
Capturing dynamics with noisy quantum computers
Dechant, D.S.

Citation
Dechant, D. S. (2026, February 17). Capturing dynamics with noisy quantum
computers. Retrieved from https://hdl.handle.net/1887/4290771

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4290771

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4290771

CHAPTER 1

Introduction

1.1 Preface
In the decades that followed the foundation of quantum mechanics, scientists
have been fascinated by the wide range of both practical and theoretical impli-
cations that this field has opened up. In particular, with the rise of classical
computers, scientists like Yuri Manin, Richard Feynman and David Deutsch
proposed the idea of using quantum mechanics at the core of computations,
giving birth to the field of quantum information [1–3]. This new paradigm was
believed to help in computations related to the simulation of systems described
by quantum mechanics. In the 1990s, surprising theoretical results showed
the possibilities that quantum computing has outside of applications in the
quantum domain: Shor’s algorithm demonstrates the ability to calculate the
prime factors of a number, taking only time that scales polynomially in the size
of that number, making the algorithm exponentially faster than known classical
algorithms [4]. Grover’s search algorithm can search any quantum database for
a specific marked item quadratically faster than classical counterparts [5]. In
the years since, the field of quantum algorithms has grown considerably both
in the diversity of algorithms and the range of applications [6]. In parallel,
the application of quantum information to other areas like communication and
cryptography has created new insights [7, 8].

These theoretical results have motivated the search for hardware that could
process quantum computations. At the current stage, many different physical
implementations are being considered and researched as candidates for useful

1

1 Introduction

1

quantum computing [9, 10]: For example, superconducting qubits [11, 12],
trapped ions [13, 14], neutral atoms [15], quantum dots (for example, spin-based
systems [16]), photonic systems [17]. In recent years, considerable progress could
be made on the experimental front, especially with platforms focusing on super-
conducting qubits. In 2019, for the first time, calculations were implemented
that seemed unfeasible on classical computers [18] and in 2024 significant strides
were made toward scalable error-correction [19]. However, so far no practical use
case seems to be within reach of current quantum devices. Therefore, significant
progress toward fault-tolerant quantum computing is still necessary, both in
experimental setups and on the theoretical side, such as in quantum algorithms.

One of the approaches of quantum computing that might fit current and
near-term platforms well, are variational quantum algorithms [20, 21], as they
do not rely on fault-tolerant quantum hardware. They consist not solely of
quantum computations, but as a classical-quantum feedback loop, alternating
steps between classical and quantum processors. They face several challenges,
like statistical noise, gate errors, decoherence of the qubits and measurement
errors.

For these near-term devices, people have investigated applications in areas
such as combinatorial optimization [22], quantum chemistry [23], finance [24],
machine learning [25] and solving differential equations [26]. In this thesis, we
will focus in particular on three application areas: Solving differential equations,
quantum machine learning, and finance.

Differential equations describe dynamical systems, which is why they are at
the core of most physical theories and are applied widely in several industries,
constituting one of the most common computational problems on supercomput-
ers. Solving them efficiently with quantum computers would therefore be very
useful. Many ideas have been explored for how quantum computing can benefit
to machine learning. Using quantum computing as subroutines in machine
learning could provide benefits in universality, training and generalization for
tasks like regression, classification and generative modeling. Furthermore, the fi-
nance industry, as a calculation-heavy sector, could offer additional applications
of quantum computing in areas such as option pricing, portfolio optimization,
and synthetic data generation.

In Sec. 1.2, we introduce certain basics of quantum computing, variational
quantum algorithms, and shot noise. Afterwards, we introduce solving differen-
tial equations, quantum machine learning, and quantum finance as applications
of variational quantum computing in Sec. 1.3. Finally, we present an overview
of Chapters 2, 3, 4, and 5 of this thesis in Sec. 1.4.

2

1.2 Basics of quantum computing

1

1.2 Basics of quantum computing
In this section, we introduce several basics of quantum computing that are
used in this thesis. We start by defining qubits, quantum circuits and quantum
measurements, then proceed with variational quantum algorithms and end with
an introduction to shot noise, a source of error arising in quantum measurements.
The reader who is familiar with these topics can safely skip to Sec. 1.3.

1.2.1 Qubits, circuits and measurements
Quantum states, the fundamental objects in quantum mechanics, are unit vectors
in a complex vector space with an inner product, a Hilbert space [9]. While
they can be infinite-dimensional, we focus here on finite-dimensional Hilbert
spaces of dimension d ∈ N, which are isomorphic to Cd. Quantum computing is
a paradigm that uses quantum systems called qubits, whose states are described
by vectors in two-dimensional Hilbert spaces, to perform calculations. We call
{|0⟩ , |1⟩} the computational basis, which forms an orthonormal basis for this
space. Any qubit |ψ⟩ ∈ C2 can be written in the following way:

|ψ⟩ = α |0⟩+ β |1⟩ , (1.1)

where α and β are complex numbers that are normalized such that |α|2+|β|2 = 1.
Equivalently, a general quantum state |ψ⟩ is normalized via the Hilbert-Schmidt
inner product: ⟨ψ|ψ⟩ = ⟨ψ| × |ψ⟩ = 1, where ⟨ψ| = |ψ⟩† is the conjugate
transpose of |ψ⟩.

