⟩ itself will only give the ratio of each
basis vector in the solution y(T) of the DE in Eq. (3.11), keeping track of the
initial normalization from the mapping of y(τ0) to |ψ(0)⟩ and the intermediate
normalization factors γ(τ) will give the resulting renormalization factor. One
can identify γ(τ) as one of the parameters that is updated at each step (see for
example Refs. [113, 128]).

As proposed in Ref. [116], the evolution of the state |ψ(τ)⟩ can be simulated
by using a parameterized quantum circuit to approximate the evolved state.
Instead of |ψ(τ)⟩, the variational quantum "trial" state

|ϕ(θ(τ))⟩ := R(θ(τ)) |0⟩ , |ϕ(θ(τ))⟩ ∈ Cd, (3.18)

prepared by a variational circuit R(θ(τ)) with a vector of time-dependent
parameters θ(τ) = (θ1(τ), θ2(τ), . . . , θNV

(τ))T ∈ RNV is taken. The trial state
is often referred to as the Ansatz. The circuit is chosen in such a way that it
consists of a sequence of NV layers each depending on one variational parameter
as follows:

R(θ(τ)) = RNV
(θNV

(τ))RNV −1(θNV −1(τ)) . . . R1(θ1(τ)) . (3.19)

Each Rk(θk(τ)), k ∈ (1, . . . , NV) is a unitary operator that can be written as

Rk(θk(τ)) = exp
{(

θk(τ)
Nd∑
i=1

fk,iσk,i

)}
, (3.20)

with fixed complex parameters fk,i and Pauli strings σk,i. For simplicity, we
keep Nd fixed. In general, only a small subspace of the Hilbert space can be
reached with such an Ansatz, but as was shown in Ref. [145], this is sufficient
for physically relevant states. Furthermore, this Ansatz captures a wide class of

61

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

possible implementations, such as the coupled cluster Ansatz [146] or hardware
efficient methods [147, 148].

The idea of the method is to map the time evolution of the state |ψ(τ)⟩
according to the Hamiltonian H to a time evolution of the parameters θ(τ) of
the state |ϕ(θ(τ))⟩. To this end, one first finds the vector of parameters θ(τ = 0)
such that it minimizes the distance ∥ |ϕ(θ(0))⟩ − |ψ(0)⟩ ∥. The McLachlan’s
variational principle [149, 150] as given by

δ∥(d/dτ +H) |ϕ(θ(τ))⟩ ∥ = 0 (3.21)

is fulfilled if Eq. (3.15) is valid for the trial state |ϕ(θ(τ))⟩. Here ∥ |ϕ⟩ ∥ =
√
⟨ϕ|ϕ⟩

is the Hilbert space norm of a vector |ϕ⟩ and δ denotes an infinitesimal variation.
However, if the chosen Ansatz is not expressive enough or too biased, Eq. (3.21)
will not hold. The resulting errors are hard to control in practice, but there
exist ways to estimate them. See for example Ref. [131, 134].

Eq. (3.21) is used to translate the time evolution of the trial state |ϕ(θ(τ))⟩
to a time evolution of the vector of parameters θ(τ), given as an ODE (see
Appendix 3.D):

NV∑
l=1

Akl (θ(τ)) ∂θl(τ)
∂τ

= Ck (θ(τ)) ∀τ . (3.22)

Note that this ODE is acting on the NV -dimensional vector θ(τ), where NV

is independent of the dimension d of the time evolution in Eq. (3.15), and is
entirely determined by the number of parameters of the chosen Ansatz. In
particular, NV is not bound to be a power of 2. In principle, lower NV will
reduce the total number of circuit evaluations for our algorithm (see Sec. 3.5.1),
but will also lead to a lower expressivity of the corresponding Ansatz.

The elements of the matrix A and the vector C are:

Akl (θ(τ)) = Re

(
∂ ⟨ϕ(θ(τ))|

∂θk

∂ |ϕ(θ(τ))⟩
∂θl

)
, (3.23)

Ck (θ(τ)) = Re

(
−∂ ⟨ϕ(θ(τ))|

∂θk
H |ϕ(θ(τ))⟩

)
. (3.24)

Taking the derivatives of Eq. (3.20) with respect to the parameters, one can
calculate the derivative of the trial state in Eq. (3.18):

∂ |ϕ(θ(τ))⟩
∂θk

=
Nd∑
i=1

fk,iRk,i |0⟩ , (3.25)

Rk,i = RNV
RNV −1...Rk+1Rkσk,iRk−1 . . . R2R1, (3.26)

62

3.2 Preliminaries

3

where we omitted the dependencies of the Rks on θks for simplicity. With the
chosen Ansatz in Eq. (3.26), the matrix elements in Eq. (3.23) and in Eq. (3.24)
can be computed as:

Ak,l (θ(τ)) =
Nd∑

i,j=1

(
f∗

k,ifl,j ⟨0|R†
k,iRl,j |0⟩+ h.c.

)
, (3.27)

Ck (θ(τ)) =
Nd∑
i=1

N∑
m=1

(
f∗

k,iλm ⟨0|R†
k,iσmR |0⟩+ h.c.

)
, (3.28)

by measuring circuits illustrated in Fig. 3.1. Alternatively, it is possible to
calculate the matrix element with parameter-shift rules [92, 151], making the
circuits shorter in depth and therefore potentially more suitable for NISQ
applications. They are applied to similar algorithms in Ref. [135, 152].

|±⟩

· · · · · ·

ancilla
|0⟩+ eiζ |1⟩ X X

register
|0⟩n R1 R2 Rk−1 Uk,i Rk Rl−1 Ul,j

Figure 3.1: The quantum circuit evaluating the elements of A and C. The controlled
unitary Uk,i is one of the σk,i. Depending on if one is evaluating A or C, the controlled
unitary Ul,j is another σl,j or one of the Pauli strings σm (in which case we take
l = NV + 1) that constitute the Hamiltonian, respectively.

If the matrix A (θ(τ)) is invertible for all θ(τ) in the relevant domain, then
Eq. (3.22) can be written in the form of Eq. (3.1) by identifying y(τ) with θ(τ):

∂θ(τ)
∂τ

= f (θ(τ)) := A−1 (θ(τ))C (θ(τ)) , (3.29)

and with the initial condition θ(0) at time τ = 0. The time evolution of the
parameters θ(τ) is given as this ODE, and solving it until final time T gives the
vector of parameters θ(T) that yield the final state |ϕ(θ(T))⟩, which serves as an
approximation of the evolved state |ψ(T)⟩. If A is not invertible, regularization
introduces an additional error (see Secs. 3.2.3 and 3.5.2). Similarly, the inversion
itself will inevitably also include an additional error that has to be taken into
account. As long as the errors stemming from regularization and inversion of A
fulfill the error bounds in this chapter (such as Eq. (3.75)), our estimates are
still applicable. We assume therefore for the remainder of this chapter that A
is invertible.

We can thus solve a DE of the form in Eq. (3.11) with a hybrid quantum-
classical algorithm by solving the ODE in Eq. (3.22) defining the parameters

63

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

θ(τ) of an Ansatz state.
In the next section, we introduce the errors and resources required for solving

the DEs in Eqs. (3.1) and (3.11) with the Runge-Kutta methods and with the
variational quantum algorithm, respectively.

3.2.3 Errors and resources
In this chapter, we analyze errors and resource requirements of the Runge-Kutta
methods and the variational algorithm as described above. For this, we focus on
analyzing the errors involved in solving the ODE using the RKM described in
Sec. 3.2.1, and for the variational algorithm additionally the total error arising
from preparing the trial state |ϕ(θ(T))⟩ defined in Eq. (3.18) using the method
described in Sec. 3.2.2. In this chapter, we are not considering representation
errors stemming from the chosen Ansatz state not being expressive enough, as
it proves very challenging to estimate these errors in general [153]. However,
they have an influence on both errors that we estimate, by playing a role in the
approximation of the time evolution of θ(τ) and in the approximation of the
final state |ψ(T)⟩. They are specific to the task at hand, it is possible to derive
a posteriori error bounds and they become less relevant for deep Ansätze, see for
example Refs. [131, 134]. Also, we assume circuit error such as gate infidelity,
bias and SPAM errors to be negligible. We further assume the matrices A as
defined in Eq. (3.27) to be invertible (see our discussion in Sec. 3.5). In practice,
it might be necessary to introduce matrix regularizations for the cases where A
is not invertible (see techniques in Refs. [26, 116, 128, 152]), which would lead
to additional errors.

We denote the total error arising while approximating the solution of the
ODE (Eq. (3.1)) for noiseless evaluations of the functions f(τ, y(τ)):

ϵ
(0)
ODE := ∥y(τNτ

)− yNτ
∥2 , (3.30)

and analyze it in Sec. 3.3 (Thm. 3.2). For the variational quantum algorithm, the
parameters calculated via an RKM from Eq. (3.29) additionally are influenced
by shot noise in the evaluations of f(θ(τ)), which we denote by the superscript
δ:

ϵ
(δ)
ODE := ∥θ(τNτ

)− θ̂Nτ
∥2 . (3.31)

We added the hat to the approximation of θNτ of the parameters calculated via
an RKM, in order to show that they may be perturbed (e.g., from shot noise).
We analyze ϵ(δ)

ODE in Sec. 3.4.

64

3.2 Preliminaries

3

Whenever the norm is not specified, we are using the 2-norm:

∥θ(τNτ
)− θ̂Nτ

∥2 :=
(

NV∑
i=1
|θ(τNτ

)i − θ̂Nτ ,i|2
)1/2

, (3.32)

where NV is the length of the vectors θ(τNτ
) and θ̂Nτ

.
We define the total error arising from applying the variational algorithm to

approximate the state |ψ(T)⟩ with the trial state |ϕ(θ̂Nτ)⟩ as:

ϵtotal := ∥ψ(T)− ϕ(θ̂Nτ
)∥1 , (3.33)

where ψ(T) = |ψ(T)⟩ ⟨ψ(T)| and ϕ(θ̂Nτ
) = |ϕ(θ̂Nτ

)⟩ ⟨ϕ(θ̂Nτ
)|, where |ψ(T)⟩

and |ϕ(θ̂Nτ
)⟩ are as defined in Eqs. (3.14) and (3.18). For ϵtotal, we use the

trace distance as the most convenient distance for quantum states, which for
two pure states is defined as:

∥ψ(T)− ϕ(θ̂Nτ)∥1 :=
√

1− | ⟨ψ(T)|ϕ(θ̂Nτ)⟩ |2 . (3.34)

We analyze the error ϵtotal in Sec. 3.5.1.
Based on the error estimates, we are estimating the resources needed in order

for executing the RKMs and the variational algorithm. We define the cost of
solving an ODE with an RKM as the total number of times that the function
f(θ(τ)) has to be evaluated for the whole RKM:

C(Nτ , Nr, s, p) := sNτ (s, p)Nr(s, p) , (3.35)

where Nr is the number of measurements of the function f(θ(τ)) at a single
stage of one RKM time step. In the absence of shot noise, the cost in Eq. (3.35)
reduces to

C(Nτ , s, p) := sNτ (s, p) , (3.36)

as at each stage and time step, one needs only one evaluation of f(τ, y(τ)).
We are estimating the minima of the costs in Eq. (3.35) and in Eq. (3.36)

required to reach a specified target error ϵ(δ)
target that upper bounds the error

ϵ
(δ)
ODE ≤ ϵ

(δ)
target in Sec. 3.3 and 3.4.

For the variational algorithm described in Sec. 3.2.2, we also determine the
total number of quantum circuit evaluations required. As we will demonstrate,
calculating f(θ(τ)) for a given input θ(τ) requires the preparation and measure-
ment of several quantum circuits. This significantly increases the total number
of quantum circuit evaluations beyond the cost in Eq. (3.35). We refer to this
as Ncirc, and we estimate it in Sec. 3.5.1.

