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ABSTRACT

Recently, we estimated that about 5 per cent of unstable supermassive black hole triple systems are fundamentally unpredictable.
These gargantuan chaotic systems are able to exponentially magnify Planck length perturbations to astronomical scales within
their dynamical lifetime. These results were obtained in the zero angular momentum limit, which we naively expected to be the
most chaotic. Here, we generalize to weakly and non-hierarchical triple systems with a range of non-zero angular momenta by
systematically varying the initial virial ratio. We find the surprising result that increasing the angular momentum enhances their
ability to amplify small perturbations, which we tracked up to 90 orders of magnitude using the arbitrary-precision N-body code
BRUTUS. This result is partially explained by the fact that triples with higher angular momenta have longer lifetimes, allowing
for a prolonged exponential growth. However, we also find that for a fixed lifetime, triples with higher angular momenta can
amplify perturbations to larger values, indicating that the Lyapunov exponent is also a function of angular momentum. These
empirical results provide targets for three-body theories which invoke chaos drivers such as resonance overlap and punctuated
chaos. Comparing the zero angular momentum case to our new ensembles with higher angular momenta, we conclude that the
percentage of unpredictable supermassive black hole triples increases up to about 30 percent. A further increase up to about
50 per cent is reached when considering triples on smaller astrophysical scales. Fundamental unpredictability is thus a generic

feature of chaotic, self-gravitating triple populations.

Key words: methods: numerical —stars: kinematics and dynamics.

1 INTRODUCTION

The gravitational three-body problem (Newton 1687) is ubiquitous
in the Universe. Examples range from the Sun—Earth—-Moon system
(e.g. Touma & Wisdom 1998), to Trans-Neptunian triplets (e.g. Cor-
reia 2018), Jacobi captures (e.g. Boekholt, Rowan & Kocsis 2023b),
hierarchical triple stars (e.g. Toonen, Boekholt & Portegies Zwart
2022), stellar-mass black holes (e.g. Portegies Zwart & McMillan
2000; Samsing, MacLeod & Ramirez-Ruiz 2014), supermassive
black holes (e.g. Kollatschny et al. 2020; Boekholt, Moerman &
Portegies Zwart 2021), and even whole galaxies (Viisdnen et al.
2008).

Chaos in the gravitational three-body problem was first demon-
strated by Henri Poincaré (Poincaré 1891, 1892). It manifests itself
through the exponential sensitivity to small perturbations (Miller
1964; Dejonghe & Hut 1986; Goodman, Heggie & Hut 1993). If
the finite-mass third body is infinitely far away, the motions of the
other two bodies can be obtained analytically by solving the Kepler-
problem (Kepler 1609). If the third body is systematically brought
closer to the other two bodies, its gravitational influence increases,
and through sequences of close encounters (e.g. Portegies Zwart,

* E-mail: tjarda.boekholt@nasa.gov (TB); spz@strw.leidenuniv.nl (SPZ)
© 2024 The Author(s).

Boekholt & Heggie 2023; Boekholt, Portegies Zwart & Heggie
2023a) and orbital resonances (e.g. Mardling 2008), the gravitational
interaction becomes increasingly chaotic. Here, we define chaotic
response as the exponential growth of any small perturbation in the
motion of the three bodies, and regular response when the growth is
weaker than exponential.

The motion in non-hierarchical three-body systems is character-
ized by a series of transitions between regular and chaotic motion.
This behaviour manifests itself in sequences of short democratic
resonances, during which all pairwise distances are of the same
order, alternated by extended phases of hierarchical evolution,
during which one of the bodies is on an excursion away from
the remaining pair (McMillan & Hut 1996). This latter phase can
be represented by Lévy flights (Stone & Leigh 2019; Manwadkar,
Trani & Leigh 2020) in phase space. However, not all variations and
transitions in the exponential growth rate can be explained this way,
indicating the presence of other mechanisms also affecting the rate of
divergence (Portegies Zwart & Boekholt 2018; Portegies Zwart et al.
2023).

To mediate the discussion we will quantify chaotic motion by a
measure of the local Lyapunov time-scale T, (Portegies Zwart &
Boekholt 2018). This measure is the reciproke of the local, finite-
time, maximum Lyapunov exponent of a system. The value of this
chaotic quantifier is local (in time), and although its value can

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
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provided the original work is properly cited.
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vary considerably from one moment to the next, the global trend
is surprisingly stable. This leads to well-defined averaged Lyapunov
exponents, which are an inherent property of chaotic N-body systems
(Boekholt, Portegies Zwart & Valtonen 2020; Portegies Zwart et al.
2023). The relation between the Lyapunov exponent of a system and
the detailed motions of the three bodies is still an open problem. Lines
of investigation include orbital resonances and resonance overlap
(e.g. Mardling 2008), or sequences of strong two-body encounters
and deflections (Goodman et al. 1993; Boekholt et al. 2016), i.e.
punctuated chaos (Portegies Zwart et al. 2023).

Irrespective of the mechanism that drives the exponential di-
vergence between two neighbouring trajectories in phase space,
exponential sensitivity can be measured through performing accurate
and precise N-body simulations (Boekholt et al. 2020). Here, the
accuracy reflects a measure to which energy is conserved, and
precision can be perceived as the number of decimal places used
to express the result (Portegies Zwart & Boekholt 2018). Boekholt
et al. (2020; hereafter Paper 1) studied triples systematically drawn
from the Agekyan—Anosova map (Agekyan & Anosova 1967, 1968),
and measured a power-law distribution of amplification factors,
e.g. the amplification factor of a small initial perturbation over the
lifetime of the triple. The implication is the presence of a power-law
tail of triple systems, which produce extremely large amplification
factors, i.e. gargantuan chaotic triple systems. We found a finite
fraction of systems that would remain irreversible, even if the
calculations would be conducted with a precision below the Planck
length. We therefore argued that these gargantuan chaotic systems
would be fundamentally irreversible and unpredictable. Despite our
lack of understanding on the deterministic behaviour of quantum
gravity at sub-Planck length scales and considering Heisenberg’s
principle of uncertainty, we argue that this irreversible fraction may
be fundamental to the arrow of time (Portegies Zwart & Boekholt
2023). Recent binary-single scattering experiments by Trani et al.
(2024) also revealed a sensitivity to the Planck length scale due to the
presence of an underlying multi-fractal structure, which was resolved
using the arbitrary-precision N-body code BRUTUS (Boekholt &
Portegies Zwart 2015).