We can describe several qubits together, which we call a quantum register.
For n qubits |ϕi⟩, where i ∈ {1, . . . , n}, the joint state |ψ⟩ ∈ C2n is formed by
applying a tensor product between them:

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩ . (1.2)

States of this form are called fully product states, but not every multipartite state
can be expressed this way. The state |ψ⟩ can be written in the computational
basis of the joint Hilbert space, formed by tensor products of single-qubit basis
states. Because of the possible combinations of |0⟩ and |1⟩, there are 2n different
basis states for |ψ⟩, and we use the notation

|0...01⟩ = |0⟩ ⊗ ...⊗ |0⟩ ⊗ |1⟩ . (1.3)

In general, we write

|ψ⟩ =
2n−1∑
i=0

αi |i⟩ , (1.4)

3

1 Introduction

1

where the basis states are labeled as {|i⟩ : i ∈ {0, ..., 2n − 1}}. Again, the
amplitudes αi are normalized such that

∑n−1
i=0 |αi|2 = 1.

The Hamiltonian H is a linear operator that is Hermitian (which means
H = H†) and acts on the Hilbert space of a quantum system. It determines
the dynamics of the system, hence how it changes in time. This dynamics is
described by the Schrödinger equation:

−i ∂
∂t
|ψ(t)⟩ = H |ψ(t)⟩ (1.5)

Solving this equation yields a unitary operator (which means U†U = UU† = I)
given by U = exp(−iHt). In quantum computing, such unitaries are imple-
mented using quantum circuits, which are sequences of quantum gates, elemen-
tary unitary operators that act on one or a few qubits at a time [27]. Common
examples include the single-qubit Pauli gates X, Y , and Z, their respective
rotations RX(θ), RY (θ) and RZ(θ), the Hadamard gate H, and two-qubit gates
such as the controlled-NOT (CNOT) gate. These gates form a universal set,
meaning that arbitrary unitary operations can be approximated to any desired
precision using sequences of such gates. They are defined in the following way:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (1.6)

RX(θ) = e−iθX/2 RY (θ) = e−iθY/2, RZ(θ) = e−iθZ/2 (1.7)

H = 1√
2

(
1 1
1 −1

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.8)

The CNOT gates create entanglement, a quantum phenomenon where the state
of a qubit can not be described independently of the states of the other qubits,
and which is essential for generating non-classical correlations in the circuit.

Given an input quantum register, |ψin⟩, a quantum circuit U transforms it to
an output register |ψout⟩ by the transformation:

|ψout⟩ = U |ψin⟩ . (1.9)

The final state |ψout⟩ resulting from the quantum circuit, exists only as
a quantum state, inaccessible directly in a classical understanding, because
observation of the state collapses the wave function [28]. Instead, one can
perform quantum measurements described by the set {Mm} of measurement
operators. The index m describes the outcome of the measurement, and the

4

1.2 Basics of quantum computing

1

probability p(m) that it occurs is equal to

p(m) = ⟨ψout|M†
mMm |ψout⟩ . (1.10)

A particularly relevant class of measurements are observables, Hermitian opera-
tors whose eigenvalues represent the possible outcomes and whose eigenstates
define the measurement basis. An example of such an observable is the Hamil-
tonian, whose eigenvalues correspond to the system’s energy spectrum. For
single qubits, another example is the measurement in the computational (or Z)
basis, with measurement operators {|0⟩ ⟨0| , |1⟩ ⟨1|}. In practice, tensor products
of single-qubit Pauli operators, known as Pauli strings, are often chosen as
the set of measurement operators. They are typically decomposed into single-
qubit gates applied to ψout and subsequent measurements of each qubit in
the computational basis. Quantum state tomography aims to reconstruct the
classical description of the quantum state and can be implemented by measuring
Pauli strings, and estimating their corresponding probabilities p(m), or by more
general measurement schemes. We describe a particular method for quantum
state tomography in Chapter 4.

1.2.2 Variational quantum algorithms
A quantum algorithm is a sequence of instructions designed to run on a quantum
computer, typically tailored to solve a particular computational problem, given
inputs of a specific form. Those instructions contain specific quantum circuits as
well as descriptions of measurements that determine the result of the computa-
tional problem. Algorithms designed for fault-tolerant hardware often make use
solely of quantum computation, such as Shor’s and Grover’s algorithms [4, 5].
In contrast, variational quantum algorithms consist of alternating calculations
on quantum and classical hardware, as sketched in Fig. 1.1. They typically
consist of parameterized quantum circuits and classical optimizers.

Parameterized quantum circuits consist of gates that can be tuned through
parameters. A typical parameterized quantum circuit is the hardware efficient
Ansatz [21, 29], which consists of single-qubit Pauli rotations and CNOT gates
on neighboring qubits (see Eqs. (1.7) and (1.8)). In Fig. 1.2, we show an example
of a parameterized quantum algorithm.

This Ansatz is designed to make optimal use of current hardware, where
connectivity (the ability to entangle qubits), the available gate set, and the
coherence time of qubits are limited. It is particularly useful for shallow quantum
circuits [30].