65

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

3.3 Runge-Kutta methods without shot noise
For ease of exposition, in this section we analyze the total error arising from
solving an ODE with an RKM without the presence of shot noise in the
evaluations of f(τ, y(τ)) in Eq. (3.1). We also determine the minimal number
N

(0)
τ of RKM steps required to achieve a prescribed accuracy.
In Thm. 3.2, we establish an upper bound on the total error, denoted ϵ

(0)
ODE

in Eq. (3.30), by analyzing the error propagation due to the truncation error of
the RKM (see Thm. 3.1).

We select the upper bound of the error ϵ(0)
ODE as a target error, meaning the

maximal error we can expect. This target error is the used to determine the
minimal number of RKM steps needed to ensure that the resulting error remains
within the target. The result is formalized in Thm. 3.3, and the corresponding
minimal cost, as defined in Eq. (3.36), is derived in Corollary 1.

Theorem 3.2. Let y(τNτ
) be the solution of Eq. (3.1). We assume that the

assumptions of Thm. 3.1 hold. Let us further assume that there exists a Lipschitz
constant Lfy, such that ∀y1(τn), y2(τn) in the spaces {y(τn) : τn ∈ [0, T]} and
{yn : n ∈ [1, Nτ]}, the following holds:

∥f(τn, y1(τn))− f(τn, y2(τn))∥ ≤Lfy∥y1(τn)− y2(τn)∥ ,∀τn ∈ [0, T]. (3.37)

Then, the approximation yNτ
of the solution y(τNτ

) at time τNτ
calculated via

a p-th order RKM with s stages in Nτ time steps has the error defined in
Eq. (3.30) bounded by:

ϵ
(0)
ODE ≤

(1 + F (Nτ , s))Nτ − 1
F (Nτ , s)

(
T

Nτ

)p+1
KLp

fτM , (3.38)

where we used the notation

F (Nτ , s) := bmax

amax

((
1 + Lfyamax

T

Nτ

)s

− 1
)
. (3.39)

For a definition of amax and bmax see Eqs. (3.5) and (3.6). We define the
upper bound in Eq. (3.38) as the target error, i.e., the theoretical maximum
error that can occur when applying this method:

ϵ
(0)
target := (1 + F (Nτ , s))Nτ − 1

F (Nτ , s)

(
T

Nτ

)p+1
KLp

fτM . (3.40)

Based on this result, we estimate the minimal number of time steps that are
needed to guarantee a particular target error ϵ(0)

target while solving Eq. (3.1):

66

3.4 Runge-Kutta methods under the presence of shot noise

3

Theorem 3.3. Let the assumptions of Thms. 3.1-3.2 hold. Then, the minimal
number of RKM steps N (0)

τ required to solve Eq. (3.1) with a target error ϵ(0)
target

is

N (0)
τ = LfτT

(
KM

(
ebmaxT Lfys − 1

)
ϵ

(0)
targetbmaxsLfy

)1/p

. (3.41)

Using the latter results, we get:

Corollary 1. For a target error ϵtarget, the minimal value of the cost function
(3.36) is

C(N (0)
τ , s, p) = sLfτT

(
KM

(
ebmaxT Lfys − 1

)
ϵ

(0)
targetbmaxsLfy

)1/p

, (3.42)

where s is the number of the RKM stages, p is the RKMs order and N (0)
τ is the

minimal number of time steps of the chosen RKM.

The proofs of Thms. 3.2 and 3.3 are provided in Appendices 3.A and 3.B,
respectively. In the following section, we analyze the RKM in the presence of
the shot noise in the evaluations of the differential f(θ(τ)).

3.4 Runge-Kutta methods under the presence of
shot noise

In the variational algorithm that we presented in Sec. 3.2.2, we are solving
the ODE given in Eq. (3.29) by using RKMs. The function f(θ(τ)) from
Eq. (3.29) is given by expectation values estimated via sampling quantum
circuits. Therefore, we assume that instead of f(θ(τ)), we have access to its
approximation f̂(θ(τ)). We need to take into account the statistical errors
arising while computing f̂(θ(τ)) based on the measurement results. The analysis
of this section is valid for all differential equations as given in Eq. (3.1) that
have a noisy f̂(θ(τ)).

By virtue of the central limit theorem, let us also assume that each measure-
ment is drawn from a random Gaussian distribution with mean f(θ(τ)) and
standard deviation σsingle. Calculating the average of these measurements gives
the estimate f̂(θ(τ)):

f̂(θ(τ)) = 1
Nr

Nr∑
i=1

f̂i(θ(τ)) , (3.43)

67

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

where f̂i(θ(τ)) is a single measurement result. By the central limit theorem as
Nr →∞, the estimate f̂(θ(τ)) behaves as a Gaussian distribution:√

Nr(f̂(θ(τ))− f(θ(τ)))→d N(0, σ2
single). (3.44)

From Chebyshev’s inequality we get the following bound for a δ > 0:

P (∥f̂(θ(τ))− f(θ(τ))∥ ≥ δ) ≤
σ2

single

δ2Nr
. (3.45)

Alternatively, a Chernoff bound would be tighter, but more cumbersome to
apply here and probably not lead to a different qualitative analysis.

If we take the probability P (∥f̂(θ(τ))−f(θ(τ))∥ ≥ δ) to be equal to η ∈ (0, 1),
then with probability of 1− η, the following bound holds:

∥f̂(θ(τ))− f(θ(τ))∥ ≤ δ = Σ√
Nr

(3.46)

In the above, we defined Σ = σsingle√
η .

Assuming access to a noisy estimate of f(θ(τ)), as described above, we derive
error and resource estimates for solving ODEs using RKMs under the presence
of shot noise.

In Thm. 3.4, we establish an upper bound on the error ϵ(δ)
ODE as defined

in Eq. (3.31) by analyzing how both the truncation error of the RKM (see
Thm. 3.1) and the shot noise in the estimation of f(θ(τ)) (see Eq. (3.46))
contribute to error propagation.

We select the upper bound of the error ϵ(δ)
ODE as a target error, meaning the

maximal error we can expect. This target error is the used to determine the
minimal number of RKM steps and the minimal number of measurements of
each f(θ(τ)) required to keep the resulting error within the target. The result
is formalized in Thm. 3.5, and the corresponding minimal cost, as defined in
Eq. (3.35), is derived in Corollary 2.

Theorem 3.4. Let us assume that the assumptions of Thm. 3.1 hold for
Eq. (3.29). Under the conditions in Eq. (3.10), Eq. (3.37), the approximation
θ̂Nτ

at time τNτ
calculated via a p-th order RKM with s stages in Nτ time steps

has the error defined in Eq. (3.31) upper bounded by:

ϵ
(δ)
ODE ≤

(1 + F (Nτ , s))Nτ − 1
F (Nτ , s)

(
3δ
Lfy

F (Nτ , s) +
(
T

Nτ

)p+1
KLp

fτM

)
, (3.47)

where we used the notation introduced in Eq. (3.39).

68

3.4 Runge-Kutta methods under the presence of shot noise

3

Let us further denote the latter upper bound as

ϵ
(δ)
target :=(1 + F (Nτ , s))Nτ − 1

F (Nτ , s)

(
3δ
Lfy

F (Nτ , s) +
(
T

Nτ

)p+1
KLp

fτM

)
.

(3.48)

Given this error estimate, we obtain the following resource minimization and
the directly following minimal cost:

Theorem 3.5. Let us assume that f̂(θ(τ)) is an approximation for f(θ(τ))
calculated from Nr measurements, with the error scaling δ = Σ√

Nr
, where Σ > 0

is a constant. Then, calculating the approximated solution θ̂Nτ
to the ODE in

Eq. (3.29) by a p-th order RKM with s stages and with a target error ϵ(δ)
target

defined in Eq. (3.48), the number of time steps required must be at least

N (δ)
τ = TLfτ

(
KM

(
ebmaxsLfyT − 1

)
(2p+ 1)

ϵ
(δ)
targetbmaxsLfy

)1/p

, (3.49)

and at least

N (δ)
r = 9Σ2

L2
fy

 ϵ
(δ)
target(

1 + F (N (δ)
τ , s)

)N
(δ)
τ

− 1
−
(

T

N
(δ)
τ

)p+1 KLp
ftM

F (N (δ)
τ , s)


−2

(3.50)

many measurements for the estimation of f(θ(τ)) for each set of inputs θ(τ).

The proofs of Thms. 3.4 and 3.5 are given in Appendices 3.A and 3.C,
respectively.

Corollary 2. For a target error ϵ(δ)
target, the minimal value of the cost function

(3.35) is

C(N (δ)
τ , N (δ)

r , s, p) = sN (δ)
τ (s, p)N (δ)

r (s, p), (3.51)

where s is the number of stages, p is the order, N (δ)
τ and N (δ)

r are the minimal
number of time steps of the RKM; and the minimal number samples in calculating
f̂(θ(τ)) for each set of inputs according to Thm. 3.5.

In the following section, we further analyze the latter error and resource
estimates. By applying it to the variational quantum algorithm discussed in

69

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

Sec. 3.2.2, we show by numerical estimations in Sec. 3.6, how they evaluate for
specific DEs such as given in Eq. (3.29). We shall see that with these results,
we can choose a Runge-Kutta method such that the required total number of
circuit evaluations will be minimal.

3.5 Analysis of the variational quantum
algorithm

In this section, we analyze the total error as defined in Eq. (3.33) of the algorithm
provided in Sec. 3.2.2. We show its relation to Eq. (3.31) and derive the resource
requirements of the algorithm for a given target error, based on the estimates
in Sec. 3.4. Afterwards, we continue with an estimation of the shot noise and
further quantities based on a toy model we introduce. These further estimates
are necessary for the numerical analysis of the following Sec. 3.6.

3.5.1 Error and resource estimate
We are interested in estimating the total error in Eq. (3.33). Using the triangle
inequality, we get

ϵtotal ≤∥ψ(T)− ϕ(θ(T))∥1 + ∥ϕ(θ(T))− ϕ(θ̂Nτ)∥1 = ϵP QC + ϵpar . (3.52)

Here, we define the distance between the trial functions with the different input
parameters as follows:

ϵpar := ∥ϕ(θ(T))− ϕ(θ̂Nτ)∥1. (3.53)

The representation error coming from approximating the function ψ(T) with
the trial function ϕ(θ(T)) is defined as

ϵP QC := ∥ψ(T)− ϕ(θ(T))∥1. (3.54)

Furthermore, using the multi-dimensional mean-value theorem 1, the second
term of Eq. (3.52) can be bounded by

ϵpar ≤ sup
θ0∈Ξ

∥∇θϕ(θ0(T))∥(1,2)ϵ
(δ)
ODE , (3.56)

1Multivariate Mean Value Theorem: for x, y ∈ Rn

∥f(x) − f(y)∥q ≤ sup
z∈[x,y]

∥f ′(z)∥(q,p)∥x − y∥p, (3.55)

Where z ∈ [x, y] denotes a vector z contained in the set of points between x, y ∈ Rn and
∥f ′(z)∥(q,p) is the L(p,q) norm of the derivative matrix of f evaluated at z.

70

3.5 Analysis of the variational quantum algorithm

3

where Ξ = {wθ̂Nτ + (1 − w)θ(T)|w ∈ [0, 1]}. The norm of the Jacobian is
defined as

sup
θ0∈Ξ

∥∇θϕ(θ0(T))∥(1,2) := sup
θ0∈Ξ

sup
θ∗(T)∈Ξ,θ∗(T)̸=0

∥∇θϕ(θ0(T)) · θ∗(T)∥1

∥θ∗(T)∥2
.

(3.57)

The following lemma shows us an upper bound to this expression.