In Paper 1, we focused on the amplification factor for zero-angular
momentum orbits, naively assuming that those would be more chaotic
than configurations with non-zero angular momentum. Our naivety
in the zero-angular momentum problem stems from the fact that for
two-body problems, smaller angular momentum implies more radial
orbits. As a consequence, and extrapolating to three-body systems,
this naturally leads to close encounters. On the other hand, bodies
in configurations with finite angular momentum would remain on
average at larger distance from each other, leading to fewer and
weaker interactions. Based on such an intuition it might be argued
that zero-angular momentum systems would be maximally chaotic.
As it turns out now, as we explain in this paper, this only holds
statistically for the shortest lived triple systems (up to about 20
crossing times). We find the surprising result that the opposite is true
for longer lived systems (which are also the majority); more angular
momentum in non-hierarchical or weakly hierarchical three-body
initial conditions leads to longer lifetimes, shorter Lyapunov time-
scales, larger magnification factors, and therefore to more chaos.
Generally, when increasing the initial amount of angular momentum,
the fraction of irreversible solutions increases. However, in the
regime of high angular momenta, where triples tend to be hierarchical
with much longer decay times, the fraction of irreversible solutions is
expected to decrease again, and therefore we hypothesize that there
should be a peak in the irreversible fraction at a certain characteristic
angular momentum.
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This second paper on gargantuan chaotic triples extends the results
of Paper 1 to triples with non-zero angular momenta, but still in the
regime where they are non-hierarchical or weakly hierarchical. We
demonstrate that the fraction of unpredictable triples can reach larger
values than found in Paper I. We will also scale the results to triples
of arbitrary physical scale finding that the fraction of unpredictable
triples is further enhanced for more compact triples, such as triple
asteroids (see Section 4.2). Complementary to the intrinsic quantum
perturbations, we will also briefly discuss tidal perturbations from
the presence of other bodies in the Universe. In most cases these
tend to dominate over intrinsic Planck length uncertainties, which
enhances the unpredictability of N-body systems even further (see
Section 4.3).

2 METHODS

2.1 Initial conditions

We adopt the equal mass Plummer distribution (Plummer 1911)
for drawing random initial positions and velocities for the three
bodies. The initial velocities will then be adjusted in order to vary
the total angular momentum. This procedure will generally result
in a non-hierarchical, unstable triple system. However, if the total
angular momentum is larger than zero, a small fraction of random
realisations can also have a weak hierarchy, i.e. a ratio of the outer
orbit’s pericenter divided by the inner orbit’s semimajor axis in the
range of 2—4, which puts it on the edge of (in)stability. In principle
other initial conditions than the Plummer model could have been
used, but the Plummer model is a well-known toy model for stellar
systems, and allows for a natural extension from 2D (as in Paper I) to
3D (current study), as well as from N = 3 (current study) to larger
N stellar systems (e.g. Portegies Zwart et al. 2022). Three-body
Plummer models were also used by e.g. Portegies Zwart & Boekholt
(2014) and Boekholt & Portegies Zwart (2015). Furthermore, we
will show that for the case of zero angular momentum triples, we get
consistent results with those of Paper I, which adopted the Agekyan—
Anosova map. The statistical outcome of N-body simulations of
chaotic systems is primarily determined by the global conserved
quantities, i.e. energy and angular momentum (e.g. Portegies Zwart
& Boekholt 2014).

The Plummer model was originally used for star clusters with a
large value of N. In virial equilibrium the total kinetic energy, T,
and potential energy, V, are related by 27 + V = 0. Since the total
energy is E =T + V, we can combine the two relations and write
E = % V. This can be written in terms of the total mass, M, and virial
radius, Ry, of the cluster defined by

1 GM?

E=—- 1
i R ey

with G the gravitational constant. The virial radius is used as a
characteristic size of the Plummer sphere. Similarly, a characteristic
time-scale is defined by T = 2Ry /o, with o the mass-weighted
velocity dispersion. This time-scale is commonly referred to as the
dynamical time or crossing time of the cluster. Although originally
defined for large-N star clusters, the Plummer model can be extrap-
olated downwards to the case of N = 3, thereby providing a method
for the random generation of triples with mostly non-hierarchical
configurations, a certain total mass, M, characteristic size, Ry,
and a pre-defined crossing time. This is especially useful for non-
hierarchical, chaotic systems in which there are no well-defined or
long-lived Keplerian orbits.
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For numerical implementation purposes it is useful to set G = 1.
For rescaling purposes, one usually works with dimensionless units.
The following scaling factors are introduced: fuy = M, f. = Ry,
fo =~GM/Ry, and f, = £,/ f,, for the mass, positions, velocities
and time, respectively. Given the initial condition in physical units,
one makes them dimensionless by dividing by these scaling factors.
After the simulations are finished, physical units are retrieved from
the dimensionless units by multiplying the results by the scaling
factors. The set of scaling factors defined above are widely used
in the N-body community and originally called N-body units (e.g.
Heggie & Mathieu 1986). They rescale the gravitational constant,
dimensionless total mass and virial radius to unity. Since 2014,
these set of dimensionless units are also known as Hénon units.
The results in this paper will be given in Hénon units, but they are
easily converted to physical units by defining the scaling factors as
given above.

So far, the angular momentum, L, of the triple has not explicitly
appeared yet. The method given above generates virialised triples
with a well-defined mass and energy, while also fulfilling the virial
relation 27 + V = 0, but L varies among the different realisations.
The average value for initially virialised triples is (Lyiga) = 0.19 in
Hénon units.

In order to generate ensembles of triples with a lower average
angular momentum, we adjust the initial virial ratio, Q, which is
defined as the ratio between total kinetic energy, 7', and absolute
value of the potential energy, V:

0 d 2

v

A triple with zero initial velocities has a virial ratio of Q@ =0
and angular momentum L = 0. We can therefore create ensembles
of triples with different angular momenta by rescaling the initial
velocities. By systematically increasing the initial velocities, we
increase both Q and L. The maximum angular momentum in our
experiment corresponds to the case of the initially virialised triples.
We leave the domain of triples with even higher values of L, which
also tend to be mostly hierarchical triples, to a separate study.

The procedure for generating initial conditions starts by generating
a random realisation of a virialised triple system drawn from a
Plummer distribution. For the virial case we have the relation
2T +V =0, and therefore Q = % To change the virial ratio we
rescale the velocities, and therefore T, by a factor Cy:

T o \?
2 r-(2) = )
Oov Ty oy
with o the mass-weighted velocity dispersion, and the subscript V
refers to virial. Since Q, = %, we can write

C, =+/20. “4)

This scaling of the velocities changes the total energy of the triple to
a value

E IM(C 2 1 GM? IC2 1 0o 1 )
= — O —_ = = — - - = — =,
T2 VTR 4 27 2 2
whereas its initial virialised value was set to Eg = —1. In order to

4
normalize the energy, we calculate the scaling factor of the total

energy

B 1 _ 1 ©
E, 2-C: 2-20

and rescale the positions and velocities by factors respectively given

by
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Figure 1. Relation between virial ratio, Q, and angular momentum, L. Our
ensembles of triple systems vary L systematically and are confined to be
within the horizontal ‘error bars’.

