

Universiteit
Leiden
The Netherlands

Diet and mobility in Byzantine Western Anatolia: carbon and nitrogen isotopic ratios and ancient DNA evidence from Barçın Höyük and Kadıkalesi Anaia

Özbal R.; Büyükkarakaya A.M.; Uysal G.; Bütün E.; Gerritsen F.A.; Akbaba A.; ... ; Somel M.

Citation

Diet and mobility in Byzantine Western Anatolia: carbon and nitrogen isotopic ratios and ancient DNA evidence from Barçın Höyük and Kadıkalesi Anaia. (2026). Diet and mobility in Byzantine Western Anatolia: carbon and nitrogen isotopic ratios and ancient DNA evidence from Barçın Höyük and Kadıkalesi Anaia. *European Journal Of Archaeology*. doi:10.1017/eaa.2025.10027

Version: Publisher's Version

License: [Creative Commons CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/)

Downloaded from: <https://hdl.handle.net/1887/4290642>

Note: To cite this publication please use the final published version (if applicable).

Diet and Mobility in Byzantine Western Anatolia: Carbon and Nitrogen Isotopic Ratios and Ancient DNA Evidence from Barçın Höyük and Kadıkalesi Anaia

RANA ÖZBAL¹ , ALI METİN BÜYÜKKARAKAYA² , GÜLFEM UYSAL² , ERGE BÜTÜN² , FOKKE GERRITSEN³ , ALI AKBABA⁴ , N. EZGI ALTINIŞIK² AND MEHMET SÖMEL⁵

¹Department of Archaeology and History of Art, Koç University, Istanbul, Turkey

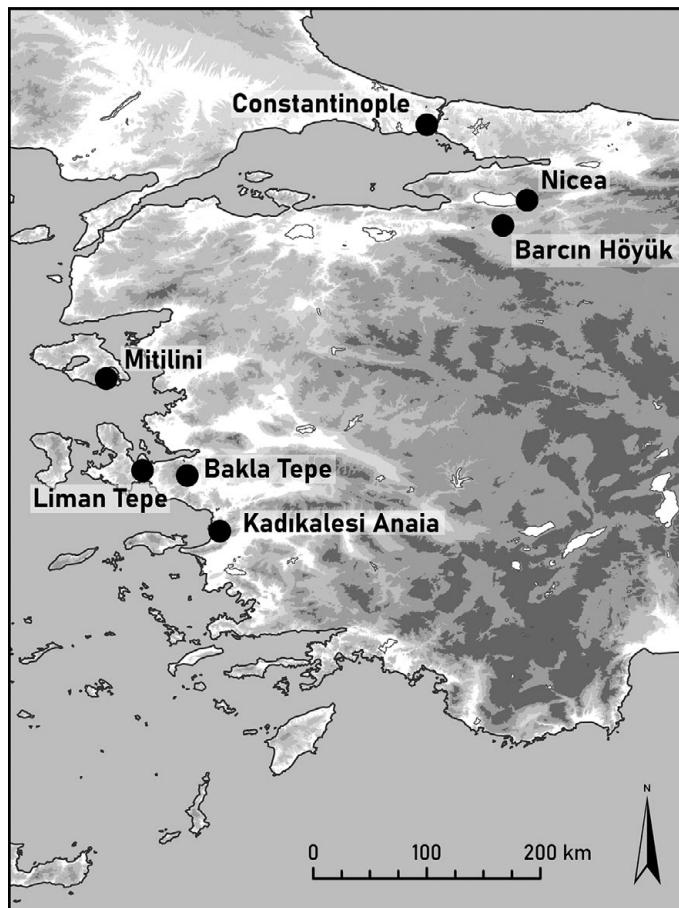
²Department of Anthropology, Hacettepe University, Ankara, Turkey

³Netherlands Institute in Turkey, Leiden University, The Netherlands, and Istanbul, Turkey

⁴Anthropology, Muş Alparslan University, Muş, Turkey

⁵Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey

Corresponding Author: Rana Özbal; Email: rozbal@ku.edu.tr


This study presents the integrated results of stable carbon ($\delta^{13}\text{C}$) and nitrogen ($\delta^{15}\text{N}$) isotope and aDNA analyses, conducted to examine dietary and mobility practices in two mid- to late Byzantine communities in western Anatolia: the coastal cosmopolitan site of Kadıkalesi Anaia and the rural inland settlement of Barçın Höyük. Isotopic data from thirty-eight individuals indicate that both populations primarily consumed terrestrial C_3 -based resources. At Kadıkalesi, $\delta^{15}\text{N}$ values show greater variability, suggesting more differentiated access to animal protein sources, whereas the rural community at Barçın Höyük exhibits isotopic homogeneity, consistent with more uniform dietary practices and an equitable access to food. Kadıkalesi also shows intra-site dietary variation by age and sex, while Barçın is again more homogeneous. At Barçın, aDNA results indicate a predominant local genetic continuity, suggesting a stable population; a single instance of external ancestry is attested by a male individual with affinities to western populations, particularly from eastern Europe, in line with historical military resettlement patterns (stratiotika ktemata). By integrating isotopic and genomic evidence, this study demonstrates how ancestry and mobility shaped dietary habits, offering insights into the interplay of urbanism, mobility, and social organization in the Byzantine period.

Keywords: stable isotope analysis, Byzantine Anatolia, $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$, aDNA, stratiotika ktemata, Barçın Höyük, Kadıkalesi Anaia

INTRODUCTION

Byzantine-period communities in Anatolia occupied diverse environmental settings, from inland agricultural plains to coastal centres engaged in maritime exchange.

This study examines two such contexts dating to the Byzantine period. Diet related questions for Barçın Höyük, located in the Yenişehir Plain of Bursa in north-western Turkey, and Kadıkalesi Anaia, on the Aegean coast (Figure 1), are addressed

Figure 1. Map showing the location of sites discussed in the text.

through stable isotope ratio analysis of human remains. This is complemented by ancient DNA (aDNA) data from Byzantine-period Barçın Höyük, which indicates a predominant local genetic continuity but also mobility in the region. No aDNA data are available for Kadıkalesi.

For the Byzantine period, our knowledge of what people ate is largely derived from textual sources and iconographic representations (Teall, 1959; Vroom, 2000; Kokoszko, 2015; Lauroux, 2015; Linardou & Brubaker, 2016; Koder, 2017), along with insights from zooarchaeological and archaeobotanical studies (Gorham, 2000; van Zeist et al., 2001; Kroll, 2012; McKinnon, 2019; Baron &

Marković, 2020; Ulaş, 2020). Iconography, ancient written documents including tax records and recipes, and faunal and botanical remains provide general information on Byzantine dietary habits. For nearly two decades, stable isotope analyses have been commonly used to gain further insights on this issue. These analyses have yielded data related to individual and demographic traits such as age and sex, enabling direct connections between individuals and their isotopic values. This approach reveals specific dietary patterns and offers insights into phenomena such as the potential roles of fasting and asceticism in Byzantine communities (McGowan, 1999; Grimm, 2002; Bourbou

& Richards, 2007; Bourbou *et al.*, 2011; Fuller *et al.*, 2012a; Gregoricka & Sheridan, 2013; Özdemir, 2018; Özdemir *et al.*, 2025). While several Byzantine cemeteries in Greece, Crete, and the Balkans have been studied isotopically, few analyses have focused on Asia Minor. One recent example is the Kovuklukaya cemetery in northern Anatolia, which revealed a mixed terrestrial and marine-based diet (Özdemir *et al.*, 2025).

Here we combine isotopic evidence with aDNA analysis to explore not only dietary variation, but also how ancestry and mobility may have shaped access to foods. This integrated approach provides a fuller picture of Byzantine lifeways, highlighting both dietary habits and population movement in the region.

THE SETTLEMENTS AND THE REGION

Kadikalesi Anaia, located on the Aegean coast of Turkey south of Izmir, dates to the Late Byzantine period, i.e. the thirteenth and fourteenth centuries AD. It was a fortified commercial port city engaged in manufacturing and transport (Mercangöz, 2005). After the Crusaders' conquest of Constantinople in 1204, the Nicene State controlled much of western Anatolia. Italian city-states increased maritime trade during this time. Anaia, described in a 1278 Pisan trade manual, served as a seaport along the route connecting Constantinople to Alexandria, providing silk and local supplies such as grain (Jacoby, 2016: 56). The fortified city included a monumental church and a palace, possibly for the ruling Laskaris family (Mercangöz, 2005: 212; see also Foss, 1979: 124). By the early fourteenth century, Pisa had established a notary in Anaia, making this a well-connected and international city that attracted Italian traders (İnanan, 2015: 153; Jacoby, 2016: 56). Excavations since 2001 have yielded ceramics, ivory, metal objects, glass, and coins, highlighting

Anaia's role within broader Byzantine economic networks (Ünal & Toy, 2020: 80–81). Most graves, some of which may belong to members of the clergy, are associated with the city's main monumental church (Ünal & Toy, 2020: 83).

Barçın Höyük, in Yenişehir, Bursa, is notable for its Neolithic levels dated to the seventh millennium BC (Gerritsen & Özbal, 2019; Özbal & Gerritsen, 2019). The site consists of a double mound, with excavations from 2005 to 2015 focused only on the eastern high mound. The most recent remains include a Middle Byzantine cemetery dating from the eighth to eleventh centuries. While no Byzantine settlement was discovered on the excavated mound, it may be present on the unexcavated western mound, with the eastern mound serving as a cemetery (Gerritsen, 2009; Roodenberg, 2009).

Barçın Höyük, unlike the cosmopolitan Kadikalesi Anaia, was probably a rural community near Nicaea (Lefort, 2002). The Barçın cemetery must have been associated with a chapel, as is typical for the period (Gerstel, 2015), but excavations yielded little evidence for architecture, save a few fragments of marble and plaster. Among finds from this cemetery, artefacts such as a tenth-century seal, likely to have belonged to a local landowner, and an eleventh-century reliquary cross are noteworthy and may indicate connections with larger centres, which is not unusual for Byzantine rural contexts (Roodenberg, 2009; Androshchuk, 2011; Vorderstrasse, 2016). Altogether, the data suggest that Barçın Höyük lacked the prominence of larger settlements; Kadikalesi Anaia and Barçın Höyük had different inter-regional connections, which shaped their economies, subsistence strategies, networks, and social diversity, reflected in their residents' diets.

