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Abstract

Upcoming surveys are likely to discover a new sample of interstellar objects (ISOs) within the solar system, but
questions remain about the origin and distribution of this population within the Galaxy. ISOs are ejected from their
host systems with a range of velocities, spreading out into tidal streams—analogous to the stellar streams routinely
observed from the disruption of star clusters and dwarf galaxies. We create a simulation of ISO streams orbiting in
the Galaxy, deriving a simple model for their density distribution over time. We then construct a population model
to predict the properties of the streams in which the Sun is currently embedded. We find that the number of streams
encountered by the Sun is quite large, ∼106 or more. However, the wide range of stream properties means that for
reasonable future samples of ISOs observed in the solar system, we may see ISOs from the same star (“siblings”),
and we are likely to see ISOs from the same star cluster (“cousins”). We also find that ISOs are typically not
traceable to their parent star, though this may be possible for ISO siblings. Any ISOs observed with a common
origin will come from younger, dynamically colder streams.

Unified Astronomy Thesaurus concepts: Interstellar objects (52); the Milky Way (1054); Milky Way disk (1050);
Milky Way dynamics (1051); Small Solar System bodies (1469); Star clusters (1567); Stellar streams (2166)

1. Introduction

Interstellar objects (ISOs) are unbound from their host planetary
system and then orbit in the Galactic potential. A given point in
the Galaxy will then encounter a flux of ISOs. Within the
observable volume of the solar system, there is a high enough
spatial density of such objects that they occasionally pass close
enough for detection and characterization, with two known at
present (e.g., M. T. Bannister et al. 2017; K. J. Meech et al. 2017;
A. Fitzsimmons et al. 2018; P. Guzik et al. 2020). Understanding
the factors that sculpt the phase-space density of the Galactic
population is key for using the sensitivity of well-characterized
sky surveys to place constraints on either the local or the general
ISO number density (e.g., T. Engelhardt et al. 2017; D. Jewitt
et al. 2017). K. J. Meech et al. (2017) and A. Do et al. (2018)
estimated a local density of ∼0.2 au−3, equivalent to ∼1016

objects produced per star in the Milky Way. At present, the
estimates of the background density of ISOs are inherently
uncertain at the order-of-magnitude level. Both well-characterized
surveys and improvements in the entirely reasonable modeling
assumptions employed to date are necessary. Such high local
densities may produce of order ∼102 discoveries of ISOs in the
upcoming surveys by the Vera C. Rubin Observatory (Ž. Ivezić
et al. 2019; M. E. Schwamb et al. 2018) and NEOSurveyor
(A. K. Mainzer et al. 2023).

Several refinements can be made with the aim of making
testable predictions and understanding the roles ISOs play in the
Galaxy (A. Moro-Martín 2019a; S. Pfalzner & M. T. Bannister
2019; S. Pfalzner et al. 2020) and what we can learn from them
(G. Laughlin & K. Batygin 2017; S. Portegies Zwart et al. 2018;

A. Moro-Martín 2019b; C. Lintott et al. 2022; M. J. Hopkins et al.
2023). To begin, it is reasonable to assume that ISOs should trace
the same phase-space density as stars, given that ISOs are produced
around and ejected from individual stars, and, once ejected, orbit in
the same Galactic potential as the stars (E. Gaidos et al. 2017;
F. Feng & H. R. A. Jones 2018). M. J. Hopkins et al. (2023, 2025)
refined this further by considering that ISOs from stars that have
already died should persist in the Galaxy, and ISOs are probably
more likely to be produced by higher-metallicity stars, so the local
stellar population can be reweighted to include these effects in
predictions for future surveys. Chemodynamic effects will be
present in the ISO population, such as correlations between velocity
and properties such as water-mass fraction and age (M. J. Hopkins
et al. 2025). We refer to this framework as theŌtautahi-Oxford ISO
population model.
In this work, we consider two additional, qualitatively

different, effects that differentiate the dynamics of the Galactic
population of ISOs from stars, expanding the scope and
sophistication of the Ōtautahi-Oxford model. First, when ISOs
are unbound from their parent star system, they may find
themselves in the birth cluster of their star. Such ISOs will then
populate the cluster potential and, eventually, escape from it
(H. F. Levison et al. 2010; T. O. Hands et al. 2019). Regardless
of this potential “preprocessing” by the birth cluster, nearly all
will eventually orbit in the Galactic potential. Second, any
material orbiting in the Galaxy with a finite spread in either
initial position or velocity will generically produce tidal tails or
streams. This phenomenon is well studied in the context of stellar
streams produced by star clusters and dwarf galaxies disrupting in
the Milky Way’s potential, motivated by the discovery of stellar
streams in large surveys (e.g., M. Odenkirchen et al. 2001;
C. M. Rockosi et al. 2002). Observed stellar streams are excellent
tracers of the Galactic potential because of their low internal
velocity dispersions (A. Bonaca & A. M. Price-Whelan 2025), and
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they may also retain information about their interactions with dense
substructures (A. Bonaca et al. 2019). The cumulative Galactic
ISO population is often described with two broad assumptions to
first order: that it is well-mixed, and that it is of uniform density.
However, ISOs will also form streams within their galaxy. This
was observed in simulations by S. Portegies Zwart (2021) in one
realization of their ISO populations originating from the 200
nearest stars to Earth. Radiants of small interstellar meteors
could form in this way (A. D. Taylor et al. 1996; W. J. Baggaley
2000; C. R. Gregg & P. A. Wiegert 2025), though lack
confirmed observations (R. Musci et al. 2012; M. Froncisz et al.
2020; M. Hajduková et al. 2024).

In this work, we examine the consequences of the fact that the
ISO population is not a uniform background, nor even a
population that traces movement akin to a subpopulation of the
Galaxy’s stars as assumed in most previous work, but an
overlapping tapestry of streams. In Section 2, we simulate ISO
streams, noting the key features of the streams that affect their
observability: their length, volume, density structure, and internal
velocity dispersion. Then, in Section 3, we develop a population
model of the ISO streams, to predict what we expect to be the
main observable consequence of ISOs’ configuration in streams:
how often we will see multiple ISOs from the same star or star
cluster. As the observable volume of the solar system is where sky
surveys provide direct constraints on the local ISO number density
and velocity distribution, starting in Section 3 we use this location
in the Galaxy as our example encounter point.

The propagation of ISO streams has many similarities to the
geomorphologic properties of a major feature of Aotearoa New
Zealand’s southeastern landscape: the braided rivers. Indeed,
the number of ISOs in a single stream has an order-of-
magnitude similarity to the number of pebbles that make up the
bed of the awa Waimakariri, the largest river near Ōtautahi/
Christchurch.5 We therefore describe this population in te reo
Māori in homage to the landscape that supports us and its
community, he awa whiria: the braiding rivers (C. Wilkinson
et al. 2020; R. Martel et al. 2022; E. b. A. Macfarlane &
M. D. a. S. Macfarlane 2024).

2. Stream Simulations

A cloud of individual ISOs that are unbound from their
progenitor system will gradually develop into a tidal stream
with a component leading and a component trailing the
progenitor. The ISOs with lower angular momenta about the
Galaxy will form the leading tail of the stream, and those with
higher momenta form the trailing tail of the stream. The
streams will lengthen over time, and, given enough time
(Gyr), eventually wrap around the Galaxy. A single stream
that has wrapped around the Galaxy develops a braided
structure if viewed in cylindrical coordinates about the Galaxy,
r–f. Like their namesake braided rivers, the structures form
under rapid, highly fluctuating rates of discharge, from a source
with a high rate of supply (D. J. Cant 1982).

In this section, we develop an understanding of the streams’
properties and how they vary, such that we can later estimate
(Section 3) the rate of encounters between a given stream and a
star system (e.g., the solar system) contained within the
stream’s volume. To do so, we first explore the density

distribution of the stream and how it varies with the ejection
velocity and age of the stream. All streams have complex
internal density structures which vary with time—making it
critical to be able to easily pinpoint the positions and velocities
of their component ISOs throughout their orbital evolution. We
represent each tidal stream as a collection of test particles
orbiting in a Galactic potential, produced by a single
“progenitor.” The progenitor may in general be a single star
or a cluster of stars—and the progenitor may by now no longer
exist, either because the star has died or the cluster has
dispersed. The test particles are initialized along the orbit of the
progenitor, and to specify their orbit we need to know their six-
dimensional (6D) position and velocity at the time of ejection.
Several choices we make, particularly around how we initialize
the stream, are deliberately made to keep the simulations and
our interpretations of them as simple as possible.
As is standard in the initialization of stellar streams (e.g.,

A. H. W. Küpper et al. 2008, 2012; S. L. J. Gibbons et al.
2014; N. C. Amorisco 2015; M. A. Fardal et al. 2015;
A. M. Price-Whelan 2017; Y. Chen et al. 2025), we place
newly ejected ISOs at one of the Lagrange points of the
progenitor with respect to the Galactic potential (Figure 1).6

These points are offset from the progenitor by a distance
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where G is Newton’s gravitational constant, Mprog is the
progenitor’s mass, and Ω(r) and κ(r) describe the local shape of
the Galaxy’s rotation curve at a given Galactocentric radius r.
The orbital frequency is Ω = vcirc/r, where vcirc is the circular
velocity at a given Galactocentric distance r. The epicyclic
frequency is ( )k b= W +2 1 , where β is the logarithmic
derivative of the circular velocity, /d v d rln lncirc . In three-
dimensional (3D) space, the two Lagrange points lie along a
line from the center of the Galaxy to the progenitor, which will
in general be on an orbit with nonzero vertical oscillations.7

Since we are not dealing with stellar streams, but rather ISO
streams, it is worth explaining our placement of ISOs at L1 and
L2 in more depth. In our model, the progenitor of an ISO
stream may be a single star or a star cluster. In the latter case,
the ISOs will have been ejected from their individual parent
star system, but early enough and at a low enough velocity that
they remain bound to the star cluster. The ISOs will then be
subject to similar perturbations that allow some stars in
the cluster to escape (F. Flammini Dotti et al. 2025), though
the process may not be perfectly analogous given the
dramatically lower masses of the ISOs. Nonetheless, we expect
the placement of ISOs at L1 and L2 to be an excellent
approximation in this particular case. In the case of ISOs
ejected from a single star, however, we need to consider two
subcases: ISOs ejected from single encounters with a planet, or
ISOs eroded from an Oort cloud (discussed more in

5 A length of ∼100 km and cross-sectional area ~(π/2)(100 m)2 with pebble
sizes ∼2 cm yields ∼1014 pebbles, perhaps consistent with an M dwarf’s ISO
stream.