1
D=—=2-Ci=2-20Q, @)
Cg
1 1
D, =+/Cg ®)

V2-cr V2-20°
which rescales the total energy back to a value E, while preserving
the virial ratio Q. The total angular momentum scales as

L V202 -20)

= D,C,D, = -0 201 -0), (C)]

where D, is the net scaling of the positions, and C,D, is the
net scaling of the velocities. From this expression we confirm
that for Q =0 we obtain L =0, while for Q = % we retrieve
L = Lv. Hence, with this relation between L and Q, we can generate
ensembles of non/weakly-hierarchical triples with a varying amount
of angular momentum. However, the drawing of random realisations
of triple systems for a given value of Q still results in a spread of
values for L. The average value of L however does scale one-to-one
with Q, and we therefore use

L, /oa-0. (10)

(Lvirial)
or after inverting the equation we obtain

o="'1[1- 1_< (£) )2 (11)
_2 (Lvirial) ’

Henceforth, we might omit the angular brackets (L instead of (L)) for
simplicity, i.e. L refers to the average value of the ensemble unless
stated otherwise. In Fig. 1, we plot the relation between Q and L.
We define 12 ensembles of triple systems for which the average
angular momentum is systematically varied. For each ensemble, we
calculate the corresponding value for Q. Then we generate 2048
random, virialised triple realisations, which we subsequently rescale
according to the procedure described above. Since we are interested
in measuring trends with L, we do not want the range in L within
an ensemble to be too broad. Therefore, we only accept a random
realisation of a triple if its angular momentum is within the range
givenby L + §L with§ L = 0.001. For the virialised case, this margin
corresponds to 6L /Ly = 0.0053. The corresponding values of L
and Q are given in Table 1, and the ensembles are also presented

MNRAS 536, 2993-3006 (2025)
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Table 1. Table of initial conditions and statistical outcomes. The relation between virial ratio, Q, and angular momentum, L, is visualized in Fig. 1. The
parameters v and 1 correspond to the linear fits in Fig. 2. The parameters « and 8 correspond to the linear fits in Fig. 5. The parameter p refers to the percentage

of fundamentally unpredictable triples in our massive black hole application (see Section 4).

(L)/Liria) (L) 0 v sv n & « S« B 8B plpercent)  Sp(percent)
1.00 0.19 0.5 0.0115 0.0003 0.060 0.003 0.83 0.01 0.12 0.02 29.8 0.4
0.895 0.17 0.277 0.0131 0.0004 0.074 0.003 0.88 0.01 0.06 0.02 25.4 0.5
0.790 0.15 0.193 0.0147 0.0002 0.079 0.002 0.86 0.02 0.08 0.03 21.5 0.2
0.684 0.13 0.135 0.0170 0.0001 0.089 0.001 0.82 0.02 0.15 0.02 16.6 0.1
0.579 0.11 0.0923 0.0206 0.0005 0.106 0.005 0.80 0.02 0.18 0.03 11.4 0.3
0.474 0.09 0.0597 0.0237 0.0003 0.125 0.002 0.76 0.01 0.23 0.02 8.2 0.1
0.368 0.07 0.0352 0.0270 0.0005 0.147 0.004 0.79 0.02 0.19 0.03 59 0.2
0.263 0.05 0.0176 0.030 0.001 0.163 0.009 0.71 0.01 0.29 0.02 4.2 0.2
0.158 0.03 0.00627 0.0322 0.0006 0.172 0.005 0.68 0.01 0.31 0.02 3.4 0.1
0.105 0.02 0.00278 0.033 0.001 0.18 0.01 0.75 0.02 0.17 0.02 3.1 0.2
0.0524 0.01 0.000693 0.0291 0.0007 0.154 0.005 0.66 0.02 0.34 0.03 4.7 0.2
0.0 0.0 0.0 0.0282 0.0006 0.151 0.005 0.75 0.01 0.19 0.02 52 0.2

in Fig. 1 as the horizontal ‘errorbars’. It is clear that the various
ensembles do not overlap, which allows us to measure statistical
trends as a function of angular momentum.

2.2 Experimental setup

Adopting the same strategy as Portegies Zwart & Boekholt (2018)
and Boekholt et al. (2020), we use the code BRUTUS (Boekholt &
Portegies Zwart 2015) to perform a reversibility test. Each initial
condition is integrated forwards in time until dissolution of the triple
configuration. We define this to be the case if one of the bodies (1) is
at a distance beyond 10 Hénon length units from the centre of mass of
the triple, (2) is moving away from the centre of mass, and (3) has a
positive energy, meaning it has become unbound from the remaining
binary system. Since a small fraction of triples is very long lived,
we also set a maximum simulation time of 10* Hénon time units, or
about 3536 crossing times (7). We define the duration of the forward
integration from the initial condition to the stopping conditions as
the lifetime, 7', of the triple. At that moment, we flip the sign of each
velocity coordinate of each particle, and integrate forwards until a
final simulation time of + = 27. Note that effectively, the system is
evolving back to the future initial condition. We can compare the
initial (forward) and final (backward) configurations by measuring
their phase space distance (note that the velocities of the backward
integration have to be flipped again so that they have the same sign
as the forward integration), given by

N 6
A= Z Z (xi,k,f - Xi,k,h)z s (12)

i=1 k=1

where the first sum is over all bodies (N = 3), the second sum over
all phase space coordinates (positions and velocities), and where the
subscript f and b refer to the forward and backward integration,
respectively. Or in words, the phase space distance, A, gives the
Euclidean distance between the two solutions in 6 /N-dimensional
phase space. For a perfectly time-reversible integrator with reversible
numerical errors, the phase space distance between the forward and
backward solutions would remain zero. In this case, a reversibility
test does not hold any information about the accuracy of the solution
or the exponential sensitivity of the trajectory. However, in the
presence of irreversible numerical errors, these errors will serve as a
perturbation to the system, which seeds the exponential divergence
between the forward and backward integrations, i.e. the phase
space distance between the two solutions will grow exponentially.

MNRAS 536, 2993-3006 (2025)

A reversibility test is then declared successful if the phase space
distance between the initial and final states is below some small
threshold, for which we adopt

log,, A < —3. (13)

This criterion ensures we remain in the linear perturbation regime, as
A remains a factor 103 smaller than the characteristic size and speed
of the triple system. Remaining in the linear regime is critical as
numerical errors will not have the opportunity to affect the solution on
amacroscopic scale, such that the solution diverges to a quasi-random
trajectory. Hence, this allows us to make accurate measurements of
e.g. the lifetime of the triple and the maximum Lyapunov exponent,
still belonging to that specific initial configuration. This approach
is an application of the method of convergence used in conjunction
with BRUTUS as described in detail by Boekholt & Portegies Zwart
(2015), Portegies Zwart & Boekholt (2018), and Boekholt et al.
(2020). In short, given a specific initial condition of an unstable triple
system, there is a unique mathematical solution for the trajectories
in time, which we deem the ‘true’ or ‘correct’ solution. Numerical
errors perturb the trajectories away from the true solution, and if the
perturbations reach the magnitude of the size of the triple itself, then
the perturbations have become non-linear, and the numerical solution
has become macroscopically different from the true solution. Using
the BRUTUS code, we can prevent this from occurring by systemati-
cally controlling and reducing the magnitude of the numerical errors.
Since N-body simulations define a limited simulation time, we find
that there is a corresponding limited (maximum) magnitude for the
errors, such that numerically diverging trajectories remain in the
linear regime during the simulation. From that point onward, if we
would continue to reduce the magnitude of the errors, we find that we
are only increasing the number of converged decimal places, without
affecting the macroscopic configuration anymore. Generating such
numerically ‘converged’ solutions allows us to study chaotic N-body
problems with solutions arbitrarily close to the true solution.