The Byzantine Barçın Höyük cemetery contained only human remains and few

grave goods; it yielded no animal bone for comparative study. At Kadikalesi, zooarchaeological remains have been analysed but none has undergone isotopic sampling, and archaeobotanical results are yet to be published. These gaps complicate the reconstruction of reliable isotopic baselines.

Stable isotope ratio analysis relies on the fact that the isotopic composition of human tissues reflects the consumption of foods, which in turn are structured by the isotopic baselines of their environments (DeNiro & Epstein, 1978; Schoeninger & Moore, 1992). Carbon ($\delta^{13}\text{C}$) and nitrogen ($\delta^{15}\text{N}$) values from bulk bone collagen provide insights into dietary habits: $\delta^{13}\text{C}$ values help distinguish between plant types based on their photosynthetic pathways (C_3 vs C_4), as well as between terrestrial and marine resources (van der Merwe & Vogel, 1978; O'Leary, 1988). Nitrogen ($\delta^{15}\text{N}$) values reflect an individual's position in the food web, typically increasing with each step up the trophic level (which typically reflects an increase of 3‰), providing a proxy for the contribution of animal versus plant protein over an average of several years (Ambrose & Norr, 1993; Bocherens & Drucker, 2003). Elevated $\delta^{15}\text{N}$ values can also identify infants breastfed at the time of their death, offering insights into infant feeding and weaning practices (Beaumont et al., 2015; Chinique de Armas et al., 2022).

MATERIALS AND METHODS

In the $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ analyses, thirty-eight human rib samples (twenty-one from Kadikalesi and seventeen from Barçın), primarily representing adults, were examined. The isotopic analysis here emphasizes the range of human values and focuses on the spread between the highest and lowest measurements. Domesticated herbivores from prehistoric levels were used for comparison at

both sites, with the caveat that environmental and climatic conditions may have changed and that animal diets may have been affected by human practices such as foddering or manuring. In addition, aDNA analyses were conducted for sixteen individuals from Barçın Höyük to assess the degree of genetic relatedness and familial connections within this Byzantine village (see Table S2 for a breakdown by site, sex, age, and Table S4 for aDNA-related data). Based on the proportion of authentic human DNA recovered (median = 15 per cent) and preliminary contamination assessments, seven samples were selected for deeper sequencing and subsequent downstream analyses. No aDNA analysis has been conducted to determine genetic relationships at Kadikalesi.

The Supplementary Material provides explanations of the methods employed in this study, including bioarchaeological and anthropological measurement procedures, sexing criteria, and protocols for collagen and aDNA extraction. Briefly, the collagen extracted from rib samples used a modified Longin (1971) protocol, while the aDNA extraction adhered to a modified Dabney et al. (2013) protocol.

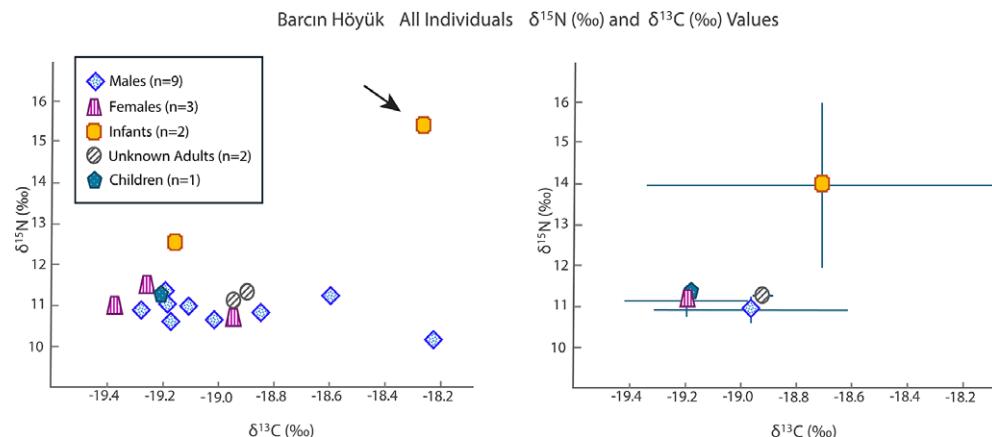
RESULTS

The isotopic study followed the quality criteria set by DeNiro (1985), Ambrose (1990), Guiry and Szpak (2021), and Vai-glova et al. (2023). At Kadikalesi twenty-one of the twenty-three analysed samples (91 per cent), met the quality criteria; at Barçın Höyük, this was 74 per cent (seventeen out of twenty-three samples). Barçın Höyük's successful samples included males, females, children, and infants as well as adults of undetermined sex, whereas at Kadikalesi the dataset primarily comprised adult males and females, with two children buried alongside adult females. The Barçın

Höyük sample reflects seventeen of the sixty-two individuals excavated there (27 per cent), which represents an unknown percentage of the total graves present at the site. The Kadikalesi sample is likely to represent only a small part of the overall population.

Budd *et al.* (2020) report a $\delta^{13}\text{C}$ mean value of $-19.8\text{‰} \pm 1.3$ (standard deviation, SD hereafter) for the domesticated herbivores at Neolithic Barçın, with a mean $\delta^{13}\text{C}$ value of $-19.5\text{‰} \pm 0.4$ (SD) for Neolithic human adults. The mean $\delta^{13}\text{C}$ value for Byzantine non-infants (i.e. older than 2.5 years) was -19.0‰ (± 0.3 SD; 95 per cent CI—confidence interval, CI hereafter—= $[-19.2\text{‰}, -18.8\text{‰}]$), slightly less negative than Neolithic values. This aligns with the broader trend towards more positive $\delta^{13}\text{C}$ values in Byzantine populations (Fuller *et al.*, 2012a; Xoplaki *et al.*, 2016; Soltysiak & Schutkowski, 2018; Irvine, 2022: 69). Kadikalesi yielded a mean $\delta^{13}\text{C}$ value of -19.1‰ (± 0.4 SD; 95 per cent CI = $[-19.3\text{‰}, -18.9\text{‰}]$). Herbivore $\delta^{13}\text{C}$ values for nearby Bronze Age Baklatepe were $-19.3\text{‰} \pm 1.1$ (SD) and the human $\delta^{13}\text{C}$ values for the same site were $19.7\text{‰} \pm 0.3$ (SD) (Irvine & Erdal, 2020). At Barçın Höyük, Neolithic adults had a mean $\delta^{15}\text{N}$ value of $10.0\text{‰} \pm 1.3$ (SD) and Neolithic herbivores averaged $6.8\text{‰} \pm 1.2$ (SD) (Budd *et al.*, 2020). In the present study, the non-infant Byzantine individuals (i.e. individuals older than 2.5 years) had a mean value of 11.1‰ (± 0.4 SD; 95 per cent CI = $[10.9\text{‰}, 11.3\text{‰}]$).

At Kadikalesi, comparative baselines were drawn from regional sites such as Liman Tepe's (Izmir) Bronze Age charred seeds with a mean $\delta^{15}\text{N}$ value of 2.6‰ (Maltaş *et al.*, 2022; SI) and Byzantine Mitilini's (Lesvos) domesticated animals remains with a mean $\delta^{15}\text{N}$ value of 5.3‰ (Garvie-Lok, 2001). Kadikalesi showed a mean $\delta^{15}\text{N}$ value of 9.1‰ (± 1 SD; 95 per cent CI = $[8.70\text{‰}, 9.58\text{‰}]$).


In summary, the $\delta^{13}\text{C}$ baseline human values for prehistoric groups are similar, averaging around -20.0‰ in the Kadikalesi region and -19.5‰ for earlier phases at Barçın Höyük. In contrast, the $\delta^{15}\text{N}$ values for the sampled prehistoric herbivores show greater regional variation, with those from Barçın Höyük averaging approximately 6.8‰ , and those near Kadikalesi yielding values about half a trophic level lower, at around 5.3‰ . However, the results may not capture the dietary diversity of the two communities.

The seven samples selected for deeper aDNA sequencing at Barçın Höyük exhibited a median average read length of seventy-two base pairs (BP), and all showed characteristic postmortem damage patterns with terminal nucleotide misincorporation rates exceeding ten per cent, confirming aDNA authenticity (see Table S4). Mitochondrial DNA-based analyses further confirmed the authenticity of the data, with no evidence of contamination detected. These results indicate that the selected individuals provide a reliable basis for genome-wide and uniparental marker analyses.

Barçın Höyük results

The Barçın Höyük adults and one child (age 3.5–4.5 years) had $\delta^{15}\text{N}$ values averaging 11.1‰ (95 per cent CI = $[10.9\text{‰}, 11.3\text{‰}]$) and $\delta^{13}\text{C}$ values of -19.0‰ (95 per cent CI = $[-19.2\text{‰}, 18.9\text{‰}]$) (Figure 2; Table S2). Two infants (i.e. younger than 2.5 years old based on dental development) display higher $\delta^{15}\text{N}$ values (15.6‰ and 12.6‰) and $\delta^{13}\text{C}$ values (-18.3‰ and -19.2‰). Notably, the child aged 3.5–4.5 years had $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values (-19.3‰ and 11.0‰) indistinguishable from those of the adults.

