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A B S T R A C T 

Recently, we estimated that about 5 per cent of unstable supermassive black hole triple systems are fundamentally unpredictable. 
These g arg antuan chaotic systems are able to exponentially magnify Planck length perturbations to astronomical scales within 

their dynamical lifetime. These results were obtained in the zero angular momentum limit, which we naively expected to be the 
most chaotic. Here, we generalize to weakly and non-hierarchical triple systems with a range of non-zero angular momenta by 

systematically varying the initial virial ratio. We find the surprising result that increasing the angular momentum enhances their 
ability to amplify small perturbations, which we tracked up to 90 orders of magnitude using the arbitrary-precision N -body code 
BRUTUS . This result is partially explained by the fact that triples with higher angular momenta have longer lifetimes, allowing 

for a prolonged exponential gro wth. Ho we ver, we also find that for a fixed lifetime, triples with higher angular momenta can 

amplify perturbations to larger values, indicating that the Lyapunov exponent is also a function of angular momentum. These 
empirical results provide targets for three-body theories which invoke chaos drivers such as resonance o v erlap and punctuated 

chaos. Comparing the zero angular momentum case to our new ensembles with higher angular momenta, we conclude that the 
percentage of unpredictable supermassive black hole triples increases up to about 30 per cent. A further increase up to about 
50 per cent is reached when considering triples on smaller astrophysical scales. Fundamental unpredictability is thus a generic 
feature of chaotic, self-gravitating triple populations. 

Key words: methods: numerical – stars: kinematics and dynamics. 
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 I N T RO D U C T I O N  

he gravitational three-body problem (Newton 1687 ) is ubiquitous 
n the Universe. Examples range from the Sun–Earth–Moon system 

e.g. Touma & Wisdom 1998 ), to Trans-Neptunian triplets (e.g. Cor-
eia 2018 ), Jacobi captures (e.g. Boekholt, Rowan & Kocsis 2023b ),
ierarchical triple stars (e.g. Toonen, Boekholt & Portegies Zwart 
022 ), stellar-mass black holes (e.g. Portegies Zwart & McMillan 
000 ; Samsing, MacLeod & Ramirez-Ruiz 2014 ), supermassive 
lack holes (e.g. Kollatschny et al. 2020 ; Boekholt, Moerman & 

ortegies Zwart 2021 ), and even whole galaxies (V ̈ais ̈anen et al.
008 ). 
Chaos in the gravitational three-body problem was first demon- 

trated by Henri Poincar ́e (Poincar ́e 1891 , 1892 ). It manifests itself
hrough the exponential sensitivity to small perturbations (Miller 
964 ; Dejonghe & Hut 1986 ; Goodman, Heggie & Hut 1993 ). If
he finite-mass third body is infinitely far away, the motions of the
ther two bodies can be obtained analytically by solving the Kepler- 
roblem (Kepler 1609 ). If the third body is systematically brought 
loser to the other two bodies, its gravitational influence increases, 
nd through sequences of close encounters (e.g. Portegies Zwart, 
 E-mail: tjarda.boekholt@nasa.gov (TB); spz@strw .leidenuniv .nl (SPZ) 
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oekholt & He ggie 2023 ; Boekholt, Porte gies Zwart & Heggie
023a ) and orbital resonances (e.g. Mardling 2008 ), the gravitational
nteraction becomes increasingly chaotic. Here, we define chaotic 
esponse as the exponential growth of any small perturbation in the
otion of the three bodies, and regular response when the growth is
eaker than exponential. 
The motion in non-hierarchical three-body systems is character- 

zed by a series of transitions between regular and chaotic motion.
his behaviour manifests itself in sequences of short democratic 

esonances, during which all pairwise distances are of the same 
rder, alternated by extended phases of hierarchical evolution, 
uring which one of the bodies is on an excursion away from
he remaining pair (McMillan & Hut 1996 ). This latter phase can
e represented by L ́evy flights (Stone & Leigh 2019 ; Manwadkar,
rani & Leigh 2020 ) in phase space. Ho we ver, not all v ariations and

ransitions in the exponential growth rate can be explained this way,
ndicating the presence of other mechanisms also affecting the rate of
iv ergence (Porte gies Zwart & Boekholt 2018 ; Portegies Zwart et al.
023 ). 
To mediate the discussion we will quantify chaotic motion by a
easure of the local Lyapunov time-scale T λ (Portegies Zwart & 

oekholt 2018 ). This measure is the reciproke of the local, finite-
ime, maximum Lyapunov exponent of a system. The value of this
haotic quantifier is local (in time), and although its value can
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ary considerably from one moment to the next, the global trend
s surprisingly stable. This leads to well-defined averaged Lyapunov
xponents, which are an inherent property of chaotic N -body systems
Boekholt, Portegies Zwart & Valtonen 2020 ; Portegies Zwart et al.
023 ). The relation between the Lyapunov exponent of a system and
he detailed motions of the three bodies is still an open problem. Lines
f investigation include orbital resonances and resonance o v erlap
e.g. Mardling 2008 ), or sequences of strong two-body encounters
nd deflections (Goodman et al. 1993 ; Boekholt et al. 2016 ), i.e.
unctuated chaos (Portegies Zwart et al. 2023 ). 
Irrespective of the mechanism that drives the exponential di-

ergence between two neighbouring trajectories in phase space,
xponential sensitivity can be measured through performing accurate
nd precise N -body simulations (Boekholt et al. 2020 ). Here, the
ccuracy reflects a measure to which energy is conserved, and
recision can be perceived as the number of decimal places used
o express the result (Portegies Zwart & Boekholt 2018 ). Boekholt
t al. ( 2020 ; hereafter Paper 1 ) studied triples systematically drawn
rom the Agek yan–Anoso va map (Agek yan & Anoso va 1967 , 1968 ),
nd measured a power -law distrib ution of amplification factors,
.g. the amplification factor of a small initial perturbation o v er the
ifetime of the triple. The implication is the presence of a power-law
ail of triple systems, which produce extremely large amplification
actors, i.e. g arg antuan chaotic triple systems. We found a finite
raction of systems that would remain irre versible, e ven if the
alculations would be conducted with a precision below the Planck
ength. We therefore argued that these g arg antuan chaotic systems
ould be fundamentally irreversible and unpredictable. Despite our

ack of understanding on the deterministic behaviour of quantum
ravity at sub-Planck length scales and considering Heisenberg’s
rinciple of uncertainty, we argue that this irreversible fraction may
e fundamental to the arrow of time (Portegies Zwart & Boekholt
023 ). Recent binary-single scattering experiments by Trani et al.
 2024 ) also revealed a sensitivity to the Planck length scale due to the
resence of an underlying multi-fractal structure, which was resolved
sing the arbitrary-precision N -body code BRUTUS (Boekholt &
ortegies Zwart 2015 ). 
In Paper 1 , we focused on the amplification factor for zero-angular
omentum orbits, naively assuming that those would be more chaotic

han configurations with non-zero angular momentum. Our naivety
n the zero-angular momentum problem stems from the fact that for
wo-body problems, smaller angular momentum implies more radial
rbits. As a consequence, and extrapolating to three-body systems,
his naturally leads to close encounters. On the other hand, bodies
n configurations with finite angular momentum would remain on
verage at larger distance from each other, leading to fewer and
eaker interactions. Based on such an intuition it might be argued

hat zero-angular momentum systems would be maximally chaotic.
s it turns out now, as we explain in this paper, this only holds