Lemma 2. The norm of the Jacobian with the chosen circuit (Eq. (3.19) and
Eq. (3.20)) is bounded by

sup
θ0∈Ξ

sup
θ∗(T)∈Ξ,θ∗(T)̸=0

∥∇θϕ(θ0(T)) · θ∗(T)∥1

∥θ∗(T)∥2
(3.58)

≤ sup
θ∗(T)∈Ξ,θ∗(T)̸=0

∑
k

(∑
j 2|fk,j |

)
|θ∗

k(T)|
∥θ∗(T)∥2

. (3.59)

We provide the proof in Appendix 3.F.
According to this lemma, Eq. (3.57) is upper bounded by

S :=

 sup
θ∗(T)∈Ξ,θ∗(T) ̸=0

NV∑
k=1

(
Nd∑
j=1

2|fk,j |

)
|θ∗

k(T)|

∥θ∗(T)∥1

 . (3.60)

Thus, the total error is bounded by

ϵtotal ≤ ϵP QC + Sϵ
(δ)
ODE . (3.61)

As described in Sec. 3.2.3, there are errors which we assume to be negligible. In
particular, we are disregarding the representation error ϵP QC . We are thus left
with estimating S for the specific Ansatz at hand (see Sec. 3.6) and the error in
calculating the parameters, ϵ(δ)

ODE , which we analyzed in Sec. 3.4.
The resource that we would like to minimize for the application of the

variational algorithm is the total number of circuit evaluations Ncirc which is
needed for running the algorithm. In comparison to the cost that was estimated
in Sec. 3.4, we have to add an additional factor in order to get Ncirc. The
derivation of this factor follows.

Denote with NA and NC the numbers of circuits that are needed to calculate
the matrix A and the vector C for specific input parameters. Each matrix A or
vector C consists of N2

V or NV elements, respectively where NV is the number

71

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

of parameters θ. Each element of A and C is calculated by the evaluation of N2
d

or NdN different circuits, respectively. Here N is the number of terms in the
Hamiltonian and Nd is an upper bound on the number of Pauli strings in the
unitary operator Rk of the variational circuits, as defined in Eq. (3.20). Thus,
they are bounded above by NA ≤ NA = N2

V N
2
d and NC ≤ NC = NV NdN . Let

us assume that these upper bounds are always reached. We denote by N
(δ)
τ

the minimum number of time steps in the ODE solving algorithm and by N (δ)
r

the minimum number of times, each stage value f (θ(τ)) is measured; both
have been estimated in Thm. 3.5. By s, we denote the number of stages that
are calculated at each time step of the RKM. Therefore, the number of circuit
evaluation Ncirc needed to calculate θ⃗(T) is equal to

Ncirc = N (δ)
τ sN (δ)

r (NA +NC) (3.62)
= N (δ)

τ sN (δ)
r (N2

V N
2
d +NV NdN) (3.63)

= N (δ)
τ sN (δ)

r NV Nd(NV Nd +N) . (3.64)

One can see that the number of circuit evaluations in the whole circuit scales
quadratically in the number of circuit parameters NV .

Note that, if instead of counting the total number of circuit evaluations we
care about the total run time of the algorithm, and allow parallel evaluations of
N2

V N
2
d +NV NdN circuits, the cost comes down to N (δ)

τ sN
(δ)
r .

In the next subsection, we will further estimate the dependence of N (δ)
r on

the condition number of A, and give a comprehensive overview of the resource
estimate in Eqs. (3.77)- (3.80).

3.5.2 Estimation of the shot noise
In Sec. 3.4, we presented error and resource estimates for RKMs with an error in
the evaluations of f(τ,θ(τ)) stemming from shot noise. We derive our estimates
on the basis of the bound in Eq. (3.46). Since we would like to incorporate the
results of Sec. 3.4 into analyzes of the required resources for the variational
quantum algorithm, we are studying the shot noise inherent to this algorithm in
this section. In the end of this section, we will give an estimate of Σ as defined
in Eq. (3.46).

Each term
(
f∗

k,ifl,j ⟨0|R†
k,iRl,j |0⟩+ h.c.

)
or
(
f∗

k,iλm ⟨0|R†
k,iσmR |0⟩+ h.c.

)
in the matrix A and the vector C as given in Eqs. (3.27) and (3.28) can be
written in the following form:

q = aRe
(
eiζ ⟨0|⊗n

U |0⟩⊗n
)
, (3.65)

where the amplitude a and the phase ζ are determined by either f∗
k,ifl,j or

72

3.5 Analysis of the variational quantum algorithm

3

f∗
k,iλm. The unitary operator U is equal to either R†

k,iRl,j or R†
k,iσmR.

The terms q can be obtained by the parameterized quantum circuits shown in
Fig. 3.1. Note that these circuits are different from the circuit which prepares
the final state |ϕ(θ̂Nτ

)⟩. An ancillary qubit of the circuit is initialized as
(|0⟩+ eiζ |1⟩)/

√
2, while the remaining qubits are initialized in the state |0⟩⊗n.

A projective measurement of the ancillary qubit in the {|+⟩ , |−⟩} basis has
following probability to find the qubit in the state |+⟩:

P̂+ =
Re
(
eiζ ⟨0|⊗n

U |0⟩⊗n)+ 1
2 . (3.66)

To estimate the probability P̂+ and subsequently the terms q, we need to imple-
ment and measure the circuit Nr times. Let us assume that the measurements
correspond to independent Bernoulli distributed random variables, which have
the variance σ2(P̂+) = P̂+(1− P̂+)/Nr.

Thus, the variances of the estimates of the elements of Eq. (3.27) are scaling
as

σ2
(

Re
(
eiζ ⟨0|⊗n

U |0⟩⊗n
))

= 4σ2(P̂+) = O(1
Nr

). (3.67)

After estimating Re
(
eiζ ⟨0|⊗n

U |0⟩⊗n), the amplitudes of f∗
k,ifl,j or f∗

k,iλm have
to be calculated classically and multiplied. Since they are not depending on
each other, all of the circuits with the same input parameters θ(τ) can be run
in parallel.

We denote the realization of the matrices A and C in Eq. (3.23) as Â and Ĉ,
respectively.

The variances of the estimates Âk,l(θ(τ)) and Ĉk(θ(τ)) are scaling as

σ2
(
Âk,l(τ)

)
O
(
N2

d

Nr

)
, σ2

(
Ĉk(τ)

)
O
(
NdN

Nr

)
. (3.68)

Then by Chebyshev’s inequality, we can conclude that the probability of esti-
mation error is bounded by

P
(
|Ak,l − Âk,l| ≥ b

)
≤ N2

d

Nrb2 , P
(
|Ck − Ĉk| ≥ b

)
≤ NdN

Nrb2 . (3.69)

We can conclude that we face up with estimation errors arise due to shot
noise and the representation errors from calculating the matrix elements on the
quantum circuits. The following lemma holds:

Lemma 3. With the probability of at least 1−η, η ∈ [0, 1], the following bounds

73

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

hold:

∥A− Â∥ ≤
∥{σk,l}NV

k,l=1∥√
Nrη

, (3.70)

∥C − Ĉ∥ ≤
∥{σk}NV

k=1∥√
Nrη

,

where we used the notations

σk,l =

√√√√ Nd∑
i,j=1

|f∗
k,ifl,j |2, σk =

√√√√ Nd∑
i=1

N∑
m=1
|f∗

i,kλm|2. (3.71)

For a detailed proof, see Appendix 3.E.
This lemma provides us with upper bounds on the errors on A and C that

arise from shot noise. These errors translate into an error in f as defined in
Eq. (3.29), which can be estimated with the following lemma:

Lemma 4. Consider the linear equation

Af = C , (3.72)

where A is a a non-singular NV × NV -dimensional matrix and C an NV -
dimensional vector. Let us introduce disturbances in A and C by A 7→ A+ ξR
and C 7→ C + ξr, leading to the disturbed linear equation

(A+ ξR)f̂ = C + ξr , (3.73)

where f̂ is the solution vector under the disturbance, ξ ≥ 0 is a real scalar, R is
an NV ×NV dimensional matrix and r is an NV dimensional vector. Then, we
can write the following estimate:

∥f̂ − f∥
∥f∥

≤ ξκ(A)
(
∥r∥
∥C∥

+ ∥R∥
∥A∥

)
+O(ξ2) , (3.74)

where κ(A) := ∥A∥∥A−1∥ is the condition number of A.

We give a proof of this lemma in Appendix 3.F.
If A is invertible, we can identify f = A−1C, and can apply this theorem to

get:

∥f − f̂∥ ≤ ∥A−1C∥ξκ(A)
(
∥r∥
∥C∥

+ ∥R∥
∥A∥

)
+O(ξ2) . (3.75)

74

3.5 Analysis of the variational quantum algorithm

3

In order to apply the theorem to our analysis above, we are defining R =
{σk,l}NV

k,l=1, r = {σk}NV

k=1 and

ξ = 1√
Nrη

. (3.76)

If in a specific instance, A is singular, it is not possible to invert it and thus
apply Lemma 4. However, one can apply a regularization procedure by deviating
the matrix elements of A slightly in such a way that it becomes non-singular.
This will be leading to an additional error which, as we described in Sec. 3.2.3, is
one of the error sources we are not taking into consideration in our analysis. For
a way of dealing with this issue, see techniques used in Ref. [26, 116, 128, 152].

Taken together, we arrive at the following number of total circuit evaluations,
combining Eqs. (3.39), (3.46), (3.62), (3.75), and the results of Thm. 3.5:

Ncirc = N (δ)
τ sN (δ)

r NV Nd(NV Nd +N) (3.77)

N (δ)
r = 9Σ2

L2
fy

 ϵ
(δ)
target(

1 + F (N (δ)
τ , s)

)N
(δ)
τ

− 1
−
(

T

N
(δ)
τ

)p+1 KLp
ftM

F (N (δ)
τ , s)


−2

(3.78)

Σ = ∥A−1C∥κ(A)
√
η

(
∥r∥
∥C∥

+ ∥R∥
∥A∥

)
+O(ξ2) (3.79)

F (Nτ , s) = bmax

amax

((
1 + Lfyamax

T

Nτ

)s

− 1
)
. (3.80)

To provide further details and to make the analysis concrete, in Sec. 3.5.3,
we select a specific toy model as a representative example. We estimate the
quantities ∥A∥, ∥C∥, ∥A−1C∥, κ(A) and Lfy based on this toy model and in
Sec. 3.6, we will estimate ∥R∥, ∥r∥, amax, bmax, K, M and Lfτ for general
Runge-Kutta methods and a chosen Ansatz.

3.5.3 Estimations based on a toy model
In order to apply the error and resource estimates from Sec. 3.4 in practice
(such as we do in Sec.3.6), we need to make estimates on several quantities.
Especially challenging is the estimation of the condition number κ(A), ∥A∥,
∥C∥ and ∥A−1C∥ that are needed for the estimates on shot noise as derived
in Sec. 3.5.2 and the estimation of the Lipschitz constant Lfy, as defined in
Eq. (3.37).

As those quantities depend on A and C, we are taking the following consid-
erations: Both A and C depend on expectation values from quantum circuits

75

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

as written in Eq. (3.65). The parameters θ(τk) at specific time steps τk vary a
lot depending on the instance being solved. Since the expectation values that
constitute the coefficients of A and C are depending on these parameters as
well as the chosen Ansatz, it is non-viable to estimate them in general.

However, motivated by the fact that expectation values of parameterized
quantum circuits defined as in our chosen Ansatz (see Eq. (3.18)) resemble
truncated Fourier series (see Refs. [67, 154]), we simulate plausible coefficients
of A and C according to the following toy model:

Let us assume that each of the elements Ak,l and Ck take the form of functions
wk,l(θ̃) and wk(θ̃) in one input parameter θ̃, respectively:

wk,l(θ̃) := α1,k,l cos
(
α2,k,lθ̃ + α3,k,l

)
+ α4,k,l sin

(
α5,k,lθ̃

)
, (3.81)

wk(θ̃) := α1,k cos
(
α2,kθ̃ + α3,k

)
+ α4,k sin

(
α5,kθ̃

)
. (3.82)

We are choosing the amplitudes α1,k,l, α1,k and α4,k,l, α4,k to be randomly
drawn from the Gaussian distribution N (1, 0.1), and the phases α2,k,l, α2,k and
α5,k,l, α5,k and phase differences α3,k,l, α3,k to be randomly drawn from the
Gaussian distribution N (0, 0.1).

