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CHAPTER 1

Introduction

1.1 Preface

In the decades that followed the foundation of quantum mechanics, scientists
have been fascinated by the wide range of both practical and theoretical impli-
cations that this field has opened up. In particular, with the rise of classical
computers, scientists like Yuri Manin, Richard Feynman and David Deutsch
proposed the idea of using quantum mechanics at the core of computations,
giving birth to the field of quantum information [1-3]. This new paradigm was
believed to help in computations related to the simulation of systems described
by quantum mechanics. In the 1990s, surprising theoretical results showed
the possibilities that quantum computing has outside of applications in the
quantum domain: Shor’s algorithm demonstrates the ability to calculate the
prime factors of a number, taking only time that scales polynomially in the size
of that number, making the algorithm exponentially faster than known classical
algorithms [4]. Grover’s search algorithm can search any quantum database for
a specific marked item quadratically faster than classical counterparts [5]. In
the years since, the field of quantum algorithms has grown considerably both
in the diversity of algorithms and the range of applications [6]. In parallel,
the application of quantum information to other areas like communication and
cryptography has created new insights [7, 8].

These theoretical results have motivated the search for hardware that could
process quantum computations. At the current stage, many different physical
implementations are being considered and researched as candidates for useful
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quantum computing [9, 10]: For example, superconducting qubits [11, 12],
trapped ions [13, 14], neutral atoms [15], quantum dots (for example, spin-based
systems [16]), photonic systems [17]. In recent years, considerable progress could
be made on the experimental front, especially with platforms focusing on super-
conducting qubits. In 2019, for the first time, calculations were implemented
that seemed unfeasible on classical computers [18] and in 2024 significant strides
were made toward scalable error-correction [19]. However, so far no practical use
case seems to be within reach of current quantum devices. Therefore, significant
progress toward fault-tolerant quantum computing is still necessary, both in
experimental setups and on the theoretical side, such as in quantum algorithms.

One of the approaches of quantum computing that might fit current and
near-term platforms well, are variational quantum algorithms [20, 21], as they
do not rely on fault-tolerant quantum hardware. They consist not solely of
quantum computations, but as a classical-quantum feedback loop, alternating
steps between classical and quantum processors. They face several challenges,
like statistical noise, gate errors, decoherence of the qubits and measurement
errors.

For these near-term devices, people have investigated applications in areas
such as combinatorial optimization [22], quantum chemistry [23], finance [24],
machine learning [25] and solving differential equations [26]. In this thesis, we
will focus in particular on three application areas: Solving differential equations,
quantum machine learning, and finance.

Differential equations describe dynamical systems, which is why they are at
the core of most physical theories and are applied widely in several industries,
constituting one of the most common computational problems on supercomput-
ers. Solving them efficiently with quantum computers would therefore be very
useful. Many ideas have been explored for how quantum computing can benefit
to machine learning. Using quantum computing as subroutines in machine
learning could provide benefits in universality, training and generalization for
tasks like regression, classification and generative modeling. Furthermore, the fi-
nance industry, as a calculation-heavy sector, could offer additional applications
of quantum computing in areas such as option pricing, portfolio optimization,
and synthetic data generation.

In Sec. 1.2, we introduce certain basics of quantum computing, variational
quantum algorithms, and shot noise. Afterwards, we introduce solving differen-
tial equations, quantum machine learning, and quantum finance as applications
of variational quantum computing in Sec. 1.3. Finally, we present an overview
of Chapters 2, 3, 4, and 5 of this thesis in Sec. 1.4.
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1.2 Basics of quantum computing

In this section, we introduce several basics of quantum computing that are
used in this thesis. We start by defining qubits, quantum circuits and quantum
measurements, then proceed with variational quantum algorithms and end with
an introduction to shot noise, a source of error arising in quantum measurements.
The reader who is familiar with these topics can safely skip to Sec. 1.3.

1.2.1 Qubits, circuits and measurements

Quantum states, the fundamental objects in quantum mechanics, are unit vectors
in a complex vector space with an inner product, a Hilbert space [9]. While
they can be infinite-dimensional, we focus here on finite-dimensional Hilbert
spaces of dimension d € N, which are isomorphic to C?. Quantum computing is
a paradigm that uses quantum systems called qubits, whose states are described
by vectors in two-dimensional Hilbert spaces, to perform calculations. We call
{10),]1)} the computational basis, which forms an orthonormal basis for this
space. Any qubit |1)) € C? can be written in the following way:

[¥) = al0) +B[1) , (1.1)

where o and 3 are complex numbers that are normalized such that |a|?+|3|? = 1.
Equivalently, a general quantum state |1)) is normalized via the Hilbert-Schmidt
inner product: (YY) = (| x [) = 1, where (1| = |) is the conjugate
transpose of |¢)).

We can describe several qubits together, which we call a quantum register.
For n qubits |¢;), where i € {1,...,n}, the joint state |1)) € C*" is formed by
applying a tensor product between them:

1) = ¢1) @ [¢2) © -+ @ |n) (1.2)

States of this form are called fully product states, but not every multipartite state
can be expressed this way. The state i) can be written in the computational
basis of the joint Hilbert space, formed by tensor products of single-qubit basis
states. Because of the possible combinations of |0) and |1), there are 2™ different
basis states for |¢)), and we use the notation

0.01) =10)®...®10) @ 1) . (1.3)

In general, we write

W= aili) (1.4
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where the basis states are labeled as {|i) : ¢ € {0,...,2" — 1}}. Again, the
amplitudes «; are normalized such that Z?;Ol | = 1.

The Hamiltonian H is a linear operator that is Hermitian (which means
H = H') and acts on the Hilbert space of a quantum system. It determines
the dynamics of the system, hence how it changes in time. This dynamics is
described by the Schrodinger equation:

.0
i

o 1) = H[(0) (15)

Solving this equation yields a unitary operator (which means UTU = UUT = I)
given by U = exp(—iHt). In quantum computing, such unitaries are imple-
mented using quantum circuits, which are sequences of quantum gates, elemen-
tary unitary operators that act on one or a few qubits at a time [27]. Common
examples include the single-qubit Pauli gates X, Y, and Z, their respective
rotations Rx (), Ry (0) and Rz(6), the Hadamard gate H, and two-qubit gates
such as the controlled-NOT (CNOT) gate. These gates form a universal set,
meaning that arbitrary unitary operations can be approximated to any desired
precision using sequences of such gates. They are defined in the following way:

o R () RS (A R

Rx(a) — e—iOX/Q Ry(e) _ 6—1'95//27 Ry e—i9Z/2 (17)

1 (1 1
H:ﬂ(l _1), CNOT =

<
=
|

(1.8)

The CNOT gates create entanglement, a quantum phenomenon where the state
of a qubit can not be described independently of the states of the other qubits,
and which is essential for generating non-classical correlations in the circuit.

Given an input quantum register, |¢;,), a quantum circuit U transforms it to
an output register |¢out) by the transformation:

[Yout) = U |¢hin) - (1.9)

The final state |t)oys) resulting from the quantum circuit, exists only as
a quantum state, inaccessible directly in a classical understanding, because
observation of the state collapses the wave function [28]. Instead, one can
perform quantum measurements described by the set {M,,} of measurement
operators. The index m describes the outcome of the measurement, and the



1.2 Basics of quantum computing

probability p(m) that it occurs is equal to

p(m) = <¢out| MnT@Mm |w0ut> . (110)

A particularly relevant class of measurements are observables, Hermitian opera-
tors whose eigenvalues represent the possible outcomes and whose eigenstates
define the measurement basis. An example of such an observable is the Hamil-
tonian, whose eigenvalues correspond to the system’s energy spectrum. For
single qubits, another example is the measurement in the computational (or Z)
basis, with measurement operators {|0) (0|, |1) (1|}. In practice, tensor products
of single-qubit Pauli operators, known as Pauli strings, are often chosen as
the set of measurement operators. They are typically decomposed into single-
qubit gates applied to 1o, and subsequent measurements of each qubit in
the computational basis. Quantum state tomography aims to reconstruct the
classical description of the quantum state and can be implemented by measuring
Pauli strings, and estimating their corresponding probabilities p(m), or by more
general measurement schemes. We describe a particular method for quantum
state tomography in Chapter 4.

1.2.2 Variational quantum algorithms

A quantum algorithm is a sequence of instructions designed to run on a quantum
computer, typically tailored to solve a particular computational problem, given
inputs of a specific form. Those instructions contain specific quantum circuits as
well as descriptions of measurements that determine the result of the computa-
tional problem. Algorithms designed for fault-tolerant hardware often make use
solely of quantum computation, such as Shor’s and Grover’s algorithms [4, 5].
In contrast, variational quantum algorithms consist of alternating calculations
on quantum and classical hardware, as sketched in Fig. 1.1. They typically
consist of parameterized quantum circuits and classical optimizers.

Parameterized quantum circuits consist of gates that can be tuned through
parameters. A typical parameterized quantum circuit is the hardware efficient
Ansatz [21, 29], which consists of single-qubit Pauli rotations and CNOT gates
on neighboring qubits (see Egs. (1.7) and (1.8)). In Fig. 1.2, we show an example
of a parameterized quantum algorithm.

This Ansatz is designed to make optimal use of current hardware, where
connectivity (the ability to entangle qubits), the available gate set, and the
coherence time of qubits are limited. It is particularly useful for shallow quantum
circuits [30].

In variational quantum algorithms, a parameterized quantum circuit U(6) is
repeatedly executed, where the gates depend on a set of tunable parameters
0. After each execution, a quantum measurement is performed to extract an
output fy, typically the expectation value of an observable relevant to the
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|0>®" — U(H) —/71 H Outcome fg ’

{ Cost function C(fg)

Figure 1.1: Sketch of a variational quantum algorithm. U (@) represents a parameter-
ized quantum circuit with variational parameters @ that takes x as input, fe is the
expectation value of an observable and C(fg) is the cost function that is evaluated
classically.

100 - o o0) - R o) ] R o) gt R 0r) H B 000 H 02 |—
|0) E Rx(04) H Ry (05) H Rz (05) I 5% i : IRX(ﬁls) H Ry (b17) H Rz(01s) I 5% i A
10 H R 0) H By (60) H{ Re00) — - A 0r0) H By (020) H R (020) F— 44—

________________________________________________________________________

Figure 1.2: Example of a parameterized quantum circuit with 4 qubits and 2
layers, in the form of a hardware efficient Ansatz. Fach layer consists of single-qubit
Pauli rotations and CNOT gates. The single-qubit Pauli rotations are tunable with
parameters 6;.

problem. A cost function, defined to reflect the goal of the algorithm (e.g.,
energy minimization or quantum machine learning tasks such as described later),
evaluates this measurement outcome. In most approaches, a classical optimizer
updates the parameters 6 based on this cost, which are then fed back to the
parameterized quantum circuit. Another form of parameter updating that does
not depend on the cost function is used for the quantum algorithms described
in Chapter 3. Depending on the algorithm, this loop of quantum and classical
calculations is repeated either for a preset number of iterations or until a specific
accuracy is met.

1.2.3 Shot noise

The precision of quantum measurements, whether of observables or more general
measurement schemes, is impacted by various sources of errors. Depending on

6
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the quantum hardware, errors can arise from gate noise, qubit decoherence, and
measurement noise. Additionally, the inherent statistical nature of quantum
measurements introduces errors known as shot noise, which is present even in
perfectly noiseless quantum devices. For a simple example, assume the final
quantum state is |[thout) = @ |0) + 8]1), and we measure the Pauli-Z observable.
In each measurement, the outcome is either |0) or |1) and the probability to
observe the first is equal to |a|?, while the probability to observe the latter is
| ﬁ\g. Now suppose that a total number of Ny,e.s measurements are performed
on the quantum register. After each measurement, the quantum state has
to be prepared again, since the act of measurement collapses the state. The
expectation value of the observable will then be estimated as

1 NIlleaS
E(Z) N m®), (1.11)
k=1
where m(*) = 1 if at the k-th measurement, |0) is observed, and m*) = —1,

if |1) is observed. Hence, the expectation value E(Z) will lie between—1
and 1. The law of large numbers specifies that as the number of measurements
Nmeas increases, the expectation value E(Z) converges to the true mean value
w(Z) = |a|? — |B|?. This means that for a finite number of measurements, the
expectation value will generally deviate from the true mean value. See Fig. 1.3
for a sketch of this deviation, which is commonly called the shot noise. Several
statistical bounds, such as the Chebyshev inequality, provide estimates on the
likelihood of this shot noise deviation. It states that for a chosen ¢ > 0 and
for finite and non-zero variance for a single measurement Ugm gle> the following
inequality holds:

0.2

P(IE(Z) - w(2)]| = 9) < M& : (1.12)

Since measurement outcomes are discrete (+1 or —1), the maximum variance
per shot is 1. In other words, with probability at least 1 — §, the deviation
between the expectation value and the true mean is bounded by a shot noise
error of at most (62chas)*1. This implies that to reduce the shot noise by a
factor of two, the number of measurements must be increased by a factor of
four, since the statistical error ¢ scales as 1/v/Npeas. In practice, achieving very
high precision can therefore become costly in time and resources.
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Probability
density
Low uncertainty

More shots

High uncertainty

. Observable
" value

True value

Figure 1.3: Increasing the number of shots in quantum measurements reduces the
uncertainty of the measured observable. The shaded areas in this sketch show the
probability density functions within standard deviation, indicating the area in which
the true value lies with a probability of ~ 68,27%. This interval becomes narrower
with a higher number of shots taken, which reduces the uncertainty of the estimate.

1.3 Some applications of variational quantum
computing

In this section, we introduce solving differential equations, quantum machine
learning and finance as examples of applications of variational quantum com-
puting.

1.3.1 Differential equations

Differential equations describe a wide range of phenomena across many fields.
This is especially true for physics, where theories are often based on the de-
scription of physical systems with differential equations. Famous examples
are Newton’s laws of motion, Maxwell’s equations, Einstein’s field equations
and the Schrédinger equation, providing the basis of classical mechanics, elec-
trodynamics, relativity and quantum mechanics, respectively. They describe
how quantities change depending on variables such as time (for dynamical
systems) or space (for stationary systems). Due to these fundamental reasons,
problems in industry can also be described by differential equations, such as the
Navier-Stokes equation for the application in weather modeling and engineering
or the Black-Scholes equation for applications in finance. In order to use these
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equations for making quantitative statements, it is necessary to find solutions
that are in accordance with these differential equations.

In some cases, it is possible to find exact and explicit descriptions of these
functions, known as closed-form solutions. However, this is in general only
possible for very simple, artificial cases. In most cases, it is necessary to
use numerical methods in order to approximate solutions to these differential
equations. The computational cost to solve these can be prohibitively expensive.
For example, solving the Navier-Stokes equation, which describes fluid dynamics,
can be computationally very expensive [31]. This equation lies at the basis of
applications such as weather and climate modeling or aircraft and car design.
Therefore, finding efficient methods for solving differential equations is an
important challenge in science and engineering.

Differential equations can be categorized in different ways [32]. Most com-
monly, they are grouped into ordinary differential equations (ODESs), partial
differential equations (PDEs), and other types such as stochastic differential
equations (SDEs) [33]. Further, they are distinguished into linear or nonlinear
differential equations, depending on whether the terms of the equation are linear
or nonlinear in the dependent variables and their derivatives.

ODEs are differential equations that consist of differentials with respect to a
single independent variable. A simple example of a linear ODE is the following:

df (x)
dx

=y(z) . (1.13)

If the equation involves derivatives with respect to more than one independent
variable, it is called a PDE. For instance, the heat equation that describes how
heat spreads over time, is given by [34]:

$(@) _ P | PR

d*f(7)
dt da? da? '

2
dzxs

(1.14)

Differential equations containing a stochastic process are called stochastic dif-
ferential equations. SDEs are used to model systems with inherent randomness,
such as Brownian motion describing the movement of pollen in water, or the
Black-Scholes model describing the dynamics of financial markets. The SDE
describing the dynamics of the stock price S(¢) in the latter model is [33]:

dS(t) = pS(t)dt + o S(t)dW; . (1.15)

It is written in differential notation, where dS(t), dt, and dW; represent in-
finitesimal changes in the stock price, time, and Wiener process, respectively.
The scalars p and o denote the drift and standard deviation (volatility) of the
stock price.
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Quantum algorithms for solving differential equations

Several methods have been proposed for using quantum computers to approx-
imate solutions to differential equations, ranging from algorithms requiring
fault-tolerant quantum hardware to variational methods suitable for near-term
quantum devices. A special focus in research is on possible advantages com-
pared to classical methods. Often, these advantages come from the fact that
many methods are based on discretizing the differential equation and that
this discretization can efficiently be stored on a quantum computer due to the
exponential scaling of the dimension of the Hilbert space with the number
of qubits (see Sec. 1.2.1). Some of the most common approaches using fault-
tolerant quantum computers [35, 36], are based on the Harrow-Hassidim-Lloyd
(HHL) algorithm [37]. It prepares, under certain conditions, a quantum state
proportional to the solution of a linear system Ar = g, where A is a sparse
and well-conditioned matrix. Many classical approaches for solving differential
equations are based on discretization, such as finite difference or finite element
methods, and can be reduced to solving such linear systems. Furthermore,
linearization techniques provide methods for transforming nonlinear differential
equations into linear systems [38, 39]. However, the HHL algorithm comes with
the significant caveat that the solution is encoded in the amplitudes of the
output state of the quantum circuit, and one can not simply "read out" the
state [28]. Instead, it is necessary to repeat the same circuit multiple times
and to estimate observables or global properties of the solution by repeated
measurements.

Given the challenges of fault-tolerant quantum computing, much recent
attention has been given to developing variational quantum algorithms for
solving differential equations that can be run on near-term quantum devices.
Several of these variational approaches have been proposed:

o Instead of applying the HHL algorithm, variational linear system solvers [40]
are methods that calculate the variational parameters @ which minimize
||Az — l_J’||7 where ¥ is prepared as a quantum state depending on 0. As
with the HHL algorithm, this serves as a subroutine for solving differential
equations [41, 42].

o Quantum neural networks and physics-informed neural networks [43] cal-
culate the variationally encoded solution of a differential equation by
minimizing cost functions which directly encode the differential equations,
including boundary conditions and initial values [44].

e Many differential equations can be mapped to the Schréodinger equa-
tion [45], which makes it possible to use techniques from Hamiltonian
stmulation for approximating the resulting dynamics. The solution is then
obtained by calculations of the time evolution of the parameters of the
PQC [26, 46].

10
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e For SDEs, Quantum Monte Carlo methods can be applied that use methods
such as amplitude estimation or quantum random walks [47].

Each of these approaches exhibits different trade-offs in terms of range of
applicability, scalability and noise resilience.

Throughout this thesis, modeling dynamics with variational quantum algo-
rithms is explored from several angles: Chapters 2 and 5 deal with current
challenges of solving differential equations and of modeling dynamical sys-
tems with quantum machine learning approaches using parameterized quantum
circuits. Chapter 3 encompasses a rigorous error and resource analysis of
algorithms for solving differential equations that are based on Hamiltonian sim-
ulation. Chapter 4 examines quantum state tomography, which is an essential
subroutine for many variational quantum algorithms, especially those which
require partial reconstruction of the quantum state to evaluate cost functions.

1.3.2 Elements of quantum machine learning

Machine learning is dealing with algorithms that learn from data without explicit
programming [48]. Tt is commonly divided into three categories: supervised
learning, where the model learns from labeled data, unsupervised learning, where
it learns from unlabeled data, and reinforcement learning, where a machine
learning agent learns by interaction with an environment. The currently most-
studied and effective approaches are based on neural networks (NNs). One
distinguishes between shallow neural networks, which have a single hidden layer,
and deep neural networks, which consist of multiple hidden layers. Each layer
consists of several hidden units. The number of hidden units per layer is referred
to as the width and the number of layers determines the depth of the NN. See
Fig. 1.4 for a sketch. Classical machine learning based on neural networks
has made remarkable advancements in the past years, exceeding expectations
in areas such as natural language processing (e.g., large language models like
ChatGPT [49]), protein folding (e.g. AlphaFold [50]) and image generation
(e.g., diffusion models [48], DALL-E [51]).

Quantum Machine Learning

The field of quantum-enhanced (or quantum) machine learning studies how
quantum computing can be used to enhance machine learning models. Several
results have shown that quantum machine learning enables certain speedups
compared to classical machine learning models [43, 52-56]. Most of the current
promising quantum machine learning algorithms are based on variational ap-
proaches, alternating between classical and quantum computations. The two
most prominent paradigms for quantum machine learning are kernel methods
and quantum mneural networks. In kernel methods, a quantum machine is used

11
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Hidden layer 1 Hidden layer 2
Input layer Output layer

Figure 1.4: Sketch of a deep neural network with two hidden layers that each have
four hidden units (H11-H14, H21-H24). The input layer (I1-I3) receives data and the
output layer (O1, O2) produces the predictions of the network. The arrows show how
information flows through the network, each corresponds to a trainable weight that is
adjusted during training. Each layer is fully connected to the next.

to map input data into a quantum feature space, after which the inner product
between the resulting vectors in the feature space are calculated [57]. The
classically calculated cost function is then the weight of different inner products,
and those weights are trained, while the quantum kernels remain untrained.

In addition to variational approaches, an influential class of quantum machine
learning algorithms is based on linear algebraic techniques [58-61], building on
the HHL algorithm [62]. Many of those have also motivated quantum-inspired
classical algorithms, via the so-called dequantization [63, 64].

In this thesis, we focus on quantum neural networks [43]. A typical QNN is a
variational quantum algorithm with a PQC that includes both fixed and tunable
gates. While machine learning is typically divided into supervised, unsupervised
and reinforcement learning, a significant amount of theoretical research deals
with supervised learning. This is because it is easier to define what constitutes
success in a learning task as there is an underlying ground truth (opposed to
unsupervised learning) and because the agent does not interact with the training
data (as is the case for reinforcement learning).

In theoretical analysis, machine learning is often characterized by three
aspects: FEzpressivity, training and generalization. Here, we focus on two of
them.

12
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Expressivity

Expressivity deals with how well the model can represent the target function
or distribution. Depending on the choice of model, its ability to approximate
the ground truth varies. This property is called expressivity and can be mathe-
matically formulated with universal approximation theorems. In 1989, George
Cybenko proved that classical neural networks with a single hidden layer of
arbitrary width can approximate any square-integrable function [65]. Later it
was shown that deep neural networks can achieve universal approximation for a
bounded width as well, by increasing the depth of the neural network [66].

In 2021, universality was proven for PQC as well, for one layer parameterized
quantum circuits [67]. Further results have been given both for multivariate
functions and for constant width multi-layer PQC [68—71]. While highly expres-
sive quantum models are desirable for approximating a wide class of functions,
increased expressivity often comes at the cost of trainability, leading to issues
such as local minima and barren plateaus during optimization [25, 72].

Generalization

Generalization deals with how well a trained model performs on unseen data [48].
In supervised learning, the model is trained on a finite dataset Z, composed of
input-target pairs (z, f*(x)). As described in Sec. 1.2, for variational quantum
algorithms such as those employed in quantum machine learning, a cost function
is chosen depending on the problem at hand. Here, it is equivalent to the
so-called empirical risk, which, given the training data, is minimized during
training:

D=2 S f@).f @), (1.16)
(z,f*(z))€T

where ((-,-) is a task-specific loss function (e.g., squared error) and f(z) are
the predictions of the quantum model.

In contrast, the (expected) risk quantifies the average loss between the model’s
predictions and the true outputs over new data drawn from the underlying
distribution P:

Exen(f: 1) = Bump [0(F (@), 17(@))] (1.17)
Understanding and bounding the difference between the expected risk and

the empirical risk, Sgen(f, f) - D(f, f), also called the generalization error, is
essential for reliably deploying quantum machine learning models [73].

13



1 Introduction

To reduce the generalization error and avoid overfitting (the scenario in which
the empirical risk is low, but the expected risk remains high), regularization
techniques are often employed by adding a penalty term §( f ), which effectively
constrains the model function f [48]. This leads to the objective of minimizing

the reqularized empirical risk:

Dreg(f, f) = D(f, ) + 22(f), (1.18)

where A > 0 is a hyperparameter.

Error

Expected
risk
Generalization error
‘ Empirical
! risk
| Model
Optimal Complexity Complexity

Figure 1.5: Illustration of empirical risk and expected risk as functions of model
complexity. Here, model complexity refers to the expressiveness or capacity of the
model class. This depends on factors such as the number of trainable parameters,
circuit depth, or the number of qubits. As complexity increases, the empirical risk
typically decreases, while the expected risk often exhibits a U-shaped curve due to
overfitting. The optimal complexity minimizes the expected risk and the generalization
error, defined as the gap between expected and empirical risk. Generalization bounds
establish upper bounds on this gap.

1.3.3 Applications of quantum computing to finance

The financial industry is fundamentally driven by extensive calculations [74].
Many decisions depend on the outcomes of a wide range of computational tasks.
Key examples are portfolio optimization, risk management, algorithmic trading
and option pricing. Optimizing these tasks can yield substantial competitive
advantages, motivating significant efforts to improve computational efficiency.

14



1.3 Some applications of variational quantum computing

In light of this, several proposals have been made to apply quantum computing
for computations in finance, motivated by the data-intense nature, probabilistic
models, and applications of differential equations in finance.

In this chapter, we shall introduce the concepts of financial time series and
option pricing, and outline how quantum computing can be leveraged in these
contexts.

Time series

In finance, the traded products are called financial instruments, which, for
example, are stocks, indices of stocks, or derivative contracts. Their prices over
time are captured in a time series, a set of data points spaced equally in time.
A sketch of such a time series is given in Fig. 1.6. An example is the daily
closing value of the S&P 500 indez, which is an index capturing the 500 largest
publicly traded companies in the USA [75].

Log return

Time
(in days)

Figure 1.6: Sketch of a financial time series of log returns over several days, illustrating
typical fluctuations around zero.

Although probabilistic in nature, financial time series share several consistent
statistical properties, also called stylized facts. They are typically observed on
the log return, which for a stock price S; at time ¢ is defined as

St
Si—1

ry = log (1.19)

Plotting the distribution of these log returns exhibits so-called non-Gaussianity.
Compared to a Gaussian distribution, the tails are heavier, and the peak
around the mean is sharper. Moreover, financial time series exhibit several
temporal correlations: wvolatility clustering, absence of linear autocorrelation
and the leverage effect [76]. Those properties will be explained in more detail
in Chapter 5.

In recent years, the use of neural networks has been explored in modeling
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these time series [77]. However, their training requires access to large volumes of
high-quality training data. But in practice, we only ever observe one realization
of financial processes, namely the historical evolution of the market, which
is further limited by data availability and the age of the market. To address
this limitation, researchers have proposed methods of generating synthetic time
series, which resemble the statistical properties of financial time series, and
can be used in the training of neural networks [78]. Quantum computing has
been proposed as a potential enabler for such tasks, due to its probabilistic
nature and because quantum circuits have been proven to enable sampling
from distributions which are intractable for classical circuits [43, 55, 56, 79].
Therefore, the set of distributions they access is in general different than what
classical models access, and thus it is expected they may be more effective
with some classes of distributions. In Chapter 5, we explore quantum machine
learning models for the generation of synthetic financial time series.

Option pricing

Financial derivatives are instruments traded in the financial market [80]. They
are contracts based on a specific asset, the underlying, and constitute a funda-
mental element of the risk management of trading agents. An example that is
easy to analyze is the so-called Furopean call option, which is a contract that
grants the buyer the right, but not the obligation, to buy the underlying from
the seller of the option for a specific price K at a specific time tgy,) in the future.
As their fair price depends on the future price of the underlying, its calculation
is cumbersome. In 1973, economists Black and Scholes introduced a simple
mathematical model to describe the price of the European call option [81], for
which the Nobel prize in economics in 1997 was awarded [82]. It relies on the
simplifying assumption that the price of the underlying stock S(¢) behaves as
a geometric Brownian motion, modeled as the following stochastic differential
equation:

dS(t) = pS(t)dt + o S(t)dW, | (1.20)

with a drift u, volatility ¢ and the random variable dW;, which is a Wiener
process. It follows that the price V' of a European call option satisfies the
following partial differential equation, which can be derived from Eq. (1.20) via
Ito calculus:

OV 1 .,V OV
—_— — —_— —_— = 1.21
ot 737 Y ag s =V (1.21)

where 7 is the risk-free rate, S denotes the current price of the underlying asset,
and o its volatility. For an agreed maturity tg,.1 and strike price K, the solution
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Figure 1.7: Sketch of the payoff (blue) and the Black-Scholes price (red) of a European
call option at a specific time and with strike price K as a function of the underlying
price S. The option price equals the payoff at maturity, and lies above it before
maturity due to time value.

of this PDE together with the boundary condition
V(tﬁnaly S) = maX{S(tﬁnal) - Ka 0} ) (122)

yields the fair price of the option. In Chapter 2, these concepts will be described
in more detail.

Note that the choice of the dynamics (differential equation) is independent of
the choice of the financial derivative (boundary condition). The Black Scholes
equation (1.21) has an analytical solution for European options (boundary
condition as in Eq. (1.22)) [81]. Nevertheless, solving it numerically is a toy
model often used for benchmarking. However, the Black-Scholes model has
several limitations for practical use. The most obvious one is the choice of
the volatility o to be constant, even though in reality, it varies in time. More
complex dynamical models, such as the Heston model, the SABR model or the
Merton jump-diffusion model, as well as a variety of derivative contracts, like
Basket options and American options, build on the Black-Scholes model [74, 83].

There are several computational methods for solving the resulting differential
equations, which, in this context, means approximating the function V(5)
describing the price of an option. Based on the stochastic formalism, it is possible
to use methods like binomial trees, Monte-Carlo methods, or spectral methods,
like the Carr-Madan method [74, 84, 85]. Based on the partial differential
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equation formalism, one can derive analytical solutions in rare cases, or use
discretization methods such as the finite difference method [84]. Furthermore,
in recent years, the use of neural networks has been explored [86].

Motivated by the variety of classical methods for option pricing, several quan-
tum algorithms have been proposed, in the quest of finding possible advantages.
As with solving differential equations, these advantages are motivated by prop-
erties of quantum computing like the exponential scaling of the Hilbert space.
Typically, one can distinguish between approaches based on quantum versions of
Monte-Carlo simulations and approaches based on solving the differential equa-
tions. The former approach is based on work by [87], which calculates option
prices from payoff functions such as Eq. (1.22), based on stock prices modeled
as stochastic processes, such as in the Black-Scholes model in Eq. (1.20).

Quantum approaches for solving differential equations for option pricing
vary in methodology: There exist methods including quantum finite difference
methods, based on quantum linear system solvers, and methods based on
Hamiltonian simulation.

The latter approach is based on original insights from Baaquie [45] who
demonstrated a mapping between the Black-Scholes differential equation and
the Schrédinger equation, and we will study it in Chapter 3.

18
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1.4 Outline of this thesis

The remaining chapters of this thesis shed light on several aspects of capturing
dynamics with quantum computers. In Chapter 2, we examine universality
and generalization (see Sec.1.3.2) in regression tasks where training data in-
cludes derivatives of functions. Since dynamical systems can mathematically
be described by differential equations, the ability of parameterized quantum
circuits (PQCs) to approximate and generalize not only functions but also their
derivatives is essential for modeling those systems. In Chapter 3, we conduct
an error and resource estimation of specific quantum algorithms proposed for
solving differential equations. In particular, we consider the effects of shot noise,
an inherent error source of many quantum computations, and evaluate the
real-world applicability of these quantum algorithms. In Chapter 4, we present
a method for mitigating the effects of shot noise in quantum state tomography,
which is an important subroutine for many variational quantum algorithms.
Finally, in Chapter 5, we explore QGANSs (see 1.3.2) for generating synthetic
financial time series, whose dynamics is stochastic in nature.

In the following, we present the research questions that are covered in Chap-
ters 2, 3, 4, and 5.

While there exist results exploring the expressivity of parameterized quantum
circuits in approximating square-integrable functions under the L? distance [67],
the approximation for other function spaces and under other distances has been
less explored. As we will see in Chapter 2, these existing results generally do
not guarantee that both a function and its derivatives can be simultaneously
approximated. However, in some applications such as solving differential equa-
tion, it is important to use models that are expressive enough for learning the
derivative of the function as well. This motivates the first research question:

Research Question 1: Can parameterized quantum circuits approzimate
functions as well as their derivatives?

In Chapter 2, we answer this research question, based on the previously
published work in Ref. [88]. We show that PQCs can approximate the space of
continuous functions, p-integrable functions and the H* Sobolev spaces under
specific distances. The Sobolev spaces contain functions which are bounded
with respect to the L? distance, and whose partial derivatives up to order k
are bounded under this distance as well. However, for the approximation of
continuous functions and those in the Sobolev space, it is necessary to rescale
the input data. These results therefore answer the research question by proving
that it is possible to approximate functions as well as their derivatives with
PQQCs, if the input data is rescaled accordingly.

Given these results, in the following research question we ask how we can
train a model such that it is guaranteed to approximate the function and its
derivatives well.
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Research Question 2: How does an augmentation of the training data with
derivatives of the target function influence generalization in quantum machine
learning with parameterized quantum circuits?

We answer this question as well in Chapter 2, based on the results published
in Ref. [88]. We prove generalization bounds that connect different function
spaces and distances. In particular, we prove that it is possible to bound
the generalization error such that it approximates both the function and its
derivatives, if the training data includes not only labels of the target function,
but also labels of its derivatives. Furthermore, we prove that including data of
the derivatives of the target function also guarantees generalization bounds with
respect to the supremum distance and the LP distances. We find that the higher
the dimension of the function, the more higher-order derivatives are required in
order to achieve these bounds. These theorems give a theoretical explanation of
earlier numerical findings that suggested improved generalization with classical
neural networks [89], therefore also impact classical machine learning.

The results of research questions 1 and 2 provide a theoretical basis for
different applications of PQCs, for example for solving differential equations.
Furthermore, they provide us with new insight on the role of the data normal-
ization in PQCs and of loss functions which better suit the specific needs of the
users.

A focus of recent research in quantum computing has been on developing
quantum algorithms for solving differential equations using variational methods
on near-term quantum devices. A promising approach involves variational
algorithms, which combine classical Runge-Kutta methods with quantum com-
putations. However, a rigorous error analysis, essential for assessing real-world
feasibility, has so far been lacking. We therefore ask the following research
question:

Research Question 3: What is the total error arising in variational quantum
algorithms for solving differential equations based on Runge-Kutta methods and
which Runge-Kutta order minimizes the number of circuit evaluations needed?

In Chapter 3, we provide an extensive analysis of error sources and determine
the resource requirements needed to achieve specific target errors, based on
results published in Ref. [46]. In particular, we derive analytical error and
resource estimates for scenarios with and without shot noise, examining shot
noise in quantum measurements and truncation errors in Runge-Kutta methods.
Our analysis does not take into account representation errors and hardware
noise, as these are specific to the instance and the used device. We evaluate the
implications of our results by applying them to two scenarios: classically solving
a 1D ordinary differential equation and solving an option pricing linear partial
differential equation with the variational algorithm, showing that the most
resource-efficient methods are of order 4 and 2, respectively. This work provides
a framework for optimizing quantum resources when applying Runge-Kutta
methods, enhancing their efficiency and accuracy in both solving differential
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equations and simulating quantum systems. Furthermore, this work plays
a crucial role in assessing the suitability of these variational algorithms for
fault-tolerant quantum computing. The results may also be of interest to the
numerical analysis community as they involve the accumulation of errors in the
function description, a topic that has hardly been explored even in the context
of classical differential equation solvers.

Reduced density matrices (RDMs) are fundamental in quantum information
processing, allowing the computation of local observables, such as energy and
correlation functions, without the exponential complexity of fully characterizing
quantum states. In the context of near-term quantum computing, RDMs provide
sufficient information to effectively design variational quantum algorithms.
However, their experimental estimation is challenging, as it involves preparing
and measuring quantum states in multiple bases, which is a resource-intensive
process susceptible to producing non-physical RDMs due to shot noise from
limited measurements. Motivated by this influence of shot noise, we ask the
following research question:

Research Question 4: Is it possible to mitigate the effects of shot noise in the
quantum state tomography of reduced density matrices by enforcing physicality
conditions organized as semidefinite programs?

In Chapter 4, we answer this question, which is addressed in Ref. [90].
We propose a method to mitigate shot noise by re-enforcing certain physical-
ity constraints on RDMs. These constraints are, first, the requirement that
RDMs be compatible with higher-dimensional RDMs, which we call enhanced-
compatibility. Second, overlapping-compatibility requires that RDMs overlap-
ping on a common subsystem be consistent on that subsystem. We organize
these compatibility constraints in semidefinite programs to reconstruct RDMs
from simulated data. Our approach yields, on average, tighter bounds for the
same number of measurements compared to tomography without compatibility
constraints. We demonstrate the versatility and efficacy of our method by
integrating it into an algorithmic cooling procedure to prepare low-energy states
of local Hamiltonians.

Generative adversarial networks have been investigated as a method for
generating synthetic data with the goal of augmenting training data sets for
neural networks. As we described in Sec. 1.3.3, this is especially relevant for
financial time series, as the availability of data is very limited. However, for
classical generative adversarial networks it has been shown that generated data
may (often) not exhibit desired properties (also called stylized facts), such as
matching a certain distribution or showing specific temporal correlations [78].
As quantum computers have been shown to be able to capture distributions
that classical models can not [43, 55, 56, 79], it has been proposed to replace
the classical generator with a quantum circuit, and to generate synthetic data
with such a quantum generative adversarial network. Typically, the ability of
generative models to reproduce time series with desired properties is concluded

21



1 Introduction

qualitatively. We thus state the following research question:

Research Question 5: Can quantum generative adversarial networks capture
the distribution and stylized facts of financial time series on a qualitative level?