tatistically for the shortest lived triple systems (up to about 20
rossing times). We find the surprising result that the opposite is true
or longer lived systems (which are also the majority); more angular
omentum in non-hierarchical or weakly hierarchical three-body

nitial conditions leads to longer lifetimes, shorter Lyapunov time-
cales, larger magnification factors, and therefore to more chaos.
enerally, when increasing the initial amount of angular momentum,

he fraction of irreversible solutions increases. Ho we ver, in the
egime of high angular momenta, where triples tend to be hierarchical
ith much longer decay times, the fraction of irreversible solutions is

xpected to decrease again, and therefore we hypothesize that there
hould be a peak in the irreversible fraction at a certain characteristic
ngular momentum. 
NRAS 536, 2993–3006 (2025) 
This second paper on g arg antuan chaotic triples extends the results
f Paper 1 to triples with non-zero angular momenta, but still in the
egime where they are non-hierarchical or weakly hierarchical. We
emonstrate that the fraction of unpredictable triples can reach larger
alues than found in Paper I. We will also scale the results to triples
f arbitrary physical scale finding that the fraction of unpredictable
riples is further enhanced for more compact triples, such as triple
steroids (see Section 4.2 ). Complementary to the intrinsic quantum
erturbations, we will also briefly discuss tidal perturbations from
he presence of other bodies in the Universe. In most cases these
end to dominate o v er intrinsic Planck length uncertainties, which
nhances the unpredictability of N -body systems even further (see
ection 4.3 ). 

 M E T H O D S  

.1 Initial conditions 

e adopt the equal mass Plummer distribution (Plummer 1911 )
or drawing random initial positions and velocities for the three
odies. The initial velocities will then be adjusted in order to vary
he total angular momentum. This procedure will generally result
n a non-hierarchical, unstable triple system. Ho we ver, if the total
ngular momentum is larger than zero, a small fraction of random
ealisations can also have a weak hierarchy, i.e. a ratio of the outer
rbit’s pericenter divided by the inner orbit’s semimajor axis in the
ange of 2–4, which puts it on the edge of (in)stability. In principle
ther initial conditions than the Plummer model could have been
sed, but the Plummer model is a well-known toy model for stellar
ystems, and allows for a natural extension from 2D (as in Paper I) to
D (current study), as well as from N = 3 (current study) to larger
 stellar systems (e.g. Portegies Zwart et al. 2022 ). Three-body
lummer models were also used by e.g. Portegies Zwart & Boekholt
 2014 ) and Boekholt & Portegies Zwart ( 2015 ). Furthermore, we
ill show that for the case of zero angular momentum triples, we get

onsistent results with those of Paper I, which adopted the Agekyan–
nosova map. The statistical outcome of N -body simulations of

haotic systems is primarily determined by the global conserved
uantities, i.e. energy and angular momentum (e.g. Portegies Zwart
 Boekholt 2014 ). 
The Plummer model was originally used for star clusters with a

arge value of N . In virial equilibrium the total kinetic energy, T ,
nd potential energy, V , are related by 2 T + V = 0. Since the total
nergy is E = T + V , we can combine the two relations and write
 = 

1 
2 V . This can be written in terms of the total mass, M , and virial

adius, R V , of the cluster defined by 

 = −1 

4 

GM 

2 

R V 
, (1) 

ith G the gravitational constant. The virial radius is used as a
haracteristic size of the Plummer sphere. Similarly, a characteristic
ime-scale is defined by T = 2 R V /σ , with σ the mass-weighted
elocity dispersion. This time-scale is commonly referred to as the
ynamical time or crossing time of the cluster. Although originally
efined for large- N star clusters, the Plummer model can be extrap-
lated downwards to the case of N = 3, thereby providing a method
or the random generation of triples with mostly non-hierarchical
onfigurations, a certain total mass, M , characteristic size, R V ,
nd a pre-defined crossing time. This is especially useful for non-
ierarchical, chaotic systems in which there are no well-defined or
ong-li ved K eplerian orbits. 
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Figure 1. Relation between virial ratio, Q , and angular momentum, L . Our 
ensembles of triple systems vary L systematically and are confined to be 
within the horizontal ‘error bars’. 
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For numerical implementation purposes it is useful to set G = 1.
or rescaling purposes, one usually works with dimensionless units. 
he following scaling factors are introduced: f M 

= M , f r = R V ,
 v = 

√ 

GM/R V , and f t = f r /f v , for the mass, positions, velocities
nd time, respecti vely. Gi ven the initial condition in physical units,
ne makes them dimensionless by dividing by these scaling factors. 
fter the simulations are finished, physical units are retrieved from 

he dimensionless units by multiplying the results by the scaling 
actors. The set of scaling factors defined abo v e are widely used
n the N -body community and originally called N -body units (e.g.
eggie & Mathieu 1986 ). They rescale the gravitational constant, 
imensionless total mass and virial radius to unity. Since 2014, 
hese set of dimensionless units are also known as H ́enon units.
he results in this paper will be given in H ́enon units, but they are
asily converted to physical units by defining the scaling factors as
iv en abo v e. 
So far, the angular momentum, L , of the triple has not explicitly

ppeared yet. The method giv en abo v e generates virialised triples
ith a well-defined mass and energy, while also fulfilling the virial 

elation 2 T + V = 0, but L varies among the different realisations.
he average value for initially virialised triples is 〈 L virial 〉 = 0 . 19 in
 ́enon units. 
In order to generate ensembles of triples with a lower average 

ngular momentum, we adjust the initial virial ratio, Q , which is
efined as the ratio between total kinetic energy, T , and absolute
alue of the potential energy, V : 

 = 

T 

| V | . (2) 

 triple with zero initial velocities has a virial ratio of Q = 0
nd angular momentum L = 0. We can therefore create ensembles 
f triples with different angular momenta by rescaling the initial 
elocities. By systematically increasing the initial velocities, we 
ncrease both Q and L . The maximum angular momentum in our
xperiment corresponds to the case of the initially virialised triples. 
e leave the domain of triples with even higher values of L , which

lso tend to be mostly hierarchical triples, to a separate study. 
The procedure for generating initial conditions starts by generating 

 random realisation of a virialised triple system drawn from a 
lummer distribution. For the virial case we have the relation 
 T + V = 0, and therefore Q = 

1 
2 . To change the virial ratio we

escale the velocities, and therefore T , by a factor C V : 

Q 

Q V 
= 

T 

T V 
= 

(
σ

σV 

)2 

≡ C 

2 
v , (3) 

ith σ the mass-weighted velocity dispersion, and the subscript V 

efers to virial. Since Q v = 

1 
2 , we can write 

 v = 

√ 

2 Q . (4) 

his scaling of the velocities changes the total energy of the triple to
 value 

 1 = 

1 

2 
M ( C v σV ) 

2 − 1 

2 

GM 

2 

R V 
= 

1 

4 
C 

2 
v −

1 

2 
= 

Q 

2 
− 1 

2 
, (5) 

hereas its initial virialised value was set to E 0 = − 1 
4 . In order to

ormalize the energy, we calculate the scaling factor of the total 
nergy 

 E ≡ E 0 

E 1 
= 

1 

2 − C 

2 
V 

= 

1 

2 − 2 Q 

(6) 

nd rescale the positions and velocities by factors respectively given 
y 
 r ≡ 1 

C E 
= 2 − C 

2 
V = 2 − 2 Q, (7) 

 v ≡
√ 

C E = 

1 √ 

2 − C 

2 
V 

= 

1 √ 

2 − 2 Q 

, (8) 

hich rescales the total energy back to a value E 0 , while preserving
he virial ratio Q . The total angular momentum scales as 