6 In the context of stellar streams, this is done because stars can only escape
the progenitor if their Jacobi energy (a quantity conserved in the restricted
three-body problem) is large enough, but even stars with large Jacobi energy
may happen to remain physically within the cluster. Stars will therefore tend to
leak out at the saddle points in the effective potential, namely L1 and L2
(A. Hayli 1970).
7 Since we primarily consider streams within the disk of the Galaxy, the
relevant Lagrange points may in fact be shifted due to the tidal influence of the
disk (e.g., J. Heisler & S. Tremaine 1986), but we ignore this complication
for now.
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Section 4.1). Erosion from an Oort cloud, in analogy to the
cluster case, is likely to occur preferentially at the saddle points
of the potential, i.e., we again expect L1 and L2 to be
reasonable locations to place the ISOs. ISOs ejected from the
inner parts of the star system via strong encounters with a
planet, however, will be ejected essentially from the progenitor
rather than the Lagrange points. In this case the typical velocity
of ejection will be far larger than the Keplerian velocity at the
Lagrange points, and so it will be unimportant that we choose
that the particle was initialized at a Lagrange point instead of
the progenitor, assuming that the ejections are isotropic.8 We
are therefore in a situation that the only time the particle’s
initial location matters is when they escape at the Lagrange
points, so it is reasonable to initialize all particles at the
Lagrange points.

The test particles representing ISOs are placed at the two
Lagrange points, at a velocity equal to the progenitor’s velocity
plus a random component dv. Each test particle has a 50/50
chance of being placed at the L1 or L2 Lagrange point of the
Galaxy-progenitor system. See Figure 1 for a visual representa-
tion of this initialization and stream coordinate system
(described further below). The three components of dv are
drawn from a multivariate normal distribution with a diagonal
covariance matrix s I0

2
3. The velocity dispersion σ0 is taken to

be a free parameter, and I3 is the 3 × 3 identity matrix.
The time at which a test particle is initialized in this manner

will also affect the structure of the stream (N. C. Amori-
sco 2015). We take the progenitor to produce ISOs at some rate
P(t), which for simplicity we assume is via an early event that
releases ISOs at a high rate of supply: constant between two
times t0 and tf, and zero at all other times. This approximates
the ISOs as produced early in the life of a planetary system via
interactions with the forming planets (we consider the potential
nuances of dynamical unbinding mechanisms and their
variations in the rate of supply in Section 4.1). In the case of
star clusters on eccentric orbits about the Galaxy, this may
be too simple a parameterization, since as the progenitor

Figure 1. Initialization and early evolution of a stream. The top panels show projections in r–f space, and the bottom panels are r–z projections, where r, f, and z are
cylindrical coordinates about the Galactic center. Each column shows a different time. As time advances the stream expands, so the scale of the grid cells in each panel
increases by a factor of 10. The blue arrows show the positions and velocities of ISO test particles initialized at L1 and L2. Cyan, pink, and purple arrows show a small
fraction of the scaffolding orbits used to construct the stream’s coordinate system. After 100 Myr, the ISOs’ initial apparently isotropic velocity distribution is replaced
by a rotational pattern as each ISO particle moves about its own epicycle with a period of order 2π/κ ≈ 160 Myr. This particular stream has Mprog = 1 Me and
σ0 = 3.1 km s−1.

8 Depending on the details of the system, these ejections by planets may occur
preferentially in the ecliptic plane of the progenitor system, which would
qualitatively change the results of this section (S. Portegies Zwart 2021).
However, due to the subsequent influence of heating (Section 4.2), we expect
that any early anisotropy in the ejection geometry will be washed out within
about a Gyr.
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approaches pericenter, rL is reduced, which may lead to the
ejection of more material. However, we expect the majority of
streams relevant to the detection of ISOs in the solar system to
be on disk-like orbits, where this effect is more modest.9

Moreover, in our approximation, tf–t0 is likely to be much
shorter than any Galactic timescale, which removes any
sensitivity to the exact shape of P(t).

Given a set of test-particle positions and velocities at a
variety of ejection times between t0 and tf, it is straightforward
(though cumbersome) to integrate their motion forward in the
Galactic potential. To avoid running these integrations
explicitly, we instead simply “write down” the orbital solution
following the formalism of D. Lynden-Bell (2015), essentially
a higher-order epicyclic approximation. We use our LBpar-
ticles package,10 which implements an extended version of
the D. Lynden-Bell (2015) formalism to include vertical
motions under the influence of a disk with an arbitrary radial
density profile, and corrects several minor errors in the cosine
expansions relating time or azimuthal angle to corresponding
internal angles (analogous to the mean and true anomaly for
Keplerian orbits; J. C. Forbes et al. 2025). While this method
includes vertical oscillation of the particles with a frequency
that depends on Galactocentric distance, it does not include the
effect discussed in W. Dehnen & Hasanuddin (2018), namely
that the vertical oscillation frequency depends on the amplitude
of the oscillation leading to tidal ribbons rather than streams.
This effect is moderated provided that the vertical oscillations
of particles remain well within a disk scale height. We
adopt the axisymmetric time-independent MW2014 potential
(J. Bovy 2015) throughout this work.

With the test-particle orbits now accessible via LBparti-
cles, we can evaluate the position and velocity of all test
particles in the stream at any time t at minimal marginal cost.
To understand the stream’s properties based on the particles’
positions and velocities at a moment in time, it is useful to
construct an estimator of the stream’s phase-space density

( )x vf , . The streams generally have nontrivial 6D phase-space
structure: They are highly anisotropic, with over- and under-
dense regions, and low sinuosity. The stream develops
overdense regions due to the scale imprinted by the individual
epicyclic motions of particles (A. H. W. Küpper et al. 2008).
Moreover, dynamically cold streams will have thin substruc-
tures or “feathering” (N. C. Amorisco 2015). More realistic
streams will have additional structures imprinted by resonances
with Galaxy-scale nonaxisymmetric features like the bar
(S. Pearson et al. 2017), and/or compact massive structures
(A. Bonaca et al. 2019). In the presence of structure in the
stream’s phase-space density, even in axisymmetric time-
independent potentials, an isotropic kernel density estimator
(KDE) with a kernel that does not vary from point to point may
be insufficiently accurate. We employ a new adaptive KDE for
this task, as detailed in Appendix A. Hyperparameters of the
adaptive KDE are fixed via cross-validation, and a convergence
test is shown in Appendix B.

Another key component of our analysis is a stream
coordinate system (Figure 1). We wish to know for an arbitrary
position x how far “along” the stream we are, ℓ, relative to the
progenitor, and where we are relative to the “core” of the
stream in a cross-sectional slice through the stream at a location
ℓ along the stream. To construct such a coordinate system, we
initialize three additional sets of particle orbits at time t0: one at
each of the Lagrange points, and one at the progenitor’s
position. Each orbit begins with the progenitor’s velocity plus
an adjustment to the particle’s vf, that is, the particle’s
azimuthal velocity in the cylindrical coordinate system aligned
with the disk potential. These “scaffolding” orbits trace out the
path of the stream, by covering the spread in angular momenta
of the test particles representing ISOs. Each set of scaffolding
orbits is regularly spaced in δvf from −5σ0 to 5σ0. The
coordinate ℓ along the stream is then defined as

( ) |( )( ( ) ( )) | ( )/òd d d d= + -f
d

f f f
¢ ¢ ¢f

  ℓ v v v d v1 , 2p p

v

0

wherep is a set of three univariate splines interpolated from the
x, y, and z Cartesian coordinates of the regularly spaced (in δvf)
scaffolding orbits. In other words, for the purposes of this
equation we are using δvf as an arbitrary coordinate and stepping
along the path of the scaffolding orbits in Cartesian coordinates
to build up the distance ℓ. Here ò is chosen to be small compared
to σ0—in practice we choose 10−4 km s−1. We usep to refer to
the splines constructed from the scaffolding orbits initialized at
the progenitor, and L and T to refer to the splines from the
scaffolding orbits initialized at the inner and outer Lagrange
points, respectively (corresponding to the leading and trailing
streams).11 For a similar approach, see J. Bovy (2014).
The two coordinates perpendicular to ℓ are constructed using

L and T . At a given location along the stream, the nearest
points to the leading and trailing streams are found numerically
(in general the δvf-coordinate of the leading or trailing stream at
this point will not be the same as the δvf-coordinate along p).
Typically these distances will be of order rL. Because of the
finite range of δvf’s used in constructing the scaffolding orbits,
and the fact that sometimes (mostly just for cluster progenitors)
the Galactic shear ΩrL is larger than σ0, the leading and trailing
streams will be well separated. We therefore need our procedure
to work if only one of the sets of scaffolding orbits is present at a
given location. A vector is then drawn from either the central
scaffold to the trailing stream, or the leading stream to the central
scaffold at this position of closest approach. This direction is
used as ê1 in the stream-centered coordinate system. Via the
choice of sign above, this vector will be similar to r̂ . We choose
ê2 to lie along the stream, i.e., the local location of ℓ̂ , such that
positive values of this second coordinate correspond to larger
values of δvf. Finally, the third coordinate, similar to ẑ , is set
according to the right-hand rule ˆ ˆ ˆ= ´e e e3 1 2.
A snapshot of the density structure of one particular stream

that has multiple wraps around the Galaxy is shown in Figure 2.
The positions and velocities of a set of 104 test particles evolved
for 10 Gyr are used to construct a 6D cross-validated adaptive
kernel density estimate for the phase-space density of stream

9 This follows from the fact that most stars in the solar neighborhood are on
disk-like orbits. Weighting ISO production by metallicity as in M. J. Hopkins
et al. (2023) will further reduce the importance of the halo and thick disk. There
are, however, effects in the opposite direction, namely that streams on halo-like
orbits suffer far less heating, so they will be denser and hence produce a
disproportionately large encounter rate, if the Sun happens to lie within such a
stream.
10 github.com/lbparticles/lbparticles

11 The velocity dispersion of ISOs is often large enough relative to the
Keplerian speed at rL for the single-star case that the leading part of the stream
and the trailing part of the stream both actually have contributions from both
L1 and L2. Nonetheless, we stick with the “leading” and “trailing”
nomenclature for the spines.
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particles f. The particles are initialized with a velocity dispersion
σ0 = 3.1 km s−1 and with a progenitor mass Mprog = 1Me. The
stream’s structure in r–f coordinates centered on the progeni-
tor’s position resembles the growth and mobility of a river in its
braidplain, he awa whiria, as the stream spreads and wraps
around the Galaxy, with each ISO tracer following a slightly

different precessing orbit around the Galaxy.12 At the same time,
each ISO is oscillating vertically at a somewhat higher

Figure 2. The structure of an ISO stream 10 Gyr after its formation. For a progenitor star on a Sun-like orbit, 104 particles are generated at the star’s Lagrange points
with a velocity dispersion of 3.1 km s−1, and evolved for 10 Gyr in a Milky Way–like potential, where they wrap the Galaxy multiple times. The top-left panel shows
the estimated density of the stream in r–f coordinates centered on the progenitor (orange star). The sequence of “scaffolding” orbits P is shown as a red line, with
ticks every kiloparsec indicating the direction of ê1. The lower-left panel shows the corresponding r–z view of the stream’s density (gray) and the scaffolding orbits
(red). On the right, two example locations along the stream connected by black lines to the r–f diagram display the density of a cross section of the stream (gray),
centered on P (red cross). For four points in each of these cross sections, the velocity structure of the stream is shown in adjacent plots (linear particle histogram in
color map). Finally, the lower-right panel shows the density of the stream per unit length along the stream dM/dℓ, with thin colored regions showing the ℓ range
covered by the five rectangles in the r–f and r–z diagrams.