In our first attempt to obtain a reversible solution for each triple,
we set the Bulirsch—Stoer tolerance parameter to € = 107°, and we
express the word-length (length of the mantissa in units of bits) as

L, = —4log,, € + 32, (14)

which for € = 1076 corresponds to 56 bits, and more bits are added
as € decreases (Boekholt & Portegies Zwart 2015). If the reversibility
test fails for a subset of triples, then we redo the test with a
smaller value of € and the corresponding value of L,. This way,
we can measure the fraction of irreversible solutions as a function
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of numerical accuracy and precision. We halted the iteration at
€ = 107, but we will show that even then a fraction of triples still
remained irreversible. Besides the fraction of irreversible solutions,
we also measure the two main observables for each triple, which are
the lifetime 7', and the amplification factor defined as

15)

Here, A; is the phase space distance between the forward and
backward solution after a single integration step (i.e. the states
just before and after + = T are compared), and A is the phase
space distance between the initial and final states. In other words,
A gives the total amplification factor of the initial perturbation over
the lifetime of the triple. The finite-time Lyapunov exponent is then
estimated as

log A
=7
while the finite-time Lyapunov time-scale is the inverse, i.e. T} =
2L

The underlying question in our experiment is: given a specific
initial configuration, what is the maximum value of € such that
the phase space separation between the forward and backward
integration remains in the linear regime throughout? Chaos prevents
us from knowing this a priori; it depends on the lifetime of the
interaction and the rate of exponential divergence, which, as we
will show, varies among different three-body configurations. Our
approach is then to perform multiple simulations of the same initial
condition, but with smaller values of € until convergence is achieved,
i.e. the phase space separation between the forward and backward
integration remains in the linear regime. Since our approach depends
on the ability to remain in the linear regime, we require studying
an ensemble of different initial triples. The alternative of creating an
ensemble from a single triple with different initial small perturbations
will lead to solutions which are the same in the linear regime, but
which diverge only in the non-linear regime, at which point our
approach for measuring the exponential growth rate becomes invalid,
i.e. the exponential growth rate is truncated by the size of the triple.

A (16)

3 RESULTS

We first present the outcome of the reversibility experiment in Section
3.1. There, we find that ensembles of triples with a higher angular
momentum produce a larger fraction of irreversible solutions (see
Figs 2 and 3). Similar to Paper 1 we find that this is correlated
with having larger amplification factors (see Fig. 4). In Section
3.2, we explore the correlation between the two main observables:
amplification factors and lifetimes (see Figs 5-7). We will show that
higher angular momentum triples can achieve larger amplification
factors both due to longer lifetimes as well as larger Lyapunov
exponents (see Figs 8 and 9). In Section 4, we discuss how the
results scale with astrophysical size, and we will also apply our
results to tidal perturbations from other bodies in the Universe, which
complement intrinsic quantum uncertainties.

3.1 Reversibility test

In Fig. 2, we plot the fraction of irreversible integrations, fiy, as
a function of numerical accuracy, i.e. Bulirsch-Stoer tolerance, €.
For each value of the total angular momentum, we find that the data
follows a power law. At low accuracy (large €), fi. is of order unity,
and with increasing accuracy (smaller €), this fraction decreases
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Figure 2. Fraction of irreversible simulations, fi., as a function of integra-
tion accuracy, which is represented by the Bulirsch—Stoer tolerance, €. The
data points and errorbars are obtained from the data, while the curves are
linear fits whose parameters are given in Table 1, with v the slope and 7 the
offset. Higher angular momentum triples have a larger fraction of irreversible
solutions. Interestingly, we observe that the lowest irreversible fraction is
produced by L = 0.02 rather than L = 0. This turns out to be correlated with
statistically shorter lifetimes (see Fig. 4).
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Figure 3. We plot the ratio between the largest and smallest irreversible
fraction from Fig. 2, i.e. between those of L = 0.19 and L = 0.02. We fit
a linear relation resulting in a slope —0.022 £ 0.001 and offset —0.120 £
0.008.

according to a power law. The power-law index however, depends
on angular momentum. We perform linear fits to the data

logg fir = viogg€ + 1, (17

where the fit parameters, v and 7, can be found in Table 1. For the case
of L = 0, we measure a power-law index of v = 0.0282 % 0.0006,
which is consistent with the measurement of 0.029 & 0.001 for the
Agekyan—Anosova map of initial conditions from Paper 1. As we
increase the total angular momentum, we find that the power-law
index first increases to a maximum value of v = 0.033 £ 0.001 for
L = 0.02, and then decreases monotonically until a value of v =
0.0115 £ 0.0003 for the initially virialized ensemble. Hence, the
easiest triples to reverse have L = 0.02, while the hardest triples to
reverse are the virial ones with L = 0.19. In Fig. 3 we plot the ratio
between the largest and smallest fractions from Fig. 2, which are
those for L = 0.02 and L = 0.19. It is striking that for € = 107%,
the range in f, among the ensembles is two orders of magnitude,
with approximately 10 per cent of triples being irreversible still for
L =0.19.

In Paper 1, we demonstrated that the fraction of irreversible
solutions is determined by the distribution of amplification factors.
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Figure 4. Cumulative distribution functions of the amplification factor (left), lifetime (middle), and Lyapunov time-scale (right). Triples with larger L have
statistically larger amplification factors and lifetimes. For the smallest L values, we observe that L = 0.02 statistically produces the smallest amplifications
rather than L = 0. Two-sample Kolmogorov—Smirnoff tests between the distributions of L = 0 and L = 0.19 give p-values smaller than 1022 for each of the
three distributions, indicating that all three quantities have a L-dependence, including the Lyapunov time-scale. Comparing L = 0 and L = 0.02 we obtain
p-values of 0.00018, 0.0044 and 0.71 (from left to right panel respectively). Hence, the observation that L = 0.02 produces smaller values of A than L = 0 is
most likely explained by statistically shorter lifetimes, and not by different Lyapunov time-scales. We also confirm that the median Lyapunov time-scale is of

order the crossing time.