Condition number and norms on A and C

In the literature, it is often assumed that the condition number of a matrix
scales polynomially in its dimension [155]. If this assumption holds for the
NV ×NV -dimensional matrix A, there exists a constant Γ, such that with high
probability, the following bound holds:

κ(A) ≤ NΓ
V . (3.83)

In order to find out if this bound also holds if the coefficients of A are sampled
according to the toy model as described above, we plot such κ(A) and the
functions N2

V , N
3
V and N4

V for varying NV in Fig. 3.2.
Most of the condition numbers lie above the threshold N2

V , while for NV ≥ 10,
most condition numbers lie below the threshold N3

V . Typically, more than 10
parameters are chosen in applications of the variational algorithm (We are using
NV = 25 in our numerical analysis in Sec. 3.6). In rare cases, A constructed by
the toy model is ill-conditioned, and κ(A) significantly exceeds those bounds.
As described earlier, those cases can be mitigated by a regularization of A with
the drawback of introducing an additional error.

We therefore assume that the bound in Eq. (3.83) holds with high probability
for our toy model, with the constant Γ = 3.

Analogously, we estimate the norms ∥A∥, ∥C∥ and ∥A−1C∥ based on A and
C that follow the introduced toy model. In Fig. 3.3, we plot those norms and
the functions f1(NV) = NV and f2(NV) =

√
NV for varying NV .

76

3.5 Analysis of the variational quantum algorithm

3
Number of parameters NV

C
on

di
tio

n
nu

m
be

r
of
A

Figure 3.2: A log plot comparing the condition number obtained from the toy model
with θ̃ = 1/2 and different upper bounds due to N2

V , N3
V and N4

V . We sampled 100
different matrices A according to the toy model and calculated the resulting condition
number for each sample. The orange line shows the median and the gray shaded
area shows the range between the 0.16 and 0.84 quantiles of the condition number
estimates. We used the Frobenius norm.

We see that it is reasonable to assume the scaling ∥A∥ = Θ(NV) and ∥C∥ =
Θ(
√
NV). For ∥A−1C∥, we cannot make similarly reasonable estimates due to

the high fluctuation. However, we can assume an upper bound ∥A−1C∥ ≤ 60,
which holds with high probability in the number of parameter range NV ∈
[0, 100]. Similar to managing the condition number, it is also possible to enforce
this bound by a regularization of the matrix A.

The above analysis on estimates and bounds for κ(A), ∥A∥, ∥C∥ and ∥A−1C∥
included into the estimate in Eq. (3.46) leads to the following inequality to hold
with high probability:

∥f − f̂∥ < δ ≤ 60√
Nrη

N3
V

(
∥{σk}NV

k=1∥√
NV

+
∥{σk,l}NV

k,l=1∥
NV

)
. (3.84)

Hence, we conclude the following upper bound for Σ (see Eq. (3.46)) with high
probability:

Σ ≤ 60
√
η
N3

V

(
∥{σk}NV

k=1∥√
NV

+
∥{σk,l}NV

k,l=1∥
NV

)
. (3.85)

77

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3 Number of parameters NVVa
lu

es
of

N
or

m
s

an
d

ap
pr

ox
im

at
in

g
fu

nc
tio

ns

Figure 3.3: A plot comparing the norms ∥A∥, ∥C∥ and ∥A−1C∥ obtained from the
toy model with the functions f1(NV) = NV and f2(NV) =

√
NV . In order to estimate

∥A−1C∥, we did 100 samples for A and C and calculated the resulting norm for each
sample. The orange line shows the median and the gray shaded area shows the range
between the 0.16 and 0.84 quantiles of the estimates for ∥A−1C∥. For ∥A∥, we used
the Frobenius norm and for ∥C∥ and ∥A−1C∥ the 2 norm.

Estimation of the Lipschitz constant

We have seen in Sec. 3.4, that the Lipschitz constant Lfy of f(θ(τ)) with respect
to the θ(τ) has a direct influence on the error and resource estimates. In fact,
as we will see in Sec. 3.6, the sensitivity of the total cost is higher with Lfy

than with most of the other parameters. Let us therefore analyze the Lipschitz
constant for the variational algorithm described in Sec. 3.2.2. In this case,
f(θ(τ)) is defined as

f(θ(τ)) = f (θ(τ)) := A−1 (θ(τ))C (θ(τ)) , (3.86)

and the Lipschitz constant Lfy turns into the upper bound

Lfy ≥
∥f (θ1(τ))− f (θ2(τ))∥
∥θ1(τ)− θ2(τ)∥ , ∀θ1(τ),θ2(τ) . (3.87)

We are again modeling the matrix A and the vector C with the toy model
described in Eqs. (3.81) and (3.82). This toy model has a single input variable
θ̃ instead of an NV -dimensional vector θ(τ). Let us vary this parameter, while
we keep the other (randomly drawn) parameters of the toy model fixed, and

78

3.5 Analysis of the variational quantum algorithm

3

define the following function:

Lip
(
θ̃1, θ̃2

)
:=
∥∥f (θ̃1

)
− f

(
θ̃2
)∥∥

∥θ̃1 − θ̃2∥
. (3.88)

We show two 3D plots of this function, with varying θ̃1 and θ̃2 and fixed
dimensions of A and C with NV = 25 in Fig. 3.4. For each of the two plots,
the random toy model parameters are drawn independently.

θ̃1

Li
p
(θ̃ 1,θ̃

2)

θ̃2

θ̃1

Li
p
(θ̃ 1,θ̃

2)
θ̃2

Figure 3.4: The function Lip
(
θ̃1, θ̃2

)
defined in Eq. (3.88) plotted for two different

drawings of random matrix and vector parameters according to the toy model from
Eqs. (3.81) and (3.82). We fixed NV = 25 and varied the parameters θ̃1 and θ̃2
between 0 and 10.

At the gray areas, the function Lip
(
θ̃1, θ̃2

)
exceeds the value of 15. We see

that in order to be able to bound Lip
(
θ̃1, θ̃2

)
from above by a Lipschitz constant

Lfy, one has to guarantee that at each update step from θ̃1 to θ̃2, the function
Lip

(
θ̃1, θ̃2

)
stays inside the region below the threshold Lfy = 15. It is possible

to take higher estimates for Lfy and create possibly larger areas for valid θ̃1
and θ̃2. However, this comes to the account of less tight error and resource
bounds in Thms. 3.4 and 3.5.

Interestingly enough, the function Lip
(
θ̃1, θ̃2

)
keeps similar patterns for chang-

ing the mean and the variance of the distributions from which the amplitudes
of the toy model are drawn. However, it shows an increasingly more rugged
landscapes for both increasing the mean and the variance of the random distri-
butions of the phases of the toy model. As expected, the function Lip

(
θ̃1, θ̃2

)
behaves periodically with respect to the phase difference parameter of the toy
model, with the period depending on the phases.

Under the assumption that the toy model we chose models the behavior of A
and C sufficiently well, we use the estimates for κ(A), ∥A∥, ∥C∥, ∥A−1C∥ and
Lfy derived in this section in order to concretize the error and resource estimates
from Sec. 3.4, and to numerically analyze them in the following section.

79

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

3.6 Numerical analysis of the error and resource
estimates

In this section, we are numerically analyzing the error and resource estimates
from Sec. 3.3 and Sec. 3.4 for an application of the RKMs to solving a simple
ODE and for an application of the variational algorithm presented in Sec. 3.2.2
to solving a partial DE coming from finance.

3.6.1 Solving a classical ODE without shot noise
Let us analyze the cost function provided in Corollary 1 with a simple ODE:

∂θ(τ)
∂τ

= θ(τ)
2 , θ(0) = 1 . (3.89)

This ODE has the exponential function θ(τ) = exp
(

τ
2
)

as a solution. We choose
this simple ODE, because it is easy to analyze and to estimate the corresponding
parameters that are used for the cost function.

Parameter estimation and sensitivity analysis for the classical ODE
solver

The Lipschitz constant Lfy is equal to 0.5. If we pick a final time T = 5, then
the function f(θ(τ)) = 1

2 θ(τ) is upper bounded by M = 13. The derivative
of f(θ(τ)) with respect to τ is equal to 0.25 exp

(1
2τ
)

(since we know θ(τ) =
exp
(1

2τ
)
). Thus we can choose a Lipschitz constant Lfτ = 3.1, which upper

bounds this derivative for times τ ∈ [0, T = 5].
It can be easily checked that the other bounds required in Thm. 3.1 hold as

well.
The approximation of bmax := maxi |bi| is depending on the chosen Runge-

Kutta method. While there exist Runge-Kutta methods that have coefficients
|bi| > 1, those are the exception as one can see by looking at several methods
(for example, in [140]).

To estimate the constant K, let us look at its definition [140, Chapter 318]:

K :=
∑

|t|=p+1

1
σ(t)

∣∣∣Φ(t)− 1
t!

∣∣∣, (3.90)

where t is a rooted tree of order |t|, the quantities σ(t) and t! are defined as
products of factorials, and lie between 1 and |t|!. The quantity Φ(t) depends on
the coefficients of the chosen method. For a rigorous definition of these terms,
see [140]. As it is discussed in [140, Chapter 318], it is not possible to create a
general rule for estimating the terms in K. However, what can be said is that

80

3.6 Numerical analysis of the error and resource estimates

3

the number of terms in the sum, the number of unlabeled rooted trees with p+1
nodes, is asymptotically equal to [156] 0.439 · 2.956p+1 · (p+ 1)−3/2 . This series
scales exponentially in p. Thus, if the summands 1

σ(t)

∣∣∣Φ(t)− 1
t!

∣∣∣ were constant
in p, K would scale exponentially in p as well. However, in [140] it is said
that it is reasonable to assume that K is constant in ∆τ . In Ref. [140, Chapter
244], several Runge-Kutta (and related) methods were developed for which the
corresponding error constants were estimated, all of which are upper-bounded
in magnitude by 1. In the following analysis, we therefore assume that K ≤ 5
holds with high probability. But, as we will see later, the total cost does not
change as much in the parameter K as it does in other parameters, and we
found that the implications of our work still hold qualitatively with a pessimistic
upper bound of K ≤ 0.439 ·2.956p+1 · (p+ 1)−3/2. Let us further choose a target
error of ϵtarget = 0.001.

We collect the estimates for the analysis in this section in Table 3.2. Based

Parameter Estimate
bmax 1
Lfy 0.5
T 5
K 5
Lfτ 3.1
M 13

ϵtarget 0.001

Table 3.2: Estimates of various parameters that optimize the savings by using a
higher-order Runge-Kutta method instead of the Euler method. Used for the analysis
in Fig. 3.6.

on these default values, we are analyzing the sensitivity of the total cost on
tuning the parameters in Fig. 3.5. We show how the total cost changes when a
single default value is multiplied with a scaling factor, whereas the remaining
parameters are kept at default. We see that the cost does go down for higher-
order Runge-Kutta methods and that the parameter with the most effect is the
total time T , the Lipschitz constant Lfy, the parameter bmax stemming from
the Runge-Kutta method and the total target error ϵtarget. The spike in the
cost at order p = 6 is due to the non-linear relationship between the order of
the method and the number of stages (see Table 3.1).

Numerical analysis of the classical ODE solver

Using the parameters estimated above in Table 3.2, we estimate the total cost
for Runge-Kutta methods of different orders. For the relation between the
minimum number of stages s needed for a particular order p, we use Table 3.1.

81

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3 Scaling factor x

Va
lu

e
of

th
e

co
st

fu
nc

tio
n

fro
m

C
or

ol
la

ry
1

Figure 3.5: A plot comparing the sensitivity of the cost function with respect to
different parameters. The intersecting point in the middle is the value of the cost
function where all parameters are chosen default as given in Table 3.2 as well as p = 2
as a default. In each graph, we are changing one parameter, while keeping all the
other parameters at default. We are changing the parameter by multiplying with the
scaling factor x given as the abscissa. The graphs for M and K overlap as well as
the graphs for Lfy and bmax. The continuous red line for p is just for visualization
purposes, as p is integer.

