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Abstract

Extracting robust inferences on physical quantities from disk kinematics measured from Doppler-shifted molecular
line emission is challenging due to the data’s size and complexity. In this paper, we develop a flexible linear model
of the intensity distribution in each frequency channel, accounting for spatial correlations from the point-spread
function. The analytic form of the model’s posterior enables probabilistic data products through sampling. Our
method debiases peak intensity, peak velocity, and line width maps, particularly in disk substructures that are
only partially resolved. These are needed in order to measure disk mass, turbulence, and pressure gradients and
detect embedded planets. We analyze HD 135344B, MWC 758, and CQ Tau, finding velocity substructures
50–200 m s−1 greater than with conventional methods. Additionally, we combine our approach with DISCMINER in
a case study of J1842. We find that uncertainties in stellar mass and inclination increase by an order of magnitude
due to the more realistic noise model. More broadly, our method can be applied to any problem requiring a
probabilistic model of an intensity distribution conditioned on a point-spread function.

Unified Astronomy Thesaurus concepts: Astronomy data modeling (1859); Nonparametric inference (1903); Linear
regression (1945); Radio interferometry (1346); Protoplanetary disks (1300); Planet formation (1241); Planetary-
disk interactions (2204)

1. Introduction

Observations of circumstellar disks in Doppler-shifted
molecular line emission at high spatial and spectral resolution,
as obtained in the exoALMA project (R. Teague et al. 2025),
offer a wealth of information about the 3D velocity field
(A. F. Izquierdo et al. 2025), emitting-layer height, temperature
structure (M. Galloway-Sprietsma et al. 2025), rotation
curve, star and disk masses (C. Longarini et al. 2025), radial
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kinematic substructures (J. Stadler et al. 2025), turbulence
(M. Barraza-Alfaro et al. 2025), and spiral arms due to planets
or stellar-mass companions (C. Pinte et al. 2025).

Performing these measurements in a statistically robust way
is difficult. First, the data are complicated. At the high spatial
resolutions achieved in exoALMA, we resolve many local
nonaxisymmetric features in both intensity and velocity
(A. F. Izquierdo et al. 2025), which cannot be explained with
global axisymmetric Keplerian disk models. While Bayesian
approaches modeling either channel maps (A. F. Izquierdo
et al. 2021, 2022, 2023) or visibilities (I. Czekala et al. 2015;
K. M. Flaherty et al. 2015; K. Flaherty et al. 2020; J. Pegues
et al. 2021; N. T. Kurtovic & P. Pinilla 2024) with parametric
disk models are able to infer all parameters simultaneously,
their lack of flexibility limits the interpretability of the posterior
(e.g., J. Bernardo & A. Smith 2009) when applied to disks
containing substructures as seen in all of the exoALMA targets
(Disk Dynamics Collaboration et al. 2020; C. Pinte et al. 2025;
R. Teague et al. 2025).

Second, the imaging process creates correlations between
image pixels, and the finite sampling of the uv-plane (e.g.,
S. M. Andrews et al. 2018) means that the data contain no
information about particular frequencies. The resultant image
point-spread function results in the underestimation of line
intensity gradients known as beam smearing (W. D. Cotton
1989). Beam smearing is known to bias line widths in the inner
disk (R. Teague et al. 2016) and velocities in the presence of
intensity gradients, including the local gradients caused by
substructures (M. Keppler et al. 2019; Y. Boehler et al. 2021).
It also causes bias in rotation curves even at radii greater than 4
times the full width at half-maximum (FWHM) of the beam
(S. M. Andrews et al. 2024; J. Stadler et al. 2025). Recently,
S. M. Andrews et al. (2024) found empirical corrections for this
effect for rotation curve analysis, but such corrections are
limited to axisymmetric Keplerian disks, and local intensity
gradients are not accounted for.

Third, analyses looking to measure deviations from Keplerian
rotation, such as from pressure gradients (R. Teague et al. 2018;
G. P. Rosotti et al. 2020; H. Garg et al. 2022; A. F. Izquierdo
et al. 2022, 2023; J. Stadler et al. 2025), self-gravity of the gas
(B. Veronesi et al. 2021; G. Lodato et al. 2023; C. Longarini
et al. 2025; P. Martire et al. 2024; J. Speedie et al. 2024), winds
(M. Galloway-Sprietsma et al. 2023), and meridional flows
(R. Teague et al. 2019), often fix geometric parameters such as
inclination and position angle, as well as the emitting-layer
height and temperature distributions, even though these quan-
tities themselves are uncertain. This issue is addressed simply
either with Monte Carlo error propagation (S. M. Andrews et al.
2024) or with bootstrapping (M. Galloway-Sprietsma et al.
2025), provided there is some reasonable quantification of the
uncertainty on those parameters.