In Fig. 4 (left panel), we plot the cumulative distribution function
of log,, A for the various ensembles of triples. We confirm that
the distributions are angular momentum dependent, such that higher
angular momentum triples produce larger amplification factors. We
observe that for L = 0.19, about 10 per cent of triples amplify the
initial perturbation by more than a factor of 10°°. Here, we also
observe that the ensemble of triples with L = 0.02 produces the
smallest amplifications in a statistical sense. Our observations of the
L-dependence of fi, in Fig. 2 are thus reflected in the distributions
of A in Fig. 4 (left panel). The relation between reversibility and
amplification factor was previously discussed by Portegies Zwart &
Boekholt (2018) and Boekholt et al. (2020).

The amplification is determined by the lifetime of the interaction
during which perturbations can be amplified, and the instantaneous
Lyapunov exponent, which gives the rate of amplification in time. The
L-dependence of the amplification factor can thus be a consequence
of an L-dependence of the lifetime and/or Lyapunov time. In
Fig. 4, we plot their respective cumulative distribution functions.
We adopt the two-sample Kolmogorov—Smirnoff (KS) test in order
to test whether the various empirical distributions could have been
drawn from the same underlying distribution, or whether they are
significantly different. We first compare L = O and L = 0.19 in each
of the three panels of Fig. 4. The KS test produces p-values smaller
than 10722 for each of the three distributions, confirming that all three
quantities have a statistically significant L-dependence. This includes
the Lyapunov time-scale. Whereas the statistical longer lifetimes for
L = 0.19 (middle panel of Fig. 4) would contribute towards produc-
ing larger amplification factors (left panel), the statistical distribution
of Lyapunov times is also shifted towards (somewhat) larger values
(right panel), indicating slower growth rates. Nevertheless, the net
result is an increase of the amplification factor. When multiplying
the lifetimes by a constant Lyapunov exponent, we find that this
does not reproduce the distribution of amplification factors. The L-
dependence of the amplification factor is thus determined by the
L-dependence of both the lifetime and the Lyapunov time. We will
continue this analysis in the next subsection.

First, we seek a better understanding of why L = 0.02 rather than
L = 0 seems to be the easiest ensemble to reverse. We perform KS
tests comparing L = 0 and L = 0.02 obtaining p-values of 0.00018,
0.0044, and 0.71 for A, T, and T;, respectively. At a confidence level
of 95 per cent, we conclude that the distributions of A and T are not
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drawn from the same underlying distribution, but that 7; is. Hence,
this suggests that L = 0.02 triples are easier to reverse because they
have systematically shorter lifetimes. We leave a physical explanation
for this observation in terms of detailed orbital dynamics for follow
up studies, although we present some first attempts in Section 3.3.
Finally, we observe that the median of the Lyapunov time-scale is
of order the crossing time (right panel of Fig. 4), which is consistent
with the theory of punctuated chaos (Portegies Zwart et al. 2023).

3.2 Correlating amplification factors and lifetimes

Our next step is to better understand why high angular momentum
triples produce larger amplification factors. One contributing factor
is that on average high angular momentum triples have longer
lifetimes than low angular momentum triples (e.g. Orlov, Rubinov &
Shevchenko 2010; Boekholt & Portegies Zwart 2015). However, we
find that simply multiplying the lifetimes of the triples by a constant
Lyapunov exponent does not reproduce the measured distribution of
amplification factors. Rather than writing

log A (L) = AT (L), (18)

with A a constant Lyapunov exponent, we require the more general
case given by

logA(L)=X(T,L)T (L), 19)

where the finite-time Lyapunov exponent itself is a function of
lifetime and angular momentum (e.g. Mikkola & Tanikawa 2007;
Urminsky & Heggie 2009).

The discussion above motivates the inspection of the correlation
between the two main observables in our experiments, namely the
amplification factor, A, and the lifetime, 7. In Fig. 5, we present
scatter plots of these two quantities for each of our angular momen-
tum ensembles. After experimenting with various combinations of
linear and logarithmic axes, we find that a clean linear relation is
obtained in the space of loglog A versus log T'. The first observation
we make is that for each given T, there is a (sharp-edged) maximum
value of A. This diagonal upper ridge continues up to about 100 T,
after which A flattens. By this time, A has reached a value of 10%,
which is the limit in our experiment. If we had continued to decrease
the Bulirsch—Stoer tolerance beyond 10~%°, we expect the diagonal
trend to continue. Hence, if we only consider the resolved portion
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Figure 5. Scatter plots of the two main observables: amplification factor, A, and lifetime, 7 (normalized by crossing time, 7;). We estimate the slope of the
upper edge of the data using linear fits (solid lines). The fit parameters are given in Table 1 with « the slope and g the offset. The angular momentum dependence

of the slope is visualized in Fig. 6.

of the scatter plot (T < 100 T¢.), we observe a sharp upper ridge in
the data, which is indicative of a maximum Lyapunov exponent,
i.e. a maximum rate of divergence. The second observation is the
gradual scatter of data points towards very long lifetimes. The
maximum lifetime in our experiment was set to 10* Hénon time
units (~3536T,). There is a large range of lifetimes, which still
end up with the same amplification factor. This observation can
be interpreted by stating that the evolution of long-lived triples
is driven by prolonged excursions of a single body during which
it is only weakly interacting with the binary system. The expo-
nential sensitivity during these phases is greatly reduced (see also
Fig. 9).

Coming back to the first observation, we fit the upper edge of the

resolved data with a linear model,
T
logy,log;p A = alog), T + B, (20)
c

where the fitting parameters, o and $, are given in Table 1. Here, we
made bins along the horizontal axis, and used a bootstrap resampling
method to estimate error margins to the fitting parameters. In Fig. 6,
we plot the slopes of the linear fits, o, as a function of angular
momentum: high angular momentum triples have a steeper slope, i.e.
« increases from ~0.70 to ~0.86. The implication is best observed in
Fig. 7. There, we find that up to about 20 7. the largest amplification
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Figure 6. Angular momentum dependence of the slope of the linear fits in
Fig. 5. A linear fit to the data points (solid line) indicates an upward trend.
This implies that triples with more angular momentum are able to reach larger
amplification factors. This is further visualized in Fig. 7.
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Figure 7. We collect the linear fits from Fig. 5 for a direct comparison.
Initially, up to about 20 crossing times, larger amplification factors are reached
by the low angular momentum triples. At longer lifetimes however, the high
angular momentum triples take over.

factors are reached by the lower angular momentum triples. At
longer times however, the higher angular momentum triples become
dominant, e.g. larger values of A by ~14 orders of magnitude for
T / T. = 100. This result is more in line with the common intuition
that dynamically cold triples have a violent and short life, while virial
triples are relatively calm and gradually build up their chaos in the
long term.

