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CHAPTER 2

Approximation and Generalization Capacities of
Parameterized Quantum Circuits for Functions in Sobolev
Spaces

2.1 Introduction

Machine learning has gained significant attention in recent years for its practical
applications and transformative impact in various fields. As a consequence, there
has been a rising interest in exploring the use of quantum circuits as machine
learning models, capitalizing on the advancements in both fields to unlock
new possibilities and potential breakthroughs. Among the various possibilities
for leveraging quantum circuits in machine learning, our particular focus lies
in parameterized quantum circuits (PQC). These quantum circuits consist of
both fixed and adjustable (hence ’parameterized’) gates. When used for a
learning task such as learning a function [92], a classical optimizer updates
the parameters of the PQC in order to minimize a cost function depending on
measurement results from this quantum circuit (see Fig. 2.1).

In this context, a growing line of research studies the expressivity of PQCs.
More precisely, the capacity of PQCs to approximate any function belonging
to a particular function space defined in a prescribed domain up to arbitrary

The contents of this chapter have been published in Ref. [88].
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Figure 2.1: Sketch of a hybrid variational algorithm. U(z, ) represents a quantum
circuit that takes = as input and with variational parameters 6, fo(z) is the expected
value of some observable and D(f*, fy) is the expected loss that we want to minimize.

precision with respect to a specific distance. In [67], they showed that PQCs
can be written as a generalized trigonometric series in the following way:

fo(x) = (0| U'(; 0) MU (; 6) |0) (2.1)
= cu(0)e™ . (2.2)
we

We would like to emphasize that although similar, the form of the PQC in above
equation is more general than a Fourier series. This will become relevant for
the results of this chapter. Using this formulation, it was further shown in [67]
that, if the PQC is chosen carefully, the increase of its depth and number of
parameters can arbitrarily reduce the L? distance between the expected value
fo(x) of the PQC and any square-integrable function with the domain [0, 27]V.
Throughout the chapter, we will refer to the PQC as the one approximating the
functions to make the text more fluent, although technically it is the expectation
value of the PQC that approximates the function.

This result had a significant impact on the motivation to study PQC-based
QML, analogous to the impact that the famous Universality theorem for neural
networks of Cybenko [65] had on the domain of classical machine learning.
Previously, different results on universality for PQC have been established.
In [93], the power of PQCs in expressing matrix product states and instantaneous
quantum polynomial circuits was shown. Later, the universal approximation of
PQCs was studied in regression problems, for single-qubit circuits with multiple
layers [68, 69] and for both single- and multiple-qubit circuits [70, 71]. However,
as it turns out, there are numerous different notions of universality, and not all
are useful for all applications. For instance, as will be discussed later, in the
context of Physics-Inspired Neural Networks (PINN) the "vanilla" universality
does not suffice. This raises the question of whether PQCs can approximate
functions belonging to other function spaces or in terms of other distances.
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2.1 Introduction

In this chapter, we present two novel results. The first result of this chapter
is that PQCs can arbitrarily approximate the space of continuous functions, the
space of p-integrable functions and the H* space, which is the set of functions
whose derivatives up to order k are square-integrable.

Furthermore, we explain how these properties can be easily achieved in
practice by a simple min-max feature rescaling (see Eq. (2.21)) of the input
data. In practice, this leads to an improved expressivity of PQCs, if the input
data is normalized accordingly.

The second main result of the chapter concerns generalization bounds that
connect distances with loss functions which are not built via the discretization
of the integrals present in the definition of the distance. To make it more
clear, we recall that in a machine learning problem one needs to choose an
architecture, which defines the class of functions that can be approximated, and
a target distance, which is intimately connected with the generalization error'.
However, in general it is not possible to compute the target distance, as we
would need to have available infinitely many data points. Instead, one chooses
a different distance function which can be computed from the available data: a
loss function. This loss function is a different function than the target distance
but it should be chosen in such a way that we call consistent with the target
distance, i.e., that the minimization of the expectation value of the loss function
(i.e., the expected loss) yields the minimization of the target distance up to an
error which asymptotically tends to zero when the number of samples and the
expressivity (here meant architecturally, as e.g. depth) of the PQC increases.
For example, the mean square error (as a loss function) is consistent with the
L? error (as a target distance) but is inconsistent with the supremum distance.
The usual generalization bounds connect target distances which are continuous
with expected losses which are their discrete version.

The generalization bounds that we derive give a mapping across different
distances and loss functions, i.e., they relate distances with loss functions which
are not built via the discretization of the integrals present in the definition of
the distance. A particular loss function we shall define, denoted £j1, which
consists of the sum of the mean square errors of the values of the functions
and its derivative, is consistent with the supremum distance in one-dimensional
problems. In the described case, this allows us to reduce the supremum distance
while choosing a loss function which is differentiable.

Our results apply in many settings. For example, our first result has a
direct consequence in that it allows one to approximate not just most, but
all function values with satisfying quality. For instance, the minimization of
the ubiquitous L? distance may allow functions to dramatically differ from the
target function in some regions where we have plenty of data points available,

Hn practice we may not explicitly think about the target distance, i.e. with respect to
which distance we wish to approximate the "true" labeling function. But this decision is
implicitly made, once the loss is chosen.
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whereas the minimization of the supremum norm in Thm. 2.3 will force the PQC
to converge for any given point in the domain of the target function. This is of
high relevance in cases where we are interested in having a good approximation
at any given point. For instance, when learning the shape of a probability
distribution from samples, a good fit in the bulk of the distribution but a
poor fit in its tails can lead to significant underestimation or overestimation of
the probability of extreme events. In real-world applications, this could have
severe consequences in risk assessment applications, where accurate estimation
of tail probabilities is essential for developing appropriate contingency measures
against rare but significant events, such as the COVID-19 pandemic or the
2008 economic crisis. Our second result has direct applications, e.g., in settings
where we have access to data of the function and its derivatives. One case
where this is standard is in settings where differential equations are solved.
For example in physics-informed neural networks (PINN) problems [94] and
differential machine learning (DML) [89], both function values and derivatives
are accessible and in fact critical

This chapter is organized as follows: in Sec. 2.2 we explain the new results
on the expressivity of PQCs. In Sec. 2.3 we discuss the proposed generalization
bounds. Then, in Sec. 2.4 we illustrate the theoretical result of Secs. 2.2 and 2.3
by means of some numerical experiments. Lastly, in Sec. 2.5 we wrap up with
the conclusions.

During the final stages of our work, we became aware of the paper [95] which
overlaps in some parts with our own results in Sec. 2.2. However, the results
presented here were developed independently and follow a different line of
reasoning.

2.2 PQCs and universal approximation

In this section, we will review the established result on universality in [67] and
then present our new universality results in Thms. 2.2, 2.3 and 2.4.