In variational quantum algorithms, a parameterized quantum circuit U(θ) is
repeatedly executed, where the gates depend on a set of tunable parameters
θ. After each execution, a quantum measurement is performed to extract an
output fθ, typically the expectation value of an observable relevant to the

5

1 Introduction

1

|0⟩⊗n U(θ) Outcome fθ

Cost function C(fθ)

Figure 1.1: Sketch of a variational quantum algorithm. U(θ) represents a parameter-
ized quantum circuit with variational parameters θ that takes x as input, fθ is the
expectation value of an observable and C(fθ) is the cost function that is evaluated
classically.

Layer 1 Layer 2

|0⟩ RX(θ1) RY (θ2) RZ(θ3) RX(θ13) RY (θ14) RZ(θ15)

|0⟩ RX(θ4) RY (θ5) RZ(θ6) RX(θ16) RY (θ17) RZ(θ18)

|0⟩ RX(θ7) RY (θ8) RZ(θ9) RX(θ19) RY (θ20) RZ(θ21)

|0⟩ RX(θ10) RY (θ11) RZ(θ12) RX(θ22) RY (θ23) RZ(θ24)

Figure 1.2: Example of a parameterized quantum circuit with 4 qubits and 2
layers, in the form of a hardware efficient Ansatz. Each layer consists of single-qubit
Pauli rotations and CNOT gates. The single-qubit Pauli rotations are tunable with
parameters θi.

problem. A cost function, defined to reflect the goal of the algorithm (e.g.,
energy minimization or quantum machine learning tasks such as described later),
evaluates this measurement outcome. In most approaches, a classical optimizer
updates the parameters θ based on this cost, which are then fed back to the
parameterized quantum circuit. Another form of parameter updating that does
not depend on the cost function is used for the quantum algorithms described
in Chapter 3. Depending on the algorithm, this loop of quantum and classical
calculations is repeated either for a preset number of iterations or until a specific
accuracy is met.

1.2.3 Shot noise
The precision of quantum measurements, whether of observables or more general
measurement schemes, is impacted by various sources of errors. Depending on

6

1.2 Basics of quantum computing

1

the quantum hardware, errors can arise from gate noise, qubit decoherence, and
measurement noise. Additionally, the inherent statistical nature of quantum
measurements introduces errors known as shot noise, which is present even in
perfectly noiseless quantum devices. For a simple example, assume the final
quantum state is |ψout⟩ = α |0⟩+ β |1⟩, and we measure the Pauli-Z observable.
In each measurement, the outcome is either |0⟩ or |1⟩ and the probability to
observe the first is equal to |α|2, while the probability to observe the latter is
|β|2. Now suppose that a total number of Nmeas measurements are performed
on the quantum register. After each measurement, the quantum state has
to be prepared again, since the act of measurement collapses the state. The
expectation value of the observable will then be estimated as

E(Z) = 1
Nmeas

Nmeas∑
k=1

m(k), (1.11)

where m(k) = 1 if at the k-th measurement, |0⟩ is observed, and m(k) = −1,
if |1⟩ is observed. Hence, the expectation value E(Z) will lie between−1
and 1. The law of large numbers specifies that as the number of measurements
Nmeas increases, the expectation value E(Z) converges to the true mean value
µ(Z) = |α|2 − |β|2. This means that for a finite number of measurements, the
expectation value will generally deviate from the true mean value. See Fig. 1.3
for a sketch of this deviation, which is commonly called the shot noise. Several
statistical bounds, such as the Chebyshev inequality, provide estimates on the
likelihood of this shot noise deviation. It states that for a chosen δ > 0 and
for finite and non-zero variance for a single measurement σ2

single, the following
inequality holds:

P (∥E(Z)− µ(Z)∥ ≥ δ) ≤
σ2

single

δ2Nmeas
. (1.12)

Since measurement outcomes are discrete (+1 or −1), the maximum variance
per shot is 1. In other words, with probability at least 1 − δ, the deviation
between the expectation value and the true mean is bounded by a shot noise
error of at most (δ2Nmeas)−1. This implies that to reduce the shot noise by a
factor of two, the number of measurements must be increased by a factor of
four, since the statistical error δ scales as 1/

√
Nmeas. In practice, achieving very

high precision can therefore become costly in time and resources.

7

1 Introduction

1

Observable
value

Probability
density

High uncertainty

Low uncertainty

True value

More shots

Figure 1.3: Increasing the number of shots in quantum measurements reduces the
uncertainty of the measured observable. The shaded areas in this sketch show the
probability density functions within standard deviation, indicating the area in which
the true value lies with a probability of ≈ 68, 27%. This interval becomes narrower
with a higher number of shots taken, which reduces the uncertainty of the estimate.

1.3 Some applications of variational quantum
computing

In this section, we introduce solving differential equations, quantum machine
learning and finance as examples of applications of variational quantum com-
puting.

1.3.1 Differential equations
Differential equations describe a wide range of phenomena across many fields.
This is especially true for physics, where theories are often based on the de-
scription of physical systems with differential equations. Famous examples
are Newton’s laws of motion, Maxwell’s equations, Einstein’s field equations
and the Schrödinger equation, providing the basis of classical mechanics, elec-
trodynamics, relativity and quantum mechanics, respectively. They describe
how quantities change depending on variables such as time (for dynamical
systems) or space (for stationary systems). Due to these fundamental reasons,
problems in industry can also be described by differential equations, such as the
Navier-Stokes equation for the application in weather modeling and engineering
or the Black-Scholes equation for applications in finance. In order to use these

8

1.3 Some applications of variational quantum computing

1

equations for making quantitative statements, it is necessary to find solutions
that are in accordance with these differential equations.