As a further illustration of the influence of angular momentum,
we provide a detailed comparison between low (L = 0.02) and high
(L =0.19) angular momentum triples in Fig. 8. In the lifetime
histogram (top panel), we observe that a higher angular momentum
indeed results in a larger fraction of long-lived triples. The difference
in the lifetime distributions has two contributions. The first is that
low-L triples have an initial phase of collapse since they start out
in a sub-virial state, as opposed to the high-L virialised triples. This
collapse causes more triples to dissolve in the first few crossing
times. After that however, we observe that the two histograms
also have a different slope. This indicates that bodies in a low-L
system have a larger probability per crossing time to escape. In the
main scatter plot, we also plot the corresponding fits to the upper

MNRAS 536, 2993-3006 (2025)

ridge line in the data (from Figs 5-7). Since the slope in this plot
corresponds directly to the Lyapunov exponent (A < log A / T), we
notice that A has a dependence on L, and since the slope in each curve
flattens towards larger lifetimes, A also depends on 7. We have thus
confirmed the general case in equation (19), where A = A (L, T).
The combination of longer lifetimes and larger Lyapunov exponents
causes higher angular momentum triples to achieve increasingly
larger amplification factors (see histogram in the right panel of
Fig. 8).

We finish this subsection by deriving a relation between lifetime
and Lyapunov time. Using equation (20), we can write

log A = 10# Ty 21)
gA = T.) "
Dividing both sides by T / T, we obtain
T a—1
AT, =107 | — : 22
= (1) -
or in terms of Lyapunov time:
T, T l—«a
A T . (23)
T, T.
Rewriting for T gives:
1
T T\ ™
~—10s <J> , (24)
T T.

This expression describes a power-law relation between lifetime and
Lyapunov time, corresponding to the maximum growth rate. The
L-dependent power-law index of 7, ranges from 3 to 8, which is
much steeper than estimates from previous studies (e.g. Mikkola &
Tanikawa 2007; Urminsky & Heggie 2009), although they focused
on the median growth rate rather than the maximum rate. From
equation (24) it may seem that triples with a shorter Lyapunov time-
scale have shorter lifetimes. However, this statement assumes 7
is a constant, such that if it were possible to measure a triple’s
instantaneous Lyapunov time-scale, one could predict its lifetime.
However, this becomes problematic due to the large time variations
in the rate of divergence, as we will discuss next.

3.3 Rate of divergence as a function of time.

In order to reach a deeper understanding of the physical origin of
the empirical relations measured so far, it becomes necessary to
closely correlate the instantaneous Lyapunov exponents to the orbital
configurations. How do the triple components drive the growth of
perturbations, and in general, how does that depend on angular
momentum, mass ratio etc.? Although these are challenging but
important questions requiring follow up studies, here we perform
an analysis in the style of Dejonghe & Hut (1986). They define the
metric

3
a8 =3 (5 —x) + (y—2) + (G —a) 25

i=1 j>i

which is the sum of the squared distances between every pair of
bodies. This metric is only small if all three bodies are close together,
and during such moments amplifications are expected to be strong.
On the other hand, if the metric attains very large values, then this
corresponds to an excursion of one of the bodies from the bound pair.
During such excursions the amplification is expected to be small.
From our ensembles of simulations, we gather solutions with a fixed
lifetime of 100 = 2 crossing times. Then, for each ensemble of L we
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Figure 8. Relating the two main observables of the reversibility test: amplification factor, A, and lifetime, 7. We compare the two most different ensembles
given by L = 0.02 (orange/light) and L = 0.19 (blue/dark). We observe a bias both in the lifetime distribution (top histogram), and in the maximum achievable
value of A given a certain value of T' (scatter plot). The combination of longer lifetimes and larger growth rates leads to a larger fraction of high amplification
factors (right histogram), and thus also a higher fraction of irreversible solutions (see Fig. 2).

select the solutions with the maximum and minimum amplification
factor, i.e. the most and least chaotic solutions. We will make a
comparison of these solutions between the most and least chaotic
ensemble, L = 0.19 versus L = 0.02, and also between the low
angular momentum ensembles, L = 0 versus L = 0.02. In Fig. 9,
we compare the various solutions, and correlate the time evolution
of the amplification factor with the metric defined above.

The metric shows an oscillatory behaviour indicating that the
size of the triple itself oscillates. For the least chaotic solutions
(those with the minimum values of A), we indeed observe that
the metric attains large values (over a 100) and over an extended
period (over 40 crossing times). The least chaotic solutions clearly
correspond to very long excursions, during which the growth is
linear. When the metric reaches a minimum value however, we
observe a corresponding jump in A. This behaviour is consistent
with punctuated chaos in which the rate of divergence is linear
over extended times, but punctuated by big brief jumps due to
strong events in the system, such as close encounters. According
to this theory a higher frequency of events results in a more rapid
amplification. The most chaotic solutions with the maximum values

of A indeed correspond to a much higher oscillation frequency of the
metric.

Sustained exponential growth is thus achieved if long excursions
are absent, i.e. there is a prolonged democratic resonant interaction
among the bodies. Comparing the most rapidly growing solutions for
the three different values of L, we find that the number of events (i.e.
minima of the metric) is not proportional to the rate of growth. For the
most chaotic solution with L = 0.19 we count 50 oscillations, while
for the least chaotic case L = 0.02 we count a similar 48 oscillations.
For L =0 we only count 28 oscillations, while still achieving a
larger value of A than L = 0.02. Hence, we find that even during
democratic resonant phases the growth is variable, indicating that
other metrics also play arole. For example, considering the maximum
L = 0.02 solution, we observe a rapid exponential growth between
40 < T /T, < 50, and a rather slow growth during 80 < T'/T. < 90,
even though both correspond to phases of high frequency of the
metric with the same value of L.

The driver of chaos is therefore not (solely) close encounters in
radial orbits, but rather the prolonged and non-linear interaction
among all three bodies in a democratic configuration. Based on
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Figure 9. For triple systems with a lifetime of about 100 crossing times, we gather the solutions with the largest and smallest amplification factor. We plot the
time evolution of the amplification factor (top panels), and of the metric ds?> (bottom panels), which is the sum of the squared distances between all pairs. We
compare the low angular momentum ensembles L = 0 and L = 0.02 (left column), and the most and least chaotic ensembles L = 0.19 and L = 0.02 (right
column). Rapid growth is driven by democratic resonant interactions (high frequency oscillations in ds?), while slow growth corresponds to long excursions of

a single body from the bound pair.

our numerical results, we speculate that high angular momentum
triples tend to have a longer cumulative resonant interaction time
and/or shorter excursion phases of a single body, thereby effectively
reducing the phases of slow growth. However, even during demo-
cratic three-body interaction phases the rate of divergence depends
on other factors besides the metric ds?, including L. This motivates
a closer inspection of the dependence of the instantaneous Lyapunov
exponent on the specifics of the orbital configuration in follow up
studies.