We show the results in Fig. 3.6. On the left hand side is a table with the
cost depending on the order and the ratio of the Euler method compared to a
Runge-Kutta method of order p. On the right hand side, we plotted this ratio
depending on the Runge-Kutta order. We see that for our particular example,
all methods of order 2 ≤ p ≤ 10 are more cost efficient than the Euler method,
where a Runge-Kutta method of order 4 is the most cost efficient with savings
of a factor of ca. 103 compared to the cost of the Euler method. There is a
second spike for the order p = 6, because of the non-linear relationship between
the order of the method and the number of stages as shown in Table 3.1.

3.6.2 Solving a linear PDE with the variational quantum
algorithm

We are numerically analyzing the estimates from Sec. 3.4 and Sec. 3.5 for an
application of the variational algorithm presented in Sec. 3.2.2 to solving the
Black Scholes model, which is a linear partial DE coming from finance. The
motivation for choosing this model is twofold: On the one hand, we are using
this example in order to specify the estimates done in previous sections and

82

3.6 Numerical analysis of the error and resource estimates

3

p cost(p) cost(1)/cost(p) N
(0)
τ

1 2.25× 107 1.00 2.25× 107

2 9.60× 104 2.35× 102 4.80× 104

3 1.99× 104 1.13× 103 6.63× 103

4 1.01× 104 2.22× 103 2.54× 103

5 1.38× 104 1.64× 103 2.29× 103

6 1.03× 104 2.18× 103 1.47× 103

7 1.36× 104 1.65× 103 1.52× 103

8 1.71× 104 1.32× 103 1.56× 103

9 2.07× 104 1.09× 103 1.60× 103

10 3.33× 104 6.76× 102 2.08× 103

2 4 6 8 10

104

105

106

107

Runge-Kutta method order p

co
st

(p
)

Figure 3.6: Comparison of the cost for different RKM orders, where the estimated
parameters are fine tuned to maximize the savings by using a higher order as given
in Table 3.2. In the first column, we have the Runge-Kutta method order p. In the
second column is the total cost of an algorithm that uses a Runge-Kutta method of
order p, in the third column the ratio of an algorithm that uses the Euler method
(p = 1) with an algorithm that uses a Runge-Kutta method of order p, and in the
fourth column is the minimal number of time steps N (0)

τ . In the plot, we show the
cost, which is calculated according to Corollary 1, plotted against the order of the
Runge-Kutta method.

in showing the consequences of the choice of RKMs on the total cost. On the
other hand, we are using this example to stress the wide range of DEs on which
the variational algorithm presented in Sec. 3.2.2 can be applied to.

83

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

Black Scholes model and error analysis

Let us begin with describing the problem of option pricing and the application
of the variational algorithm to it. This application has been studied before in
several ways [26, 127, 128, 132].

A European call option is used in practice in the following way: Initially, at
time t = 0, an option is acquired, specifying a particular underlying asset, an
expiration time tfinal, and a strike price K. When time reaches t = tfinal, the
option buyer faces a decision: whether to exercise the option by buying the
asset at the strike price K or to refrain from exercising it. The buyer’s rational
choice at time tfinal is determined by the price S(tfinal) of the underlying asset
at that moment. If S(tfinal) > K, indicating that the final asset price exceeds
the strike price, the buyer can use the option to purchase the asset for the
price K and immediately sell it at the higher market price of S(tfinal) in an
ideal market. This transaction results in a profit of S(tfinal)−K for the buyer.
Conversely, if S(tfinal) ≤ K, the buyer would not choose to exercise the option
by purchasing the asset since they would not be able to generate a profit from
selling it in the market.

One can conclude that the payoff of the buyer is equal to

V (tfinal, S) = max{S(tfinal)−K, 0} . (3.91)

Since the stock price at time tfinal is unknown, one models the stock price
stochastically. A simple model is the so-called Black-Scholes model which
characterizes the stock price S(t) as a stochastic variable that follows a geometric
Brownian motion:

dS(t) = µS(t)dt+ σS(t)dWt , (3.92)

where µ is the drift of the stock price, σ is its standard deviation (called
’volatility’) and the random variable dWt is a Wiener process. The arbitrage
assumption states that it is impossible to build a portfolio which gives positive
return without risk. By incorporating this assumption and using Itô calculus,
the stochastic DE in S(t) is transformed to a parabolic partial DE (PDE) that
models the price of a call option V (t, S):

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2 + rS
∂V

∂S
= rV . (3.93)

This PDE is called the Black Scholes equation. The parameters of this model
are the volatility σ of the stock price and the risk-free interest rate r. Both are
assumed to be independent of time. The Black Scholes can be mapped to the
imaginary time Schrödinger equation with the following transformations:

Applying the transformations τ = (tfinal−t)σ2, x = log(S), and subsequently

84

3.6 Numerical analysis of the error and resource estimates

3

u(τ, x) = e−ax−bτV (τ, x) with the parameters a = 1
2 −

r
σ2 and b = − 1

2a
2 − r

σ2 ,
where u(τ, x) is a modified price, one obtains [26]:

∂

∂τ
u(τ, x) = 1

2
∂2

∂x2u(τ, x) . (3.94)

Note that τ ∈ [0, T], where we write T = tfinalσ
2. This equation is equivalent

to the imaginary time Schrödinger equation in Eq. (3.15), where |ψ(τ)⟩ is a
quantum state representing the option price and H = − 1

2
∂2

∂x2 is the Hamiltonian
operator. Solving Eq. (3.15) is hence equivalent to solving the Black-Scholes
equation in Eq. (3.93) after reversing the transformations.

We can interpret the state with the option price in the following way:
Consider a register of n qubits. On this chain, we define a set of 2n pairwise

orthogonal states {|x⟩}x. We select an interval of possible stock prices and
discretize the interval into 2n points. Consequently, we associate the basis states
with stock prices, where the state |0⟩⊗n corresponds to the minimum stock
price, and the state |1⟩n corresponds to the maximum stock price of the chosen
interval.

The quantum state from Eq. (3.16) encodes the option value corresponding
to a particular stock price in the amplitudes of |ψ(τ)⟩ in the following way:

|ψ(τ)⟩ =
∑

x

√
px(τ) |x⟩ ,

∑
x

px(τ) = 1, ∀τ. (3.95)

The boundary condition is px(0) = γ(0)V (0, x)e−ax, where γ(0) is the nor-
malization constant and V (0, x) is the option price at time τ = 0. Thus, by
obtaining the probability px(τ) at time T = tfinalσ

2 for a particular stock price
x = log(S), the corresponding option price can be calculated as:

V (tfinal, x) = γ−1(T)px(T)eax+btfinalσ . (3.96)

In the following subsections, we are estimating the parameters based on the
application of the variational algorithm to this option pricing use case and do a
numerical analysis.

Parameter estimations and sensitivity analysis for the variational
quantum algorithm

We are now making educated guesses for the parameters that are related to the
use case of option pricing as described above and analyze the sensitivity of our
error and resource analysis from Sec. 3.4 with respect to these parameters. In
this and the following section, we use the symbol ∼ for approximations of a
term with a scalar, including rounding errors.

In several papers [26, 127, 128, 132], the application of the variational al-

85

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

gorithm as described has been applied to option pricing. We are basing our
parameter estimates on Ref. [26, Sec. 5.1.], where the authors take an Ansatz
with the parameters N = 16, NV = 25 and Nd = 1. That means that the
matrix A is a 25× 25 matrix, the vectors C and θ have 25 elements, as well as
the matrix σk,l and the vector σk that we defined in Lemma 3. We take the
probability η from the same lemma equal to η ∼ 0.05.

A typical total time tfinal in option pricing is one year and a typical volatility
is σ = 0.2 · 1/year2. Thus, tfinal · σ2 = T ∼ 0.04.

In Ref. [26, Chapter 3], the parameters fk,j are defined as f = i/2. With this,
let us approximate the perturbations ∥σk,l∥ and ∥σk∥:

It makes sense to see them in terms of the maximal deviation of individual
entries. Given f = i/2, they are for the matrix equal to N2

d · 1/2 · 2 and
for the vector NdN · 1/2 · 2. Thus, we assume the total norms to scale as
∥σk,l∥ ≤ NV N

2
d · 1 and ∥σk∥ ≤ NV NdN · 1.

For approximations of the parameters amax, bmax and K, see our discussion
in Sec. 3.6.1. We pick now the parameters amax = bmax = 1 and the K = 5.
But as above, we see later that Ncirc does not depend strongly on K and our
results are still qualitatively valid for a large variety of K.

In line with the discussion in Sec. 3.5.1, we estimate the Lipschitz constant
Lfy to be equal to Lfy = 15, the condition number to be upper bounded as
κ(A) ≤ N3

V = 15625 and M = 60 with the caveat of having to assure the
toy model is chosen adequate enough and the bounds can be guaranteed by
regularization to satisfy these bound.

We are also estimating a probability coming from the shot noise of η = 0.05.
Combining the estimates, we are therefore getting with high probability the
upper bound

Σ ≤ 60
√
η
N3

V

(
NV NdN√

NV

+ NV N
2
d

NV

)
∼ 3.4× 108 . (3.97)

The parameter Lfτ is defined as an upper bound to the time derivative
of f (θ(τ)). Since the time dependence of f is fully carried via the function
θ(τ), we can apply a reasoning similar to that for estimating Lfy. We assume
that the same behavior and the same bounds hold and, therefore, estimate
Lfτ = Lfy = 15.

We cannot determine if the other bounds hold that are required in Thm. 3.1,
since we do not have full knowledge of the function f (θ(τ)).

For estimating the quantity S as defined in Eq. (3.61), we need to take the
following into account: We estimate that for all 1 ≤ k ≤ NV , |θ∗

k(T)| ∼ ∥θ∥2
NV

.
Together with taking fk,j = i/2 as above, we get S ∼ 1.

Lastly, we are choosing a target error of ϵtarget ∼ 0.001 . Let us thus make
the following estimates, collected in Table 3.3:

Let us now show a plot where we examine the scaling of Ncirc with respect

86

3.6 Numerical analysis of the error and resource estimates

3

Parameter Estimate
amax 1
bmax 1
Lfy 15
T 0.04
K 5
Lfτ 15
M 60
S 1
Σ 3.4× 108

ϵtarget 0.001

Table 3.3: Estimates of various parameters based on the option pricing application.
Used for the analysis in Figs. 3.7 and 3.8.

to the input parameters. It is difficult to make general statements about the
scaling of Ncirc from Eq. (3.62), since it does not have a trivial form, thus a
look at a plot helps with understanding its scaling. We take as default the
parameters estimated above and analyze in Fig. 3.7 the deviations caused by
changing a single parameter away from the default.

We conclude from this figure, that Ncirc does not change much for the
parameters amax, M , Lfτ , K and Σ. As it was proved impossible to estimate
K in a general way, it is promising to see that our estimate of Ncirc does not
scale with it as much as with other parameters.

In addition, Ncirc changes faster for the parameters p, T , bmax, ϵtarget, and
Lfy. For p in particular, we see that a minimum of Ncirc is reached for a value
higher than for p = 1. We will examine the behavior with p with more detail in
the next section.

Numerical analysis of the variational quantum algorithm

For the numerical analysis, we use the parameters given in Table 3.3 that
are fit to the option pricing use case in order to calculate Ncirc, which is the
total number of circuit evaluations needed for the algorithm. As we mentioned
in Sec. 3.6.2, the parameter K is the most challenging to estimate. For this
analysis, we choose K = 5. A comparison of the costs of algorithms based on
Runge-Kutta and Euler methods is given in Fig. 3.8. We see that the highest
saving in Ncirc compared to the Euler method can be done with a Runge-Kutta
method of order p = 2.

To reach a target error of ϵtarget = 0.001, we need an N
(δ)
r ∼ 1022, which is

equivalent to requiring classical machine precision for the entries of matrices
A and vectors C (ϵ ∼ 1/

√
N

(δ)
r ∼ 5 × 10−12). The total number of circuit

87

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3 Scaling factor x

Va
lu

e
of
N

c
ir

c
fro

m
Eq

.(
3.