In this paper, we present a first step toward building a
method that can in principle address all of the above concerns.
We provide a flexible, nonparametric model for intensity
distribution in each channel of a spectral cube, including the
convolution with the beam in the data generation process, as
well as the correlations created between neighboring pixels.
Samples from the posterior may be generated cheaply due to
the analytic posterior and fed through any cube analysis
pipeline to calculate uncertainties and correlations in measure-
ments. We demonstrate a simple example use case of the model
in the generation of probabilistic peak intensity, peak velocity,

and line width maps that are unbiased by beam smearing. We
also combine our approach with DISCMINER (A. F. Izquierdo
et al. 2021, 2022, 2023) to investigate the effect of the more
realistic noise model, including spatial correlations, on the
precision of the inferred disk model parameters.
The paper is organized as follows. We present the model and

analysis methods in Section 2, and we benchmark the method
in Section 3. Section 4 presents our application of the model to
a subset of the exoALMA sample, while Section 5 discusses
our main findings. We conclude in Section 6.

2. Methods

2.1. Data

We perform all analysis using the fiducial 12CO J= 3−2
cubes (R. Teague et al. 2025) for HD 135344B, MWC 758, CQ
Tau, and J1842. These have a circular synthesized beam with
an FWHM of 0 .15 and a channel spacing of 100 m s−1.
HD 135344B, MWC 758, and CQ Tau are used to

demonstrate the generation of probabilistic peak intensity, peak
velocity, and line width maps using our method. These sources
were chosen due to their low inclination, allowing us to treat the
line profile as single-peaked due to their lack of backside
contamination and because they all feature large spiral features
in CO (Y. Boehler et al. 2018; S. Casassus et al. 2021; L. Wölfer
et al. 2021; A. F. Izquierdo et al. 2025). We emphasize that the
method does not ultimately require any particular line profile
shape but that this choice allows us to focus on testing
downstream data products in a relatively simple setting.
J1842 is used for the case study combining our method with

DISCMINER and was chosen as a representative typical source
from the sample. By this, we mean that it is mid-inclination
(39o) and orbits an approximately 1Me star (R. Teague et al.
2025) and that the channels feature only modest deviations
from smooth rotation (C. Pinte et al. 2025). The 12CO is also
only 5″ across, which aids in computational cost.
We downsample each cube by a factor of 2 in each spatial

axis, replacing 2× 2 blocks of pixels with their mean value. The
cubes are also cropped spatially to include only the region where
the signal is contained. Both these steps are done to reduce
computational expense, which is discussed further in Section 5.

2.2. Nonparametric Model

We elect to directly model the intensity distribution in each
channel. While the model for each channel is independent of
the others, for the sake of simplicity, we will refer to the
collection of model channels comprising the whole cube as a
“model cube.” The model is nonparametric and consists of a
linear summation of orthogonal basis functions, where the
coefficients or weights of these functions are determined by
fitting the model to the data. This linear approach is crucial for
allowing for tractable sampling from the model posterior
distribution, even with of order 104 model parameters, as the
posterior takes the form of a multivariate normal distribution
from which we can sample in a few minutes.
Let I be a vector containing the model intensities Ii from a

particular channel, where i is an index over the n= nxny pixels
in the channel. We model Ii as a weighted sum of p 2D basis
functions,

( ) ( ) ( )I x y X f x y, , , 1i i
j

p

j j i i
1

å=
=

2
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where xi and yi are spatial coordinates for pixel i and Xj is the
weight associated with basis function fj. We choose to use a
Fourier series for the basis, which consists of orthogonal
trigonometric functions in both the x- and y-directions. We
expand on this choice later in this section. This allows us to
decompose fj into two identical sets of basis functions, one for
each spatial direction, giving

( ) [ ( ) · ( )] ( )I x y X g x g y, , 2i i
l

p

m

p

lm l i m i
1 1

x y

åå=
= =

where p= pxpy, l j pmod x= , m= ⌊j/px⌋, fj(x, y)= gl(x) ·
gm(y), and ⌊ · ⌋ denotes the floor function. The basis functions
gl are defined as (for both l and m)