In Chapter 5, we present our answer to this question, based on the results
shown in Ref. [91]. We train QGANSs, composed of a quantum generator and
a classical discriminator, and investigate two classical simulation approaches
for the quantum generator: a full simulation of the quantum circuits, and an
approximate simulation using matrix product states. We test the effect of
the choice of circuit depths and bond dimensions of the matrix product state
simulation on the generated time series. Our QGANS successfully showcase most
temporal correlations in generating synthetic financial time series, but the quality
differs between different properties, depending on the chosen hyperparameters
of the QGAN.

In Chapter 6, we conclude the thesis, come back to the research questions
posed here, and outline future work.
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CHAPTER 2

Approximation and Generalization Capacities of
Parameterized Quantum Circuits for Functions in Sobolev
Spaces

2.1 Introduction

Machine learning has gained significant attention in recent years for its practical
applications and transformative impact in various fields. As a consequence, there
has been a rising interest in exploring the use of quantum circuits as machine
learning models, capitalizing on the advancements in both fields to unlock
new possibilities and potential breakthroughs. Among the various possibilities
for leveraging quantum circuits in machine learning, our particular focus lies
in parameterized quantum circuits (PQC). These quantum circuits consist of
both fixed and adjustable (hence ’parameterized’) gates. When used for a
learning task such as learning a function [92], a classical optimizer updates
the parameters of the PQC in order to minimize a cost function depending on
measurement results from this quantum circuit (see Fig. 2.1).

In this context, a growing line of research studies the expressivity of PQCs.
More precisely, the capacity of PQCs to approximate any function belonging
to a particular function space defined in a prescribed domain up to arbitrary

The contents of this chapter have been published in Ref. [88].
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Sobolev Spaces
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Figure 2.1: Sketch of a hybrid variational algorithm. U(z, ) represents a quantum
circuit that takes = as input and with variational parameters 6, fo(z) is the expected
value of some observable and D(f*, fy) is the expected loss that we want to minimize.

precision with respect to a specific distance. In [67], they showed that PQCs
can be written as a generalized trigonometric series in the following way:

fo(x) = (0| U'(; 0) MU (; 6) |0) (2.1)
= cu(0)e™ . (2.2)
we

We would like to emphasize that although similar, the form of the PQC in above
equation is more general than a Fourier series. This will become relevant for
the results of this chapter. Using this formulation, it was further shown in [67]
that, if the PQC is chosen carefully, the increase of its depth and number of
parameters can arbitrarily reduce the L? distance between the expected value
fo(x) of the PQC and any square-integrable function with the domain [0, 27]V.
Throughout the chapter, we will refer to the PQC as the one approximating the
functions to make the text more fluent, although technically it is the expectation
value of the PQC that approximates the function.

This result had a significant impact on the motivation to study PQC-based
QML, analogous to the impact that the famous Universality theorem for neural
networks of Cybenko [65] had on the domain of classical machine learning.
Previously, different results on universality for PQC have been established.
In [93], the power of PQCs in expressing matrix product states and instantaneous
quantum polynomial circuits was shown. Later, the universal approximation of
PQCs was studied in regression problems, for single-qubit circuits with multiple
layers [68, 69] and for both single- and multiple-qubit circuits [70, 71]. However,
as it turns out, there are numerous different notions of universality, and not all
are useful for all applications. For instance, as will be discussed later, in the
context of Physics-Inspired Neural Networks (PINN) the "vanilla" universality
does not suffice. This raises the question of whether PQCs can approximate
functions belonging to other function spaces or in terms of other distances.

24



2.1 Introduction

In this chapter, we present two novel results. The first result of this chapter
is that PQCs can arbitrarily approximate the space of continuous functions, the
space of p-integrable functions and the H* space, which is the set of functions
whose derivatives up to order k are square-integrable.

Furthermore, we explain how these properties can be easily achieved in
practice by a simple min-max feature rescaling (see Eq. (2.21)) of the input
data. In practice, this leads to an improved expressivity of PQCs, if the input
data is normalized accordingly.

The second main result of the chapter concerns generalization bounds that
connect distances with loss functions which are not built via the discretization
of the integrals present in the definition of the distance. To make it more
clear, we recall that in a machine learning problem one needs to choose an
architecture, which defines the class of functions that can be approximated, and
a target distance, which is intimately connected with the generalization error'.
However, in general it is not possible to compute the target distance, as we
would need to have available infinitely many data points. Instead, one chooses
a different distance function which can be computed from the available data: a
loss function. This loss function is a different function than the target distance
but it should be chosen in such a way that we call consistent with the target
distance, i.e., that the minimization of the expectation value of the loss function
(i.e., the expected loss) yields the minimization of the target distance up to an
error which asymptotically tends to zero when the number of samples and the
expressivity (here meant architecturally, as e.g. depth) of the PQC increases.
For example, the mean square error (as a loss function) is consistent with the
L? error (as a target distance) but is inconsistent with the supremum distance.
The usual generalization bounds connect target distances which are continuous
with expected losses which are their discrete version.

The generalization bounds that we derive give a mapping across different
distances and loss functions, i.e., they relate distances with loss functions which
are not built via the discretization of the integrals present in the definition of
the distance. A particular loss function we shall define, denoted £j1, which
consists of the sum of the mean square errors of the values of the functions
and its derivative, is consistent with the supremum distance in one-dimensional
problems. In the described case, this allows us to reduce the supremum distance
while choosing a loss function which is differentiable.

Our results apply in many settings. For example, our first result has a
direct consequence in that it allows one to approximate not just most, but
all function values with satisfying quality. For instance, the minimization of
the ubiquitous L? distance may allow functions to dramatically differ from the
target function in some regions where we have plenty of data points available,

Hn practice we may not explicitly think about the target distance, i.e. with respect to
which distance we wish to approximate the "true" labeling function. But this decision is
implicitly made, once the loss is chosen.
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whereas the minimization of the supremum norm in Thm. 2.3 will force the PQC
to converge for any given point in the domain of the target function. This is of
high relevance in cases where we are interested in having a good approximation
at any given point. For instance, when learning the shape of a probability
distribution from samples, a good fit in the bulk of the distribution but a
poor fit in its tails can lead to significant underestimation or overestimation of
the probability of extreme events. In real-world applications, this could have
severe consequences in risk assessment applications, where accurate estimation
of tail probabilities is essential for developing appropriate contingency measures
against rare but significant events, such as the COVID-19 pandemic or the
2008 economic crisis. Our second result has direct applications, e.g., in settings
where we have access to data of the function and its derivatives. One case
where this is standard is in settings where differential equations are solved.
For example in physics-informed neural networks (PINN) problems [94] and
differential machine learning (DML) [89], both function values and derivatives
are accessible and in fact critical

This chapter is organized as follows: in Sec. 2.2 we explain the new results
on the expressivity of PQCs. In Sec. 2.3 we discuss the proposed generalization
bounds. Then, in Sec. 2.4 we illustrate the theoretical result of Secs. 2.2 and 2.3
by means of some numerical experiments. Lastly, in Sec. 2.5 we wrap up with
the conclusions.

During the final stages of our work, we became aware of the paper [95] which
overlaps in some parts with our own results in Sec. 2.2. However, the results
presented here were developed independently and follow a different line of
reasoning.

2.2 PQCs and universal approximation

In this section, we will review the established result on universality in [67] and
then present our new universality results in Thms. 2.2, 2.3 and 2.4.

Schuld et al. showed in [67], how a quantum machine learning model of the
form fo(z) = (0| UT(2;0) MU (z;0) |0) can be written as a univariate generalized
trigonometric series:

01U (z;0) MU (x;0) |0) = fr(x;0) (2.3)
= Z Co(0)e™®, (2.4)
weN

where M is an observable, U(xz; 0) is a quantum circuit modeled as a unitary
that depends on input x and the variational parameters 8 = (6g, 61, ...,07). In
the above, w € Q denotes the set of available frequencies which always contain
0. The quantum circuit consists of L layers each consisting of a trainable circuit

26



2.2 PQCs and universal approximation

o= H H H F 1 H B
= R i R A
L S@) || Wa(0) |1 1] S@) || Wa(0) | L S@) || Weo) |
w—_H R A F—d H R
T el Tayer2 R

Figure 2.2: Parameterized quantum circuit that can be written as a generalized
trigonometric series as in Eq. (2.1). It consists of L layers, each layer is composed by
a trainable circuit block W5(0),: € {1, ..., L+ 1} and a data encoding block S(z). The
data encoding blocks S(x) are identical for all layers, they determine which frequencies
w are accessible and are implemented as Pauli rotations. The blocks W;(0) can be
built from local rotation gates and CNOT gates. They determine the coefficients
cw ().

block W;(0),i € {1,...,L + 1} and a data encoding block S(z) as shown in
Fig. 2.2. The data encoding blocks determine which frequencies w are accessible
in the sum and are implemented as Pauli rotations. The blocks W () can be
built from single-qubit rotation gates and CNOT gates and they determine the
coefficients ¢, () of the sum. It is possible to both implement this model with
L > 1 layers, such as data re-uploading PQC [96, 97], where the encoding is
repeated on the same subsystems in sequence, or with parallel encodings [59]
and L = 1, where the encoding is repeated on several different subsystems.

For the needs of our discussion, we will briefly describe a more specific set-up
under which the authors of [67] proved a universality theorem of these quantum
models for the multivariate case with inputs = = (zg, 21, ..., ZN)-

Let us construct a model of the form in Eq. (2.1), with the measurement M
and a quantum circuit of one layer, L = 1:

fo=(0|UT(8,2)MU(8,x)|0), with (2.5)
U@,z)=w2@O)s@)wh e, (2.6)
where 81 and @) are those parameters in @ that affect W) and W®),

respectively. Let us further make the following two assumptions: Firstly, we
assume that the data-encoding blocks S(x) are written in the following way:

Sx)=e " g...Qe o (2.7)
=: Su(x), (2.8)
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where H is a Hamiltonian that we specify later. Secondly, we assume that
the trainable circuit blocks W™ (8()) and W) ((?)) are able to represent
arbitrary global unitaries. In practice, this may require a circuit depth that
scales exponentially in the number of qubits. With this assumption, we drop
the dependence on 6 and reformulate the assumption as being able to prepare
an arbitrary initial state |T') := W) (8(1)) |0) and by absorbing W) (8(?)) into
the measurement M. We can then write the above quantum model as:

f(@) = (T| S;(@)MSu(z)|T) - (2.9)

Let us further present the notion of a universal Hamiltonian family, as defined
in [67]:

Definition 1. Let {H,,|m € N} be a Hamiltonian family where H,, acts on m
subsystems of dimension s.

Such a Hamiltonian family gives rise to a family of models {f.,,} in the
following way:

fm(@) = (TS} ()M S, (2) T) . (2.10)
Further, we call the set

Qm,, ={X\ —Aeld, ke {l,...,s"}} (2.11)
where {A1, ..., Asm } are the eigenvalues of Hy,, the frequency spectrum of H,y,.

Remark. We call a Hamiltonian family {Hp} o universal Hamiltonian family,
if for all K € N, there exists an m € N, such that:

Zx ={-K,..,0,.. K} C Qp,,, (2.12)

hence if the frequency spectrum of {H,,} asymptotically contains any integer
frequency.

As shown in [67], a simple example of a universal Hamiltonian family is one
which consists of tensor products of single-qubit Pauli gates:

H,, = Za((;), (2.13)

with a((li), q € {X,Y,Z} and s = 2. The scaling of the frequency spectrum for
this example goes as K = m. With these definitions, we can give the following

theorem:
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Theorem 2.1 (Convergence in L?). [67] Let {H,,} be a universal Hamiltonian
family, and {f} the associated quantum model family, defined via Eq. (2.10).
For all functions f* € L? ([07 27T]N), and for all € > 0, there exists some m' € N,

some state |T') € C™ and some observable M such that

[ frr = f7l 2 <€ (2.14)

Here, we clearly see that there are two conditions on the target function
f* that must be fulfilled in order for the theorem to work properly. The first
condition is that f* belongs to L2. This is not surprising, we need to assume
certain regularity on the target function to make the theorem work. The second
condition is that the target function f* needs to be restricted to the domain
[0, 27]V. However, as suggested in the original paper [67], if the function f* does
not belong to this domain, we can easily map [a,b]" to the required domain
[0,27]Y (or [—m, 7]V equivalently).

We would like to highlight the fact that the distance we use to bring the
approximator closer to the target function is the L? distance. Note that
convergence in the L? sense does not imply other modes of convergence. For
example, this does not give us information about the general case of LP-distances,
with 1 < p < oo. We explicitly address this more general case in the following
theorem:

Theorem 2.2 (Convergence in LP). Let {H,,} be a universal Hamiltonian
family, and {f} the associated quantum model family, defined via Eq. (2.1).
For all functions f* € LP ([O, 27T]N) where 1 < p < oo, and for all € > 0, there

exists some m' € N, some state |y € C™ , and some observable M such that:

[ = ¥l e <€ (2.15)

The proof of Thm. 2.2 is given in Appendix 2.A.

Let us emphasize the difference between Thms. 2.1 and 2.2: The target
function can belong to any L? space with 1 < p < oo in contrast to the previous
requirement of being square-integrable (L?). This is essentially achieved by the
fact that PQCs are not only able to represent Fourier series as it is discussed
in [67] but they are also able to represent more general trigonometric series.
This allow us to identify the expectation value of the quantum circuit with the
Ceésaro summation of the partial Fourier series of f* and leverage the power of
Fejér-like theorems [98]. See Appendix 2.A for more details.

Nevertheless, the ability to approximate functions in LP does not prevent us
from having arbitrarily big errors in certain points. Intimately related to this
problem is the so-called Gibbs phenomenon [99]. Namely, the approximation
of a continuous, but non-periodic function by a Fourier series is increasingly
better in the interior of the domain but increasingly poorer on its boundaries.
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That leads to the fundamental question if we can approximate f* in a stronger
sense, so that we ensure that the target function f* is well approximated in any
given point. We answer this question in the next theorem.

A set U C RN is compactly contained in another set V' C RY, if the closure
of U is compact and contained in the interior of V.

Theorem 2.3 (Convergence in CY). Let {H,,} be a universal Hamiltonian
family, and {f} the associated quantum model family, defined via Fq. (2.1).
For all functions f* € C°(U) where U is compactly contained in the closed cube
[0,27]N, and for all € > 0, there erists some m’ € N, some state |I') € cm,
and some observable M such that f,, converges uniformly to f*:

Hfm’ - f*”CO <€, (216)
with ©
[fmr = [ llco =" sup || for(x) = f* ()| - (2.17)
x€[0,27]N

The proof of Thm. 2.3 can be found in Appendix 2.A.

Simply stated, this theorem means that f,,» converges uniformly to f*. In
other words, if we select a given target error ¢ we are always able to find a
finite PQC such that the error on any point is smaller than the prescribed e.
Let us emphasize again the key differences between Thms. 2.1 and 2.3. The
first difference is that the function f* has to be defined in a domain U which
is compactly contained in [0,27r]N. A simple example of U is the interval

([fg, g]N) (or ([O,W]N), equivalently). By restricting ourselves to half of

the original space we can always find a C° extension of the function f* in
TN. The second difference is that the target function now belongs to the
class of continuous functions in contrast to the previous requirement of being
square-integrable (L?).

A last result that we will show in this regard is about the approximation of
the function and its derivatives by the parameterized quantum circuit. This
might seem as a purely synthetic question but it has many implications in
practice. When we approximate a target function, in many occasions we not
only want to recover its value but also its dynamics. This is particularly relevant
for problems in physics, where we typically have a differential equation which
describes the behavior of the system. As we will see in the following theorem,
the universality results translate to functions defined in the Sobolev space H*
as well:

2Since f* is defined on a compact domain U, the supremum is equivalent to the maximum
in this case.
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Definition 2. The Sobolev space H¥(Q) is defined as the space of square-
integrable functions on a domain Q C RN which derivatives up to order k are
also square-integrable:

£ = D and |1 < ox. (2.18)
2
for all 0 < |a| < k and D* := %'
o)l 0y
The Sobolev norm ||-|| ;. is defined as
1/2
||f||Hk = Z /g'Daf‘Q ' (2.19)

|| <K

Theorem 2.4 (Convergence in H*). Let {H,,} be a universal Hamiltonian
family, and {f,,} the associated quantum model family, defined via Eq. (2.1).
For all functions f* € H* (U) where U is compactly contained in the closed cube
[0,27]N, and for all e > 0, there exists some m’ € N, some state [T') € C™, and
some observable M such that fr, is e-close to f* with respect to the H*-distance:

I frmr = Mg < e (2.20)

The proof of Thm. 2.4 is given in Appendix 2.A.

As in Thms. 2.3 and 2.4, we require that the target function is defined on
a compactly contained subset of [0,27]", we propose to perform a min-max
feature scaling of the input data:

r=(1,...,&n) — &= (T1,...,%n), (2.21)
N
where x € [a,b]N, & € [,E’Z} , and
2°2
- ™ T1—a ™ Ty —a
=|—-= ey —— . 2.22
v ( SR SR 2+7Tb—a) (222)

This simple recipe allows the PQC to approximate a much wider set of function
spaces as shown throughout this section. This normalization strategy works very
well in practice as can be seen in Sec. 2.4. However, we would like to emphasize
that this particular normalization is not the only choice. The classical strategy
in machine learning of normalizing the input data to lie in the [~1,1]" domain
is also completely valid.

Throughout this section, we have discussed the expressive power of PQCs,
but when we do machine learning, we have more ingredients that we need to
take into account. In the next section we will discuss the role that the loss
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function plays in accordance with the type of approximation that our PQC can
get.

2.3 Connections between different generalization
bounds

As we have seen in the previous section, the notion of approximation depends
on a prescribed distance. This distance is not given by the problem itself, but
rather chosen by the user, this is why we refer to it as target distance. In
general, it is however not possible to compute the target distance, which for
example is the case for the LP? and H* distances. This is why one needs to
choose a distance function which can be computed from data, a loss function.
It has to be chosen in such a way that it is consistent with the target function.
To discuss the topic in more depth, let us formally introduce the continuous
regression problem, which is the problem that we are most interested in.

In general, we can describe the continuous regression problem in the following
way: assume that there is some target function f* € F C H* mapping inputs
r € X to target labels y € ). Moreover, assume that the points in X are
sampled according to a bounded?® density function p. Our goal is to find the
best approximation f € M C H” of the target function f*.

The notion of what is understood as a “good” approximation as clarified,
allows for some freedom. For this reason, one has to make a choice by specifying
a functional D : H* x H* — R* U {0} which defines a distance between the
elements of F and M. The problem can then be stated as:

f :argminD(f*,f). (2.23)
fem

The most common distance in the literature for continuous regression problems
is the one induced by the L?(X, P) norm:
Dz (f*, ) = If* = fllz2 (2.24)

~ ([ 0@~ f@yar) . (2.25)

Nl

However, in regression we do not typically have access to the full information
(i.e., we cannot compute the integral). It is for this reason that instead we work
with the empirical risk minimization problem, which uses the discrete version 12
of the L? distance as a loss function. The difference with the previous setup is
that, for the empirical risk minimization problem, we are given a finite training

31t is possible to have more general density functions. However, we restrict ourselves with
this one since it simplifies the analysis.
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set S of I inputs sampled from the same probability density p, together with
their target labels {(x1,41), ..., (x1,y1)} with (x,y) € X x Y, according to the
target function f*: X — Y, f € F. Now, instead of minimizing a continuous
functional, we will minimize a discrete one. We call

1

L™ (@), £ (2.26)
=0

Di(f*af) =

~l

the expected loss according to a loss function ¢ : ) x ) — R. Similarly to the
continuous case, we are concerned with the expected loss of the [? distance,
which is defined as:

mdﬂjw=<}}(ﬁ@0—ﬂﬂbﬁ , (227)

with «¢ denoting the i-th input.

Although we are solving the minimization problem associated with the ex-
pected loss defined in Eq. (2.27), in general we are interested in the generalization
performance, i.e., the distance in terms of Eq. (2.24). Using generalization
bounds [100] we can relate the performance in terms of the distance given by
Eq. (2.27) with the distance given by Eq. (2.24). However, these classical results
in machine learning do in general not relate the {2 distance with other distances,
like the C© distance. In other words, even a solution which, as the model and
the number of points grow larger asymptotically makes the Dy 2 go to zero, does
not necessarily make the Do distance vanish, which is defined as:

Deo(f*, f) == ilelgu*(X) = f(x)|. (2.28)

In such cases, we could find points where there is an arbitrarily large discrepancy
between the solution and the target function.

One possible solution would be to use a different distance than D;2. For
example one could try the discrete form of the Dgo distance:

Fr(x) = f(x)

D~ = max , (2.29)

i€{0,...,]—1}

but this distance is not differentiable, making the optimization process much
harder.

Thus, we identify two desirable features for a distance in order to be able to
approximate with the C° distance. The first requirement is that the solution of
the minimization problem that it defines, tends uniformly to the target function
f* as we increase the number of given points I and we increase the size of
our PQC. The second one is that it has to be differentiable in order to make
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minimization easier.
The solution that we propose here is to use a distance motivated by discretizing
the Sobolev distance H* on a fixed finite training set

{ (3317 {Daf*(wl)}oga\gk) yoo (21, {Daf*(fcl)}ogm\gk) },
(z,y) € X x ),

according to the target function f*: X — ), f € F. The sets {D*f(x)}o<|a|<k
and {D* f*(x)}o<|a|<k consists of the function values f(x) or f*(x) and their

M(N,k) := 2221 (QJJ(IIX ;1) different partial derivatives up to order k evaluated
at point x, respectively. We write N for the input dimension. Note that for
being able to apply this distance, one needs to have access to training data
containing the required partial derivatives additionally to the function values.

We show the expected loss of the discretized version of H' and H*, respec-

tively, in the following two equations:

I-1 N—1I-1 .
Dt 0= |13 (&) - 1) + 37 (3w 2Lie)

| =0 j=0 i=0

(2.30)

_11_1 2 g | 2

Du(r )= [FX (@) - fa) + Y 30 (0 @) - Do p(a)
| =0 la|<k i=0

(2.31)

The expected loss as given in Eq. (2.30) was first introduced in [89] and
gives rise to a new subfield of machine learning known in the literature as
differential machine learning (DML). Its generalization, the discretization of
the distance H*, is given in Eq. (2.31), and can be applied when the required

o) =

higher-dimensional derivatives are available as well. The derivatives )
Z .
J

») o . s
and % are the p-th order derivative functions in direction z; of f* and f,
T .

J
respectively. The corresponding loss function is thus defined as

U : RMVRFL o pM(NR)I+L_, R (2.32)
(f(@), {D* f(@) i<k £ (@), ADf* (@) }aj<n) =

s (f (@), [ (@) = (f*(2) = f(x)))” (2.33)
+ Y (D*f* (=) — D*f(=)))?

|| <K
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With classical neural networks, DML has proven to yield better generalization
results in terms of the D;2 distance than the solution of the D;2 itself. This
means that, if we take the solutions f,: and f;2 of the minimization problems
defined by Egs. (2.30) with the same number of labels and Eq. (2.27) respectively
and evaluate their performance in terms of the D2, in practice fn1 performs
better than fj2:

Dr2 (f*, fn1) < Dr2 (f*, fi) - (2.34)

However, to the best of our knowledge there is no theoretical explanation in
the literature on why this happens or under which condition we might expect
this behavior. In the following theorems we present generalization bounds that
shed some light onto it.

Before stating them, we will define two function families to which the gener-
alization bounds apply:

Definition 3. [73] By F5, we denote the function family defined as

FE = {[0,27T]N S f(x) = Z Cw exp(—iw - ) :
weN

{cw}lwea 8-t ||f]lec < B and |Q| < oo} .

By ’Hg, we denote the function family defined as

i = {0.271" 52> 2

+ Z (aw cos(w - x) + by, sin(w - x)) :
weN

a? + Z ai+bi§3and\ﬂ+\<oo},

wey

where the frequency set Q is divided into the disjoint parts Q = Q4 UQ_ U {0},
where Q1 NQ_ =0 and such that for every w € Q, it holds that —w € Q_.

According to [73], both of these function families can be modeled by the
quantum model given in Eq.(2.10). As can be seen by this equation, the bounds
B and B depend on the chosen circuit and observable, and they determine the
scaling in the following generalization bounds. Note as well that the truncated
Fourier series as defined in ]-'g and 7{5 are differentiable, and their derivatives
form truncated Fourier series as well. If one chooses the frequency set €' and
the bounds B’ and B’ large enough, for a given function family F, both the
functions and their derivatives belong to F5 and HE,.
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Theorem 2.5 (Generalization bound for H*). Let f* € F C H*([0,27]") be a
target function, and let there be a B >0 and a B > 0, such that F§ C HE is a
sugtable model family. Let us further assume that Lyx(f1(x), f2(x)) < ¢ for all
x € [0,27]N, and for all f1, fo € FE or F. For any § € (0,1) and the empirical
risk Dpx (f*, f) trained on an i.i.d. training data S with size I and containing
data of & partial derivatives, the following holds for all functions f € FE with

probability at least 1 —§:
DH’“ (f*,f) < th (f*af) +T(|Q|,£,B,B,0,I,5), (235)
where r(|Q|,&,B, B, ¢,1,8) = 0 as I — co.

Theorem 2.6 (Generalization bound for LP). Let f* € F C H*([0,27]") be a
target function, and let there be a B > 0 and a B > 0, such that FECHE isa
suitable model family. Let us further assume that €nr (f1(x), fo(x)) < ¢ for all
x € [0,27)N, and for all f1, fo € FE or F. Assume that k,p € N satisfy one of
the two following cases:

LN(3-1)<k<N2adl1<p<N,

2. k>N/2 and 1 <p< 0.

For any § € (0,1) and the empirical risk Dpx (f*, f) trained on an i.i.d. training
data S with size I and containing data of £ partial derivatives, the following
holds for all functions f € F5 with probability at least 1 — §:

éDLF (f*af) S th (.f*7f) + T(|Q|,§,B,B,C, Ia 5)? (236)

where C' is a constant and r(|Q,&, B, B,¢,1,8) = 0 as I — co.

Theorem 2.7 (Generalization bound for C°). Let f* € F C H*([0,27]V) be a
target function, and let there be a B >0 and a B > 0, such that FECHE isa
suitable model family. Let us further assume that €nr(f1(x), fo(x)) < ¢ for all
x € [0,27]Y, and for all f1, fo € FE or F and that ||f||ec < B for all f € F5.
Assume, that k € N satisfies k > N/2. For any § € (0,1) and the empirical
risk Dy (f*, f) trained on an i.i.d. training data S with size I and containing
data of & partial derivatives, the following holds for all functions f € FE with
probability at least 1 —§:

SDe (1) < Dy () + 1016 B, Bue 1o), (2.37)

where C is a constant and (||, €, B, B, ¢, 1,6) — 0 as I — co.
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The proofs of Thms. 2.5, 2.6 and 2.7 can be found in Appendix 2.B.

A consequence of Thm. 2.7 is that, if the order of the derivatives that we have
at our disposal are higher than half the input dimension (k > N/2), our solution
of the D, problem is also a solution of the Dco problem, corresponding to
uniform convergence. It means that training with the £, loss function (for
k > N/2), which sums the £;2 losses of function and derivative values, is sufficient
for an approximation in C°. This would not be possible by a training with ;>
loss function and more practical than the training with the £;~ loss function,
as described above.

Note that we face a curse of dimensionality-like phenomenon as the dimension
of the input grows. In this case, the number of terms that go into the ¢, loss
function grows exponentially with &k, as we have to take into account mixed
derivatives. Hence, for high dimensional problems the demand on data of partial
derivatives is higher and only if they are available, this generalization bound
holds.

Further, the requirement of quantum resources for evaluating Dy (f*, f) is
higher than for the evaluation of Dj2(f*, f). If we use the parameter shift rule
for the evaluation of the derivatives, we need to evaluate I(1 + 2N) different
PQCs. Similar to the demand on training data, this number of PQCs to evaluate
Dy (f*, f) grows exponentially in k. However, even if the amount of training
data is the same (and implying an increase of required PQC evaluations up
to a factor of 2), the training with the £, loss function shows the promised
advantages, as presented in [89].

The last property we wish to highlight is the fact that the generalization
bounds connect the empirical risk with the full risk, but they do not give us
information of whether they can both tend to zero. In order to tackle that
question we need to combine the results of the theorems in this section with
the ones present in Sec. 2.2. For example, if we try to fit a one-dimensional
function which is not periodic on [0, 27], using model families 75 and H§5 and
the ¢5,1 loss function, as we increase the number of sample points both sides
of the inequality will tend to the same constant but they will not converge
to zero. In this regard, observe that the fact that the empirical risk goes to
zero is a sufficient but not a necessary condition for the target distance to also
tend to zero. Following the same example, if instead of training the model
using the £,: loss function we trained the model using the ¢;2 loss function,
then the L? distance will vanish. This idea will become apparent in Fig. 2.5.
The bottom line is that more information in the training data does not always
equate to a better approximation, if we are not very careful with the necessary
data normalization.
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Figure 2.3: Architecture U (z, 0) used in the experiments. The parameters 6;; are
variational parameters. Each qubit is measured in the Pauli-Z basis.

2.4 Numerical experiments

In this section we illustrate the theoretical discussion of Secs. 2.2 and 2.3 with
an illustrative example: the approximation of function f*(z) = 3=, = € [—7, 7]
by the PQC in Fig. 2.3.

We conduct two different numerical experiments and show them in Figs. 2.4
and 2.5. We chose a linear function to show that even in this simple case, the
numerical tests fail completely if the results of Secs. 2.2 and 2.3 are not applied.

All simulations have been performed using 10 points (10 for the labels plus 10
for the derivative values when they are present) uniformly distributed along the
domain for the training phase. Each experiment has been repeated 100 times
and we depict the 25, 50 and 75 percentiles in colored solid lines in Fig. 2.4.
The legends call the result of the PQCs as fo(-), where the subscript denotes
under which loss function we have done the training and in the parentheses we
indicate which normalization we have chosen.

In Fig. 2.4 we compare the performance of our PQC under different normal-
izations. We normalize the data to lie in the domains [—3, %], [-7,7] and
[—2m, 2], respectively. When we normalized our data to lie in the range [-7F, 7]
we get the best results, as we expected due to Thm. 2.3.

In contrast, when the data is normalized to lie in the range [—2m, 27| we
obtain very poor approximation results, because in this case, it is not possible to
approximate with the C%-distance or the L?-distance. The intermediate regime
happens when we normalize the data to lie in the range [—m, 7], here we obtain
a reasonable approximation except for the boundaries. This is a consequence
of approximating with the L?-distance instead of the C°-distance: we cannot
guarantee that the error will be reduced on any given point. This behavior
remains even when we increase the size of the circuit and the number of given
points.

In Fig. 2.5, we study the impact of the different loss functions with different
normalizations in the learning problem. We simulated the regression using
two different loss functions, ;1 and f;2 under two different normalizations,
with the domains [—%, 2] and [, 7]. The first noticeable phenomenon that
we can see is that using the ' norm instead of the {2 norm when the data is

normalized to lie in the interval [—g, g] not only reduces the variance stemming
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f*(z) and fi>(x)

f*(z) and fi2(x)

f*(z) and fp2 (x)

Figure 2.4: In this picture we have trained the PQC of Fig. 2.3 to approximate the
function f*(x) = 5=. We have used 10 training points, the £;2 loss function and 100
epochs with the Adam optimizer. The experiments have been repeated 100 times.
In the first panel we have normalized the data to lie in the interval [fg, g] In the
second panel we have normalized the data to lie in the interval [—m, 7r]. In the third
panel we have normalized the data to lie in the interval [—2m, 27]. 39
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Figure 2.5: In this picture we have trained the PQC of Fig. 2.3 to approximate
the function f* = 3=, using the two different loss functions £,1 and ¢;2. We have
used 10 training points (10 for the labels plus 10 for the derivative values when they
are present) and 100 epochs with the Adam optimizer. The experiments have been
repeated 100 times. In the upper panel, we have normalized the data to lie in the
interval [—g, g} . In the lower panel we have normalized the data to lie in the interval
[—m, 7.

from repeating the experiments 100 times, but also has some impact on the
bias. What might be more surprising is the effect of the h!' norm when the
data is normalized to lie in the interval [—m,7]. Instead of getting a better
approximation w.r.t. the [?> we worsen it. We explain it with the fact that,
when we normalize the data to lie in the interval [—m, 7], our PQC is not an
approximator of H' but it is an approximator of L2, i.e., it can approximate
the function but it cannot simultaneously approximate the function and the
derivatives. Thus, in the minimization process the PQC tries to find a balance
between the error in the function and the error in the derivatives, worsening
the results with respect to the quality of the function approximation.
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2.5 Conclusions

In this chapter, we have developed a broader theory of approximation capacities
of PQCs. We have shown how an appropriate choice of the data normalization
greatly improves the expressivity of the PQCs. More specifically, we showed that
a min-max feature scaling that normalizes the input data along each dimension
to lie in the range [—7, 5] makes PQCs universal approximators in the L? space
with 1 < p < oo, the continuous function space and the H* space.

Moreover, since with this normalization we are able to approximate functions
in the sense of the LP, the C° and the H* distance, we discussed that a loss
function which is consistent with those distances in training the models might be
more appropriate than other choices. In particular, the natural choice for the C°
would be the [*° distance. However, since the [*° distance is not differentiable,
which makes the optimization of PQCs harder, we leveraged Sobolev inequalities
to show that the k! distance is consistent with the C° distance in R while being
differentiable. We showed further, that the h* distances are consistent with the
LP and the H* distances.

Lastly, we performed some numerical experiments to illustrate how this
simple choice of normalization and loss function can vastly improve the results
in practice.

The data normalization technique can be seen as a complementary result to
the work of [67]. Nevertheless, there is still much work to do in this direction.
For example, if instead of only taking a min-max feature scaling, we can combine
it with a mapping of the form & = arcsin(z) to end up with a series that closely
resembles Chebyshev polynomials, which are better suited for certain problems.
In analogy with neural networks, the data encoding strategy is playing a similar
role to that of the activation functions.

The relation between the ¢, loss functions and the LP generalization bounds
can be seen as a complementary result to differential machine learning [89] and
to generalization bounds for PQCs as derived in [73]. This is the first work
that gives some insight on why differential machine learning leads to better
generalization results. From the relations that we derived, one would expect
this technique to fail as we increase the input dimension. However, in practice
it has demonstrated very good results, as shown in [89], where a 7-dimensional
Basket option was trained using the £ loss function. An interesting line of
research would be to study the threshold at which differential machine learning
starts to fail.

Since a natural application are physical systems governed by differential
equations where data on the derivatives of a target function are available,
another open question remains as to how our approach compares to standard
differential equation solvers in these scenarios.

41



2 Approximation and Generalization Capacities of PQCs for Functions in
Sobolev Spaces

2.A Proof of Theorems 2.2, 2.3 and 2.4

For proving Thms. 2.2, 2.3 and 2.4, we need two preliminary results. Firstly, we
need to show that a quantum circuit can realize the ¢'-Fejér’s mean of C° (TN )
and LP (TN ) , V1 < p < oo functions. Secondly, we need to prove that we can
define periodic extensions of functions belonging to C° (U) and H* (U), V1 <
k < oo, where U is compactly contained in TV to functions belonging to
cO (TN) and H* (TN) , V1 < k < oo respectively . The combination of both
results plus Fejér’s theorem in multiple dimensions naturally yields Thms. 2.2
and 2.3. Thm. 2.4 can be proven by a standard approximation theorem of the
Fourier series.

2.A.1 Féjer’s mean
We call the function

ot = 3 (1 ) s -

H N
JGZK

where fJ is the j-th Fourier coefficient of f,,,/, the £!-Fejér’'s mean of f,,.

We will show that our PQC can realize the Fejér’'s mean of any well-defined
function. In Appendix C of [67], the authors showed that the quantum model
family f,,» can be written as a generalized trigonometric series of the form

frr (%) =Y 5™, (2.39)

jez¥

where Z¥ = {-K,-K +1,...,0,..., K — 1, K}V is contained in the Cartesian
product of the frequency spectrum associated with H,,, as defined in Definition 1
and that the coefficients c; are completely determined by the observable, up to
the complex-conjugation symmetry that guarantees that the model output is a
real-valued function. Note that we can choose the coeflicients ¢; as:

G = ( ”JHl) fi (2.40)

which are the coefficients of the ¢!-Fejér’s mean in Eq.(2.38).

2.A.2 Periodic extension for C° functions

By the Tietze extension theorem [101], there exists a function g; € C°(RY)
with g1|z = f*. Then, we define a function g» € C°(RY) with golzr = 1 and
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galrv\v = 0, where V' is defined as U CV C(0,2r)N. This set V exists since
U is compactly contained in [0, 27]V.