The sex determination of the adult individuals was complicated by preservation issues. One individual (BH_L12_22) initially identified as male based on skeletal

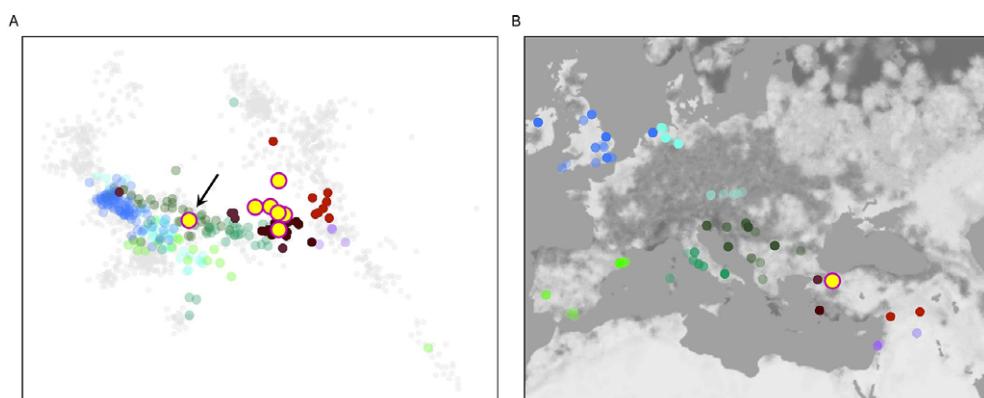
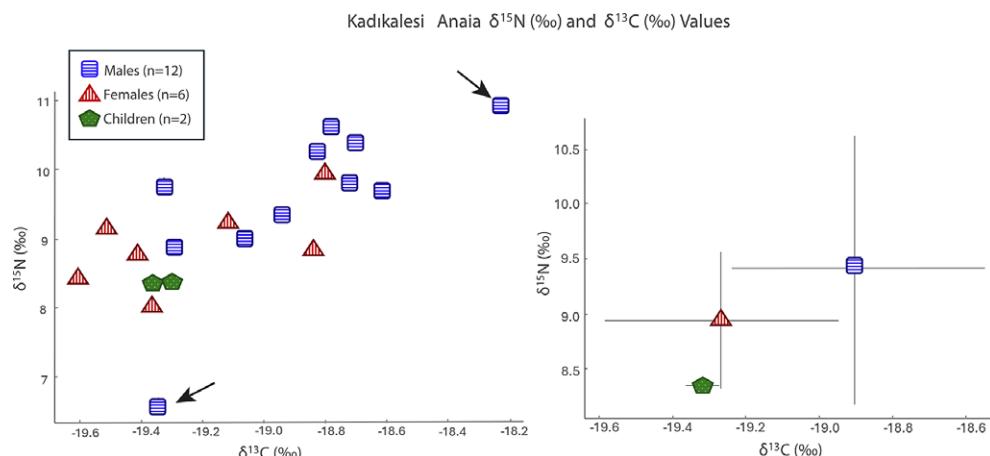


Figure 2. Values of $\delta^{15}\text{N}$ (‰) and $\delta^{13}\text{C}$ (‰) for Barçın Höyük grouped by category as a scatter plot (left) and an error bar graph using a ± 1 standard deviation value (right).


analyses was found to be genetically female. Overall, the non-infant isotopic values were tightly clustered.

A principal component analysis (PCA) revealed that six out of seven Barçın Höyük individuals showed genome-wide similarity with published genomes from north-western and western Anatolia, including those from İlipinar and İznik (Lazaridis et al., 2022) (Figure 3). The exception was the male individual L10_025, whose genomic profile aligned with published

profiles from south-eastern European populations of the late first millennium BC and the first millennium AD, particularly from Hellenistic Macedonia and Late Antique Bulgaria. His uniparental markers further support this profile: he carried Y-DNA haplogroup T1a1a1a1a and mtDNA haplogroup U5a1b1c1. The authenticity of the data is well supported, with zero mitochondrial contamination (Schmutzi estimate = 0.00) and high genome coverage (1.18× nuclear, 92× mitochondrial).

Figure 3. A: PCA plot placing Barçın Höyük individuals within a broader dataset of previously published ancient genomes. B: The location of these individuals with ancient DNA data. The PCA, based on genome-wide single nucleotide polymorphism data, indicates that the Barçın individuals mostly cluster with Anatolian populations. One individual (indicated with black arrow in A), however, plots closer to Balkan populations.

Figure 4. Values of $\delta^{15}\text{N}$ (‰) and $\delta^{13}\text{C}$ (‰) for Kadikalesi grouped by category as a scatter plot (left) and an error bar graph using a ± 1 standard deviation value (right).

This individual (BH_L10_025) has been directly radiocarbon dated to the eighth/ninth century BC (Lab-code: TÜBİTAK-1416; 1217 ± 24 BP: AD 706–736 (9.1 per cent probability) or AD 772–885 (86.3 per cent probability), calibrated in IntCal20).

Despite this individual's genetic distinctiveness, his $\delta^{13}\text{C}$ value of -18.6‰ and $\delta^{15}\text{N}$ value of 11.3‰ were both within the range observed for the broader Barçın community ($\delta^{13}\text{C}$: -19.4 to -18.6‰ ; $\delta^{15}\text{N}$: 10.2 to 11.6‰). The remaining six individuals from the Barçın Höyük Byzantine-period cemetery form a homogeneous genetic group. They cluster tightly with other north-western and western Anatolian genomes of the same period and show no genetic affinity to northern or western Europe, the Caucasus, or the Levant (Lazaridis *et al.*, 2022).

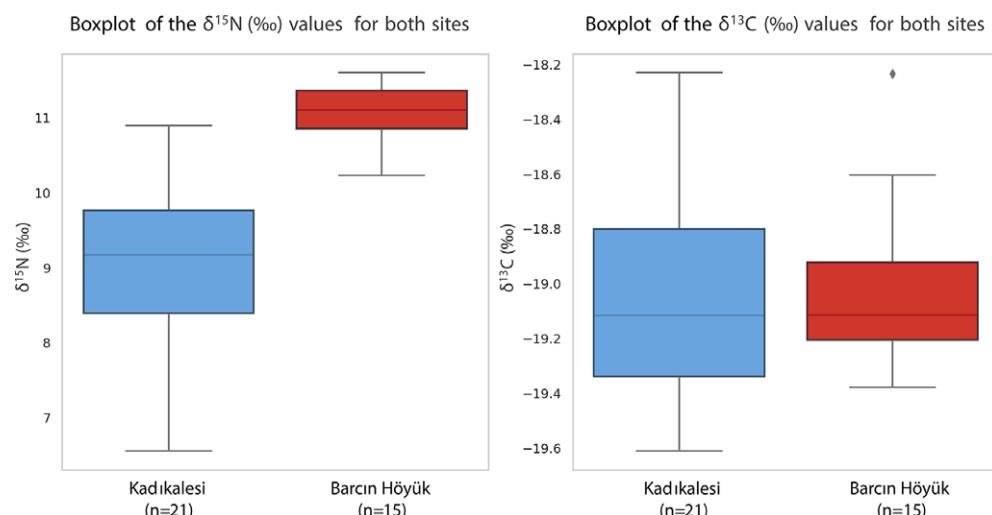
(95 per cent CI = $[8.7\text{‰}, 9.6\text{‰}]$), and the mean $\delta^{13}\text{C}$ value was -19.1‰ (95 per cent CI = $[-19.2\text{‰}, -18.9\text{‰}]$) (Figure 4; Table S2). The $\delta^{15}\text{N}$ values range from 6.6‰ to 10.9‰ , covering over one trophic level in their difference (Minagawa & Wada, 1984), while the $\delta^{13}\text{C}$ values vary between -19.6‰ and -18.2‰ , with no significant variation in plant resource type.

The variability in $\delta^{15}\text{N}$ stems from two male individuals with distinct isotopic values. One has a $\delta^{15}\text{N}$ value of 10.9‰ , slightly higher than the settlement mean, and the other shows a $\delta^{15}\text{N}$ value of 6.6‰ , at the lower end of the observed distribution. The isotopic values of the two children (mean values: $\delta^{13}\text{C} = -19.4\text{‰} \pm 0.07$ and $\delta^{15}\text{N} = 8.4\text{‰} \pm 0.07$), aged approximately nine and twelve to thirteen years, were tightly clustered at the lower end of the adult $\delta^{15}\text{N}$ range, but still fully within the general population profile.

Kadikalesi results

Stable $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ isotope ratio analysis for Kadikalesi shows dietary variability and nutrition insights for the city's residents including children, females, and males, but not infants. The mean $\delta^{15}\text{N}$ value for all Twenty-one individuals was $9.1\text{‰} \pm$

DISCUSSION


A comparison of $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values for Kadikalesi and Barçın Höyük reveals several points of contrast as well as areas of similarity. At both sites, the $\delta^{13}\text{C}$ values are

consistent with a diet dominated by C₃ plants, despite the sites being more than 400 km apart and located in distinct environmental zones, one in a coastal and one in an inland agricultural valley. Slightly less negative Byzantine $\delta^{13}\text{C}$ values compared to Neolithic levels may indicate reduced water availability for crops or some contribution from C₄ plants (Fuller et al., 2012a; Xoplaki et al., 2016; Sołtysiak & Schutkowski, 2018; Irvine, 2022: 69).

The $\delta^{15}\text{N}$ values at Kadikalesi are more dispersed than those at Barçın Höyük, as illustrated in the boxplot comparison (Figure 5). While the Barçın non-infant data shows isotopic homogeneity with tightly clustered values (SD = 0.36‰), the broader Kadikalesi spread (SD = 1.03‰) suggests greater dietary variability, possibly reflecting more diverse protein sources in a coastal setting. This is consistent with the $\delta^{15}\text{N}$ range at Kadikalesi spanning over one trophic level, with some individuals showing higher values that could indicate greater reliance on animal or marine protein, and others showing lower values suggestive of minimal animal protein consumption.