( ) ( )
( ) ( )g x

x l
x l L

lcos for odd
sin for even

,
2

, 3l
l

l
l

w
w

w
p

= =⎧
⎨⎩

⎢
⎣⎢

⎥
⎦⎥

where L is a length scale in the x-space. We choose spatial
coordinates xi, yi for the pixels uniformly spaced between 0 and
1 and set L = 3 following D. W. Hogg & S. Villar (2021). By
defining the entries of the nx× px matrix Ax as

[ ] ( ) ( )A g x , 4x ij j i=

and similarly for Ay, we can rewrite Equation (2) simply as

( ) ( )I A A X A X, 5x y xy= Ä =

where X is a vector of length p containing the Fourier weights
Xj, Axy is an n× p matrix, and ⊗ is the Kronecker product. We
note that our choice of basis functions does not constrain the
model intensities to be positive. While the physical intensity is
strictly positive, the intensity in the synthesized images is not.
Since we only have access to noisy measurements rather than
the true underlying intensities, allowing the model to take
nonpositive values is a deliberate and justified choice.

Let h(x, y) be a function representing the kernel of the beam,
a circular 2D Gaussian with FWHM 0 .15=  for our purposes,
but it may be of any form in general. Defining the entries of the
n× n matrix H as

[ ] ( ) ( )H h x x y y, , 6ij i j i j= - -

we can find the vector of the beam-convolved intensities Iconv
from

( )I HI HA X AX, 7xyconv = = =

where the last equality is from defining the design matrix
A=HAxy.

Defining Idata as a vector containing the actual data observed
from a particular channel, we can write our overall model as

( )I AX , 8data = + 

where ò is a random vector of length n representing the noise in
the image. We will assume that the noise follows a multivariate
normal distribution (hereafter just normal distribution)

( ) ( )C0, , 9~ 

where the ∼ notation denotes that ò is drawn from the normal
distribution  with zero mean vector and n× n covariance
matrix C. We assume that the noise is spatially correlated on

the scale of the beam, which gives

[ ] [ ] ( ) ( )/C H Hmax , 10ij i j ijs s=

where σi is the marginal standard deviation of the noise in pixel
i. In practice, we assume the same σ for all pixels in the cube,
which we estimate from the standard deviation of the data in
channels with no significant signal.
We emphasize that this approach of modeling the image

intensities only, and not treating the finite sampling of the uv-
plane, is a nontrivial simplification. Ideally, we would forward
model the visibilities and include a treatment of the uv-
sampling function; however, we leave this for future work.
The model as described so far constitutes a linear regression

model, even though the basis functions themselves are
nonlinear. The typical approach to fitting the above model
would be to perform ordinary least squares (OLS), where one
finds the “best” parameter vector X, which we will label X̂ , by
minimizing the residuals squared,

ˆ ∣∣ ∣∣ ( )X I AXargmin , 11X data
2= -

which may be solved via the matrix pseudoinverse28

(E. H. Moore 1920; R. Penrose 1956),

ˆ ( ) ( )X A A A I . 121
data= - 

This approach may be extended to include the covariance
matrix and can be understood as a simple reweighting of the
data by the inverse of their covariances,

ˆ ( ) ( )X A C A A C I , 131 1 1
data= - - - 

which is called the generalized least squares (GLS) estimate.
The GLS estimate has some desirable properties, namely, that it
is the best linear unbiased estimator29 and that it maximizes the
model likelihood.
This approach will always result in a unique solution for X̂

and the reconstructed Iconv. However, we are interested in the
model intensities prior to beam convolution I given by
Equation (5), which becomes increasingly poorly behaved as
the number of basis functions p is increased. Because H acts in
the design matrix to dampen signal contributed from high-
frequency Fourier modes, there is little information available to
constrain the weights of those modes. I therefore has many
possible values that result in similar Iconv. This problem is
identical to the linear deconvolution problem in the presence of
noise, which has been studied extensively for at least 80 yr
(e.g., N. Wiener 1949; D. W. Oldenburg 1981).
A natural solution is to provide additional constraints on X̂

that will result in an I that we believe to be more sensible (e.g.,
A. Gelman et al. 2014). From a frequentist perspective, this
additional constraint is called a regularizer, while the
(equivalent) Bayesian view is that of a prior probability
distribution over possible X. Here we will mostly adopt the
language of the latter as we wish to use the posterior
probability distribution (the resultant distribution from updating
the prior with the data via Bayes’s theorem) in our analysis. We