We can explicitly construct the function g in the following way: Let § > 0,
such that the closure @as of the 26-neighborhood of w, is contained in [0, 27|,
which is possible due to U being compactly contained in [0,27]". We define
V = wys and a function ¢s € C°(RY), supported on the § Ball in RV centered
around 0 and normalized as [,y ¥s(z)dz = 1. Then, we define go as the
convolution of 1y, and vs:

ga(x) = /RN 1y, (7)s(T — x)dT . (2.41)

With this construction, gs satisfies the required properties. We define the

extension fe,+ as the product g g2, which yields a function fZ,, with

featlo =17, (2.42)
JewtlrRv\v = 0, hence (2.43)
fe*zt(x) = f;zt(y) V(E, y e 8TN . (244)

The extension f7,, defined in this way is therefore an element of C°([0,27]™)
with periodic boundary conditions, so it can be viewed as a function on the
N-dimensional torus TV.

2.A.3 Periodic extension for H* functions

By the extension theorems for Sobolev functions [102, Theorem 2.2, Part 2],
there exists a function g; € H¥(RY) with gi|y = f*. Then, we define a
function go € H*(RY) with go|z = 1 and ga|gnv\y = 0, where V is defined as
U cV c(0,2r)N. This set V exists since U is compactly contained in [0, 27V

We can explicitly construct the function g5 in the following way: Let § > 0,
such that the closure @Was of the 26-neighborhood of w, is contained in [0, 27|,
which is possible due to U being compactly contained in [0,27]". We define
V := wos and a function 5 € H*(RY), supported on the § Ball in RV centered
around 0 and normalized as [,y ¢s(x)dz = 1. Then, we define go as the
convolution of 1y, and vs:

ga(x) = /RN 1y, (7)s(T — x)dT . (2.45)

With this construction, g satisfies the asked properties. We define the extension
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.zt as the product g;go, which yields a function f* , with
f P 9192, y

ext
f:;ct|U = f*v (246)
fewtlrRv\v = 0, hence (2.47)
Frar(@) = fi(y) Va,y e oTV . (2.48)

* 1 is thus an element of H*([0,27]") with periodic
boundary conditions, so we can map it onto the N-dimensional torus T¥.

The such defined extension f*

2.A.4 Proof of Theorems 2.2, 2.3 and 2.4

The final step leverages the power of Fejér’s theorem in multiple dimensions:

Theorem 2.8. [103, Theorem 2] For all functions f* € LP (TV) with 1 <p <
oo, and for all € > 0, there exists some t € N, such that

lloe (f) = e <e (2.49)

Combining Thm. 2.8 with the fact that quantum circuits can recover any
0'-Fejér’s mean as shown in Appendix 2.A.1 directly implies Thm. 2.2.

Similarly, for continuous functions we have another version of Fejér’s theorem
for continuous functions:

Theorem 2.9. [103, Theorem 2] For all functions f* € C° (TY), and for all
€ > 0, there exists some t € N, such that

llow (f) =l <€ (2.50)

Combining Thm. 2.9 with the fact that quantum circuits can recover any
0'-Fejér’s mean as shown in Appendix 2.A.1 and the fact that we can extend
any function in C° (U), V1 < p < oo where U is compactly contained in TV
to a function in C° (TN) , V1 < p < oo as shown in Appendix 2.A.2 directly
implies Thm. 2.3.

We finally prove Thm. 2.4, which uses the setup in [67] as described in Sec. 2.2:
We note firstly that the quantum model family f,,,» generates a truncated Fourier
series f in the domain [0,27]V of the form

Fe) = g™, (2.51)

H N
JEZ

where Z¥ = {-K,-K +1,...,0,..., K — 1, K} is contained in the Cartesian
product of the frequency spectrum associated with H,,, as defined in Definition 1.
The proof of that is written in Appendix C of [67].
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Secondly, we can extend the function f* defined on U to a periodic function

* ¢ on [0,27]Y via the construction shown in Appendix 2.A.3. As written in

Thm. 1.1 in [104], the Fourier series of fZ,,, which we can write in the form

of Eq. (2.51), converges in the H*-distance to f,,. As f*,(x) = f*(x) for all

x € U, the Fourier series of f7,, converges in the H"-distance to f* on U. This
implies Thm. 2.4.

2.B Proof of Theorems 2.5, 2.6 and 2.7

In this appendix, we prove Thms. 2.5, 2.6 and 2.7, for which we need several
preliminary definitions and results:

Definition 4 (L-Lipschitz loss function). Let (,dy) be a metric space with
metric dy and let £ : Y x Y — R be a loss function. We call it L— Lipschitz
with regard to a fired y € Y, if there exists a constant L > 0, such that for all
21,22 € R,

dy (U(y,21),0(y, 22)) < L|z1 — 2| . (2.52)

Theorem 2.10 (Generalization bound for general trigonometric series). [75,
Theorem 11] Let N, I € N. Let B > 0 and B > 0 be such that F§ C HE, for the
function families F5 and HE as defined in Definition 3. Let £ : R x R — [0, ]
be a bounded loss function such that R > z — ((y, z) is L- Lipschitz for all
y €R. For any d € (0,1) and for any probability measure P on [0,27]N xR, with
probability at least 1—§ over the choice of i.i.d. training data S € ([0, 27]N xR)!
of size I, for every f € .7-'5, the generalization error can be upper-bounded as

Lo @) S@NP@). £ @)~ S A, )

x;,f(x;)ES
(2.53)
o BL\/'Q'<1°g<'Q'j,“°g(B)>+c oB(1/7] | 1)

for a target function f*:[0,27]N —R .

This theorem is written for loss functions that take two real values as an
input, which is the case for most loss functions. We show that the theorem
holds as well for the loss function £;:

Lemma 1. Thm. 2.10 holds as well for the loss function £ : RO+
N
RO+ [0, c] with N,k € N by choosing the frequency set Q and the bounds
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B and B large enough, such that both the functions f of a considered function
family F and their derivatives D f for la| < k are contained in the families
F& CHE.

Proof. The proof goes analogous to the proof of Thm. 11 in [73]. There are two
points which require special care:

Firstly, we need to adapt the application of Talagrand’s lemma which is used
to upper bound the Rademacher complexity. Let us use the ¢;2 loss function

le(f* (), f(x) = ("(@) - f(=))*, (2.55)
which is related to the loss function £, by
U (f* (@), f(@)) = Y 2 (D*f* (@), D" f(w)) . (2.56)
lal <k

By using the reverse triangle inequality, we can prove the Lipschitzness of the
loss function /2, for a fixed f*(x) € L2([0, 27]V):

b (fr(x), [*(2)) — ézz(fz(w),f*(w))|

=|1f*() = L@)]” = |f* (@) = fole))]*

<|If*(x) = filz) — (f* () — folz)

=[(f*(@) = [*(@)) = (f1(@)) = fo(2))]”

=|(fi(@)) = f2(@))) .

Thus, the loss function ¢;2 is L-Lipschitz with the Lipschitz constant L = 1.

Note that this is the Lipschitz constant of the loss function £;2, which is not

related to the Lipschitz constant of functions of the function space L2([0, 27]V).
Parallel to the proof of Thm. 11 in [73], we now define the set

G = {[O,QﬂN x [0,27)N 3 (x,x) — L (f* (), flx)|f* € H([0,27]Y)

andfe]:g}.

We can now upper bound the Rademacher complexity 7%5(9) for a training set
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S with I data points and a target function f* as

r I

Rs(0) = TE, s Zaiehk<f<wi>7f*<wi>>]

L€/ g i=1

[ I

= %EU sup Zai Z Lp2(D® f(x;), DY f*(x;))
[JEFE =1 Jal<k

I

sup Do Y (D f(mi), D f* ()

Def(@)eFg lal<k izl o<k

IN
|
m

q

I
}Ea[ sup ZUiKZZ(Daf(%‘)’Daf*(mi))]

Def(em)eFE 4

I
1
< ¢ sup =E, sup Zaiﬁlz(Daf(mi),Daf*(:ci)) .
Def(m)eFy i1

The i.i.d. random variables o; € {—1,1} are the Rademacher random variables
and ¢ is the number of derivatives D® with |a| < k. Here, we first used the
relation between the loss functions £;2 and ¢,x. Then, we used the fact that
the supremum over functions and derivatives D f(x) € F&, |a| < k which are
independent from each other is larger than the supremum which is only taken
over the functions f € FF, in which case the derivatives that are taken account
in the loss functions have to be the derivatives of these functions. In the last
inequality, we used that each of the £ terms in the sum 2\04 <, can be bounded
above by its supremum.
We can now apply Talagrand’s lemma on the quantity
1 ! (e o f£x
7B | sup Yy ol (D f(wi), D f* (1) (2.57)
D"‘f(w)e]:é3 i—1

for a fixed |a| < k in which way we obtain the upper bound
Rs(G) < €, (FE), (2.58)

where we used that the loss function #;2 has the Lipschitz constant L = 1 and
where S|, := {x;}]_, is the set of the unlabeled training data points. The
supremum sup|, < can be omitted on the right hand side of the bound, since
the subset S|, of the training set does not include the labels D* f*(x;) and
since we assumed the function family & to contain the relevant derivatives as
well. This upper bound corresponds to Eq.(97) in the proof of Thm. 11 in [73],
apart from the additional factor &.
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Secondly, in the last step of the proof in [73], the authors use standard
generalization bounds as stated in Thm. 1.15 in [105]. The formulation of
this standard generalization bound theorem allows for the loss function ¢,x as
well. O

Definition 5 (Compact embedding). [106, Definition 1.25] Let X andY be
normed spaces with the norms ||-|| v and ||-||y, respectively, and X a subspace of
Y. LetI: X =Y, I = for all x € X be the embedding operator from X to
Y. We say that X is continuously embedded in 'Y, and write X — Y, if there
exists a constant C, such that

|ally < Cllzl . Ve € X . (2.59)

We call the embedding compact, if X is continuously embedded in V and the
embedding operator I is compact.

Definition 6. We write C%(U) for the space of bounded, continuous functions
onU.

Definition 7 (Finite cone and Cone condition). [106, Definitions 4.4 and 4.6]
Let v, € RN be nonzero vectors, let /(x,v) be the angle between vectors x and
v. For given such v, a p > 0 and a k such that 0 < k < w, the set

Copr =1 RN 12 =0 0r0< |z| <p, £L(x,v) < r/2} (2.60)

is called a finite cone of height p, axis direction v and aperture angle k with
vertex at the origin.

We say that U C RYN satisfies the cone condition, if there exists a finite cone
C such that every x € U is the vertex of a finite cone C,, contained in U and
congruent to C'.

Theorem 2.11 (Rellich-Kondrachov). [106, Theorem 6.3, Part I and II] Let U
be a domain in RN satisfying the cone condition, let Uy be a bounded subdomain
of U, and let UY be the intersection of Uy with a N-dimensional plane in RY.
Let k > 1 be integers. Let one of the following cases hold:

1. 2k < N and 1 < p < 2N/(N — 2k)
2.2k=Nand1 <p< o
8. 2k>Nand1 <p< o

Then, the following embeddings are compact:

H*U) — LP(UY) . (2.61)
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Additionally, in case 3, the following embedding is compact:
HYU) - C%(Ud) . (2.62)

Remark. The theorem relates to the Rellich-Kondrachov Theorem stated in [106]
in the following way:

o Case 1 and Case 2 are the two cases stated in Part 1 of Thm. 6.3 in [106].

o Case 8 corresponds to the first and second case of Part 2 in Thm. 6.3
in [100].

o We use a different notation: The symbols 0, 4, p,q,k,n,m used in [106]
are here equal to U,0,2,p, N, N, k, respectively.

o We formulate the theorem for the special cases W*?2 = H* and WOP = LP
of the Sobolev spaces.

With these preliminary results, we can prove Thms. 2.5, 2.6 and 2.7, which
we restate here:

Theorem 2.5 (Generalization bound for H*). Let f* € F C H*([0,27]Y) be a
target function, and let there be a B > 0 and a B > 0, such that FECHE isa
suitable model family. Let us further assume that ¢nr(f1(x), fo(x)) < ¢ for all
x € [0,27]N, and for all f1, fo € F& or F. For any § € (0,1) and the empirical
risk Dpx (f*, f) trained on an i.i.d. training data S with size I and containing
data of & partial derivatives, the following holds for all functions f € FE with

probability at least 1 — 0
Z)I_I)C (f*’f) S th (f*7f) + T‘(|Q|,§,B,B,C, I’ 5)’ (2'63)
where r(|Q, &, B, B,¢,1,6) = 0 as I — co.

Proof. In the work [73], the authors developed generalization bounds for the
function family defined in Eq. (2.10). We restated the theorem in Thm. 2.10.
As we have shown in Corollary 1, the theorem also holds for the loss function
Ly

According to the assumption, the function f* is in FF. The choice of the
constant B such that FE C HE is satisfied depends on the encoding strategy.
As written in [73], it can for example for integer valued frequencies be chosen
as B = 2B. Thus, Lemma 1 can be applied and the following bound holds:

DHk (f*vfh") < th (f*afhk) +T(|Q|7B7B707]75), (264)

with a function (||, B, B, ¢, I,§) which tends to 0 as I — oo. O
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Theorem 2.6 (Generalization bound for LP). Let f* € F C H*([0,27]") be a
target function, and let there be a B >0 and a B > 0, such that F§ C HE is a
sugtable model family. Let us further assume that Lyx(f1(x), f2(x)) < ¢ for all
x € [0,27]N, and for all f1, f» € FE or F. Assume that k,p € N satisfy one of
the two following cases:

LN(3-1)<k<N2ad1<p<N,

2. k>N/2 and 1 <p < co.

For any ¢ € (0,1) and the empirical risk Dypx (f*, f) trained on an i.i.d. training
data S with size I and containing data of £ partial derivatives, the following
holds for all functions f € FE with probability at least 1 —§:

%Dm (F*.f) < Dpe (f*, ) + (19, €, B, B,e, 1,6), (2.65)

where C is a constant and r(|Q,€, B, B,¢,1,8) = 0 as I — co.

Proof. We will prove the theorem by proving the following two inequalities:

S0 (F7,£) < Ds (%, ) < Do (5,1 + 790, B, B, 1.6) . (266)
The right hand side inequality is following directly from Thm. 2.5, and the left
hand side inequality is a consequence of Thm. 2.11. Let us look at case 1 in
Thm. 2.11: We want to rewrite the bound p < 2N/(IN — 2k) as an upper bound
for k for a given p. Let us therefore firstly check, which values p is allowed to
reach. Due to k being bound from above by k < N/2, the upper bound on p,
p < 2N/(N — 2k) is maximal for k = § — 1, in which case the upper bound
on p becomes p < N. That means that values for p chosen in 1 < p < N are
valid values. With p such chosen, the bound p < 2N/(N — 2k) is equivalent to
bounding & in the following way:

N<11><k. (2.67)

2 p

For case 2 in Thm. 2.11, we have the inequalities ¥k > N/2 and 1 < p < oc.

Further, because of the assumptions 5« (f*(x), f(x)) < ¢ for all x € [0, 27|V,
the subdomain U = [0,27]" is equal to Uy, and because an N-dimensional
plane in RY is RY itself, U is also equal to UJ¥. Let C be a cone of height at
most 7, angle at most 7/2. Then, for each = in U = [0, 27", we can choose
an appropriate axis direction such that C, lies entirely in U, so it satisfies the
cone condition.

To sum up, Thm. 2.11 states that for the cases
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LN (3-1)<k<N/2and1<p<N.
2. k>N/2and 1 <p< oo,
the following embeddings are compact:
H*([0,27]N) — L*([0,2x]V) . (2.68)

According to the definition of a compact embedding (Definition 5), there exists
a constant C, such that

If* = fllee < CNF* = Fllae - (2.69)
O

Theorem 2.7 (Generalization bound for C%). Let f* € F C H*([0,27]") be a
target function, and let there be a B >0 and a B > 0, such that F§ C HE is a
suitable model family. Let us further assume that Ly (f1(x), f2(x)) < ¢ for all
x € [0,27]Y, and for all f1, fo € F§ or F and that || f||cc < B for all f € F5.
Assume, that k € N satisfies k > N/2. For any ¢ € (0,1) and the empirical
risk Dy (f*, f) trained on an i.i.d. training data S with size I and containing
data of & partial derivatives, the following holds for all functions f € FE with

probability at least 1 — 0

éDCO (f*vf) < Dh"' (f*af> +T(|Q‘,£,B,B7C,I,5), (270)

where C'is a constant and v(|Q,¢, B, B,¢,1,5) — 0 as I — oc.

Proof. The prove of this theorem is equivalent to the proof of Thm. 2.6 above.
We will prove this theorem as well by proving the following two inequalities:

1
C

The right hand side inequality is following directly from Thm. 2.5, and the left
hand side inequality is a consequence of Thm. 2.11. As written in the proof of
Thm. 2.6, the assumptions of Thm. 2.11 are satisfied, we can thus also apply it
here.

The upper bound on the distance Dgo (f*, f) in the supremum norm is a
direct consequence of the third case in Thm. 2.11.

Drv (f*, f) < Dye (f*, f) < Dpr (f*, f) + r(IM], 1,0) . (2.71)

O






CHAPTER 3

Error and Resource Estimates of Variational Quantum
Algorithms for Solving Differential Equations Based on
Runge-Kutta Methods

3.1 Introduction

For more than four decades, quantum computing has captivated the minds of
researchers, but significant experimental advancements have only been achieved
in recent years. We are living in the era of Noisy Intermediate-Scale Quantum
(NISQ) devices [15, 107-109], which, while capable of certain super classical
computations in principle, are also susceptible to noise and errors, preventing
them from providing substantial computational advantages over classical com-
puters. Efforts to tackle these challenges have resulted in proliferate research
lines dedicated to error correction and noise mitigation across various quantum
architectures [110]. One approach to ameliorating some of the issues involves
hybrid quantum-classical algorithms that use quantum computers to process
information, while classical computers handle the correction and optimization
processes, helping to reduce errors and improve efficiency. For example, in
variational quantum algorithms, such as the Variational Quantum Eigensolver
(VQE) or the Quantum Approximate Optimization Algorithm (QAOA), the

The contents of this chapter have been published in Ref. [46].
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quantum part evaluates the cost function depending on a given set of parameters,
while the classical part optimizes these parameters to minimize the cost function.
In physical terms, the cost function is typically the energy of a Hamiltonian
that encodes the optimization task. Extracting the final result from such a
hybrid device is challenging, as errors arise both from quantum and classical
sources. A notable source of error is the measurement shot noise arising out
of the discrete nature of quantum measurements and the limited number of
measurements taken [111].

Solving differential equations (DEs) is a critical task in various scientific and
engineering fields, and several quantum computing-based proposals have been
developed to tackle this problem. First ideas [35, 36, 112] were built around the
quantum linear system algorithm [37], but they require fault-tolerant quantum
computers. Later, approaches based on variational quantum algorithms were
introduced, e.g., in Refs. [26, 113-115]. In one of the latter approaches, the
DE is mapped to an imaginary-time Schrodinger equation [116]. It is solved
by a variational algorithm, where the time evolution of a quantum state is
approximated by a variational quantum circuit and mapped to the time evolution
of the parameters of this circuit. After classically computing the parameters at
the final time step, one reinserts them into the variational quantum circuit to
prepare the evolved quantum state. This is an approach originally proposed in
Ref. [117] for quantum simulation and has attracted a lot of interest since [118—
124].

In the approach of Refs. [116, 117], the resulting time evolution of the quantum
circuit parameters has the form of an ordinary differential equation (ODE).
Classically, ODEs can be solved by time-discretization methods such as the
Euler method or the more general Runge-Kutta methods [125] (RKMs) that
can be categorized by their order p. The first proposed variational quantum
algorithm for solving differential equations based on the Euler method is shown
in Ref. [113]. Those methods approximate the time evolution by calculating
a truncated Taylor expansion at each time step, and the higher the order of
the RKM, the lower is the resulting truncation error, but the higher is the
required number of function evaluations. There are also different generalizations
of the Euler methods, like the linear multistep methods or the general linear
methods [125], which can lead to similar accuracies as RKMs with different
requirements of the number of function evaluations.

Previous works have proposed that choosing RKMs, such as the widely
used classical RKM [126] with the order p = 4 instead of the Euler method,
will also be favorable in solving the time evolution of the quantum circuit
parameters [117, 127, 128]. However, each function evaluation incorporates
evaluations of quantum circuits, making higher-order RKMs more demanding
on the quantum resources. Moreover, quantum circuit evaluations are affected
by the "shot noise bottleneck," where the error scales as O(1/N2,.,,) with the
number of measurements Ny,eqs, introducing an additional source of error. The
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number of measurements is a precious resource in quantum computing, as it is
the most costly and time-consuming operation and as it is severely limited by
the available runtime of the device before it requires recalibration [107, 129, 130].
That is why, for the practicality of the variational algorithm, it is crucial to
minimize the total number of quantum circuit measurements.

In this chapter, we focus on solving differential equations based on the
approach of Refs. [116, 117]. We investigate whether higher-order RKMs outper-
form the Euler method in solving the time evolution of the circuit parameters by
analyzing the different sources of error and resource requirements. Specifically,
we provide a detailed analysis of the total error of the variational quantum
algorithm for solving differential equations, defined as the trace distance between
the actual solution and the output of the variational algorithm. We explicitly
consider the truncation error associated with the chosen RKM and the shot noise
error. Other relevant sources of errors, such as circuit error (gate infidelity, bias,
SPAM errors) and the representation error (the variational circuit being able to
represent the solution at all time steps with its parameters), are assumed ideal
as they depend among others on the chosen Ansatz and problem instance [131].
We establish rigorous error bounds and use them to estimate a sufficient number
of circuit evaluations required by the algorithm for a given target error, based
on the order of the RKM. Additionally, we perform an analysis of the RKMs
under the assumption of no shot noise.

Further, we validate the resource estimates through benchmarking: the
analysis without shot noise is demonstrated with a simple ODE, while the
analysis of the variational algorithm is applied to option pricing, where the
dynamics are described by the Black-Scholes equation [26, 81]. The latter
is a partial differential equation that has attracted a lot of attention in the
variational quantum computing community [26, 128, 132]. This shows that the
application of our method is not restricted to ODEs but can also be applied to
solving partial differential equations. We directly compare the total number of
circuit evaluations required by the algorithm, depending on the order of the
chosen RKM. In this chapter, we derive rigorous error bounds that are general,
but may overestimate the true error in practice. Our resource estimates are
based on optimizing resources with respect to these upper bounds and might
therefore be overly conservative. Such an approach constitutes the optimal
parameter selection strategy, providing a guaranteed success probability.

Similar error and resource estimates have been conducted in Refs. [116, 133—
135]. However, our analysis is integrating the truncation errors of RKMs and
shot noise errors, making it comprehensive, and offers direct comparisons of
resource requirements between different RKMs and an a-priori analysis that
leads to substantial savings in the cost of the algorithms.

Our work is relevant not only to quantum algorithms that use variational
approaches but also to those that employ RKMs for solving DEs, such as
in Ref. [112, 136]. Our analysis highlights the importance of studying the
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sensitivity of classical numerical methods for ODEs to perturbations in the
input function, which has hardly been explored so far.

From our results, we conclude that depending on the parameters distinct to the
problem at hand, higher-order RKMs are decreasing the resource requirements.
In the use case of option pricing via the Black-Scholes equation, we showed
that an RKM of order p = 2 is requiring the minimal number of total quantum
circuit evaluations. For other applications, even higher-order methods might be
favorable. With our thorough analysis of the involved parameters, we provide
a straightforward framework that can be applied to other use cases that can
be tackled by solving a DE in the form of Eq. (3.11) and decrease the resource
requirements of the variational algorithms by suggesting the most efficient RKM.

In the interest of making this chapter self-contained, we build up the chapter
in the following way: We begin with an introduction to the RKM and the
variational quantum algorithm from [116] and with the problem statement. In
Sec. 3.3-3.4, we show estimates of the errors and minimal resources required for
ODE solving without and with shot noise. In Sec. 3.5, we analyze parameters
of the variational algorithm that the error and resource estimates depend on.
Afterwards, we are performing numerical analyzes of a simple ODE without
shot noise and of an option pricing use case in Sec. 3.6. In Sec. 3.7, we provide
a discussion of the results and conclusions.

3.2 Preliminaries

In this chapter, we investigate the impact of different types of errors on vari-
ational quantum algorithms for solving DEs based on Runge-Kutta methods.
These algorithms are motivated by the variational quantum algorithm for imagi-
nary time evolution introduced in Ref. [116]. In the following, we firstly present
the Runge-Kutta methods, which is a family of classical methods for solving
ODEs. Secondly, we present the variational quantum algorithm for solving DEs
that are based on the Runge-Kutta methods. And thirdly, we introduce the
errors and resources that we analyze in this chapter.

3.2.1 Runge-Kutta methods

Let us consider the initial value problem, which is an ODE together with an
initial condition:

W) _ § (r,y(r) (31)
y(70) = Yo »

where 7 is the time and y(7) is an element of the image of an unknown function
in a scalar or vector form that we want to determine, and where f (7, y(7)) fulfills
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the assumptions of the Picard-Lindelof theorem, guaranteeing the existence of
a unique solution to Eq. (3.1).

Since most of the time an analytically closed form is not viable, numerical
methods are the only way to obtain an approximate solution. A common way
of solving Eq. (3.1) is with the so-called Runge-Kutta methods (RKMs). The
RKMs are a class of methods based on the Taylor expansion of y in order to
approximate the numerical solution of the ODE at the future time step by using
evaluations of f (7,y(7)).

A general blueprint of RKMs with s stages can be outlined as follows: For
simplicity, let us set 79 = 0. We divide the time interval 7 € [0,T], T > 0
into N, time steps denoted by 7,, n € {1,...,N,;}. We assume the step size
AT =7, — 71 = T/N; to be constant and denote the computed solution at
the n-th time step by y(7,). Using Eq. (3.1) and the solution y(7,,) at the n-th
time step, we can compute y(7,+1) in the following way (see Ref. [137, p.907]):

Y(Tar1) = y(a) + AT biki (3.2)

i=1
where the calculation of the latter function is done in s stages
k1= f(Tnay(Tn))a (33)

ky = f(Tn + c2AT,y(70) + a21k1AT),
ks = f(Tn + c3AT, y(70) + (a31k1 + asz2ka) AT),

ks = f(Tn + CSATvy(Tn) + (aslkl + agoky + -+ + as,sflksfl)AT)-

The constants a;; (1 <j<i<s),b (1<i<s)ande¢ (2<i<s)are
specific for each RKM. In order to be consistent, the constants have to satisfy

s i—1
Zbi =1, and Zai’j =¢, for 2<i<s. (3.4)
i=1 j=1

For later analysis, we define the maxima of these parameters for a specific RKM
in the following way:

bmas = max |b;], (3.5)

Amaz = Max |a; ;| . (3.6)
2,7

The simplest RKM is the Euler method (s = 1), which approximates the
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function in one stage iteratively as follows:
y(ri + A7) = y(7;) + ATf (73, y(73)) - (3.7)

The estimation error ¢; induced at each time step 7; due to the truncation
of the Taylor series is referred to as the local truncation error (LTE) of the
method. RKMs are classified according to the error scaling of their LTE. A
RKM is said to have an order p if the LTE is bounded by an error that scales
as O(A7PHL). Generally, the order and the number of stages of an RKM are
related by s = p for 1 <p <4, and s > p for p > 5. This discrepancy is due to
the fact that finding the coefficients a; ;, b; and ¢; becomes increasingly difficult
for higher values of p as it involves solving a system of non-linear equations
that becomes more complicated for higher p. For higher-order methods this
can only be achieved with an increasingly higher number of stages s. To the
best of our knowledge, there is no closed formula for calculating the minimum
number of stages required for a specific order. The relations up to order p = 10
are provided in Table 3.1.

Order p | Number of stages s
5 6
6 7
7 9
8 11
9 13
10 16

Table 3.1: Relation between order and the minimum number of stages of RKMs [125,
138, 139]

The following theorem provides an upper bound on the LTE of a p-th order
RKM:

Theorem 3.1. (See Ref. [1/0, p.180]) The LTE ¢, of the p-th order RKM at
the step n € [1, N;] is bounded by

1enll = lly(rn) —ynll < APHKLE M + O(ATP) | (3-8)

where || - || denotes a norm, which can be any norm on the state space (e.g.,
Euclidean, mazimum, or 1-norm), as the bound is independent of the specific
choice. Here, vy, is the RKM approzimation of y(r,) calculated at step n,
assumed that the value y(7,—1) is exzact. Further, K > 0 is a constant depending
on the chosen RKM and f(7n,y(mn)) can be upper bounded by M > 0 and is
Lipschitz-continuous with respect to the first variable, such that the following
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bounds hold:

1f (s y(m)) | < M,

O (Tnyy(a)) || _ Lir
ort -

<Lfr..., (3.9)

(3.10)

forall1<i<p, 0<7, <T and f(r,y(m)) = 22

Tn

Unless stated otherwise, the same norm is used consistently throughout the
analysis for states, errors, Lipschitz bounds, and the corresponding induced
operator norms. Since all norms on finite-dimensional spaces are equivalent,
the order of the error bounds remains unaffected by the specific choice of norm,
with only the constants differing. In our setting, we use the trace norm for
quantum states and the Euclidean (2-)norm, together with its induced operator
norm, for all other quantities.

We are estimating the constants K, M and Ly, in Secs. 3.6.1 and 3.6.2 for
the specific examples of DEs that we cover numerically in Sec. 3.6.

3.2.2 Variational quantum algorithm for solving
differential equations

In this section, we present the variational algorithm for solving linear differential
equations of the following type:

dz(:) — —H-y(r) (3.11)
y(70) = o (3.12)

where y(7) € C? is a vector and H a d x d-dimensional matrix. We assume
w.l.o.g. that d is a power of 2 and that H is Hermitian. This differential equation
is a special case of the initial value problem as stated in Eq. (3.1).

It is possible to map a wide variety of DEs to Eq. (3.11), such as stochastic DEs
(see Ref. [128]), the Black-Scholes partial DE (see our analysis in Sec. 3.6.2 and
Ref. [26]), or other linear partial DEs (see Ref. [141]). Typically, this mapping
involves a discretization of the underlying space and differential operators
onto a grid [26, 128, 141], but it is also possible to encode the solution via
spectral methods like Chebyshev polynomials or in Fourier basis (see for example
Ref. [44], although they use a different quantum algorithm).

If d is not a power of 2, it is always possible to embed H and y(7) into
higher-dimensional spaces, such that the assumption holds. The resulting higher
dimensional space into which y(7) is embedded is less than a factor of 2 larger
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than the original space.

If H is not Hermitian, several strategies can be applied: For some differential
equations, it is possible to apply changes of variables in order to transform H to
a Hermitian matrix, such as the transformation done in Ref. [26]. Alternatively,
it is possible to divide any matrix H into a Hermitian and an anti-Hermitian
part, which effectively leads to a doubling in the number of circuit evaluations,
as demonstrated in Ref. [142]. Tt is also possible to use the technique shown
in Ref. [143] that gives a mapping from Eq. (3.11) with a non-Hermitian H to
the real time Schrédinger equation, which one can solve with the variational
algorithm introduced in Ref. [117]. Further, there exists a generalization of the
variational algorithm for imaginary time evolution that we present here which can
be applied to linear differential equations with non-Hermitian matrices H without
the need to embed them first into higher-dimensional Hilbert spaces [144]. Note
that our analysis can easily be adapted to this generalized variational algorithm,
as well as to the variational algorithm solving the real time Schrédinger equation.

The variational quantum algorithm that solves Eq. (3.11), is based on the
variational quantum algorithm for imaginary time evolution introduced in
Ref. [116]. Therefore, we firstly bring Eq. (3.11) into the form of quantum
imaginary time evolution.

For the rest of the chapter, we assume that H is Hermitian. The matrix H
can thus be decomposed in the following way:

N
H=> Anom - (3.13)
m=1

Here, {\,,}V_; € R are the decomposition coefficients and {o,,})_, are the
Pauli strings, which are tensor products of single qubit Pauli matrices and the
identity. This possible decomposition always exists and is unique, since the
collection of d? Pauli strings form an orthogonal basis for Hermitian operators
acting on a d dimensional Hilbert space. The operator H plays the role of the
Hamiltonian of a quantum system. Effectively replacing the real time parameter
t from the Schrodinger equation with —i7, where 7 is a real number, Eq. (3.11)
can then be considered as a Schrédinger equation in imaginary time.

Let us further realize the function y(7) as a quantum state |(7)) € C¢ and
the initial condition y(9) = yo as a state [¢9(0)) € CZ. That can be done by
normalizing the entries of the vector y(7) and by subsequently encoding the
resulting entries as the amplitudes of |(7)):

iy =S —E0 (3.14)

i=0 Hy(T)”Q

where {|i)}{=4 is the computational basis.
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The problem of solving Eq. (3.11) then comes down to simulating the cor-
responding non-unitary time evolution V(1) = e~ "7 that solves the following
equation:

|y (7))
= _H. 3.15
D) — ey (3.15)
with the initial state [¢(0)) at time 7 = 0. The goal is then to calculate the
evolved state |¢(T)) at time T, which can be calculated from the initial state

as:

(1)) =~(T)V(T) [4(0)), (3.16)
with the normalization  ~(7) = (((0)] V(2T) [1(0))) /2 . (3.17)

While reading out the amplitudes of |)(T')) itself will only give the ratio of each
basis vector in the solution y(T') of the DE in Eq. (3.11), keeping track of the
initial normalization from the mapping of y(79) to |1(0)) and the intermediate
normalization factors v(7) will give the resulting renormalization factor. One
can identify v(7) as one of the parameters that is updated at each step (see for
example Refs. [113, 128]).

As proposed in Ref. [116], the evolution of the state |1)(7)) can be simulated
by using a parameterized quantum circuit to approximate the evolved state.
Instead of [1(7)), the variational quantum "trial" state

6(8(7))) = R(8() [0), |¢(6(r))) € C, (3.18)

prepared by a variational circuit R(6(7)) with a vector of time-dependent
parameters 0(7) = (01(7),02(7),...,0n, (7)) € RNV is taken. The trial state
is often referred to as the Ansatz. The circuit is chosen in such a way that it
consists of a sequence of Ny layers each depending on one variational parameter
as follows:

R(6(7)) = Bny (Ony (1)) BNy -1 (08 —1(7)) - - Ba(61(7)) - (3.19)

Each Ry (0x(7)), k € (1,..., Ny ) is a unitary operator that can be written as

Ng
Ry (01(7)) = exp{ (%(T) > fk,iU'k,i) } : (3.20)
i=1

with fixed complex parameters fj; and Pauli strings oy ;. For simplicity, we
keep Ny fixed. In general, only a small subspace of the Hilbert space can be
reached with such an Ansatz, but as was shown in Ref. [145], this is sufficient
for physically relevant states. Furthermore, this Ansatz captures a wide class of
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possible implementations, such as the coupled cluster Ansatz [146] or hardware
efficient methods [147, 148].

The idea of the method is to map the time evolution of the state |i(7))
according to the Hamiltonian # to a time evolution of the parameters (7) of
the state |#(0(7))). To this end, one first finds the vector of parameters (7 = 0)
such that it minimizes the distance || [¢(6(0))) — [(0)) ||. The McLachlan’s
variational principle [149, 150] as given by

6||(d/dr +H)|p(8(7))) [| = 0 (3.21)

is fulfilled if Eq. (3.15) is valid for the trial state [¢(0(7))). Here || |¢) || = /(¢|®)
is the Hilbert space norm of a vector |¢) and ¢ denotes an infinitesimal variation.
However, if the chosen Ansatz is not expressive enough or too biased, Eq. (3.21)
will not hold. The resulting errors are hard to control in practice, but there
exist ways to estimate them. See for example Ref. [131, 134].

Eq. (3.21) is used to translate the time evolution of the trial state |¢(0(7)))
to a time evolution of the vector of parameters 0(7), given as an ODE (see
Appendix 3.D):

ZAM 891( ) _¢, 0(r)) vr. (3.22)

Note that this ODE is acting on the Ny -dimensional vector 6(7), where Ny
is independent of the dimension d of the time evolution in Eq. (3.15), and is
entirely determined by the number of parameters of the chosen Ansatz. In
particular, Ny is not bound to be a power of 2. In principle, lower Ny will
reduce the total number of circuit evaluations for our algorithm (see Sec. 3.5.1),
but will also lead to a lower expressivity of the corresponding Ansatz.

The elements of the matrix A and the vector C' are:

00 = e (260D 210D 523)
u (01r)) = e (- X2 o6 ) (329

Taking the derivatives of Eq. (3.20) with respect to the parameters, one can
calculate the derivative of the trial state in Eq. (3.18):

0
|¢86k Z friBRii 0), (3.25)

Rk,i = RNVRNV71...R]€+1R]€O'}€,Z'R1€71 e R2R1, (3.26)
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where we omitted the dependencies of the Rys on 6ys for simplicity. With the
chosen Ansatz in Eq. (3.26), the matrix elements in Eq. (3.23) and in Eq. (3.24)
can be computed as:

Na

A (0) = Y (fiais O RL Rz [0) + hc.) (3.27)

4,j=1

Ng N
aem) =3 ( £ idm (O RY o R [0) + h.c.) , (3.28)

i=1 m=1

by measuring circuits illustrated in Fig. 3.1. Alternatively, it is possible to
calculate the matrix element with parameter-shift rules [92, 151], making the
circuits shorter in depth and therefore potentially more suitable for NISQ
applications. They are applied to similar algorithms in Ref. [135, 152].