In some cases, it is possible to find exact and explicit descriptions of these
functions, known as closed-form solutions. However, this is in general only
possible for very simple, artificial cases. In most cases, it is necessary to
use numerical methods in order to approximate solutions to these differential
equations. The computational cost to solve these can be prohibitively expensive.
For example, solving the Navier-Stokes equation, which describes fluid dynamics,
can be computationally very expensive [31]. This equation lies at the basis of
applications such as weather and climate modeling or aircraft and car design.
Therefore, finding efficient methods for solving differential equations is an
important challenge in science and engineering.

Differential equations can be categorized in different ways [32]. Most com-
monly, they are grouped into ordinary differential equations (ODEs), partial
differential equations (PDEs), and other types such as stochastic differential
equations (SDEs) [33]. Further, they are distinguished into linear or nonlinear
differential equations, depending on whether the terms of the equation are linear
or nonlinear in the dependent variables and their derivatives.

ODEs are differential equations that consist of differentials with respect to a
single independent variable. A simple example of a linear ODE is the following:

df(x)
dx

= y(x) . (1.13)

If the equation involves derivatives with respect to more than one independent
variable, it is called a PDE. For instance, the heat equation that describes how
heat spreads over time, is given by [34]:

df(x⃗)
dt

= d2f(x⃗)
dx2

1
+ d2f(x⃗)

dx2
2

+ d2f(x⃗)
dx2

3
. (1.14)

Differential equations containing a stochastic process are called stochastic dif-
ferential equations. SDEs are used to model systems with inherent randomness,
such as Brownian motion describing the movement of pollen in water, or the
Black-Scholes model describing the dynamics of financial markets. The SDE
describing the dynamics of the stock price S(t) in the latter model is [33]:

dS(t) = µS(t)dt+ σS(t)dWt . (1.15)

It is written in differential notation, where dS(t), dt, and dWt represent in-
finitesimal changes in the stock price, time, and Wiener process, respectively.
The scalars µ and σ denote the drift and standard deviation (volatility) of the
stock price.

9

1 Introduction

1

Quantum algorithms for solving differential equations

Several methods have been proposed for using quantum computers to approx-
imate solutions to differential equations, ranging from algorithms requiring
fault-tolerant quantum hardware to variational methods suitable for near-term
quantum devices. A special focus in research is on possible advantages com-
pared to classical methods. Often, these advantages come from the fact that
many methods are based on discretizing the differential equation and that
this discretization can efficiently be stored on a quantum computer due to the
exponential scaling of the dimension of the Hilbert space with the number
of qubits (see Sec. 1.2.1). Some of the most common approaches using fault-
tolerant quantum computers [35, 36], are based on the Harrow-Hassidim-Lloyd
(HHL) algorithm [37]. It prepares, under certain conditions, a quantum state
proportional to the solution of a linear system Ax⃗ = b⃗, where A is a sparse
and well-conditioned matrix. Many classical approaches for solving differential
equations are based on discretization, such as finite difference or finite element
methods, and can be reduced to solving such linear systems. Furthermore,
linearization techniques provide methods for transforming nonlinear differential
equations into linear systems [38, 39]. However, the HHL algorithm comes with
the significant caveat that the solution is encoded in the amplitudes of the
output state of the quantum circuit, and one can not simply "read out" the
state [28]. Instead, it is necessary to repeat the same circuit multiple times
and to estimate observables or global properties of the solution by repeated
measurements.

Given the challenges of fault-tolerant quantum computing, much recent
attention has been given to developing variational quantum algorithms for
solving differential equations that can be run on near-term quantum devices.
Several of these variational approaches have been proposed:

• Instead of applying the HHL algorithm, variational linear system solvers [40]
are methods that calculate the variational parameters θ which minimize
∥Ax⃗ − b⃗∥, where x⃗ is prepared as a quantum state depending on θ. As
with the HHL algorithm, this serves as a subroutine for solving differential
equations [41, 42].

• Quantum neural networks and physics-informed neural networks [43] cal-
culate the variationally encoded solution of a differential equation by
minimizing cost functions which directly encode the differential equations,
including boundary conditions and initial values [44].

• Many differential equations can be mapped to the Schrödinger equa-
tion [45], which makes it possible to use techniques from Hamiltonian
simulation for approximating the resulting dynamics. The solution is then
obtained by calculations of the time evolution of the parameters of the
PQC [26, 46].

10

1.3 Some applications of variational quantum computing

1

• For SDEs, Quantum Monte Carlo methods can be applied that use methods
such as amplitude estimation or quantum random walks [47].

Each of these approaches exhibits different trade-offs in terms of range of
applicability, scalability and noise resilience.