L 

L V 
= D r C v D v = 

√ 

2 Q ( 2 − 2 Q ) √ 

2 − 2 Q 

= 2 
√ 

Q ( 1 − Q ) , (9) 

where D r is the net scaling of the positions, and C v D v is the
et scaling of the velocities. From this expression we confirm 

hat for Q = 0 we obtain L = 0, while for Q = 

1 
2 we retrieve

 = L V . Hence, with this relation between L and Q , we can generate
nsembles of non/weakly-hierarchical triples with a varying amount 
f angular momentum. Ho we v er, the dra wing of random realisations
f triple systems for a given value of Q still results in a spread of
alues for L . The average value of L however does scale one-to-one
ith Q , and we therefore use 

〈 L 〉 
〈 L virial 〉 = 2 

√ 

Q ( 1 − Q ) , (10) 

r after inverting the equation we obtain 

 = 

1 

2 

⎛ 

⎝ 1 −
√ 

1 −
( 〈 L 〉 

〈 L virial 〉 
)2 

⎞ 

⎠ . (11) 

enceforth, we might omit the angular brackets ( L instead of 〈 L 〉 ) for
implicity, i.e. L refers to the average value of the ensemble unless
tated otherwise. In Fig. 1 , we plot the relation between Q and L .
e define 12 ensembles of triple systems for which the average

ngular momentum is systematically varied. For each ensemble, we 
alculate the corresponding value for Q . Then we generate 2048
andom, virialised triple realisations, which we subsequently rescale 
ccording to the procedure described abo v e. Since we are interested
n measuring trends with L , we do not want the range in L within
n ensemble to be too broad. Therefore, we only accept a random
ealisation of a triple if its angular momentum is within the range
iven by L ± δL with δL = 0 . 001. For the virialised case, this margin
orresponds to δL/L virial = 0 . 0053. The corresponding values of L
nd Q are given in Table 1 , and the ensembles are also presented
MNRAS 536, 2993–3006 (2025) 
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M

Table 1. Table of initial conditions and statistical outcomes. The relation between virial ratio, Q , and angular momentum, L , is visualized in Fig. 1 . The 
parameters ν and η correspond to the linear fits in Fig. 2 . The parameters α and β correspond to the linear fits in Fig. 5 . The parameter p refers to the percentage 
of fundamentally unpredictable triples in our massive black hole application (see Section 4 ). 

〈 L 〉 / 〈 L virial 〉 〈 L 〉 Q ν δν η δη α δα β δβ p (per cent) δp (per cent) 

1.00 0.19 0.5 0.0115 0.0003 0.060 0.003 0.83 0.01 0.12 0.02 29.8 0.4 
0.895 0.17 0.277 0.0131 0.0004 0.074 0.003 0.88 0.01 0.06 0.02 25.4 0.5 
0.790 0.15 0.193 0.0147 0.0002 0.079 0.002 0.86 0.02 0.08 0.03 21.5 0.2 
0.684 0.13 0.135 0.0170 0.0001 0.089 0.001 0.82 0.02 0.15 0.02 16.6 0.1 
0.579 0.11 0.0923 0.0206 0.0005 0.106 0.005 0.80 0.02 0.18 0.03 11.4 0.3 
0.474 0.09 0.0597 0.0237 0.0003 0.125 0.002 0.76 0.01 0.23 0.02 8.2 0.1 
0.368 0.07 0.0352 0.0270 0.0005 0.147 0.004 0.79 0.02 0.19 0.03 5.9 0.2 
0.263 0.05 0.0176 0.030 0.001 0.163 0.009 0.71 0.01 0.29 0.02 4.2 0.2 
0.158 0.03 0.00627 0.0322 0.0006 0.172 0.005 0.68 0.01 0.31 0.02 3.4 0.1 
0.105 0.02 0.00278 0.033 0.001 0.18 0.01 0.75 0.02 0.17 0.02 3.1 0.2 
0.0524 0.01 0.000693 0.0291 0.0007 0.154 0.005 0.66 0.02 0.34 0.03 4.7 0.2 
0.0 0.0 0.0 0.0282 0.0006 0.151 0.005 0.75 0.01 0.19 0.02 5.2 0.2 
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n Fig. 1 as the horizontal ‘errorbars’. It is clear that the various
nsembles do not o v erlap, which allows us to measure statistical
rends as a function of angular momentum. 

.2 Experimental setup 

dopting the same strategy as Portegies Zwart & Boekholt ( 2018 )
nd Boekholt et al. ( 2020 ), we use the code BRUTUS (Boekholt &
ortegies Zwart 2015 ) to perform a reversibility test. Each initial
ondition is integrated forwards in time until dissolution of the triple
onfiguration. We define this to be the case if one of the bodies (1) is
t a distance beyond 10 H ́enon length units from the centre of mass of
he triple, (2) is mo ving a way from the centre of mass, and (3) has a
ositive energy, meaning it has become unbound from the remaining
inary system. Since a small fraction of triples is very long lived,
e also set a maximum simulation time of 10 4 H ́enon time units, or

bout 3536 crossing times ( T c ). We define the duration of the forward
ntegration from the initial condition to the stopping conditions as
he lifetime, T , of the triple. At that moment, we flip the sign of each
elocity coordinate of each particle, and integrate forwards until a
nal simulation time of t = 2 T . Note that ef fecti vely, the system is
volving back to the future initial condition. We can compare the
nitial (forward) and final (backward) configurations by measuring
heir phase space distance (note that the velocities of the backward
nte gration hav e to be flipped again so that they have the same sign
s the forward integration), given by 

 

2 = 

N ∑ 

i= 1 

6 ∑ 

k= 1 

(
x i,k,f − x i,k,b 

)2 
, (12) 

here the first sum is o v er all bodies ( N = 3), the second sum o v er
ll phase space coordinates (positions and velocities), and where the
ubscript f and b refer to the forward and backward integration,
espectively. Or in words, the phase space distance, 
 , gives the
uclidean distance between the two solutions in 6 N -dimensional
hase space. For a perfectly time-reversible integrator with reversible
umerical errors, the phase space distance between the forward and
ackw ard solutions w ould remain zero. In this case, a reversibility
est does not hold any information about the accuracy of the solution
r the exponential sensitivity of the trajectory. Ho we ver, in the
resence of irreversible numerical errors, these errors will serve as a
erturbation to the system, which seeds the exponential divergence
etween the forward and backward integrations, i.e. the phase
pace distance between the two solutions will grow exponentially.
NRAS 536, 2993–3006 (2025) 
 reversibility test is then declared successful if the phase space
istance between the initial and final states is below some small
hreshold, for which we adopt 

log 10 
 ≤ −3 . (13) 

his criterion ensures we remain in the linear perturbation regime, as
 remains a factor 10 3 smaller than the characteristic size and speed

f the triple system. Remaining in the linear regime is critical as
umerical errors will not have the opportunity to affect the solution on
 macroscopic scale, such that the solution diverges to a quasi-random
rajectory. Hence, this allows us to make accurate measurements of
.g. the lifetime of the triple and the maximum Lyapunov exponent,
till belonging to that specific initial configuration. This approach
s an application of the method of convergence used in conjunction
ith BRUTUS as described in detail by Boekholt & Portegies Zwart