12 Orbits around a galaxy are generally not closed because the period of radial
oscillation (2π/κ) is not the same as the period of the orbit around the galaxy
(2π/Ω), so the particle traces out a rosette pattern.
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frequency due to the self-gravity of the disk. The main structure
of the stream is traced well by the scaffolding orbits P, which
are shown as red curves in the left panels of the figure. The
gray histograms in these panels are linearly scaled and
populated by drawing 107 particles from the KDE and placing
them in one of 240 (in the f-direction) by 90 (in the
r-direction) bins, and one of 90 by 80 (in the z-direction) bins,
respectively. In other words, these plots are projections of the
density, ∫ρdz and ∫ρdf, respectively.

At several points along the stream we show the density of the
stream in cross section. Starting from the scaffolding orbits, we
evaluate the density on a grid aligned with ê1 and ê3. Since these
plots are slices rather than projections, no integration is necessary
and evaluation on a grid is efficient. Interestingly, the shape of the
cross section is not necessarily aligned with ê1 and ê3, since T

and L are not strictly interior or exterior to p. This is visible as
the direction of ê1, shown by the tick marks along the scaffolding
orbit in the top-left panel of Figure 2, changing directions. Within
the cross sections, we select a few points at random and show
projections of their velocity distributions ( | )ò v xf dv2 conditional
on their location and projected through ê2.

Finally, we show the line density of the stream, i.e., the mass
per unit length along the scaffolding orbits. For this calculation,
105 points are drawn from the marginal distribution ( ) ò=x vp fd .
Each point is then assigned to a location ℓ along the stream by
finding the ℓ that minimizes the distance between the point and
p. These values of ℓ are then plotted as a histogram.

Remarkably, the density of points tends to be greatest fairly
near the progenitor of the stream—despite the fact that in this
example model the progenitor has not produced any new ISOs in
10 Gyr, since its initial high-discharge/high-rate-of-supply
event. This density effect does not appear to be particular to
this particular time or stream. It seems to arise from the fact that
the modal angular momentum of particles ejected by the stream
is the same as the angular momentum of the progenitor itself.
This overdensity of stream material around the progenitor is
superficially similar to the proposed halo of ∼107 ISOs
gravitationally bound to the Sun (J. Peñarrubia 2023), with this
number set by an equilibrium between new gravitational
captures and tidal removals. However, that ISO halo calculation
did not include the effects of streams, and our calculations do not
include the self-gravity of the progenitor. Depending on σ0 and
the age of the stream, the stream overdensity may be much larger
or smaller than the halo of ISOs. There are also around a dozen
other peaks in the line density distribution, which likely
correspond to pericenters and apocenters of the scaffolding
orbits, and extrema of the vertical motion of the stream particles.

We simulate a variety of streams to understand how their
properties (e.g., length, width, density distribution) scale with
input properties (e.g., σ0, progenitor orbit, and progenitor
mass). For most of our sample of simulated streams, the
progenitor of each stream is a star on a Sun-like orbit, with each
stream simulating a different σ0. Two streams with cluster
progenitors are simulated. Additionally, we explore the effect
of orbital eccentricity by simulating two streams with
progenitor orbits closer to circular: the thin-disk-like stream
(labeled “Thin Disk”) has a velocity difference from circular
0.31 that of the Sun’s deviation from circular, and the stream
labeled “Circular” is just on a circular orbit. A stream with
triple the Sun’s peculiar velocity is also simulated (labeled
“Thick Disk”). Finally, the streams labeled “1 Gyr” and
“4.4 Gyr” extend the time for high rate of supply of the ISOs,

setting tf–t0 = 1 Gyr or 4.4 Gyr, respectively, whereas all other
streams have the short supply time of tf−t0 = 10Myr.
We are particularly interested in the mass-weighted density

probability density function (pdf) of the stream (Figure 3),
since the distribution will be crucial in the next section. We
denote this quantity ( ) /r rºp dM dlog log10 10 à: the distribu-
tion of mass in the stream per unit log-density. Equivalently,
this is the distribution of log-densities within which a randomly
drawn ISO from the stream will be present. We normalize this
distribution so that ( )ò r r =p dlog log 110 10 . Examples of the
density pdf are shown in Figure 3. In the left panel, a single
stream’s pdf is shown at a logarithmically spaced sequence of
times from 108 to 1010 yr. On the right, density pdfs are shown
for a wide variety of streams (detailed below), with the density
normalized to ρ0(t, σ), to be defined momentarily.
Figure 3 demonstrates that the density pdf is well fit by a

generalized gamma distribution, namely a power law with an
exponential cutoff in rCGG (as opposed to just ρ for an ordinary
gamma distribution). The full pdf is

( ) ∣ ∣
( )

( ) ( ( ) ) ( )/ /=
G

--p x
C

A
x B x Bexp , 3A C CGG

GG
GG

1
GGGG GG GG

where AGG and CGG are shape parameters, BGG is the overall scale
corresponding to the location of the exponential cutoff, and the
first factor just normalizes the distribution. ( ) òG =

¥ - -x t e dtx t
0

1

is the gamma function. Based on Figure 3, most of the time the
mass-weighted distribution of ρ can be fit with AGG ∼ CGG ∼ 1,
and ( ) [( ) ]r s s k n= º - - -B t t, 2.5GG 0 0 0

3 1 1 1. This scaling is
plausible, based on the rule of thumb that the width of a stream is
∼σ0/κ (R. G. Carlberg & H. Agler 2023), its height is ∼σ0/ν,
and its length is ∼σ0t. The peak of the density distribution
will then occur at the mass of the stream divided by the volume,
since we have normalized the mass to 1, ρ ∼ 1/V, and the
volume s k n~ - -V t0

3 1 1 .
To test whether our streams obey these relationships, we

measure their width, height, and length (Figure 4; a given stream
has the same color in both Figure 4 and the right panel of
Figure 3). We also measure their velocity dispersions, and the
best-fit generalized gamma distribution parameters, at a variety
of times randomly selected between 0 and 10Gyr. The width,
height, and length are estimated by drawing 104 samples from
the KDE. Each sample’s ℓ-coordinate is found by minimizing the
distance to the scaffolding orbit ( ) ℓp . The sample’s position is
then projected onto the stream coordinate system e1(ℓ), e2(ℓ), and
e3(ℓ), yielding a position relative to the stream. The mean
velocity at that location is estimated by drawing an additional 10
samples from the conditional distribution ( | )v xp . The offset of
the particle’s velocity from this mean is then projected into the
stream coordinate system. We then define the stream's width W
as the standard deviation of the samples’ e1 coordinates, the
stream’s height H as the standard deviation of the samples’ e3
coordinates, and the stream’s length L as the standard deviation
of the samples’ ℓ coordinates. These lengths are compared to
σ0/κ, σ0/ν, and σ0t, respectively. We find reasonable agreement
over 4 orders of magnitude, which explains why the best-fit
1/BGG values correspond reasonably well to ρ0.
The velocity dispersions along the width and height of the

stream, which we call σW and σH, correspond well to σ0. This
justifies our use of σ0 in the comparison to the stream’s
physical dimensions. The velocity dispersion along the
direction of the stream, σL, is considerably lower than σ0 for
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most values of σ0. This is because the particles at a particular
location along the stream are there specifically because of their
velocity along the path of the stream. Eventually, σL does
approach σ0, when the stream begins to wrap around the
Galaxy and intersect itself.

3. Population Model

The population of ISOs observed in the solar system will
originate from a variety of streams, each of which will have its
own velocity dispersion, lifetime, heating history, and
progenitor (see Figure 5). Given our understanding of the
fundamental properties of streams, we now aim to predict how
streams will affect the population of ISOs encountering our
solar system. At the most basic level, we would like to know
how many streams contribute to the populations of ISOs
visiting the solar system. If this number is very large, each ISO
is likely to come from a different stream, whereas if a few
streams dominate, we would see ISO “siblings,” that is,
multiple ISOs from the same stream. In the most extreme case
where multiple ISOs come from a dynamically cold stream,
they may appear as “twins”: ISOs with very similar incoming
velocities and radiants.13 In order to compare the relative

properties of each population model in this section, we will
normalize the total rate of ISOs entering a sphere of

=q 5max au around the Sun to 10 yr−1. This is a broad-brush
approximation to the estimates of the background number
density of ISOs and the ability to find ISOs of a decade-long
survey such as LSST. A more detailed accounting would
depend on ISO orbits, size distributions, and observing strategy
(R. C. Dorsey et al. 2025).
At an order-of-magnitude level, the number of streams

contributing to the ISOs encountering the solar system is just
the “volume” of a typical stream multiplied by the number
density of progenitors, nprog.

14 Figure 4 demonstrates that
streams have a width of order σ/κ, a height of order σ/ν, and a
length of order στ, where τ is the stream’s age. The number of
streams is therefore of order

( )

p s tk n

s t

~

~ ´
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3 1 1
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⎛
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where we have adopted solar-neighborhood values for
( )/k » -2 220 km s 8 kpc1 and ( )n p» -G M4 0.1 pc 3 .

Figure 3. Mass-weighted density distribution of ISO streams. The left panel shows the evolution of one stream (with σ0 = 3.1 km s−1 and Mprog = 1 Me), and the
right panel shows the pdfs for a wide range of streams, where the density is normalized to ρ0. In the left panel we also show the generalized gamma fits to each time’s
pdf as dashed lines. For the t = 10 Gyr line we also show as a black dashed line the distribution of densities if the ISOs were distributed in a 3D Gaussian in space.

13 As far as our models are concerned, any binary ISO would be considered
here as a single ISO for its dynamics in the Galaxy and encounter rate with the
Sun; its components would not count as siblings in the sense we use throughout
this paper.