Throughout this thesis, modeling dynamics with variational quantum algo-
rithms is explored from several angles: Chapters 2 and 5 deal with current
challenges of solving differential equations and of modeling dynamical sys-
tems with quantum machine learning approaches using parameterized quantum
circuits. Chapter 3 encompasses a rigorous error and resource analysis of
algorithms for solving differential equations that are based on Hamiltonian sim-
ulation. Chapter 4 examines quantum state tomography, which is an essential
subroutine for many variational quantum algorithms, especially those which
require partial reconstruction of the quantum state to evaluate cost functions.

1.3.2 Elements of quantum machine learning
Machine learning is dealing with algorithms that learn from data without explicit
programming [48]. It is commonly divided into three categories: supervised
learning, where the model learns from labeled data, unsupervised learning, where
it learns from unlabeled data, and reinforcement learning, where a machine
learning agent learns by interaction with an environment. The currently most-
studied and effective approaches are based on neural networks (NNs). One
distinguishes between shallow neural networks, which have a single hidden layer,
and deep neural networks, which consist of multiple hidden layers. Each layer
consists of several hidden units. The number of hidden units per layer is referred
to as the width and the number of layers determines the depth of the NN. See
Fig. 1.4 for a sketch. Classical machine learning based on neural networks
has made remarkable advancements in the past years, exceeding expectations
in areas such as natural language processing (e.g., large language models like
ChatGPT [49]), protein folding (e.g. AlphaFold [50]) and image generation
(e.g., diffusion models [48], DALL-E [51]).

Quantum Machine Learning

The field of quantum-enhanced (or quantum) machine learning studies how
quantum computing can be used to enhance machine learning models. Several
results have shown that quantum machine learning enables certain speedups
compared to classical machine learning models [43, 52–56]. Most of the current
promising quantum machine learning algorithms are based on variational ap-
proaches, alternating between classical and quantum computations. The two
most prominent paradigms for quantum machine learning are kernel methods
and quantum neural networks. In kernel methods, a quantum machine is used

11

1 Introduction

1
I1

I2

I3

H11

H12

H13

H14

H21

H22

H23

H24

O1

O2

Input layer
Hidden layer 1 Hidden layer 2

Output layer

Figure 1.4: Sketch of a deep neural network with two hidden layers that each have
four hidden units (H11-H14, H21-H24). The input layer (I1-I3) receives data and the
output layer (O1, O2) produces the predictions of the network. The arrows show how
information flows through the network, each corresponds to a trainable weight that is
adjusted during training. Each layer is fully connected to the next.

to map input data into a quantum feature space, after which the inner product
between the resulting vectors in the feature space are calculated [57]. The
classically calculated cost function is then the weight of different inner products,
and those weights are trained, while the quantum kernels remain untrained.

In addition to variational approaches, an influential class of quantum machine
learning algorithms is based on linear algebraic techniques [58–61], building on
the HHL algorithm [62]. Many of those have also motivated quantum-inspired
classical algorithms, via the so-called dequantization [63, 64].

In this thesis, we focus on quantum neural networks [43]. A typical QNN is a
variational quantum algorithm with a PQC that includes both fixed and tunable
gates. While machine learning is typically divided into supervised, unsupervised
and reinforcement learning, a significant amount of theoretical research deals
with supervised learning. This is because it is easier to define what constitutes
success in a learning task as there is an underlying ground truth (opposed to
unsupervised learning) and because the agent does not interact with the training
data (as is the case for reinforcement learning).

In theoretical analysis, machine learning is often characterized by three
aspects: Expressivity, training and generalization. Here, we focus on two of
them.

12

1.3 Some applications of variational quantum computing

1

Expressivity

Expressivity deals with how well the model can represent the target function
or distribution. Depending on the choice of model, its ability to approximate
the ground truth varies. This property is called expressivity and can be mathe-
matically formulated with universal approximation theorems. In 1989, George
Cybenko proved that classical neural networks with a single hidden layer of
arbitrary width can approximate any square-integrable function [65]. Later it
was shown that deep neural networks can achieve universal approximation for a
bounded width as well, by increasing the depth of the neural network [66].

In 2021, universality was proven for PQC as well, for one layer parameterized
quantum circuits [67]. Further results have been given both for multivariate
functions and for constant width multi-layer PQC [68–71]. While highly expres-
sive quantum models are desirable for approximating a wide class of functions,
increased expressivity often comes at the cost of trainability, leading to issues
such as local minima and barren plateaus during optimization [25, 72].

Generalization

Generalization deals with how well a trained model performs on unseen data [48].
In supervised learning, the model is trained on a finite dataset I, composed of
input-target pairs (x, f∗(x)). As described in Sec. 1.2, for variational quantum
algorithms such as those employed in quantum machine learning, a cost function
is chosen depending on the problem at hand. Here, it is equivalent to the
so-called empirical risk, which, given the training data, is minimized during
training:

D(f̂ , f) = 1
|I|

∑
(x,f∗(x))∈I

ℓ(f̂(x), f∗(x)) , (1.16)

where ℓ(·, ·) is a task-specific loss function (e.g., squared error) and f̂(x) are
the predictions of the quantum model.

In contrast, the (expected) risk quantifies the average loss between the model’s
predictions and the true outputs over new data drawn from the underlying
distribution P:

Egen(f̂ , f) = Ex∼P

[
ℓ(f̂(x), f∗(x))

]
. (1.17)

Understanding and bounding the difference between the expected risk and
the empirical risk, Egen(f̂ , f)−D(f̂ , f), also called the generalization error, is
essential for reliably deploying quantum machine learning models [73].