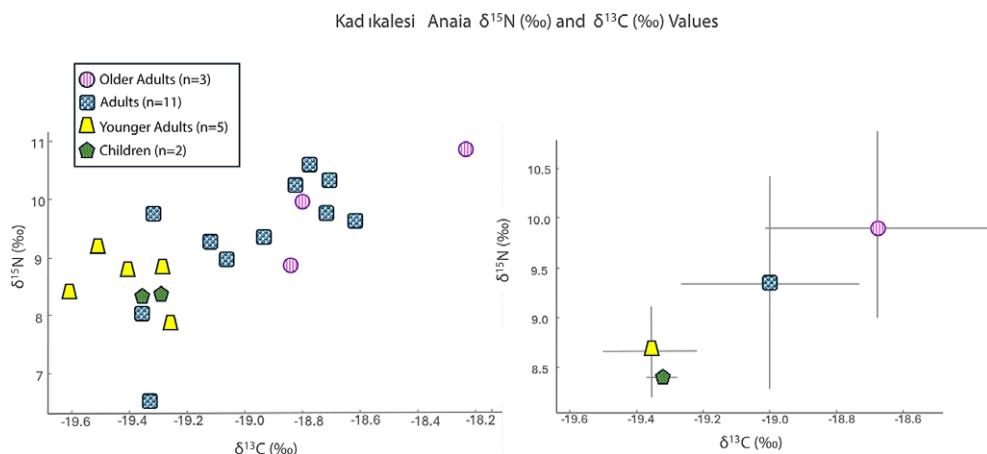
Barçın's restricted range of $\delta^{15}\text{N}$ values suggests uniform dietary habits in a small cohesive rural community with shared subsistence strategies, with people eating similar amounts and types of terrestrial protein and plant products. At Kadikalesi, involvement in regional exchange networks is likely to have led to varied dietary habits, indicating social or economic differences, with some individuals having better access to high-trophic-level foods such as fish, animal proteins, or perhaps other elite-controlled resources.

Beyond addressing dispersed patterns, the analysis of $\delta^{13}\text{C}$ values by sex at Barçın Höyük indicates only subtle dietary differences. As the data did not meet the required parameters, a non-parametric Kruskal-Wallis test for small, unevenly distributed groups was used to assess differences in $\delta^{13}\text{C}$ values by sex and age. The comparison by sex did not yield statistically significant results ($p = 0.229$; 95 per cent CI for the mean difference = [−0.20‰, +0.66‰]). The actual difference in group means is modest for $\delta^{13}\text{C}$ values: females averaged −19.2‰ (±0.2 SD; 95 per cent CI = [−19.4,

Figure 5. Boxplot comparing $\delta^{15}\text{N}$ (left) and $\delta^{13}\text{C}$ (right) values for non-infants at Barçın Höyük (BH) and all individuals at Kadikalesi (KK). Error boxes show dispersion, not ninety-five per cent CI.

–19.1]) and males –19.0‰ (±0.4 SD; 95 per cent CI = [–19.3, –18.7]), with a mean difference of only 0.2 per cent and overlapping confidence intervals. This small effect size suggests broadly similar dietary habits between the sexes. Such homogeneity in non-infant $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values is likely to reflect shared access to food resources and protein intake, with no isotopically visible evidence for sex-based dietary inequality in this rural Byzantine community.

For Kadikalesi, males have a mean $\delta^{13}\text{C}$ value of –18.9‰ and females –19.2‰, a difference of just over 0.3‰. This is a small offset within the range of expected dietary variation alone. A Kruskal–Wallis test indicates that the difference is unlikely to be entirely due to random variation ($p = 0.035$; 95 per cent CI = [0.003, 0.62]) although the effect size is modest. When adults from both sites are considered together, the male–female difference is 0.28‰; ninety-five per cent CI = [0.06, 0.51], with a Kruskal–Wallis p -value of 0.022. Given the substantial overlap in confidence interval values between groups, with a mean difference for males *vs* females of +0.47‰ (95 per cent CI = –0.56‰ to +1.49‰), this pattern should be viewed as a slight tendency rather than a strong separation. It may reflect minor differences in food access or preparation rather than any pronounced divergence in dietary resources. When taken together with anthropological data, as discussed for the general period by Tritsaroli (2022), this slight difference may suggest varied dietary habits over the life course for men and women for some sites. Children at both sites have intermediate $\delta^{13}\text{C}$ values, with male values being consistently more positive.


These slight differences between the two sites might be explained by their urban and rural contexts. Dietary differences between men and women in Byzantine urban society were influenced by social conventions that often restricted access to food (Garnsey, 1999;

Tritsaroli, 2022). Donahue (2015: 242) emphasizes ‘female moderation in eating’, and Tritsaroli (2022: 138) reports greater physiological stress in women through linear enamel hypoplasia. Tritsaroli (2022: 145) also reports that these differences are likely to be more marked in urban than in rural contexts, which reflects the patterns seen here.

Examining age differences gave worthwhile results in relation to children. The Kruskal–Wallis test to compare age groups at Kadikalesi (children: 2.5–15 years; young adults: 15–30 years; adults: 30–45 years; and older adults: 45+ years) shows a slight statistically significant difference in mean $\delta^{13}\text{C}$ values ($p = 0.023$), indicating varied dietary habits over the life course (Figure 6). Pairwise comparisons using Welch’s t -based confidence intervals showed that adults ($n = 11$) had significantly higher $\delta^{13}\text{C}$ values than children ($n = 2$; mean difference = 0.4‰, 95 per cent CI = [0.1, 0.5]) and young adults ($n = 5$; mean difference = 0.4‰, 95 per cent CI = [0.2, 0.7]).

When it comes to $\delta^{15}\text{N}$, on the other hand, with the exception of two Barçın Höyük infants with elevated values consistent with breastfeeding (Schurr, 1998; Beaumont *et al.*, 2015), or physiological stress (Fuller *et al.*, 2005), the Barçın child aged 3.5–4.5 years yielded values indistinguishable from those of the adults, indicating post-weaning convergence in diet. At Kadikalesi too, the two children analysed aged 9 and 12–13 years likewise have adult-like $\delta^{15}\text{N}$ values, suggesting dietary convergence by late childhood, although the small sample sizes limit broader inference. Other comparisons yielded no statistically significant differences, with substantial overlap in confidence intervals across groups.

When adults are considered, the $\delta^{13}\text{C}$ values exhibited a gradual increase across age and sex categories, ranging from –19.51‰ in young adult females ($n = 3$) to –18.23‰ in the one older adult male (Figure 7). This pattern may suggest

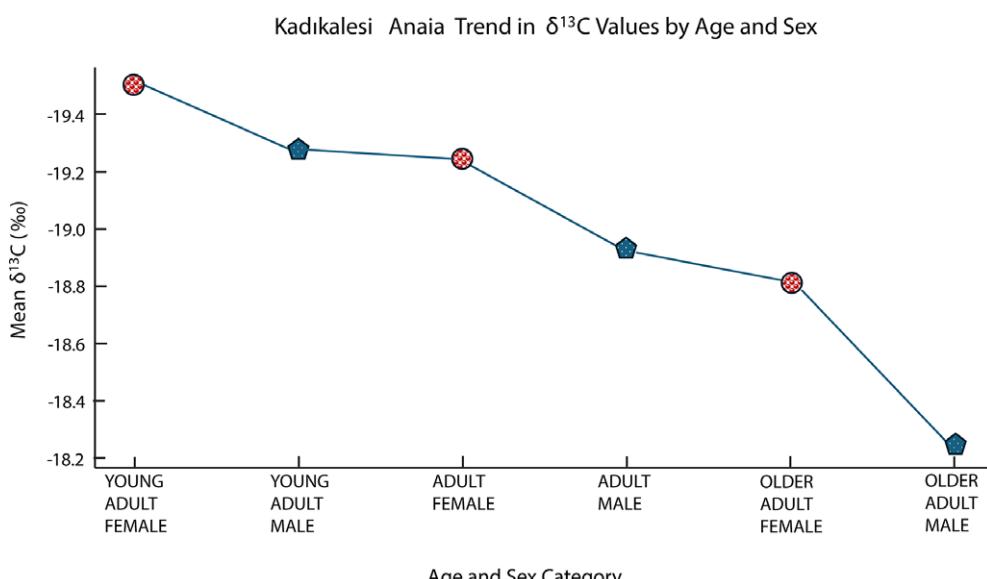
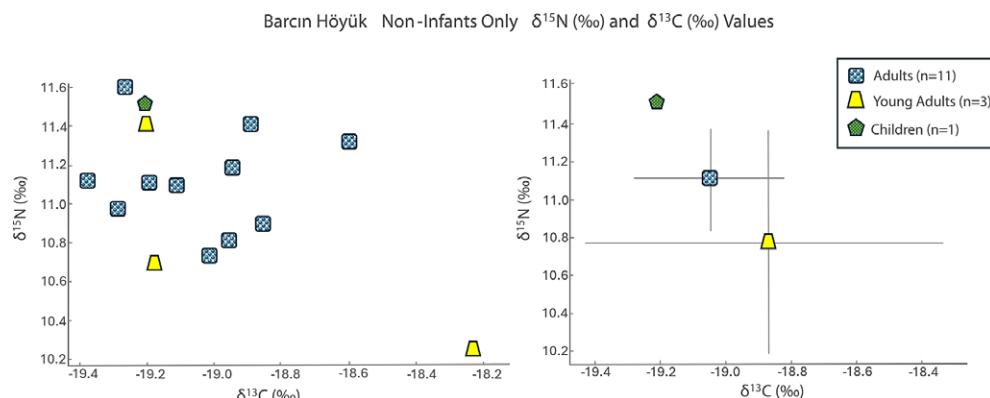


Figure 6. Values of $\delta^{15}\text{N}$ (‰) and $\delta^{13}\text{C}$ (‰) for Kadıkalesi grouped by age as a scatter plot (left) and an error bar graph using standard deviation (right).


incremental shifts in dietary carbon sources over the life course and between sexes, although further data are required to confirm the robustness of this trend. It may be surmised that different age groups had access to different food resources. Conversely, Barçın Höyük shows no significant difference by age ($p = 0.620$), suggesting

more homogeneous rural dietary habits across all ages (Figure 8) perhaps because of stricter dietary and food provisioning practices than in urban contexts, as a result of differences in social organization and age-related cultural norms.

The $\delta^{15}\text{N}$ values show notable differences between Barçın Höyük and Kadıkalesi.

Figure 7. Mean $\delta^{13}\text{C}$ values across age and sex categories at Kadıkalesi showing variation by age and sex (Young Adult Female $n = 3$; Young Adult Male $n = 2$; Medium Adult Female $n = 2$; Medium Adult Male $n = 9$; Older Adult Female $n = 2$; Older Adult Male $n = 1$).