14 Streams do not have sharp edges, but there is a well-defined peak in the
density distribution (Figure 3), so volume is a fuzzy but meaningful quantity.
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If we expect to observe NISOs ∼ 100 ± 1 dex ISOs over the
course of the next decade, the large prefactor, 2 × 105, in our
estimate of Nstreams tells us that for the reasonable values we
have adopted here, NISOs = Nstreams, in which case we might
expect streams to have relatively little effect on the observed
distribution of ISOs. Several distributional effects may act to
soften this conclusion, however. First, nprog may be much lower
than the fiducial value we have adopted if ISOs essentially
originate in clusters, rather than from individual stars. This
scenario is reasonably likely, given both that most stars form in
clusters and that we expect most ISOs to be ejected early in the
lifetime of a star at velocities low enough to be bound by the
cluster. In this case, the effective number density of progenitors
may be reduced by a factor of order 〈M*〉/〈Mcluster〉, the ratio
of the average mass of individual stars drawn from the initial
mass function (IMF) to the average mass of the initial cluster
mass function. To distinguish between ISOs from the same star
and ISOs from the same cluster, we refer to the former as
siblings and the latter as cousins. The number of ISO siblings
or cousins varies substantially depending on the parameters of
the population model, and therefore may be used to distinguish

between them, if two ISOs can be determined to be siblings or
cousins observationally.
The estimate of Equation (4) also assumes that all streams

are sufficiently similar that we can use a single value of each
quantity, whereas the population of streams should have a wide
range of ages and may be characterized by a wide range of
velocity dispersions. Even within a single stream, Equation (4)
assumes that the density of ISOs is uniform, whereas, as we
saw in the previous section, ISO streams likely have a wide
range of densities encompassed in their “volumes” (Figure 2;
see also S. Portegies Zwart et al. 2018). Any high-density, low-
velocity-dispersion, young contribution to the stream
(Section 4.1) may therefore have an outsized effect, producing
ISO siblings or twins. In the other direction, streams’ velocity
dispersions will increase over time as they encounter perturbers
along their orbits in the Galaxy.
To account for these effects, we construct a Monte Carlo

model to draw ISOs from the Galactic population. We assume
that each progenitor generates a number of ISOs proportional to
the mass of the progenitor, and that these ISOs form a stream.
For now, we neglect the complication that each stream may be
composed of multiple components. Rather, we take each stream

Figure 4. Summary of ISO stream morphologic properties. The top four panels compare the width, height, length, and peak density of a set of simulated streams to
rules of thumb for each of these quantities. In the bottom row, the velocity dispersion along the three different axes of the stream is compared to the initial velocity
dispersion σ0. The bottom-right panel shows the shape parameters of the density distribution. In each panel, five points are shown for each stream, corresponding to
five randomly selected times between 0 and 10 Gyr. For the most part we expect streams to follow the 1:1 line shown in these panels, and for the most part they do,
over 3+ orders of magnitude. The exception is σL, the velocity dispersion along the stream direction, which is typically far less than σ0, since a particle’s position in
the stream is primarily determined by its velocity in this direction. Note that for plotting clarity we have included a small random scatter of 0.07 dex on the x-
coordinates of points where the x-axis is σ0 times a constant, since many points have identical values. In the last panel comparing the shape parameters of the
generalized gamma distribution, we include dashed gray lines at y = x/2, y = x, and y = 2x.

8

The Astrophysical Journal, 988:121 (21pp), 2025 July 20 Forbes et al.



to be isothermal, characterized by a single age τ that we take to
be equal to the time between the birth of the star or cluster and
the present day,15 a velocity dispersion σ, a progenitor velocity
vprog, a progenitor massMprog, and three numbers characterizing
the stream’s generalized gamma density distribution (Table 1).
Draws from the Monte Carlo distribution proceed as follows.
First, a set of progenitor properties is drawn. The mass of the
progenitor is drawn from a P. Kroupa (2001) IMF for the
single-star models, or for the cluster cases, a power-law
distribution between Mmin and Mmax with a slope β so that
the number of clusters per unit mass dN/dM ∝ M β for

< <M M Mmin max. The typical velocity of the stream in the
local standard of rest (LSR) is taken to be a 3D isotropic
Gaussian with a one-dimensional velocity dispersion σprog; this
distribution can be made more realistic in the future following
M. J. Hopkins et al. (2025). It is important to note that the
distribution of velocities in the solar neighborhood is likely to
be affected by resonances with the bar (e.g., E. Moreno et al.
2021; A. M. Dillamore et al. 2024). Our adopted density
structure for each stream (see Section 2), which may also be
affected by the bar (e.g., S. Pearson et al. 2017), may therefore
need to be altered for certain parts of the local velocity
distribution. We expect that this will be a second-order effect
(that is, adopting a velocity distribution that more closely
matches the Gaia data following M. J. Hopkins et al. 2025 will
be more important), but given that the origins of the structures
in velocity space are not well understood, these effects may
matter more than we expect. The age of the stream is drawn

uniformly from 0 to 12 Gyr, reflecting the roughly constant star
formation history expected for the Milky Way (e.g., R. Schö-
nrich & J. Binney 2009). Note that the progenitor star or cluster
does not need to still be extant for the ISO stream to persist, so
it is the star formation history, not the age distribution of
current stars, that matters (C. Lintott et al. 2022; M. J. Hopkins
et al. 2023).
Each stream is then assigned a value of σbirth, the spread of

ISO velocities at the moment of their ejection. These values are
drawn from a log-normal distribution characterized by a
median σbirth,med and width sbirth,stdev given in dex, with a
floor at the Keplerian velocity of the progenitor star at its tidal
radius with respect to the Galaxy:

( )


/

= = -v
GM

r

M

M
0.055 km s

1
. 5T
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prog 1 prog
1 3
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⎛
⎝
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Here we have reused rL from Equation (1), and adopted solar
circle values for Ω = (220 km s−1)/(8 kpc) and k = W2 .
We then assume that the stream is subject to dynamical

heating as it evolves in the Galactic disk. As a first
approximation, we assume that the heating follows a power-
law index αH so that after some time t a stream which began
with a velocity dispersion σbirth ends up with a velocity
dispersion

( ) ( )/ /s s= +a a
a

-
t

14 Gyr
35 km s . 6birth

1 1 1H H

H

⎜ ⎟
⎛
⎝

⎞
⎠

A constant heating rate, i.e., /s =d dt const.2 , would corre-
spond to αH = 0.5. If the observed age–velocity dispersion
relation (AVR) of stars in the solar neighborhood is purely the
result of heating by the disk, then αH could be read off from the

Figure 5. Interstellar object streams across the Galaxy. To visualize the wide range of streams that may intersect the Sun at any given moment, we show a small
representative population of 160 progenitors (the black points) with 120 ISO tracer particles per progenitor shown in blue. This is a top-down view of the Galaxy, and
the circles show circles of constant Galactocentric radius in intervals of 2 kpc. The progenitors are drawn from a uniform distribution in radius. Three streams are
highlighted for demonstration in other colors (purple, red, and maroon). The Sun’s orbit is shown in orange, and the streams here have evolved for 40 Myr (left) and
198 Myr (right). The orbits of the particles are highly idealized, since the potential (MW2014 from J. Bovy 2015) is axisymmetric and does not evolve with time. The
most dramatic effect missing from this visualization is likely that particles within the region affected by the bar (r  4 kpc; J. Bland-Hawthorn & O. Gerhard 2016)
will be redistributed by resonances with the bar’s orbit (e.g., E. Athanassoula 2013).

15 Note that this is slightly different than our setup in the simulations of
individual streams, where we initialized particles at a range of times; for the
population models, we assume the ISOs are released in a single burst for
simplicity.
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slope of this relation, and » 1, so that over 14 Gyr the
velocity dispersion would increase to ≈35 km s−1. We note
however that there are alternative explanations for the AVR,
including the possibility that older stars were born dynamically
hotter (e.g., F. Bournaud et al. 2009; J. Forbes et al. 2012). In
this case,  1.

We assume then that the density distribution associated with
each stream is given by a generalized gamma distribution, as
discussed in Section 2 (see Figure 3). The shape parameters are
drawn from normal distributions, as is the scale parameter
BGG/ρ0. Each of these normal distributions is truncated at 0.01
to ensure the distribution parameters remain positive.

For each sampled stream we now draw a rate i of
encounters with the solar system, where, as we chose earlier,
the ISO has some pericenter less than =q 5 aumax . The rate of
encounters with the stream is

| | ( )


p r= +

⋅
 vq

G M

q v

M

M
1

2 1

1
. 7i irelmax

2

max rel
2

prog
⎜ ⎟

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥

The first factor, in square brackets, is the velocity-dependent
cross section for an ISO to interact with the solar system
including gravitational focusing from the Sun. The rate is this
cross section times the relative speed of the ISOs and the Sun,
multiplied by the density of ISOs. The velocity is estimated as

(( )) ( ) s= - + v v v , 8irel stream 2,

where ( ) = -v 11.1, 12.4, 7.25 km s−1 is the Sun’s velocity in
the LSR (adopted from J. Bland-Hawthorn & O. Gerhard 2016),

and the third term accounts for the additional random velocity
from the stream’s internal velocity dispersion. In particular,  i2,

is a draw from a two-dimensional (2D) Gaussian with a
covariance matrix equal to the identity matrix. This 2D vector is
then oriented randomly in three dimensions, to model the fact
that each stream’s velocity dispersion is large and comparable to
σ0 perpendicular to the stream’s scaffolding orbits, but small
along the direction defined by those orbits. The density ρi is
drawn from the mass-weighted density function of the stream as
modeled by the generalized gamma distribution, accounting for
the fact that the Sun could be at any of a range of densities
within the stream. Since we have normalized the stream density
distribution such that it integrates to a single ISO, we need to
multiply by the typical number of ISOs per solar mass, which we
denote  . For now we set this equal to 1016, but to facilitate
model comparison, we will adjust it for each population model
such that the total rate of ISO encounters with the solar system is
10 yr−1 (see below).
The Sun is not more likely to encounter a dense part of an

ISO stream than a less dense part, so to draw a fair sample of
rates we would need to sample ρi from the volume-weighted
density distribution of the stream, not the mass-weighted
distribution. To avoid drawing many low-density encounters,
however, we instead draw from the mass-weighted distribution,
but weight each draw by /r= 1i i, i.e., dV/dM. One
additional complication of drawing the ρi is that because
AGG ∼ 1, many draws will have AGG < 1, which implies that
the volume-weighted pdf of ρ diverges at low densities or high

Table 1
Parameters for The Population Models of ISO Streams

Model Prog. Mass Heating σ0
a σprog

b Density Distr.c  d/1016 E(rel.|102ISOs)e

0 Kroupa = 0.1 vT 30 def 1.53 0.59
1 Kroupa = 1 3 km s−1 ± 0.3dex 10 def 2.45 0.044
2 Kroupa = 1 vT 30 def 1.40 0.19
3 Kroupa = 1 vT 30 /r r = -10min 0

6 1.22 0.29

4 Kroupa = 1 3 km s−1 ± 0.3dex 30 def 1.57 0.041
5 Kroupa = 0.5 3 km s−1 ± 0.3dex 30 def 1.78 0.063
6 Kroupa = 1 3 km s−1 ± 0.3dex 30 def 1.70 0.027
7 Kroupa = 1 10 km s−1 ± 0.3dex 30 def 1.71 0.025