13

1 Introduction

1

To reduce the generalization error and avoid overfitting (the scenario in which
the empirical risk is low, but the expected risk remains high), regularization
techniques are often employed by adding a penalty term Ω(f̂), which effectively
constrains the model function f̂ [48]. This leads to the objective of minimizing
the regularized empirical risk:

Dreg(f̂ , f) = D(f̂ , f) + λΩ(f̂), (1.18)

where λ > 0 is a hyperparameter.

Model
Complexity

Error

Empirical
risk

Expected
risk

Optimal Complexity

Generalization error

Figure 1.5: Illustration of empirical risk and expected risk as functions of model
complexity. Here, model complexity refers to the expressiveness or capacity of the
model class. This depends on factors such as the number of trainable parameters,
circuit depth, or the number of qubits. As complexity increases, the empirical risk
typically decreases, while the expected risk often exhibits a U-shaped curve due to
overfitting. The optimal complexity minimizes the expected risk and the generalization
error, defined as the gap between expected and empirical risk. Generalization bounds
establish upper bounds on this gap.

1.3.3 Applications of quantum computing to finance
The financial industry is fundamentally driven by extensive calculations [74].
Many decisions depend on the outcomes of a wide range of computational tasks.
Key examples are portfolio optimization, risk management, algorithmic trading
and option pricing. Optimizing these tasks can yield substantial competitive
advantages, motivating significant efforts to improve computational efficiency.

14

1.3 Some applications of variational quantum computing

1

In light of this, several proposals have been made to apply quantum computing
for computations in finance, motivated by the data-intense nature, probabilistic
models, and applications of differential equations in finance.

In this chapter, we shall introduce the concepts of financial time series and
option pricing, and outline how quantum computing can be leveraged in these
contexts.

Time series

In finance, the traded products are called financial instruments, which, for
example, are stocks, indices of stocks, or derivative contracts. Their prices over
time are captured in a time series, a set of data points spaced equally in time.
A sketch of such a time series is given in Fig. 1.6. An example is the daily
closing value of the S&P 500 index, which is an index capturing the 500 largest
publicly traded companies in the USA [75].

Time
(in days)

Log return

Figure 1.6: Sketch of a financial time series of log returns over several days, illustrating
typical fluctuations around zero.

Although probabilistic in nature, financial time series share several consistent
statistical properties, also called stylized facts. They are typically observed on
the log return, which for a stock price St at time t is defined as

rt = log St

St−1
. (1.19)

Plotting the distribution of these log returns exhibits so-called non-Gaussianity.
Compared to a Gaussian distribution, the tails are heavier, and the peak
around the mean is sharper. Moreover, financial time series exhibit several
temporal correlations: volatility clustering, absence of linear autocorrelation
and the leverage effect [76]. Those properties will be explained in more detail
in Chapter 5.

In recent years, the use of neural networks has been explored in modeling

15

1 Introduction

1

these time series [77]. However, their training requires access to large volumes of
high-quality training data. But in practice, we only ever observe one realization
of financial processes, namely the historical evolution of the market, which
is further limited by data availability and the age of the market. To address
this limitation, researchers have proposed methods of generating synthetic time
series, which resemble the statistical properties of financial time series, and
can be used in the training of neural networks [78]. Quantum computing has
been proposed as a potential enabler for such tasks, due to its probabilistic
nature and because quantum circuits have been proven to enable sampling
from distributions which are intractable for classical circuits [43, 55, 56, 79].
Therefore, the set of distributions they access is in general different than what
classical models access, and thus it is expected they may be more effective
with some classes of distributions. In Chapter 5, we explore quantum machine
learning models for the generation of synthetic financial time series.

Option pricing

Financial derivatives are instruments traded in the financial market [80]. They
are contracts based on a specific asset, the underlying, and constitute a funda-
mental element of the risk management of trading agents. An example that is
easy to analyze is the so-called European call option, which is a contract that
grants the buyer the right, but not the obligation, to buy the underlying from
the seller of the option for a specific price K at a specific time tfinal in the future.
As their fair price depends on the future price of the underlying, its calculation
is cumbersome. In 1973, economists Black and Scholes introduced a simple
mathematical model to describe the price of the European call option [81], for
which the Nobel prize in economics in 1997 was awarded [82]. It relies on the
simplifying assumption that the price of the underlying stock S(t) behaves as
a geometric Brownian motion, modeled as the following stochastic differential
equation:

dS(t) = µS(t)dt+ σS(t)dWt , (1.20)

with a drift µ, volatility σ and the random variable dWt, which is a Wiener
process. It follows that the price V of a European call option satisfies the
following partial differential equation, which can be derived from Eq. (1.20) via
Itô calculus:

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2 + rS
∂V

∂S
= rV , (1.21)

where r is the risk-free rate, S denotes the current price of the underlying asset,
and σ its volatility. For an agreed maturity tfinal and strike price K, the solution

16

1.3 Some applications of variational quantum computing

1

Underlying
price S

Option value

Strike price K

Payoff
Black-Scholes price

Figure 1.7: Sketch of the payoff (blue) and the Black-Scholes price (red) of a European
call option at a specific time and with strike price K as a function of the underlying
price S. The option price equals the payoff at maturity, and lies above it before
maturity due to time value.

of this PDE together with the boundary condition

V (tfinal, S) = max{S(tfinal)−K, 0} , (1.22)

yields the fair price of the option. In Chapter 2, these concepts will be described
in more detail.