I£)

ill
0+ e 1) (x] (x] 7

Figure 3.1: The quantum circuit evaluating the elements of A and C. The controlled
unitary Uy,; is one of the o, ;. Depending on if one is evaluating A or C, the controlled
unitary Uj; is another o;; or one of the Pauli strings o, (in which case we take
I = Nv + 1) that constitute the Hamiltonian, respectively.

If the matrix A (6(7)) is invertible for all 8(7) in the relevant domain, then
Eq. (3.22) can be written in the form of Eq. (3.1) by identifying y(7) with 6(7):
00(r)

or

= f(8(7)) == A71(6(r)) C (8(7)), (3.29)

and with the initial condition 6(0) at time 7 = 0. The time evolution of the
parameters 0(7) is given as this ODE, and solving it until final time T gives the
vector of parameters @(T') that yield the final state |¢(0(T'))), which serves as an
approximation of the evolved state |¢)(T)). If A is not invertible, regularization
introduces an additional error (see Secs. 3.2.3 and 3.5.2). Similarly, the inversion
itself will inevitably also include an additional error that has to be taken into
account. As long as the errors stemming from regularization and inversion of A
fulfill the error bounds in this chapter (such as Eq. (3.75)), our estimates are
still applicable. We assume therefore for the remainder of this chapter that A
is invertible.

We can thus solve a DE of the form in Eq. (3.11) with a hybrid quantum-
classical algorithm by solving the ODE in Eq. (3.22) defining the parameters
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0(7) of an Ansatz state.

In the next section, we introduce the errors and resources required for solving
the DEs in Egs. (3.1) and (3.11) with the Runge-Kutta methods and with the
variational quantum algorithm, respectively.

3.2.3 Errors and resources

In this chapter, we analyze errors and resource requirements of the Runge-Kutta
methods and the variational algorithm as described above. For this, we focus on
analyzing the errors involved in solving the ODE using the RKM described in
Sec. 3.2.1, and for the variational algorithm additionally the total error arising
from preparing the trial state |¢(@(T))) defined in Eq. (3.18) using the method
described in Sec. 3.2.2. In this chapter, we are not considering representation
errors stemming from the chosen Ansatz state not being expressive enough, as
it proves very challenging to estimate these errors in general [153]. However,
they have an influence on both errors that we estimate, by playing a role in the
approximation of the time evolution of 6(7) and in the approximation of the
final state |¢(T")). They are specific to the task at hand, it is possible to derive
a posteriori error bounds and they become less relevant for deep Ansétze, see for
example Refs. [131, 134]. Also, we assume circuit error such as gate infidelity,
bias and SPAM errors to be negligible. We further assume the matrices A as
defined in Eq. (3.27) to be invertible (see our discussion in Sec. 3.5). In practice,
it might be necessary to introduce matrix regularizations for the cases where A
is not invertible (see techniques in Refs. [26, 116, 128, 152]), which would lead
to additional errors.

We denote the total error arising while approximating the solution of the
ODE (Eq. (3.1)) for noiseless evaluations of the functions f(7,y(7)):

0 . _
cope = ly(rn.) —yn. 2 , (3.30)

and analyze it in Sec. 3.3 (Thm. 3.2). For the variational quantum algorithm, the
parameters calculated via an RKM from Eq. (3.29) additionally are influenced
by shot noise in the evaluations of f(€(7)), which we denote by the superscript
0:

B A
S = 110(rn,) — O - (3.31)

We added the hat to the approximation of 8 _ of the parameters calculated via
an RKM, in order to show that they may be perturbed (e.g., from shot noise).

We analyze eg)DE in Sec. 3.4.
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Whenever the norm is not specified, we are using the 2-norm:

Nv 1/2
10(7n,) = O, |2 := (Z 6(7n. )i — O, il ) : (3.32)
i=1

where Ny is the length of the vectors 6(ry_) and O .
We define the total error arising from applying the variational algorithm to
approximate the state |¢)(T)) with the trial state |¢(On.)) as

€total = [[¥(T) — &)1 , (3.33)

where (T) = [¢(T)) (¥(T)| and ¢(On,) = [#(On,)) (#(On, )], where [¢(T))
and |p(@y.)) are as defined in Eqs. (3.14) and (3.18). For €;ora1, we use the
trace distance as the most convenient distance for quantum states, which for
two pure states is defined as:

[0(T) = 6B 1= /1 — | (T o(On, ) 2 - (3.34)

We analyze the error €444 in Sec. 3.5.1.

Based on the error estimates, we are estimating the resources needed in order
for executing the RKMs and the variational algorithm. We define the cost of
solving an ODE with an RKM as the total number of times that the function
f(8(7)) has to be evaluated for the whole RKM:

C(N'r»erSyp) = SN.,-(S,p)NT(S,p) s (3'35)

where N, is the number of measurements of the function f(8(7)) at a single
stage of one RKM time step. In the absence of shot noise, the cost in Eq. (3.35)
reduces to

C(N;,s,p) :=sN;(s,p) , (3.36)

as at each stage and time step, one needs only one evaluation of f(7,y(7)).

We are estimating the minima of the costs in Eq. (3.35) and in Eq. (3.36)

required to reach a specified target error eﬁfﬁmet that upper bounds the error
E))DE < éf?rget in Sec. 3.3 and 3.4.

For the variational algorithm described in Sec. 3.2.2, we also determine the
total number of quantum circuit evaluations required. As we will demonstrate,
calculating f(6(7)) for a given input O(7) requires the preparation and measure-
ment of several quantum circuits. This significantly increases the total number
of quantum circuit evaluations beyond the cost in Eq. (3.35). We refer to this
as N, and we estimate it in Sec. 3.5.1.
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3.3 Runge-Kutta methods without shot noise

For ease of exposition, in this section we analyze the total error arising from
solving an ODE with an RKM without the presence of shot noise in the
evaluations of f(7,y(7)) in Eq. (3.1). We also determine the minimal number

Nﬁo) of RKM steps required to achieve a prescribed accuracy.

In Thm. 3.2, we establish an upper bound on the total error, denoted e(OO)D E
in Eq. (3.30), by analyzing the error propagation due to the truncation error of
the RKM (see Thm. 3.1).

We select the upper bound of the error 6(001)3 g as a target error, meaning the
maximal error we can expect. This target error is the used to determine the
minimal number of RKM steps needed to ensure that the resulting error remains
within the target. The result is formalized in Thm. 3.3, and the corresponding
minimal cost, as defined in Eq. (3.36), is derived in Corollary 1.

Theorem 3.2. Let y(7n,) be the solution of Eq. (3.1). We assume that the
assumptions of Thm. 3.1 hold. Let us further assume that there exists a Lipschitz
constant Ly, such that Vyi(7,),y2(7) in the spaces {y(1,) : 7, € [0,T]} and
{yn : n € [1, N;]}, the following holds:

1 (Tos y2(70)) = f (s Y2 (7)) | SLpyllyn () = ya(m)ll V7 € [0, 7). (3.37)

Then, the approzimation yn. of the solution y(Tn,) at time Tn, calculated via
a p-th order RKM with s stages in N, time steps has the error defined in
Eq. (3.30) bounded by:

N- _
6(0) < (1+ F(N.,s)) 1 ( T

p+1
— KIL? M 3.38
ObE = F(N;,, s) NT) fromo (3.38)

where we used the notation

b T\°
F(Nr,5) = 2o <(1 + LfyamN) _ 1) . (3.39)

For a definition of a4, and bpq. see Egs. (3.5) and (3.6). We define the
upper bound in Eq. (3.38) as the target error, i.e., the theoretical maximum
error that can occur when applying this method:

(0) . (1 —|—F(NT,8))N" -1 ( T

p+1
= — KLY M . 4
€target F(N'rv S) N‘r) fr (3 0)

Based on this result, we estimate the minimal number of time steps that are
(0)

needed to guarantee a particular target error €;,,.¢

while solving Eq. (3.1):



3.4 Runge-Kutta methods under the presence of shot noise

Theorem 3.3. Let the assumptions of Thms. 3.1-3.2 hold. Then, the minimal
number of RKM steps N required to solve Eq. (3.1) with a target error egglget
18

KM (ebmmTLfys _ 1) ) 1/p (3 41)

) _
NO = LT ( o

6itarget bmaz SLfy

Using the latter results, we get:

Corollary 1. For a target error €iqrget, the minimal value of the cost function
(3.36) is

1/p
KM bmazTLyfys _ 1
O(N©, s,p) = sL;, T < (0()6 )> , (3.42)

6tav”get bmaxSLfy

where s is the number of the RKM stages, p is the RKMs order and NT(O) is the
minimal number of time steps of the chosen RKM.

The proofs of Thms. 3.2 and 3.3 are provided in Appendices 3.A and 3.3,
respectively. In the following section, we analyze the RKM in the presence of
the shot noise in the evaluations of the differential f(8(7)).

3.4 Runge-Kutta methods under the presence of
shot noise

In the variational algorithm that we presented in Sec. 3.2.2, we are solving
the ODE given in Eq. (3.29) by using RKMs. The function f(6(7)) from
Eq. (3.29) is given by expectation values estimated via sampling quantum
circuits. Therefore, we assume that instead of f(0(7)), we have access to its
approximation f(8(7)). We need to take into account the statistical errors
arising while computing f(8(7)) based on the measurement results. The analysis
of this section is valid for all differential equations as given in Eq. (3.1) that
have a noisy f(0(7)).

By virtue of the central limit theorem, let us also assume that each measure-
ment is drawn from a random Gaussian distribution with mean f(6(7)) and
standard deviation ogingle. Calculating the average of these measurements gives
the estimate f(0(7)):

N’V‘

fom) = > A0() (3.

T =1
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3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

where f;(0(7)) is a single measurement result. By the central limit theorem as
N, — 00, the estimate f(0(7)) behaves as a Gaussian distribution:

V NT(f<0(T)) - f(e(T») _>d N(()?U?ingle)' (344)
From Chebyshev’s inequality we get the following bound for a § > 0:
2

P(|f(6(r) = f(6(7))]| = 8) < ;%f~ (3.45)

Alternatively, a Chernoff bound would be tighter, but more cumbersome to
apply here and probably not lead to a different qualitative analysis.

If we take the probability P(||f(8(7))— f(8(7))| > &) to be equal to 5 € (0,1),
then with probability of 1 — 7, the following bound holds:

b))
VN,

1f(B(r)) = F(O(r)] < 6= (3.46)

In the above, we defined ¥ = Uigle

Assuming access to a noisy estimate of f(6(7)), as described above, we derive
error and resource estimates for solving ODEs using RKMs under the presence
of shot noise.

In Thm. 3.4, we establish an upper bound on the error 5(0627 p as defined
in Eq. (3.31) by analyzing how both the truncation error of the RKM (see
Thm. 3.1) and the shot noise in the estimation of f(6(7)) (see Eq. (3.46))
contribute to error propagation.

We select the upper bound of the error 6(061)3 p as a target error, meaning the
maximal error we can expect. This target error is the used to determine the
minimal number of RKM steps and the minimal number of measurements of
each f(0(7)) required to keep the resulting error within the target. The result
is formalized in Thm. 3.5, and the corresponding minimal cost, as defined in
Eq. (3.35), is derived in Corollary 2.

Theorem 3.4. Let us assume that the assumptions of Thm. 3.1 hold for
Eq. (3.29). Under the conditions in Eq. (3.10), Eq. (3.37), the approximation
éNT at time Tn_ calculated via a p-th order RKM with s stages in N, time steps
has the error defined in Eq. (3.31) upper bounded by:

6(6) < (1+ F(N,, S))N" -1 30
ODE — (N.,-,s)

p+1
> KL?TM> , (3.47)

where we used the notation introduced in Eq. (3.39).
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3.4 Runge-Kutta methods under the presence of shot noise

Let us further denote the latter upper bound as

N, _ p+1
(o (A (N )N 1 (3‘SF(NT,S)+ (;) KLy M

target * T F(N.,-,S)
(3.48)

Given this error estimate, we obtain the following resource minimization and
the directly following minimal cost:

Theorem 3.5. Let us assume that f(0(7)) is an approzimation for f(0(t))

calculated from N, measurements, with the error scaling § = \/%, where ¥ > 0

is a constant. Then, calculating the approximated solution éN, to the ODE in

Eq. (3.29) by a p-th order RKM with s stages and with a target error eiilget

defined in Eq. (3.48), the number of time steps required must be at least

1/p
KM (ebmawSLfyT — ]_) (2p + ]-)
é
N® = TLyr ( (8) ) o
etaT.getbmaxSLfy
and at least
-2
4
N((s) _ % GEaZ‘get — ( T )p+1 KL?tM
r L2 Nﬂ(.‘s) (9) )
Ty (1+F(NT(6),S)) - v e
(3.50)

many measurements for the estimation of f(60(1)) for each set of inputs 0(r).

The proofs of Thms. 3.4 and 3.5 are given in Appendices 3.A and 3.C,
respectively.

Corollary 2. For a target error eiglget, the minimal value of the cost function
(3.35) is

where s is the number of stages, p is the order, Ng) and NT@ are the minimal
number of time steps of the RKM; and the minimal number samples in calculating
f(0(1)) for each set of inputs according to Thm. 3.5.

In the following section, we further analyze the latter error and resource
estimates. By applying it to the variational quantum algorithm discussed in
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3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

Sec. 3.2.2, we show by numerical estimations in Sec. 3.6, how they evaluate for
specific DEs such as given in Eq. (3.29). We shall see that with these results,
we can choose a Runge-Kutta method such that the required total number of
circuit evaluations will be minimal.

3.5 Analysis of the variational quantum
algorithm

In this section, we analyze the total error as defined in Eq. (3.33) of the algorithm
provided in Sec. 3.2.2. We show its relation to Eq. (3.31) and derive the resource
requirements of the algorithm for a given target error, based on the estimates
in Sec. 3.4. Afterwards, we continue with an estimation of the shot noise and
further quantities based on a toy model we introduce. These further estimates
are necessary for the numerical analysis of the following Sec. 3.6.

3.5.1 Error and resource estimate

We are interested in estimating the total error in Eq. (3.33). Using the triangle
inequality, we get

ctotat <[[Y(T) = H(O(T)) Il + [$(6(T)) — 6O, )|l = €pc + €par - (3:52)

Here, we define the distance between the trial functions with the different input
parameters as follows:

epar = | $(0(T)) — ¢(On, )1 (3.53)

The representation error coming from approximating the function (7T") with
the trial function ¢(0(7)) is defined as

epQc = [[9(T) = $(8(T))||1- (3.54)

Furthermore, using the multi-dimensional mean-value theorem !, the second
term of Eq. (3.52) can be bounded by

epar < U [V0(00(T)) 012G (3.56)

S

IMultivariate Mean Value Theorem: for =,y € R™

(@) = f)lla < sup [1f'(2)ll(g,p lz = vllp, (3.55)

z€[x,y]

Where z € [z,y] denotes a vector z contained in the set of points between z,y € R™ and
1f"(2)ll(q,p) is the L, 4y norm of the derivative matrix of f evaluated at z.
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3.5 Analysis of the variational quantum algorithm

where 2 = {wly. + (1 — w)@(T)|w € [0,1]}. The norm of the Jacobian is
defined as

Voo (0o(T)) - 0*(T
sup \|V0¢(00(T))||(172) ‘= sup sup || 9¢( 0())< )) ( )Hl ]
Opc= OoEE 6+ (T)EE,0*(T)#0 ||0 (T)H2

(3.57)
The following lemma shows us an upper bound to this expression.

Lemma 2. The norm of the Jacobian with the chosen circuit (Eq. (3.19) and
Eq. (3.20)) is bounded by

IVe9(60(T)) - 6*(T)]|x

sup sup " (3.58)
00€Z 0* (T)EE.6%(T) #£0 [16*(T)]]2
< S (5 2060) 162)] .
< sup - : .
0+ (T)EZ,0%(T) 0 10=(T) |2
We provide the proof in Appendix 3.F.
According to this lemma, Eq. (3.57) is upper bounded by
Ny Ny
3 (2 sl 0300
—1 \j=
S = sup . (3.60)
0+ (T)EE,0%(T)£0 16*(T) 1
Thus, the total error is bounded by
< 5e) 3.61
€Etotal < €EPQC T O€QDE- (3.61)

As described in Sec. 3.2.3, there are errors which we assume to be negligible. In
particular, we are disregarding the representation error epgc. We are thus left
with estimating S for the specific Ansatz at hand (see Sec. 3.6) and the error in
calculating the parameters, egg g» which we analyzed in Sec. 3.4.

The resource that we would like to minimize for the application of the
variational algorithm is the total number of circuit evaluations N;.. which is
needed for running the algorithm. In comparison to the cost that was estimated
in Sec. 3.4, we have to add an additional factor in order to get Ng.. The
derivation of this factor follows.

Denote with V4 and N¢ the numbers of circuits that are needed to calculate
the matrix A and the vector C' for specific input parameters. Each matrix A or
vector C' consists of N‘z, or Ny elements, respectively where Ny is the number
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3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

of parameters 6. Each element of A and C'is calculated by the evaluation of N?
or NyN different circuits, respectively. Here N is the number of terms in the
Hamiltonian and N4 is an upper bound on the number of Pauli strings in the
unitary operator Ry of the variational circuits, as defined in Eq. (3.20). Thus,
they are bounded above by Ny < Ny = NZN2 and No < No = Ny NgN. Let
us assume that these upper bounds are always reached. We denote by Ng)
the minimum number of time steps in the ODE solving algorithm and by Nr(é)
the minimum number of times, each stage value f (6(7)) is measured; both
have been estimated in Thm. 3.5. By s, we denote the number of stages that
are calculated at each time step of the RKM. Therefore, the number of circuit

—

evaluation N;.. needed to calculate 6(T) is equal to

= NOsNO(NZN2 + Ny NgN) (3.63)
= N®sNO® Ny Ny(Ny Ny + N) . (3.64)

One can see that the number of circuit evaluations in the whole circuit scales
quadratically in the number of circuit parameters Ny, .

Note that, if instead of counting the total number of circuit evaluations we
care about the total run time of the algorithm, and allow parallel evaluations of
N‘Q,Ng + Ny NgN circuits, the cost comes down to N7(—6)SN7§5).

In the next subsection, we will further estimate the dependence of Nﬁé) on
the condition number of A, and give a comprehensive overview of the resource
estimate in Egs. (3.77)- (3.80).

3.5.2 Estimation of the shot noise

In Sec. 3.4, we presented error and resource estimates for RKMs with an error in
the evaluations of f(7,0(7)) stemming from shot noise. We derive our estimates
on the basis of the bound in Eq. (3.46). Since we would like to incorporate the
results of Sec. 3.4 into analyzes of the required resources for the variational
quantum algorithm, we are studying the shot noise inherent to this algorithm in
this section. In the end of this section, we will give an estimate of ¥ as defined
in Eq. (3.46).

Bach term (7 i (01 R Ruj [0) + huc.) or (£ :Am (O R o R[0) + hc.)
in the matrix A and the vector C' as given in Egs. (3.27) and (3.28) can be
written in the following form:

¢ = aRe (eié‘ 0" U |o>®") , (3.65)

where the amplitude a and the phase ( are determined by either f,jl fi,; or
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3.5 Analysis of the variational quantum algorithm

f,’;i)\m. The unitary operator U is equal to either RIE,iRlJ or RLiamR.

The terms ¢ can be obtained by the parameterized quantum circuits shown in
Fig. 3.1. Note that these circuits are different from the circuit which prepares
the final state |¢(@y.)). An ancillary qubit of the circuit is initialized as
(]0) + €% |1))/+/2, while the remaining qubits are initialized in the state [0)®".
A projective measurement of the ancillary qubit in the {|4),|—)} basis has
following probability to find the qubit in the state |+):

Re (e’ (01*" U [0)*" ) + 1

P:
+ 2

(3.66)
To estimate the probability PJF and subsequently the terms ¢, we need to imple-
ment and measure the circuit NV, times. Let us assume that the measurements
correspond to independent Bernoulli distributed random variables, which have
the variance 02(Py) = P.(1 — P,)/N,.

Thus, the variances of the estimates of the elements of Eq. (3.27) are scaling
as

0? (Re (4 (01" U[0)°")) = 40>(Py) = O(Ni). (3.67)

After estimating Re (e’ (0|%™ U |0)y*" ), the amplitudes of fiafigor fiiAm have
to be calculated classically and multiplied. Since they are not depending on
each other, all of the circuits with the same input parameters 6(7) can be run
in parallel.

We denote the realization of the matrices A and C in Eq. (3.23) as A and C,
respectively.

The variances of the estimates Ay ;(6(7)) and Cy(0(7)) are scaling as

o2 (Ak,l(f)) o (%‘3) ., o2 (ék(v)) o <N§N> . (3.68)

T T

Then by Chebyshev’s inequality, we can conclude that the probability of esti-
mation error is bounded by

N2

2 NyN
N,b?’

N.b?*'

P (\Ak,l — Ay > b) < P (|Ck —Cy| > b) < (3.69)

We can conclude that we face up with estimation errors arise due to shot

noise and the representation errors from calculating the matrix elements on the
quantum circuits. The following lemma holds:

Lemma 3. With the probability of at least 1 —n, n € [0,1], the following bounds
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3 Error and Resource Estimates of VQAs for Solving DEs Based on RKMs

hold:
Ny
N g —
4 Ay < Noediinl (3.70)
Nym
Ny
HC_ é” S ||{Uk}k:1||

VN

where we used the notations

Ok,

)

Ng Ng N
Z |fl>:,iflvj|27 Ok = Z Z ‘f;:k)\m|2- (3.71)

i,j=1 i=1 m=1

For a detailed proof, see Appendix 3.E.

This lemma provides us with upper bounds on the errors on A and C that
arise from shot noise. These errors translate into an error in f as defined in
Eq. (3.29), which can be estimated with the following lemma:

Lemma 4. Consider the linear equation
Af=C, (3.72)

where A is a a non-singular Ny X Ny -dimensional matriz and C an Ny -
dimensional vector. Let us introduce disturbances in A and C by A — A+ &R
and C'— C +&r, leading to the disturbed linear equation

(A+ER)f=C +¢r, (3.73)

where f is the solution vector under the disturbance, £ > 0 is a real scalar, R is
an Ny x Ny dimensional matriz and r is an Ny dimensional vector. Then, we
can write the following estimate:

[Eikil Irl ., IR ,
S ((;|| + ||A|> +0(&%) (3.74)

where k(A) := | A||||AY|| is the condition number of A.

We give a proof of this lemma in Appendix 3.F.
If A is invertible, we can identify f = A~'C, and can apply this theorem to
get:

1 = FIl < 1A Cllen(A) (H n HZH) o) . (3.75)
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3.5 Analysis of the variational quantum algorithm

In order to apply the theorem to our analysis above, we are defining R =
{O—k,l}llc\{}/:p r = {Uk}i\gl and

13 N (3.76)
If in a specific instance, A is singular, it is not possible to invert it and thus
apply Lemma 4. However, one can apply a regularization procedure by deviating
the matrix elements of A slightly in such a way that it becomes non-singular.
This will be leading to an additional error which, as we described in Sec. 3.2.3, is
one of the error sources we are not taking into consideration in our analysis. For
a way of dealing with this issue, see techniques used in Ref. [26, 116, 128, 152].
Taken together, we arrive at the following number of total circuit evaluations,
combining Egs. (3.39), (3.46), (3.62), (3.75), and the results of Thm. 3.5:

Neire = NP sN{» Ny Ng(Ny Nq + N) (3.77)
—2
5
N((s) — 9722 egalget _ ( T )erl KLIJ)%M
" 2 @ 5 3
b (14 PV s))N’ N R s)
(3.78)
1 A (el IR 2
z=ATC < + + 0% (3.79)
Vi \diel 1Al
b T\°
F NT’ = 1 L max xNr —-1). .
( S) Amazx (< + fy@ NT> ) (3 80)

To provide further details and to make the analysis concrete, in Sec. 3.5.3,
we select a specific toy model as a representative example. We estimate the
quantities ||A|, [|C||, |A~*C|, k(A) and Ly, based on this toy model and in
Sec. 3.6, we will estimate ||R||, ||7||, @mazs Dmaz, K, M and L, for general
Runge-Kutta methods and a chosen Ansatz.

3.5.3 Estimations based on a toy model

In order to apply the error and resource estimates from Sec. 3.4 in practice
(such as we do in Sec.3.6), we need to make estimates on several quantities.
Especially challenging is the estimation of the condition number x(A), ||A],
|C|| and ||[A=1C|| that are needed for the estimates on shot noise as derived
in Sec. 3.5.2 and the estimation of the Lipschitz constant Ly,, as defined in
Eq. (3.37).

As those quantities depend on A and C', we are taking the following consid-
erations: Both A and C depend on expectation values from quantum circuits
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as written in Eq. (3.65). The parameters 0(7y;) at specific time steps i vary a
lot depending on the instance being solved. Since the expectation values that
constitute the coefficients of A and C' are depending on these parameters as
well as the chosen Ansatz, it is non-viable to estimate them in general.

However, motivated by the fact that expectation values of parameterized
quantum circuits defined as in our chosen Ansatz (see Eq. (3.18)) resemble
truncated Fourier series (see Refs. [67, 154]), we simulate plausible coefficients
of A and C according to the following toy model:

Let us assume that each of the elements Ay, ; and Cj, take the form of functions

wy () and wy(0) in one input parameter @, respectively:

wk,l(é) = Qo k COS(OQ’k)lé + Otg)/w) + Qq sin(ozak,gé), (3.81)
wi(0) := oy cos(ag,ké + azp) + agk sin(a57k§) . (3.82)

We are choosing the amplitudes aq 5, a1x and ag g, o, to be randomly
drawn from the Gaussian distribution N (1,0.1), and the phases as 1, a2k and
a1, a5, and phase differences s k1, asx to be randomly drawn from the
Gaussian distribution A(0,0.1).

Condition number and norms on A and C

In the literature, it is often assumed that the condition number of a matrix
scales polynomially in its dimension [155]. If this assumption holds for the
Ny x Ny-dimensional matrix A, there exists a constant I', such that with high
probability, the following bound holds:

K(A) < NE . (3.83)

In order to find out if this bound also holds if the coefficients of A are sampled
according to the toy model as described above, we plot such x(A) and the
functions N2, N3 and Ni for varying Ny in Fig. 3.2.

Most of the condition numbers lie above the threshold N‘Q,, while for Ny > 10,
most condition numbers lie below the threshold N‘?}. Typically, more than 10
parameters are chosen in applications of the variational algorithm (We are using
Ny = 25 in our numerical analysis in Sec. 3.6). In rare cases, A constructed by
the toy model is ill-conditioned, and «(A) significantly exceeds those bounds.
As described earlier, those cases can be mitigated by a regularization of A with
the drawback of introducing an additional error.

We therefore assume that the bound in Eq. (3.83) holds with high probability
for our toy model, with the constant I' = 3.

Analogously, we estimate the norms || Al|, ||C|| and ||[A=1C|| based on A and
C that follow the introduced toy model. In Fig. 3.3, we plot those norms and
the functions fi(Nyv) = Ny and fo(Ny) = /Ny for varying Ny .
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Figure 3.2: A log plot comparing the condition number obtained from the toy model
with 6 = 1/2 and different upper bounds due to NZ, N and N{. We sampled 100
different matrices A according to the toy model and calculated the resulting condition
number for each sample. The orange line shows the median and the gray shaded
area shows the range between the 0.16 and 0.84 quantiles of the condition number
estimates. We used the Frobenius norm.

We see that it is reasonable to assume the scaling ||A|| = O(Ny) and ||C] =
O(v/Ny). For ||A~1C||, we cannot make similarly reasonable estimates due to
the high fluctuation. However, we can assume an upper bound ||[A~1C/| < 60,
which holds with high probability in the number of parameter range Ny €
[0,100]. Similar to managing the condition number, it is also possible to enforce
this bound by a regularization of the matrix A.

The above analysis on estimates and bounds for k(A), [|A], ||C|| and ||A~1C|
included into the estimate in Eq. (3.46) leads to the following inequality to hold
with high probability:

If—fll <6<

\/JT

Hence, we conclude the following upper bound for ¥ (see Eq. (3.46)) with high
probability:

Nv
Nv<||{oj]}% N Il{ak}lv}j,z—l") (3.50

o II{UkJ}iV,%“) _ (3.85)

2<\f ( VNy Ny
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Figure 3.3: A plot comparing the norms ||Al|, ||C|| and ||A~'C|| obtained from the
toy model with the functions fi1(Ny) = Nv and f2(Nv) = +/Ny. In order to estimate
|A=*C||, we did 100 samples for A and C and calculated the resulting norm for each
sample. The orange line shows the median and the gray shaded area shows the range
between the 0.16 and 0.84 quantiles of the estimates for ||[A~'C||. For ||A||, we used
the Frobenius norm and for ||C|| and ||A™*C|| the 2 norm.

Estimation of the Lipschitz constant

We have seen in Sec. 3.4, that the Lipschitz constant Lz, of f(6(7)) with respect
to the O(7) has a direct influence on the error and resource estimates. In fact,
as we will see in Sec. 3.6, the sensitivity of the total cost is higher with L,
than with most of the other parameters. Let us therefore analyze the Lipschitz

constant for the variational algorithm described in Sec. 3.2.2. In this case,
f(@(7)) is defined as

F(6(r)) = f(6(r)) == A1 (8()) C (6(7)) , (3.86)

and the Lipschitz constant L, turns into the upper bound

1 (61(r)) — f (B2(r))]
bv = e, — o)

We are again modeling the matrix A and the vector C' with the toy model
described in Egs. (3.81) and (3.82). This toy model has a single input variable
0 instead of an Ny -dimensional vector 0(7). Let us vary this parameter, while
we keep the other (randomly drawn) parameters of the toy model fixed, and

V01 (7),02(7) . (3.87)
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define the following function:

(3.88)
We show two 3D plots of this function, with varying 6, and 6 and fixed

dimensions of A and C with Ny = 25 in Fig. 3.4. For each of the two plots,
the random toy model parameters are drawn independently.

Figure 3.4: The function Lip (51, ég) defined in Eq. (3.88) plotted for two different
drawings of random matrix and vector parameters according to the toy model from
Egs. (3.81) and (3.82). We fixed Ny = 25 and varied the parameters §; and 6
between 0 and 10.

At the gray areas, the function Lip (9~1, 52) exceeds the value of 15. We see
that in order to be able to bound Lip (61, 62) from above by a Lipschitz constant
Ly, one has to guarantee that at each update step from 6, to 65, the function
Lip (él, ég) stays inside the region below the threshold Ly, = 15. It is possible
to take higher estimates for Ly, and create possibly larger areas for valid 6,
and 0,. However, this comes to the account of less tight error and resource
bounds in Thms. 3.4 and 3.5.

Interestingly enough, the function Lip (51, 0~2) keeps similar patterns for chang-
ing the mean and the variance of the distributions from which the amplitudes
of the toy model are drawn. However, it shows an increasingly more rugged
landscapes for both increasing the mean and the variance of the random distri-
butions of the phases of the toy model. As expected, the function Lip (61, 6,)
behaves periodically with respect to the phase difference parameter of the toy
model, with the period depending on the phases.

Under the assumption that the toy model we chose models the behavior of A
and C sufficiently well, we use the estimates for x(4), ||A], [|C]|, |A~1C|| and
L, derived in this section in order to concretize the error and resource estimates
from Sec. 3.4, and to numerically analyze them in the following section.
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3.6 Numerical analysis of the error and resource
estimates

In this section, we are numerically analyzing the error and resource estimates
from Sec. 3.3 and Sec. 3.4 for an application of the RKMs to solving a simple
ODE and for an application of the variational algorithm presented in Sec. 3.2.2
to solving a partial DE coming from finance.

3.6.1 Solving a classical ODE without shot noise

Let us analyze the cost function provided in Corollary 1 with a simple ODE:

00(r) _ 0(7) _
or 2 0(0)=1. (3.89)

This ODE has the exponential function 6(7) = exp(%) as a solution. We choose
this simple ODE, because it is easy to analyze and to estimate the corresponding
parameters that are used for the cost function.

Parameter estimation and sensitivity analysis for the classical ODE
solver

The Lipschitz constant Ly, is equal to 0.5. If we pick a final time T" = 5, then
the function f(6(7)) = 16(7) is upper bounded by M = 13. The derivative
of f(6(r)) with respect to 7 is equal to 0.25exp(47) (since we know 0(7) =
exp(%T)). Thus we can choose a Lipschitz constant Ly, = 3.1, which upper
bounds this derivative for times 7 € [0,T = 5].

It can be easily checked that the other bounds required in Thm. 3.1 hold as
well.

The approximation of b,,q, := max; |b;| is depending on the chosen Runge-
Kutta method. While there exist Runge-Kutta methods that have coefficients
|b;] > 1, those are the exception as one can see by looking at several methods
(for example, in [140]).

To estimate the constant K, let us look at its definition [140, Chapter 318]:

K=Y ﬁ‘q>(t) -

[t|=p+1

, (3.90)

where t is a rooted tree of order |t|, the quantities o(¢) and ¢! are defined as
products of factorials, and lie between 1 and |¢|!. The quantity ®(¢) depends on
the coefficients of the chosen method. For a rigorous definition of these terms,
see [140]. As it is discussed in [140, Chapter 318], it is not possible to create a
general rule for estimating the terms in K. However, what can be said is that
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the number of terms in the sum, the number of unlabeled rooted trees with p+1
nodes, is asymptotically equal to [156] 0.439 - 2.956P+1 - (p+1)~3/2 . This series

scales exponentially in p. Thus, if the summands ﬁ ®(t) — < | were constant

1
!
in p, K would scale exponentially in p as well. However, in [140] it is said
that it is reasonable to assume that K is constant in A7. In Ref. [140, Chapter
244], several Runge-Kutta (and related) methods were developed for which the
corresponding error constants were estimated, all of which are upper-bounded
in magnitude by 1. In the following analysis, we therefore assume that K <5
holds with high probability. But, as we will see later, the total cost does not
change as much in the parameter K as it does in other parameters, and we
found that the implications of our work still hold qualitatively with a pessimistic
upper bound of K < 0.439-2.956P1 - (p+1)73/2. Let us further choose a target
error of €yqpger = 0.001.

We collect the estimates for the analysis in this section in Table 3.2. Based

Parameter | Estimate
bmaw 1
Ly, 0.5
T 5
K 5
Lyr 3.1
M 13
€target 0.001

Table 3.2: Estimates of various parameters that optimize the savings by using a
higher-order Runge-Kutta method instead of the Euler method. Used for the analysis
in Fig. 3.6.

on these default values, we are analyzing the sensitivity of the total cost on
tuning the parameters in Fig. 3.5. We show how the total cost changes when a
single default value is multiplied with a scaling factor, whereas the remaining
parameters are kept at default. We see that the cost does go down for higher-
order Runge-Kutta methods and that the parameter with the most effect is the
total time T, the Lipschitz constant Ly¢,, the parameter b;,,, stemming from
the Runge-Kutta method and the total target error €iqrget. The spike in the
cost at order p = 6 is due to the non-linear relationship between the order of
the method and the number of stages (see Table 3.1).

Numerical analysis of the classical ODE solver

Using the parameters estimated above in Table 3.2, we estimate the total cost
for Runge-Kutta methods of different orders. For the relation between the
minimum number of stages s needed for a particular order p, we use Table 3.1.
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Figure 3.5: A plot comparing the sensitivity of the cost function with respect to
different parameters. The intersecting point in the middle is the value of the cost
function where all parameters are chosen default as given in Table 3.2 as well as p = 2
as a default. In each graph, we are changing one parameter, while keeping all the
other parameters at default. We are changing the parameter by multiplying with the
scaling factor x given as the abscissa. The graphs for M and K overlap as well as
the graphs for Ly, and bmax. The continuous red line for p is just for visualization
purposes, as p is integer.

We show the results in Fig. 3.6. On the left hand side is a table with the
cost depending on the order and the ratio of the Euler method compared to a
Runge-Kutta method of order p. On the right hand side, we plotted this ratio
depending on the Runge-Kutta order. We see that for our particular example,
all methods of order 2 < p < 10 are more cost efficient than the Euler method,
where a Runge-Kutta method of order 4 is the most cost efficient with savings
of a factor of ca. 10® compared to the cost of the Euler method. There is a
second spike for the order p = 6, because of the non-linear relationship between
the order of the method and the number of stages as shown in Table 3.1.

3.6.2 Solving a linear PDE with the variational quantum
algorithm

We are numerically analyzing the estimates from Sec. 3.4 and Sec. 3.5 for an
application of the variational algorithm presented in Sec. 3.2.2 to solving the
Black Scholes model, which is a linear partial DE coming from finance. The
motivation for choosing this model is twofold: On the one hand, we are using
this example in order to specify the estimates done in previous sections and
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D cost(p) cost(1)/cost(p) NO
1 ] 2.25 x 107 1.00 2.25 x 107
2 | 9.60 x 10* 2.35 x 102 4.80 x 10*
3 [ 1.99 x 10* 1.13 x 103 6.63 x 103
4 | 1.01 x 107 2.22 x 103 2.54 x 103
5 | 1.38 x 10* 1.64 x 103 2.29 x 103
6 | 1.03 x 10* 2.18 x 103 1.47 x 103
7 | 1.36 x 10% 1.65 x 103 1.52 x 103
8 | 1.71 x 107 1.32 x 103 1.56 x 103
9 [ 2.07 x 107 1.09 x 103 1.60 x 103
10 | 3.33 x 107 6.76 x 102 2.08 x 103
1075
21
*g ,
105+
10*"

2 4 6 8 10

Runge-Kutta method order p

Figure 3.6: Comparison of the cost for different RKM orders, where the estimated
parameters are fine tuned to maximize the savings by using a higher order as given
in Table 3.2. In the first column, we have the Runge-Kutta method order p. In the
second column is the total cost of an algorithm that uses a Runge-Kutta method of
order p, in the third column the ratio of an algorithm that uses the Euler method
(p = 1) with an algorithm that uses a Runge-Kutta method of order p, and in the
fourth column is the minimal number of time steps Nﬁo). In the plot, we show the
cost, which is calculated according to Corollary 1, plotted against the order of the
Runge-Kutta method.

in showing the consequences of the choice of RKMs on the total cost. On the
other hand, we are using this example to stress the wide range of DEs on which
the variational algorithm presented in Sec. 3.2.2 can be applied to.
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Black Scholes model and error analysis

Let us begin with describing the problem of option pricing and the application
of the variational algorithm to it. This application has been studied before in
several ways [26, 127, 128, 132].