8 b= = = -M M10 10 2min
2

max
6 = 0.5 3 km s−1 ± 0.3dex 10 BGG/ρ0 = 0.4 2.52 7.85

9 b= = = -M M10 10 2min
2

max
6 = 1 1 km s−1 ± 0.3dex 10 BGG/ρ0 = 0.4 2.05 5.02

10 b= = = -M M10 10 2min
2

max
6 = 1 3 km s−1 ± 0.3dex 10 BGG/ρ0 = 0.4 2.50 3.02

11 b= = = -M M10 10 2min
2

max
6 = 1 3 km s−1 ± 0.3dex 30 BGG/ρ0 = 0.4 1.75 3.11

12 b= = = -M M10 10 2min
2

max
6 = 1 3 km s−1 ± 0.03dex 10 BGG/ρ0 = 0.4 2.34 4.64

13 = = -M M10 10 1.5min
2

max
6 = 1 1 km s−1 ± 0.3dex 10 BGG/ρ0 = 0.4 2.02 10.63

14 = = -M M10 10 2.5min
2

max
6 = 1 1 km s−1 ± 0.3dex 10 BGG/ρ0 = 0.4 2.13 1.02

15 b= = = -M M10 10 2min
3

max
6 = 1 1 km s−1 ± 0.3dex 10 BGG/ρ0 = 0.4 2.34 6.08

16 b= = = -M M10 10 2min
2

max
6 a= = 1 0.3H 1 km s−1 ± 0.3dex 10 BGG/ρ0 = 0.4 2.33 3.78

Notes.
a The initial velocity dispersion of the stream is drawn from a clipped log-normal distribution with these parameters; any values below vT are replaced with vT.
b The velocity dispersion of the progenitor population (in kilometers per second).
c
“def.” refers to default values, namely AGG = 1 ± 0.1, CGG = 1 ± 0.1, BGG/ρ0 = 1 ± 0.1, and /r r = -10min 0

6.
d Adjusted value of  such that the total rate of ISO encounters for each population is 10 yr−1.
e Expected number of progenitor relatives (cousins or siblings) in an ISO population of 100, i.e., after 10 yr.
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volumes. We therefore impose a minimum density of /r rmin 0
of order 10−4, since the very-low-density end of the pdfs is
affected by shot noise in the finite sample of ISO tracer
particles we use to evaluate the stream density distributions.

For each population model, we can now construct the rate
distribution (Figure 6). We would like to know the total number
of streams, and the total rate , and how these two quantities
are distributed as a function of the rate from each stream
stream. The cumulative distribution of the number of streams,
i.e., the number of streams with an encounter rate greater than
stream, is

( )
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wherei andi are the samples we have drawn, Nsamples is the
number of samples we have drawn, and  is an indicator
function, which is 1 when the condition in the subscript is true
and 0 when it is false. The number density of progenitors, nprog,
converts the weights from a volume to the number of
progenitors (and hence streams) contained within such a
volume. We adopt
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where the numerator is the density of stellar mass and remnants
in the solar neighborhood (C. F. McKee et al. 2015) adjusted
upwards by a factor of 2 to account for the past mass loss of

stars over the course of their lifetimes (B. M. Tinsley 1980;
S. N. Leitner & A. V. Kravtsov 2011; M. J. Hopkins et al.
2023). The denominator is the average mass of the progenitors
at the time of their birth in the model being considered.
Similarly, the cumulative rate, i.e., the contribution to the total
rate  from streams with individual rates greater than stream,
is
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These distributions are shown in the right two panels of
Figure 6, along with the corresponding pdf of the

( )Nstreams stream distribution (left panel). The model parameters
for each line are shown in Table 1. We remind the reader that
each population model is adjusted as follows so that the total
rate of ISOs that encounter the solar system with pericenters
below =q 5max au is 10 yr−1, roughly a rate and observable
volume plausible in LSST. To adjust the models to meet this
constraint, we could in principle alter any of the three factors in
Equation (11). However, nprog is well constrained by observa-
tions, and the i follow immediately from ρi; the clearest
quantity to adjust is  , a factor of i—which represents the
number of ISOs produced per solar mass of progenitor. Note
that we make no dependence on the number density–mass
density relationship of ISOs per progenitor (’Oumuamua ISSI
Team et al. 2019), i.e., no ISO size–frequency distributions are
implied. The factor by which  , and hence the overall rate ,

Figure 6. ISO stream rate distributions for normalized-rate q � 5 au solar system encounters over 10 yr. As a function of the ISO production rate of individual streams,
stream, we show the number of streams per dex instream (left panel), the cumulative rate of ISOs from all streams with rates greater thanstream (middle panel),
and the cumulative number of streams with rates greater than stream (right panel). Each curve represents a different population model listed in Table 1, with dashed
lines showing models where the streams are produced by individual stars, and solid lines showing models where streams are produced by clusters. To aid in
interpretation, we include a vertical line in each plot at = - 0.1 yrstream

1, which is the rate necessary for any one stream to be reasonably likely to produce multiple
observable ISOs in 10 yr. We also show a horizontal line at a cumulative rate of ( ) = -  10stream

2 in the center panel, indicating where the cumulative rate has
become so low that streams are unlikely to contribute a single ISO in a sample of 103 ISOs. Finally, we show where Nstreams drops below 0.5 in the right panel,
indicating that for a given population model no stream of such a high rate is likely to currently contain the Sun. Models with more of their curves in the upper-right
corners of the right two plots, as defined by these vertical and horizontal lines, are more likely to produce multiple ISOs from the same stream.
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is adjusted for each population model is shown in Table 1, and
is typically about a factor of 2.

The cumulative ISO encounter rate and number of streams
split up bystream, namely the right two panels of Figure 6, are
an intermediate step between drawing the sample values of i
and deriving the statistics of how frequently a given population
model will produce ISO cousins or siblings, which we do
below. Nonetheless, we can use these distributions to read off
which models are likely to produce cousins or siblings that
enter our assumed observable sphere (perihelia �5 au). In order
to do so, there needs to be a stream that (A) has a high enough
rate that it can produce multiple ISOs in a reasonable amount of
sky surveying time, and (B) has a high probability of
interacting with the solar system at any given time. These
conditions are shown as vertical and horizontal lines,
respectively, in the rightmost panel. Populations of streams
are more likely to produce cousins or siblings if their
distribution includes a component in the upper-right corner of
this plot. Note that the vertical line is quite conservative, since
all streams to its right are reasonably likely to produce a sibling
or cousin in a 10 yr survey,16 whereas many more streams, to
the left of our vertical line, each have a (smaller) chance of
contributing multiple ISOs.

We can now use the rate distributions to draw sample
populations and determine how common siblings and cousins
are. A stream with a given stream has a probability of
producing cousins or siblings of

( ∣ ) ( ) ( )
( )

/ l l l= - - - -P siblings cousins 1 exp exp ,
12

stream

withl =  Tstream survey, and Tsurvey, the duration of the survey, set
equal to /N ISO . Therefore, in each bin of the rate distribution
we can compute how likely streams in that bin are to produce
cousins or siblings. For each bin, we separately draw the number
of streams in that bin, in this instance from a Poisson distribution
with expected value ( )/ D dN d log logstreams 10 stream 10 stream,
where the first factor is the height of the histogram in the left
panel of Figure 6, and the second factor is the bin width in dex.
Now, for each bin we can draw from a binomial distribution with

( ∣ )/= p P siblings cousins stream and n equal to the number of
streams in the bin, which we just drew. This binomially
distributed variable is the number of streams that produce siblings
or cousins in this bin. For each bin with such a stream, we can
now draw from our sample of rates i in that bin to record the
properties of the stream that produced the cousins or siblings.

Counting up the streams with cousins or siblings and their
properties, we see a similar dichotomy to that shown in the rate
distributions. Figure 7 shows, as a function of the number of
observed ISOs, the total number of cousins or siblings in the
observed sample, the fraction of the sample made of cousins or
siblings, and the maximum number of ISOs from a single
stream in the sample. Each curve is produced by averaging
5 × 104 realizations of the observed population, as described
above; so for instance in the top-left panel, y-values of 0.1
should be interpreted to mean that that population will produce
a sibling or cousin ≈10% of the time for the given sample size
of ISOs. We see that streams produced by clusters have a much
higher propensity for producing cousins than stars do for

producing siblings, as we expected based on our earlier order-
of-magnitude considerations: There are more ISOs in each
stream by a factor of the ratio of the average mass of clusters to
the average mass of individual stars ∼104 Me/0.4 Me,
depending on the mass functions. This effect may be offset
if, for example, the cluster streams have higher velocity
dispersions on average. We also see that the trend with the
number of observed ISOs in each plot is basically linear. This is
to be expected in the limit that cousins or siblings make up a
small fraction of the total ISO population. Even in the most
extreme case (Model 13), cousins only make up ∼30% of the
ISO sample for a sample of 103 ISOs. Generally, the fraction of
ISO relatives increases with the number of ISOs, since
ultimately all ISOs have a large number, ( )/ M M1prog ,
of relatives.
To investigate which streams end up contributing to the ISO

population and the population of cousins and siblings, we can
use our simulations of the populations of each to sample from
the joint distribution of all stream properties, namely progenitor
mass, the time since ejection, the velocity dispersion of the
stream, the initial velocity dispersion of the stream, the density
parameters, and the LSR velocity of the stream at its
intersection with the Sun. In Figures 8 and 9, we show a few
key summaries of these distributions for two models: a single-
star model and a cluster model, respectively. These histograms
show that siblings and cousins are qualitatively quite different.
Both populations are biased relative to the total ISO population
toward the most massive progenitors, though we caution that
this is just the result of our earlier assumption that the number
of ISOs scales with the mass of the progenitor. (It is plausible
that the contributed ISOs of a progenitor have a size–frequency
distribution that depends nonlinearly on progenitor mass; we
explore effects on our modeling in Section 4.2.) In the unlikely
event that an ISO sibling is present in a sample of 100 ISOs, it
must have come from a denser stream, meaning that the age,
velocity dispersion, and their product, the typical distance to
the progenitor star, must all be relatively low. Since in our
models a sample of 100 ISOs is highly likely to contain
cousins, the cousins end up tracing a similar set of streams to
the underlying ISO population, though this bias toward
younger and lower-velocity-dispersion streams is still present.
We find that in most models the typical distance to the

progenitor of an ISO along its stream, namely σt, is of order
100 kpc, with a tail extending down to ∼1 kpc. Attempts to
integrate the trajectory of observed ISOs backwards in time to
discover their progenitor system were made for 1I and 2I
(E. Gaidos et al. 2017; S. Portegies Zwart et al. 2018;
C. A. L. Bailer-Jones et al. 2018; J. I. Zuluaga et al. 2018;
P. A. Dybczyński & M. Królikowska 2018; Q. Zhang 2018;
C. A. L. Bailer-Jones et al. 2020; T. Hallatt & P. Wieg-
ert 2020). Our progenitor distances suggest such approaches
will generally not be successful. These works attempting to
trace 1I/’Oumuamua typically acknowledged the difficulty for
timescales longer than a few tens of Myr, due to perturbations
in the trajectory from giant molecular clouds (GMCs) and other
nonaxisymmetric features of the potential. One may also
interpret our result through the lens that typical ISOs in our
population models will have been orbiting the Galaxy for much
longer timescales. However, ISO siblings have much closer
typical distances, of order 100 pc, and may be more plausible to
retrace.