Figure 8. Values of $\delta^{15}\text{N}$ (‰) and $\delta^{13}\text{C}$ (‰) for Barçın Höyük grouped by age as a scatter plot (left) and an error bar graph using a ± 1 standard deviation value (right).

The mean $\delta^{15}\text{N}$ value for non-infants at Barçın Höyük is $11.1\text{‰} \pm 0.4$, while the Kadikalesi mean is $9.1\text{‰} \pm 1.0$, revealing a 2‰ difference. This disparity, as discussed, may be due to the divergence seen in local isoscape baselines in each area (Barçın: 6.8‰ and Kadikalesi: 5.3‰ , based on prehistoric herbivores; Garvie-Lok, 2001; Budd *et al.*, 2020). Higher $\delta^{15}\text{N}$ in Barçın relative to its faunal baseline suggests a notable shift in protein sources compared to earlier periods, paralleling broader Eastern Mediterranean trends toward elevated $\delta^{15}\text{N}$ in the Byzantine era (Irvine, 2022).

The combined data from our two sites yielded two significant anomalies. First, there is a notable difference in $\delta^{15}\text{N}$ values compared to the stable $\delta^{13}\text{C}$ values across the sites. Kadikalesi Anaia displayed higher variation, while the non-infant inhabitants of Barçın Höyük showed tightly clustered $\delta^{15}\text{N}$ values. This suggests limited dietary choices in rural Barçın Höyük versus diverse options in coastal/cosmopolitan Kadikalesi Anaia.

Although a village with presumably less varied food options, Barçın Höyük had one adult male (BH_L10_19) aged 20–25 with the highest $\delta^{13}\text{C}$ value at -18.2‰ ($z = 2.75$) and the lowest $\delta^{15}\text{N}$ value at 10.2‰ ($z = -2.39$). The tight clustering of the other

individuals contributes to a small standard deviation. No high-coverage genome-wide sequencing data is available for this person, who, when compared with the non-infant Barçın population, lies two standard deviations above the mean, potentially suggesting a separate role within society (see Figure 3). Despite his unusual isotopic values suggestive of different dietary habits, his burial had no special characteristics or grave goods, as is the norm, although burial gifts are not completely absent in the cemetery. As is typical, three pairs of roof tiles were placed to form a gabled roof over his grave (a type known as *kalyvitis*) (Figure 9). The findings indicate he either came from a region with slightly different dietary stable isotope values or that he followed a different dietary regime than others at Barçın. This may contradict Tritsaroli's (2022) argument that rural areas have fewer intra-settlement asymmetries. It would be interesting to determine if he were of non-local origin using strontium isotope analysis or genetics.

The individual at Barçın Höyük (*c.* 40 years old), with a genetic ancestry related to southeastern Europe (BH_L10_025), has a $\delta^{13}\text{C}$ value of 18.6‰ ($z = 1.46$) and a $\delta^{15}\text{N}$ value of 11.3‰ ($z = 0.72$), which fall within the expected range for the site. Although not an outlier, he has higher $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values,

Figure 9. Plan and photograph of part of the Barçın cemetery (Barçın Höyük excavation archives).

suggesting slight differences in dietary habits possibly due to age and sex. Nonetheless, this individual appears to have had similar access to local food resources as other local inhabitants. This is consistent with the idea that incomers to the region could be fully integrated into local provisioning systems and may reflect the uniformity of food source availability within the Byzantine agrarian system (Haldon, 1979).

Kadikalesi's cosmopolitan port town included international residents such as Italian traders (Jacoby, 2016: 56), members of the nobility (Mercangöz, 2005: 212), and clergymen, such as monks, adhering to strict Byzantine fasting regimes (Talbot, 1987: 231). This diversity may have influenced the variation in $\delta^{15}\text{N}$ values, reflecting different dietary practices. One male individual (2015V33M6-1) had a $\delta^{15}\text{N}$ value of 6.6‰ ($z = -2.56$), more than two standard deviations below the mean, indicating either stringent fasting as part of an ascetic lifestyle, or limited access to animal proteins due to social, religious, or economic factors.

Another male from Kadikalesi (2016E14M3-1) lies more than a full

standard deviation above the mean with a z score of +1.74 and a $\delta^{15}\text{N}$ value of 10.9‰, and the highest $\delta^{13}\text{C}$ value at -18.2‰, at least two standard deviations above the mean with a z score of +2.43. A high $\delta^{13}\text{C}$ value in combination with a high $\delta^{15}\text{N}$ value is often linked to marine resource consumption (Schoeninger & DeNiro, 1984; Richards & Hedges, 1999; Milner et al., 2004), although C₄ plants or drier climatic conditions could also produce this pattern. In the Aegean, isotopic values of fish overlap with terrestrial fauna (Vika & Theodoropoulou, 2012), complicating interpretations, but the presence of fish remains among the zooarchaeological data from Kadikalesi supports possible marine input (Onar et al., 2013: 84).

Integrated genetic and isotopic evidence

At Barçın Höyük, the single genetic outlier with affinities to populations in the Balkans exhibited $\delta^{13}\text{C}$ (-18.6‰) and $\delta^{15}\text{N}$ (11.3‰) values within the local range for adults ($\delta^{13}\text{C}$: -19.9‰ to -18.2‰; $\delta^{15}\text{N}$:

10.9–11.1‰), indicating dietary integration into local patterns despite differing ancestry, indicating rapid dietary assimilation. Thus, ancestry—potentially reflecting Byzantine military resettlement (*stratiotika ktemata*) and population movement under imperial policy—is likely to have had little impact on diet among our samples. The data can be compared to cases such as Worth Matravers in early medieval Britain, where $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ isotope values showed that one individual with West African ancestry had the same diet as the rest of the community (Foody *et al.*, 2025). This observed pattern of adopting local dietary practices appears to contrast with Roman and Late Antique cases such as in Southwark, London (Redfern *et al.*, 2016), and San Martino in Trento, Italy (Tafuri *et al.*, 2018). In both cases migrant populations continued to yield distinctive isotopic signatures for at least one generation, suggesting slower dietary convergence and the persistence of original foodways.

The absence of dietary differences by ancestry in the one case documented at Barçın is likely to reflect both social incorporation into existing provisioning systems and the realities of a small rural settlement. With a restricted agricultural base focused on C₃ cereals, pulses, and locally raised livestock and minimal market access, residents had little opportunity to maintain distinct dietary traditions. Instead, cultural norms and local economic structures probably determined their diet.

CONCLUSION

The integration of the bulk bone collagen stable isotope data from thirty-eight individuals with the aDNA data evidence here offer a valuable multiproxy view into dietary practices, food access, social organization, economic structure, mobility, and social organization in two contrasting Byzantine

communities. Despite differences in scale, environmental setting, and connectivity, both sites show diets dominated by terrestrial C₃ plants and animals, yet the degree of dietary variation differs sharply. Kadıkalesi, a cosmopolitan port embedded in larger trade networks, shows greater isotopic variability in $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values, consistent with a more diverse dietary base, and evidence for social differentiation, both between sexes and across age groups. Conversely, Barçın Höyük, located in a rural agricultural zone, exhibits low variability in both $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$, indicating equal food access in a tight-knit or cohesive community. Byzantine records show a grain and dairy-heavy dietary repertoire with infrequent meat consumption and regional variation in marine resources (Van Neer & Waelkens, 1998; Vroom, 2000; Bourbou *et al.*, 2011: 577; Gregoricka & Sheridan, 2013). Fish became more integral to the Byzantine menu due to advancements in fishing techniques and stricter fasting protocols, yet seafood remained a relatively scarce, though valued, resource (Bourbou *et al.*, 2011; Garvie-Lok, 2001: 2). At Kadıkalesi, the isotopic values do not provide strong evidence for regular fish consumption. The only possible exception is one male individual with high $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values. This apparent absence of a clear signal may also reflect regional isotopic baselines, as values from the warm Aegean Sea may differ from those documented for cold-water fish (Fuller *et al.*, 2012b; Vika & Theodoropoulou, 2012; Guiry, 2019).

The aDNA evidence from Barçın Höyük complements these isotopic patterns, showing most individuals had genome-wide links to north-western Anatolian Byzantine populations, reflecting long-term demographic stability (Lazaridis *et al.*, 2022). In contrast, the one male individual with affinities to south-eastern European populations presented $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values within the local range,

indicating dietary assimilation despite non-local ancestry. Thus mobility (which may also have occurred in previous generations) did not necessarily correspond with distinct dietary habits, with newcomers likely to have adopted local foodways. Therefore, it can be argued that mobility left little recognizable dietary trace. Meanwhile, at Kadikalesi (where we lack aDNA results) isotopic signatures are compatible with a mixed and socially stratified population. Non-parametric tests such as the Kruskal–Wallis test confirmed significant differences in $\delta^{13}\text{C}$ values between males and females, as well as between age groups at Kadikalesi, reinforcing the view that diet was stratified within a cosmopolitan setting. The broader $\delta^{15}\text{N}$ ranges observed, including individuals with unusually high or low values, are likely to reflect differential access to animal or marine protein, fasting regimes, or perhaps variations in social status. Such variability is consistent with the interpretation of the site as a cosmopolitan and multi-ethnic community. By contrast, no statistically significant isotopic differences were observed within the Barçın population, suggesting a more uniform rural diet. As Garnsey argues, dietary divergence in urban versus rural settings is not expected, given the ‘patriarchal system that governed society’ (Garnsey, 1999: 108; see also Garvie-Lok, 2001: 2; Garland, 2006). This situation underscores how scale, connectivity, and population composition may have had an effect on the variability of the foods consumed within Byzantine Anatolian settlements.