A European call option is used in practice in the following way: Initially, at
time ¢ = 0, an option is acquired, specifying a particular underlying asset, an
expiration time ?f;nq, and a strike price K. When time reaches t = t¢;,q1, the
option buyer faces a decision: whether to exercise the option by buying the
asset at the strike price K or to refrain from exercising it. The buyer’s rational
choice at time tf;nq; is determined by the price S(tfinai) of the underlying asset
at that moment. If S(ttina) > K, indicating that the final asset price exceeds
the strike price, the buyer can use the option to purchase the asset for the
price K and immediately sell it at the higher market price of S(finq) in an
ideal market. This transaction results in a profit of S(¢inq) — K for the buyer.
Conversely, if S(tfina) < K, the buyer would not choose to exercise the option
by purchasing the asset since they would not be able to generate a profit from
selling it in the market.

One can conclude that the payoff of the buyer is equal to

V(ttinai; S) = max{S(tfina) — K,0} . (3.91)

Since the stock price at time ¢f;n4 is unknown, one models the stock price
stochastically. A simple model is the so-called Black-Scholes model which
characterizes the stock price S(t) as a stochastic variable that follows a geometric
Brownian motion:

dS(t) = pS(t)dt + o S(t)dW, (3.92)

where p is the drift of the stock price, o is its standard deviation (called
'volatility’) and the random variable dW; is a Wiener process. The arbitrage
assumption states that it is impossible to build a portfolio which gives positive
return without risk. By incorporating this assumption and using It6 calculus,
the stochastic DE in S(¢) is transformed to a parabolic partial DE (PDE) that
models the price of a call option V (¢, S):

1 2
%‘t/ + 50252% + rsg—‘; =rV. (3.93)
This PDE is called the Black Scholes equation. The parameters of this model
are the volatility o of the stock price and the risk-free interest rate r. Both are
assumed to be independent of time. The Black Scholes can be mapped to the
imaginary time Schrédinger equation with the following transformations:
Applying the transformations 7 = (¢ fina —t)o?, z = log(S), and subsequently
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u(r,x) = e~V (7, z) with the parameters a = 3 — % and b = —3a* — %,
where u(7, z) is a modified price, one obtains [26]:

0 102

Eu(T, x) = 3922 u(T, x) . (3.94)

Note that 7 € [0, T], where we write T' =t finalag. This equation is equivalent
to the imaginary time Schrédinger equation in Eq. (3.15), where |[¢(7)) is a
quantum state representing the option price and H = —%88—;2 is the Hamiltonian
operator. Solving Eq. (3.15) is hence equivalent to solving the Black-Scholes
equation in Eq. (3.93) after reversing the transformations.

We can interpret the state with the option price in the following way:

Consider a register of n qubits. On this chain, we define a set of 2" pairwise
orthogonal states {|z)},. We select an interval of possible stock prices and
discretize the interval into 2™ points. Consequently, we associate the basis states
with stock prices, where the state |O>®n corresponds to the minimum stock
price, and the state |1)" corresponds to the maximum stock price of the chosen
interval.

The quantum state from Eq. (3.16) encodes the option value corresponding
to a particular stock price in the amplitudes of |¢)(7)) in the following way:

WJ(T» = Z V pI(T) |l‘> ) pr(T) =1, Vv (3'95)

The boundary condition is p,;(0) = v(0)V(0,z)e~**, where ¥(0) is the nor-
malization constant and V(0,z) is the option price at time 7 = 0. Thus, by
obtaining the probability p,(7) at time T =t fmalag for a particular stock price
x = log(.9), the corresponding option price can be calculated as:

V(tfinat, @) =7 (T)pe(T)e H0trinac (3.96)

In the following subsections, we are estimating the parameters based on the
application of the variational algorithm to this option pricing use case and do a
numerical analysis.

Parameter estimations and sensitivity analysis for the variational
quantum algorithm

We are now making educated guesses for the parameters that are related to the
use case of option pricing as described above and analyze the sensitivity of our
error and resource analysis from Sec. 3.4 with respect to these parameters. In
this and the following section, we use the symbol ~ for approximations of a
term with a scalar, including rounding errors.

In several papers [26, 127, 128, 132], the application of the variational al-
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gorithm as described has been applied to option pricing. We are basing our
parameter estimates on Ref. [26, Sec. 5.1.], where the authors take an Ansatz
with the parameters N = 16, Ny = 25 and Ny = 1. That means that the
matrix A is a 25 X 25 matrix, the vectors C' and @ have 25 elements, as well as
the matrix oy ; and the vector o;, that we defined in Lemma 3. We take the
probability 7 from the same lemma equal to n ~ 0.05.

A typical total time ¢f;nq; in option pricing is one year and a typical volatility
is 0 = 0.2 1/year®. Thus, tfina - 02 =T ~ 0.04.

In Ref. [26, Chapter 3], the parameters fi ; are defined as f = i/2. With this,
let us approximate the perturbations ||oy ;|| and ||og]|:

It makes sense to see them in terms of the maximal deviation of individual
entries. Given f = i/2, they are for the matrix equal to N7 -1/2-2 and
for the vector NgN - 1/2-2. Thus, we assume the total norms to scale as
||0';€7l|| < Nde2 -1 and |log]] < Ny NgN - 1.

For approximations of the parameters a,mqz, bmazr and K, see our discussion
in Sec. 3.6.1. We pick now the parameters amqz = bmaz = 1 and the K = 5.
But as above, we see later that N.;. does not depend strongly on K and our
results are still qualitatively valid for a large variety of K.

In line with the discussion in Sec. 3.5.1, we estimate the Lipschitz constant
L4, to be equal to Ly, = 15, the condition number to be upper bounded as
k(A) < N$ = 15625 and M = 60 with the caveat of having to assure the
toy model is chosen adequate enough and the bounds can be guaranteed by
regularization to satisfy these bound.

We are also estimating a probability coming from the shot noise of n = 0.05.
Combining the estimates, we are therefore getting with high probability the
upper bound

60 NyNyN  NyN?2
Y < —N? ( d) ~ 3.4 x10% . 3.97
i o Ny (3.97)

The parameter Ly, is defined as an upper bound to the time derivative
of f(0(7)). Since the time dependence of f is fully carried via the function
0(7), we can apply a reasoning similar to that for estimating Ly,. We assume
that the same behavior and the same bounds hold and, therefore, estimate
Ly, =Ly, =15.

We cannot determine if the other bounds hold that are required in Thm. 3.1,
since we do not have full knowledge of the function f (6(7)).

For estimating the quantity S as defined in Eq. (3.61), we need to take the
following into account: We estimate that for all 1 < k < Ny, |0;(T)| ~ %.
Together with taking fi ; = i/2 as above, we get S ~ 1.

Lastly, we are choosing a target error of €;qrget ~ 0.001 . Let us thus make
the following estimates, collected in Table 3.3:

Let us now show a plot where we examine the scaling of N.;.. with respect
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Parameter | Estimate
Omax 1
bmax 1
Ly, 15

T 0.04
K 5
Lyr 15
M 60
S 1
X 3.4 x 108
€target 0.001

Table 3.3: Estimates of various parameters based on the option pricing application.
Used for the analysis in Figs. 3.7 and 3.8.

to the input parameters. It is difficult to make general statements about the
scaling of Ng;.. from Eq. (3.62), since it does not have a trivial form, thus a
look at a plot helps with understanding its scaling. We take as default the
parameters estimated above and analyze in Fig. 3.7 the deviations caused by
changing a single parameter away from the default.

We conclude from this figure, that N.;.. does not change much for the
parameters amqyz, M, Lf-, K and 3. As it was proved impossible to estimate
K in a general way, it is promising to see that our estimate of N.;.. does not
scale with it as much as with other parameters.

In addition, Ne;r. changes faster for the parameters p, T', bnaa, €rarget, and
Ly,. For p in particular, we see that a minimum of N, is reached for a value
higher than for p = 1. We will examine the behavior with p with more detail in
the next section.

Numerical analysis of the variational quantum algorithm

For the numerical analysis, we use the parameters given in Table 3.3 that
are fit to the option pricing use case in order to calculate Ng;.., which is the
total number of circuit evaluations needed for the algorithm. As we mentioned
in Sec. 3.6.2, the parameter K is the most challenging to estimate. For this
analysis, we choose K = 5. A comparison of the costs of algorithms based on
Runge-Kutta and Euler methods is given in Fig. 3.8. We see that the highest
saving in N.;.. compared to the Euler method can be done with a Runge-Kutta
method of order p = 2.

To reach a target error of €4rger = 0.001, we need an NT((;) ~ 10?2, which is
equivalent to requiring classical machine precision for the entries of matrices

A and vectors C (e ~ 1/4/ N9 ~ 5 x 10712). The total number of circuit
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Figure 3.7: A plot comparing the sensitivity of N with respect to different
parameters. The intersecting point in the middle is the value of Ng;r. where all
parameters are chosen default as given in Table 3.3 as well as p = 2 as a default. In
each graph, we are changing one parameter, while keeping all the other parameters at
default. We are changing the parameter by multiplying with the scaling factor x given
as the abscissa. The following colors are corresponding to N¢ir. with one parameter
changed: p, €iarget, Lfr, M and K, T, Gmax, bmax, Lfy, 2, where x is the scaling
factor at the abscissa. The graphs for M and K overlap. The continuous red line for
p is just for visualization purposes, as p is integer.

evaluations N is equal to 1.62 x 10%8.

In Ref. [18, Supplementary information VIA], the time that the supercon-
ducting Sycamore chip can be used before having to be recalibrated is around
1 day. That implies that all calculations have to be done in at most 24 hours.
The time for one readout of the Sycamore chip takes around 4pus [157]. That
means that it is possible to evaluate around 2 x 10'° quantum circuits.

It is obvious that the high accuracy is needed because of the inversion of
the matrix A and the resulting error propagation. The number Nr(é) given in
Thm. 3.5 depends quadratically on the factor ¥ estimated in (3.97) to be upper
bounded with high probability by 3.4 x 108. If it was possible to reach a bound
> < 1, the number Nrw) would decrease to the order 107 which would be feasible
for quantum hardware, .

In order to illustrate the potential resource savings that can be gained by
choosing a higher-order RKM instead of the Euler method, we provide a second
analysis based on a different choice of parameters provided in Table 3.4. This
choice is inspired by the estimates in Table 3.3, changing some of the parameters
within reasonable ranges in order to increase the resource savings. The resulting
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resource requirements are shown in Fig. 3.9. We conclude that by choosing
a Runge-Kutta method of order p = 4, there have to be done a factor of
~ 2.56 x 103 less circuit evaluations than when choosing the Euler method.
However, the number of shots for each circuit (N\°) ~ 1.98 x 1026) is still too

high in order to be realized on any quantum hardware.

p Ncirc(p) Ncirc(l)/Ncirc (p) N7§5) N7€6) Circuits
1 | 213 x10%° 1 7.03 x 10%T | 2.96 x 10% | 3.03 x 107
2 | 1.62 x10%8 13.18 3.87 x 10%2 | 2.04 x 10% | 4.19 x 10°
3 [ 1.75 x 102 12.21 1.53 x 1023 37.06 1.14 x 10°
4 |3.31x10% 6.45 5.19 x 1023 15.55 6.38 x 104
5 | 3.38 x 10% 6.31 x 10~ T 5.48 x 10%2 10.03 6.17 x 10%
6 | 7.79 x 1029 2.74 x 1071 1.56 x 10%° 6.96 4.99 x 10%
7 | 7.49 x 1030 2.85 x 1072 1.41 x 1028 5.74 5.30 x 104
8 | 7.00 x 1031 3.05 x 1073 1.25 x 10%7 4.98 5.62 x 107
9 | 6.45 x 1032 3.31 x 1074 1.08 x 108 4.47 5.96 x 10%
10 | 2.16 x 103* 9.9 x 106 3.03 x 10%° 4.33 711 x 10%
5x10%
= 2x10%° -
5 1x10%
b4
5x10%8 "
2x10%
1 2 3 4 5 6

Runge-Kutta method order p

Figure 3.8: Comparisons of the resource requirements for different RKM orders, for
the parameters in Table 3.3, applicable to the option pricing application. In the first
column, we have the RKM order p. In the second column is Ne;re of an algorithm
that uses a RKM of order p and in the third column the ratio of Nci,. of an algorithm
that uses the Euler method (p = 1) with N¢ire of an algorithm that uses a RKM of
order p. In the third, fourth, and fifth columns we show Nr(‘s), the number of time
steps N*) and the number of different circuits. In the plot, we show Neire(p) plotted
against p. The total number of circuit evaluations N;. is calculated according to
Eq. (3.62).
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p Neire (p) Ncirc(l)/NciTc(p) Nﬁé) N7('5) Circuits
1 [ 1.12 x 10%7 1 1.15 x 10%° | 9.56 x 10% | 9.80 x 10!
2 | 2.63 x 1032 4.28 x 102 3.93 x 10%° | 3.26 x 10° | 6.68 x 108
3 | 6.33 x10%3 1.78 x 103 9.57 x 10%° | 2.15 x 107 | 6.61 x 107
4 | 4.39 x 1033 2.56 x 103 1.98 x 1026 | 5.41 x 105 | 2.22 x 107
5 | 1.00 x 103* 1.12 x 103 6.78 x 1026 | 2.40 x 10% | 1.48 x 107
6 | 1.11 x 1031 1.01 x 103 1.14 x 1027 | 1.36 x 10° | 9.76 x 10°
7 | 2.60 x 103* 4.33 x 102 3.06 x 1027 | 9.22 x 10% | 8.50 x 10°
8 | 5.90 x 1034 1.91 x 102 7.61 x 10%7 | 6.88 x 10% | 7.75 x 10°
9 [ 1.33x10% 84.69 1.82 x 10% | 5.47 x 102 | 7.29 x 10°
10 | 4.92 x 10% 22.87 6.48 x 1028 | 4.63 x 102 | 7.59 x 10°
1037 L
1036 L
=
°
3 1035,
1034 L
2 4 6 8 10

Runge-Kutta method order p

Figure 3.9: Comparison of Nci.. for different RKM orders, where the estimated
parameters are fine-tuned to maximize the savings by using a higher order p as given
in Table 3.4. In the first column, we have the Runge-Kutta method order p. In the
second column is Ng;r. of an algorithm that uses a Runge-Kutta method of order p
and in the third column the ratio of N¢ir. of an algorithm that uses the Euler method
(p = 1) with Ngire of an algorithm that uses a Runge-Kutta method of order p. In
the third, fourth, and fifth columns, we show the number of shots per circuit NT(‘;),
the number of time steps Nﬁé), and the number of circuits. In the plot, we show
Neire(p) plotted against p. The total number of circuit evaluations N¢irc is calculated
according to Eq. (3.62).

3.7 Conclusions

In this chapter, we developed error and resource estimates of variational algo-
rithms for solving differential equations based on Runge-Kutta methods. In
particular, the estimates depend on different parameters that come from both
the chosen method and the differential equation at hand, and depend on both
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Parameter | Estimate
Omax 1
bmaz 0.5
Ly, 0.1

T 4
K 20
Lyr 15
M 60
S 1
X 3.4 x 108
€target 0.001

Table 3.4: Estimates of various parameters that optimize the savings by using a
higher-order Runge-Kutta method instead of the Euler method. Used for the analysis
in Fig. 3.9.

the error from the Runge-Kutta method and the error that comes from shot
noise in the noisy evaluations of the differential function. Additionally, we
performed numerical simulations of the minimal resources required for both
solving a simple ODE by using Runge-Kutta methods without shot noise and
for solving a variational algorithm applied to a linear PDE from option pricing.
This shows that our method is not restricted to ODEs but can also be applied to
solving partial or stochastic differential equations. Furthermore, the algorithms
we analyzed are based on the variational quantum algorithms for solving real
and imaginary time evolution [116, 117]; our analysis can therefore be directly
applied to them.

Our results suggest that depending on certain parameters, such as the dif-
ference between initial and final time, Lipschitz constants of the differential
function, and target error, the resource requirements change drastically.

Moreover, we show that for the particular ODE that we solve in the case
without shot noise and a chosen target error of at most €;4rger = 0.001, a
fourth-order Runge-Kutta method is the most resource-efficient, while for the
option pricing use case solved by a variational quantum algorithm and the same
target error of €qrge¢ = 0.001, the most resource-efficient method is a second-
order Runge-Kutta method. By choosing these methods, we can minimize the
total cost by a factor of 2.22 x 103 for the first case and the total number
of quantum circuit evaluations by a factor of 13.18 for the option pricing use
case. For solving the option pricing PDE, even when using a Runge-Kutta
method with the order of p = 2, we estimated that the algorithm needs at least
1.62 x 10?8 evaluations of quantum circuits in order to compute the option price
at final time with a maximum error of €;4rge: = 0.001 in trace distance. In
practical scenarios, the state has to be read out, and therefore the total resource
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requirements will be even higher.

However, our results are worst-case estimates that guarantee staying within
the target error, while in practice, one might expect to achieve them with lower
resource requirements for sufficiently well-behaved functions. In particular,
Lemma 4 gives an upper bound for errors induced by solving linear systems.
But even for ill-conditioned problems, a smaller error is possible in practice (see
for example Ref. [158]). Also, the estimates in Secs. 3.5.3 and 3.6 are upper
bounds that can in general be tightened for specific problems at hand.

The PDE chosen in our use case, the Black-Scholes equation, can be solved
analytically, so only more complicated dynamics are of practical interest. Con-
sidering this and the fact that a requirement of at least 3.87 x 10?2 evaluations
for each of the 4.19 x 10° quantum circuits (of which only 10 can be run in
parallel, see Sec. 3.5.1) is unrealistic on current quantum computing platforms,
our results are rather pessimistic for practical implementations of this algorithm
in option pricing. As discussed in the previous section, this high requirement of
quantum circuit evaluations mainly stems from the error-propagation of invert-
ing a matrix of estimated observables. This leads us to question the general
feasibility of the underlying quantum algorithm. However, related approaches as
proposed in Refs. [119] and [120] which do not require matrix inversion, might
therefore require a much lower number of quantum circuit evaluations.

We show that by tuning the parameters in the variational algorithm and
therefore reaching realms outside of this use case, we can get a saving factor
of 2.56 x 103 by choosing a Runge-Kutta method of order p = 4 instead of the
Euler method. This suggests that after careful analysis of the parameters, one
can choose a Runge-Kutta method that minimizes the resource requirements.

Our analysis had a number of limitations, which however likely do not make
matters better. We do not analyze possible stability issues of the differential
equations, because it proves very challenging to include them in the estimation
of the variational algorithm and the option pricing use case. However, for a full
picture of the error and resource analysis, the stability of methods and DEs has
to be considered. We neglected possible representation errors that stem from
the quantum circuits not being able to approximate a state that encodes the
option price and which can capture the dynamics of the variational parameters
satisfyingly. In practical scenarios, these have to be taken into account and can
possibly be estimated depending on the chosen quantum computing platform
(see for example Ref. [131]). Further, we assumed circuit error such as gate
infidelity, bias and SPAM errors to be negligible, as well as errors introduced to
potentially necessary matrix regularization of the matrix defined in Eq. (3.27).
However, as long as when adding those sources of errors, our error bounds (for
example in Eq. (3.84)) still hold, our results can be applied to these scenarios
as well.

It might be possible to tighten our estimates in a few different ways. Recent
works [135, 152] showed how it is possible to decrease the number of state
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preparations for estimations of the matrices A from scaling as O(NZ) to O(Ny)
at the cost of accuracy of the matrix entries. Combining these results with
our analysis might further decrease the total resource requirements. Several
bounds in our analysis are not tight and could show to be overly pessimistic
in real scenarios, like the local truncation error of the Runge-Kutta method
(Thm. 3.1) and the bounds and estimates on the shot noise (Lemma 3 and
Sec. 3.6.2). Further, the resource requirements can possibly be decreased by
using linear multistep methods that only use one new stage per time step and
reuse evaluations from previous time steps. Adapting our analysis to these
methods can give new insights into a comparison of Runge-Kutta methods and
linear multistep methods.

Since the shot noise error introduced for the analysis in Sec. 3.4 is Gaussian
noise, it might give further insight to formulate the differential equations as
stochastic differential equations and to analyze the error and resource require-
ments within this framework.

It might be promising to apply this framework to use cases that use Runge-
Kutta methods and have similar error sources, such as quantum algorithms
for solving other differential equations or to classical algorithms that are using
noisy data, which so far has been barely examined. Also, it might be possible
to apply this analysis to the training of neural networks [159].

3.A Proof of Theorems 3.2 and 3.4

Proof. Let us denote the RKM calculated 6,, with an error-carrying f at time
step n as €,. Calculating the LTE in 6,,, we assume that it is calculated from
a noiseless 0(7,_1). For an s-stage RKM 8,, is calculated by:

N

0, =0(1,—1) + AT Z bik; (Tn,l; 0(Thn-1); {l%m};;:ll) , (3.98)
i=1
where we write
fe1(Ta—1:0(10-1)) := f (Tn—1:0(10-1)), and
i—1
]Afi (Tn—l; O(7n—1); {I%m}ir::ll) = f <Tn—1 + AT 0(T-1) + AT Z aivm]%m> ’
m=1

for all i > 2,

and where we used the abbreviation k, by dropping the arguments.
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Thus, the LTE in the presence of noise is:

by i=0(72) = 6, = (7)) = 8(ru 1) = AT S biki (713000 -1); {n} i)
=1

(3.99)
We can immediately write
0y <O(10) — 6,46, —0, <l,+0,—0, (3.100)

where the noiseless LTE /,, can be upper bounded by the bound in Thm. 3.1.
Let us define the global truncation error of an RKM with s stages and n time
steps in the presence of noise as:

bn = 0(m) — éo - ATii bik?i (Tr_l; éT_l; {l;:m ;n_:ll> , (3.101)

r=11i=1

where we write

%1 (TT 17 A ) f(Tr 13 A 71) ) and
i—1

kt:i (7—7‘71; érfl; {];m}:‘;:ll) = f <Tr1 + ¢ AT; é’l"*l + AT Z ai,m];m> ’
m=1

for all i > 2,

and again use the abbreviation Fo, by dropping the arguments. We write the
superscript f instead of f in order to distinguish the noisy evaluation with noisy
inputs with the noisy evaluation with noiseless inputs. They both however carry
the error § compared to the noise-free case, as written in Eq. (3.46). Recursively,
we get:

g1 — b = Uit + ATXS:bi (12:1 (Tn, (Tn); {km}m 1) —k (Tn; 6., {I?:m}:;zll)) .

i=1
(3.102)
Taking the absolute values from the latter equation, we get
entall <llénll + 1Zn] (3.103)
5
+ A7 i (73 00 Lo Yoty ) = o (7 0 T Yoy ) |
- (3.104)
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We assume that the function f(7,0(7)) satisfies the Lipschitz condition:

Hf(TmH(Tn)) — f(Tn, én) (Tn) — én” ) (3.105)

and that the noise evaluations are upper bounded by

i — kil <6 (3.106)
i = kll < 6. (3.107)

We introduce the notation
(Tn, Tn); {km} ) -y (Tn; én; {lém};::H) H . (3.108)

Using the triangle inequality, we get
Sl = Hi%l (Tn; H(Tn))) - ];1 (Tn§ én)

< [ (a0 — b s 0G| + b1 (70 80) — o (726

‘ (3.109)

+ |[Fr (73 0())) = k(7360 | (3.110)
<26+ Ly |lén]l. (3.111)
Again using the triangle inequality, we get for S;, i > 2:
_ % . g i—1 . . .y i—1
o= s (730 Lon Yty ) = i (7300 {km}mzl) | e
i <Tn; én§ {E'm i;:ll) kz (7-7“ 0,; {km m= 1) H (3114)
i (73 0(m); U by ) = i (73 00 U b )| (3.115)
i—1
<25+ Ly, |0(r,) - 6., S Lyylaim] Hkm - z%m‘ (3.116)
m=1
1—1
<26+ Lyyllénll + A7 Y Lyylaim|Sm (3.117)
m=1
i—1
<81+ AT Y Lyylaim|Sm - (3.118)
m=1
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Then, we can write the upper bound of the error of the s order RKM as

ensall < lénll + [1nsall + ATZ |6i] S (3.119)

i=1

where from the above analysis, we obtained the following recursion:

81 <26+ Lyylén] (3.120)
i—1

Si <81+ AT Lpylaim|Sm, Vi >2. (3.121)
m=1

Let us use that |a;;| is upper bounded with @eq = max; ; |a; ;|. Then we can
write:

Sy <25+ Lyy|énll (3.122)
i—1
Si < S1+ ATLfyamaz | Smy  Vi>2. (3.123)

A proof by induction shows that for all i > 1,
S; <8 (1 4+ ATLfymar) ™. (3.124)

This result together with Eq. (3.119) gives us the error estimate:

ensall < el + Wnsall+ ArSy 37 Ibil (1 -+ AL pyamae) (3.125)
i=1
R A (1+ATLy maz)’ — 1
<&, Ly ATS1bmas Y 3.126
< [leall + s | + A8y A (3.126)
R R R 14+ ATLy0max)’ — 1
< eall+ (Il + (25 + gy )y LE 2 S0 mes) 2 1)
n Lfyamaw
<allé,||+8, forall s>1, (3.127)
where we used the notation
a=1+F(n+1,s), 5:7F<n+1 s) + max || 0y, (3.128)
Lyy "
F(n+1,s) a:‘;z << . 1> - 1) ;O =LyamasT, (3.129)



3.A Proof of Theorems 3.2 and 3.4

an the fact that A7 =T/(n+ 1) holds. . Because ||é&]| = 0, we get

n+1_1

(0%
— b (3.130)

lensall < =—

The error estimate of the LTE goes analogous to the error estimate of the global
truncation error. We can write

S

12l < €l + AT [b:|T; (3.131)
i=1
with the recursive relation
i—1
Ty =6, Ti:=Ti+Ar > Lpylaim| T (3.132)
m=1
Thus, we get the bounds
A 0
1nll < [1€n]l + L—F(n +1,s), fors>1. (3.133)
fy

Using these upper bounds, we can rewrite Eq. (3.130) as follows

n+1_1

o
el < S———p* 134
lensill < ———=—8 (3.134)
where
. 30
B = —F(n+1,s)+ max||{,]] (3.135)
Lty .

According to Thm. 3.1, we can bound the LTE /¢,, and get after N; :=n +1
steps the following error:

1 N, _ p+1
HéN-rH < ( +F(N778)) 1 ( 30 F(NT’S)+ (;5) KL];TM .

F(N-,s) Lfy
(3.136)

That ends the proof for Thm. 3.4, for which f(7,0(7)) = f(6(7)). One can see
that noise free case corresponds to § = 0, for which y(7,) corresponds to 6(7,)
and y, to 0,, which proofs Thm. 3.2. O
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3.B Proof of Theorem 3.3

Proof. Let us denote the upper bound of the noise free 6(0(% g as

€ta7'get T F(NT, S)

() (1 + F(NT, 8))N" -1 T
N,

p+1
) KL% M, (3.137)

To find N, we can solve the latter equation numerically. However, under the
reasonable assumption that © << N, we can use the following approximations

(C) ® sO e?
(NT+1> 1+NT+O<NTQ>, (3.138)
bmaz(sg) Nr bmaxsg
<amawN‘r + 1> ~ exp (amw ) , (3.139)
to rewrite
bmax S@ N, bmaxs@
F(NT,S) =~ amaxﬁ, (1+F(NT,S)) ~ exp <am> (3140)

Using this, we rewrite Eq. (3.137) in a way to obtain an approximate solution
N© given by Eq. (3.41). O

3.C Proof of Theorem 3.5

Proof. We model the shot noise with single shot variance ¥ and the number of
shots N,., so § = ¥£/+/N, holds. Solving the resulting Eq. (3.48) for N, we get:

O

T3, ((1 + F(N,, )V =1

larget TN\ KL, M 3.141
(NT) F(N,,s) , (3.141)

Substituting it in the cost function (3.35) we get:

22
C(N N, 5,p) = " 22073 (3.142)
Lfy
N. 2
« F(N.,s)(1+ F(N-,s))"" —1)
orget (N7, s)NET = TPHUKLE M((14 F(N7, )™ = 1))
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where

NT
0 TPHK LR M((1+ F(N,,5)" = 1)
target F(N-,— S)N—,Z—)+1

= 61(52’)1‘5]6157 (3143)

that is always true. We want to find the optimal value for IV that minimizes
the latter cost. To this end, we set the derivative of the cost function with

respect to N, to zero. The equation we get in nonlinear and can be solved
numerically.

However, we can use the approximation in Eq. (3.139) and the expression
DinazsO [LC N bans®
N, 1 mart = o4 1) = 1 mar” = 4 q ~ ( Z2RerT ) 3.144
8 (amazN‘r + ) °8 (amazN‘r + ) ( Amax ) ( )

Those two approximations give the following simplified equation

bmaxs© bmaxs©

i) et (mas Ve (N7 + ©) = bas (2N2e B 4 N, (2508552 1) — @)

(N + ©)(tmar Ny + bazs©) (5057 — 1)

(6) bmazs© p T ptl
2€target(bmams®)e amawz amazKMLfT N, (2NTp + N — 2(8 - 1)6)
+ bmazs® - b SC._.)
ama:c (e amazx [— 1) max

=0.

Neglecting some of the terms due to the fact that © << N, we simplify the
equation to the form that it can be solved analytically:

1/p
bmawsbiyT 1) KM (2p + 1
N® =TL,, <(e ) . O (3.145)
bomaz L et
SOmaz L fy target
That ends the proof. O

3.D McLachlan’s variational principle

Theorem 3.6. McLachlan’s variational principle [1/9] applied to the imaginary
time evolution of a state [(0(7))), is given by:

Sll(d/dr +H) [(0(7))) [| =0 . (3.146)
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Assuming 0 to be real, it is solved by the following ordinary differential equa-
tions [150]:

> Ayl =G, (3.147)

where the matriz elements are
Ay — Re <3<¢(§ZET))I 0 ¢é§§f))>> 7 (3.148)
and  C; = Re (-W% |¢(9(7))>) : (3.149)

Proof. Note that the variation in Eq. (3.146) is equivalent to the variation of its
square 6||(d/dr + H) [1(0(7))) ||* = 0. The derivative can be written as follows

O1y(6(7))) _ 91v(6(7))) 96; _ 8 |¢(6(7)))

or o 801 or o 891 v (3150)

Next, we expand the following:

I(d/dr +H) [£(0(r)) |12 = ((d/dr + H) [p(0(r)) ) ((d/dr + H) [(60())) )

(3.151)
—Z DIowe 0*9+Z H) [(0(7) 6;
+Z<w<e<7> ‘9'1”;9( D+ o)) 2 [w(o)
Thus, the variation of this term with respect to 6, yields:
3l|(d/dr +H) [(0(7))) |I? (3.152)

_ (Z 2 wéf)f)” by + LDy |w<e<r>>>) o0

j

N (Z WO, <9<T)>'”8W$£T>)>) .

ij

The variational principle is satisfied if latter equation is equal to zero, hence
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when following expression holds:

oW (O(7T))| 0B (T))) ; o W(8(r
3 WO o1wO(r) 5 _ <¢(9( )l

891 893 I 0 A

J
If 6; is real, the variation changes to

3ll(d/dr +H) [ (6(7))) |I” (3.154)

_ A ((0(7)) 0[y(0(7))) | WO [WEOTNY 5 <4
= z]: ( 26, 96, o9, 06, ) 0100
n (3<¢( (7))l 9|p(6(r)))

0 .
o uo(r) + oo 1w g

This is equal to zero when the following holds:

9 ((0(r) D w(0(7))) . 9 ((B(r) WO ,
Z ( 00; 00 + 06, 90, ) 0; (3.155)

J

_(2W6) 21(0()
—— (2 o + e TN
which is equivalent to Eq. (3.147). O

3.E Shot noise estimates

Theorem 3.7. (Shot noise error for evaluating A defined in Eq. (3.27))
For N, evaluations of each of the circuits that calculate the matriz elements
of A, we get the following bound for the probability:

{ow b pil .
VN ’

where 0 < n <1 and the elements of the standard deviation matriz are

Ng
orr = | Y I iful? - (3.157)
i,j=1

Proof. For a random matrix A with finite non-zero variance matrix o2 and

p <||A — As| < (3.156)
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expectation values matrix Ag the multi-dimensional Chebyshev’s inequality
A 1
P(IA=As] = klol) < 15 - (3.158)

holds, for any real number k& > 0. If we measure each circuit NV, times, the
mean value is calculated as

T

1 &
Ag = F;Am , (3.159)

where each A,, is the matrix calculated by evaluating each circuit one time.
The oy,1(An) is the standard deviation for each matrix element of A,,, and the
total standard deviation for each element in Ag is given by

~

R A,
oralds) = P

These are the elements that form the matrix o = {ak,l(flm)}]k\f /_,- Defining

(3.160)

n = 1/k?, we get therefore

i ol >
PlllA-Agl|< =) >1-9. 3.161)
(14~ 401 < J2L (
We can further bound the elements of o in the following way. Each matrix
element oy, ;(Ag) is in general evaluated by several circuits. Let us bound the
standard deviation of each single circuit by the maximum standard deviation 1,
since the eigenvalues of the Pauli-X matrix are {1, —1}. We obtain:

(3.162)

That ends the proof. O

Theorem 3.8. (Shot noise error for evaluating C defined in Eq. (3.27))
For N, evaluations of each of the circuits that calculate the elements of C, we
get the following bound:

A {ow} el
P ||C—Cs||<T >1-7n, (3.163)
r1]
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where 0 <n <1 and

Ny N
ok =4 DD IfiAml? (3.164)

i=1 m=1
holds.

Proof. The proof is similar to the proof of Thm. 3.7, but the standard deviation
of the matrix elements is bounded by Eq. (3.164). O

Corollary 3. The result of the Thms. 3.7 and 3.8 are valid for all matrices A
and vectors C' that are calculated with the circuits in Fig. 3.1, in particular for
all possible input parameter @ of the Ansatz in Eq. (3.18). Therefore, we can
state that with probability of at least 1 — n the following bounds hold for all 6:

X I{onnil
[A(0) — AO)| < —F——, (3.165)
Nyn
and
Ny
|C(8) —C(8)] < ”{G’“N\/}L;l” . (3.166)

3.F Error bound theorems

Proof of Lemma/: Let us identify f with f(€), the vector under disturbance &.
Accordingly, f(0) = f. Assume that the derivative ag—(f) exists and calculate
the derivative of Eq. (3.73) with respect to &:

9f (&)

(A+£R)a—§ +Rf(§) =r (3.167)
At £ =0, we have:
af (&) o
8—5‘520 =A"Yr - Rf(0)) . (3.168)
The Taylor expansion of f(£) around £ = 0 reads
3]
1©=10+e2I|  +oe) (3.169)
= f(0) + €A™ (r = Rf(0)) + O(&?) (3.170)
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Therefore, we can estimate

O JOI A~ RSO | o )
SPERITES SR a2

< g EEHLEIION o 1

< gl (b + 11 + o) (3.174)

< Sl Al (i * 1) +O€ @)

<A Al (o + T ) +0€)  BaTo)

< Ek(A) <|||£,||| + ”§H> +0(£%) . (3.177)

O

Proof of Lemma 2: The gradient Vg¢(0(T)) evaluates in the chosen circuit as

Ng
200 Z(fkngo )= ((0(r)) |+ 16(0()) (01" RL,1L,)

where we used Eq. (3.26). Then the trace norm of the dot product with the
parameter vector 8*(T") evaluates as

[Ved(6o(T)) - 0"(T)]1 (3.178)
Ny [ Ng 1

=SS (Fe e 101" 6(80(T))| + [0(B0(T))) 01" RL £ ) | 67(7)
k=1 ] 1 ] 1

< NZ %j (iR 10" (6(80(T))] + 16(80(T))) (01" B, sf ;)| 0:(T)
k=1 J=1 |
i [ZdofkleRk”O ®n 00 |H
=1 Lj=1

+||is@o () 01" B | 175,1) [19:(D)]
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Ny Ng Ny Ng

<30 (sl + 1AL | 10601 =2 |3 21wl | 1D
k

=1 |j=1 k=1 | j=1

where in the third line, we used the fact that any quantum state has trace norm
at most one. O






CHAPTER 4

Mitigating Shot Noise in Local Overlapping Quantum
Tomography with Semidefinite Programming

4.1 Introduction

Accurately characterizing quantum states is a crucial subroutine for many tasks
in quantum computing, and can be achieved by quantum state tomography
methods [9, 160, 161]. It has applications ranging from certifying quantum
devices [162] to the design and execution of variational quantum algorithms [21].
However, the full characterization of a quantum state becomes impractical for
larger systems. This is due to an exponential growth in the number of required
measurement settings, which correspond to distinct Pauli strings. To address
this challenge, several alternative strategies have been proposed, such as classical
shadow tomography [163], which significantly reduce the number of required
measurement settings. However, even with these techniques, each measurement
setting must typically be repeated for a number of shots, Ny,eqs, to achieve the
desired accuracy, with the statistical uncertainty scaling as O(1/v/Npeas). Since
the measurements collapse the quantum state, the state must be re-prepared
for each shot.