28 The matrix AA is only invertible for p < n. We use p > n in this paper, but
this is not an issue as long as the regularization term [ ]jjL we introduce is
strictly positive for all j. This is the case; see Equations (18) and (19).
29 This is because GLS is equivalent to OLS under an affine transformation,
and OLS is the best linear unbiased estimator via the Gauss–Markov theorem
(e.g., M. Kutner et al. 2004).
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first assume some generic normal prior on X,

( ) ( )X , , 14m L~ 

where μ is a mean vector of length p and Λ is a p× p
covariance matrix. The posterior distribution over X has an
analytic form thanks to the linearity of the model and because
both the noise and prior are normal distributions,

ˆ( ∣ ) ( ∣ ) ( )X I Xp X , , 15data S= 

where the right-hand side is shorthand notation for the
probability density of the normal distribution with mean vector
X̂ and covariance matrix Σ evaluated at some X. Additionally
(e.g., D. W. Hogg et al. 2020),

ˆ ( ) ( )X A C I , 161
data

1mS L= +- -

( ) ( )A C A , 171 1 1S L= +- - -

where the differences between the above and Equation (13) can
be understood as reweighting the predictions using the prior.

We choose a prior that penalizes high-frequency basis
functions more than low-frequency ones in order to encourage
smoothness. This can be achieved with feature weighting
(B. Bah & R. Ward 2016; H. Rauhut & R. Ward 2016; Y. Xie
et al. 2022), where we set μ= 0 and the prior variance for each
basis function using some weighting function w that decreases
with frequency,

[ ] [ ( )] ( )w
1

, , 18jj l m
2

l
w wL =

recalling that ωl and ωm are the x- and y-direction frequencies
for basis function fj, and we choose (D. W. Hogg & S. Villar
2021)

( ) [ ] ( )
/ /

w
s

s,
2

1
, 19l m l m

1 4
2 2

1 2

w w
p

w w= + +
-

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where both λ and s are hyperparameters for our model that
encode how strong our prior is. λ is an overall scale that
uniformly scales the variance across all Xj, while s controls how
quickly the variance decreases with the frequency of the basis.
We somewhat arbitrarily choose values for the hyperparameters
of λ= s= 0.1, since we found them to be performant in terms
of predicting the data (see Section 3) without fine-tuning. We
discuss the caveats associated with fixing the hyperparameters
to arbitrary values, in particular the impacts on the resultant
model uncertainties, in Appendix A.

We also choose the overparameterized case, where we have
more model parameters than data points p> n. We set the
number of basis functions in each direction px, py to be 1.25
times the number of pixels in each direction nx, ny, rounded to
the nearest integer. We justify this choice by returning to our
choice of basis. It was realized in the last few years that a
Fourier basis is an effective way to represent stationary kernels
for Gaussian process (GP) regression (J. Hensman et al. 2018;
D. W. Hogg & S. Villar 2021; P. Greengard et al. 2022). GPs
are distributions over functions (e.g., C. E. Rasmussen &
C. K. I. Williams 2006). In the limit p→∞, our basis and prior
choice is equivalent to a GP prior on the model intensities,

( ) ( ( )) ( )x x xI k0, , , 20~ ¢

where [ ]x x y,=  and k is a function encoding the model
covariance between two points, usually called the kernel.

Specifically, the equivalence is given by
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and we refer the reader to J. Hensman et al. (2018) and
D. W. Hogg & S. Villar (2021) for further details. F. Tobar
et al. (2023) recently showed that GP priors can be used in this
manner to solve the noisy deconvolution problem in a Bayesian
setting, outperforming conventional approaches such as the
Wiener filter while simultaneously providing uncertainties on
the recovered signal. While our approach is only an approx-
imation of theirs, kernels with rapidly decaying Fourier
transforms are well approximated by an equispaced Fourier
series for even relatively small p (P. Greengard et al. 2022).
Our choice of weighting function given in Equation (19) is
equivalent to the exponential kernel (C. E. Rasmussen &
C. K. I. Williams 2006; D. W. Hogg & S. Villar 2021), and its
Fourier transform decays quadratically.