Intra-settlement variability between an urban centre and a rural community in western Anatolia during the Byzantine period can be assessed using $\delta^{15}\text{N}$ values. Aside from the fact that the difference in $\delta^{15}\text{N}$ values between the two sites becomes clearer when local isoscape baselines are considered, cosmopolitan communities, such as Kadikalesi Anaia, exhibit a broader

interquartile range, demonstrating a more widely dispersed pattern and a greater spread. This can be explained by a mixed population of multi-ethnic character of Kadikalesi, a much-visited port city. Conversely, the smaller coefficient of variation among adults at Barçın Höyük is due to it being a small rural settlement where dietary choices were similar and opportunities for varied food options were limited. Comparing Barçın Höyük and Kadikalesi Anaia highlights the contrast between a cosmopolitan city and a hinterland settlement regarding diverse dietary differences within western Anatolia in the Byzantine period.

By uniting isotopic and genetic datasets, this study shows that modest shifts in isotopic values when viewed in combination with archaeological contextual information and aDNA data can reveal complex relationships between mobility, ancestry, and subsistence. The findings highlight the differences between rural and urban communities and enrich our understanding of interactions between environment, economy, and identity in Byzantine Anatolia.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit <http://doi.org/10.1017/eaa.2025.10027>.

ACKNOWLEDGEMENTS

We would like to thank Nikos Kontogiannis for their suggestions on the text, and Emma Baysal and Holly Miller for their invitation to include Rana Özbal in the NAFR1180204 Newton Advanced Fellowship Grant dedicated to isotopic analyses. We also thank Angela Lamb of the British Geological Survey for her help and advice with establishing protocols and standards for conducting the analyses in

Turkey. Finally, we are grateful to the Turkish Energy, Nuclear and Mineral Research Agency Element Analyzer Isotope-Ratio Mass Spectrometry team, especially Yüksel Mert.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

FUNDING

The funding for the isotopic and DNA analyses conducted in this project generously comes from a Koç University's Center for Late Antique and Byzantine Studies (GABAM) Research Grant awarded to the corresponding author. The Barçın Höyük excavations were funded by the Dutch Research Council (380-62-005).

REFERENCES

Ambrose, S.H. 1990. Preparation and Characterization of Bone and Tooth Collagen for Isotopic Analysis. *Journal of Archaeological Science*, 17: 431–51. [https://doi.org/10.1016/0305-4403\(90\)90007-R](https://doi.org/10.1016/0305-4403(90)90007-R)

Ambrose, S.H. & Norr, L. 1993. Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Apatite. In: J.B. Lambert & G. Grupe, eds. *Prehistoric Human Bone: Archaeology at the Molecular Level*. Berlin: Springer, pp. 1–37.

Androshchuk, F. 2011. Symbols of Faith or Symbols of Status? Christian Objects in Tenth-Century Rus. In: I. Garipzanov & O. Tolochko, eds. *Early Christianity on the Way from the Varangians to the Greeks*. Kiev: Ruthenica Suplementum, pp. 70–89.

Baron, H. & Marković, N. 2020. Fish Consumption and Trade in Early Byzantine Caričin Grad (Justiniana Prima). In: S. Bergerbrant & S.H. Hansen, eds. *Animal Husbandry and Hunting in the Central and Western Balkans Through Time*. Oxford: Archaeopress, pp. 154–66.

Beaumont, J., Montgomery, J., Buckberry, J. & Jay, M. 2015. Infant Mortality and Isotopic Complexity: New Approaches to Stress, Maternal Health, and Weaning. *American Journal of Physical Anthropology*, 157: 441–57. <https://doi.org/10.1002/ajpa.22736>

Bocherens, H. & Drucker, D. 2003. Trophic Level Isotopic Enrichment of Carbon and Nitrogen in Bone Collagen: Case Studies from Recent and Ancient Terrestrial Ecosystems. *International Journal of Osteoarchaeology*, 13: 46–53. <https://doi.org/10.1002/oa.662>

Bourbou, C. & Richards, M.P. 2007. The Middle Byzantine Menu: Palaeodietary Information from Isotopic Analysis of Humans and Fauna from Kastella, Crete. *International Journal of Osteoarchaeology*, 17: 63–72. <https://doi.org/10.1002/oa.855>

Bourbou, C., Fuller, B.T., Garvie-Lok, S.J. & Richards, M.P. 2011. Reconstructing the Diets of Greek Byzantine Populations (6th–15th centuries AD) Using Carbon and Nitrogen Stable Isotope Ratios. *American Journal of Physical Anthropology*, 146: 569–81. <https://doi.org/10.1002/ajpa.21601>

Budd, C., Galik, A., Alpaslan Roodenberg, S., Schulting, R. & Lillie, M. 2020. Early Farmers in Northwest Turkey: First Dietary Isotopes Study of Human Diet at Neolithic Barçın Höyük. *Journal of Archaeological Science: Reports*, 31: 102288. <https://doi.org/10.1016/j.jasrep.2020.102288>

Chinique de Armas, Y., Mavridou, A.M., Garcé Domínguez, J., Hanson, K. & Laffoon, J. 2022. Tracking Breastfeeding and Weaning Practices in Ancient Populations by Combining Carbon, Nitrogen and Oxygen Stable Isotopes from Multiple Non-Adult Tissues. *PLOS One*, 17: e0262435. <https://doi.org/10.1371/journal.pone.0262435>

Dabney, J., Knapp, M., Glocke, I., Gansauge, M.T., Weihmann, A., Nickel, B., et al. 2013. Complete Mitochondrial Genome Sequence of a Middle Pleistocene Cave Bear Reconstructed from Ultrashort DNA Fragments. *Proceedings of the National Academy of Sciences*, 110: 15758–63. <https://doi.org/10.1073/pnas.1314445110>

DeNiro, M.J. 1985. Postmortem Preservation and Alteration of *in vivo* Bone Collagen Isotope Ratios in Relation to Palaeodietary

Reconstruction. *Nature*, 317: 806–09. <https://doi.org/10.1038/317806a0>

DeNiro, M.J. & Epstein, S. 1978. Influence of Diet on the Distribution of Carbon Isotopes in Animals. *Geochimica et Cosmochimica Acta*, 42: 495–506. [https://doi.org/10.1016/0016-7037\(78\)90199-0](https://doi.org/10.1016/0016-7037(78)90199-0)

Donahue, J.F. 2015. *Food and Drink in Antiquity: A Sourcebook: Readings From the Graeco-Roman World*. London: Bloomsbury Publishing.

Foody, M.G.B., Dulias, K., Justeau, P., Ditchfield, P.W., Ladle, L., Gretzinger, J., et al. 2025. Ancient Genomes Reveal Cosmopolitan Ancestry and Maternal Kinship Patterns at Post-Roman Worth Matravers, Dorset. *Antiquity (First View)*. <https://doi.org/10.15184/ajy.2025.10133>

Foss, C. 1979. *Ephesus after Antiquity: A Late Antique, Byzantine and Turkish City*. Cambridge: Cambridge University Press.

Fuller, B.T., De Cupere, B., Marinova, E., Van Neer, W., Waelkens, M. & Richards, M.P. 2012a. Isotopic Reconstruction of Human Diet and Animal Husbandry Practices During the Classical-Hellenistic, Imperial, and Byzantine Periods at Sagalassos, Turkey. *American Journal of Physical Anthropology*, 149: 157–71. <https://doi.org/10.1002/ajpa.22100>

Fuller, B.T., Fuller, J.L., Sage, N.E., Harris, D. A., O'Connell, T.C. & Hedges, R.E. 2005. Nitrogen Balance and $\delta^{15}\text{N}$: Why You're Not What You Eat During Nutritional Stress. *Rapid Communications in Mass Spectrometry*, 19: 2497–506. <https://doi.org/10.1002/rcm.2090>

Fuller, B.T., Müldner, G., Van Neer, W., Ervynck, A. & Richards, M.P. 2012b. Carbon and Nitrogen Stable Isotope Ratio Analysis of Freshwater, Brackish and Marine Fish from Belgian Archaeological Sites (1st and 2nd Millennium AD). *Journal of Analytical Atomic Spectrometry*, 27: 807–20. <https://doi.org/10.1039/C2JA10366D>

Garland, L. ed. 2006. *Byzantine Women: Varieties of Experience 800–1200*. Farnham: Ashgate.

Garnsey, P. 1999. *Food and Society in Classical Antiquity*. Cambridge: Cambridge University Press.

Garvie-Lok, S.J. 2001. Loaves and Fishes: A Stable Isotope Reconstruction of Diet in Medieval Greece (unpublished PhD dissertation, University of Calgary, Calgary).

Gerritsen, F. 2009. Barçın Höyük Excavations, 2008. *Kazı Sonuçları Toplantısı*, 31: 411–20.

Gerritsen, F. & Özbal, R. 2019. Barçın Höyük: A Seventh Millennium Settlement in the Eastern Marmara Region of Turkey. *Documenta Praehistorica*, 46: 58–67. <https://doi.org/10.4312/dp.46.4>

Gerstel, S.E. 2015. *Rural Lives and Landscapes in Late Byzantium: Art, Archaeology, and Ethnography*. Cambridge: Cambridge University Press.

Gorham, L.D. 2000. The Archaeobotany of the Bozburun Byzantine Shipwreck (unpublished PhD dissertation, Texas A&M University, College Station).

Gregoricka, L.A. & Sheridan, S.G. 2013. Ascetic or Affluent? Byzantine Diet at the Monastic Community of St Stephen's, Jerusalem from Stable Carbon and Nitrogen Isotopes. *Journal of Anthropological Archaeology*, 32: 63–73. <https://doi.org/10.1016/j.jaa.2012.10.002>

Grimm, V. 2002. *From Feasting to Fasting: The Evolution of a Sin*. London & New York: Routledge.

Guiry, E. 2019. Complexities of Stable Carbon and Nitrogen Isotope Biogeochemistry in Ancient Freshwater Ecosystems: Implications for the Study of Past Subsistence and Environmental Change. *Frontiers in Ecology and Evolution*, 7: 313. <https://doi.org/10.3389/fevo.2019.00313>

Guiry, E. & Szpak, P. 2021. Improved Quality Control Criteria for Stable Carbon and Nitrogen Isotope Measurements of Ancient Bone Collagen. *Journal of Archaeological Science*, 132: 105416. <https://doi.org/10.1016/j.jas.2021.105416>

Haldon, J. 1979. *Recruitment and Conscription in the Byzantine Army c. 550–950: A Study on the Origins of the Stratotika Ktemata*. Wien: Österreichische Akademie der Wissenschaften.