4 DISCUSSION AND CONCLUSIONS

4.1 Angular momentum dependence

We revisit the astrophysical application of Paper 1, which considered
three supermassive black holes with a mutual separation of order
one parsec. In the zero angular momentum limit, we confirm their
result that about 5 per cent of triples are irreversible up to the Planck
length (see Table 1). This result is robust with respect to the type
of initial condition (Plummer or Agekyan—Anosova map), as the
most chaotic triples tend to forget their specific initial condition, and
their ultimate fate is determined by global conserved quantities, i.e.
angular momentum and energy.

Depending on the astrophysical context, triples with zero angular
momentum might only represent a very small fraction of the popula-
tion. Triple black holes in galactic centres, which form after repeated
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galaxy mergers, are expected to evolve to a hierarchical state at
the edge of stability due to dynamical friction (e.g. Hoffman & Loeb
2007). Such weakly hierarchical triples fall within the highest angular
momentum ensembles of our study. Hitherto, one might naively have
expected that triples with a higher angular momentum might be less
chaotic. This intuition mainly stems from the idea that chaos is driven
by close encounters, which are more likely to occur in low angular
momentum systems with radial orbits. Hence, it was expected that the
5 per cent of fundamentally unpredictable triples would be (greatly)
reduced when considering a more general and realistic population
of triples with varying, non-zero angular momenta. However, our
results demonstrate the contrary; fundamentally unpredictable triples
exist over a wide range of angular momenta, and the fraction of
fundamentally unpredictable triples is even enhanced up to about
30 per cent of the population (for the initially virialised case).

We speculate that hierarchical triple systems near the edge of
stability (e.g. Toonen et al. 2022), which can dynamically break
up, also include a fraction of fundamentally unpredictable systems,
similar to our highest angular momentum case. Increasing the angular
momentum beyond the range studied here, will increase the hierarchy
of the triple, thereby diminishing the effect of the tertiary on the
inner binary. Although this increases the lifetime of the triple, it also
increases the Lyapunov time-scale, with the net effect that Planck
length perturbations will not be able to grow to the size of the triple
any longer within any reasonable time-scale of interest. A natural
extension of our study would be to probe this high angular momentum
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Table 2. Fraction of fundamentally unpredictable triples for various astrophysical scales. For each system we give the characteristic mass and length scale, as
well as the corresponding value of the dynamical crossing time. The minimum amplification factor required for a Planck length fluctuation to reach the size of
the triple (Amin) is also given. The fractions of irreversible systems are given by: pj, for the intrinsic Planck length fluctuations (see Fig. 10), and psar, for the
tidal perturbation from a star at a distance of 1 kpc (see Fig. 11). Each fraction is given as a range, where the lower limit is obtained from the L = 0.02 ensemble,
and the upper limit from the virial L = 0.19 ensemble. We find that compact triples are more susceptible to Planck length perturbations, while tidal perturbations

become increasingly important for larger triples. On the scale of dust grains, we find that both sources of perturbations become similar in magnitude.

Triple System Mass scale (kg) Length scale (m) Crossing time (yr) log|y Amin pn(per cent) Pstar(per cent)
Supermassive black holes 2.0 x 103 3.1 x 1016 4.2 x 104 51.3 [0.031, 0.30] [0.49, 0.77]
Stars 2.0 x 1030 7.0 x 102 1.4 x 107 47.6 [0.040, 0.33] [0.33, 0.68]
Jupiters 2.0 x 107 1.5 x 10" 1.4 x 10! 46.0 [0.046, 0.34] [0.29, 0.64]
Moons 1.0 x 10?! 1.0 x 108 3.5 % 107! 42.8 [0.058, 0.37] [0.22, 0.59]
Asteroids 1.0 x 101 7.7 x 107 23 42.7 [0.059, 0.37] [0.25, 0.62]
Pebbles 1.0 3.3 6.6 x 1072 353 [0.10, 0.45] [0.20, 0.57]
Dust grains 1.0 x 1074 1.0 x 1073 3.5 x 1073 31.8 [0.14, 0.49] [0.12, 0.48]
region, and to determine for which value of the angular momentum (20), we can write
the fraction of unpredictable triples peaks, and to measure at what R T\ @
rate this fraction subsequently decreases as the angular momentum log,y Amin = log, m =10° (7}1) s (26)
C

is increased further. Since these triples would start out in a (stable)
hierarchical configuration, contrary to the non-hierarchical systems
studied here, it would be of interest to also study their Lyapunov
times and amplification factors, and to link their behaviours to the
underlying driver of chaos in terms of close encounter rates and
resonances (e.g. Mardling & Aarseth 1999; Mardling 2008).

Another caveat for the existence of fundamentally unpredictable
supermassive black hole triples is the effect of gravitational wave
damping. For black hole masses above the transition mass scale
of ~107 solar masses (e.g. Boekholt et al. 2021), the dynamics is
merger-dominated, implying that a gravitational wave merger occurs
(e.g. Hoffman & Loeb 2007), shortening the lifetime of the triple.
Gravitational wave dissipation also quenches the exponential growth
of perturbations if the damping time-scale becomes shorter than
the Lyapunov time-scale. For black hole masses smaller than the
transition mass, relativity acts as a perturbation to the system, such
that a small change in the mass can lead to wildly different lifetimes
of the triple interaction (Boekholt et al. 2021). If weakly hierarchical
triples with masses of order 107 solar masses represent a fraction
of realistic triple black holes in galaxies, then we estimate from our
results that 20-30 per cent of them are fundamentally unpredictable
due to Planck length fluctuations.

4.2 Dependence on astrophysical scale

It is also of interest to discuss how the fraction of fundamentally
unpredictable triples depends on astrophysical scale. Although our
purely Newtonian dynamical systems can be scaled up and down,
here we will assume that there are physical constraints set by the
Planck length and the Hubble time. We consider scatter plots similar
to that of Fig. 8, where the Hubble time introduces a maximum
cut-off in T / T,, and where the Planck length introduces a minimal
value of A above which systems are considered to be fundamentally
unpredictable. For various physical scalings of the triple system
we can then count the fraction of triples in the fundamentally
unpredictable region of the diagram.

The critical ‘Hubble scale’ can be defined which gives the limit
where a triple is just able to magnify a Planck length perturbation
to its own size on a time-scale of a Hubble time. The minimum
amplification required is defined as the size of the triple, R, divided
by the Planck length, /. This amplification is to be reached within a
Hubble time, Ty. Using the relation between A amd 7' from equation

with « and B the fitting parameters given in Table 1. The crossing
time of a virialised N-body system can be expressed as (see Section
2.1)

8R3
o=/ o @7)

Replacing this expression into equation (26) and rewriting for M, we
obtain

2
a

R
My =8x10"%G ' T,;2R? (logm Z) . (28)

Hence, given a triple of physical size R, if its mass M > My, then the
triple’s crossing time is sufficiently small for it to be able to magnify
a Planck length perturbation up to its own size.