 2015 ), Portegies Zwart & Boekholt ( 2018 ), and Boekholt et al.
 2020 ). In short, given a specific initial condition of an unstable triple
ystem, there is a unique mathematical solution for the trajectories
n time, which we deem the ‘true’ or ‘correct’ solution. Numerical
rrors perturb the trajectories away from the true solution, and if the
erturbations reach the magnitude of the size of the triple itself, then
he perturbations have become non-linear, and the numerical solution
as become macroscopically different from the true solution. Using
he BRUTUS code, we can prevent this from occurring by systemati-
ally controlling and reducing the magnitude of the numerical errors.
ince N -body simulations define a limited simulation time, we find

hat there is a corresponding limited (maximum) magnitude for the
rrors, such that numerically diverging trajectories remain in the
inear regime during the simulation. From that point onward, if we
ould continue to reduce the magnitude of the errors, we find that we

re only increasing the number of converged decimal places, without
ffecting the macroscopic configuration anymore. Generating such
umerically ‘converged’ solutions allows us to study chaotic N -body
roblems with solutions arbitrarily close to the true solution. 
In our first attempt to obtain a reversible solution for each triple,

e set the Bulirsch–Stoer tolerance parameter to ε = 10 −6 , and we
xpress the word-length (length of the mantissa in units of bits) as 

 w = −4 log 10 ε + 32 , (14) 

hich for ε = 10 −6 corresponds to 56 bits, and more bits are added
s ε decreases (Boekholt & Portegies Zwart 2015 ). If the reversibility
est fails for a subset of triples, then we redo the test with a
maller value of ε and the corresponding value of L w . This way,
e can measure the fraction of irreversible solutions as a function
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Figure 2. Fraction of irreversible simulations, f irr , as a function of integra- 
tion accuracy, which is represented by the Bulirsch–Stoer tolerance, ε. The 
data points and errorbars are obtained from the data, while the curves are 
linear fits whose parameters are given in Table 1 , with ν the slope and η the 
offset. Higher angular momentum triples have a larger fraction of irreversible 
solutions. Interestingly, we observe that the lo west irre versible fraction is 
produced by L = 0 . 02 rather than L = 0. This turns out to be correlated with 
statistically shorter lifetimes (see Fig. 4 ). 

Figure 3. We plot the ratio between the largest and smallest irreversible 
fraction from Fig. 2 , i.e. between those of L = 0 . 19 and L = 0 . 02. We fit 
a linear relation resulting in a slope −0 . 022 ± 0 . 001 and offset −0 . 120 ±
0 . 008. 
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f numerical accuracy and precision. We halted the iteration at 
= 10 −90 , but we will show that even then a fraction of triples still

emained irreversible. Besides the fraction of irreversible solutions, 
e also measure the two main observables for each triple, which are

he lifetime T , and the amplification factor defined as 

 = 


 f 


 i 

. (15) 

ere, 
 i is the phase space distance between the forward and 
ackward solution after a single integration step (i.e. the states 
ust before and after t = T are compared), and 
 f is the phase
pace distance between the initial and final states. In other words, 
 gives the total amplification factor of the initial perturbation over 

he lifetime of the triple. The finite-time Lyapunov exponent is then 
stimated as 

= 

log A 

T 
, (16) 

hile the finite-time Lyapunov time-scale is the inverse, i.e. T λ = 

−1 . 
The underlying question in our experiment is: given a specific 

nitial configuration, what is the maximum value of ε such that 
he phase space separation between the forward and backward 
ntegration remains in the linear regime throughout? Chaos prevents 
s from knowing this a priori; it depends on the lifetime of the
nteraction and the rate of exponential divergence, which, as we 
ill sho w, v aries among dif ferent three-body configurations. Our 

pproach is then to perform multiple simulations of the same initial 
ondition, but with smaller values of ε until convergence is achieved, 
.e. the phase space separation between the forward and backward 
ntegration remains in the linear regime. Since our approach depends 
n the ability to remain in the linear regime, we require studying
n ensemble of different initial triples. The alternative of creating an 
nsemble from a single triple with different initial small perturbations 
ill lead to solutions which are the same in the linear regime, but
hich diverge only in the non-linear regime, at which point our 

pproach for measuring the exponential growth rate becomes invalid, 
.e. the exponential growth rate is truncated by the size of the triple. 

 RESULTS  

e first present the outcome of the rev ersibility e xperiment in Section
.1 . There, we find that ensembles of triples with a higher angular
omentum produce a larger fraction of irreversible solutions (see 
igs 2 and 3 ). Similar to Paper 1 we find that this is correlated
ith having larger amplification factors (see Fig. 4 ). In Section 
.2 , we explore the correlation between the two main observables: 
mplification factors and lifetimes (see Figs 5 –7 ). We will show that
igher angular momentum triples can achieve larger amplification 
actors both due to longer lifetimes as well as larger Lyapunov 
xponents (see Figs 8 and 9 ). In Section 4 , we discuss how the
esults scale with astrophysical size, and we will also apply our 
esults to tidal perturbations from other bodies in the Universe, which 
omplement intrinsic quantum uncertainties. 

.1 Reversibility test 

n Fig. 2 , we plot the fraction of irreversible integrations, f irr , as
 function of numerical accuracy, i.e. Bulirsch–Stoer tolerance, ε. 
or each value of the total angular momentum, we find that the data
ollows a power law. At low accuracy (large ε), f irr is of order unity,
nd with increasing accuracy (smaller ε), this fraction decreases 
ccording to a power law. The power-law index ho we ver, depends
n angular momentum. We perform linear fits to the data 

log 10 f irr = ν log 10 ε + η, (17) 

here the fit parameters, ν and η, can be found in Table 1 . For the case
f L = 0, we measure a power-la w inde x of ν = 0 . 0282 ± 0 . 0006,
hich is consistent with the measurement of 0 . 029 ± 0 . 001 for the
gek yan–Anoso va map of initial conditions from Paper 1 . As we

ncrease the total angular momentum, we find that the power-law 

ndex first increases to a maximum value of ν = 0 . 033 ± 0 . 001 for
 = 0 . 02, and then decreases monotonically until a value of ν =
 . 0115 ± 0 . 0003 for the initially virialized ensemble. Hence, the
asiest triples to rev erse hav e L = 0 . 02, while the hardest triples to
everse are the virial ones with L = 0 . 19. In Fig. 3 we plot the ratio
etween the largest and smallest fractions from Fig. 2 , which are
hose for L = 0 . 02 and L = 0 . 19. It is striking that for ε = 10 −90 ,
he range in f irr among the ensembles is two orders of magnitude,
ith approximately 10 per cent of triples being irreversible still for
 = 0 . 19. 
In Paper 1 , we demonstrated that the fraction of irreversible

olutions is determined by the distribution of amplification factors. 
MNRAS 536, 2993–3006 (2025) 
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Figure 4. Cumulative distribution functions of the amplification factor (left), lifetime (middle), and Lyapunov time-scale (right). Triples with larger L have 
statistically larger amplification factors and lifetimes. For the smallest L values, we observe that L = 0 . 02 statistically produces the smallest amplifications 
rather than L = 0. Two-sample Kolmogorov–Smirnoff tests between the distributions of L = 0 and L = 0 . 19 gi ve p-v alues smaller than 10 −22 for each of the 
three distributions, indicating that all three quantities have a L -dependence, including the Lyapunov time-scale. Comparing L = 0 and L = 0 . 02 we obtain 
p-values of 0.00018, 0.0044 and 0.71 (from left to right panel respectively). Hence, the observation that L = 0 . 02 produces smaller values of A than L = 0 is 
most likely explained by statistically shorter lifetimes, and not by different Lyapunov time-scales. We also confirm that the median Lyapunov time-scale is of 
order the crossing time. 
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n Fig. 4 (left panel), we plot the cumulative distribution function
f log 10 A for the various ensembles of triples. We confirm that
he distributions are angular momentum dependent, such that higher
ngular momentum triples produce larger amplification factors. We
bserve that for L = 0 . 19, about 10 per cent of triples amplify the
nitial perturbation by more than a factor of 10 90 . Here, we also
bserve that the ensemble of triples with L = 0 . 02 produces the
mallest amplifications in a statistical sense. Our observations of the
 -dependence of f irr in Fig. 2 are thus reflected in the distributions
f A in Fig. 4 (left panel). The relation between reversibility and
mplification f actor w as previously discussed by Portegies Zwart &
oekholt ( 2018 ) and Boekholt et al. ( 2020 ). 
The amplification is determined by the lifetime of the interaction