62
)

Figure 3.7: A plot comparing the sensitivity of Ncirc with respect to different
parameters. The intersecting point in the middle is the value of Ncirc where all
parameters are chosen default as given in Table 3.3 as well as p = 2 as a default. In
each graph, we are changing one parameter, while keeping all the other parameters at
default. We are changing the parameter by multiplying with the scaling factor x given
as the abscissa. The following colors are corresponding to Ncirc with one parameter
changed: p, ϵtarget, Lfτ , M and K, T , amax, bmax, Lfy, Σ, where x is the scaling
factor at the abscissa. The graphs for M and K overlap. The continuous red line for
p is just for visualization purposes, as p is integer.

evaluations Ncirc is equal to 1.62× 1028.
In Ref. [18, Supplementary information VIA], the time that the supercon-

ducting Sycamore chip can be used before having to be recalibrated is around
1 day. That implies that all calculations have to be done in at most 24 hours.
The time for one readout of the Sycamore chip takes around 4µs [157]. That
means that it is possible to evaluate around 2× 1010 quantum circuits.

It is obvious that the high accuracy is needed because of the inversion of
the matrix A and the resulting error propagation. The number N (δ)

r given in
Thm. 3.5 depends quadratically on the factor Σ estimated in (3.97) to be upper
bounded with high probability by 3.4× 108. If it was possible to reach a bound
Σ ≤ 1, the number N (δ)

r would decrease to the order 107 which would be feasible
for quantum hardware, .

In order to illustrate the potential resource savings that can be gained by
choosing a higher-order RKM instead of the Euler method, we provide a second
analysis based on a different choice of parameters provided in Table 3.4. This
choice is inspired by the estimates in Table 3.3, changing some of the parameters
within reasonable ranges in order to increase the resource savings. The resulting

88

3.6 Numerical analysis of the error and resource estimates

3

resource requirements are shown in Fig. 3.9. We conclude that by choosing
a Runge-Kutta method of order p = 4, there have to be done a factor of
∼ 2.56 × 103 less circuit evaluations than when choosing the Euler method.
However, the number of shots for each circuit (N (δ)

r ∼ 1.98× 1026) is still too
high in order to be realized on any quantum hardware.

p Ncirc(p) Ncirc(1)/Ncirc(p) N
(δ)
r N

(δ)
τ Circuits

1 2.13× 1029 1 7.03× 1021 2.96× 104 3.03× 107

2 1.62× 1028 13.18 3.87× 1022 2.04× 102 4.19× 105

3 1.75× 1028 12.21 1.53× 1023 37.06 1.14× 105

4 3.31× 1028 6.45 5.19× 1023 15.55 6.38× 104

5 3.38× 1029 6.31× 10−1 5.48× 1024 10.03 6.17× 104

6 7.79× 1029 2.74× 10−1 1.56× 1025 6.96 4.99× 104

7 7.49× 1030 2.85× 10−2 1.41× 1026 5.74 5.30× 104

8 7.00× 1031 3.05× 10−3 1.25× 1027 4.98 5.62× 104

9 6.45× 1032 3.31× 10−4 1.08× 1028 4.47 5.96× 104

10 2.16× 1034 9.9× 10−6 3.03× 1029 4.33 7.11× 104

1 2 3 4 5 6

2×1028

5×1028

1×1029

2×1029

5×1029

Runge-Kutta method order p

N
c
ir

c
(p

)

Figure 3.8: Comparisons of the resource requirements for different RKM orders, for
the parameters in Table 3.3, applicable to the option pricing application. In the first
column, we have the RKM order p. In the second column is Ncirc of an algorithm
that uses a RKM of order p and in the third column the ratio of Ncirc of an algorithm
that uses the Euler method (p = 1) with Ncirc of an algorithm that uses a RKM of
order p. In the third, fourth, and fifth columns we show N

(δ)
r , the number of time

steps N (δ)
τ and the number of different circuits. In the plot, we show Ncirc(p) plotted

against p. The total number of circuit evaluations Ncirc is calculated according to
Eq. (3.62).

89

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

p Ncirc(p) Ncirc(1)/Ncirc(p) N
(δ)
r N

(δ)
τ Circuits

1 1.12× 1037 1 1.15× 1025 9.56× 108 9.80× 1011

2 2.63× 1034 4.28× 102 3.93× 1025 3.26× 105 6.68× 108

3 6.33× 1033 1.78× 103 9.57× 1025 2.15× 104 6.61× 107

4 4.39× 1033 2.56× 103 1.98× 1026 5.41× 103 2.22× 107

5 1.00× 1034 1.12× 103 6.78× 1026 2.40× 103 1.48× 107

6 1.11× 1034 1.01× 103 1.14× 1027 1.36× 103 9.76× 106

7 2.60× 1034 4.33× 102 3.06× 1027 9.22× 102 8.50× 106

8 5.90× 1034 1.91× 102 7.61× 1027 6.88× 102 7.75× 106

9 1.33× 1035 84.69 1.82× 1028 5.47× 102 7.29× 106

10 4.92× 1035 22.87 6.48× 1028 4.63× 102 7.59× 106

2 4 6 8 10

1034

1035

1036

1037

Runge-Kutta method order p

N
c
ir

c
(p

)

Figure 3.9: Comparison of Ncirc for different RKM orders, where the estimated
parameters are fine-tuned to maximize the savings by using a higher order p as given
in Table 3.4. In the first column, we have the Runge-Kutta method order p. In the
second column is Ncirc of an algorithm that uses a Runge-Kutta method of order p
and in the third column the ratio of Ncirc of an algorithm that uses the Euler method
(p = 1) with Ncirc of an algorithm that uses a Runge-Kutta method of order p. In
the third, fourth, and fifth columns, we show the number of shots per circuit N (δ)

r ,
the number of time steps N (δ)

τ , and the number of circuits. In the plot, we show
Ncirc(p) plotted against p. The total number of circuit evaluations Ncirc is calculated
according to Eq. (3.62).

3.7 Conclusions
In this chapter, we developed error and resource estimates of variational algo-
rithms for solving differential equations based on Runge-Kutta methods. In
particular, the estimates depend on different parameters that come from both
the chosen method and the differential equation at hand, and depend on both

90

3.7 Conclusions

3

Parameter Estimate
amax 1
bmax 0.5
Lfy 0.1
T 4
K 20
Lfτ 15
M 60
S 1
Σ 3.4× 108

ϵtarget 0.001

Table 3.4: Estimates of various parameters that optimize the savings by using a
higher-order Runge-Kutta method instead of the Euler method. Used for the analysis
in Fig. 3.9.

the error from the Runge-Kutta method and the error that comes from shot
noise in the noisy evaluations of the differential function. Additionally, we
performed numerical simulations of the minimal resources required for both
solving a simple ODE by using Runge-Kutta methods without shot noise and
for solving a variational algorithm applied to a linear PDE from option pricing.
This shows that our method is not restricted to ODEs but can also be applied to
solving partial or stochastic differential equations. Furthermore, the algorithms
we analyzed are based on the variational quantum algorithms for solving real
and imaginary time evolution [116, 117]; our analysis can therefore be directly
applied to them.

Our results suggest that depending on certain parameters, such as the dif-
ference between initial and final time, Lipschitz constants of the differential
function, and target error, the resource requirements change drastically.

Moreover, we show that for the particular ODE that we solve in the case
without shot noise and a chosen target error of at most ϵtarget = 0.001, a
fourth-order Runge-Kutta method is the most resource-efficient, while for the
option pricing use case solved by a variational quantum algorithm and the same
target error of ϵtarget = 0.001, the most resource-efficient method is a second-
order Runge-Kutta method. By choosing these methods, we can minimize the
total cost by a factor of 2.22 × 103 for the first case and the total number
of quantum circuit evaluations by a factor of 13.18 for the option pricing use
case. For solving the option pricing PDE, even when using a Runge-Kutta
method with the order of p = 2, we estimated that the algorithm needs at least
1.62× 1028 evaluations of quantum circuits in order to compute the option price
at final time with a maximum error of ϵtarget = 0.001 in trace distance. In
practical scenarios, the state has to be read out, and therefore the total resource

91

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

requirements will be even higher.
However, our results are worst-case estimates that guarantee staying within

the target error, while in practice, one might expect to achieve them with lower
resource requirements for sufficiently well-behaved functions. In particular,
Lemma 4 gives an upper bound for errors induced by solving linear systems.
But even for ill-conditioned problems, a smaller error is possible in practice (see
for example Ref. [158]). Also, the estimates in Secs. 3.5.3 and 3.6 are upper
bounds that can in general be tightened for specific problems at hand.

The PDE chosen in our use case, the Black-Scholes equation, can be solved
analytically, so only more complicated dynamics are of practical interest. Con-
sidering this and the fact that a requirement of at least 3.87× 1022 evaluations
for each of the 4.19× 105 quantum circuits (of which only 103 can be run in
parallel, see Sec. 3.5.1) is unrealistic on current quantum computing platforms,
our results are rather pessimistic for practical implementations of this algorithm
in option pricing. As discussed in the previous section, this high requirement of
quantum circuit evaluations mainly stems from the error-propagation of invert-
ing a matrix of estimated observables. This leads us to question the general
feasibility of the underlying quantum algorithm. However, related approaches as
proposed in Refs. [119] and [120] which do not require matrix inversion, might
therefore require a much lower number of quantum circuit evaluations.

We show that by tuning the parameters in the variational algorithm and
therefore reaching realms outside of this use case, we can get a saving factor
of 2.56× 103 by choosing a Runge-Kutta method of order p = 4 instead of the
Euler method. This suggests that after careful analysis of the parameters, one
can choose a Runge-Kutta method that minimizes the resource requirements.

Our analysis had a number of limitations, which however likely do not make
matters better. We do not analyze possible stability issues of the differential
equations, because it proves very challenging to include them in the estimation
of the variational algorithm and the option pricing use case. However, for a full
picture of the error and resource analysis, the stability of methods and DEs has
to be considered. We neglected possible representation errors that stem from
the quantum circuits not being able to approximate a state that encodes the
option price and which can capture the dynamics of the variational parameters
satisfyingly. In practical scenarios, these have to be taken into account and can
possibly be estimated depending on the chosen quantum computing platform
(see for example Ref. [131]). Further, we assumed circuit error such as gate
infidelity, bias and SPAM errors to be negligible, as well as errors introduced to
potentially necessary matrix regularization of the matrix defined in Eq. (3.27).
However, as long as when adding those sources of errors, our error bounds (for
example in Eq. (3.84)) still hold, our results can be applied to these scenarios
as well.

It might be possible to tighten our estimates in a few different ways. Recent
works [135, 152] showed how it is possible to decrease the number of state

92

3.A Proof of Theorems 3.2 and 3.4

3

preparations for estimations of the matrices A from scaling as Θ(N2
V) to Θ(NV)

at the cost of accuracy of the matrix entries. Combining these results with
our analysis might further decrease the total resource requirements. Several
bounds in our analysis are not tight and could show to be overly pessimistic
in real scenarios, like the local truncation error of the Runge-Kutta method
(Thm. 3.1) and the bounds and estimates on the shot noise (Lemma 3 and
Sec. 3.6.2). Further, the resource requirements can possibly be decreased by
using linear multistep methods that only use one new stage per time step and
reuse evaluations from previous time steps. Adapting our analysis to these
methods can give new insights into a comparison of Runge-Kutta methods and
linear multistep methods.

Since the shot noise error introduced for the analysis in Sec. 3.4 is Gaussian
noise, it might give further insight to formulate the differential equations as
stochastic differential equations and to analyze the error and resource require-
ments within this framework.

It might be promising to apply this framework to use cases that use Runge-
Kutta methods and have similar error sources, such as quantum algorithms
for solving other differential equations or to classical algorithms that are using
noisy data, which so far has been barely examined. Also, it might be possible
to apply this analysis to the training of neural networks [159].