Schuld et al. showed in [67], how a quantum machine learning model of the
form fo(z) = (0| UT(2;0) MU (z;0) |0) can be written as a univariate generalized
trigonometric series:

01U (z;0) MU (x;0) |0) = fr(x;0) (2.3)
= Z Co(0)e™®, (2.4)
weN

where M is an observable, U(xz; 0) is a quantum circuit modeled as a unitary
that depends on input x and the variational parameters 8 = (6g, 61, ...,07). In
the above, w € Q denotes the set of available frequencies which always contain
0. The quantum circuit consists of L layers each consisting of a trainable circuit
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Figure 2.2: Parameterized quantum circuit that can be written as a generalized
trigonometric series as in Eq. (2.1). It consists of L layers, each layer is composed by
a trainable circuit block W5(0),: € {1, ..., L+ 1} and a data encoding block S(z). The
data encoding blocks S(x) are identical for all layers, they determine which frequencies
w are accessible and are implemented as Pauli rotations. The blocks W;(0) can be
built from local rotation gates and CNOT gates. They determine the coefficients
cw ().

block W;(0),i € {1,...,L + 1} and a data encoding block S(z) as shown in
Fig. 2.2. The data encoding blocks determine which frequencies w are accessible
in the sum and are implemented as Pauli rotations. The blocks W () can be
built from single-qubit rotation gates and CNOT gates and they determine the
coefficients ¢, () of the sum. It is possible to both implement this model with
L > 1 layers, such as data re-uploading PQC [96, 97], where the encoding is
repeated on the same subsystems in sequence, or with parallel encodings [59]
and L = 1, where the encoding is repeated on several different subsystems.

For the needs of our discussion, we will briefly describe a more specific set-up
under which the authors of [67] proved a universality theorem of these quantum
models for the multivariate case with inputs = = (zg, 21, ..., ZN)-

Let us construct a model of the form in Eq. (2.1), with the measurement M
and a quantum circuit of one layer, L = 1:

fo=(0|UT(8,2)MU(8,x)|0), with (2.5)
U@,z)=w2@O)s@)wh e, (2.6)
where 81 and @) are those parameters in @ that affect W) and W®),

respectively. Let us further make the following two assumptions: Firstly, we
assume that the data-encoding blocks S(x) are written in the following way:

Sx)=e " g...Qe o (2.7)
=: Su(x), (2.8)
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where H is a Hamiltonian that we specify later. Secondly, we assume that
the trainable circuit blocks W™ (8()) and W) ((?)) are able to represent
arbitrary global unitaries. In practice, this may require a circuit depth that
scales exponentially in the number of qubits. With this assumption, we drop
the dependence on 6 and reformulate the assumption as being able to prepare
an arbitrary initial state |T') := W) (8(1)) |0) and by absorbing W) (8(?)) into
the measurement M. We can then write the above quantum model as:

f(@) = (T| S;(@)MSu(z)|T) - (2.9)

Let us further present the notion of a universal Hamiltonian family, as defined
in [67]:

Definition 1. Let {H,,|m € N} be a Hamiltonian family where H,, acts on m
subsystems of dimension s.

Such a Hamiltonian family gives rise to a family of models {f.,,} in the
following way:

fm(@) = (TS} ()M S, (2) T) . (2.10)
Further, we call the set

Qm,, ={X\ —Aeld, ke {l,...,s"}} (2.11)
where {A1, ..., Asm } are the eigenvalues of Hy,, the frequency spectrum of H,y,.

Remark. We call a Hamiltonian family {Hp} o universal Hamiltonian family,
if for all K € N, there exists an m € N, such that:

Zx ={-K,..,0,.. K} C Qp,,, (2.12)

hence if the frequency spectrum of {H,,} asymptotically contains any integer
frequency.

As shown in [67], a simple example of a universal Hamiltonian family is one
which consists of tensor products of single-qubit Pauli gates:

H,, = Za((;), (2.13)

with a((li), q € {X,Y,Z} and s = 2. The scaling of the frequency spectrum for
this example goes as K = m. With these definitions, we can give the following

theorem:
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2.2 PQCs and universal approximation

Theorem 2.1 (Convergence in L?). [67] Let {H,,} be a universal Hamiltonian
family, and {f} the associated quantum model family, defined via Eq. (2.10).
For all functions f* € L? ([07 27T]N), and for all € > 0, there exists some m' € N,

some state |T') € C™ and some observable M such that

[ frr = f7l 2 <€ (2.14)

Here, we clearly see that there are two conditions on the target function
f* that must be fulfilled in order for the theorem to work properly. The first
condition is that f* belongs to L2. This is not surprising, we need to assume
certain regularity on the target function to make the theorem work. The second
condition is that the target function f* needs to be restricted to the domain
[0, 27]V. However, as suggested in the original paper [67], if the function f* does
not belong to this domain, we can easily map [a,b]" to the required domain
[0,27]Y (or [—m, 7]V equivalently).

We would like to highlight the fact that the distance we use to bring the
approximator closer to the target function is the L? distance. Note that
convergence in the L? sense does not imply other modes of convergence. For
example, this does not give us information about the general case of LP-distances,
with 1 < p < oo. We explicitly address this more general case in the following
theorem:

Theorem 2.2 (Convergence in LP). Let {H,,} be a universal Hamiltonian
family, and {f} the associated quantum model family, defined via Eq. (2.1).
For all functions f* € LP ([O, 27T]N) where 1 < p < oo, and for all € > 0, there

exists some m' € N, some state |y € C™ , and some observable M such that:

[ = ¥l e <€ (2.15)

The proof of Thm. 2.2 is given in Appendix 2.A.

Let us emphasize the difference between Thms. 2.1 and 2.2: The target
function can belong to any L? space with 1 < p < oo in contrast to the previous
requirement of being square-integrable (L?). This is essentially achieved by the
fact that PQCs are not only able to represent Fourier series as it is discussed
in [67] but they are also able to represent more general trigonometric series.
This allow us to identify the expectation value of the quantum circuit with the
Ceésaro summation of the partial Fourier series of f* and leverage the power of
Fejér-like theorems [98]. See Appendix 2.A for more details.

Nevertheless, the ability to approximate functions in LP does not prevent us
from having arbitrarily big errors in certain points. Intimately related to this
problem is the so-called Gibbs phenomenon [99]. Namely, the approximation
of a continuous, but non-periodic function by a Fourier series is increasingly
better in the interior of the domain but increasingly poorer on its boundaries.
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That leads to the fundamental question if we can approximate f* in a stronger
sense, so that we ensure that the target function f* is well approximated in any
given point. We answer this question in the next theorem.

A set U C RN is compactly contained in another set V' C RY, if the closure
of U is compact and contained in the interior of V.

Theorem 2.3 (Convergence in CY). Let {H,,} be a universal Hamiltonian
family, and {f} the associated quantum model family, defined via Fq. (2.1).
For all functions f* € C°(U) where U is compactly contained in the closed cube
[0,27]N, and for all € > 0, there erists some m’ € N, some state |I') € cm,
and some observable M such that f,, converges uniformly to f*:

Hfm’ - f*”CO <€, (216)
with ©
[fmr = [ llco =" sup || for(x) = f* ()| - (2.17)
x€[0,27]N

The proof of Thm. 2.3 can be found in Appendix 2.A.