uring which perturbations can be amplified, and the instantaneous
yapuno v e xponent, which giv es the rate of amplification in time. The
 -dependence of the amplification factor can thus be a consequence
f an L -dependence of the lifetime and/or Lyapunov time. In
ig. 4 , we plot their respective cumulative distribution functions.
e adopt the two-sample Kolmogorov–Smirnoff (KS) test in order

o test whether the various empirical distributions could have been
rawn from the same underlying distribution, or whether they are
ignificantly different. We first compare L = 0 and L = 0 . 19 in each
f the three panels of Fig. 4 . The KS test produces p -values smaller
han 10 −22 for each of the three distributions, confirming that all three
uantities have a statistically significant L -dependence. This includes
he Lyapunov time-scale. Whereas the statistical longer lifetimes for
 = 0 . 19 (middle panel of Fig. 4 ) would contribute towards produc-

ng larger amplification factors (left panel), the statistical distribution
f Lyapunov times is also shifted to wards (some what) larger values
right panel), indicating slower growth rates. Nevertheless, the net
esult is an increase of the amplification factor. When multiplying
he lifetimes by a constant Lyapunov exponent, we find that this
oes not reproduce the distribution of amplification factors. The L -
ependence of the amplification factor is thus determined by the
 -dependence of both the lifetime and the Lyapunov time. We will
ontinue this analysis in the next subsection. 

First, we seek a better understanding of why L = 0 . 02 rather than
 = 0 seems to be the easiest ensemble to reverse. We perform KS

ests comparing L = 0 and L = 0 . 02 obtaining p -values of 0.00018,
.0044, and 0.71 for A , T , and T λ, respectively. At a confidence level
f 95 per cent, we conclude that the distributions of A and T are not
NRAS 536, 2993–3006 (2025) 
rawn from the same underlying distrib ution, b ut that T λ is. Hence,
his suggests that L = 0 . 02 triples are easier to reverse because they
ave systematically shorter lifetimes. We leave a physical explanation
or this observation in terms of detailed orbital dynamics for follow
p studies, although we present some first attempts in Section 3.3 .
inally, we observe that the median of the Lyapunov time-scale is
f order the crossing time (right panel of Fig. 4 ), which is consistent
ith the theory of punctuated chaos (Portegies Zwart et al. 2023 ). 

.2 Correlating amplification factors and lifetimes 

ur next step is to better understand why high angular momentum
riples produce larger amplification factors. One contributing factor
s that on average high angular momentum triples have longer
ifetimes than low angular momentum triples (e.g. Orlo v, Rubino v &
hevchenko 2010 ; Boekholt & Portegies Zwart 2015 ). Ho we ver, we
nd that simply multiplying the lifetimes of the triples by a constant
yapuno v e xponent does not reproduce the measured distribution of
mplification factors. Rather than writing 

log A ( L ) = λT ( L ) , (18) 

ith λ a constant Lyapunov exponent, we require the more general
ase given by 

log A ( L ) = λ ( T , L ) T ( L ) , (19) 

here the finite-time Lyapunov exponent itself is a function of
ifetime and angular momentum (e.g. Mikkola & Tanikawa 2007 ;
rminsky & Heggie 2009 ). 
The discussion abo v e moti v ates the inspection of the correlation

etween the two main observables in our experiments, namely the
mplification factor, A , and the lifetime, T . In Fig. 5 , we present
catter plots of these two quantities for each of our angular momen-
um ensembles. After experimenting with various combinations of
inear and logarithmic axes, we find that a clean linear relation is
btained in the space of log log A versus log T . The first observation
e make is that for each given T , there is a (sharp-edged) maximum
alue of A . This diagonal upper ridge continues up to about 100 T c ,
fter which A flattens. By this time, A has reached a value of 10 90 ,
hich is the limit in our experiment. If we had continued to decrease

he Bulirsch–Stoer tolerance beyond 10 −90 , we expect the diagonal
rend to continue. Hence, if we only consider the resolved portion
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Figure 5. Scatter plots of the two main observables: amplification factor, A , and lifetime, T (normalized by crossing time, T c ). We estimate the slope of the 
upper edge of the data using linear fits (solid lines). The fit parameters are given in Table 1 with α the slope and β the offset. The angular momentum dependence 
of the slope is visualized in Fig. 6 . 
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f the scatter plot ( T ≤ 100 T c ), we observe a sharp upper ridge in
he data, which is indicative of a maximum Lyapunov exponent, 
.e. a maximum rate of divergence. The second observation is the 
radual scatter of data points towards very long lifetimes. The 
aximum lifetime in our experiment was set to 10 4 H ́enon time

nits ( ∼3536 T c ). There is a large range of lifetimes, which still
nd up with the same amplification factor. This observation can 
e interpreted by stating that the evolution of long-lived triples 
s driven by prolonged excursions of a single body during which 
t is only weakly interacting with the binary system. The expo- 
ential sensitivity during these phases is greatly reduced (see also 
ig. 9 ). 
Coming back to the first observation, we fit the upper edge of the
esolved data with a linear model, 

log 10 log 10 A = α log 10 

T 

T c 
+ β, (20) 

here the fitting parameters, α and β, are given in Table 1 . Here, we
ade bins along the horizontal axis, and used a bootstrap resampling
ethod to estimate error margins to the fitting parameters. In Fig. 6 ,
e plot the slopes of the linear fits, α, as a function of angular
omentum: high angular momentum triples have a steeper slope, i.e. 
increases from ∼0 . 70 to ∼0 . 86. The implication is best observed in
ig. 7 . There, we find that up to about 20 T c the largest amplification
MNRAS 536, 2993–3006 (2025) 
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Figure 6. Angular momentum dependence of the slope of the linear fits in 
Fig. 5 . A linear fit to the data points (solid line) indicates an upward trend. 
This implies that triples with more angular momentum are able to reach larger 
amplification factors. This is further visualized in Fig. 7 . 

Figure 7. We collect the linear fits from Fig. 5 for a direct comparison. 
Initially, up to about 20 crossing times, larger amplification factors are reached 
by the low angular momentum triples. At longer lifetimes ho we ver, the high 
angular momentum triples take o v er. 
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actors are reached by the lower angular momentum triples. At
onger times ho we ver, the higher angular momentum triples become
ominant, e.g. larger values of A by ∼14 orders of magnitude for
 / T c = 100. This result is more in line with the common intuition

hat dynamically cold triples have a violent and short life, while virial
riples are relatively calm and gradually build up their chaos in the
ong term. 