İnanan, F. 2015. Kadikalesi Zeuxippus Ailesi Seramiklerinin Tipolojisi. *Seleucia*, 5: 143–83.

Irvine, B. 2022. Investigating a Subsistence Model of Staple Finance for the Late 4th to Early 2nd Millennium BCE of the Greater Near East. *Turkish Journal of Archaeological Sciences*, 2: 52–121.

Irvine, B. & Erdal, Y.S. 2020. Multi-Isotopic Analysis of Dietary Habits and Mobility at Third Millennium BC Bakla Tepe, West Anatolia. *Archaeological and Anthropological Sciences*, 12: 111. <https://doi.org/10.1007/s12520-020-01078-2>

Jacoby, D. 2016. Pisan Presence and Trade in Late Byzantium. In: A. Berger, S. Mariev, G. Prinzing & A. Riehle, eds. *Koinotaton Doron*:

Das späte Byzanz zwischen Machtlosigkeit und kultureller Blüte (1204–1461). Berlin & Boston: De Gruyter, pp. 47–60. <https://doi.org/10.1515/9783110469851-006>

Koder, J. 2017. Maritime Trade and the Food Supply for Constantinople in the Middle Ages. In: M. Mundell Mango, ed. *Travel in the Byzantine World*. London: Routledge, pp. 109–24.

Kokoszko, M. 2015. The Common Oat as Food and Medicament in Greek Medical Treatises of Antiquity and Byzantium, II–VII c. AD. In: M.J. Pires, ed. *Tasting Cultures: Thoughts for Food*. Leiden: Brill, pp. 99–113. https://doi.org/10.1163/9781848884496_010

Kroll, H. 2012. Animals in the Byzantine Empire: An Overview of the Archaeozoological Evidence. *Archeologia Medievale*, 39: 93–121.

Laurioux, B. 2015. Medieval Food. In: J. Wilkins & R. Nadeau, eds. *A Companion to Food in the Ancient World*. Chichester: Wiley Blackwell, pp. 377–82.

Lazaridis, I., Alpaslan Roodenberg, S., Acar, A., Açıkkol, A., Agelarakis, A., Aghikyan, L., et al. 2022. A Genetic Probe into the Ancient and Medieval History of Southern Europe and West Asia. *Science*, 377: 940–51. <https://doi.org/10.1126/science.abq0755>

Lefort, J. 2002. The Rural Economy, Seventh–Twelfth Centuries. In: A.E. Laiou, ed. *The Economic History of Byzantium From the Seventh Through the Fifteenth Century*, 1. Washington, DC: Dumbarton Oaks Research Library and Collection, pp. 231–310.

Linardou, K. & Brubaker, L. eds. 2016. *Eat, Drink, and Be Merry (Luke 12: 19): Food and Wine in Byzantium. Papers in Honour of Professor A.A.M. Bryer*. London: Routledge.

Longin, R. 1971. New Method of Collagen Extraction for Radiocarbon Dating. *Nature*, 230: 241–42. <https://doi.org/10.1038/230241a0>

Maltaş, T., Şahoglu, V., Erkanal, H. & Tuncel, R. 2022. From Horticulture to Agriculture: New Data on Farming Practices in Late Chalcolithic Western Anatolia. *Journal of Archaeological Science: Reports*, 43: 103482. <https://doi.org/10.1016/j.jasrep.2022.103482>

McGowan, A. 1999. *Ascetic Eucharists: Food and Drink in Early Christian Ritual Meals*. Oxford: Clarendon Press.

McKinnon, M. 2019. Consistency and Change: Zooarchaeological Investigation of Late Antique Diets and Husbandry Techniques in the Mediterranean Region. *Antiquité Tardive*, 27: 135–48. <https://doi.org/10.1484/J.AT.5.119548>

Mercangöz, Z. 2005. 4. Yılında Kuşadası, Kadıkalesi/Anaia Kazısı. *Sanat Tarihi Dergisi*, 14: 205–23.

Milner, N., Craig, O.E., Bailey, G.N., Pedersen, K. & Andersen, S.H. 2004. Something Fishy in the Neolithic? A Re-Evaluation of Stable Isotope Analysis of Mesolithic and Neolithic Coastal Populations. *Antiquity*, 78: 9–22. <https://doi.org/10.1017/S000398X00092887>

Minagawa, M. & Wada, E. 1984. Stepwise Enrichment of ^{15}N along Food Chains: Further Evidence and the Relation Between $\delta^{15}\text{N}$ and Animal Age. *Geochimica et Cosmochimica Acta*, 48: 1135–40. [https://doi.org/10.1016/0016-7037\(84\)90204-7](https://doi.org/10.1016/0016-7037(84)90204-7)

O’Leary, M.H. 1988. Carbon Isotopes in Photosynthesis: Fractionation Techniques May Reveal New Aspects of Carbon Dynamics in Plants. *Bioscience*, 38: 328–36. <https://doi.org/10.2307/1310735>

Onar, V., Mercangöz, Z., Kutbay, L. & Tok, E. 2013. Kuşadası Kadıkalesi (Anaia) kazısında ortaya çıkarılan işlenmiş kemik kalıntıları. In: *Arkeometri Sonuçları Toplantısı*, 28: 83–90.

Özbal, R. & Gerritsen, F. 2019. Farmer-Forager Interactions in the Neolithisation of Northwest Anatolia: Reassessing the Evidence. In: M. & B. Hore, eds. *The Central/Western Anatolian Farming Frontier* (Proceedings of the Neolithic Workshop, 10th ICAANE Vienna, April 2016). Vienna: Austrian Academy of Sciences, pp. 181–209.

Özdemir, K. 2018. Bizans dönemi Kovuklukaya topluluğunun (Boyabat, Sinop) beslenme alışkanlıklarının yeniden yapılandırılması: sabit izotop oranı analizlerinin öncül sonuçları. *Hittit Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, 11: 1155–75.

Özdemir, K., Itahashi, Y., Yoneda, M. & Erdal, Y.S. 2025. Dietary Habits of Byzantine Kovuklukaya (Sinop, Türkiye): An Isolated Society or Ostracized People? *Frontiers in Environmental Archaeology*, 4: 1525886. <https://doi.org/10.3389/fearc.2025.1525886>

Redfern, R.C., Gröcke, D.R., Millard, A.R., Ridgeway, V., Johnson, L. & Hefner, J.T. 2016. Going South of the River: A Multi-disciplinary Analysis of Ancestry, Mobility and Diet in a Population from Roman Southwark, London. *Journal of Archaeological Science*, 74: 11–22. <https://doi.org/10.1016/j.jas.2016.07.016>

Richards, M.P. & Hedges, R.E. 1999. Stable Isotope Evidence for Similarities in the Types of Marine Foods Used by Late Mesolithic Humans at Sites Along the Atlantic Coast of Europe. *Journal of Archaeological Science*, 26: 717–22. <https://doi.org/10.1006/jasc.1998.0387>

Roodenberg, J. 2009. The Byzantine Graveyards from İlipinar and Barçın in Northwest Anatolia. In: T. Vorderstrasse & J. Roodenberg, eds. *Archaeology of the Countryside in Medieval Anatolia*. Leiden: The Netherlands Institute for the Near East, pp. 154–67.

Schoeninger, M.J. & DeNiro, M.J. 1984. Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Animals. *Geochimica et Cosmochimica Acta*, 48: 625–39. [https://doi.org/10.1016/0016-7037\(84\)90091-7](https://doi.org/10.1016/0016-7037(84)90091-7)

Schoeninger, M.J. & Moore, K. 1992. Bone Stable Isotope Studies in Archaeology. *Journal of World Prehistory*, 6: 247–96. <https://doi.org/10.1007/BF00975551>

Schurr, M.R. 1998. Using Stable Nitrogen Isotopes to Study Weaning Behavior in Past Populations. *World Archaeology*, 30: 327–42. <https://doi.org/10.1080/00438243.1998.9980413>

Sołtysiak, A. & Schutkowski, H. 2018. Stable Isotopic Evidence for Land Use Patterns in the Middle Euphrates Valley, Syria. *American Journal of Physical Anthropology*, 166: 861–74.

Tafuri, M.A., Goude, G. & Manzi, G. 2018. Isotopic Evidence of Diet Variation at the Transition between Classical and Post-Classical Times in Central Italy. *Journal of Archaeological Science: Reports*, 21: 496–503. <https://doi.org/10.1016/j.jasrep.2018.08.034>

Talbot, A.M. 1987. An Introduction to Byzantine Monasticism. *Illinois Classical Studies*, 12: 229–41. Collected in: A.M. Talbot, 2001, *Women and Religious Life in Byzantium*. London: Routledge.

Teall, J.L. 1959. The Grain Supply of the Byzantine Empire, 330–1025. *Dumbarton Oaks Papers*, 13: 87–139.

Tritsaroli, P.V. 2022. Ordinary Women in Byzantine Funerary Contexts from Greece: A View From the Bones. In: S. Germanidou, ed. *Secular Byzantine Women*. London: Routledge, pp. 133–49. <https://doi.org/10.4324/9781003014058-11>

Ulaş, B. 2020. Archaeobotanical Research on Istanbul's Rural and Central Areas in the Byzantine Period. *Arkeoloji ve Sanat*, 165: 71–86.

Ünal, C. & Toy, M. 2020. Kadikalesi/Anaia Hoard C: Thirty-Three Copper Trachea and Stamena from the Main Church in Kadikalesi/Anaia Excavation. *Revista Numismática Hécate*, 7: 80–97.