Simply stated, this theorem means that f,,» converges uniformly to f*. In
other words, if we select a given target error ¢ we are always able to find a
finite PQC such that the error on any point is smaller than the prescribed e.
Let us emphasize again the key differences between Thms. 2.1 and 2.3. The
first difference is that the function f* has to be defined in a domain U which
is compactly contained in [0,27r]N. A simple example of U is the interval

([fg, g]N) (or ([O,W]N), equivalently). By restricting ourselves to half of

the original space we can always find a C° extension of the function f* in
TN. The second difference is that the target function now belongs to the
class of continuous functions in contrast to the previous requirement of being
square-integrable (L?).

A last result that we will show in this regard is about the approximation of
the function and its derivatives by the parameterized quantum circuit. This
might seem as a purely synthetic question but it has many implications in
practice. When we approximate a target function, in many occasions we not
only want to recover its value but also its dynamics. This is particularly relevant
for problems in physics, where we typically have a differential equation which
describes the behavior of the system. As we will see in the following theorem,
the universality results translate to functions defined in the Sobolev space H*
as well:

2Since f* is defined on a compact domain U, the supremum is equivalent to the maximum
in this case.



2.2 PQCs and universal approximation

Definition 2. The Sobolev space H¥(Q) is defined as the space of square-
integrable functions on a domain Q C RN which derivatives up to order k are
also square-integrable:

£ = D and |1 < ox. (2.18)
2
for all 0 < |a| < k and D* := %'
o)l 0y
The Sobolev norm ||-|| ;. is defined as
1/2
||f||Hk = Z /g'Daf‘Q ' (2.19)

|| <K

Theorem 2.4 (Convergence in H*). Let {H,,} be a universal Hamiltonian
family, and {f,,} the associated quantum model family, defined via Eq. (2.1).
For all functions f* € H* (U) where U is compactly contained in the closed cube
[0,27]N, and for all e > 0, there exists some m’ € N, some state [T') € C™, and
some observable M such that fr, is e-close to f* with respect to the H*-distance:

I frmr = Mg < e (2.20)

The proof of Thm. 2.4 is given in Appendix 2.A.

As in Thms. 2.3 and 2.4, we require that the target function is defined on
a compactly contained subset of [0,27]", we propose to perform a min-max
feature scaling of the input data:

r=(1,...,&n) — &= (T1,...,%n), (2.21)
N
where x € [a,b]N, & € [,E’Z} , and
2°2
- ™ T1—a ™ Ty —a
=|—-= ey —— . 2.22
v ( SR SR 2+7Tb—a) (222)

This simple recipe allows the PQC to approximate a much wider set of function
spaces as shown throughout this section. This normalization strategy works very
well in practice as can be seen in Sec. 2.4. However, we would like to emphasize
that this particular normalization is not the only choice. The classical strategy
in machine learning of normalizing the input data to lie in the [~1,1]" domain
is also completely valid.

Throughout this section, we have discussed the expressive power of PQCs,
but when we do machine learning, we have more ingredients that we need to
take into account. In the next section we will discuss the role that the loss
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function plays in accordance with the type of approximation that our PQC can
get.

2.3 Connections between different generalization
bounds

As we have seen in the previous section, the notion of approximation depends
on a prescribed distance. This distance is not given by the problem itself, but
rather chosen by the user, this is why we refer to it as target distance. In
general, it is however not possible to compute the target distance, which for
example is the case for the LP? and H* distances. This is why one needs to
choose a distance function which can be computed from data, a loss function.
It has to be chosen in such a way that it is consistent with the target function.
To discuss the topic in more depth, let us formally introduce the continuous
regression problem, which is the problem that we are most interested in.

In general, we can describe the continuous regression problem in the following
way: assume that there is some target function f* € F C H* mapping inputs
r € X to target labels y € ). Moreover, assume that the points in X are
sampled according to a bounded?® density function p. Our goal is to find the
best approximation f € M C H” of the target function f*.

The notion of what is understood as a “good” approximation as clarified,
allows for some freedom. For this reason, one has to make a choice by specifying
a functional D : H* x H* — R* U {0} which defines a distance between the
elements of F and M. The problem can then be stated as:

f :argminD(f*,f). (2.23)
fem

The most common distance in the literature for continuous regression problems
is the one induced by the L?(X, P) norm:
Dz (f*, ) = If* = fllz2 (2.24)

~ ([ 0@~ f@yar) . (2.25)

Nl

However, in regression we do not typically have access to the full information
(i.e., we cannot compute the integral). It is for this reason that instead we work
with the empirical risk minimization problem, which uses the discrete version 12
of the L? distance as a loss function. The difference with the previous setup is
that, for the empirical risk minimization problem, we are given a finite training

31t is possible to have more general density functions. However, we restrict ourselves with
this one since it simplifies the analysis.
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2.3 Connections between different generalization bounds

set S of I inputs sampled from the same probability density p, together with
their target labels {(x1,41), ..., (x1,y1)} with (x,y) € X x Y, according to the
target function f*: X — Y, f € F. Now, instead of minimizing a continuous
functional, we will minimize a discrete one. We call

1

L™ (@), £ (2.26)
=0

Di(f*af) =

~l

the expected loss according to a loss function ¢ : ) x ) — R. Similarly to the
continuous case, we are concerned with the expected loss of the [? distance,
which is defined as:

mdﬂjw=<}}(ﬁ@0—ﬂﬂbﬁ , (227)

with «¢ denoting the i-th input.

Although we are solving the minimization problem associated with the ex-
pected loss defined in Eq. (2.27), in general we are interested in the generalization
performance, i.e., the distance in terms of Eq. (2.24). Using generalization
bounds [100] we can relate the performance in terms of the distance given by
Eq. (2.27) with the distance given by Eq. (2.24). However, these classical results
in machine learning do in general not relate the {2 distance with other distances,
like the C© distance. In other words, even a solution which, as the model and
the number of points grow larger asymptotically makes the Dy 2 go to zero, does
not necessarily make the Do distance vanish, which is defined as:

Deo(f*, f) == ilelgu*(X) = f(x)|. (2.28)

In such cases, we could find points where there is an arbitrarily large discrepancy
between the solution and the target function.

One possible solution would be to use a different distance than D;2. For
example one could try the discrete form of the Dgo distance:

Fr(x) = f(x)

D~ = max , (2.29)

i€{0,...,]—1}

but this distance is not differentiable, making the optimization process much
harder.