As a further illustration of the influence of angular momentum,
e provide a detailed comparison between low ( L = 0 . 02) and high

 L = 0 . 19) angular momentum triples in Fig. 8 . In the lifetime
istogram (top panel), we observe that a higher angular momentum
ndeed results in a larger fraction of long-lived triples. The difference
n the lifetime distributions has two contributions. The first is that
ow-L triples have an initial phase of collapse since they start out
n a sub-virial state, as opposed to the high-L virialised triples. This
ollapse causes more triples to dissolve in the first few crossing
imes. After that ho we v er, we observ e that the two histograms
lso have a different slope. This indicates that bodies in a low-L
ystem have a larger probability per crossing time to escape. In the
ain scatter plot, we also plot the corresponding fits to the upper
NRAS 536, 2993–3006 (2025) 
idge line in the data (from Figs 5 –7 ). Since the slope in this plot
orresponds directly to the Lyapunov exponent ( λ ∝ log A / T ), we
otice that λ has a dependence on L , and since the slope in each curve
attens towards larger lifetimes, λ also depends on T . We have thus
onfirmed the general case in equation ( 19 ), where λ = λ ( L, T ) .
he combination of longer lifetimes and larger Lyapunov exponents
auses higher angular momentum triples to achieve increasingly
arger amplification factors (see histogram in the right panel of
ig. 8 ). 
We finish this subsection by deriving a relation between lifetime

nd Lyapunov time. Using equation ( 20 ), we can write 

log A = 10 β
(

T 

T c 

)α

. (21) 

ividing both sides by T / T c we obtain 

T c = 10 β
(

T 

T c 

)α−1 

, (22) 

r in terms of Lyapunov time: 

T λ

T c 
= 10 −β

(
T 

T c 

)1 −α

. (23) 

ewriting for T gives: 

T 

T c 
= 10 

β
1 −α

(
T λ

T c 

) 1 
1 −α

. (24) 

his expression describes a power-law relation between lifetime and
yapunov time, corresponding to the maximum growth rate. The
 -dependent power-law index of T λ ranges from 3 to 8, which is
uch steeper than estimates from previous studies (e.g. Mikkola &
anika wa 2007 ; Urminsk y & He ggie 2009 ), although the y focused
n the median growth rate rather than the maximum rate. From
quation ( 24 ) it may seem that triples with a shorter Lyapunov time-
cale have shorter lifetimes. Ho we ver, this statement assumes T λ
s a constant, such that if it were possible to measure a triple’s
nstantaneous Lyapunov time-scale, one could predict its lifetime.
o we ver, this becomes problematic due to the large time variations

n the rate of divergence, as we will discuss next. 

.3 Rate of di v er gence as a function of time. 

n order to reach a deeper understanding of the physical origin of
he empirical relations measured so far, it becomes necessary to
losely correlate the instantaneous Lyapunov exponents to the orbital
onfigurations. How do the triple components drive the growth of
erturbations, and in general, how does that depend on angular
omentum, mass ratio etc.? Although these are challenging but

mportant questions requiring follow up studies, here we perform
n analysis in the style of Dejonghe & Hut ( 1986 ). They define the
etric 

s 2 = 

3 ∑ 

i = 1 

∑ 

j > i 

(
x j − x i 

)2 + 

(
y j − y i 

)2 + 

(
z j − z i 

)2 
, (25) 

hich is the sum of the squared distances between every pair of
odies. This metric is only small if all three bodies are close together,
nd during such moments amplifications are expected to be strong.
n the other hand, if the metric attains very large values, then this

orresponds to an excursion of one of the bodies from the bound pair.
uring such excursions the amplification is expected to be small.
rom our ensembles of simulations, we gather solutions with a fixed

ifetime of 100 ± 2 crossing times. Then, for each ensemble of L we
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Figure 8. Relating the two main observables of the reversibility test: amplification factor, A , and lifetime, T . We compare the two most different ensembles 
given by L = 0 . 02 (orange/light) and L = 0 . 19 (blue/dark). We observe a bias both in the lifetime distribution (top histogram), and in the maximum achie v able 
value of A given a certain value of T (scatter plot). The combination of longer lifetimes and larger growth rates leads to a larger fraction of high amplification 
factors (right histogram), and thus also a higher fraction of irreversible solutions (see Fig. 2 ). 
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elect the solutions with the maximum and minimum amplification 
actor, i.e. the most and least chaotic solutions. We will make a
omparison of these solutions between the most and least chaotic 
nsemble, L = 0 . 19 versus L = 0 . 02, and also between the low
ngular momentum ensembles, L = 0 versus L = 0 . 02. In Fig. 9 ,
e compare the various solutions, and correlate the time evolution 
f the amplification factor with the metric defined abo v e. 
The metric shows an oscillatory behaviour indicating that the 

ize of the triple itself oscillates. For the least chaotic solutions
those with the minimum values of A ), we indeed observe that
he metric attains large values (o v er a 100) and o v er an e xtended
eriod (o v er 40 crossing times). The least chaotic solutions clearly
orrespond to very long excursions, during which the growth is 
inear. When the metric reaches a minimum value however, we 
bserve a corresponding jump in A . This behaviour is consistent 
ith punctuated chaos in which the rate of divergence is linear 
 v er e xtended times, but punctuated by big brief jumps due to
trong events in the system, such as close encounters. According 
o this theory a higher frequency of events results in a more rapid
mplification. The most chaotic solutions with the maximum values 
f A indeed correspond to a much higher oscillation frequency of the
etric. 
Sustained exponential growth is thus achieved if long excursions 

re absent, i.e. there is a prolonged democratic resonant interaction 
mong the bodies. Comparing the most rapidly growing solutions for 
he three different values of L , we find that the number of events (i.e.

inima of the metric) is not proportional to the rate of growth. For the
ost chaotic solution with L = 0 . 19 we count 50 oscillations, while

or the least chaotic case L = 0 . 02 we count a similar 48 oscillations.
or L = 0 we only count 28 oscillations, while still achieving a

arger value of A than L = 0 . 02. Hence, we find that even during
emocratic resonant phases the growth is variable, indicating that 
ther metrics also play a role. For example, considering the maximum 

 = 0 . 02 solution, we observe a rapid exponential growth between
0 ≤ T /T c ≤ 50, and a rather slow growth during 80 ≤ T /T c ≤ 90,
ven though both correspond to phases of high frequency of the
etric with the same value of L . 
The driver of chaos is therefore not (solely) close encounters in

adial orbits, but rather the prolonged and non-linear interaction 
mong all three bodies in a democratic configuration. Based on 
MNRAS 536, 2993–3006 (2025) 
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Figure 9. For triple systems with a lifetime of about 100 crossing times, we gather the solutions with the largest and smallest amplification factor. We plot the 
time evolution of the amplification factor (top panels), and of the metric ds 2 (bottom panels), which is the sum of the squared distances between all pairs. We 
compare the low angular momentum ensembles L = 0 and L = 0 . 02 (left column), and the most and least chaotic ensembles L = 0 . 19 and L = 0 . 02 (right 
column). Rapid growth is driven by democratic resonant interactions (high frequency oscillations in ds 2 ), while slow growth corresponds to long excursions of 
a single body from the bound pair. 
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ur numerical results, we speculate that high angular momentum
riples tend to have a longer cumulative resonant interaction time
nd/or shorter excursion phases of a single body, thereby ef fecti vely
educing the phases of slow growth. Howev er, ev en during demo-
ratic three-body interaction phases the rate of divergence depends
n other factors besides the metric ds 2 , including L . This moti v ates
 closer inspection of the dependence of the instantaneous Lyapunov
xponent on the specifics of the orbital configuration in follow up
tudies. 