16 The probability is 1 − P(0) − P(1), where P(x) is a Poisson distribution with
expected value λ = 1 = (10 yr) × (0.1 yr−1), i.e., 26%.
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4. Discussion

The primary observational consequence of ISOs existing in
streams rather than as a uniform background is the possibility
that we may observe multiple ISOs from the same stream. The
ISO population of the Galaxy should be viewed as a rich
tapestry of overlapping streams that is the outcome of
generations of planetesimal formation. However, to continue
our earlier metaphor, drops of water in the mighty river do not
trace back to each mountain peak. Instead, it is catchment flow
and rates that need to be considered, and these are what inform
understanding of the time-dependent system evolution.

ISO streams are governed primarily by their internal velocity
dispersion σ. In our population models, σ is set by a
combination of its initial value σ0, namely the typical spread
in velocities ISOs have when they are ejected from their
progenitor system, and the dynamical heating prescription,
which increases σ over time. For reasonable parameter values,
both σ0 and the heating rate appear to have comparable effects
on the statistical distributions of cousins and siblings. The
single-star model with the greatest chance of producing a
sibling within a sample of 100 ISOs is Model 0. This model has

a heating rate = 0.1, a tenth of the value motivated by
comparison with the AVR, and an initial velocity dispersion vT,
which is the minimum plausible value, corresponding to ISOs
becoming unbound from the star’s Oort cloud due to small
perturbations. Increasing  and σ0 reduces the incidence of
ISO siblings by about a factor of 3 for each effect, due to the
lower prevalence of dense, cold ISO streams.

4.1. Ejection Mechanisms

How plausible are the various distributions of σ0 and ?
First, focusing on σ0, the typical values we have assumed in
many of our population models are ∼1–3 km s−1, and in all
cases we have assumed that the ISOs are ejected with this
velocity immediately upon the star’s or cluster’s birth. These
choices rely heavily, but by no means exclusively, on the high-
fidelity inferred histories available for the small-body popula-
tions of the solar system. They are based on dynamical
simulations that variously reproduce the properties of the
planets, the trans-Neptunian objects (TNOs), and the Oort
cloud (J. H. Oort 1950; N. A. Kaib & T. Quinn 2009). For a

Figure 7. Properties of the ISO “relatives” (cousins or siblings) as a function of the observed sample size of ISOs. The top-left panel is the expected number of ISO
relatives in the observed population, the top-right panel is the fraction of the sample composed of relatives, and the bottom panel shows the maximum number of ISOs
from a single stream. Each line is the average of many simulated sample populations given a population model (see Table 1). Solid lines show cluster progenitors, and
dashed lines show single-star progenitors. Vertical lines are included at 102, corresponding to 10 yr of observations for these populations, all of which are normalized
to have a total rate of ISO encounters with the Sun of 10 yr−1. We also include horizontal lines at 1 in the first two panels, corresponding respectively to when ISO
relatives are likely to be seen and when 100% of the ISO population has an observed relative.

13

The Astrophysical Journal, 988:121 (21pp), 2025 July 20 Forbes et al.



recent review of Oort cloud formation and evolution, see
N. A. Kaib & K. Volk (2022).

The mechanisms by which ISOs may be ejected from their
host-star system act at different times through a given star’s
life, so we consider the individual events that can unbind
planetesimals, beginning at the point where planetesimals have
formed. Within the first 1–10Myr, the major event is the
dispersal of the gas disk (e.g., M. J. Pecaut & E. E. Mamajek
2016; M. Ansdell et al. 2017; S. Pfalzner et al. 2022). Close
stellar flybys, largely in the birth cluster, produce asymmetric
sprays of unbound objects at ∼3 km s−1 (L. Jílková et al. 2016;
S. Pfalzner et al. 2021), while emplacing orbits akin to extreme
TNOs (S. Pfalzner et al. 2024). The dynamical instabilities of
planetary systems are more energetic; current explorations
suggest ISO velocities of 5–10 km s−1 (F. C. Adams &
D. N. Spergel 2005). Instabilities can be triggered by the gas-
disk dispersal (S. N. Raymond & A. Izidoro 2017), or from
resonant perturbations—in which case, they can most likely be
expected within the first few tens of Myr of a system's life
(D. Nesvorný 2018). Together, these processes may remove
the majority of a system’s planetesimals; for instance, in
one particular model of the solar system’s history, ∼90% of the
objects ejected from the inner parts of the star system are fully
ejected from the system (L. Dones et al. 2004). Some 5%
remain in the Oort cloud—perhaps only 1011 comets
(J. H. Oort 1950). We can therefore treat the primary source
of a stream as occurring as a high-rate-of-supply event: either a
single major event, or a sequence of events of similar order of
magnitude, spaced closely in time.

An additional factor then comes into play: Galactic tidal
unbinding during the main-sequence lifetime will continuously
erode a small fraction away from any Oort cloud (J. Heisler &
S. Tremaine 1986; D. Veras et al. 2014; S. Torres et al. 2019).
The newly unbound ISOs will plausibly have very low velocities
comparable to vT, analogous to stars from clusters at velocities
comparable to the internal velocity dispersion of the clusters
themselves (e.g., K. V. Johnston 1998; N. C. Amorisco 2015).
This means that both progenitor situations, individual star
systems and clusters, will provide an ongoing low-rate-of-supply

“trickle” of dynamically cold ISOs into their stream.17 The low-
rate-of-supply “trickle” is however a fractionally small quantity
per system, as it comes from the 1011-strong population
retained in each progenitor’s Oort cloud, which itself was
merely ∼1%–5% of the initial planetesimal population
(J. A. Fernandez & W. H. Ip 1981; L. Dones et al. 2004;
N. A. Kaib & T. Quinn 2008). Regardless of the dynamical
heating that a progenitor’s initial stream has experienced over
time, this continuous low-σ contribution will be present—as
long as the system has an Oort cloud.
The frequency of exo-Oort clouds throughout the Galaxy is

little constrained by observation. The Oort cloud presence is
theoretically probable, though challenging to confirm observa-
tionally (E. J. Baxter et al. 2018); it is strongly suggested by the
widespread presence of exoplanetary systems (e.g., F. Fressin
et al. 2013; C. D. Dressing & D. Charbonneau 2013), the
abundance of debris disks around stars (e.g., G. H. Rieke et al.
2005), and potentially also the enrichment of white dwarfs
(J. H. Debes & S. Sigurdsson 2002). Oort cloud emplacement
is expected to occur early. If the system is embedded in a
cluster, this will likely be during the system’s residence in its
stellar birth cluster (though see S. Portegies Zwart et al. 2021).
Episodic higher-rate-of-supply events during Oort cloud

erosion will depend on the progenitor’s location in the Galaxy;
D. Veras et al. (2014) predict greater erosion from increased
flybys near the bulge, while encounters with field stars will strip
flyby-dependent fractions (J. Hanse et al. 2018; S. Pfalzner et al.
2021). Finally, post-main-sequence stellar mass loss will then
unbind much of the remainder of the Oort cloud, at velocities of
order vT (e.g., J. Parriott & C. Alcock 1998; D. Veras et al.
2011; D. Veras & M. C. Wyatt 2012; A. Moro-Martín 2019a;
W. G. Levine et al. 2023).
Given the remarkable inefficiency with which Oort clouds form

and the high rates of ejection early in each star system’s life, the
approximation that all ejections occur immediately upon the star’s
birth appears adequate; but this conclusion may yet be modified

Figure 8. Statistics of encountered “twin” ISOs for single-star progenitors (Model 1 in Table 1). Each panel shows the marginal distribution of the given quantity for
the progenitors/streams in gray, the ISOs encountered at the Sun in black, and the ISO siblings in red. The left panel shows the log of the progenitor mass, so gray is
the IMF, and black is the IMF weighted by Mprog, reflecting our assumption that the number of ISOs from a given progenitor is proportional to its mass. The age and
velocity dispersion of the stream are directly taken from the model, while the final panel showing distance to the progenitor, is estimated based as the product of the
age and velocity dispersion.

17 Unlike braided rivers, neither level of discharge creates any size–frequency
distribution sorting of the ISOs.
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upon further refinement of the model to include these effects. In
particular, by placing a substantial number of ISOs in effectively
younger, dynamically colder streams, we might expect more
siblings to be seen in future surveys than what we predict here.

Similarly, the early evolution of the streams is more complex
than what we have assumed in our population models. By
assuming that the peak in the density distribution occurs near
ρ = ρ0, we are neglecting the evolution of the stream on
timescales between the ejection timescale (tf–t0 in the language of
Section 2) and the timescale for the stream to obtain its full width,
∼κ−1. During these early times and the timescales where heating
has not yet had a chance to increase the velocity dispersion in all
directions (see next subsection), the density structure of the stream
is sensitive not just to the ejection velocity but also the time
dependence of ejections and their geometry, i.e., whether ISOs
retain a memory of the plane of their birth planetary system,
which would reduce the width of the stream in the direction
perpendicular to the planetary disk. Again, while these effects
only apply to a few percent of ISOs, the fact that they act in a
direction that makes the streams denser may affect the rate of ISO
siblings’ and cousins’ encounters with the solar system.

Another model refinement that may end up being important is
the unification of the models for the streams from star clusters
and from individual stars. At present our population models
assume that either all streams come from individual stars, or all
streams come from clusters. Physically these cases correspond to
the following two mutually exclusive possibilities:

1. Single stars. ISOs are ejected from individual stars at
velocities well in excess of any cluster potential, or later
than the typical cluster lifetime.

2. Clusters. All stars form in clusters, and ISOs are ejected
early enough and at low enough velocities that they mix
in the cluster before they eventually escape and/or the
cluster dissolves. Siblings from these stars will be
kinematically indistinguishable from their cousins.

In reality, neither of these scenarios is likely to be exactly
correct. Some stars will not form in clusters (e.g., C. J. Lada &
E. A. Lada 2003), and the ejection mechanism will not be so
uniform that all streams will fall into one category or the other.
We defer this unification into a single-stream population model
to future work.

In any case, the higher values of σ from the cluster streams
mean that ISOs from the same cluster may arrive in the solar
system with substantially different (of order σ) velocities and
radiants. In contrast, ISO siblings will be far closer together in
this parameter space, making it plausible that they could be
distinguished from chance alignments of unrelated ISOs, at
least probabilistically, purely based on their kinematics. It may
also be possible to chemically distinguish ISOs through their
surface composition or coma, such as that seen for 2I/Borisov
(e.g., T. Kareta et al. 2020; D. Bodewits et al. 2020;
M. T. Bannister et al. 2020). However, compositional
signatures open a broad field of additional complexity. With
current understanding of disk and planetesimal evolution, it is
not yet clear which paths will lead to clean distinctions, given
the compositional variation and evolutionary processing within
a disk, the variation between disks in a cluster, and the
variation between clusters. For example, ISO cousins may be
more or less compositionally similar to each other than
unrelated ISOs that happen to come from similar regions of
their respective protoplanetary disks (e.g., S. N. Raymond et al.
2020; R. Kokotanekova et al. 2023).