Thus, we identify two desirable features for a distance in order to be able to
approximate with the C° distance. The first requirement is that the solution of
the minimization problem that it defines, tends uniformly to the target function
f* as we increase the number of given points I and we increase the size of
our PQC. The second one is that it has to be differentiable in order to make
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minimization easier.
The solution that we propose here is to use a distance motivated by discretizing
the Sobolev distance H* on a fixed finite training set

{ (3317 {Daf*(wl)}oga\gk) yoo (21, {Daf*(fcl)}ogm\gk) },
(z,y) € X x ),

according to the target function f*: X — ), f € F. The sets {D*f(x)}o<|a|<k
and {D* f*(x)}o<|a|<k consists of the function values f(x) or f*(x) and their

M(N,k) := 2221 (QJJ(IIX ;1) different partial derivatives up to order k evaluated
at point x, respectively. We write N for the input dimension. Note that for
being able to apply this distance, one needs to have access to training data
containing the required partial derivatives additionally to the function values.

We show the expected loss of the discretized version of H' and H*, respec-

tively, in the following two equations:

I-1 N—1I-1 .
Dt 0= |13 (&) - 1) + 37 (3w 2Lie)

| =0 j=0 i=0

(2.30)

_11_1 2 g | 2

Du(r )= [FX (@) - fa) + Y 30 (0 @) - Do p(a)
| =0 la|<k i=0

(2.31)

The expected loss as given in Eq. (2.30) was first introduced in [89] and
gives rise to a new subfield of machine learning known in the literature as
differential machine learning (DML). Its generalization, the discretization of
the distance H*, is given in Eq. (2.31), and can be applied when the required

o) =

higher-dimensional derivatives are available as well. The derivatives )
Z .
J

») o . s
and % are the p-th order derivative functions in direction z; of f* and f,
T .

J
respectively. The corresponding loss function is thus defined as

U : RMVRFL o pM(NR)I+L_, R (2.32)
(f(@), {D* f(@) i<k £ (@), ADf* (@) }aj<n) =

s (f (@), [ (@) = (f*(2) = f(x)))” (2.33)
+ Y (D*f* (=) — D*f(=)))?

|| <K

34
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With classical neural networks, DML has proven to yield better generalization
results in terms of the D;2 distance than the solution of the D;2 itself. This
means that, if we take the solutions f,: and f;2 of the minimization problems
defined by Egs. (2.30) with the same number of labels and Eq. (2.27) respectively
and evaluate their performance in terms of the D2, in practice fn1 performs
better than fj2:

Dr2 (f*, fn1) < Dr2 (f*, fi) - (2.34)

However, to the best of our knowledge there is no theoretical explanation in
the literature on why this happens or under which condition we might expect
this behavior. In the following theorems we present generalization bounds that
shed some light onto it.

Before stating them, we will define two function families to which the gener-
alization bounds apply:

Definition 3. [73] By F5, we denote the function family defined as

FE = {[0,27T]N S f(x) = Z Cw exp(—iw - ) :
weN

{cw}lwea 8-t ||f]lec < B and |Q| < oo} .

By ’Hg, we denote the function family defined as

i = {0.271" 52> 2

+ Z (aw cos(w - x) + by, sin(w - x)) :
weN

a? + Z ai+bi§3and\ﬂ+\<oo},

wey

where the frequency set Q is divided into the disjoint parts Q = Q4 UQ_ U {0},
where Q1 NQ_ =0 and such that for every w € Q, it holds that —w € Q_.

According to [73], both of these function families can be modeled by the
quantum model given in Eq.(2.10). As can be seen by this equation, the bounds
B and B depend on the chosen circuit and observable, and they determine the
scaling in the following generalization bounds. Note as well that the truncated
Fourier series as defined in ]-'g and 7{5 are differentiable, and their derivatives
form truncated Fourier series as well. If one chooses the frequency set €' and
the bounds B’ and B’ large enough, for a given function family F, both the
functions and their derivatives belong to F5 and HE,.
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Theorem 2.5 (Generalization bound for H*). Let f* € F C H*([0,27]") be a
target function, and let there be a B >0 and a B > 0, such that F§ C HE is a
sugtable model family. Let us further assume that Lyx(f1(x), f2(x)) < ¢ for all
x € [0,27]N, and for all f1, fo € FE or F. For any § € (0,1) and the empirical
risk Dpx (f*, f) trained on an i.i.d. training data S with size I and containing
data of & partial derivatives, the following holds for all functions f € FE with

probability at least 1 —§:
DH’“ (f*,f) < th (f*af) +T(|Q|,£,B,B,0,I,5), (235)
where r(|Q|,&,B, B, ¢,1,8) = 0 as I — co.

Theorem 2.6 (Generalization bound for LP). Let f* € F C H*([0,27]") be a
target function, and let there be a B > 0 and a B > 0, such that FECHE isa
suitable model family. Let us further assume that €nr (f1(x), fo(x)) < ¢ for all
x € [0,27)N, and for all f1, fo € FE or F. Assume that k,p € N satisfy one of
the two following cases:

LN(3-1)<k<N2adl1<p<N,

2. k>N/2 and 1 <p< 0.

For any § € (0,1) and the empirical risk Dpx (f*, f) trained on an i.i.d. training
data S with size I and containing data of £ partial derivatives, the following
holds for all functions f € F5 with probability at least 1 — §:

éDLF (f*af) S th (.f*7f) + T(|Q|,§,B,B,C, Ia 5)? (236)

where C' is a constant and r(|Q,&, B, B,¢,1,8) = 0 as I — co.

Theorem 2.7 (Generalization bound for C°). Let f* € F C H*([0,27]V) be a
target function, and let there be a B >0 and a B > 0, such that FECHE isa
suitable model family. Let us further assume that €nr(f1(x), fo(x)) < ¢ for all
x € [0,27]Y, and for all f1, fo € FE or F and that ||f||ec < B for all f € F5.
Assume, that k € N satisfies k > N/2. For any § € (0,1) and the empirical
risk Dy (f*, f) trained on an i.i.d. training data S with size I and containing
data of & partial derivatives, the following holds for all functions f € FE with
probability at least 1 —§:

SDe (1) < Dy () + 1016 B, Bue 1o), (2.37)

where C is a constant and (||, €, B, B, ¢, 1,6) — 0 as I — co.
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2.3 Connections between different generalization bounds

The proofs of Thms. 2.5, 2.6 and 2.7 can be found in Appendix 2.B.

A consequence of Thm. 2.7 is that, if the order of the derivatives that we have
at our disposal are higher than half the input dimension (k > N/2), our solution
of the D, problem is also a solution of the Dco problem, corresponding to
uniform convergence. It means that training with the £, loss function (for
k > N/2), which sums the £;2 losses of function and derivative values, is sufficient
for an approximation in C°. This would not be possible by a training with ;>
loss function and more practical than the training with the £;~ loss function,
as described above.

Note that we face a curse of dimensionality-like phenomenon as the dimension
of the input grows. In this case, the number of terms that go into the ¢, loss
function grows exponentially with &k, as we have to take into account mixed
derivatives. Hence, for high dimensional problems the demand on data of partial
derivatives is higher and only if they are available, this generalization bound
holds.