 DISCUSSION  A N D  C O N C L U S I O N S  

.1 Angular momentum dependence 

e revisit the astrophysical application of Paper 1 , which considered
hree supermassive black holes with a mutual separation of order
ne parsec. In the zero angular momentum limit, we confirm their
esult that about 5 per cent of triples are irreversible up to the Planck
ength (see Table 1 ). This result is robust with respect to the type
f initial condition (Plummer or Agek yan–Anoso va map), as the
ost chaotic triples tend to forget their specific initial condition, and

heir ultimate fate is determined by global conserved quantities, i.e.
ngular momentum and energy. 

Depending on the astrophysical context, triples with zero angular
omentum might only represent a very small fraction of the popula-

ion. Triple black holes in galactic centres, which form after repeated
NRAS 536, 2993–3006 (2025) 
alaxy mergers, are expected to evolve to a hierarchical state at
he edge of stability due to dynamical friction (e.g. Hoffman & Loeb
007 ). Such weakly hierarchical triples fall within the highest angular
omentum ensembles of our study. Hitherto, one might naively have

xpected that triples with a higher angular momentum might be less
haotic. This intuition mainly stems from the idea that chaos is driven
y close encounters, which are more likely to occur in low angular
omentum systems with radial orbits. Hence, it was expected that the
 per cent of fundamentally unpredictable triples would be (greatly)
educed when considering a more general and realistic population
f triples with varying, non-zero angular momenta. Ho we ver, our
esults demonstrate the contrary; fundamentally unpredictable triples
 xist o v er a wide range of angular momenta, and the fraction of
undamentally unpredictable triples is even enhanced up to about
0 per cent of the population (for the initially virialised case). 
We speculate that hierarchical triple systems near the edge of

tability (e.g. Toonen et al. 2022 ), which can dynamically break
p, also include a fraction of fundamentally unpredictable systems,
imilar to our highest angular momentum case. Increasing the angular
omentum beyond the range studied here, will increase the hierarchy

f the triple, thereby diminishing the effect of the tertiary on the
nner binary. Although this increases the lifetime of the triple, it also
ncreases the Lyapunov time-scale, with the net effect that Planck
ength perturbations will not be able to grow to the size of the triple
ny longer within any reasonable time-scale of interest. A natural
xtension of our study would be to probe this high angular momentum
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Table 2. Fraction of fundamentally unpredictable triples for various astrophysical scales. For each system we give the characteristic mass and length scale, as 
well as the corresponding value of the dynamical crossing time. The minimum amplification factor required for a Planck length fluctuation to reach the size of 
the triple ( A min ) is also given. The fractions of irreversible systems are given by: p h , for the intrinsic Planck length fluctuations (see Fig. 10 ), and p star , for the 
tidal perturbation from a star at a distance of 1 kpc (see Fig. 11 ). Each fraction is given as a range, where the lower limit is obtained from the L = 0 . 02 ensemble, 
and the upper limit from the virial L = 0 . 19 ensemble. We find that compact triples are more susceptible to Planck length perturbations, while tidal perturbations 
become increasingly important for larger triples. On the scale of dust grains, we find that both sources of perturbations become similar in magnitude. 

Triple System Mass scale (kg) Length scale (m) Crossing time (yr) log 10 A min p h ( per cent ) p star ( per cent ) 

Supermassive black holes 2 . 0 × 10 36 3 . 1 × 10 16 4 . 2 × 10 4 51.3 [0.031, 0.30] [0.49, 0.77] 
Stars 2 . 0 × 10 30 7 . 0 × 10 12 1 . 4 × 10 2 47.6 [0.040, 0.33] [0.33, 0.68] 
Jupiters 2 . 0 × 10 27 1 . 5 × 10 11 1 . 4 × 10 1 46.0 [0.046, 0.34] [0.29, 0.64] 
Moons 1 . 0 × 10 21 1 . 0 × 10 8 3 . 5 × 10 −1 42.8 [0.058, 0.37] [0.22, 0.59] 
Asteroids 1 . 0 × 10 19 7 . 7 × 10 7 2.3 42.7 [0.059, 0.37] [0.25, 0.62] 
Pebbles 1.0 3.3 6 . 6 × 10 −2 35.3 [0.10, 0.45] [0.20, 0.57] 
Dust grains 1 . 0 × 10 −4 1 . 0 × 10 −3 3 . 5 × 10 −5 31.8 [0.14, 0.49] [0.12, 0.48] 
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egion, and to determine for which value of the angular momentum 

he fraction of unpredictable triples peaks, and to measure at what 
ate this fraction subsequently decreases as the angular momentum 

s increased further. Since these triples would start out in a (stable)
ierarchical configuration, contrary to the non-hierarchical systems 
tudied here, it would be of interest to also study their Lyapunov
imes and amplification factors, and to link their behaviours to the 
nderlying driver of chaos in terms of close encounter rates and 
esonances (e.g. Mardling & Aarseth 1999 ; Mardling 2008 ). 

Another caveat for the existence of fundamentally unpredictable 
upermassive black hole triples is the effect of gravitational wave 
amping. For black hole masses above the transition mass scale 
f ∼10 7 solar masses (e.g. Boekholt et al. 2021 ), the dynamics is
erger-dominated, implying that a gravitational wave merger occurs 

e.g. Hoffman & Loeb 2007 ), shortening the lifetime of the triple.
ra vitational wa v e dissipation also quenches the e xponential growth
f perturbations if the damping time-scale becomes shorter than 
he Lyapuno v time-scale. F or black hole masses smaller than the
ransition mass, relativity acts as a perturbation to the system, such 
hat a small change in the mass can lead to wildly different lifetimes
f the triple interaction (Boekholt et al. 2021 ). If weakly hierarchical
riples with masses of order 10 7 solar masses represent a fraction 
f realistic triple black holes in galaxies, then we estimate from our
esults that 20 –30 per cent of them are fundamentally unpredictable 
ue to Planck length fluctuations. 

.2 Dependence on astrophysical scale 

t is also of interest to discuss how the fraction of fundamentally
npredictable triples depends on astrophysical scale. Although our 
urely Newtonian dynamical systems can be scaled up and down, 
ere we will assume that there are physical constraints set by the
lanck length and the Hubble time. We consider scatter plots similar

o that of Fig. 8 , where the Hubble time introduces a maximum
ut-off in T / T c , and where the Planck length introduces a minimal
alue of A abo v e which systems are considered to be fundamentally
npredictable. For various physical scalings of the triple system 

e can then count the fraction of triples in the fundamentally 
npredictable region of the diagram. 
The critical ‘Hubble scale’ can be defined which gives the limit

here a triple is just able to magnify a Planck length perturbation
o its own size on a time-scale of a Hubble time. The minimum
mplification required is defined as the size of the triple, R, divided
y the Planck length, h . This amplification is to be reached within a
ubble time, T H . Using the relation between A amd T from equation
 20 ), we can write 

log 10 A min ≡ log 10 

R 

h 

= 10 β
(

T H 

T c 

)α

, (26) 

ith α and β the fitting parameters given in Table 1 . The crossing
ime of a virialised N -body system can be expressed as (see Section
.1 ) 

 c = 

√ 

8 R 

3 

GM 

. (27) 

eplacing this expression into equation ( 26 ) and rewriting for M , we
btain 

 H ≡ 8 × 10 −
2 β
α G 

−1 T −2 
H R 

3 

(
log 10 

R 

h 

) 2 
α

. (28) 

ence, given a triple of physical size R, if its mass M > M H , then the
riple’s crossing time is sufficiently small for it to be able to magnify
 Planck length perturbation up to its own size. 