4.2. Dynamical Heating

We now turn to the question of dynamical heating, which is
of similar importance to the initial ejection mechanisms and
velocities. Our prescription is calibrated such that streams will
experience a constant heating rate—that is, a constant
dσ2/dt—for the default values of = 1 and αH = 0.5. For
these values, the magnitude of this heating is such that the
oldest stars in the Galaxy, assuming they are subject to the
same heating, would reach velocity dispersions of around
35 km s−1. This may be compared with the heating rate found
by C. G. Lacey (1984) in which GMCs are investigated as the
source of the AVR in the solar neighborhood (e.g., J. Holmberg
et al. 2009). Generally, the velocity dispersion of the test
particles (stars, or in our case ISOs) increases according to
dσ2/dt = D/σγ, where γ = 0 corresponds to a constant heating
rate, γ = 1 to the case where the scale height of the perturbers
is greater than the scale height of the test particles, and γ = 2 to
the more typical case that the perturbers have a smaller scale
height than the test particles. The velocity dispersion will

Figure 9. Statistics of encountered “cousin” ISOs for cluster progenitors (Model 15 in Table 1). Same as Figure 8, except that the progenitors here are star clusters
rather than single stars.
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therefore evolve as (( ) ) ( )/ /s g s= + + g g+ +Dt1 2 0
2 1 2 . The

magnitude of the heating for γ = 2 is

( ) ( )/ n» LD G M N2 3 ln . 13c c
2 2

Here Mc is the mass of the perturbers, Nc is the number surface
density of perturbers, Lln is the Coulomb logarithm, and  is a
correction factor that depends on the local shape of the rotation
curve. For a flat rotation curve, » 0.47. For a solar circle
surface density of ∼2 Me pc−2 (C. F. McKee et al. 2015)
divided among a population of GMCs of typical mass 106 Me,
subject to 10 Gyr of heating, with L »ln 3, this heating rate
only increases σ to about 12 km s−1. Moreover, γ = 2 implies
σ ∝ t1/4, which is likely lower than the observed value from
the AVR.

Substantial uncertainty in the appropriate values to use in the
heating rate (S. Ida et al. 1993), and the appropriateness of
assuming constant D (M. Aumer et al. 2016) mean GMCs may
still be an important source of dynamical heating. There are
also other sources of heating, including perturbations from
spiral arms, the bar, and even cold dark matter substructures
(J. Bovy et al. 2017; R. G. Carlberg & H. Agler 2023), in rough
order of likely importance.18 M. Aumer et al. (2016) argue that
molecular clouds likely play an important role in increasing the
vertical velocity dispersion, whereas spiral arms primarily
increase the velocity dispersion only in the plane of the Galaxy,
and these two heating mechanisms evolve in their relative
importance over the history of the Galaxy (see also A. Arunima
et al. 2025). Moreover, they argue that age uncertainties may
artificially lower the power-law index of σ’s variation with t, as
stars at intermediate ages are incorrectly assigned to both older
and younger populations. On top of uncertainties around the
heating rates, it is also possible for older stars to be born with
higher velocity dispersions (F. Bournaud et al. 2009; J. Forbes
et al. 2012), driven by a combination of more intense star
formation and feedback and greater degrees of gravitational
instability at high redshift (e.g., R. Genzel et al. 2014;
M. R. Krumholz et al. 2018; J. C. Forbes 2025). Given these
complications, we stick to a simple empirical relationship that
yields a realistically large velocity dispersion for the default
values, leaving the power-law scaling with t equivalent to our
free parameter αH. Reasonable values of  range from ∼0.1
(corresponding to heating from GMCs only) to ∼1 (the full
AVR is explained by heating of some sort), and αH is likely to
be between 0.25 (GMC heating only) and 0.5 (constant
heating).

An additional question is whether scattering off stars could
play a substantial role in dynamical heating. In the context of
stellar streams or the heating of the stellar disk, this possibility
can be dismissed by considering the two-body relaxation time
(J. Binney & S. Tremaine 2008). In our case, the masses of the
ISOs are instead far smaller than those of the GMCs, so we
confirm that stars do not substantially heat ISOs. For
interactions that can be described by a range of weak distant
interactions, we can use Equation (13) as a rough estimate. In
the modern Galaxy, the perturber mass of stars is ∼106 times
smaller than that of GMCs, while the number density of
perturbers is ∼106 × 102 times larger. Since D is proportional
to M Nc c

2 , the mass effect is far larger. While Lln is only a few

for the GMC case, it is closer to ≈17 in the stellar case,
assuming maximum and minimum impact parameters, respec-
tively, of »b 100 pcmax and ( ) ( /=b G M1 30min km s−1)2.
While this is a large difference, it is still not enough to
overcome the large difference in characteristic mass. Strong
scattering events (which ISOs encountering the solar system
are often experiencing, given that »b 1min au for the values
given above) are exceedingly rare, with any individual
ISO having a strong interaction with a star at a rate

∣ ∣p~ ~ - -
*n v b 10 yrrel min

2 16 1—6 orders of magnitude lower
than the rate necessary for the typical ISO to experience such
an interaction in the history of the Universe. A small subset
of these ISOs will collide with the star (J. C. Forbes &
A. Loeb 2019).
An important aspect of the various Galactic heating

mechanisms is that they act differently in the vertical and in-
plane directions. Moreover, the predictions for disk heating are
not necessarily directly applicable to streams, because the
distribution function of the stream is not the same as that of a
stellar disk. We have also assumed that we can describe the
properties of a stream by a single value of σ at each time. While
this is consistent with our unheated streams from Section 2, we
have not shown that streams subject to heating can still be
described so simply. We have also modeled each progenitor as
producing exactly ( )/ M M1prog ISOs. The number of ISOs
produced per unit of host stellar mass may, however, be subject
to variation (A. Moro-Martín 2018; ’Oumuamua ISSI Team
et al. 2019), e.g., if some properties of 1I/’Oumuamua are
explained by tidal disruption events in the progenitor systems
(M. Ćuk 2018; Y. Zhang & D. N. C. Lin 2020). In such a case,
a progenitor could produce different numbers of ISOs. We have
experimented with this effect by multiplying each stream’s
value of  by a number drawn from a log-normal distribution
with scatter s , then renormalizing them such that

= - 10 yr 1. As expected, increasing s can increase the
rate of ISO sibling production. For s  3 dex, it becomes
increasingly common that a single stream accounts for the
entire assumed rate of = - 10 yr 1—in which case, every ISO
would be a sibling. These complications, as well as the
potential importance of composing streams of the many
different ejection epochs, and incorporating a more realistic
progenitor population weighted by the known properties of
stars (M. J. Hopkins et al. 2023, 2025), will be the subject of
future work.
Besides the occurrence of multiple ISOs from the same

stream, another consequence of the inhomogeneity of ISOs is
the time dependence of the encounter rate as the Sun passes
through different streams. In the ISO context this was explored
by S. Portegies Zwart (2021), and it also comes up in the
context of dark matter minihalos (C. A. J. O’Hare et al. 2024;
I. DSouza et al. 2025). Given that we have a rate distribution
that extends to very large values of stream, it is worth
considering how quickly the Sun passes through individual
streams and is able to effectively sample the extremes of the
rate distribution. The Sun will transit through a stream of width
σ/κ on a timescale s k- -v1

rel
1, where vrel is the relative velocity

of the Sun and the stream, which will be of order 30 km s−1 for
most streams. The resulting timescale is 25Myr(σ/vrel).
Typical values of the latter factor are ∼1, though distributional
effects are likely to be important, since streams with higher
rates also have lower values of σ. The Sun has existed for ∼180
such timescales, so streams with rates up to stream such that

18 Cold dark matter substructures play a much larger role for observed stellar
streams than for ISO streams, because the former are on halo-like orbits and
hence not subject to the heating mechanisms at play in the disk.
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( ) » -N 10stream stream
2 are likely to have interacted with the

Sun in its history. Note that these values are again all relative to
our normalization of the encounter rate of ISOs to 10 yr−1. For
many of our population models, thisstream is of order 10 yr−1,
i.e., a single stream producing of order as many ISOs as the
currently expected rate from all streams. This is only a factor of
2 level fluctuation—so intense “showers” of ISOs analogous
perhaps in effect but not in cause to the concept of Oort comet
showers (e.g., J. Heisler & S. Tremaine 1986) are unlikely in
Earth’s past or future. Even for a value of ( )Nstream stream a few
orders of magnitude smaller to accommodate distributional
effects, the rate distribution is so steep here thatstream appears
unlikely to exceed ∼100 yr−1.

5. Conclusions

ISOs from individual stars or star clusters will form streams
as they orbit the Galaxy, much as stars from disrupting globular
clusters or dwarf galaxies form stellar streams. Here we
summarize our main conclusions from this work.

1. ISO streams are governed by their internal velocity
dispersion. Their density distributions are particularly
sensitive to their velocity dispersions, with a peak or
characteristic number density of the stream of
( ) ( ( ))/s kn- - t M M2.5 13 1

prog . In this expression σ is
the velocity dispersion, κ is the local epicyclic frequency,
ν is the local vertical oscillation frequency, t is the age of
the stream, Mprog is the progenitor mass, and  is the
number of ISOs per solar mass of the progenitor.

2. We combined the density distribution of individual
streams, determined in Section 2, with empirically
motivated assumptions about dynamical heating in the
disk, the number density of stars, and the velocity
distribution of ejected ISOs. For each such model of the
population of ISO streams, we can compute the expected
distribution of ISO encounters with the observable
volume around the Sun for each stream. These rate
distributions then determine how frequently the Sun is
likely to encounter multiple ISOs from the same stream.

3. The Sun is currently contained in ∼107 streams from
clusters, many of which may be composed of streams
from individual stars, totaling 1010 streams. However,
these streams contribute wildly different ISO encounter
rates to the observable volume, ranging from 10−15 yr−1

to ∼0.1 yr−1. The Sun may occasionally pass through
streams with far higher encounter rates.

4. We find that it is considerably more likely for multiple
ISOs in the observed population to have come from the
same star cluster (“cousins”) than it is for multiple ISOs
to come from the same star (“siblings”). While siblings
are likely to have similar incoming velocities and
radiants, cousins will be considerably more spread out,
due to the higher internal velocity dispersions of their
streams, and may be difficult to distinguish from
unrelated ISOs.

5. Observed ISOs that come from the same star will be
highly biased toward the densest streams: the stars that
produce the largest number of ISOs with the lowest
velocity dispersion and subject to the least dynamical
heating (the youngest streams).

6. Almost all ISOs will not be traceable back to their host
star, with typical distances to the progenitor (which may

no longer be extant) ranging from 1 to several hundred
kpc.19 The exception is ISO siblings, whose progenitors
may be as close as ∼100 pc.