Further, the requirement of quantum resources for evaluating Dy (f*, f) is
higher than for the evaluation of Dj2(f*, f). If we use the parameter shift rule
for the evaluation of the derivatives, we need to evaluate I(1 + 2N) different
PQCs. Similar to the demand on training data, this number of PQCs to evaluate
Dy (f*, f) grows exponentially in k. However, even if the amount of training
data is the same (and implying an increase of required PQC evaluations up
to a factor of 2), the training with the £, loss function shows the promised
advantages, as presented in [89].

The last property we wish to highlight is the fact that the generalization
bounds connect the empirical risk with the full risk, but they do not give us
information of whether they can both tend to zero. In order to tackle that
question we need to combine the results of the theorems in this section with
the ones present in Sec. 2.2. For example, if we try to fit a one-dimensional
function which is not periodic on [0, 27], using model families 75 and H§5 and
the ¢5,1 loss function, as we increase the number of sample points both sides
of the inequality will tend to the same constant but they will not converge
to zero. In this regard, observe that the fact that the empirical risk goes to
zero is a sufficient but not a necessary condition for the target distance to also
tend to zero. Following the same example, if instead of training the model
using the £,: loss function we trained the model using the ¢;2 loss function,
then the L? distance will vanish. This idea will become apparent in Fig. 2.5.
The bottom line is that more information in the training data does not always
equate to a better approximation, if we are not very careful with the necessary
data normalization.
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Figure 2.3: Architecture U (z, 0) used in the experiments. The parameters 6;; are
variational parameters. Each qubit is measured in the Pauli-Z basis.

2.4 Numerical experiments

In this section we illustrate the theoretical discussion of Secs. 2.2 and 2.3 with
an illustrative example: the approximation of function f*(z) = 3=, = € [—7, 7]
by the PQC in Fig. 2.3.

We conduct two different numerical experiments and show them in Figs. 2.4
and 2.5. We chose a linear function to show that even in this simple case, the
numerical tests fail completely if the results of Secs. 2.2 and 2.3 are not applied.

All simulations have been performed using 10 points (10 for the labels plus 10
for the derivative values when they are present) uniformly distributed along the
domain for the training phase. Each experiment has been repeated 100 times
and we depict the 25, 50 and 75 percentiles in colored solid lines in Fig. 2.4.
The legends call the result of the PQCs as fo(-), where the subscript denotes
under which loss function we have done the training and in the parentheses we
indicate which normalization we have chosen.

In Fig. 2.4 we compare the performance of our PQC under different normal-
izations. We normalize the data to lie in the domains [—3, %], [-7,7] and
[—2m, 2], respectively. When we normalized our data to lie in the range [-7F, 7]
we get the best results, as we expected due to Thm. 2.3.

In contrast, when the data is normalized to lie in the range [—2m, 27| we
obtain very poor approximation results, because in this case, it is not possible to
approximate with the C%-distance or the L?-distance. The intermediate regime
happens when we normalize the data to lie in the range [—m, 7], here we obtain
a reasonable approximation except for the boundaries. This is a consequence
of approximating with the L?-distance instead of the C°-distance: we cannot
guarantee that the error will be reduced on any given point. This behavior
remains even when we increase the size of the circuit and the number of given
points.

In Fig. 2.5, we study the impact of the different loss functions with different
normalizations in the learning problem. We simulated the regression using
two different loss functions, ;1 and f;2 under two different normalizations,
with the domains [—%, 2] and [, 7]. The first noticeable phenomenon that
we can see is that using the ' norm instead of the {2 norm when the data is

normalized to lie in the interval [—g, g] not only reduces the variance stemming
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2.4 Numerical experiments

f*(z) and fi>(x)

f*(z) and fi2(x)

f*(z) and fp2 (x)

Figure 2.4: In this picture we have trained the PQC of Fig. 2.3 to approximate the
function f*(x) = 5=. We have used 10 training points, the £;2 loss function and 100
epochs with the Adam optimizer. The experiments have been repeated 100 times.
In the first panel we have normalized the data to lie in the interval [fg, g] In the
second panel we have normalized the data to lie in the interval [—m, 7r]. In the third
panel we have normalized the data to lie in the interval [—2m, 27]. 39



2 Approximation and Generalization Capacities of PQCs for Functions in
Sobolev Spaces

R 05 H I / 0.5 H I /
8 s us /g T s
= —fw ([-%:3]) - —fe ([-3.3])
S =
o] B 1S L N
% 0 % 0
5 5
o “
—-0.5 ‘ ‘ -
—2 0 2
x
05 H___ f*‘ |
D 5
= 7fhl ([_71-77‘-]) / =
<3 7\ | S
o \| o
: ! :
© S
o “
-0.5 | | ]
—2 0 2
T x

Figure 2.5: In this picture we have trained the PQC of Fig. 2.3 to approximate
the function f* = 3=, using the two different loss functions £,1 and ¢;2. We have
used 10 training points (10 for the labels plus 10 for the derivative values when they
are present) and 100 epochs with the Adam optimizer. The experiments have been
repeated 100 times. In the upper panel, we have normalized the data to lie in the
interval [—g, g} . In the lower panel we have normalized the data to lie in the interval
[—m, 7.

from repeating the experiments 100 times, but also has some impact on the
bias. What might be more surprising is the effect of the h!' norm when the
data is normalized to lie in the interval [—m,7]. Instead of getting a better
approximation w.r.t. the [?> we worsen it. We explain it with the fact that,
when we normalize the data to lie in the interval [—m, 7], our PQC is not an
approximator of H' but it is an approximator of L2, i.e., it can approximate
the function but it cannot simultaneously approximate the function and the
derivatives. Thus, in the minimization process the PQC tries to find a balance
between the error in the function and the error in the derivatives, worsening
the results with respect to the quality of the function approximation.
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2.5 Conclusions

2.5 Conclusions

In this chapter, we have developed a broader theory of approximation capacities
of PQCs. We have shown how an appropriate choice of the data normalization
greatly improves the expressivity of the PQCs. More specifically, we showed that
a min-max feature scaling that normalizes the input data along each dimension
to lie in the range [—7, 5] makes PQCs universal approximators in the L? space
with 1 < p < oo, the continuous function space and the H* space.

Moreover, since with this normalization we are able to approximate functions
in the sense of the LP, the C° and the H* distance, we discussed that a loss
function which is consistent with those distances in training the models might be
more appropriate than other choices. In particular, the natural choice for the C°
would be the [*° distance. However, since the [*° distance is not differentiable,
which makes the optimization of PQCs harder, we leveraged Sobolev inequalities
to show that the k! distance is consistent with the C° distance in R while being
differentiable. We showed further, that the h* distances are consistent with the
LP and the H* distances.

Lastly, we performed some numerical experiments to illustrate how this
simple choice of normalization and loss function can vastly improve the results
in practice.