In Table 2 , we list various types of bodies which could be part
f a triple system; from large scale supermassive black holes down
o asteroids, pebbles and dust grains. For each type we give the
haracteristic mass and length scale, as well as their crossing time.
he minimum amplification factor required to magnify a Planck 

ength perturbation to the size of the triple itself is also given,
anging from 10 32 –10 51 . In Table 2 we also give the percentage
f unpredictable triples due to quantum uncertainties, p h , as a range,
here the lower limit is calculated from the least chaotic ensemble

 L = 0 . 02) and the maximum from the most chaotic ensemble
 L = 0 . 19). We visualise the most chaotic case in Fig. 10 , where
e also o v erplot the locations of the various astrophysical bodies.
he general trend is that the fraction of fundamentally unpredictable 

riples increases for more compact triples. Smaller systems require 
 smaller amplification of the Planck length in order to become
npredictable. 
Hence, by increasing the angular momentum of supermassive 

lack hole triples, the fraction of unpredictable systems is enhanced 
rom 5 per cent to 30 per cent, and by decreasing the scale of the
riple down to triple dust grains, the percentage is further enhanced to
bout 50 per cent. Fundamentally unpredictable triples are general, 
ccurring o v er a large range of astrophysical scales owing to the
xponential nature of chaos. 

.3 Small perturbations from the rest of the Uni v erse 

n Paper 1 and in this current study, we focused on perturbations
ue to intrinsic quantum uncertainties. We assumed that these form 
MNRAS 536, 2993–3006 (2025) 
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M

Figure 10. Fraction of fundamentally unpredictable triples as a function of astrophysical scale. The mass scale ranges from the electron mass to the estimated 
total baryonic mass in the Universe, and the length scale ranges from the size of an atom to the size of the observable Universe. Two characteristic lines 
divide the region in (mostly) three large subregions. The bottom right region is excluded due to densities exceeding those of black holes (Schwarzschild radius 
determines the lower edge of the central area marked by a dash-dotted line). The upper left triangular region corresponds to fundamentally predictable triples as 
they are unable to magnify Planck length perturbations to their own system size within a Hubble time. The analytical expression for the ‘Hubble scale’ (upper 
dash-dotted line) is given in equation ( 28 ). In the middle region, the trend is that the fraction increases towards smaller length scales; a smaller amplification of 
the Planck length is required to reach the size of the triple. The locations of various astrophysical bodies are o v erplotted, e.g. for triple supermassive black holes 
(SMBH) 30 per cent are irreversible, and this increases to 37 per cent for triple asteroids and 49 per cent for dust grains. Here, we assumed the triples are virial 
( L = 0 . 19), but in Table 2 we also provide values for the least chaotic chase ( L = 0 . 02). 
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he smallest physical perturbations in nature, and demonstrated that
hey still play a role in the predictability of triple systems (and
herefore in larger- N systems too). Ho we ver, there are other sources
f perturbations in the Universe, which can be much larger in
agnitude. F or e xample, we can compare the evolution of an isolated

riple system to one with a fourth-body at some large distance from
he triple. This external body will induce a tidal effect onto the
riple, causing each of the triple components to experience a slightly
ifferent tidal acceleration. In the centre of mass frame of the triple
his will manifest as slight perturbations in the orbits of the bodies
compared to the isolated triple case). The magnitude of these tidal
eed perturbations depends on the distance of the fourth body, and
e ask at what distance does the tidal perturbation become of the

ame order as the Planck length? The tidal acceleration is estimated
s 

a ∼ Gm t R 

( γR ) 3 
= 

Gm t 

γ 3 R 

2 
, (29) 

ith G the gravitational constant, m t the mass of the tidal perturber,
nd R the size of the triple. The factor γ gives the distance of the
ourth-body in units of R. The accelerations within the triple are of
rder a ∼ GM 

R 2 
, with M the mass of the triple. We can estimate the

eed perturbation in the orbit according to δr 
R 

∼ δa 
a 

, allowing us to
rite 

r ∼ R 

δa 

a 
= 

R 

γ 3 

m t 

M 

. (30) 
NRAS 536, 2993–3006 (2025) 
etting δr equal to the Planck length, h , we obtain the characteristic
eparation of 

h = 

(
R 

h 

m t 

M 

) 1 
3 

. (31) 

e compare this separation to the size of the observable Universe,
 U = γU R, so that we finally obtain 

γh 

γU 
= 

(
R 

4 

hR 

3 
U 

m t 

M 

) 1 
3 

. (32) 

ow we will assume that the fourth body is of the same type as the
riple components, i.e. m t ∼ M . Furthermore, by setting γh = γU ,
e obtain the following characteristic length scale: 

 h ≡ h 

1 
4 R 

3 
4 

U ≈ 1 au . (33) 

riple systems larger than this surprisingly small length scale, will
e susceptible to tidal perturbations of order the Planck length due to
odies beyond the cosmological horizon. For more compact triples,
uch distant tidal perturbations will be negligible compared to the
ntrinsic quantum uncertainty. 

In reality, there will be many tidal perturbers much closer to
ome. F or e xample, for our standard test case supermassive black
ole triple, there are billions of perturbing stars in the host galaxy.
sing equation ( 30 ), with M = 10 6 M 
, R = 1 pc , m t = 1 M 
, and
= 10 3 , we estimate a seed perturbation of δr = 30 m in the orbits

f the black holes. Magnifying this to the size of the triple requires
n amplification factor of only R /δr ∼ 10 15 . Similar to the previous
ubsection, we can count the fraction of triple systems that reach an
mplification factor larger than 10 15 within a Hubble time, which
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Figure 11. Similar plot as Fig. 10 , but for tidal perturbations on the triple system due to a Solar mass star at a distance of 1 kpc. As this example shows, small 
tidal perturbations from other bodies in the Universe play an important role in the predictability of triple systems. Especially for the relatively loosely bound 
triples with the largest crossing times, i.e. near to the ‘Hubble scale’. Generally, tidal perturbations tend to dominate o v er intrinsic quantum fluctuations. As a 
consequence, the fraction of irreversible triples increases; up to 77 per cent for triple supermassive black holes (see Table 2 ). 
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anges from 49 –77 per cent depending on L . For smaller scale 
riples, the fraction of unpredictable triples due to tidal perturbations 
ends to decrease, e.g. down to 25 –62 per cent for asteroids and 
2 –48 per cent for dust grains (see Table 2 ). In Fig. 11 , we visualise
hese percentages and we observe that tidal perturbations mostly 
ffect the loosely bound triples, i.e. those with the largest crossing
imes near the Hubble scale. Generally, external tidal perturbations 
rom other bodies in the Universe tend to dominate o v er intrinsic
uantum uncertainties. 

.4 Future work 

he contradiction between the naive expectation that lower- L sys- 
ems would be maximally chaotic, and our new numerical results 

oti v ates further investigation into the origin of chaos in triple
ystems, as well as larger N -body systems (e.g. Portegies Zwart 
t al. 2022 ; Portegies Zwart & Boekholt 2023 ). Although it is well
nown that higher angular momentum triples tend to live longer 
n average, here we find that they can also have larger maximum
yapuno v e xponents (shorter Lyapuno v times). The driv er of chaos

s therefore not (solely) close encounters in radial orbits, but rather 
he prolonged and non-linear interaction among all three bodies in 
 democratic configuration. Ho we ver, we find that even during such
emocratic resonances the rate of divergence can vary. Based on our 
umerical results, we speculate that high angular momentum triples 
ight statistically have a longer cumulative resonant interaction time 

nd/or shorter excursion phases of a single body. This requires a 
loser inspection of the dependence of the instantaneous Lyapunov 
xponent on the specifics of the orbital configuration. 
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