Vaiglova, P., Lazar, N.A., Stroud, E.A., Loftus, E. & Makarewicz, C.A. 2023. Best Practices for Selecting Samples, Analyzing Data, and Publishing Results in Isotope Archaeology. *Quaternary International*, 650: 86–100. <https://doi.org/10.1016/j.quaint.2022.02.027>

van der Merwe, N.J. & Vogel, J.C. 1978. ^{13}C Content of Human Collagen as a Measure of Prehistoric Diet in Woodland North America. *Nature*, 276: 815–16. <https://doi.org/10.1038/276815a0>

Van Neer, W. & Waelkens, M. 1998. Fish Remains from Bronze Age to Byzantine Levels. In: N. Postgate J. & D. Thomas, eds. *Excavations at Kilise Tepe, 1994–1998* (British Institute at Ankara Monograph, 30). Cambridge: McDonald Institute for Archaeological Research & London: British Institute at Ankara, pp. 607–12.

van Zeist, W., Bottema, S. & Van der Veen, M. 2001. *Diet and Vegetation at Ancient Carthage: The Archaeobotanical Evidence*. Groningen: Groningen Archaeological Institute.

Vika, E. & Theodoropoulou, T. 2012. Re-Investigating Fish Consumption in Greek Antiquity: Results from $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ Analysis from Fish Bone Collagen. *Journal of Archaeological Science*, 39: 1618–27. <https://doi.org/10.1016/j.jas.2012.01.016>

Vorderstrasse, T. 2016. A Reliquary Cross From Northwest Anatolia: Reflections on Mortuary Practice, Literacy, and Spelling Variants. *Anatolica*, 42: 171–98.

Vroom, J. 2000. Byzantine Garlic and Turkish Delight: Dining Habits and Cultural Change in Central Greece from Byzantine to Ottoman Times. *Archaeological Dialogues*, 7: 199–216. <https://doi.org/10.1017/S1380203800001756>

Xoplaki E., Fleitmann, D., Luterbacher, J., Wagner, S., Haldon, J.F., Zorita, E., et al. 2016. The Medieval Climate Anomaly and Byzantium: A Review of the Evidence on Climatic Fluctuations, Economic Performance and Societal Change. *Quaternary Science Reviews*, 136: 229–52.

BIOGRAPHICAL NOTES

Rana Özbal is an associate professor of archaeology in the Department of Archaeology and History of Art at Koç University in Istanbul, Turkey, specializing in Anatolian prehistory and archaeological sciences including stable isotope studies.

Address: Department of Archaeology and History of Art, Koç University, Rumelihisarı Yolu, 34335, İstanbul, Türkiye. [email: rozbala@ku.edu.tr]. ORCID: 0000-0001-6765-2765.

Ali Metin Büyükkarakaya is an associate professor in the Department of Anthropology at Hacettepe University in Ankara, Turkey, specializing in biological anthropology. He is a member of the Human Behavioral Ecology and Archaeometry Laboratory (IDEA Lab) at Hacettepe University.

Address: Hacettepe University, Department of Anthropology, 06800 Beytepe, Ankara, Türkiye. [email: alimetusin@hacettepe.edu.tr]. ORCID: 0000-0002-7551-8440.

Gülfem Uysal is an associate professor in the Department of Anthropology at Hacettepe University in Ankara, Turkey, specializing in physical anthropological reconstructions of past populations.

Address: Hacettepe University, Department of Anthropology, 06800 Beytepe, Ankara, Türkiye. [email: guysal@hacettepe.edu.tr]. ORCID: 0000-0003-3888-6524.

Erge Bütün is a graduate student in the Department of Anthropology at Hacettepe University in Ankara, Turkey, specializing in biological anthropology. She is a member of the Human Behavioral Ecology and

Archaeometry Laboratory (IDEA Lab) at Hacettepe University.

Address: Hacettepe University, Department of Anthropology, 06800 Beytepe, Ankara, Türkiye. [email: butunerge@gmail.com]. ORCID: 0000-0001-6965-2398.

Fokke Gerritsen is director of the Netherlands Institute in Turkey (Leiden University), specializing in the archaeology and heritage of Anatolia. He co-directs the Barçın Höyük Research Project.

Address: Merkez Han, No:181, İstiklal Cd., 34430 Beyoğlu/İstanbul, Türkiye. [email: fa.gerritsen@nit-istanbul.org]. ORCID: 0000-0002-6665-1928.

Ali Akbaba is an associate professor at Muş Alparslan University, Turkey, specializing in anthropology, biodistance, ancient DNA, and genomics.

Address: Muş Alparslan Üniversitesi Külliyesi, Diyarbakır Yolu 7. km, 49250 Muş Merkez/Muş. [email: a.akbaba@alparslan.edu.tr]. ORCID: 0000-0002-6665-1928.

N. Ezgi Altınışik is an assistant professor of physical anthropology specializing in bioinformatics, genomics, evolution, and population genetics at Hacettepe University in Ankara, Turkey.

Address: Hacettepe University, Department of Anthropology, 06800 Beytepe, Ankara, Türkiye. [email: ezgialtinisik@hacettepe.edu.tr]. ORCID: 0000-0003-0653-4292.

Mehmet Somel is professor of molecular biology and genetics at Middle East Technical University in Ankara, specializing in aDNA, evolution, and population genetics.

Address: Biyolojik Bilimler Bölümü, Orta Doğu Teknik Üniversitesi Üniversiteler Mahallesi, Dumlupınar Bulvarı No: 1, 06800, Çankaya/Ankara, Türkiye. [somer.mehmet@googlemail.com] ORCID: 0000-0002-3138-1307.

Alimentation et mobilité en Anatolie occidentale byzantine : analyses des isotopes du carbone et de l'azote et de l'ADN ancien provenant de Barçın Höyük et de Kadıkalesi Anaia

Cette étude présente les résultats combinés d'analyses des isotopes stables du carbone ($\delta^{13}\text{C}$) et de l'azote ($\delta^{15}\text{N}$) et des analyses de l'ADN ancien extraits d'échantillons provenant de deux communautés en Anatolie occidentale : le site cosmopolitan de Kadıkalesi Anaia sur la côte ionienne et le site rural de Barçın Höyük dans l'intérieur du pays. Le but était d'examiner les pratiques alimentaires et la mobilité attestées sur ces deux sites d'époque byzantine moyenne à tardive. Les données isotopiques provenant de trente-huit individus indiquent que les deux populations consommaient principalement des ressources terrestres de type C₃. Les valeurs de l'azote à Kadıkalesi sont plus variables qu'à Barçın, ce qui suggère un accès plus différencié aux protéines d'origine animale; la communauté rurale de Barçın révèle un profil isotopique plus homogène, correspondant à un régime alimentaire plus uniforme et à un accès équitable aux ressources alimentaires. Une alimentation plus vairée selon l'âge et le sexe des habitants est attestée au sein du site de Kadıkalesi, tandis qu'elle est à nouveau plus homogène à Barçın. Les analyses de l'ADN ancien de Barçın révèlent une communauté essentiellement locale, ce qui indiquerait une population stable; un seul cas d'ascendance génétique externe a été relevé; il s'agit d'un individu masculin dont les affinités avec les populations occidentales, en particulier d'Europe orientale, pourraient être mises en rapport avec la relocalisation de personnel militaire connu historiquement (stratiotika ktemata). L'intégration des données génomiques et isotopiques illustre comment l'ascendance et la mobilité des populations influençaient leurs pratiques alimentaires et nous éclaire sur les interactions entre l'urbanisme, la mobilité et l'organisation sociale à l'époque byzantine. Translation by Madeleine Hummler

Mots-clés: analyse des isotopes stables, Anatolie byzantine, $\delta^{13}\text{C}$ et $\delta^{15}\text{N}$, ADN ancien, stratiotika ktemata, Barçın Höyük, Kadıkalesi Anaia

Ernährung und Mobilität im byzantinischen Westanatolien: Untersuchungen von Kohlenstoff- und Stickstoffisotopen und aDNA aus Barçın Höyük und Kadıkalesi Anaia

Diese Studie enthält die kombinierten Ergebnisse von Analysen der stabilen Isotope von Kohlenstoff ($\delta^{13}\text{C}$) und Stickstoff ($\delta^{15}\text{N}$) sowie von aDNA, die aus zwei Gemeinschaften in Westanatolien stammen: die kosmopolitische Stadt Kadıkalesi Anaia an der ionischen Küste und die ländliche Siedlung Barçın Höyük im Landesinnern. Ziel war es, die Ernährung und die Mobilität in diesen mittel- bis spätbyzantinischen Stätten zu untersuchen. Die Isotopenanalyse von achtunddreißig Individuen zeigt, dass beide Gemeinschaften hauptsächlich terrestrische Nahrungsmitte von Typus C₃ konsumierten. In Kadıkalesi weisen die Stickstoffwerte eine größere Variabilität als in Barçın auf, was auf einen differenzierten Zugang zu tierischen Proteinquellen deutet; hingegen weist die ländliche Gemeinschaft in Barçın ein homogenes Isotopenprofil auf, das mit einer einheitlichen Ernährung und einem gleichberechtigten Zugang zu Lebensmitteln übereinstimmt. Es gibt auch alters- und geschlechtsspezifische Unterschiede in der Ernährung innerhalb Kadıkalesi, während Barçın wiederum homogener ist. Die Resultate der aDNA-Analyse von Barçın weisen auf eine überwiegend lokale genetische Zusammensetzung, was auf eine stabile Bevölkerung hindeutet sollte. Ein einziger Fall externer Abstammung wurde festgestellt, namentlich ein Individuum männlichen Geschlechts mit genetischen Affinitäten zu westlichen Bevölkerungsgruppen, insbesondere in Osteuropa, was mit der historischen Besiedlung von Militärpersonal (stratiotika ktemata) zusammenhängen könnte. Die integrierten isotopischen und genetischen Angaben zeigen, wie

Abstammung und Mobilität die Ernährung geprägt haben und bietet Einblicke über die Beziehungen zwischen Urbanismus, Mobilität und soziale Organisation in byzantinischer Zeit. Translation by Madeleine Hummler

Stichworte: stabile Isotopenanalyse, byzantinisches Anatolien, $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$, aDNA, *stratiotika ktemata*, Barçın Höyük, Kadıkalesi Anaia