The data normalization technique can be seen as a complementary result to
the work of [67]. Nevertheless, there is still much work to do in this direction.
For example, if instead of only taking a min-max feature scaling, we can combine
it with a mapping of the form & = arcsin(z) to end up with a series that closely
resembles Chebyshev polynomials, which are better suited for certain problems.
In analogy with neural networks, the data encoding strategy is playing a similar
role to that of the activation functions.

The relation between the ¢, loss functions and the LP generalization bounds
can be seen as a complementary result to differential machine learning [89] and
to generalization bounds for PQCs as derived in [73]. This is the first work
that gives some insight on why differential machine learning leads to better
generalization results. From the relations that we derived, one would expect
this technique to fail as we increase the input dimension. However, in practice
it has demonstrated very good results, as shown in [89], where a 7-dimensional
Basket option was trained using the £ loss function. An interesting line of
research would be to study the threshold at which differential machine learning
starts to fail.

Since a natural application are physical systems governed by differential
equations where data on the derivatives of a target function are available,
another open question remains as to how our approach compares to standard
differential equation solvers in these scenarios.
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2.A Proof of Theorems 2.2, 2.3 and 2.4

For proving Thms. 2.2, 2.3 and 2.4, we need two preliminary results. Firstly, we
need to show that a quantum circuit can realize the ¢'-Fejér’s mean of C° (TN )
and LP (TN ) , V1 < p < oo functions. Secondly, we need to prove that we can
define periodic extensions of functions belonging to C° (U) and H* (U), V1 <
k < oo, where U is compactly contained in TV to functions belonging to
cO (TN) and H* (TN) , V1 < k < oo respectively . The combination of both
results plus Fejér’s theorem in multiple dimensions naturally yields Thms. 2.2
and 2.3. Thm. 2.4 can be proven by a standard approximation theorem of the
Fourier series.

2.A.1 Féjer’s mean
We call the function

ot = 3 (1 ) s -

H N
JGZK

where fJ is the j-th Fourier coefficient of f,,,/, the £!-Fejér’'s mean of f,,.

We will show that our PQC can realize the Fejér’'s mean of any well-defined
function. In Appendix C of [67], the authors showed that the quantum model
family f,,» can be written as a generalized trigonometric series of the form

frr (%) =Y 5™, (2.39)

jez¥

where Z¥ = {-K,-K +1,...,0,..., K — 1, K}V is contained in the Cartesian
product of the frequency spectrum associated with H,,, as defined in Definition 1
and that the coefficients c; are completely determined by the observable, up to
the complex-conjugation symmetry that guarantees that the model output is a
real-valued function. Note that we can choose the coeflicients ¢; as:

G = ( ”JHl) fi (2.40)

which are the coefficients of the ¢!-Fejér’s mean in Eq.(2.38).

2.A.2 Periodic extension for C° functions

By the Tietze extension theorem [101], there exists a function g; € C°(RY)
with g1|z = f*. Then, we define a function g» € C°(RY) with golzr = 1 and
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2.A Proof of Theorems 2.2, 2.3 and 2.4

galrv\v = 0, where V' is defined as U CV C(0,2r)N. This set V exists since
U is compactly contained in [0, 27]V.

We can explicitly construct the function g in the following way: Let § > 0,
such that the closure @as of the 26-neighborhood of w, is contained in [0, 27|,
which is possible due to U being compactly contained in [0,27]". We define
V = wys and a function ¢s € C°(RY), supported on the § Ball in RV centered
around 0 and normalized as [,y ¥s(z)dz = 1. Then, we define go as the
convolution of 1y, and vs:

ga(x) = /RN 1y, (7)s(T — x)dT . (2.41)

With this construction, gs satisfies the required properties. We define the

extension fe,+ as the product g g2, which yields a function fZ,, with

featlo =17, (2.42)
JewtlrRv\v = 0, hence (2.43)
fe*zt(x) = f;zt(y) V(E, y e 8TN . (244)

The extension f7,, defined in this way is therefore an element of C°([0,27]™)
with periodic boundary conditions, so it can be viewed as a function on the
N-dimensional torus TV.

2.A.3 Periodic extension for H* functions

By the extension theorems for Sobolev functions [102, Theorem 2.2, Part 2],
there exists a function g; € H¥(RY) with gi|y = f*. Then, we define a
function go € H*(RY) with go|z = 1 and ga|gnv\y = 0, where V is defined as
U cV c(0,2r)N. This set V exists since U is compactly contained in [0, 27V

We can explicitly construct the function g5 in the following way: Let § > 0,
such that the closure @Was of the 26-neighborhood of w, is contained in [0, 27|,
which is possible due to U being compactly contained in [0,27]". We define
V := wos and a function 5 € H*(RY), supported on the § Ball in RV centered
around 0 and normalized as [,y ¢s(x)dz = 1. Then, we define go as the
convolution of 1y, and vs:

ga(x) = /RN 1y, (7)s(T — x)dT . (2.45)

With this construction, g satisfies the asked properties. We define the extension
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.zt as the product g;go, which yields a function f* , with
f P 9192, y

ext
f:;ct|U = f*v (246)
fewtlrRv\v = 0, hence (2.47)
Frar(@) = fi(y) Va,y e oTV . (2.48)

* 1 is thus an element of H*([0,27]") with periodic
boundary conditions, so we can map it onto the N-dimensional torus T¥.

The such defined extension f*

2.A.4 Proof of Theorems 2.2, 2.3 and 2.4

The final step leverages the power of Fejér’s theorem in multiple dimensions:

Theorem 2.8. [103, Theorem 2] For all functions f* € LP (TV) with 1 <p <
oo, and for all € > 0, there exists some t € N, such that

lloe (f) = e <e (2.49)

Combining Thm. 2.8 with the fact that quantum circuits can recover any
0'-Fejér’s mean as shown in Appendix 2.A.1 directly implies Thm. 2.2.

Similarly, for continuous functions we have another version of Fejér’s theorem
for continuous functions:

Theorem 2.9. [103, Theorem 2] For all functions f* € C° (TY), and for all
€ > 0, there exists some t € N, such that

llow (f) =l <€ (2.50)

Combining Thm. 2.9 with the fact that quantum circuits can recover any
0'-Fejér’s mean as shown in Appendix 2.A.1 and the fact that we can extend
any function in C° (U), V1 < p < oo where U is compactly contained in TV
to a function in C° (TN) , V1 < p < oo as shown in Appendix 2.A.2 directly
implies Thm. 2.3.

We finally prove Thm. 2.4, which uses the setup in [67] as described in Sec. 2.2:
We note firstly that the quantum model family f,,,» generates a truncated Fourier
series f in the domain [0,27]V of the form

Fe) = g™, (2.51)

H N
JEZ

where Z¥ = {-K,-K +1,...,0,..., K — 1, K} is contained in the Cartesian
product of the frequency spectrum associated with H,,, as defined in Definition 1.
The proof of that is written in Appendix C of [67].
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Secondly, we can extend the function f* defined on U to a periodic function

* ¢ on [0,27]Y via the construction shown in Appendix 2.A.3. As written in

Thm. 1.1 in [104], the Fourier series of fZ,,, which we can write in the form

of Eq. (2.51), converges in the H*-distance to f,,. As f*,(x) = f*(x) for all

x € U, the Fourier series of f7,, converges in the H"-distance to f* on U. This
implies Thm. 2.4.