2.3. Fitting and Sampling

We perform the fits by calculating the posterior mean X̂ and
covariances Σ using Equations (16) and (17), respectively.
Note that while X̂ must be calculated for each channel
separately, Σ depends only on quantities that are identical for
all channels and only needs to be calculated once for each cube.
The best-fitting model channels are then generated as

ˆI A Xxy= , while the best-fitting convolved model is
ˆI AXconv = . We additionally draw 100 posterior samples of

X for each channel from the posterior ( ˆ )X , S and convert
them to posterior samples of I and Iconv in the same way as for
the best fit. “Sample cubes” are assembled by grouping a
unique sample of each channel together, yielding 100 model
cube samples, both before and after beam convolution. Details
about the numerical methods and accuracy considerations for
both the fitting and sampling are given in Appendix B.

2.4. General Probabilistic Data Products

Figure 1 illustrates the three steps involved in applying our
method generally to generate probabilistic data products from
spectral cube data. They are as follows.

1. The model is fit to the data cube to determine the
posterior distribution for each channel.

2. Posterior model cube samples are generated.
3. The data products of interest are calculated independently

from each cube sample, yielding posterior samples of
each product.

As shown in Figure 1 and indicated in Section 2.3, the posterior
model cube samples can be generated as either beam-
convolved (blue in Figure 1) or not (orange). This choice
would generally depend on the specific interests of the
investigator. In our analysis, we will use the unconvolved
cube samples for the peak intensity, peak velocity, and line
width maps. For the case study using DISCMINER, we use the
convolved cube samples since DISCMINER forward models the
effect of the beam.
The posterior data product samples can be used either to

reconstruct the marginal posterior distribution over that product
or just to find a most likely value with associated uncertainties.
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The distribution is estimated simply from a histogram or kernel
density estimate, while the best value and uncertainties can be
taken from the median or mean and chosen quantiles,
respectively (e.g., D. W. Hogg & D. Foreman-Mackey 2018).

2.5. Probabilistic Moment Maps

As a simple example for a probabilistic data product, we
generate peak intensity, peak velocity, and line width maps,
commonly called moment maps, following our method. We do
this for HD 135344B, CQ Tau, and MWC 758 as outlined in
Section 2.1.

We fit Gaussian line profiles to each pixel of each sample
cube
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where [ ]I v w, ,0 0 0 0q = , I0 is the peak intensity, v0 is the peak
or centroid velocity, and w0 is the line width. Each line profile
in each cube sample will have its own best-fitting θ0, but we
neglect indices over these in the notation for simplicity. We use
maximal likelihood estimation to perform the fit, in practice
minimizing the negative log likelihood given by
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where i is an index over channels, and we assume the noise σ is
normally distributed. We use the L–BFGS–B optimization
algorithm (C. G. Broyden 1970; R. Fletcher 1970; D. Goldfarb

1970; D. F. Shanno 1970; D. C. Liu & J. Nocedal 1989)
implemented in SciPy’s optimize.minimize function
(P. Virtanen et al. 2020) to fit. A noise cutoff of 3 times the
cube rms was applied to avoid fitting lines with low signal-to-
noise.
After applying the above procedure to each sample cube

(preconvolution), we can estimate best fits and associated
uncertainties over I0, v0,w0 for each data cube, as described in
Section 2.4 above. The best-fitting θ0 for each line is taken as
the median across the 100 cube samples, while the 1σ
uncertainty is estimated from the standard deviation. We
present these results in Section 4.1.
We also fit Gaussian line profiles to the data directly, as is

typically done in studies of kinematics or other disk properties,
for comparison. In our results, we refer to the probabilistic
maps described above as the “new method” and the fit directly
to the data as the “conventional method.” We emphasize that
the important distinction is the use of the nonparametric model
and sampling in our method over the direct fit to the data in the
conventional method.

2.6. DISCMINER Case Study

DISCMINER is a statistical inference tool for protoplanetary
disk properties that uses a forward model of line emission to
constrain global properties of the disk including the mass of the
central star, the inclination and position angle, and the radial
height and intensity profiles (A. F. Izquierdo et al. 2021).
DISCMINER is used extensively in the analysis performed by
exoALMA (A. F. Izquierdo et al. 2025), as the parametric disk
model it provides is ideal for quantifying localized deviations

Figure 1. Schematic overview of the methodology for generating probabilistic data products using the nonparametric cube model. The cube graphic represents data
cubes, with the orange and blue cubes illustrating posterior model cube samples before and after beam convolution, respectively. The Pi values indicate sample data
products (DPs) calculated from the corresponding cube samples, color-coded accordingly. The numbered steps in the bottom left correspond directly to those in
Section 2.4.
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in, for example, the rotation curve (C. Longarini et al. 2025;
J. Stadler et al. 2025) or pressure scale height (J. Stadler
et al. 2025).