3.A Proof of Theorems 3.2 and 3.4
Proof. Let us denote the RKM calculated θn with an error-carrying f̂ at time
step n as θ̂n. Calculating the LTE in θ̂n, we assume that it is calculated from
a noiseless θ(τn−1). For an s-stage RKM θ̂n is calculated by:

θ̂n = θ(τn−1) + ∆τ
s∑

i=1
bik̂i

(
τn−1; θ(τn−1); {k̂m}i−1

m=1

)
, (3.98)

where we write

k̂1(τn−1; θ(τn−1)) := f̂ (τn−1; θ(τn−1)) , and

k̂i

(
τn−1; θ(τn−1); {k̂m}i−1

m=1

)
:= f̂

(
τn−1 + ci∆τ ; θ(τn−1) + ∆τ

i−1∑
m=1

ai,mk̂m

)
,

for all i ≥ 2,

and where we used the abbreviation k̂m by dropping the arguments.

93

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

Thus, the LTE in the presence of noise is:

ℓ̂n := θ(τn)− θ̂n = θ(τn)− θ(τn−1)−∆τ
s∑

i=1
bik̂i

(
τn−1; θ(τn−1); {k̂m}i−1

m=1

)
(3.99)

We can immediately write

ℓ̂n ≤ θ(τn)− θn + θn − θ̂n ≤ ℓn + θn − θ̂n , (3.100)

where the noiseless LTE ℓn can be upper bounded by the bound in Thm. 3.1.
Let us define the global truncation error of an RKM with s stages and n time

steps in the presence of noise as:

ên := θ(τn)− θ̂0 −∆τ
n∑

r=1

s∑
i=1

bik̆i

(
τr−1; θ̂r−1; {k̆m}i−1

m=1

)
, (3.101)

where we write

k̆1

(
τr−1; θ̂r−1

)
:= f̆

(
τr−1; θ̂r−1

)
, and

k̆i

(
τr−1; θ̂r−1; {k̆m}i−1

m=1

)
:= f̆

(
τr−1 + ci∆τ ; θ̂r−1 + ∆τ

i−1∑
m=1

ai,mk̆m

)
,

for all i ≥ 2,

and again use the abbreviation k̆m by dropping the arguments. We write the
superscript f̆ instead of f̂ in order to distinguish the noisy evaluation with noisy
inputs with the noisy evaluation with noiseless inputs. They both however carry
the error δ compared to the noise-free case, as written in Eq. (3.46). Recursively,
we get:

ên+1 − ên = ℓ̂n+1 + ∆τ
s∑

i=1
bi

(
k̂i

(
τn; θ(τn); {k̂m}i−1

m=1

)
− k̆i

(
τn; θ̂n; {k̆m}i−1

m=1

))
.

(3.102)

Taking the absolute values from the latter equation, we get

∥ên+1∥ ≤∥ên∥+ ∥ℓ̂n+1∥ (3.103)

+ ∆τ
s∑

i=1
|bi|
∥∥∥k̂i

(
τn; θ(τn); {k̂m}i−1

m=1

)
− k̆i

(
τn; θ̂n; {k̆m}i−1

m=1

)∥∥∥ .

(3.104)

94

3.A Proof of Theorems 3.2 and 3.4

3

We assume that the function f(τ,θ(τ)) satisfies the Lipschitz condition:∥∥∥f(τn,θ(τn))− f(τn, θ̂n)
∥∥∥ ≤Lfy∥θ(τn)− θ̂n∥ , (3.105)

and that the noise evaluations are upper bounded by

∥k̂i − ki∥ ≤ δ (3.106)
∥k̆i − ki∥ ≤ δ . (3.107)

We introduce the notation

Si :=
∥∥∥k̂i

(
τn; θ(τn); {k̂m}i−1

m=1

)
− k̆i

(
τn; θ̂n; {k̆m}i−1

m=1

)∥∥∥ . (3.108)

Using the triangle inequality, we get

S1 =
∥∥∥k̂1 (τn; θ(τn)))− k̆1

(
τn; θ̂n

)∥∥∥ (3.109)

≤
∥∥∥k̂1 (τn; θ(τn)))− k1 (τn; θ(τn)))

∥∥∥+
∥∥∥k1

(
τn; θ̂n

)
− k̆1

(
τn; θ̂n

)∥∥∥
+
∥∥∥k1 (τn; θ(τn)))− k1

(
τn; θ̂n

)∥∥∥ (3.110)

≤2δ + Lfy∥ên∥. (3.111)

Again using the triangle inequality, we get for Si, i ≥ 2:

Si =
∥∥∥k̂i

(
τn; θ(τn); {k̂m}i−1

m=1

)
− k̆i

(
τn; θ̂n; {k̆m}i−1

m=1

)∥∥∥ (3.112)

≤
∥∥∥k̂i

(
τn; θ(τn); {k̂m}i−1

m=1

)
− ki

(
τn; θ(τn); {k̂m}i−1

m=1

)∥∥∥ (3.113)

+
∥∥∥ki

(
τn; θ̂n; {k̆m}i−1

m=1

)
− k̆i

(
τn; θ̂n; {k̆m}i−1

m=1

)∥∥∥ (3.114)

+
∥∥∥ki

(
τn; θ(τn); {k̂m}i−1

m=1

)
− ki

(
τn; θ̂n; {k̆m}i−1

m=1

)∥∥∥ (3.115)

≤2δ + Lfy

∥∥∥θ(τn)− θ̂n

∥∥∥+ ∆τ
i−1∑

m=1
Lfy|aim|

∥∥∥k̂m − k̆m

∥∥∥ (3.116)

≤2δ + Lfy∥ên∥+ ∆τ
i−1∑

m=1
Lfy|aim|Sm (3.117)

≤S1 + ∆τ
i−1∑

m=1
Lfy|aim|Sm . (3.118)

95

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

Then, we can write the upper bound of the error of the s order RKM as

∥ên+1∥ ≤ ∥ên∥+ ∥ℓ̂n+1∥+ ∆τ
s∑

i=1
|bi|Si , (3.119)

where from the above analysis, we obtained the following recursion:

S1 ≤ 2δ + Lfy∥ên∥ (3.120)

Si ≤ S1 + ∆τ
i−1∑

m=1
Lfy|aim|Sm, ∀i ≥ 2. (3.121)

Let us use that |aij | is upper bounded with amax := maxi,j |ai,j |. Then we can
write:

S1 ≤ 2δ + Lfy∥ên∥ (3.122)

Si ≤ S1 + ∆τLfyamax

i−1∑
m=1

Sm, ∀i ≥ 2. (3.123)

A proof by induction shows that for all i ≥ 1,

Si ≤ S1 (1 + ∆τLfyamax)i−1
. (3.124)

This result together with Eq. (3.119) gives us the error estimate:

∥ên+1∥ ≤ ∥ên∥+ ∥ℓ̂n+1∥+ ∆τS1

s∑
i=1
|bi| (1 + ∆τLfyamax)i−1 (3.125)

≤ ∥ên∥+ ∥ℓ̂n+1∥+ ∆τS1bmax
(1 + ∆τLfyamax)s − 1

Lfy∆τamax
(3.126)

≤ ∥ên∥+
(

max
n
∥ℓ̂n∥+ (2δ + Lfy∥ên∥) bmax

(1 + ∆τLfyamax)s − 1
Lfyamax

)
≤ α∥ên∥+ β, for all s ≥ 1, (3.127)

where we used the notation

α = 1 + F (n+ 1, s), β = 2δ
Lfy

F (n+ 1, s) + max
n
∥ℓ̂n∥, (3.128)

F (n+ 1, s) := bmax

amax

((
1 + Θ

n+ 1

)s

− 1
)
, Θ = LfyamaxT, (3.129)

96

3.A Proof of Theorems 3.2 and 3.4

3

an the fact that ∆τ = T/(n+ 1) holds. . Because ∥ê0∥ = 0, we get

∥ên+1∥ ≤
αn+1 − 1
α− 1 β. (3.130)

The error estimate of the LTE goes analogous to the error estimate of the global
truncation error. We can write

∥ℓ̂n∥ ≤ ∥ℓn∥+ ∆τ
s∑

i=1
|bi|Ti (3.131)

with the recursive relation

T1 := δ, Ti := T1 + ∆τ
i−1∑

m=1
Lfy|aim|Tm. (3.132)

Thus, we get the bounds

∥ℓ̂n∥ ≤ ∥ℓn∥+ δ

Lfy
F (n+ 1, s), for s ≥ 1. (3.133)

Using these upper bounds, we can rewrite Eq. (3.130) as follows

∥ên+1∥ ≤
αn+1 − 1
α− 1 β∗ , (3.134)

where

β∗ = 3δ
Lfy

F (n+ 1, s) + max
n
∥ℓn∥ (3.135)

According to Thm. 3.1, we can bound the LTE ℓn and get after Nt := n + 1
steps the following error:

∥êNτ
∥ ≤ (1 + F (Nτ , s))Nτ − 1

F (Nτ , s)

(
3δ
Lfy

F (Nτ , s) +
(
T

Nτ

)p+1
KLp

fτM

)
.

(3.136)

That ends the proof for Thm. 3.4, for which f(τ,θ(τ)) = f(θ(τ)). One can see
that noise free case corresponds to δ = 0, for which y(τn) corresponds to θ(τn)
and yn to θn, which proofs Thm. 3.2.

97

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

3.B Proof of Theorem 3.3
Proof. Let us denote the upper bound of the noise free ϵ(δ)

ODE as

ϵ
(0)
target := (1 + F (Nτ , s))Nτ − 1

F (Nτ , s)

(
T

Nτ

)p+1
KLp

fτM , (3.137)

To find Nτ we can solve the latter equation numerically. However, under the
reasonable assumption that Θ << Nτ , we can use the following approximations(

Θ
Nτ

+ 1
)s

= 1 + sΘ
Nτ

+O

(
Θ2

N2
τ

)
, (3.138)(

bmax(sΘ)
amaxNτ

+ 1
)Nτ

≈ exp
(
bmaxsΘ
amax

)
, (3.139)

to rewrite

F (Nτ , s) ≈
bmax

amax

sΘ
Nτ

, (1 + F (Nτ , s))Nτ ≈ exp
(
bmaxsΘ
amax

)
(3.140)

Using this, we rewrite Eq. (3.137) in a way to obtain an approximate solution
N

(0)
τ given by Eq. (3.41).

3.C Proof of Theorem 3.5
Proof. We model the shot noise with single shot variance Σ and the number of
shots Nr, so δ = Σ/

√
Nr holds. Solving the resulting Eq. (3.48) for Nr we get:

N (δ)
r := 9Σ2

L2
fy

(
ϵ

(δ)
target

(1 + F (Nτ , s))Nτ − 1
−
(
T

Nτ

)p+1 KLp
fτM

F (Nτ , s)

)−2

, (3.141)

Substituting it in the cost function (3.35) we get:

C(Nτ , N
(δ)
r , s, p) = 9Σ2p

L2
fy

N2p+3
τ (3.142)

×

(
F (Nτ , s)((1 + F (Nτ , s))Nτ − 1)

ϵ
(δ)
targetF (Nτ , s)Np+1

τ − T p+1KLp
fτM((1 + F (Nτ , s))Nτ − 1)

)2

,

98

3.D McLachlan’s variational principle

3

where

ϵ
(δ)
target ̸=

T p+1KLp
fτM((1 + F (Nτ , s))Nτ − 1)
F (Nτ , s)Np+1

τ

= ϵ
(0)
target, (3.143)

that is always true. We want to find the optimal value for Nτ that minimizes
the latter cost. To this end, we set the derivative of the cost function with
respect to Nτ to zero. The equation we get in nonlinear and can be solved
numerically.

However, we can use the approximation in Eq. (3.139) and the expression

Nτ log
(
bmaxsΘ
amaxNτ

+ 1
)

= log
(
bmaxsΘ
amaxNτ

+ 1
)Nτ

≈
(
bmaxsΘ
amax

)
. (3.144)

Those two approximations give the following simplified equation

ϵ
(δ)
target

(
amaxNτ (Nτ + Θ)− bmaxsΘ

(
2N2

τ e
bmaxsΘ

amax +Nτ

(
2sΘe

bmaxsΘ
amax − 1

)
−Θ

))
(Nτ + Θ)(amaxNτ + bmaxsΘ)

(
e

bmaxsΘ
amax − 1

)
+

2ϵ(δ)
target(bmaxsΘ)e

bmaxsΘ
amax

amax

(
e

bmaxsΘ
amax − 1

) −
amaxKMLp

fτ

(
T

Nτ

)p+1
(2Nτp+Nτ − 2(s− 1)Θ)

bmaxsΘ

= 0 .