7. It is unsurprising that 1I/’Oumuamua and 2I/Borisov
originated from different parts of the velocity distribution.
Our population models expect that samples of ∼102–103

detected ISOs will be necessary in order to see the first
ISO siblings. The discovery of two ISOs with very
similar incoming velocities before this point would place
strong and surprising constraints on the kinematic heating
history of the Milky Way, the mechanisms by which
ISOs are ejected from their parent star systems, and the
variation in the ISO production rate per star.
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Appendix A
Adaptive Anisotropic Kernel Density Estimator

In order to characterize the ISO streams, it is useful to be
able to estimate their density in both physical and phase space
at any particular point in time given a finite number of tracer
particles. Our data set is 6D, namely it contains the positions
and velocities of each tracer particle in Cartesian coordinates,
and we know that there is substantial anisotropic structure. The
dimension of the problem means that even coarse-grained
histograms would become prohibitively cumbersome.
KDEs (M. Rosenblatt 1956; E. Parzen 1962) are a powerful
alternative, since no predefined grid is necessary. In a generic
form, a KDE estimates the probability density as the following
sum over the data:

( ) ( | ) ( )å=q q qp
N

K
1

, A1
i

N

i i

where Ki(a|b) is a pdf (the kernel) over a, N is the number of
points in the data set, qi is the ith element of the data set, and q
is an arbitrary point in the same vector space as the data at
which we would like to estimate the probability density p.

19 Distances are measured along the stream, so distances 2πR0 ≈ 50 kpc
correspond to particles that have wrapped around the Galaxy relative to the
progenitor.
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A common choice for Ki(a|b) is a multivariate normal
distribution with mean b and covariance equal to a multiple of
the identity matrix of the appropriate dimension, with all Ki’s
identical. The user then only needs to specify the characteristic
width of the Gaussian, called the bandwidth. This is the
approach taken in scipy.stats.Gaussian_kde. How-
ever, the streams as viewed in 6D phase space (or even 3D
space) are of course highly anisotropic. An isotropic kernel
would therefore artificially tend either to blur out and thicken
features of the stream that are physically narrow, or in an
attempt to preserve those features produce an unphysically
patchy density estimate along the stream where the sum in
Equation (A1) is dominated by a small number of data points.

To alleviate this difficulty, we implement an adaptive KDE
where the kernel varies from point to point. We still use a
multivariate Gaussian kernel centered on b, but we set the
covariance matrix of the ith point equal to a multiple of the
sample covariance Σsamp of the Nneigh nearest neighbors:

∣ ∣ ( )hS = S Sa . A2i i icov ,samp ,sampcov

The overall scaling ηcov is a constant, and we include another
hyperparameter, αcov, to allow the covariance to scale with the
determinant of Σi,samp, i.e., with the local density of points.
This is a generalization of the adaptive bandwidth estimator
proposed by I. S. Abramson (1982a) and I. S. Abramson
(1982b) for which αcov = −1/2 (see S. R. Sain 2002, for a
general discussion of multivariate adaptive bandwidths). This
choice increases the importance of the scaling of each
parameter, since now the distance between points not only
matters in the evaluation of Ki but also in determining exactly
which points are the Nneigh nearest neighbors, and hence the
covariance matrix of each Ki. We also need to specify the value
of Nneigh, with smaller numbers being more adaptive to
the local density, but also more subject to randomness in the
tracers. Regardless, we build a kD tree using scipy.
spatial.KDTree (S. Maneewongvatana & D. Mount
1999) when the KDE is initialized to efficiently find the nearest
neighbors of each point.

To determine the nearest neighbors of each point, we need to
define a distance metric. Since each dimension in the problem
may behave differently (and indeed the velocities and positions
are not even dimensionally compatible), we first need to scale,
at the very least, the velocities. By the axisymmetry of the
assumed potential, x and y should scale together, as should vx
and vy. To scale everything to be compatible with x and y, we
only need three additional (hyper)parameters. We denote the
scaled version of each quantity ˜ /=x x fx, ˜ /=y y fy, etc.,
and we set fx = fy = 1 and fvx = fvy. The distance metric
used to determine nearest neighbors is then just taken to
be the Euclidean distance in the transformed space,

( ˜) ( ˜) ( ˜) ( ˜ ) ( ˜ ) ( ˜ )D + D + D + D + D + Dx y z v v vx y z
2 2 2 2 2 2 .

Internally the KDE works in this transformed space, so the
probability density of any point scales as follows:

( ) ( ˜| ˜ ) ( ) å=
-

q q qp f
N

K
1

. A3
d

d
i

N

i i

1

⎜ ⎟
⎛
⎝

⎞
⎠

Here d indexes the dimension, and fd is the factor by which the
dth coordinate is divided when scaling into the KDE’s internal
coordinate system ˜q q.

We set the values of the KDE’s hyperparameters (Nneigh,
αcov, and ηcov) via fivefold cross-validation. In principle the
scaling of each dimension could also be set via cross-
validation, but that dramatically increases the dimensionality
of the problem. We therefore instead choose physically
motivated scales and only cross-validate two hyperparameters.
In particular, we set fx = fy = 1, fz = ν(r0)/κ(r0),
fvx = fvy = κ(r0), and fvz = ν(r0), where r0 is a representative
Galactocentric radius of the stream, which we set to 8.1 kpc for
streams near the solar neighborhood. To carry out the cross-
validation, the data set is divided at random into Nk = 5 equally
sized subsets. Each of these is in turn excluded from the
remaining Nk − 1 = 4 subsets. The four subsets are merged
into a single training set, which is used to produce a KDE via
Equation (A1). The excluded subset is then used to test this
KDE; its unbiased cross-validation error (UCV) is estimated
following S. R. Sain (2001) via

( ) ( ) ( )òå å å= -
=

-
=

-x v
N

p q d d
N N

p qUCV
1 2 1

. A4
k k

N

k
k k

N

i i
k i

1

2

1

k k

k k

k

We refer to the KDE trained on all but the kth fold of the cross-
validation as p−k. Within the kth fold, each of the Nik data
points is indexed by ik. The UCV is derived from the
requirement that the hyperparameters should minimize the
mean squared error of the KDE, namely

( ( ) ˜ ( )) ( )ò= -q q x vp p d dMSE , A52

where ˜ ( )p q denotes the true underlying probability distribution
we are trying to approximate with the KDE. The true
distribution is not known. Expanding the integrand, the term
that depends only on ˜ ( )p q can be neglected because it is not
affected by our choice of KDE. The first term is retained in the
definition of the UCV, and the second term ( ) ˜ ( )- q qp p2 is
asymptotically approximated by the second term in the UCV in
the limit of large Nk and overall number of samples.
Intuitively, the second term of the UCV evaluates the

performance of the KDE on the points not included in
the training of p−k; the larger this term, the less “surprised”
the KDE is to find an example data point at qik

. The first term
evaluates the clumpiness of the KDE, with larger values
exhibiting more extreme variability from point to point over the
entire phase-space volume. For each k, the integral in the first
term can be evaluated efficiently via importance sampling (e.g.,
M. E. J. Newman et al. 1999):

( ) ( ) ( )ò å»-
=

-x vp q d d
N

p q
1

, A6k
i

N

k i
2

MC 1

MC

where the qi are sampled from the KDE p−k, and NMC is chosen
to be large enough that the estimated error is  a few percent of
the UCV for all hyperparameter variations. The required NMC

turns out to be ∼1000 typically.
The expression for UCV (Equation (A4)) is minimized with

respect to Nneigh and ηcov. Optimizing over the former is much
more expensive because a new (though overlapping) set of
neighbors needs to be found, and the covariance matrices at
each point recomputed. Searching through different values of
ηcov is much easier, since the sum in Equation (A3) can quickly
be reevaluated with an alternative value of ηcov.
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We also implement the ability to resample from the KDE,
i.e., draw an arbitrary number of new locations in 6D phase
space sampled from the probability density. For each desired
new sample, we choose one of the original data points at
random with equal probability, then sample from that point’s
normal distribution. The newly drawn point is then rescaled to
transform from the KDE’s internal scaled coordinates back to
the data’s original unscaled coordinates.

In addition to estimating the phase-space density, that is the
fraction of tracers per unit volume per unit velocity3, also called
the distribution function ( )x vf , , it is also useful to both
estimate and draw random samples from the distributions:

( ) ( ) ( )ò=x x v vp f d, , A7

namely the marginal distribution, i.e., the density in physical
space, and the conditional distribution,

( | ) ( ) ( ) ( )/=v x x v xp f p, . A8

The latter is the distribution of velocities at any given location
in physical space. To understand these distributions, it will be
helpful to split the covariance matrix at each point, Σi, into the
following four matrices:

( )S =
S S
S S

, A9i
i xx i xv

i vx i vv

, ,

, ,
⎜ ⎟
⎛
⎝

⎞
⎠

each representing a 3 by 3 subset of Σi. The subscript x denotes
the first three rows or columns, namely the part of Σi encoding
the distribution in physical space, while the subscript v denotes
the last three rows or columns, the part that deals with the three
components of the velocity.

The marginal distribution is then just

( ) ( | ) ( )å= Sx x xp
N

1
, , A10

i
i i xx,

where ( ∣ ) x a B, denotes the pdf over x of a multivariate
normal distribution with mean a and covariance B.

The conditional distribution’s pdf ( | )v xp is straightforward
to evaluate from its definition, since we already have the means
to estimate both ( )x vf , and ( )xp . However, in order to draw
samples from ( | )v xp it is useful to compute the properties of
this distribution explicitly. We use the standard result that the
conditional distribution of a subset of a multivariate Gaussian,
conditioned on the other elements of the multivariate Gaussian,
is itself a Gaussian. In this case,

( | ) ( | ( )

) ( )

å= + S S -

S - S S S

-

-

v x v v x xp ,

. A11

iN
i

i i vx i xx

i vv i vx i xx i xv

1
, ,

1

, , ,
1

,

By precomputing these modified covariance matrices for each
point at the time of initialization, we can quickly draw random
samples from this distribution, which is useful for Monte Carlo
evaluation of integrals over the velocity distribution.

Appendix B
Convergence of the Density Distribution

The density distribution of an individual ISO stream is of
central importance in this work. We estimate this distribution
by constructing a 6D adaptive KDE. Given that the cross-
validation statistic that we maximize to fix the hyperparameters

of the KDE is itself proportional to an estimator of the mean
squared error difference between the KDE and the true density
distribution, we have every expectation that it will behave well
as the number of sample points N increases. Nonetheless, we
check explicitly for the density distribution at a particular time
for a particular stream. This is the σ = 1 km s−1 stream with
Mprog = 1Me at t = 4 Gyr. We show the density distribution
for logarithmically spaced numbers of points N in Figure 10.
Each sample is chosen randomly from the 105 particles in the
stream, drawn without replacement. That is, the N = 6963
particles drawn for the purple line have no duplicates, but they
will have particles in common with the other samples (in fact
they must since the N = 105 sample contains all the particles).
The figure shows that the distribution converges reasonably

well for N  3000 particles, especially away from the low-
density tail. We can also see that for this particular time and
this particular stream, the generalized gamma distribution is a
poor fit to the density distribution, which is not quite bimodal
but seems to contain another high-density component. Perhaps
because of this, there is substantial scatter in the best-fit values
of the generalized gamma distribution as a function of N in this
case, limiting our ability to estimate an explicit rate of
convergence of these quantities.
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