2.B Proof of Theorems 2.5, 2.6 and 2.7

In this appendix, we prove Thms. 2.5, 2.6 and 2.7, for which we need several
preliminary definitions and results:

Definition 4 (L-Lipschitz loss function). Let (,dy) be a metric space with
metric dy and let £ : Y x Y — R be a loss function. We call it L— Lipschitz
with regard to a fired y € Y, if there exists a constant L > 0, such that for all
21,22 € R,

dy (U(y,21),0(y, 22)) < L|z1 — 2| . (2.52)

Theorem 2.10 (Generalization bound for general trigonometric series). [75,
Theorem 11] Let N, I € N. Let B > 0 and B > 0 be such that F§ C HE, for the
function families F5 and HE as defined in Definition 3. Let £ : R x R — [0, ]
be a bounded loss function such that R > z — ((y, z) is L- Lipschitz for all
y €R. For any d € (0,1) and for any probability measure P on [0,27]N xR, with
probability at least 1—§ over the choice of i.i.d. training data S € ([0, 27]N xR)!
of size I, for every f € .7-'5, the generalization error can be upper-bounded as

Lo @) S@NP@). £ @)~ S A, )

x;,f(x;)ES
(2.53)
o BL\/'Q'<1°g<'Q'j,“°g(B)>+c oB(1/7] | 1)

for a target function f*:[0,27]N —R .

This theorem is written for loss functions that take two real values as an
input, which is the case for most loss functions. We show that the theorem
holds as well for the loss function £;:

Lemma 1. Thm. 2.10 holds as well for the loss function £ : RO+
N
RO+ [0, c] with N,k € N by choosing the frequency set Q and the bounds
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B and B large enough, such that both the functions f of a considered function
family F and their derivatives D f for la| < k are contained in the families
F& CHE.

Proof. The proof goes analogous to the proof of Thm. 11 in [73]. There are two
points which require special care:

Firstly, we need to adapt the application of Talagrand’s lemma which is used
to upper bound the Rademacher complexity. Let us use the ¢;2 loss function

le(f* (), f(x) = ("(@) - f(=))*, (2.55)
which is related to the loss function £, by
U (f* (@), f(@)) = Y 2 (D*f* (@), D" f(w)) . (2.56)
lal <k

By using the reverse triangle inequality, we can prove the Lipschitzness of the
loss function /2, for a fixed f*(x) € L2([0, 27]V):

b (fr(x), [*(2)) — ézz(fz(w),f*(w))|

=|1f*() = L@)]” = |f* (@) = fole))]*

<|If*(x) = filz) — (f* () — folz)

=[(f*(@) = [*(@)) = (f1(@)) = fo(2))]”

=|(fi(@)) = f2(@))) .

Thus, the loss function ¢;2 is L-Lipschitz with the Lipschitz constant L = 1.

Note that this is the Lipschitz constant of the loss function £;2, which is not

related to the Lipschitz constant of functions of the function space L2([0, 27]V).
Parallel to the proof of Thm. 11 in [73], we now define the set

G = {[O,QﬂN x [0,27)N 3 (x,x) — L (f* (), flx)|f* € H([0,27]Y)

andfe]:g}.

We can now upper bound the Rademacher complexity 7%5(9) for a training set
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S with I data points and a target function f* as

r I

Rs(0) = TE, s Zaiehk<f<wi>7f*<wi>>]

L€/ g i=1

[ I

= %EU sup Zai Z Lp2(D® f(x;), DY f*(x;))
[JEFE =1 Jal<k

I

sup Do Y (D f(mi), D f* ()

Def(@)eFg lal<k izl o<k

IN
|
m

q

I
}Ea[ sup ZUiKZZ(Daf(%‘)’Daf*(mi))]

Def(em)eFE 4

I
1
< ¢ sup =E, sup Zaiﬁlz(Daf(mi),Daf*(:ci)) .
Def(m)eFy i1

The i.i.d. random variables o; € {—1,1} are the Rademacher random variables
and ¢ is the number of derivatives D® with |a| < k. Here, we first used the
relation between the loss functions £;2 and ¢,x. Then, we used the fact that
the supremum over functions and derivatives D f(x) € F&, |a| < k which are
independent from each other is larger than the supremum which is only taken
over the functions f € FF, in which case the derivatives that are taken account
in the loss functions have to be the derivatives of these functions. In the last
inequality, we used that each of the £ terms in the sum 2\04 <, can be bounded
above by its supremum.
We can now apply Talagrand’s lemma on the quantity
1 ! (e o f£x
7B | sup Yy ol (D f(wi), D f* (1) (2.57)
D"‘f(w)e]:é3 i—1

for a fixed |a| < k in which way we obtain the upper bound
Rs(G) < €, (FE), (2.58)

where we used that the loss function #;2 has the Lipschitz constant L = 1 and
where S|, := {x;}]_, is the set of the unlabeled training data points. The
supremum sup|, < can be omitted on the right hand side of the bound, since
the subset S|, of the training set does not include the labels D* f*(x;) and
since we assumed the function family & to contain the relevant derivatives as
well. This upper bound corresponds to Eq.(97) in the proof of Thm. 11 in [73],
apart from the additional factor &.
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Secondly, in the last step of the proof in [73], the authors use standard
generalization bounds as stated in Thm. 1.15 in [105]. The formulation of
this standard generalization bound theorem allows for the loss function ¢,x as
well. O

Definition 5 (Compact embedding). [106, Definition 1.25] Let X andY be
normed spaces with the norms ||-|| v and ||-||y, respectively, and X a subspace of
Y. LetI: X =Y, I = for all x € X be the embedding operator from X to
Y. We say that X is continuously embedded in 'Y, and write X — Y, if there
exists a constant C, such that

|ally < Cllzl . Ve € X . (2.59)

We call the embedding compact, if X is continuously embedded in V and the
embedding operator I is compact.

Definition 6. We write C%(U) for the space of bounded, continuous functions
onU.

Definition 7 (Finite cone and Cone condition). [106, Definitions 4.4 and 4.6]
Let v, € RN be nonzero vectors, let /(x,v) be the angle between vectors x and
v. For given such v, a p > 0 and a k such that 0 < k < w, the set

Copr =1 RN 12 =0 0r0< |z| <p, £L(x,v) < r/2} (2.60)

is called a finite cone of height p, axis direction v and aperture angle k with
vertex at the origin.

We say that U C RYN satisfies the cone condition, if there exists a finite cone
C such that every x € U is the vertex of a finite cone C,, contained in U and
congruent to C'.