Neglecting some of the terms due to the fact that Θ << Nτ we simplify the
equation to the form that it can be solved analytically:

N (δ)
τ = TLfτ

((
ebmaxsLfyT − 1

)
KM(2p+ 1)

sbmaxLfyϵ
(δ)
target

)1/p

. (3.145)

That ends the proof.

3.D McLachlan’s variational principle
Theorem 3.6. McLachlan’s variational principle [149] applied to the imaginary
time evolution of a state |ψ(θ(τ))⟩, is given by:

δ∥(d/dτ +H) |ψ(θ(τ))⟩ ∥ = 0 . (3.146)

99

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

Assuming θ to be real, it is solved by the following ordinary differential equa-
tions [150]: ∑

j

Aij θ̇j = Ci, (3.147)

where the matrix elements are

Aij = Re

(
∂ ⟨ψ(θ(τ))|

∂θi

∂ |ψ(θ(τ))⟩
∂θj

)
, (3.148)

and Ci = Re

(
−∂ ⟨ψ(θ(τ))|

∂θi
H |ψ(θ(τ))⟩

)
. (3.149)

Proof. Note that the variation in Eq. (3.146) is equivalent to the variation of its
square δ∥(d/dτ +H) |ψ(θ(τ))⟩ ∥2 = 0. The derivative can be written as follows

∂ |ψ(θ(τ))⟩
∂τ

= ∂ |ψ(θ(τ))⟩
∂θi

∂θi

∂τ
= ∂ |ψ(θ(τ))⟩

∂θi
θ̇i. (3.150)

Next, we expand the following:

∥(d/dτ +H) |ψ(θ(τ))⟩ ∥2 =
(
(d/dτ +H) |ψ(θ(τ))⟩

)†((d/dτ +H) |ψ(θ(τ))⟩
)

(3.151)

=
∑

ij

∂ ⟨ψ(θ(τ))|
∂θi

∂ |ψ(θ(τ))⟩
∂θj

θ̇∗
i θ̇j +

∑
i

∂ ⟨ψ(θ(τ))|
∂θi

(H) |ψ(θ(τ))⟩ θ̇∗
i

+
∑

i

⟨ψ(θ(τ))|H∂ |ψ(θ(τ))⟩
∂θi

θ̇i + ⟨ψ(θ(τ))|H2 |ψ(θ(τ))⟩ .

Thus, the variation of this term with respect to θ̇i yields:

δ∥(d/dτ +H) |ψ(θ(τ))⟩ ∥2 (3.152)

=

∑
ij

∂ ⟨ψ(θ(τ))|
∂θi

∂ |ψ(θ(τ))⟩
∂θj

θ̇j + ∂ ⟨ψ(θ(τ))|
∂θi

H |ψ(θ(τ))⟩

 δθ̇∗
i

+

∑
ij

∂ ⟨ψ(θ(τ))|
∂θj

∂ |ψ(θ(τ))⟩
∂θi

θ̇∗
j + ⟨ψ(θ(τ))|H∂ |ψ(θ(τ))⟩

∂θi

 δθ̇i .

The variational principle is satisfied if latter equation is equal to zero, hence

100

3.E Shot noise estimates

3

when following expression holds:∑
j

∂ ⟨ψ(θ(τ))|
∂θi

∂ |ψ(θ(τ))⟩
∂θj

θ̇j = −∂ ⟨ψ(θ(τ))|
∂θi

H |ψ(θ(τ))⟩ . (3.153)

If θ̇i is real, the variation changes to

δ∥(d/dτ +H) |ψ(θ(τ))⟩ ∥2 (3.154)

=
∑

j

(
∂ ⟨ψ(θ(τ))|

∂θi

∂ |ψ(θ(τ))⟩
∂θj

+ ∂ ⟨ψ(θ(τ))|
∂θj

∂ |ψ(θ(τ))⟩
∂θi

)
θ̇jδθ̇i

+
(
∂ ⟨ψ(θ(τ))|

∂θi
H |ψ(θ(τ))⟩+ ⟨ψ(θ(τ))|H∂ |ψ(θ(τ))⟩

∂θi

)
δθ̇i .

This is equal to zero when the following holds:∑
j

(
∂ ⟨ψ(θ(τ))|

∂θi

∂ |ψ(θ(τ))⟩
∂θj

+ ∂ ⟨ψ(θ(τ))|
∂θj

∂ |ψ(θ(τ))⟩
∂θi

)
θ̇j (3.155)

= −
(
∂ ⟨ψ(θ(τ))|

∂θi
H |ψ(θ(τ))⟩+ ⟨ψ(θ(τ))|H∂ |ψ(θ(τ))⟩

∂θi

)
,

which is equivalent to Eq. (3.147).

3.E Shot noise estimates
Theorem 3.7. (Shot noise error for evaluating A defined in Eq. (3.27))

For Nr evaluations of each of the circuits that calculate the matrix elements
of A, we get the following bound for the probability:

P

(
∥A− ÂS∥ <

∥{σk,l}NV

k,l=1∥√
Nrη

)
> 1− η , (3.156)

where 0 < η ≤ 1 and the elements of the standard deviation matrix are

σk,l =

√√√√ Nd∑
i,j=1

|f∗
k,ifl,j |2 . (3.157)

Proof. For a random matrix A with finite non-zero variance matrix σ2 and

101

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

expectation values matrix ÂS the multi-dimensional Chebyshev’s inequality

P (∥A− ÂS∥ ≥ k∥σ∥) ≤
1
k2 , (3.158)

holds, for any real number k > 0. If we measure each circuit Nr times, the
mean value is calculated as

ÂS = 1
Nr

Nr∑
m=1

Âm , (3.159)

where each Âm is the matrix calculated by evaluating each circuit one time.
The σk,l(Âm) is the standard deviation for each matrix element of Âm, and the
total standard deviation for each element in ÂS is given by

σk,l(ÂS) = σk,l(Âm)√
Nr

. (3.160)

These are the elements that form the matrix σ = {σk,l(Âm)}NV

k,l=1. Defining
η := 1/k2, we get therefore

P

(
∥A− ÂS∥ <

∥σ∥√
Nrη

)
> 1− η . (3.161)

We can further bound the elements of σ in the following way. Each matrix
element σk,l(ÂS) is in general evaluated by several circuits. Let us bound the
standard deviation of each single circuit by the maximum standard deviation 1,
since the eigenvalues of the Pauli-X matrix are {1,−1}. We obtain:

σk,l(Âm) ≤ σk,l =

√√√√ Nd∑
i,j=1

|f∗
k,ifl,j |2. (3.162)

That ends the proof.

Theorem 3.8. (Shot noise error for evaluating C defined in Eq. (3.27))
For Nr evaluations of each of the circuits that calculate the elements of C, we

get the following bound:

P

(
∥C − ĈS∥ <

∥{σk}NV

k=1∥√
Nrη

)
> 1− η , (3.163)

102

3.F Error bound theorems

3

where 0 < η ≤ 1 and

σk =

√√√√ Nd∑
i=1

N∑
m=1
|f∗

i,kλm|2 , (3.164)

holds.

Proof. The proof is similar to the proof of Thm. 3.7, but the standard deviation
of the matrix elements is bounded by Eq. (3.164).

Corollary 3. The result of the Thms. 3.7 and 3.8 are valid for all matrices A
and vectors C that are calculated with the circuits in Fig. 3.1, in particular for
all possible input parameter θ of the Ansatz in Eq. (3.18). Therefore, we can
state that with probability of at least 1− η the following bounds hold for all θ:

∥A(θ)− Â(θ)∥ ≤
∥{σk,l}NV

k,l=1∥√
Nrη

, (3.165)

and

∥C(θ)− Ĉ(θ)∥ ≤ ∥{σk}NV

k=1∥√
Nrη

. (3.166)

3.F Error bound theorems
Proof of Lemma4: Let us identify f̂ with f(ξ), the vector under disturbance ξ.
Accordingly, f(0) = f . Assume that the derivative ∂f(ξ)

∂ξ exists and calculate
the derivative of Eq. (3.73) with respect to ξ:

(A+ ξR)∂f(ξ)
∂ξ

+Rf(ξ) = r (3.167)

At ξ = 0, we have:

∂f(ξ)
∂ξ

∣∣∣
ξ=0

= A−1(r −Rf(0)) . (3.168)

The Taylor expansion of f(ξ) around ξ = 0 reads

f(ξ) = f(0) + ξ
∂f(ξ)
∂ξ

∣∣∣
ξ=0

+O(ξ2) (3.169)

= f(0) + ξA−1(r −Rf(0)) +O(ξ2) (3.170)

103

3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

3

Therefore, we can estimate

∥f(ξ)− f(0)∥
∥f(0)∥ ≤ ξ ∥A

−1(r −Rf(0))∥
∥f(0)∥ +O(ξ2) (3.171)

≤ ξ ∥A
−1∥∥r −Rf(0)∥
∥f(0)∥ +O(ξ2) (3.172)

≤ ξ∥A−1∥∥r∥+ ∥R∥∥f(0)∥
∥f(0)∥ +O(ξ2) (3.173)

≤ ξ∥A−1∥
(
∥r∥
∥f(0)∥ + ∥R∥

)
+O(ξ2) (3.174)

≤ ξ∥A−1∥∥A∥
(

∥r∥
∥A∥∥f(0)∥ + ∥R∥

∥A∥

)
+O(ξ2) (3.175)

≤ ξ∥A−1∥∥A∥
(
∥r∥

∥Af(0)∥ + ∥R∥
∥A∥

)
+O(ξ2) (3.176)

≤ ξκ(A)
(
∥r∥
∥C∥

+ ∥R∥
∥A∥

)
+O(ξ2) . (3.177)

Proof of Lemma 2: The gradient ∇θϕ(θ(τ)) evaluates in the chosen circuit as

∂ϕ(θ(τ))
∂θk

=
Nd∑
j=1

(
fk,jRk,j |0⟩⊗n ⟨ϕ(θ(τ))|+ |ϕ(θ(τ))⟩ ⟨0|⊗n

R†
k,jf

†
k,j

)
,

where we used Eq. (3.26). Then the trace norm of the dot product with the
parameter vector θ∗(T) evaluates as

∥∇θϕ(θ0(T)) · θ∗(T)∥1 (3.178)

=

∥∥∥∥∥∥
NV∑
k=1

 Nd∑
j=1

(
fk,jRk,j |0⟩⊗n ⟨ϕ(θ0(T))|+ |ϕ(θ0(T))⟩ ⟨0|⊗n

R†
k,jf

†
k,j

) θ∗
k(T)

∥∥∥∥∥∥
1

≤
NV∑
k=1

∥∥∥∥∥∥
 Nd∑

j=1

(
fk,jRk,j |0⟩⊗n ⟨ϕ(θ0(T))|+ |ϕ(θ0(T))⟩ ⟨0|⊗n

R†
k,jf

†
k,j

) θ∗
k(T)

∥∥∥∥∥∥
1

≤
NV∑
k=1

[
Nd∑
j=1

(
|fk,j |

∥∥∥Rk,j |0⟩⊗n ⟨ϕ(θ0(T))|
∥∥∥

1

+
∥∥∥|ϕ(θ0(T))⟩ ⟨0|⊗n

R†
k,j

∥∥∥
1
|f†

k,j |
)]
|θ∗

k(T)|

104

3.F Error bound theorems

3

≤
NV∑
k=1

 Nd∑
j=1

(
|fk,j |+ |f†

k,j |
) |θ∗

k(T)| =
NV∑
k=1

 Nd∑
j=1

2|fk,j |

 |θ∗
k(T)| ,

where in the third line, we used the fact that any quantum state has trace norm
at most one.

105