Many applications, such as ground state optimization of local Hamiltoni-
ans [39, 164], rely on the tomography of k-qubit reduced density matrices

The contents of this chapter have been published in Ref. [90].
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(RDMs), which describe a subsystem of the full quantum state [165]. The
estimation of all k-qubit RDMs of an n-qubit system can be achieved by using
(}) - 3" distinct measurement settings [166-168]. However, even with exact
estimates of RDMs, the full characterization of a general quantum state would
entail resolving the quantum marginal problem [169], a task known to be
QMA-complete [170, 171]. These extensive measurement requirements pose a
bottleneck for applying variational quantum algorithms in scenarios requiring
high-precision results, such as in fields like computational chemistry, where a
precision of 1073 Hartree [172] (chemical accuracy) is often the target.

Recent strategies like overlapping tomography [164, 168, 173] have emerged
to minimize the total number of measurement settings while maintaining high
precision. These methods achieve this by parallelizing measurements on non-
overlapping subsystems and efficiently organizing information from measure-
ments on overlapping subsystems. However, current methods, while promising,
often overlook higher-order correlations and compatibility constraints among
RDMs, potentially limiting their accuracy.

In this chapter, we propose a novel hierarchy of data-driven semidefinite pro-
grams (SDPs) to estimate a set of overlapping reduced density matrices (RDMs)
from quantum measurements. Our approach focuses specifically on random
Pauli string measurements of n-qubit states with fixed locality. We leverage
the inherent higher-order correlations present in quantum state measurement
data—information that would be lost when estimating overlapping RDMs in-
dependently. This enables us to tighten the uncertainty intervals of the RDM
estimates for a given number of measurement shots, with particular advantages
in low-shot regimes. Such SDP relaxations are built on re-imposing partial
compatibility with the quantum marginal problem [171, 174, 175]. We further
constrain each RDM to satisfy the physical requirements of a valid density
matrix, namely unit trace and positive semidefiniteness. This comprehensive
approach yields two key benefits: it resolves the compatibility issues between
overlapping RDMs that arise in linear inversion [176], while simultaneously
enhancing the global consistency of the entire set of RDMs.

Our method demonstrates superior performance compared to standard to-
mography methods across two numerical benchmarks. In the first evaluation,
we assess the ability of our method to estimate ground-state RDMs and energies
of the 1D XY model with open boundary conditions by using random Pauli
string measurements. Under the same measurement budget, our approach
achieves more accurate energy estimates compared to conventional tomography
methods. We further validate our technique through application to algorithmic
cooling [177-179], a practical use case in near-term quantum computing where
RDMs inform quantum circuit design. In this application domain, our method
again demonstrates measurable advantages over traditional approaches that
rely on independent RDM reconstructions.

This chapter is organized as follows: Sec. 4.2 introduces quantum tomography,
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semidefinite programming, and related literature. Sec. 4.3 presents the proposed
SDP-based reconstruction method and numerical results. In Sec. 4.4, we apply
our method to algorithmic cooling. Finally, Sec. 4.5 provides conclusions and
future directions.

4.2 Background and preliminaries

4.2.1 Notations

We consider an n-qubit system whose Hilbert space is H = (C?)®". For our
mathematical representation, we outline the relevant definitions and notations
below. Let 09,1,2,3 denote, respectively, the identity matrix | and the Pauli X,
Y, Z matrices. For an n-qubit system, the identity matrix is denoted by I,,.
A vector i = (i1,142,...,7,) € {0,1,2,3}"™ := 7, is used to represent a specific
Pauli basis o3, which is a shorthand for the Pauli string 0y, ® 03, ® ... ® 05, , in
{I, X,Y, Z}™. For simplicity, we use this notation throughout the text. Note
that Pauli strings form an orthogonal basis of the R-vector space of Hermitian
matrices. We denote the set {1,...,m} by [m]. For a Hermitian matrix A, the
notation A > 0 indicates that A is positive semidefinite, i.e., all its eigenvalues
are non-negative. We denote by pap the density matrix that describes a
quantum state in the Hilbert space Hap = Ha ® Hp, where A = {a1,...,a,4}
and B = {b1,...,b g} label distinct sets of qubits in the respective subsystems.
The partial trace over subsystem A is defined as:

Tra[pan] =Y ((kl ®18)pan(|k) @ 15), (4.1)
k

where {|k)} forms an orthonormal basis of the Hilbert space H4.

4.2.2 Quantum state tomography

Quantum state tomography [9, 160, 161] is a cornerstone of quantum information
science, enabling the reconstruction of quantum states through systematic
measurements on an ensemble of identical quantum states. For an n-qubit
quantum state, its density matrix, represented by p, can be fully characterized
by the following relation:

— (Z ciai> , (12)

i€z,
C; = Tr[poy]. (4.3)

109



4 Mitigating Shot Noise in Local Overlapping Quantum Tomography with
Semidefinite Programming

Here, C; constitutes an element of the corresponding n-qubit Bloch vector, with
Co = 1. In practical settings, Cj is not directly accessible, instead an estimate

C}; is computed by averaging over a finite number of measurements Nyeas,i
performed in the basis oj:

Nmeas,i
A 1 ~ (k)
Ci = m; -, 4.4
Nmeas,i ; ( )

where mi(k) € {1, —1} represents the k-th measurement outcome. In measuring

a particular Pauli string oy, one obtains a binary string s,, = {0,1}", from
which the outcome

mi*) = (~1)lsil] (4.5)

is calculated, with |s,,| denoting the string Hamming weight, defined as the
total count of 1s in s,,. We denote the reconstructed state as p, characterized
by the 4™ — 1 different {éi}ieln\{o}- Due to redundancies [180], it is sufficient
to simulate measurements in 3" different bases, each corresponding to a specific
Pauli string o; with i € {1,2,3}", to estimate all C;. In essence, if a string
contains a 0, then the corresponding qubits are not measured, which is equivalent
to measuring the RDM of the complementary subsystem. The measurement
data collected from the other measurements is sufficient for reconstructing this
RDM. The reconstructed state p takes the form:

Nmeas,i
1 Z 1 Z k
i€Z,\{0} meas,i T

We will refer to this method as the standard quantum state tomography. Ac-
cording to the Chernoff-Hoeffding bound, achieving an additive error € in each
C; w.r.t. the true values C; requires on the order of Nyeas & 4log(2)n/e?
shots [168] for a constant failure probability. If each C; is estimated with Nmeas
shots, then 3™ Nyeas total measurements are required, because there are 3™
non-identity Pauli strings, rendering this standard quantum state tomography
infeasible for larger n. For instance, for a 50-qubit system this would result in
3°0 ~ 7.18 x 10?2 measurement settings, and even with the Google Sycamore
chip’s 4ps [157] readout time, performing only one shot per setting would take
about 1010 years.

To ease this exponential scaling in the number of qubits n, various methods
have been proposed. Most notably, classical shadow tomography [163] provides
a way to extract certain few-body observables with a number of measurements
that grows only logarithmically in the number of those observables. Other
techniques, such as neural-network-based tomography [181], rely on sampling
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protocols and often presume certain structural features of the underlying system.
Using global mutually unbiased bases on the full Hilbert space, rather than
local Pauli product bases, the number of measurement settings required for
quantum state tomography can be reduced to 2™ + 1 [182, 183]. Furthermore,
informationally complete measurements such as symmetric informationally
complete positive operator-valued measures (SIC-POVMs) offer an alternative
that can reduce the number of measurement settings, potentially down to a
single setting, and can be combined with classical-shadow-based tomography
schemes [184].

In Sec. 4.2.4, we will present the overlapping tomography method of [168],
which can be applied for quantum state tomography of RDMs.

4.2.3 Semidefinite programming

A semidefinite programming (SDP) problem involves optimizing a linear function
subject to constraints expressed as linear matrix equalities and inequalities. The
feasible regions of an SDP are known as spectrahedra, and efficient algorithms
such as interior point methods [185, 186] can be used to solve them. In its
standard primal form, an SDP can be written as:

min (C, X) (4.7)
st. (A4, X)=0b; i=1,2,...,m,
X = 0.

where the cost matrix C', the decision matrix X, and the constraint matrices
A; are Hermitian, b is a real vector, and (-, -) denotes the Hilbert-Schmidt inner
product, defined as (X,Y) := Tr [XTY] , with XT being the Hermitian conjugate
of X. SDPs are particularly well-suited for quantum information [174], as
density matrices are positive semidefinite. For instance, the quantum marginal
problem seeks to determine whether a global state on a full system exists that is
consistent with specified marginal states on subsystems, represented as reduced
density matrices (RDMs) [171, 174, 175]. This problem can also be formulated
as an SDP, as illustrated by the following example.

Assume we have perfect knowledge of the RDMs pa3, p13, and p12, acting on
subsystems Hogz, H13, and Hio, respectively, and the goal is to find a global
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state p123 on Hi93 that is consistent with these RDMs:

min,,,,0 (4.8)
st. pi23 =0, Trlpas] =1,
Try [p123] = pos,
Try [p123] = p13,
Trs [P123] = P12-

Here, the minimization of the constant 0 is purely a formalism to match the
standard SDP form in Eq. (4.7). If the constraints cannot be satisfied, the SDP
is deemed infeasible. Despite the apparent simplicity of compatibility SDPs
like Eq. (4.8), the general problem of determining whether a state p1a3.. 5, exists
is QMA-complete [170, 171], making it computationally intractable even for
quantum computers.

To address this complexity, we relax the problem in our method by using
standard quantum state tomography estimates and accounting for their error
ranges. Additionally, reinforcement learning has been shown to improve the
selection of constraints that enforce compatibility with the quantum marginal
problem in reconstructed solutions [187].

4.2.4 Overlapping tomography and related literature

The standard quantum state tomography of a full quantum state requires a
number of measurement settings that scales as 3", where n is the number
of qubits [180]. However, if the goal is to estimate only the (}) different k-
qubit reduced density matrices (RDMs), each RDM requires only 3% different
measurement settings. The total number of measurements, however, includes
an additional overhead due to the number of shots needed to estimate each
measurement setting.

Several strategies have been proposed to optimize the selection of measurement
settings and minimize the total number of measurements required. In [168], a
method called quantum overlapping tomography was introduced for estimating
k-qubit RDMs. The key idea is to measure each qubit individually in a chosen
basis, allowing non-overlapping k-qubit subsystems to be measured in parallel.
Overlapping k-qubit subsystems are then reconstructed through classical post-
processing. This approach reduces the required number of measurement settings
to at most e@*) 10g2(n). The measurement selection is determined by a family
of hash functions (n, k), which partition the system into k subsystems, with
all qubits in each subsystem measured in the same basis. All k-qubit RDMs
can then be reconstructed from this carefully chosen dataset. In a similar way,
partitioning-based methods [188] lead to a scaling of the number of measurement

settings needed as O (3k logh~1 n)
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However, in many practical scenarios, such as systems with k-local Hamiltoni-
ans and nearest-neighbor interactions, only k-geometrically-local RDMs—those
involving neighboring qubits—are required. This further reduces the number of
measurement settings needed to a constant scaling with respect to the number
of qubits n [164]. Recent advances have shown, both theoretically and experi-
mentally, that leveraging graph theory can optimize this method, allowing even
k-qubit RDMs to be estimated with a number of measurement settings that
remains constant in the number of qubits n [173].

Other approaches have focused on reducing the statistical uncertainty due
to shot noise in various contexts, such as quantum state tomography [189],
ground-state estimation [190], and calculations of fidelity and von Neumann
entropy [191]. SDP has also been applied to quantum marginal problems for
tasks like ground-state estimation [192, 193], incorporating tensor network
methods [194], or imposing entropy constraints on RDMs [195].

Our method builds on the principle of measuring the entire quantum system
via product measurements on single qubits in the Pauli bases and performing
post-processing to estimate k-local RDMs. However, rather than focusing on
optimizing the selection of measurement settings, we introduce physicality and
consistency constraints on the estimated RDMs. This approach explicitly ac-
counts for the shot noise arising from a limited number of shots per measurement
setting, providing a clearer benchmark for practical applications.

4.3 SDP-assisted overlapping tomography

In this section, we introduce the SDP-assisted overlapping tomography frame-
work for estimating local RDMs of n-qubit states described by local Hamiltonians.
We begin by presenting the hypergraph representation of local Hamiltonians
in Sec. 4.3.1. In Sec. 4.3.2, we detail the core methodology of SDP-assisted
overlapping tomography. Finally, to illustrate its effectiveness, we apply the
approach to the ground states of the 1D XY model and discuss the numerical
results in Sec. 4.3.3.

4.3.1 Local Hamiltonian

The Hamiltonian of an n-qubit k-local system can be represented by a hy-
pergraph G = (Viz, Eg), where each vertex v; € Vi corresponds to a qubit,
and each hyperedge e; € Eg (connecting up to k vertices) represents a local
Hamiltonian term. Concretely, the Hamiltonian takes the form

H=> Hj (4.9)
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where m is the number of local subsystems, growing polynomially with n, and
each H; acts non-trivially on at most k qubits (i.e., it is k-local). Fig. 4.1
illustrates the hypergraph representation of a k-local Hamiltonian in a many-
body system.

Vi %) V3 V4 Vs Ve V7

o—0O——~0 e
O es

Figure 4.1: Hypergraph representation of the interaction structure of a
Hamiltonian H = Z;":l Hj. The vertices Vg = {v;}ij=, correspond to n = 7 qubits.
Each hyperedge e; € Eq = {e;};, denotes a local Hamiltonian term H;. In this
example, E¢ contains the sets {v1,v2,vs}, {vs,va}, {va,vs}, {va,v5,v6}, {vr}, hence
m = 5. Hyperedges are shown as horizontal lines linking the relevant vertices, and the
corresponding local Hamiltonian term is indicated in the legend on the right.

The hypergraph representation not only provides a visualization of the Hamil-
tonian structure but also gives a framework for reconstructing the relevant
RDMs. Once measurement results are obtained from an ensemble of identical
n-qubit states, one can reconstruct a collection of RDM estimates p; for each
local subsystem. This involves applying Eq. (4.6) to each of the m subsystems:

m

1 .
Pi =gt [ Vst + > o . (4.10)
i€, \{0} i

Here, C‘f is the estimator of C’ij =Tr [Trvc\ej [ploi| = Tr[pjoi], where p is the
true n-qubit global state and p; is the true RDM of the j-th subsystem. Note
that, each hyperedge e; = {v;,,vj,,...} corresponds to the qubits on which H;
acts. These local RDMs are of particular interest because they are sufficient to
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estimate the energy expectation values of the local Hamiltonian:

m

E=> Tr[p;Hj]. (4.11)

Jj=1

However, the reconstructed local RDMs {p; 7~y can be non-physical in
practice; e.g., they may exhibit negative eigenvalues or fail to satisfy mutual
compatibility (i.e., overlapping RDMs might not be consistent). While mutual
compatibility can only be enforced approximately in real scenarios [187], impos-
ing physicality constraints remains crucial for ensuring reliable energy estimates
and other derived properties.

4.3.2 Methodology

In this section, we present the SDP-assisted overlapping tomography framework.
Building on standard quantum tomography results, we formulate semidefi-
nite programs (SDPs) that incorporate overlapping-compatibility (OC) and
enhanced-compatibility (EC) constraints. These constraints aim to ensure the
validity and consistency of the reconstructed states, allowing us to minimize
or maximize the energy expectation within the feasible set. In essence, we
determine the minimum and maximum energies compatible with the simulated
data. By solving these SDP problems, we obtain a set of overlapping local
RDMs that are more physically valid and mutually consistent.

Semidefinite relaxations

Relaxations of polynomial optimization problems based on semidefinite con-
straints play a central role in our method, in a similar spirit as Ref. [192, 196].
In this section, we describe the construction of these constraints.

Consider a local Hamiltonian associated with hypergraph G = (Vg, Eg).
For each hyperedge e¢; € Eq, we introduce the decision variables for the SDP
problem as

1 ~
P =gt | Vel + > oy : (4.12)
€7\, \ {0} )
where
Cle|¢i—d.6+d]|. vielm), vieT,,\{o}. (4.13)

Here, index j labels the local subsystem associated with the hyperedge e;, and
€] is a relaxation variable associated to j-th local subsystem. It is proportional
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to the variance of C’f, scaled by a coefficient «, i.e., € = aVar(C‘f). The value
of a relates to the probability that the unbiased estimator C’f (of Trlp;oi])
lies within the chosen confidence interval, following Chernoff bound arguments.
Throughout, tildes () denote SDP decision variables, while hats (*) denote
results obtained directly from the raw data during standard quantum state
tomography.

Moreover, we introduce the semidefinite constraints

pi =0, Vjelm, (4.14)

and the overlapping-compatibility (OC) and enhanced-compatibility (EC) con-
straints

R = Uj jrcim) R (Pjs Pjr) » (4.15)
G =V jrem) 9 (s, 05) (4.16)

respectively. Specifically, R(ﬁj, ﬁj/) is the set of matrix equality constraints
ensuring that the local RDMs are consistent on the intersection of their respective
supports:

R (), bjr) = {Tre;\e, [95] = Tre e, [95] = 0}, (4.17)

while g(,aj, ﬁj/) is the set of constraints that require the existence of a larger
RDM p whose marginals agree on the variables indexed by 7 and j:

G(pj, p51) = {p = 0, Txe, [p] = pjr, Tre,, [P = ps}- (4.18)

Note that the dimension of p can freely be chosen and that the definition of
G in Eq. (4.18) is just one possible choice; in practice, there is a hierarchy of
possible relaxations forming a partially ordered set. The optimal choice of G for
a given computational budget is non-trivial, and one can achieve varying degrees
of performance by judiciously selecting or refining these constraints [187, 197].

SDP problem formulation

The relaxations defined in the previous sub-section allow us to specify a feasible
set of local RDMs. In this chapter, we focus on finding the minimum and
maximum energies consistent with the simulated data used to estimate the
tomographic local RDMs {p;}. Specifically, we consider the following optimiza-
tion problem for determining the optimal state that minimizes (or maximizes)
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the energy under these constraints:

min(max)y ZTr piH (4.19)

s.t. O € [Cg —d,¢{ +d|. vjelmland Vie T, \ {0},

ﬁj t 07 VJ € [m]a
ZUY.

Note that Eq. (4.19) does not yet incorporate all the SDP constraints derived
from the quantum marginal problem needed to solve the above problem, as it
only includes the initial-order EC constraints. Obtaining the exact solution
requires higher-order EC constraints, but adding these leads to exponential
growth in computational complexity [187, 197]. In large many-body systems, our
formulation effectively discards higher-order constraints as n grows but k£ remains
fixed, which loosens the energy bounds. Depending on the specific system, one
may selectively include higher-level constraints that are most relevant for the
problem at hand, here being the estimation of the minimum and maximum
energy compatible with the measurement data [194]. Such strategies (especially
the reinforcement-learning-based [187] and the renormalization-based [194] ones)
can naturally be incorporated in our framework thereby allowing for even tighter
estimates, but this would impair the fairness of the benchmarking of our method.
Hence, in the rest of the chapter we proceed with the straightforward approach.

Because shot noise affects the data, setting €/ = 0 (i.e., assuming no error)
typically makes the SDP infeasible. Allowing a tolerance e{ around the estimated
quantities provides a search region for solutions. As more data is collected, the
e-values shrink, thereby reducing the volume of the feasible set. Since the true
state arises from a valid quantum system (satisfying the quantum marginal
problem at all hierarchy levels), the resulting energy bounds become more
accurate with increased data.

Studies on ground-state scenario

Semidefinite relaxations have long been used to investigate ground-state prop-
erties of many-body systems [192, 196]. We now examine the performance
of SDP-assisted overlapping tomography in estimating ground states of local
Hamiltonians.

Fig. 4.2 illustrates two feasible sets under the same search region but with or
without EC constraints. These feasible sets are defined by all RDMs satisfying
both the overlapping- (#) and enhanced-compatibility (¢) constraints or only
the overlapping (#£) constraints, respectively, while the search region refers
to the intersection of positive semidefinite cones restricted by the confidence
intervals in Eq. (4.13). Introducing EC constraints narrows the feasible set and
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@ Tomographic estimate ) @ Ground state p (with energy E,)
Search region of SDP \ Global Hamiltonian
SDP feasible set SDP solution
(Overlapping Compatibility) (Overlapping Compatibility)
SDP feasible set SDP solution
(Overlapping & Enhanced © (Overlapping & Enhanced
Compatibility) Compatibility)

Figure 4.2: Feasible set for the SDP problem. An n-qubit system with RDM
p and energy E,; (shown in red) undergoes tomography, resulting in an approxi-
mate RDM p with energy F (black). The shaded gray region represents the (high-
dimensional) search space. The yellow spectrahedron depicts the feasible set with
only overlapping-compatibility (OC) constraints, whereas the green spectrahedron
also includes enhanced-compatibility (EC).

yields tighter lower and upper bounds on ground-state energy estimate E'g:

Tr [Hpoo=e] > Tr [HpOC |, (4.20)
Tr [Hpg0re] < Tr [HAL] (4.21)

The variable ¢/ = a Var(C/) in Eq. (4.13) defines the search region explored
by the SDP, thereby controlling the confidence interval for the ground-state
energy estimate. Different a-values yield different search regions, visualized in
Fig. 4.3. The spectrahedra illustrates the feasible set after imposing positive
semidefiniteness, OC, and EC constraints. The true state p (red) and its
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estimated counterpart p (black) are included for comparison. Crucially, when
the search region is large enough within the feasible set to capture the true
RDMs p, we obtain upper and lower bounds on the ground energy estimate E,:

min

Te[H pr (a0)] < By < Tr[H prx (1)) (4.22)

where ag > ag.

Algorithm 4.1: SDP-assisted tomography on ground states

Input: T identical ground-state preparations, Hamiltonian
H = ZTZI Hj, hyperparameters b > A > 0, where A is the
tolerance.
Output: Local RDM estimates {ﬁJS»DP 7=, that minimize the energy,
and the corresponding minimum energy E’g.
Perform standard quantum state tomography to obtain estimated local
RDMs {p; 7, with the precision given by 7" samples;
repeat
Solve the SDP problem described by Eq.(4.19) with decision variables
{pj}7L, and coefficient a = b;
Denote the feasible set as F;
b+ 2b;
until F # (;
Initialize a = 0;
while |a — b| > A do
oo —a+ @;
Solve the SDP problem described by Eq.(4.19) with decision variables
{p;}jL, and coefficient a = ao;
Denote the feasible set as F;
if 7 # 0 then
Denote the solution as S = argming; 1 >~ Tr [p; Hjl;
b <+ ap;
else
L a + Qo;

{AﬁjS‘DP};‘nﬂ «— §;
Ey Z;nzl Tr[ﬁgS‘DPHj];

We employ a bisection method (Alg. 4.1) to identify the smallest «g (within
a tolerance Ag) for which the feasible set is non-empty, and analogously for
a1 using a maximization variant. This allows us to establish the bounds of
Eq. (4.22) on E,.
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® Tomographic estimate p @ Ground state p (E,)

‘ Search region & feasible set SDP solution

(smaller @) (smaller @)
Search region & feasible set SDP solution
(larger a) (larger o)
I Exp. Avg. Global Hamiltonian
_v_confidence interval

Figure 4.3: An illustrative depiction of the SDP feasibility region. The true RDM p
with energy F, of Hamiltonian H (red) and its tomographic estimate p (black) lie
within a search region of adjustable size (dashed circle) determined by the coefficient
a. The feasible set under overlapping-compatibility (OC) and enhanced-compatibility
(EC) constraints appears as a shaded spectrahedron. The blue interval indicates the
confidence interval for the average of the energy obtained by standard quantum state
tomography from the simulated data.

4.3.3 Numerical simulations

In this section, we present numerical results for estimating the ground-state
energy of the 1D-chain XY model [198]. We also compare the estimation
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accuracy achieved by standard tomography to that of the proposed SDP-assisted
tomography.

Problem description

The Hamiltonian of the 1D-chain XY model is given by

n—1 n—1
He =) Hj=JY (X;Xjp1 +Y;Yj). (4.23)
=1 j=1

where H; is the local two-qubit Hamiltonian term capturing the interaction
between qubits 7 and j + 1. Here, n denotes the total number of qubits, and J
is the interaction strength. The subscript 'C’ stands for ’chain’. This model is
frustrated, meaning that the global ground state of H- does not simultaneously
minimize the energy of each local term H;.

Although the accuracy of ground-state energy estimation through tomography
is fundamentally limited by the number of ground-state samples, introducing
additional constraints can significantly tighten the resulting confidence interval.
In the context of the XY model Hg, the overlapping- (OC) and enhanced-
compatibility (EC) constraints in Eq. (4.19) take the form

Ko =Ujein—1) Ro (P> Pj+1) 5 (4.24)
Yo = VUjem—219c (P, Pjs1) » (4.25)
respectively, with
Re (95, pj+1) = {Tryy [pj] = Tryjioy [pj41] = 0}, (4.26)
Go (pjs pj+1) = 1P = 0, Tryyy [p] = pjr1, Trijyay [0 = P} (4.27)

Here, p; is the SDP decision variable corresponding to the two-qubit subsystem
of qubits (j,7+ 1), and p is a three-qubit SDP variable spanning qubits j, j + 1,
and j + 2. The subscript in the partial trace indicates which qubit is being
traced out.

Note that the energy function can be computed from the 2-qubit RDMs in
a natural way, but also equivalently from the 3-qubit RDMs that stem from
the ECs, either by taking their partial traces (which are compatible with the
2-qubit RDMSs, by construction) or by extending the Hamiltonian terms to a
larger Hilbert space (by appropriately tensoring them with identity operators).

Explanation on the results

For the SDP-assisted tomography, we are firstly given a number of identical
copies of the XY model ground state, as in Eq. (4.23). We perform a series
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—— Ground state energy —— Upper bound of 99% CI SDP max. Sol. (overlapping) ~—+— SDP max. Sol. (Overlapping+Enhanced)
------ SDP Relaxation —— Lower bound of 99% CI SDP min. Sol. (Overlapping) ~ —+— SDP min. Sol. (Overlapping+Enhanced)

Figure 4.4: Tightening expectation value confidence interval via SDP-
assisted quantum tomography. Ground-state energy estimates for the XY model
(J =1) with n =3,4,5,6,7,8 qubits against the number of state samples. The red
solid lines indicate the exact ground-state energy; the red dashed lines are lower
bounds from the relaxation method. The blue curves show the 99% confidence interval
upper and lower bounds for standard quantum tomography. The yellow (green)
curves give the results of SDP minimization with tolerance parameters Ao = 0.1, and
maximization with tolerance parameters Ag = 0.001, under OC (OC+EC) constraints,
respectively. In each plot, the two green curves can be interpreted as the upper and
lower energy bounds using SDP-enhanced quantum tomography.

of measurements in randomly chosen Pauli basis oj, with i uniformly sampled
from {1,2,3}". From these measurement outcomes, we reconstruct the local
RDMs via standard tomography and estimate the ground-state energy through
Eq. (4.11). We then apply our SDP-based post-processing to refine these
ground-state energy estimates.

The plots in Fig. 4.4 show the resulting confidence intervals for the ground-
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state energy as a function of the number of samples, for n = 3,4,5,6,7,8. In
each subplot, the red solid line indicates the exact ground-state energy from
Eq. (4.23) obtained by exact diagonalization, while the blue region marks the
99% confidence interval from standard tomography. The green curves represent
the solutions of Alg. 4.1 applied to SDP minimization and maximization (with
OC+EC constraints, Egs. (4.26) and (4.27)) and two different tolerances Ag =
0.1 and A; = 0.001. This choice is motivated by the fact that there is a strong
asymmetry between upper and lower bounds when tomographing the ground
state. In contrast, the yellow curves illustrate the SDP results with only OC
constraints (Eq. (4.26)).

Comparing the yellow and green curves marked with triangles shows that
adding EC constraints substantially tightens the lower bound obtained by SDP
minimization. When the sample size is small, the tomographic RDM j can
significantly diverge from the true RDM p, creating bias in the SDP energy
bound in the presence of large statistical noise. Together with the fact that the
probability of failure in estimating the true ground state is higher in extremely-
low-shot regimes, this fact makes it much more likely for the green curves marked
with triangles to exceed the exact ground-state energy. However, as the number
of samples grows, the SDP-assisted approach narrows the confidence interval
more effectively than standard tomography. This improvement is especially clear
in the zoomed-in subplots, where the green curve, representing SDP-assisted
(OC+EC) bounds, spans a narrower range for (H) than the blue curve from
standard quantum state tomography. Notably, SDP-assisted tomography can
reduce the required number of samples by a factor of 10! to 102 compared to
standard quantum state tomography, while achieving the same level of precision
in lower-bounding the energy.

The red dashed lines represent lower bounds obtained via an existing relax-
ation method [196]. Such approaches optimize the ground-state energy under
only a subset of the constraints that we use, thus guaranteeing a strict, al-
beit potentially conservative, bound. While such relaxations have successfully
established lower bounds for the ground-state energies of local Hamiltonians
in many-body settings [187, 194, 196, 199-202], the accuracy of these bounds
tends to degrade for larger problem sizes. This shortfall arises from omitting
higher-level EC constraints to keep the computational effort manageable.

All numerical simulations were performed using Qiskit [203] for quantum
simulations and CVXPY [204, 205] to solve SDP formulations using the SCS
optimizer.

4.4 Application

In this section, we demonstrate how to integrate our SDP-assisted tomogra-
phy into a variational procedure for preparing and characterizing low-energy
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states of local Hamiltonians. Specifically, we embed SDP-assisted tomography
within the algorithmic cooling (AC) method [177-179] to heuristically mini-
mize the energy of a target quantum Hamiltonian. Sec. 4.4.1 introduces AC,
and Sec. 4.4.2 explains how SDP-assisted tomography is incorporated into the
AC workflow. Numerical results for the 1D-chain XY model are presented in
Sec. 4.4.3, comparing the performance of AC both with and without semidefinite
programming.

4.4.1 Algorithmic cooling

Algorithmic cooling (AC) aims to prepare a low-energy state |¢) of an n-
qubit quantum system governed by a local Hamiltonian H, using near-term
quantum devices. The AC method is adapted to the practical capabilities of
the experimental setup, which can differ considerably across platforms. Thus,
we do not assume access to arbitrary unitaries; instead, we denote by h the set
of Hermitian operators h for which e~*** can be implemented natively on the
device. The unitary e~?* is implemented by turning on an interaction given
by h for an amount of time ¢. We also assume, without loss of generality, that
each h € h does not commute with H (Hamiltonian of XY model). Fig. 4.5
outlines the AC workflow.

Optimization step

We now describe the optimization routine in AC, which incrementally builds a
shallow circuit to prepare a low-energy state for local Hamiltonians. We begin
by introducing the cooling principle.

Counsider a Hamiltonian H of the form in Eq. (4.9) and an operator h € h

such that [H,h] # 0 and, for simplicity, h> = I. The last assumption can be
relaxed [151]. Given an initial quantum state |to),
|5 (1)) =" [vo) (4.28)

= (cos(t)l — isin(t)h) lto)

we define the energy function:

En(t) = (¥o (1) H [v5 (1)) (4.29)
=cos?(t)(H) + icos(t)sin(t){[h, H]) + sin?(t)(hHh).

By using trigonometric identities, one finds
En(t) = (H) + Asin®(t) + £ sin(2t), (4.30)

where (-) indicates the expectation value in [ig), A := (hHh — H), and B :=
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Figure 4.5: Conceptual diagram of algorithmic cooling (AC) Algorithmic
cooling iteratively constructs a quantum circuit that prepares a low-energy state
of a local Hamiltonian. Initially, the circuit is the identity, and the trial state
is |to) = Uo|0)®". Each iteration generates an ensemble of identical states for
tomography, yielding local RDMs that guide the choice of a new layer of gates (see
Sec. 4.4.1), which is appended to form the next circuit.

i([h, H]). The minimum of Fj(t) occurs at
1 -B
tr = 3 arctan R (4.31)
yielding
1
By () = (H) + 5 (a-vazyp) . (4.32)

Note that there is a slight ambiguity in the definition of t* given in Eq. (4.31):
the minimum is achieved at any t* satisfying cos (2t*) = A/vV A% 4+ B? and
sin (2t*) = —B/v/A? 4+ B2. Choosing the opposite sign leads to a maximum at
t* +7/2,

En (t* +7/2) = (H) + (A +V/AZ T Bz) /2. (4.33)

Therefore, if A and B can be accurately estimated, applying the interaction
given by h (or —h) for a period of time |¢*| will decrease the energy of |1g) by
an amount of % (\/ A2+ B? — A). Since H is local, the value of A and B can
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be extracted from measurements on only a constant number of qubits:

A= > (hHjh — Hj), (4.34)
j:supp(H;Nh)#D

B = > i ([h, Hj]) . (4.35)

j:supp(H;Nh)#D

Here, supp(H; Nh) = supp(H,;) Nsupp(h), and supp(-) C [n] denotes the qubits
on which an operator acts non-trivially.

Because each update step is chosen to locally decrease energy, the energy
function forms a monotonically decreasing sequence (assuming we have access
to exact RDMs {p;}2;) that is bounded by below, guaranteeing convergence
(albeit not necessarily to the true ground state). The algorithmic cooling
approach is thus a heuristic strategy that can fail for several reasons: h may
be too small to reach the global ground state from the initial state; choosing
unitaries in certain orders could lead to local minima; or noisy RDM estimates
might produce suboptimal energy updates.

Nonetheless, AC provides a flexible, greedy technique for variationally reduc-
ing energy. Integrating SDP-assisted tomography can enhance the accuracy of
local RDM estimates, thereby improving the reliability and efficiency of each
iteration.

Algorithmic cooling circuit compilation

This subsection explains how we construct the layout of the variational circuit
by integrating the optimization step from Sec. 4.4.1 into the algorithmic cooling
(AC) method. Note that there are many ways to construct the heuristic, each
with a different performance depending on the problem. Here, we outline a
specific one for illustrative purposes.

We begin with an empty circuit, Yo = |, and an initial trial state |1)g).
At each step, we consider all available operators h € h, selecting the one
that yields the greatest energy reduction. We then append the corresponding
unitary Uy = ekt to the circuit, ensuring a strictly decreasing energy at
each iteration. Although this approach guarantees monotonic improvement, it
may not fully exploit device capabilities.

To make better use of circuit depth, we group gates into layers Vi,..., V.
Each layer V; = U, ll e Ulk U le consists of K; parallel unitaries, with disjoint
supports,

supp (Ulk) N supp (Ulk,) =0, V1<kk <K, (4.36)
The overall circuit is then Uz = Vi, - - - V4, allowing for a more efficient arrange-

ment while still achieving a steady decrease in energy.

126



4.4 Application

To optimize a layer V;, one could iteratively:
1. Select an operator h, compute t*, and update V; < Vj e~ ",
2. Repeat for the next operator »’, finding ¢'*, and so on.

However, each new operator choice requires a full state preparation and mea-
surement cycle. Since H is local, it can become more resource-efficient to
collect a suitable set of RDMs for the current layout of V; and then perform
all unitary updates for that layer classically, rather than measuring after every
single addition of e~"*"

In Alg. 4.2, we present a more refined approach that avoids predefining the
circuit layout. Instead, at each iteration, the algorithm greedily selects the
operator h* and corresponding t* that produce the largest energy decrease. The
selection is restricted to operators whose supports are disjoint from any non-
trivial gates already in the layer. This ensures the circuit grows incrementally
while maintaining a clear and consistent reduction in energy at each step.

Algorithm 4.2: Algorithmic cooling

Input: Initial state |1g), Hamiltonian H = Z;n:l H;, operator set hy,
maximum number of iterations L.

Output: Quantum circuit Ue.

Initialize the system to |¢g) and set Uo = I;

[+ 0

repeat

Prepare an ensemble of identical states Uc |1)o) and perform standard
quantum state tomography to obtain local RDMs {p; };

h«hy V<1

while h # () do

Estimate the parameters A (Eq. (4.34)) and B (Eq. (4.35)) for
every h € h with local RDMs {p;}, respectively;

Select the h* and t* that maximize the energy decrease
% (\/A2 + B? — A)7 c.f. Eq. (4.32);

Vit eV

pi = e pie M e {p));

| b h\ {heh | supp(h) N supp(h?) £ 0};

Uc +— ViU

l+<1+1;

until [ = L;
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4.4.2 Embedding SDP-assisted tomography

In practice, the set of possible operators h can be extremely large. Rather
than testing each h € h individually, one can instead perform tomography
on the reduced density matrices (RDMs) of relevant qubit subsets. Although
tomography itself is expensive, if both the Hamiltonian H and the unitaries to
be optimized are local, then the quantities (hH;h — H;) and ([h, H,;]) needed
to identify the optimal unitary e~“*" depend only on the RDMs of supp(H,) U
supp(h), which is constant for every j. These expectation values from Eqs. (4.34)—
(4.35) can be computed via

(hH;h — H;) = Tr[p, (hH;h — H;)], (4.37)
i([h, Hj]) = i Tx[py [h, Hj]], (4.38)

where p, is a collection of relevant RDMs of the current global state |¢),

Pr = Tr[n]\(supp(Hj)Usupp(h))(|7/)><1p|)' (439)

To obtain the relevant RDMs, one first performs state tomography. However,
due to shot noise, the raw tomographic local RDMs may become non-physical.
To address this, one can formulate an SDP (Eq. (4.19)) to recover locally
consistent RDMs that minimize the energy while preserving physicality. These
SDP-refined RDMs are then provided to the algorithmic cooling (AC) method
(Alg. 4.2), guiding the optimization parameters for each cooling step.