Note that the choice of the dynamics (differential equation) is independent of
the choice of the financial derivative (boundary condition). The Black Scholes
equation (1.21) has an analytical solution for European options (boundary
condition as in Eq. (1.22)) [81]. Nevertheless, solving it numerically is a toy
model often used for benchmarking. However, the Black-Scholes model has
several limitations for practical use. The most obvious one is the choice of
the volatility σ to be constant, even though in reality, it varies in time. More
complex dynamical models, such as the Heston model, the SABR model or the
Merton jump-diffusion model, as well as a variety of derivative contracts, like
Basket options and American options, build on the Black-Scholes model [74, 83].

There are several computational methods for solving the resulting differential
equations, which, in this context, means approximating the function V (S)
describing the price of an option. Based on the stochastic formalism, it is possible
to use methods like binomial trees, Monte-Carlo methods, or spectral methods,
like the Carr-Madan method [74, 84, 85]. Based on the partial differential

17

1 Introduction

1

equation formalism, one can derive analytical solutions in rare cases, or use
discretization methods such as the finite difference method [84]. Furthermore,
in recent years, the use of neural networks has been explored [86].

Motivated by the variety of classical methods for option pricing, several quan-
tum algorithms have been proposed, in the quest of finding possible advantages.
As with solving differential equations, these advantages are motivated by prop-
erties of quantum computing like the exponential scaling of the Hilbert space.
Typically, one can distinguish between approaches based on quantum versions of
Monte-Carlo simulations and approaches based on solving the differential equa-
tions. The former approach is based on work by [87], which calculates option
prices from payoff functions such as Eq. (1.22), based on stock prices modeled
as stochastic processes, such as in the Black-Scholes model in Eq. (1.20).

Quantum approaches for solving differential equations for option pricing
vary in methodology: There exist methods including quantum finite difference
methods, based on quantum linear system solvers, and methods based on
Hamiltonian simulation.

The latter approach is based on original insights from Baaquie [45] who
demonstrated a mapping between the Black-Scholes differential equation and
the Schrödinger equation, and we will study it in Chapter 3.

18

1.4 Outline of this thesis

1

1.4 Outline of this thesis
The remaining chapters of this thesis shed light on several aspects of capturing
dynamics with quantum computers. In Chapter 2, we examine universality
and generalization (see Sec.1.3.2) in regression tasks where training data in-
cludes derivatives of functions. Since dynamical systems can mathematically
be described by differential equations, the ability of parameterized quantum
circuits (PQCs) to approximate and generalize not only functions but also their
derivatives is essential for modeling those systems. In Chapter 3, we conduct
an error and resource estimation of specific quantum algorithms proposed for
solving differential equations. In particular, we consider the effects of shot noise,
an inherent error source of many quantum computations, and evaluate the
real-world applicability of these quantum algorithms. In Chapter 4, we present
a method for mitigating the effects of shot noise in quantum state tomography,
which is an important subroutine for many variational quantum algorithms.
Finally, in Chapter 5, we explore QGANs (see 1.3.2) for generating synthetic
financial time series, whose dynamics is stochastic in nature.

In the following, we present the research questions that are covered in Chap-
ters 2, 3, 4, and 5.

While there exist results exploring the expressivity of parameterized quantum
circuits in approximating square-integrable functions under the L2 distance [67],
the approximation for other function spaces and under other distances has been
less explored. As we will see in Chapter 2, these existing results generally do
not guarantee that both a function and its derivatives can be simultaneously
approximated. However, in some applications such as solving differential equa-
tion, it is important to use models that are expressive enough for learning the
derivative of the function as well. This motivates the first research question:

Research Question 1: Can parameterized quantum circuits approximate
functions as well as their derivatives?

In Chapter 2, we answer this research question, based on the previously
published work in Ref. [88]. We show that PQCs can approximate the space of
continuous functions, p-integrable functions and the Hk Sobolev spaces under
specific distances. The Sobolev spaces contain functions which are bounded
with respect to the L2 distance, and whose partial derivatives up to order k
are bounded under this distance as well. However, for the approximation of
continuous functions and those in the Sobolev space, it is necessary to rescale
the input data. These results therefore answer the research question by proving
that it is possible to approximate functions as well as their derivatives with
PQCs, if the input data is rescaled accordingly.

Given these results, in the following research question we ask how we can
train a model such that it is guaranteed to approximate the function and its
derivatives well.

19

1 Introduction

1

Research Question 2: How does an augmentation of the training data with
derivatives of the target function influence generalization in quantum machine
learning with parameterized quantum circuits?