Theorem 2.11 (Rellich-Kondrachov). [106, Theorem 6.3, Part I and II] Let U
be a domain in RN satisfying the cone condition, let Uy be a bounded subdomain
of U, and let UY be the intersection of Uy with a N-dimensional plane in RY.
Let k > 1 be integers. Let one of the following cases hold:

1. 2k < N and 1 < p < 2N/(N — 2k)
2.2k=Nand1 <p< o
8. 2k>Nand1 <p< o

Then, the following embeddings are compact:

H*U) — LP(UY) . (2.61)
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Additionally, in case 3, the following embedding is compact:
HYU) - C%(Ud) . (2.62)

Remark. The theorem relates to the Rellich-Kondrachov Theorem stated in [106]
in the following way:

o Case 1 and Case 2 are the two cases stated in Part 1 of Thm. 6.3 in [106].

o Case 8 corresponds to the first and second case of Part 2 in Thm. 6.3
in [100].

o We use a different notation: The symbols 0, 4, p,q,k,n,m used in [106]
are here equal to U,0,2,p, N, N, k, respectively.

o We formulate the theorem for the special cases W*?2 = H* and WOP = LP
of the Sobolev spaces.

With these preliminary results, we can prove Thms. 2.5, 2.6 and 2.7, which
we restate here:

Theorem 2.5 (Generalization bound for H*). Let f* € F C H*([0,27]Y) be a
target function, and let there be a B > 0 and a B > 0, such that FECHE isa
suitable model family. Let us further assume that ¢nr(f1(x), fo(x)) < ¢ for all
x € [0,27]N, and for all f1, fo € F& or F. For any § € (0,1) and the empirical
risk Dpx (f*, f) trained on an i.i.d. training data S with size I and containing
data of & partial derivatives, the following holds for all functions f € FE with

probability at least 1 — 0
Z)I_I)C (f*’f) S th (f*7f) + T‘(|Q|,§,B,B,C, I’ 5)’ (2'63)
where r(|Q, &, B, B,¢,1,6) = 0 as I — co.

Proof. In the work [73], the authors developed generalization bounds for the
function family defined in Eq. (2.10). We restated the theorem in Thm. 2.10.
As we have shown in Corollary 1, the theorem also holds for the loss function
Ly

According to the assumption, the function f* is in FF. The choice of the
constant B such that FE C HE is satisfied depends on the encoding strategy.
As written in [73], it can for example for integer valued frequencies be chosen
as B = 2B. Thus, Lemma 1 can be applied and the following bound holds:

DHk (f*vfh") < th (f*afhk) +T(|Q|7B7B707]75), (264)

with a function (||, B, B, ¢, I,§) which tends to 0 as I — oo. O
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Theorem 2.6 (Generalization bound for LP). Let f* € F C H*([0,27]") be a
target function, and let there be a B >0 and a B > 0, such that F§ C HE is a
sugtable model family. Let us further assume that Lyx(f1(x), f2(x)) < ¢ for all
x € [0,27]N, and for all f1, f» € FE or F. Assume that k,p € N satisfy one of
the two following cases:

LN(3-1)<k<N2ad1<p<N,

2. k>N/2 and 1 <p < co.

For any ¢ € (0,1) and the empirical risk Dypx (f*, f) trained on an i.i.d. training
data S with size I and containing data of £ partial derivatives, the following
holds for all functions f € FE with probability at least 1 —§:

%Dm (F*.f) < Dpe (f*, ) + (19, €, B, B,e, 1,6), (2.65)

where C is a constant and r(|Q,€, B, B,¢,1,8) = 0 as I — co.

Proof. We will prove the theorem by proving the following two inequalities:

S0 (F7,£) < Ds (%, ) < Do (5,1 + 790, B, B, 1.6) . (266)
The right hand side inequality is following directly from Thm. 2.5, and the left
hand side inequality is a consequence of Thm. 2.11. Let us look at case 1 in
Thm. 2.11: We want to rewrite the bound p < 2N/(IN — 2k) as an upper bound
for k for a given p. Let us therefore firstly check, which values p is allowed to
reach. Due to k being bound from above by k < N/2, the upper bound on p,
p < 2N/(N — 2k) is maximal for k = § — 1, in which case the upper bound
on p becomes p < N. That means that values for p chosen in 1 < p < N are
valid values. With p such chosen, the bound p < 2N/(N — 2k) is equivalent to
bounding & in the following way:

N<11><k. (2.67)

2 p

For case 2 in Thm. 2.11, we have the inequalities ¥k > N/2 and 1 < p < oc.

Further, because of the assumptions 5« (f*(x), f(x)) < ¢ for all x € [0, 27|V,
the subdomain U = [0,27]" is equal to Uy, and because an N-dimensional
plane in RY is RY itself, U is also equal to UJ¥. Let C be a cone of height at
most 7, angle at most 7/2. Then, for each = in U = [0, 27", we can choose
an appropriate axis direction such that C, lies entirely in U, so it satisfies the
cone condition.

To sum up, Thm. 2.11 states that for the cases



2.B Proof of Theorems 2.5, 2.6 and 2.7

LN (3-1)<k<N/2and1<p<N.
2. k>N/2and 1 <p< oo,
the following embeddings are compact:
H*([0,27]N) — L*([0,2x]V) . (2.68)

According to the definition of a compact embedding (Definition 5), there exists
a constant C, such that

If* = fllee < CNF* = Fllae - (2.69)
O

Theorem 2.7 (Generalization bound for C%). Let f* € F C H*([0,27]") be a
target function, and let there be a B >0 and a B > 0, such that F§ C HE is a
suitable model family. Let us further assume that Ly (f1(x), f2(x)) < ¢ for all
x € [0,27]Y, and for all f1, fo € F§ or F and that || f||cc < B for all f € F5.
Assume, that k € N satisfies k > N/2. For any ¢ € (0,1) and the empirical
risk Dy (f*, f) trained on an i.i.d. training data S with size I and containing
data of & partial derivatives, the following holds for all functions f € FE with

probability at least 1 — 0

éDCO (f*vf) < Dh"' (f*af> +T(|Q‘,£,B,B7C,I,5), (270)

where C'is a constant and v(|Q,¢, B, B,¢,1,5) — 0 as I — oc.

Proof. The prove of this theorem is equivalent to the proof of Thm. 2.6 above.
We will prove this theorem as well by proving the following two inequalities:

1
C

The right hand side inequality is following directly from Thm. 2.5, and the left
hand side inequality is a consequence of Thm. 2.11. As written in the proof of
Thm. 2.6, the assumptions of Thm. 2.11 are satisfied, we can thus also apply it
here.

The upper bound on the distance Dgo (f*, f) in the supremum norm is a
direct consequence of the third case in Thm. 2.11.

Drv (f*, f) < Dye (f*, f) < Dpr (f*, f) + r(IM], 1,0) . (2.71)

O