4.4.3 Numerical simulations

We now present numerical simulations of the AC procedure for approximating
the ground state of the 1D-chain XY model (a frustrated Hamiltonian), specified
by Eq. (4.23). We consider two initial states: (a) the uniform superposition
|+)®™ and (b) a Hartree Fock (mean-field) product state, which corresponds
to the product state of minimal energy, which can be obtained efficiently in
one dimension [206], thereby providing an in principle better initialization. We
employ Alg. 4.2 that iteratively prepares the ground state and we restrict the
set of available operators h to geometrically local Pauli operators.

Figs. 4.5a and 4.5D illustrates the results for different pairs (n,ns), where n
(number of qubits) ranges from 3 to 8 and ng (number of samples per iteration)
takes values 10!, 102,103, 10%. Each iteration uses n, samples per iteration to
estimate the necessary parameters for cooling either using standard tomography
or SDP-assisted tomography. Within each subplot, the red line marks the exact
ground-state energy. Two variants of AC method are simulated: (i) the blue
curve corresponds to AC with standard tomography, using tomographically
reconstructed local RDMs to compute energy, and (ii) the orange curve depicts
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AC with SDP-refined RDMs, still using their reconstructed expectation value
for energy. The green curve shows the SDP lower-bound on the energy at each
iteration, representing the minimal energy compatible with the measured data
under the chosen constraints. Each method is repeated 25 times, and the shaded
areas around the curves indicate one-sided standard deviation.

Figs. 4.5a and 4.5b also showcase three noteworthy regimes: For a low number
of measurements (~ 10?), the monotonicity property, especially of the AC with
tomography, is broken. This is due to the shot noise being too dominant and
confusing the heuristic of the AC. For the |+)®" as an initial state, and for
ns = 102, we observe a sudden dip in energy for the AC with tomography,
followed by a steady increase in energy, as iterations progress. This is due
to the AC adding gates that are not sufficiently close to optimal, because
of the limitations in precision. In contrast, the behavior of AC with SDP
is qualitatively closer to monotonicity, especially in the first few iterations,
although ultimately converging to a similar value as the AC with tomography.
For the |HF) as initial state, both AC with tomography and AC with SDP
have the same phenomena, but the energy scales are much lower as we begin
from the lowest-energy product state.

For a higher number of measurements (~ 10%), the AC with SDP performs
better compared to the AC with tomography. This showcases a sweet-spot regime
where our approach proves more advantageous, as this behavior is consistent
across different system sizes and both initializations considered. However, for
an even larger number of measurements (~ 10%), the performance of the two
methods becomes similar. This is likely because, with more measurement
data, the estimates provided by standard tomography are increasingly physical,
leaving less room for the SDP to correct non-physicality. In the absence of shot
noise, the performance of both methods is identical by construction.

It is worth noting that the number of samples used in our numerical simula-
tions is significantly lower than in typical physical experiments, which highlights
the efficiency of the approach, though it introduces some limitations. It should
be noted that there is no guaranteed advantage of the orange curve (AC with
SDP-optimized local RDMs) over the blue curve (AC with local RDMs obtained
via tomography) in any single simulation. This is because AC is a heuristic
method, and its performance depends on various factors, such as the initial
state, measurement settings, and other parameters. However, in some settings,
the blue and orange curve have non-overlapping shaded areas. Additionally,
by construction, the green curve (AC with SDP-optimized local RDMs and
minimized energy) provides a lower bound on the orange curve.
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Figure 4.5a: Algorithmic cooling results for a 1D-chain XY model (frustrated
Hamiltonian), initialized in |+)®". Energy expectation values are shown as a function
of cooling iterations using standard tomography and SDP methods.
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(b) |HF) as initial state

n=3 n=3 n=3 n=3
0.6 ns=10" ns=102 | —2.1 4 ns=103 ns=104
2 —0.5 4 =231
2
G -16 1 W -261
—2.7 - e | —2.81
n=4 = n=4 n=4
0.8 ns=10" ns=102 | =3.01 ns=103" ns=10*
> - i 4
& 0.6 5 3.4
Q
S 2.0 g -3.8 1 3
—3.4 B —4.2 4 \ 4
n=5 n=5 n=5 n=5
1.0 ns=10"~ ns=102 | =407 ng=10%1 ns=10*
3 -08 1 : —4.5 :
[}
5 2.6 g -4.9 g
-4.3 g —5.3 A g
ettt tdt s B
n=6 n=6 n=6 n=6
0.8 1 ns=10" ns=102 | -5.1 ns=103 ns=10*
2 -1.3 4 g =5.6 1 1
2
[
5 -3.4 b —6.2 T
-5.6 R 6.7 4 g
n=7 n=7 n=7 n=7
0.8 ns=10" ns=102 | 6.1 ns=103 ns=10*
> 4 - —6.7 4 g
o -1.6 6.7
2
5 -414 g 7.3 1 g
—6.6 g -7.9 1 ]
x w N —————
n=8 n=8 n=8 n=8
0.6 ns=10" ns=102 | -7.2 ns=103 ns=10*%
> - - — - -
o -2.2 7.9
Q
S -5.0 1 R -8.6 1 R
—7.8 1 B -9.3 4 4
e S
[T T T T ey
0 5 10 15 200 5 10 15 20 0 5 10 15 200 5 10 15 20
Iteration Iteration Iteration Iteration

—— Ground state energy —— AC with SDP-assisted tomography
—— AC with tomography —— AC with SDP-assisted tomography (SDP lower bound)

Figure 4.5b: Algorithmic cooling results for a 1D-chain XY model (frustrated
Hamiltonian), initialized in |HF’). Energy expectation values are shown as a function
of cooling iterations using standard tomography and SDP methods.
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4.5 Conclusion and outlook

In this chapter, we introduced a semidefinite programming (SDP)-assisted
technique for reconstructing overlapping reduced density matrices (RDMs)
from experimental measurement data, effectively addressing the challenges
posed by shot noise in near-term quantum computing. By enforcing overlapping-
compatibility (OC) and enhanced-compatibility (EC) constraints on local RDMs
through a polynomial-sized SDP problem, our method alleviates the impact of
limited measurements and ensures the consistency of the reconstructed local
RDMs. As a result, our approach not only enhances the accuracy of local
observable estimates but also provides tighter confidence intervals compared to
standard tomographic procedures.

To illustrate its effectiveness, we applied SDP-assisted tomography within a
variational quantum algorithm, algorithmic cooling (AC), aimed at heuristically
preparing low-energy states of local Hamiltonians. Numerical simulations of
a 1D-chain XY model demonstrated the advantages of our approach in terms
of both accuracy and resource efficiency. These findings indicate that SDP-
assisted tomography can serve as a valuable asset for boosting the performance
of variational quantum algorithms and other quantum information processing
tasks in the near term.

Looking ahead, a promising direction for future research is the incorporation
of additional constraints, such as entropy constraints, into the SDP formulation
to further refine the reconstruction process [195]. It would also be interesting to
extend the SDP-assisted tomography framework to more complex many-body
systems and investigate its behavior on frustration-free Hamiltonians. Applying
it to specific quantum chemistry calculations might be promising, as done in a
similar way in Refs. [207, 208]. In addition, exploiting the framework to optimize
other local observables, such as correlation functions, is another potential area
of exploration. Another open question is the effect of systematic errors on
the application of our method, and how strategies such as those presented in
Ref. [209] can help to reduce them.

Finally, examining how SDP-based methods can be combined with noise
mitigation strategies on quantum hardware could offer valuable insights for
practical enhancements in near-term quantum computing.
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CHAPTER D

Quantum Generative Modeling for Financial Time Series
with Temporal Correlations

5.1 Introduction

In recent years, the use of machine learning - in particular neural-network
based approaches - has expanded across many domains [48]. A particular
approach are the generative adversarial networks (GANs), in which successively
a generator and a discriminator are trained [210, 211]. The generator learns
the underlying distribution and samples from it, while the discriminator learns
to distinguish real data from generated samples. Typically, GANs are applied
in image generation [212-214], but also to other data [215].

The ability of machine learning models to generalize well relies on the avail-
ability of large datasets [48]. Data augmentation methods are techniques which
increase the training data set in order to alleviate these limitations [216]. Those
methods typically involve slightly modifying the training data, but synthetic data
generation by GANs is used as an approach for data augmentation [216, 217].

This is particularly relevant for finance, a computationally-heavy, yet difficult-
to-model field [77]. Unlike domains where there is an abundance of high-quality
data to train on, finance faces a fundamental challenge: the inherent non-
repetitive nature of financial events. For example, the time-series of a specific

The contents of this chapter have been published in Ref. [91].
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asset’s price can only be observed once. A machine learning model that aims to
learn properties based on the time-series of a specific asset therefore is heavily
limited, as their ability to generalize well relies on large datasets. By learning
the underlying distribution of financial time series as well as its desired temporal
properties, one can generate new data that enables the creation of richer training
sets [218, 219]. In particular, temporal correlations such as volatility clustering
(periods of large variation are followed by periods of large variation, as do
periods of low variation) are important for single time series.

Parallel to the development of machine learning, research in quantum com-
puting and its potential application has increased. Motivated by the progress
in quantum hardware, quantum algorithms research has been focusing on vari-
ational quantum algorithms in the last decade [20]. These hybrid algorithms
consist of succinet calculations on a parameterized quantum circuit (PQC) and
a classical optimizer [21]. The PQC contains tunable and fixed gates, and
the classical optimizer calculates updated parameters based on measurements
conducted on the final quantum state of the PQC at each step, until a certain
precision or goal is reached.

Previous work proposed replacing the classical generator of a GAN with
a parameterized quantum circuit [220, 221]. Quantum circuits have been
proven to enable sampling from distributions which are intractable for classical
circuits, and so the set of distributions they access is in general different
than what classical models access. Consequently, it is expected they may be
more effective with some classes of distributions that classical models struggle
with [55, 56, 79, 222]. Subsequent studies expanded on this idea and examined if
this property can be harnessed in the context of learning financial distributions.
In particular, in [223], the idea to use QGANSs for synthetic data generation
of financial time series has been proposed and tested, using a quantum circuit
Born machine, which performed better than a classical restricted Boltzmann
machine on learning the distribution of correlated asset pairs with respect to
the Wasserstein distance. However, generating financial time series which do
not only follow the same distribution as real-world data, but also show their
temporal correlations is challenging [78].

In this chapter, we develop a quantum GAN with a PQC as an expectation
value sampler-based generator and a classical neural network as a discriminator
for synthetic data generation and examine its ability in generating time series
replicating the S&P 500 index, including its distribution and temporal correla-
tions. The discrete time series spans from 20 to 40 points in time, where the
expectation value of single-qubit Pauli-X and Pauli-Z operators is interpreted
as the log return of the value of the index at each time step. The choice of
these observables will be motivated in Sec. 5.3.2. We simulate the quantum
circuits both with full-state simulations and with matrix product state (MPS)
simulations (also known as the tensor train) [224, 225]. While full-state simula-
tions are limited to short time intervals due to their exponential scaling, MPS
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simulations enable us to model longer time series by exploiting their ability to
efficiently replicate linear structures such as financial time series. In the MPS
simulations, we vary the bond dimension (also referred to as the tensor train
rank) to balance computational costs and simulation accuracy.

We show that our model generates time series whose distribution closely
matches that of the real time series. Furthermore, the generated samples show
temporal correlations, which are qualitatively similar to those observed in real-
world data. Our work shows the potential use of QGANSs in learning time series
with specific temporal correlations.

This chapter is organized as follows. In Sec. 5.2, we introduce the concepts
of financial time series and its properties, as well as the concept of QGANSs.
Further, we cover related work. In Sec. 5.3, we present the simulations we used.
We detail the data pre-processing as well as the quantum generator and the
matrix product state simulation. We show the results of our simulations in

Sec. 5.4, discuss them in Sec. 5.5, and conclude in Sec. 5.6
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Figure 5.1: Structure of a generative adversarial network (GAN) used for time
series generation. The discriminator takes both the generated and real time series as
input and outputs its estimate for the Wasserstein distance W1 (Pr, Py) (see Egs. (5.7)
and (5.8)). The generator is trained in order to bring the distribution of the generated
time series closer to the one of the real time series, the discriminator is trained
to approximate the Wasserstein distance between them. Both the generator and
discriminator are trained using different loss functions derived from the discriminator’s
output.
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5.2 Background

In this section, we will introduce both financial time series and its temporal
correlations as well as generative adversarial networks, and their adaptations
based on the Wasserstein distance and with a quantum generator. Furthermore,
we will present related work.

5.2.1 Financial time series

A time series is a set of data points ordered over a given time frame, typically
at equally spaced time intervals. A financial time series is the set of financial
variables such as prices, returns and volatility of assets, indices or other financial
instruments.

An example of a financial time series is the S&P 500 index, which includes
500 of most valuable companies that are listed on US stock exchanges [75]. The
price of many instruments, such as the S&P 500 index, deviates around a mean
value that grows in time. Instead, examine the time series of the log return r,
which is not dependent on this general market growth:

S
r: = log <Sti1> , (5.1)

where S; is the price of the index at time ¢. Simple models such as the Black-
Scholes model [81] assume a normal distribution of these log returns. However,
the distributions observed in the market have more complicated properties. The
returns of assets do not typically follow a normal distribution, their distributions
are more narrowly and spiked around the mean and have heavier tails (extreme
events are more likely), which is in contrast to the normal distribution of the
Black-Scholes model. Therefore, a main concern of research in finance is about
creating models that can mimic time series with higher accuracy, and machine
learning approaches have been increasingly explored for this case [77]. Many
observed log returns share common properties, also called stylized facts, that
originate mostly from behavior of parties that interact with the market [76].
These properties can be used in order to assess the quality of models of financial
time series. In practice, it is considerably more difficult to generate time series
that observe all of the stylized facts, than to only match the target distribution.
However, for finance practitioners it is often vital to use models which show the
stylized facts that are relevant for their use case [78] .

In this chapter, we focus on four stylized facts: non-Gaussianity, the absence
of linear autocorrelation, volatility clustering and the leverage effect. The first
of them is describing the behavior of the time-aggregated distribution. As
written above, it is not shown in the Black-Scholes model, but is generally seen
in real-world data. The latter three stylized facts are all temporal correlations
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between different values of the same time series. They can be analyzed with
the help of the correlation function corr(X,Y), which for the random variables
X and Y is defined as:

coo(X,Y) (X —px) (Y = py))

corr(X,Y) = = , (5.2)
OxXO0Oy OxXO0Oy

where cov(X,Y) is the covariance, ox and oy the standard deviations of the
random variables and px and py denote their respective means. For a sequence
of independent random variables, the autocorrelation function vanishes at
all nonzero time lags. For instance, the increments of Brownian motion are
independent and therefore exhibit zero autocorrelation. The stylized facts of
the absence of linear autocorrelation, volatility clustering and the leverage
effect each have an intuitive reason for their emergence and can be observed by
analyzing the autocorrelaiton of the absolute and identical values of the time
series.

Firstly, the current and past values of financial time series are typically not
linearly autocorrelated. At time ¢, this means that for all time differences 7 > 0,
the expectation value E [corr(ry, 744 )], taken over different realizations of the
time series, is close to zero. Intuitively this comes from the fact that any trend
in the return is exploited by traders, which in turn weaken the effect. This
exploitation of traders is a corollary of the so-called efficient market hypothesis.

Secondly, the absolute returns typically do exhibit correlation that slowly
decays in time. This effect is also called volatility clustering, and can be examined
by calculating the quantity corr(|r¢|, |r¢++-|). It quantifies the observation that
large changes in the price are followed by large changes, and equivalently small
changes are followed by small changes.

Thirdly, the leverage effect describes the rise in volatility when the price of
an asset sinks. It can be observed by measuring the quantity corr(|rZ, .|, 7).

The reader can find more details of these properties in [76].

Synthetic data generation of financial time series concerns the generation
of artificial time series that observe these stylized facts. These properties and
their importance for practitioners differ depending on the time series and the
application, and they are difficult to compare in general. Furthermore, different
models generate time series with greatly varying quality in reproducing the
stylized facts. Therefore, the resulting synthetic time series are typically assessed
qualitatively if they are able to capture those properties [78].

However, in this chapter, we provide several quantitative metrics. In order to
quantify how closely the generated time series reproduce the stylized facts of
the S&P 500 index, we define the following metrics:

1 T (sPs0o 0
EMD(0) =———— > |7 =), (5.3)
Tmaz + 1 —o
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They are quantifying non-Gaussianity, absence of linear autocorrelation, volatil-
ity clustering and leverage effect, respectively. The first is based on the earth-
movers distance, which is the discretized form of the Wasserstein distance, and
the latter quantities are derived from the correlation functions describing these
properties, as explained above. Here, the log returns of the generated time series
are written as rt(e), where 6 stand for the parameters and hyperparameters of
the simulated QGAN, and the log returns of the S&P 500 index are written

as rt(SPE’OO). The lower these metrics are, the closer the stylized facts of the

generated time series rt(e) are resembling those of the time series r,ESPE)OO).

5.2.2 Wasserstein QGAN

Generative adversarial networks (GANs) [210, 211] are unsupervised machine
learning-based methods that are powerful in generating images and have also
been successfully applied to the generation of financial time series [226]. They
consist of two neural network that compete in a game-like setup. The generator
takes random noise as input and aims to create artificial data that is indistin-
guishable from real data. Both real data from the training set and artificial
data from the generator is then fed to a discriminator which is being trained to
detect the generated data, outputting a probability of the input data being real
or fake. They are trained in an alternating fashion until the generator is able to
create data indistinguishable from real data. GANs face challenges in training
instability (one neural network overpowers the other) and mode collapse (The
GAN focuses on creating data with limited variety) [227, 228].

Those challenges can be mitigated by replacing the discriminator with a
critic that learns the Wasserstein distance between the real and generated data
distributions, in the so-called Wasserstein GAN [228]. The Wasserstein distance
between the real and generated probability measures P, and Py, respectively,
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is defined as:

Wl(Prvpg) = TrEF%%f P )E(w,y)wﬂ (”l‘ - y”) . (57)

Here, T'(P;, P,) denotes the set of all couplings of P, and P, i.e., all joint
probability measures whose marginals are P, and Py. And by (z,y) ~ 7, we
denote that the random pair (x,y) is distributed according to the coupling
7. Calculating this infimum is not feasible in practice, but the Kantorovich-
Rubinstein duality delivers a quantity that can be used in a machine learning
context [228, 229]:

Wi (P, Py) = s (Eanp, (f(2)) — Eznp, (f(2))), (5.8)

where sup) ¢, <; is the supremum over all 1-Lipschitz functions. The role of
the critic D is to maximise the loss function

Lp(D.Py) =Esp, (D(x)) ~ Esnp, (D) (5.9)
+ AEsp, ((IV:D@)2 ~1)?) (5.10)

where D(x) is trained to approximate f(z) in Eq. (5.8). The latter term is a
gradient penalty regularization [230] that enforces the 1-Lipschitz condition
by a scaling parameter A and where & = ex + (1 — €)Z with the random
parameter € ~ UJ0, 1]. This loss function will train the critic to approximate the
Wasserstein distance between the probability distributions of real and generated
data. In contrast, the role of the generator is to maximize

Le(D,Py) = Esp, (D(#)). (5.11)

See Fig. 5.1 for a sketch of a Wasserstein GAN.

Quantum generative adversarial networks (QGANs) are GANs in which the
classical generator and/or the classical discriminator are replaced by a quantum
cireuit [220, 221].

They are motivated by the fact that quantum circuits can learn distributions
efficiently that are hard to model by classical means [55, 56, 79, 222]. The proofs
of advantage showcase that learning can not be achieved when the distribution
is hard (generated by a quantum process). Market data is manifestly not so.
However, in other models it was shown that one can have learning separations
even if the generation of the data is classically tractable [231]. It remains an
open question if such separations can also hold for estimation value sampler
as we use here. However, even without separations it may be the case that
quantum models simply have more convenient inductive biases than classical
models and understanding those is valuable, and the interests of this work go
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Figure 5.2: Example of a parameterized quantum circuit with 4 qubits and 1 layer
used as the generator in the QGAN. Each layer consists of single-qubit Pauli rotations,
CNOT gates and data uploading gates, which upload particular realizations of the
random noise Z. Each element of Z is uniformly sampled in [0, 27]. For parameterized
quantum circuits with more layers, each additional layer follows layer 1 and has
the same layout. Before the measurement, there is a variational layer consisting of
single-qubit Pauli rotations. The measurements are conducted single-qubit Pauli-X
and Pauli-Z bases. The single-qubit Pauli rotations are tunable with parameters
0; and the data-uploading gates are tunable with parameters A;. This Ansatz is a
hardware-efficient Ansatz, which is commonly chosen in the field [21, 238].

into this direction.

A parameterized quantum circuit (PQC) counsists of tunable and fixed gates,
and measurements at the end. The parameters of the tunable gates are updated
based on the loss function, which consists of the measurement results and the
output of the discriminator.

The PQC can be used in different ways, for example as a quantum circuit
Born machine [223, 232, 233] or as an expectation value sampler [234-237].
The latter approach is the one which we use for our QGANs. In the former
case, a quantum circuit is used to learn an underlying distribution and every
single sample forms a bit string corresponding to the learned distribution. The
probability of each sample depends on the amplitudes of the final quantum
state. However, the precision of the generated values is limited by the discrete
nature of this approach. In contrast, the expectation value sampler identifies
expectation values of quantum circuit measurement outcomes with samples of
a distribution. The underlying randomness comes from classical noise uploaded
to the quantum circuit.

A sketch of the PQC architecture used in this chapter is given in Fig. 5.2.

5.2.3 Related work

In recent years, classical algorithms for generating synthetic financial data have
been proposed and explored, in GAN settings [78, 226, 239-241], and with other
approaches [78, 242]. A common challenge is the generation of time series that
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exhibit all stylized facts sufficiently well [78].

QGANSs were introduced in [220] and [221], substituting generator and discrim-
inator with quantum circuits. Other approaches for QGANS, such as combining
a classical discriminator with a quantum generator, and their applications have
been explored as well [243, 244]. In [245] the generation of certain probability
distributions and in [246], the generation of correlated stocks has been examined.

Our work was motivated by [223], which compared the performance of gen-
erating synthetic financial data of correlated asset pairs by the two models of
restricted Boltzmann machines and quantum circuit Born machines, observing
an advantage of the quantum circuit Born machine for comparable model sizes.
Here we go beyond learning time-aggregated distributions of financial time series
as in [223], by additionally examining the temporal correlations of generated
time series. In contrast to the models used in [223], our method is based on the
expectation value sampler, which was introduced in [234], proven to be universal
in [236] and further generalized in [237]. An expectation value sampler outputs
Pauli string expectation values in the range [—1, 1], producing continuous vari-
ables. This is fundamentally different from quantum circuit Born machines,
which generate discrete bit strings according to the Born rule, and Boltzmann
machines, which also produce discrete outputs [223]. In Appendix 5.B, we
adapted our approach for learning the distribution of correlated pairs of foreign
exchanges and compare our results with the results of [223].

QGANS have also been used for other applications, such as image gen-
eration [247-250] and other discrete distributions [251], in generative chem-
istry [252], fraud detection [253], option pricing [254], and high-energy physics [255,
256]. Furthermore, other quantum machine learning strategies have been used
in learning financial time series [257].

The Wasserstein QGAN, proposed in [258, 259] by substituting both generator
and discriminator with a quantum circuit, shows improvement in training
stability and efficiency compared to QGANs based on other metrics. Our
simulations are using Wasserstein QGANs in which the generator is a PQC,
whereas the discriminator is a classical neural network. The full-state simulation
of such a Wasserstein-QGAN with gradient penalty as an application to generate
financial time series has been explored in [260] and compared to classical GANs.

5.3 Implementation

For this chapter, we aim to generate time series whose distribution approximates
the empirical distribution of real financial data. We train a Wasserstein QGAN
for generating time series based on training data originating in the time series
of the daily closing prices of the S&P 500 index [75], collected from 03.01.1950
until 29.09.2021. We use a hybrid approach, with a classical neural network as
a discriminator and a parameterized quantum circuit (PQC) as a generator.
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We use a convolutional neural network as a discriminator, motivated by [239],
where it was used as the discriminator of a GAN that generates financial time
series. All its activation functions are rectified linear units, except the last single
neuron in the critic, which uses a linear activation function. The architecture
of the discriminator is detailed in Appendix 5.A.

We simulated the QGAN based on a full simulation of the PQC by using the
Tensorflow software library [261], and the QGAN based on the MPS approxima-
tion of the PQC with the JAX [262] and Quimb [263] software libraries. The
gradients are calculated via automatic differentiation. As an optimizer for the
training of the QGAN, we chose the Adam optimizer with a learning rate of
103, All simulations were conducted on the Alice and XMARIS computing
clusters at Leiden University.

In the following, we outline the data pre-and post-processing, the setup of the
quantum generator, the full-state simulation and the MPS simulation applied
in this chapter.

5.3.1 Data pre-and post-processing

The outputs of expectation value samplers are the expectation values of Pauli
strings which lie in the range [—1,1]. As this is a key difference to the raw
time-series data in the form of log returns, which have unbounded support (see
Eq. (5.1)), we perform data pre-and post-processing. For that, we follow the
same approach as taken in Refs. [240, 264].

We first describe the approach for the pre-processing, which transforms the
raw time series data of the S&P 500 index into training data used in our
numerical simulations. This process consists of six steps: (i) data normalization,
(ii) the inverse Lambert-W transform, (iii) data normalization, (iv) data clipping,
(v) data rescaling and (vi) a rolling window.

(i) We normalize the time series data to have a mean of 0 and a variance of 1:

T(SPE)OO) —u
Ty = (5.12)

Or

SP500
where r{%7%%0)

S, of the S&P 500 index by r{°7*) = log (S‘%) By i, and o, we denote

the estimates of the mean and standard deviation of the log returns over the
whole period of collected time series data (03.01.1950-29.09.2021).

(ii) As learning a heavy-tailed distribution can be challenging due to a limited
number of samples in the tails, we implement the inverse Lambert-W transform
on the normalized log returns. This transformation will bring the heavy-tailed
distributed data closer to a Gaussian distribution. Given Lambert’s W function,
which is the inverse of z = wexp(u) with z : R = R, we can define the following

is the original log return, calculated from the daily closing prices
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transform on the normalized heavy-tailed data set V' = {ry (;)}+:

w2 ,8)\ "

Ws(rew) = sen(re@) | ——5— (5.13)
with 0 > 0 a tunable parameter, sgn(ry ;) the sign of 7 ;) and W the
Lambert’s W function. The inverse of this function is given by 7. ;) =
Wis(re,5)) exp (gWg(rt’(i))Q) [265]. Throughout this chapter, we pick § = 0.5.

(iii) We normalize the transformed time series again such that it obtains a
mean of 0 and a variance of 1:

Wis(re,iy) —
Tt (i) ‘= t’(z,) ) (5.14)

O

where by p!. and o7, we denote the estimates of the mean and standard deviation
of the transformed time series {Ws(r¢ ;) }+-

(iv) As the inverse Lambert-W transform can be ill-behaved at specific data
points, we discard outliers with large deviations outside the 0.05% tails.

(v) Afterwards, we linearly map the data to the interval [—1,1]. Let min and
max denote the minimum and maximum values of the set {r; (i}, respectively.
The transformation is given by
Tt,(iv) — MiN B

Tt (v) = 2 (5.15)

max — min
where {7 (;v)}¢ is the time series obtained after step (iv).

(vi) After these transformations of the log returns of the S&P 500 index, we
divide the time series into smaller batches. We achieve this by applying a rolling
window of window length m and stride s to the time series, which divides it
into multiple subsequences. This creates subsequences with length m, which
overlap and consequently correlate if the stride is shorter than the length of the
window, s < m. For each of these subsequences, we then compute its probability
distribution, which constitutes a sample of the training data set. Although
the correlation between training samples is not ideal, the more extensive set
of training samples can be beneficial for model performance. Throughout all
simulations shown in this chapter, we used a stride of s = 5 and a window
length of m = 20 and m = 40.

One sample of the resulting training data set is thus a subsequence of length
20 or 40 of the transformed time series of daily log returns of the S&P 500
index.

Each generated sample consists of the expectation values of 2n Pauli operators,
{repoc}i® = {(X)1,(Z2)1,(X)2,(Z)2,...} from a PQC with n qubits (see
Sec. 5.3.2), which are then post-processed by taking the following steps: (i)*
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data rescaling, (ii)* data renormalization, (iii)* forward Lambert transform,
(iv)* data renormalization.

(i)* The data is rescaled by reversing step (v) in the pre-processing: The
inverse mapping is given by

re,poc + 1

5 (max — min) + min, (5.16)

Tt,(3)x =
where {r; pgc}7™, are the measured expectation values.
(ii)* The resulting set is normalized by reverting step (iii):

Te (i) = 00 Te Gy M s (5.17)

where !, and o). are calculated in the pre-processing step (iii).
(iii)* The inverse Lambert-W transformation is reversed by applying

ory (id)*
Tt (iii)* = Tt,(ii)* €XP T , (5.18)

where § is the parameter that we fix to 1/2 throughout the chapter.
(iv)* Finally, we also reverse the first normalization:

Tt,gen = Tt (iv)* = Or Tt (i55)* + Hr, (5.19)

where p,. and o, are the mean and standard deviation of the original time series.
At the end of the post-processing, each sample is a time series of length 2n,
which we write as:

Tgen = {T'1,72,73, T4, ..., T2n |
= {p({(X)1),p((Z)1)s s P((X)20), P((Z)20)} (5.20)

where by p(-) we denote the post-processing.

5.3.2 Quantum generator and full-state simulation

As a generator of the QGAN, we chose a PQC with an architecture that is
sketched in Fig. 5.2, based on the hardware efficient Ansatz [21, 238]. The qubits
are initialized in the |0) state. Each layer consists of single-qubit Pauli rotations,
CNOT gates connecting nearest neighbors and noise encoding gates. The latter
encode each a uniformly distributed noise sample with single-qubit rotations
with trainable parameters. Such circuit architectures suffer from barren plateaus
when scaled up in the number of qubits and layers [266]. Therefore, we do not
consider them to be scalable in their current form. Instead, our investigation
should be understood as establishing lower bounds on what can be achieved
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with quantum circuits: if these perform well at small scales, it motivates efforts
to refine them for improved trainability at larger scales. Conversely, if they fail
to perform even at small scales, this indicates that the application may be less
promising than one might have hoped.

In Sec. 5.4, we present results from training circuits with 10 and 20 qubits and
between 1 and 18 layers. This choice of the number of qubits and layers makes
the QGANSs classically simulatable. After the n-th layer, we apply single-qubit
Pauli rotations and we measure each qubit in two bases: the Pauli-Z basis
and the Pauli-X basis. We chose these measurements in order to enable the
simulation of longer time series using fewer qubits. The exact consequences
in terms of expressivity and potential greater sampling costs was discussed
in [236, 267].

For the training of the QGAN and the analysis of the generated data at
the end of the training, which we present in Sec. 5.4, we create samples of
generated time series, each with a different random noise input. First, we
collect the expectation values {(X)1,(Z)1,(X)2, (Z)2,...} at the end of the
PQC, where (X);, (Z); € [—1,1] are the expectation values of the measurement
in the Pauli-X and Pauli-Z basis on the i-th qubit, respectively. Subsequently,
we post-process the data as described in Sec. 5.3.1. After the post-processing,
the obtained set {p({X)1),p({(Z)1),p({X)2),p({Z)2), ...}, where p(-) stands as
the post-processing map, constitutes one sample of a generated time series rgen
(see also Eq. (5.20)). A circuit of n qubits thus generates a time series of length
2n. By generating multiple such time series samples from different random
noise inputs, the QGAN approximates the empirical distribution of time series
of the same window length in the training data.

The first part of our simulations is based on the full-state simulation of
PQC. Let |¢ran) be the quantum state that describes the state at the end of
the parameterized quantum circuit (PQC) used in our quantum generative
adversarial network (QGAN). In the computational basis, it takes the form

[ran) =~ Z Ciyyienyin [115925 oo in) (5.21)

11,1205

where i; € {0,1}. The number of coefficients ¢;, ;,,... s, of this state, and thus
the memory requirement, scales exponentially with the number of qubits n.
Moreover, the time cost of the classical full-state simulation scales linearly with
the number of layers. This makes the full-state simulation quickly infeasible.

5.3.3 Matrix product state simulation

For being able to simulate PQC with a higher number of layers and qubits,
we use matrix product states (MPS) as efficient approximation methods under
some circumstances [224, 225, 268], which in the context of machine learning
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is also called the tensor-train decomposition [269]. They provide a compact
representation of quantum states with limited entanglement and have been
extensively used in physics [268]. This makes them well suited for simulating
quantum states that are prepared by the PQC used in our QGAN.

An MPS represents an n-qubit quantum state |¢r;) as a product of local
tensors [268]:

) = Y ANAZ A i), (5.22)

U1 yeenyln
where each Agi] is a xx—1 X xgx-dimensional tensor. We call x; the bond
dimensions of the MPS that controls the amount of entanglement the MPS can
represent. The contraction of these tensors yields the amplitude corresponding

to each computational basis state. For simplicity, we choose AE] as 1 x x-

dimensional, AEZ] x X l-dimensional, and each remaining tensor AEIZ] with the
dimensions x x Y. Such an MPS is described by (2n — 1)x? + 2x coefficients,
which for constant x scales linearly in the number of qubits, making it more
efficient than the full-state simulation with 2™ coefficients. Fig. 5.3 provides a
sketch of an MPS representation.

|¥)

Q
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Figure 5.3: A matrix product state (MPS) consists of a chain of local tensors AU
connected by virtual bonds of dimension x, each with a physical leg representing a
qubit index. A virtual bond represents a sum over a particular index of the tensors.
The left term represents the state 1, which lives in a 4-qubit space, and the right term
shows its MPS approximation.

We simulate the quantum circuit using MPS in the following way: We start
with the trivial tensor corresponding to the initial state of the circuit |0)".
Then, we apply each layer sequentially to the MPS, on which single-qubit Pauli
rotations are trivially applied. After each CNOT gate, we recalculate the tensors
by singular value decompositions (SVD) [270]. We partition the system into left
and right parts and apply SVD, truncate the number of singular values to the
bond dimension xj, and the left unitary multiplied with the truncated singular
value matrix forms the tensor Agi]. After applying every layer in this way, we
get an MPS approximation of the output state |tg,) of the PQC.

To assess the quality of the MPS approximation for systems that can efficiently
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be simulated with the full-state, we compute the fidelity between the full
quantum state |ig,1), obtained from an exact state vector simulation, and the
MPS-approximated state |¢yps):

F = | (Y] [mps) [ (5.23)

We evaluate this fidelity for various values of the maximum bond dimension
X- As shown in Fig. 5.4, the fidelity increases with x, indicating improved
approximation accuracy. For a higher number of layers, the PQC increases
the entanglement across the qubits, which decreases the fidelity for fixed bond
dimension. For sufficiently large x (x = 32 for 10 qubits), the MPS becomes
numerically indistinguishable from the full-state [271].

In general, for a higher number of layers and qubits, it is not possible anymore
to calculate this fidelity as it is not feasible to simulate the full-state. Instead, one
can calculate the fidelity between MPS simulations of different bond dimensions,
and choose the lowest bond dimension at which this fidelity does not increase
anymore.
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Figure 5.4: Fidelity between the exact quantum state prepared by a PQC consisting

of 10 qubits, in the architecture as sketched in Fig. 5.2 and the MPS approximation
as a function of the depth of the PQC, for different bond dimensions .
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This tunability of the bond dimension provides a practical trade-off between
simulation efficiency and accuracy. In the context of training the QGAN, where
the PQC must be evaluated many times, moderate bond dimensions already
yield sufficiently high fidelity while significantly reducing computational cost.

5.4 Results

In this section, we describe the results of our simulations. We simulated the
parameterized quantum circuit (PQC) with the architecture shown in Fig. 5.2
in two ways, as described in Sec. 5.3. First, we performed full-state simulations
for systems with up to 10 qubits and up to 6 layers. Second, we used matrix
product state (MPS) simulations for systems with 10 and 20 qubits and between
1 and 18 layers. We performed 5 runs for each of these simulations, and describe
their results in separate subsections. The results are discussed in Sec. 5.5.

5.4.1 Full-state simulation

For the full-state simulation, we chose a PQC consisting of 10 qubits and 8
layers. Therefore, for the generation of the training set from the historical
S&P 500 time series, we set the window size to 20. In 5 runs, we trained a
QGAN for 7900 epochs, and plotted the metrics of the generated time series of
the best out of these 5 runs in Fig. 5.5. For this figure (and also for Figs. 5.8,
5.9, 5.11 and 5.12), we generated 1500 samples (each with different random
noise inputs) of the time series, and calculate the correlations as the average of
all samples and of all pairs of lags in each time series. The confidence intervals
are calculated as in [272, p.51].