We answer this question as well in Chapter 2, based on the results published
in Ref. [88]. We prove generalization bounds that connect different function
spaces and distances. In particular, we prove that it is possible to bound
the generalization error such that it approximates both the function and its
derivatives, if the training data includes not only labels of the target function,
but also labels of its derivatives. Furthermore, we prove that including data of
the derivatives of the target function also guarantees generalization bounds with
respect to the supremum distance and the Lp distances. We find that the higher
the dimension of the function, the more higher-order derivatives are required in
order to achieve these bounds. These theorems give a theoretical explanation of
earlier numerical findings that suggested improved generalization with classical
neural networks [89], therefore also impact classical machine learning.

The results of research questions 1 and 2 provide a theoretical basis for
different applications of PQCs, for example for solving differential equations.
Furthermore, they provide us with new insight on the role of the data normal-
ization in PQCs and of loss functions which better suit the specific needs of the
users.

A focus of recent research in quantum computing has been on developing
quantum algorithms for solving differential equations using variational methods
on near-term quantum devices. A promising approach involves variational
algorithms, which combine classical Runge-Kutta methods with quantum com-
putations. However, a rigorous error analysis, essential for assessing real-world
feasibility, has so far been lacking. We therefore ask the following research
question:

Research Question 3: What is the total error arising in variational quantum
algorithms for solving differential equations based on Runge-Kutta methods and
which Runge-Kutta order minimizes the number of circuit evaluations needed?

In Chapter 3, we provide an extensive analysis of error sources and determine
the resource requirements needed to achieve specific target errors, based on
results published in Ref. [46]. In particular, we derive analytical error and
resource estimates for scenarios with and without shot noise, examining shot
noise in quantum measurements and truncation errors in Runge-Kutta methods.
Our analysis does not take into account representation errors and hardware
noise, as these are specific to the instance and the used device. We evaluate the
implications of our results by applying them to two scenarios: classically solving
a 1D ordinary differential equation and solving an option pricing linear partial
differential equation with the variational algorithm, showing that the most
resource-efficient methods are of order 4 and 2, respectively. This work provides
a framework for optimizing quantum resources when applying Runge-Kutta
methods, enhancing their efficiency and accuracy in both solving differential

20

1.4 Outline of this thesis

1

equations and simulating quantum systems. Furthermore, this work plays
a crucial role in assessing the suitability of these variational algorithms for
fault-tolerant quantum computing. The results may also be of interest to the
numerical analysis community as they involve the accumulation of errors in the
function description, a topic that has hardly been explored even in the context
of classical differential equation solvers.

Reduced density matrices (RDMs) are fundamental in quantum information
processing, allowing the computation of local observables, such as energy and
correlation functions, without the exponential complexity of fully characterizing
quantum states. In the context of near-term quantum computing, RDMs provide
sufficient information to effectively design variational quantum algorithms.
However, their experimental estimation is challenging, as it involves preparing
and measuring quantum states in multiple bases, which is a resource-intensive
process susceptible to producing non-physical RDMs due to shot noise from
limited measurements. Motivated by this influence of shot noise, we ask the
following research question:

Research Question 4: Is it possible to mitigate the effects of shot noise in the
quantum state tomography of reduced density matrices by enforcing physicality
conditions organized as semidefinite programs?

In Chapter 4, we answer this question, which is addressed in Ref. [90].
We propose a method to mitigate shot noise by re-enforcing certain physical-
ity constraints on RDMs. These constraints are, first, the requirement that
RDMs be compatible with higher-dimensional RDMs, which we call enhanced-
compatibility. Second, overlapping-compatibility requires that RDMs overlap-
ping on a common subsystem be consistent on that subsystem. We organize
these compatibility constraints in semidefinite programs to reconstruct RDMs
from simulated data. Our approach yields, on average, tighter bounds for the
same number of measurements compared to tomography without compatibility
constraints. We demonstrate the versatility and efficacy of our method by
integrating it into an algorithmic cooling procedure to prepare low-energy states
of local Hamiltonians.

Generative adversarial networks have been investigated as a method for
generating synthetic data with the goal of augmenting training data sets for
neural networks. As we described in Sec. 1.3.3, this is especially relevant for
financial time series, as the availability of data is very limited. However, for
classical generative adversarial networks it has been shown that generated data
may (often) not exhibit desired properties (also called stylized facts), such as
matching a certain distribution or showing specific temporal correlations [78].
As quantum computers have been shown to be able to capture distributions
that classical models can not [43, 55, 56, 79], it has been proposed to replace
the classical generator with a quantum circuit, and to generate synthetic data
with such a quantum generative adversarial network. Typically, the ability of
generative models to reproduce time series with desired properties is concluded

21

1 Introduction

1

qualitatively. We thus state the following research question:
Research Question 5: Can quantum generative adversarial networks capture

the distribution and stylized facts of financial time series on a qualitative level?
In Chapter 5, we present our answer to this question, based on the results

shown in Ref. [91]. We train QGANs, composed of a quantum generator and
a classical discriminator, and investigate two classical simulation approaches
for the quantum generator: a full simulation of the quantum circuits, and an
approximate simulation using matrix product states. We test the effect of
the choice of circuit depths and bond dimensions of the matrix product state
simulation on the generated time series. Our QGANs successfully showcase most
temporal correlations in generating synthetic financial time series, but the quality
differs between different properties, depending on the chosen hyperparameters
of the QGAN.

In Chapter 6, we conclude the thesis, come back to the research questions
posed here, and outline future work.

22