In Table 2, we list various types of bodies which could be part
of a triple system; from large scale supermassive black holes down
to asteroids, pebbles and dust grains. For each type we give the
characteristic mass and length scale, as well as their crossing time.
The minimum amplification factor required to magnify a Planck
length perturbation to the size of the triple itself is also given,
ranging from 10°?-10°'. In Table 2 we also give the percentage
of unpredictable triples due to quantum uncertainties, p;, as a range,
where the lower limit is calculated from the least chaotic ensemble
(L =0.02) and the maximum from the most chaotic ensemble
(L = 0.19). We visualise the most chaotic case in Fig. 10, where
we also overplot the locations of the various astrophysical bodies.
The general trend is that the fraction of fundamentally unpredictable
triples increases for more compact triples. Smaller systems require
a smaller amplification of the Planck length in order to become
unpredictable.

Hence, by increasing the angular momentum of supermassive
black hole triples, the fraction of unpredictable systems is enhanced
from 5 percent to 30 percent, and by decreasing the scale of the
triple down to triple dust grains, the percentage is further enhanced to
about 50 per cent. Fundamentally unpredictable triples are general,
occurring over a large range of astrophysical scales owing to the
exponential nature of chaos.

4.3 Small perturbations from the rest of the Universe

In Paper 1 and in this current study, we focused on perturbations
due to intrinsic quantum uncertainties. We assumed that these form
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Figure 10. Fraction of fundamentally unpredictable triples as a function of astrophysical scale. The mass scale ranges from the electron mass to the estimated
total baryonic mass in the Universe, and the length scale ranges from the size of an atom to the size of the observable Universe. Two characteristic lines
divide the region in (mostly) three large subregions. The bottom right region is excluded due to densities exceeding those of black holes (Schwarzschild radius
determines the lower edge of the central area marked by a dash-dotted line). The upper left triangular region corresponds to fundamentally predictable triples as
they are unable to magnify Planck length perturbations to their own system size within a Hubble time. The analytical expression for the ‘Hubble scale’ (upper
dash-dotted line) is given in equation (28). In the middle region, the trend is that the fraction increases towards smaller length scales; a smaller amplification of
the Planck length is required to reach the size of the triple. The locations of various astrophysical bodies are overplotted, e.g. for triple supermassive black holes
(SMBH) 30 per cent are irreversible, and this increases to 37 per cent for triple asteroids and 49 per cent for dust grains. Here, we assumed the triples are virial
(L = 0.19), but in Table 2 we also provide values for the least chaotic chase (L = 0.02).

the smallest physical perturbations in nature, and demonstrated that
they still play a role in the predictability of triple systems (and
therefore in larger-N systems too). However, there are other sources
of perturbations in the Universe, which can be much larger in
magnitude. For example, we can compare the evolution of an isolated
triple system to one with a fourth-body at some large distance from
the triple. This external body will induce a tidal effect onto the
triple, causing each of the triple components to experience a slightly
different tidal acceleration. In the centre of mass frame of the triple
this will manifest as slight perturbations in the orbits of the bodies
(compared to the isolated triple case). The magnitude of these tidal
seed perturbations depends on the distance of the fourth body, and
we ask at what distance does the tidal perturbation become of the
same order as the Planck length? The tidal acceleration is estimated
as

GmR G
a~ ";‘)3 = 29)
y %

with G the gravitational constant, m, the mass of the tidal perturber,
and R the size of the triple. The factor y gives the distance of the
fourth-body in units of R. The accelerations within the triple are of
order a ~ %4, with M the mass of the triple. We can estimate the
seed perturbation in the orbit according to %’ ~ ‘%“, allowing us to
write

SrwRS—azﬁm[

—. 30
. =333 (30)
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Setting dr equal to the Planck length, /, we obtain the characteristic
separation of

Rom\ 3
yh=<ﬁ%) . 31)

We compare this separation to the size of the observable Universe,
Ry = yuR, so that we finally obtain

1
R* 3
Yo _ — ey (32)
Yu hRy M

Now we will assume that the fourth body is of the same type as the

triple components, i.e. m, ~ M. Furthermore, by setting y, = yu,
we obtain the following characteristic length scale:

3
Ry =h*R} ~ 1au. (33)

Triple systems larger than this surprisingly small length scale, will
be susceptible to tidal perturbations of order the Planck length due to
bodies beyond the cosmological horizon. For more compact triples,
such distant tidal perturbations will be negligible compared to the
intrinsic quantum uncertainty.

In reality, there will be many tidal perturbers much closer to
home. For example, for our standard test case supermassive black
hole triple, there are billions of perturbing stars in the host galaxy.
Using equation (30), with M = 10 Mg, R = 1pc, m; = 1 Mg, and
y = 103, we estimate a seed perturbation of §r = 30 m in the orbits
of the black holes. Magnifying this to the size of the triple requires
an amplification factor of only R/8r ~ 10'3. Similar to the previous
subsection, we can count the fraction of triple systems that reach an
amplification factor larger than 10" within a Hubble time, which
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Figure 11. Similar plot as Fig. 10, but for tidal perturbations on the triple system due to a Solar mass star at a distance of 1 kpc. As this example shows, small
tidal perturbations from other bodies in the Universe play an important role in the predictability of triple systems. Especially for the relatively loosely bound
triples with the largest crossing times, i.e. near to the ‘Hubble scale’. Generally, tidal perturbations tend to dominate over intrinsic quantum fluctuations. As a
consequence, the fraction of irreversible triples increases; up to 77 per cent for triple supermassive black holes (see Table 2).

ranges from 49-77 per cent depending on L. For smaller scale
triples, the fraction of unpredictable triples due to tidal perturbations
tends to decrease, e.g. down to 25-62 per cent for asteroids and
12-48 per cent for dust grains (see Table 2). In Fig. 11, we visualise
these percentages and we observe that tidal perturbations mostly
affect the loosely bound triples, i.e. those with the largest crossing
times near the Hubble scale. Generally, external tidal perturbations
from other bodies in the Universe tend to dominate over intrinsic
quantum uncertainties.

4.4 Future work

The contradiction between the naive expectation that lower-L sys-
tems would be maximally chaotic, and our new numerical results
motivates further investigation into the origin of chaos in triple
systems, as well as larger N-body systems (e.g. Portegies Zwart
et al. 2022; Portegies Zwart & Boekholt 2023). Although it is well
known that higher angular momentum triples tend to live longer
on average, here we find that they can also have larger maximum
Lyapunov exponents (shorter Lyapunov times). The driver of chaos
is therefore not (solely) close encounters in radial orbits, but rather
the prolonged and non-linear interaction among all three bodies in
a democratic configuration. However, we find that even during such
democratic resonances the rate of divergence can vary. Based on our
numerical results, we speculate that high angular momentum triples
might statistically have a longer cumulative resonant interaction time
and/or shorter excursion phases of a single body. This requires a
closer inspection of the dependence of the instantaneous Lyapunov
exponent on the specifics of the orbital configuration.
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