In (a), we plot the probability density functions and in (b) the quantile-
quantile plot of both the S&P 500 index and the generated time series. In
(c)-(h), we plot the metrics absolute autocorrelation, linear autocorrelation
and the leverage effect, as an indication of the stylized facts as described in
Sec. 5.2.1. The Subfigures (c), (e) and (g) show the metrics of the S&P 500
index and the Subfigures (d), (f) and (h) the metrics of the generated time
series, respectively. Confidence intervals are calculated as in [272].

The generated time series closely resembles the distribution of the S&P 500
index, as shown in Subfigures (a) and (b). Similar to the S&P 500 index, the
generated time series shows a weaker, but decaying absolute autocorrelation
(Subfigures (c¢) and (d)) and does not show linear autocorrelation (Subfigures
(e) and (f)). The leverage effect, which is negative and increasing in the S&P 500
index (Subfigure (g), is also reproduced in a weaker way in the generated time
series (Subfigure (h)). As can be seen in Fig. 5.6, both the loss function and
the temporal metrics decrease with the number of epochs, indicating stable
training of the QGAN.
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Figure 5.5: Metrics of the stylized facts for a synthetic time series of window size 20
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC based on the architecture shown in Fig. 5.2 consisting of 10
qubits and 8 layers, simulated with the full-state approach.
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Figure 5.6: Wasserstein loss as defined in Eq.(5.9) (here called the EMD) and metrics
corresponding to the temporal correlations as described in Sec. 5.2.1 in the training of
the QGAN in the full-state simulation with 10 qubits and 8 layers (see Fig. 5.5 for the
final metrics), depending on the number of epochs. We show the mean and standard
deviation of the 5 training runs.
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We show the metrics of the best out of 5 runs that correspond to the time
series as shown in Fig. 5.5 in column (a) of Table 5.1.

Metrics (a) (b) (c) (d) (e)
EMD [33-107%[6.1-107%[27-107%]29-10"" [ 42-1073
EACF(@) 1 19-1073 | 24-1073 | 1.5-1073 | 45-107% | 1.1-1073
E2CF(©0) | 3.7-1072 | 5.5- 102 0.15 0.31 0.99
Ereo(0) 166-1073[58-1073 | 47-107% [ 2.2-1072 | 4.4-1072

Table 5.1: Comparison of different metrics defined in Egs. (5.3)-(5.6) for the best out
of the 5 runs of (a) the full-state simulation with 10 qubits and 8 layers as in Figs. 5.5
and 5.6, (b) the full-state simulation with 10 qubits and 8 layers with a different
circuit architecture as described in Appendix 5.C, (c) the full-state simulation with
10 qubits and 8 layers based on a circuit with CZ gates instead of CNOT gates as
described in Appendix 5.D, (d) the MPS simulation with 10 qubits, 18 layers and a
bond dimension 32 as in Figs. 5.8 and 5.7, (e) the MPS simulation with 20 qubits, 6
layers and a bond dimension 70 as in Fig. 5.9.

The Wasserstein QGAN does not explicitly account for temporal effects, so
any such structure in the generated time series must result from other aspects
of the model. To investigate the influence of the PQC architecture on these
temporal effects, we trained a QGAN with a different PQC and present the
results in Appendix 5.C. We indeed see that the absolute autocorrelation of
the generated time series increases at larger time lags, and the leverage effect
is less pronounced in comparison to the time series generated in Fig. 5.5. In
contrast, no substantial difference in the quantile-quantile plots and the absolute
autocorrelation can be observed. See Table 5.1 for a comparison of the metrics,
which are higher than for the simulation shown in Fig. 5.5 apart from the
leverage effect.

We also trained a QGAN with the full-state simulation based on a circuit
that uses control-Z (CZ) gates instead of CNOT gates, and show the results in
Appendix 5.D. The absolute autocorrelation decreases faster, and the leverage
effect is more closely pronounced compared with the results shown in Fig. 5.5.

Additionally, to compare with the results of a GAN based on a quantum
circuit Born machine [223], we trained the QGAN (based on the circuit with
CZ gates instead of CNOT gates) on generating currency pairs; the results are
shown in Appendix 5.B.

We analyze these results in Sec. 5.5.

As explained in Sec. 5.3, full-state simulation of PQCs quickly becomes
infeasible as the number of layers and qubits increases. In the following, we
describe MPS-based simulations, which make it feasible to simulate PQCs with
larger numbers of layers and qubits.
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5.4.2 MPS simulation

For the MPS simulation, we first chose a PQC of 10 qubits, with a varying
number of layers (1, 5, 10 and 18) and different bond dimensions (1, 8, 16, 24
and 32) of the MPS. The MPS simulation of PQCs with 10 qubits generates
time series with the same window size as the full-state simulation, making the
results directly comparable. For higher numbers of layers and bond dimensions
below x = 32, the MPS simulation is also faster than the full-state simulation.

For higher bond dimensions and number of layers, the training time in the
MPS simulation increases, and the stylized facts of the generated time series
vary considerably for each choice of the number of layers and bond dimension.
See in Appendix 5.E for a comparison of the Wasserstein distance and metrics
for the temporal effects for simulations of different numbers of layers and bond
dimensions. In Fig. 5.8, we show the metrics of a generated time series from a
well-performing QGAN that is trained for 7032 epochs, whose PQC consists of
18 layers and is simulated as an MPS with bond dimension 32. The metrics of
this generated time series are shown in column (c) of Table 5.1. We chose to
show the results for this particular model, as they match the stylized facts of
the time series of the S&P 500 index qualitatively well, and as it proves that it
is possible to train a QGAN for which the PQCs in the MPS simulation has
more layers than what would be feasible with the full-state simulation.

The quantile-quantile plot shows that the generated time series matches the
distribution of the S&P 500 index closely. In contrast to the time series generated
with the full-state simulation shown in Fig. 5.5, the absolute autocorrelation
(Subfigure (d)) that indicates volatility clustering is lower, but also decreasing
for all time lags. Also the leverage effect is weaker than in the time series
generated by the full-state simulation. The quantitative metrics decrease more
slowly during training compared to the full-state simulation, as can be seen in
Fig. 5.7.

Across the QGANS trained with different numbers of layers and bond dimen-
sions in the MPS simulation, we generally observe that the generated time series
reproduces the distribution, absence of linear autocorrelation, and volatility
clustering, while the leverage effect is less pronounced.

In order to show that MPS can also be used for simulating QGANs that can
generate time series with a larger window, we trained a QGAN with the MPS
simulation of a PQC that consists of 20 qubits. Such a simulation would be
infeasible with full-state simulation. We show the results of this simulation
in Fig. 5.9 and in column (d) of Table 5.1. Since increasing the number of
qubits and the bond dimension raises the time required to train each epoch, the
QGAN is trained for only 650 epochs.

In the following section, we will analyze and compare the results of the
different simulations shown here.
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Figure 5.7: Wasserstein loss as defined in Eq. (5.9) (here called the EMD) and
metrics corresponding to the temporal correlations as described in Sec. 5.2.1 in the
training of the QGAN in the MPS simulation with 10 qubits, 18 layers and a bond
dimension of 32 (see Fig. 5.8 for the final metrics), depending on the number of epochs.
We show the mean and standard deviation of the 5 training runs.
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Figure 5.8: Metrics of the stylized facts for a synthetic time series of window size 20
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC consisting of 10 qubits and 18 layers, simulated with the MPS
approach with bond dimension 32.
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5.5 Analysis of the results

In all simulations, the probability distributions of the generated time series
closely resembles the distribution of the S&P 500 index. The temporal correla-
tions show significant differences between the simulations. While the absence
of linear autocorrelations is visible in all simulated time series, their absolute
autocorrelation (indicating volatility clustering) and the leverage are of different
quality.

The full-state simulation (see Fig. 5.5) shows both effects, even though the
absolute autocorrelation and the leverage effect are weaker than in the S&P 500
index.

The MPS simulation with 10 qubits, 18 layers, and bond dimension 32 (see
Fig. 5.8) shows even weaker absolute autocorrelation and leverage effect.

Adding a CNOT gate between the first and the last qubits in each layer
and performing the full-state simulation, leads to an increase in the qubit
correlation (see Appendix 5.C). This might be a reason for the observation that
the absolute autocorrelation of the generated time series increases at larger time
lags. However, the leverage effect is pronounced weaker, and the other stylized
facts do not differ substantially compared to the simulation shown in Fig. 5.5.
Furthermore, in particular the Wasserstein loss is higher, as shown in Table 5.1,
showing that the model generates time series that are further away from the
real probability distribution. This proves that the architecture of the circuit
indeed plays an important role on the quality of the generated time series.

The QGAN simulated with the full-state simulation which is based on a
circuit that uses control-Z (CZ) gates instead of CNOT gates in Appendix 5.D,
shows a faster decreasing absolute autocorrelation but more clearly pronounced
leverage effect.

We benchmarked the QGAN with a full-state simulation against a quantum
circuit Born machine in modeling the time-aggregated distribution of foreign
exchange pairs yielding a better approximation of those distributions (see
Appendix 5.B).

Using the MPS simulation, we also trained a QGAN with 20 qubits, 5 layers,
and a bond dimension of 70 (see Fig. 5.9). This demonstrates that MPS
can handle QGANSs of greater complexity than those feasible with full-state
simulation. However, the training of QGANs with PQCs of a higher number of
layers and qubits and MPS of higher bond dimensions increases the number of
epochs needed in the training. Additionally, each training epoch takes a longer
time for these more complex models. For an equal computational cost, the
generated time series therefore does not resemble the distributions and temporal
effects of the target time series as closely as in the simulations with 10 qubits.
But, by using a PQC with 20 qubits, it is possible to simulate time series with
a larger window size of 40.

We remark that the loss landscapes differ significantly between full-state and
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MPS simulations due to their different approximation and simulation structure.
The difference in the quality of the generated time series can be partially
attributed to the different features of the loss landscape.

Compared to the classical GAN experiments in [260], which use multi-layer
dense neural networks as generators and either a multi-layer dense or convolu-
tional neural network as discriminator (with the same specifications as described
in Appendix 5.A), both of our quantum simulation methods yield qualitatively
improved results, particularly with respect to the Wasserstein distance and
volatility clustering, as observed in the plots of the stylized facts. Note that
the window size used in the classical experiments differs from ours, which may
influence the comparison.

5.6 Conclusions

We constructed a Wasserstein quantum generative adversarial network (QGAN)
with a classical convolutional network as a discriminator and an expectation
value sampler based on a parameterized quantum circuit (PQC) as a generator,
in order to assess whether these quantum architectures have suitable inductive
biases for generating synthetic financial time series known to be problematic for
classical models. This approach leverages the PQC architecture to intrinsically
capture temporal correlations in the time series, while the QGANSs are trained
solely on matching the aggregated distribution of the time series, by using a
discriminator which learns the Wasserstein distance between the distributions
of the generated time series and of the training data. We simulated a PQC
with 10 qubits and 8 layers with a full-state simulation and a PQC with 10 and
20 qubits and with up to 18 layers as an approximation by a matrix product
state (MPS) simulations with bond dimensions of up to 70. The latter approach
allowed us to simulate PQCs with a higher number of layers and qubits, which
makes it possible to train the generation of longer time series.

We compare the generated time series qualitatively with the S&P 500 index
by their distributions and their temporal correlations, also called the stylized
facts. These stylized facts are typically assessed qualitatively rather than
quantitatively [78].

In this chapter, we showed that our trained QGANSs generate time series that
match the desired distributions and exhibit some of the temporal correlations
seen in financial time series, such as in the S&P 500 index. Simulating the PQC
with full-state simulations and MPS simulations yield different results, with
circuit depth and the MPS bond dimension further influencing the performance.
The three simulations performed with the full-state simulation show different
behavior in particular of the absolute autocorrelation of the generated time
series, indicating different qualities in capturing volatility clustering. The QGAN
using the PQC given in Fig. 5.2 shows the closest match of this property (see
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Fig. 5.5), whereas PQC architectures where an additional CNOT gate is added
at the end of each layer leads to an increase in the absolute autocorrelation
for higher time lags (see Fig. 5.11). Using CZ gates instead of CNOT gates
in the PQC causes a quicker decrease of this effect (see Fig. 5.12). The MPS
approach leads to weaker absolute autocorrelation and leverage effect compared
to the full-state simulation (compare Fig. 5.5 and 5.8), but is able to simulate
QGANSs with a longer time window (see Fig. 5.9). Both simulation methods
motivate the study of quantum hardware in their ability to generate financial
time series with stylized facts. Our work has already motivated studies in which
the effect of such generated data on the training of neural networks has been
explored [273, 274].

The application of these QGANS as subroutines for applications such as option
pricing [275] and risk analysis [276] can be explored as well. Furthermore, a
possible extension of our method is to train the model to replicate correlated
stocks of the S&P 500 index, motivated by research in community detection [277].
This could possibly be achieved by either learning the underlying distributions
(in a similar way as done in Appendix 5.B), or by learning the individual time
series similar to the ones in Sec. 5.4. As the number of qubits restricts the
number of time steps and the number of stocks that can be generated, one could
examine if quantum generators consisting of circuits on qudits can be successful,
as that enables more independent measurements on each qudit. Specifically for
qudits, not only superconducting qubits form a suitable experimental platform,
but also trapped ions, neutral atoms and integrated photonics are excellent
candidates for manipulating higher-dimensional quantum information [278, 279].

An improvement of the training of the QGANSs could be achieved in several
ways. Firstly, the effects of shot noise [237] in the training of the quantum
generator could be explored. Secondly, different design choices, like choosing a
different classical or quantum discriminator in the QGAN, diffusion model [242],
or quantum long-short time memory models [280] might lead to different results.
Thirdly, as the QGAN is trained with Wasserstein loss functions (see Egs. (5.9)
and (5.11)) that are taking the distribution of the time series into account, but
not the temporal effects, an adaption of the training to consider them as well
might lead to a better recovery of those temporal effects. In particular, it might
be possible to not only gain a better match in the absolute autocorrelation and
leverage effect, but also in the exact reproduction of the autocorrelation. Lastly,
one could try different definitions of the quantum Wasserstein distance [281]
that give theoretical improvements over the qualitative accuracy.

5.7 Code availability

The code supporting this chapter is available at the following repository: https:
//github.com/LucasAugustusvd/Quantum-Finance


https://github.com/LucasAugustusvd/Quantum-Finance
https://github.com/LucasAugustusvd/Quantum-Finance

5.A Architecture of the discriminator

5.A Architecture of the discriminator

We trained the classical discriminator in our QGAN simulations with a convolu-
tional neural network. Table 5.2 summarizes its properties and hyperparameters.
This choice is motivated by [239], where it successfully was applied as a discrim-
inator of a GAN that generates financial time series.

Layer (type) Output Shape Param #
convld_12 (Convi1D) (None, 200, 64) 704
leaky re lu 33 (LeakyRelLU) (None, 200, 64) 0
convld 13 (Conv1D) (None, 200, 128) 82048
leaky re lu 34 (LeakyRelU) (None, 200, 128) 0
convld 14 (Conv1D) (None, 200, 128) 163968
leaky re lu 35 (LeakyRelU) (None, 200, 128) 0
flatten_4 (Flatten) (None, 25600) 0
dense_29 (Dense) (None, 32) 819232
leaky re lu 36 (LeakyRelU) (None, 32) 0
dropout 13 (Dropout) (None, 32) 0
dense 30 (Dense) (None, 1) 33

Total params: 1,065,985
Trainable params: 1,065,985
Non-trainable params: 0

Table 5.2: Hyperparameters and properties of the convolutional neural network used
as the discriminator in the QGANs.

5.B Comparison with quantum circuit Born
machine
In [223], a QGAN is constructed where the quantum generator was used as

a quantum circuit Born machine. It was trained to generate distributions
of foreign exchange pairs, producing samples that better matched the true
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distributions than those from a classical restricted Boltzmann machine with a
comparable model size.

We also trained our QGAN, where the quantum circuit consisting of 4
qubits and 4 layers, is simulated with the full-state approach with CZ gates
(instead of CNOT gates compared to Fig. 5.2), in reproducing the same pairs
of foreign exchanges as in [223]. We trained the single-qubit Pauli-X and
Pauli-Z observables on the distributions of the EUR/USD and the GBP/USD
foreign exchange log returns, respectively. Fig. 5.10 shows the quantile-quantile
plot comparing samples from our trained model with the target distribution.
Our trained QGAN samples match the target distribution more closely than
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Figure 5.10: Quantile-quantile plot comparing samples from the trained QGAN
model with a PQC of 4 qubits and 4 layers to the target distribution of EUR/USD
and GBP/USD log returns.

the results for the quantum circuit Born machine and the classical restricted
Boltzmann machine shown in Fig. 10 of [223], while using fewer qubits than
used for the quantum circuit Born machine. This difference to the results from
the quantum circuit Born machine comes from to the discrete nature of that
model, which has naturally a higher imprecision of generated samples compared
to the expectation value sampler used in our model.

5.C Full-state simulation: alternative circuit
architecture

In addition to the PQC shown in Fig. 5.2, we trained a QGAN using a modified
PQC architecture simulated with the full-state approach. In order to increase
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long-range qubit correlations, we added a CNOT gate between the first and
10th qubit in each layer of the PQC (results in Fig. 5.11). Subfigure (d) shows
that this architectural change increases the absolute autocorrelation at larger
time lags. The metrics of the generated time series are shown in column (b) of
Table 5.1.

5.D Full-state simulation: CZ gates instead of
CNOT gates

In Fig. 5.12 | we show the results of a full-state simulation using a circuit
architecture in which the CNOT gates were substituted with control-Z (CZ)
gates. Compare with the architecture sketched in Fig. 5.2 and the corresponding
simulations shown in Figs. 5.5 and 5.6. Subfigure (d) shows that this archi-
tectural change leads to a faster decrease in the absolute autocorrelation. The
metrics of the generated time series are shown in column (c) of Table 5.1.

5.E MPS simulations for different numbers of
layers and bond dimensions

In Fig. 5.13, we show the quantitative metrics of training a QGAN where the
PQC consisting of 10 qubits are simulated with the MPS approach for 1,5, 10
and 18 layers and bond dimensions of 1,8,16,24 and 32. See Sec. 5.4.2. Note
that a bond dimension of 32 is giving an exact MPS approximation of the
10-qubit state.
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Figure 5.11: Metrics of the stylized facts for a synthetic time series of window size 20
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC consisting of 10 qubits and 8 layers, simulated with the
full-state approach. Contrary to the PQC used in Fig. 5.5, we added an additional

CNOT gate between the first and the 10th qubit in each layer.
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Figure 5.12: Metrics of the stylized facts for a synthetic time series of window size 20
generated by a QGAN, compared to the metrics of the S&P 500 index. The generator
of the QGAN is a PQC based on the architecture shown in Fig. 5.2 consisting of 10
qubits and 8 layers and CZ gates instead of CNOT gates, simulated with the full-state
approach.
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Figure 5.13: Wasserstein loss as defined in Eq. (5.9) (here called the EMD) and metrics corresponding to the temporal
correlations as described in Sec. 5.2.1 in the training of the QGAN in the MPS simulation with 10 qubits, 1,5,10 and 18 layers
and bond dimensions x of 1,8,16,24 and 32, depending on the number of epochs.

Temporal metric loss

Temporal metric loss

0ss

Temporal metric

Temporal metric loss



CHAPTER 6

Conclusions

With this chapter, we conclude the thesis. We restate and conclude the research
questions outlined in Sec. 1.4 in the beginning of this thesis. Finally, we
re-outline promising directions of future work.

6.1 Research overview

This thesis dealt with several aspects of capturing dynamics with noisy quantum
computers. We introduced several concepts as well as the research questions
in Chapter 1, which we explored in Chapters 2, 3, 4, and 5. While we drew
conclusions at the end of each of Chapters 2, 3, 4, and 5, we now come back to
the specific research questions stated in the beginning of the thesis and reflect
on them based on the results derived in the earlier chapters.

The first two research questions are concerned with theoretical properties of
quantum machine learning:

Research Question 1: Can parameterized quantum circuits approrimate
functions as well as their derivatives?

In Chapter 2, which is based on the previously published work in Ref. [88], we
answered this question. We showed that parameterized quantum circuits can not
only approximate square integrable functions arbitrarily close in the L? distance,
but also other function classes and with respect to other distances. In particular,
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by answering this research question, we proved that parameterized quantum
circuits can approximate functions in the Sobolev space H* with arbitrary
precision under the Sobolev distance. Those spaces contain square-integrable
functions whose partial derivatives up to order k are also square-integrable. The
corresponding Sobolev distance is defined as the sum of the L? distances of
the function and its partial derivatives up to order k. However, parameterized
quantum circuits can only do so if certain conditions on the data input are met,
for which we also provide a trivial solution.

Research Question 2: How does an augmentation of the training data with
derivatives of the target function influence generalization in quantum machine
learning with parameterized quantum circuits?

We also answered this question in Chapter 2, which is based on the results
published in Ref. [88]. We proved a generalization bound that shows that a
generalization of the approximation of both the function and its derivatives
is possible if the training data includes not only labels of the target function,
but also of its derivatives. Furthermore, we proved that including data of the
derivatives of the target function also guarantees generalization bounds for the
supremum and LP distances. We found that the higher the dimension of the
function, the more higher-order derivatives are required in order to achieve these
bounds. These results give a theoretical explanation of earlier numerical findings
that suggested improved generalization with classical neural networks [89], and
thus also impact classical machine learning.

In the following research question, we focused on variational quantum algo-
rithms for differential equations solving:

Research Question 3: What is the total error arising in variational quantum
algorithms for solving differential equations based on Runge-Kutta methods and
which Runge-Kutta order minimizes the number of circuit evaluations needed?

In Chapter 3, we provided an extensive error analysis and determined the
resource requirements needed to achieve specific target errors, based on results
published in Ref. [46]. In particular, we derived analytical error and resource
estimates for scenarios with and without shot noise, examining shot noise in
quantum measurements and truncation errors in Runge-Kutta methods. Our
analysis did not take into account representation errors and hardware noise,
as these are specific to the instance and the used device. We evaluated the
implications of our results by applying them to two scenarios: classically solving
a 1D ordinary differential equation and solving an option pricing linear partial
differential equation with the variational algorithm, showing that the most
resource-efficient methods are of order 4 and 2, respectively. We showed that
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even those most resource-efficient methods require a number of shots multiple or-
ders of magnitude higher than what seems to be feasible on near-term quantum
computers. However, those resource estimates might be lower in practice, as sev-
eral error bounds on which these estimates are based on are not tight. Although
our study minimizes resources for the upper bound we derive, we hope that
the resulting prescription is a good heuristic for allocating resources in practice.
The results may also be of interest to the numerical analysis community as they
involve the accumulation of errors in the function description, a topic that has
hardly been explored even in the context of classical differential equation solvers.

In many variational quantum algorithms, estimating reduced density matrices
(RDMs) of the quantum system forms an important subroutine. However, this
task is challenging, among others due to the effects of shot noise stemming from
a limited number of measurements. Our following research questions therefore
asked:

Research Question 4: Is it possible to mitigate the effects of shot noise in
the quantum state tomography of reduced density matrices by enforcing physical-
ity conditions organized as semidefinite programs?

In Chapter 4, we answered this question, which is addressed in Ref. [90].
We proposed a method to mitigate shot noise by reinforcing certain physi-
cality constraints on RDMs. The first kind of these constraints, which we
called the enhanced-compatibility, require RDMs to be compatible with higher-
dimensional RDMs. Secondly, we included constraints that we called overlapping-
compatibility which enforce that overlapping RDMs are consistent on those
subsystems on which they overlap. We organized these compatibility constraints
in semidefinite programs to reconstruct RDMs from simulated data. Our
approach yields, on average, tighter bounds for the same number of measure-
ments compared to tomography without compatibility constraints. We further
demonstrated the versatility and efficacy of our method by integrating it into an
algorithmic cooling procedure to prepare low-energy states of local Hamiltonians.

In the last research question of this thesis, we explored quantum approaches
for generative modeling of dynamical systems of the financial market. In partic-
ular, we stated:

Research Question 5: Can quantum generative adversarial networks cap-
ture the distribution and stylized facts of financial time series on a qualitative

level?

In Chapter 5, we presented our answer to this question, based on the re-
sults shown in Ref. [91]. We trained quantum generative adversarial networks
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6 Conclusions

(QGANS), composed of a quantum generator and a classical discriminator, and
used two classical simulation approaches for the quantum generator: a full
simulation of the quantum circuits, and an approximate simulation of the latter
using matrix product states. We tested the effect of the choice of circuit depths
and bond dimensions of the matrix product state simulation on the generated
time series. Overall, the QGANs were generally successful in capturing most of
the temporal correlations observed in real financial data. But depending on the
hyperparameters of the model, the generated synthetic financial time series dif-
fered in how well they reproduced the properties of financial time series. These
differences allow selecting a model that best reproduces the desired properties
of financial time series for specific applications.

6.2 Future work

Throughout this thesis, we suggested several directions in which the results of
the thesis can be extended, at the end of each of Chapters 2, 3, 4, and 5. Let
us summarize here the most important ones.

The exploration of the expressivity and generalization of parameterized quantum
circuits in Chapter 2 motivates further study of their impact on applications
such as differential equation solving and option pricing. Further, it might be
promising to examine the role of other distances for both the expressivity and
generalization of parameterized quantum circuits.

In Chapter 3, we did not take into account representation errors and hardware
noise, although we gave several ideas and explanations in how to incorporate
them in practice. It is therefore natural to ask how to categorize these error
sources in a more systematic manner, by using techniques such as in [131]. We
determined the act of classically inverting an (in general ill-conditioned) matrix
with noisy elements as the key difficulty in this set of algorithms. Exploring
alternative ways for this step might therefore significantly improve the chances
of applying these and related algorithms for real-world use cases. It might also
be interesting to apply the ideas of Chapter 3 to classical differential solvers, as
many of those are dealing with noisy data.

The method presented in Chapter 4 can be extended by including additional
constraints, such as entropy constraints, into the SDP formulation to further
refine the reconstruction process [195]. An interesting question is to explore its
effect with other systems, such as frustration-free Hamiltonians or for quantum
chemistry calculations, as in [207, 208]. Furthermore, it might be promising
to combine our method with noise mitigation strategies and to apply it in the
optimization of other local observables, such as correlation functions.

The quantum generative adversarial networks of Chapter 5 can possibly be
applied as subroutines for applications such as option pricing [275] and risk
analysis [276]. Moreover, a possible extension of our method is to train the model
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6.2 Future work

to replicate correlated stocks of the S&P 500 index, motivated by research in
community detection [277]. We gave several ideas for this extension in Chapter 5.
We lastly suggest to explore possible improvement of the training of our model
by several ways. In particular, as the model is trained with Wasserstein loss
functions (see Egs. (5.9) and (5.11)) that are taking the distribution of the time
series into account, but not the temporal effects, an adaptation of the training
to consider them as well might lead to a better recovery of those temporal
effects.
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Samenvatting

Quantum computing vertegenwoordigt een fundamenteel nieuw paradigma van
berekening en maakt nieuwe aanpakken mogelijk voor problemen die onoplosbaar
zijn voor klassieke computers. Aangezien de momenteel beschikbare quantum
apparaten klein, ruisgevoelig, onbetrouwbaar en duur zijn, is veel van de huidige
vooruitgang gebaseerd op theoretische analyse en klassieke simulaties om hun
mogelijkheden en beperkingen te begrijpen.

Dynamica beschrijft hoe de toestand van een systeem in de tijd verandert
en kan wiskundig worden weergegeven door modellen zoals differentiaalvergeli-
jkingen of tijdreeksen. In dit proefschrift onderzoeken we de toepassing van
quantum computing om dergelijke dynamica vast te leggen vanuit verschillende
complementaire perspectieven.

In het inleidende Hoofdstuk 1 presenteren we de fundamentele concepten. We
introduceren quantum computing, variationele quantum algoritmen en ruis door
sampling. Als toepassingen van variationele quantum computing bespreken
we het oplossen van differentiaalvergelijkingen, quantum machine learning
en toepassingen in de financiéle sector. Ten slotte schetsen we verschillende
onderzoeksvragen en beschrijven we de algemene structuur van het proefschrift.

In Hoofdstuk 2 onderzoeken we de rol van afgeleiden in quantum machine
learning. We tonen aan dat geparametriseerde quantum circuits zowel functies
als hun afgeleiden willekeurig goed kunnen benaderen, mits de invoergegevens
op de juiste manier worden herschaald. Bovendien laten we zien dat het
opnemen van zowel functiewaarden als afgeleidewaarden in de trainingsdataset
de gegarandeerde benadering van de getrainde quantum modellen verbetert,
waardoor benadering in sterkere normen mogelijk wordt die anders onbereikbaar
zouden zijn. Aangezien de dynamica van een functie wordt bepaald door
haar afgeleiden, verduidelijken deze inzichten hoe quantum machine learning
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dynamisch gedrag effectief kan vastleggen.

In Hoofdstuk 3 analyseren we een klasse van quantum algoritmen die zijn
ontworpen om differentiaalvergelijkingen op te lossen. We voeren een foute-
nanalyse en een schatting van de benodigde middelen uit, met de nadruk op
fouten die voortkomen uit de klassieke Runge-Kutta-subroutines evenals uit
ruis door sampling bij het evalueren van quantum circuits. We passen deze
schattingen toe op een differentiaalvergelijking uit de financi€le optieprijzing
en vergelijken hoe verschillende Runge-Kutta-methoden de totale benodigde
rekenmiddelen beinvloeden.

Quantum toestandstomografie is het proces waarbij een quantum toestand
wordt gereconstrueerd uit meetgegevens en vormt een belangrijke subroutine
in veel quantum algoritmen. In Hoofdstuk 4 presenteren we een methode
om ruis door sampling in quantum toestandstomografie te verminderen door
zowel meetgegevens als fysische beperkingen te formuleren als een semidefiniet
programma. We tonen aan dat, afhankelijk van de onderliggende quantum
toestand, er ruisregimes bestaan waarin onze methode beter presteert dan
andere geavanceerde tomografietechnieken.

Ten slotte demonstreren we in Hoofdstuk 5 de toepassing van quantum gen-
eratieve adversariéle netwerken voor het genereren van synthetische financiéle
tijdreeksen. We simuleren de quantum circuits met behulp van zowel volledige
toestandsimulaties als tensor-netwerk gebaseerde simulaties. Voor klassieke mod-
ellen blijft het een uitdaging om synthetische financiéle tijdreeksen te genereren
die zowel de doelverdelingen volgen als realistische temporele correlaties verto-
nen. We tonen aan dat onze quantum modellen deze statistische en temporele
eigenschappen kwalitatief goed kunnen vastleggen.

198



Summary

Quantum computing represents a fundamentally new paradigm of computation,
enabling approaches to problems that are intractable for classical computers.
Since currently available quantum devices are small, noisy, unreliable, and
expensive, much of today’s progress relies on theoretical analysis and classical
simulations to understand their capabilities and limitations.

Dynamics describes how the state of a system changes over time, and can be
mathematically represented by models such as differential equations or time
series. In this thesis, we investigate the application of quantum computing to
capturing such dynamics from several complementary perspectives.

In the introductory Chapter 1, we present the foundational concepts. We
introduce quantum computing, variational quantum algorithms, and shot noise.
As applications of variational quantum computing, we discuss solving differential
equations, quantum machine learning, and applications to finance. Finally, we
outline several research questions and describe the overall structure of the thesis.

In Chapter 2, we explore the role of derivatives in quantum machine learning.
We demonstrate that parameterized quantum circuits can approximate both
functions and their derivatives arbitrarily well, provided that the input data are
appropriately rescaled. Furthermore, we show that incorporating both function
values and derivative values in the training data set enhances the guaranteed
approximation of the trained quantum models, allowing approximation in
stronger norms that would otherwise be unattainable. As the dynamics of a
function are governed by its derivatives, these insights clarify how quantum
machine learning can effectively capture dynamical behavior.

In Chapter 3, we analyze a class of quantum algorithms designed to solve
differential equations. We conduct an error analysis and resource estimation,
focusing on errors arising from the classical Runge-Kutta subroutines as well as
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from shot noise in evaluating quantum circuits. We apply these estimates to a
differential equation from financial option pricing and compare how different
Runge-Kutta methods affect the total computational resources required.

Quantum state tomography is the process of reconstructing a quantum state
from measurement data and constitutes an important subroutine in many
quantum algorithms. In Chapter 4, we present a method for mitigating shot
noise in quantum state tomography by formulating both measurement data and
physical constraints as a semidefinite program. We show that, depending on
the underlying quantum state, there exist noise regimes in which our method
outperforms other state-of-the-art tomography techniques.

Finally, in Chapter 5, we demonstrate the application of quantum generative
adversarial networks to generating synthetic financial time series. We simulate
the quantum circuits using both full-state and tensor network-based simulations.
For classical models, generating synthetic financial time series that both follow
the target distributions and exhibit realistic temporal correlations remains
challenging. We show that our quantum models can qualitatively capture these
statistical and temporal properties well.
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Zusammenfassung

Quantencomputing stellt ein grundlegend neues Paradigma der Berechnung
dar und ermdéglicht Ansétze fiir Probleme, die fiir klassische Computer un-
l6sbar sind. Da die derzeit verfiigbaren Quantencomputer klein, verrauscht,
unzuverlédssig und teuer sind, beruht ein Grofiteil des heutigen Fortschritts auf
theoretischer Analyse und klassischen Simulationen, um ihre Fahigkeiten und
Einschrankungen zu verstehen.

Dynamik beschreibt, wie sich der Zustand eines Systems im Laufe der Zeit
verandert, und kann mathematisch durch Modelle wie Differentialgleichungen
oder Zeitreihen dargestellt werden. In dieser Arbeit untersuchen wir die Anwen-
dung von Quantencomputing zur Erfassung solcher Dynamiken aus mehreren
komplementiren Perspektiven.

Im einleitenden Kapitel 1 stellen wir die grundlegenden Konzepte vor. Wir
fihren in Quantencomputing, variationelle Quantenalgorithmen und Schro-
trauschen ein. Als Anwendungen des variationellen Quantencomputings disku-
tieren wir das Losen von Differentialgleichungen, Quanten-Maschinelles Lernen
und Anwendungen in der Finanzwissenschaft. Abschlieend skizzieren wir
mehrere Forschungsfragen und beschreiben den allgemeinen Aufbau der Arbeit.

In Kapitel 2 untersuchen wir die Rolle von Ableitungen im Quanten-Maschinellen
Lernen. Wir zeigen, dass parametrisierte Quantenschaltkreise sowohl Funktio-
nen als auch deren Ableitungen beliebig gut approximieren kénnen, sofern die
Inputdaten entsprechend skaliert werden. Dariiber hinaus zeigen wir, dass die
Einbeziehung von sowohl Funktionswerten als auch Ableitungswerten in den
Trainingsdatensatz die garantierte Approximation der trainierten Quantenmod-
elle verbessert und Approximationen in stdrkeren Normen ermdoglicht, die sonst
unerreichbar wiaren. Da die Dynamik einer Funktion durch ihre Ableitungen
bestimmt wird, verdeutlichen diese Erkenntnisse, wie Quanten-Maschinelles
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Lernen dynamisches Verhalten effektiv erfassen kann.

In Kapitel 3 analysieren wir eine Klasse von Quantenalgorithmen, die zur
Losung von Differentialgleichungen entwickelt wurden. Wir fiihren eine Fehler-
analyse und Ressourcenabschétzung durch und konzentrieren uns dabei auf
Fehler, die sowohl aus den klassischen Runge-Kutta-Subroutinen als auch aus
dem Schrotrauschen bei der Auswertung von Quantenschaltkreisen entstehen.
Wir wenden diese Abschitzungen auf eine Differentialgleichung aus der Finan-
zoptionsbewertung an und vergleichen, wie verschiedene Runge-Kutta-Methoden
die insgesamt bendtigten Rechenressourcen beeinflussen.

Die Quanten-Zustandstomographie ist der Prozess der Rekonstruktion eines
Quantenzustands aus Messdaten und stellt eine wichtige Subroutine in vielen
Quantenalgorithmen dar. In Kapitel 4 stellen wir eine Methode zur Minderung
von Schrotrauschen in der Quanten-Zustandstomographie vor, indem sowohl
Messdaten als auch physikalische Nebenbedingungen als semidefinites Programm
formuliert werden. Wir zeigen, dass, abhéngig vom zugrunde liegenden Quan-
tenzustand, Rauschregime existieren, in denen unsere Methode andere aktuelle
Tomographietechniken tibertrifft.

Abschlielend demonstrieren wir in Kapitel 5 die Anwendung von Quanten-
Generativen Adversarial Networks zur Erzeugung synthetischer finanzieller
Zeitreihen. Wir simulieren die Quantenschaltkreise sowohl mit Vollzustands- als
auch mit Tensornetzwerk-basierten Simulationen. Fiir klassische Modelle bleibt
es eine Herausforderung, synthetische finanzielle Zeitreihen zu erzeugen, die
sowohl den Zielverteilungen folgen als auch realistische zeitliche Korrelationen
aufweisen. Wir zeigen, dass unsere Quantenmodelle diese statistischen und
zeitlichen Eigenschaften qualitativ gut erfassen kénnen.
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