DISCMINER uses Bayesian inference to estimate the posterior
distribution of the disk model, allowing for quantification of the
model uncertainties. However, it uses a simplified noise model
where the correlations between nearby pixels in the cube are
neglected. This simplification is to avoid the increased
computational expense incurred when evaluating a multivariate
normal likelihood during the Markov Chain Monte Carlo
sampling. Such correlations are known to widen the posterior
distribution, so their exclusion will in general result in
underestimated uncertainties (e.g., A. Gelman et al. 2014),
and predicting the factor by which they are underestimated is
not straightforward.

Our nonparametric model of the channels can cheaply
incorporate spatial correlations in the noise because it is linear
(see Section 2.2). This allows us to combine our approach with
DISCMINER to assess the impact of these correlations on
inference precision. We use J1842 as a test case for this
combined approach.

To prevent ambiguity, we will refer to posterior samples
from our nonparametric model as “cube samples” and posterior
samples from the DISCMINER model as “DISCMINER samples.”
We generated 30 cube samples according to the procedure
outlined in Section 2.4, in this case using the convolved
samples as DISCMINER forward models the effect of the beam.
We fit each cube sample with DISCMINER, obtaining many
posterior distributions, where each is conditioned on a single
cube sample. Finally, we estimate the combined posterior by
aggregating the posterior DISCMINER samples from all fits.

Additionally, we also refit DISCMINER to the fiducial J1842
data cube downsampled by the same factor as used for the
nonparametric model fit (see Section 2.1). The production
DISCMINER fit for J1842 used across the other exoALMA
papers (A. F. Izquierdo et al. 2025; R. Teague et al. 2025) used
downsampling of 6× 6 pixel blocks, whereas we used 2× 2.
We compare these results with the combined approach in
Section 4.2.

3. Benchmark

3.1. Synthetic Data and Fit

For the benchmark model, we assume that the line in each
pixel is Gaussian and choose radial intensity, velocity, and line
width profiles, as well as other model parameters, to create
similar-looking synthetic data to HD 135344B. The specific
radial profiles we choose are given in Appendix C. For the
model, we use central mass Må= 1.61Me, inclination
i= 16.11, position angle PA= 242.94 (A. F. Izquierdo et al.
2025), and a distance of 135 pc (Gaia Collaboration et al.
2023). The true velocity, intensity, and line width maps v0,truth,
I0,truth, and w0,truth are calculated from the radial profiles by
rotating sky coordinates to match the inclination and position
angle of the model and for the velocities by taking only the
line-of-sight component.

True channels are created using the true maps using the
Gaussian line profile in Equation (22), with vch in increments of
100 m s−1. These channels are shown in the fourth row of
Figure 2. We then convolved the channels spatially with a
circular Gaussian beam with FWHM 0 .15=  to match the data

and added beam-correlated noise with scale σ= 20 mJy. These
synthetic data are shown in the top row of Figure 2.
We fit the synthetic data using the nonparametric model. The

best-fitting model and convolved model are shown in the third
and fourth rows of Figure 2. The residuals between the
synthetic data and the fit (fifth row) are all on the scale of the
noise or less, with the most significant difference found near
the center of the disk. By comparing the unconvolved model fit
with the true channels and with the data, we see that the model
is capable of recovering the steep intensity gradients colocated
with the substructures that are partially smeared out by the
beam. Similarly, the intensity of the channels near the center is
better resolved in the model compared to the data, although the
model is not able to reconstruct the very sharp edges present in
the true channels in this region. The latter effect is likely
explained by the model prior, which encourages smoothness.
The last row of the figure shows the residuals between the
model and true channels, which are mostly just noise except in
the inner regions. This indicates that the model effectively
provides an unbiased estimate of the intensity, except within
the central few beams.
Note also that the model contains noise. Due to its

nonparametric nature, the model effectively does not distin-
guish between signal and noise in the data. Indeed, the model
before beam convolution is noisier than the data itself due to
the uncertainty associated with the information lost through
beam convolution.

3.2. Moment Maps and Substructures

The middle columns of Figures 3 and 4 present the
probabilistic v0, I0, and w0 maps calculated following our
new method. These may be compared to maps calculated with
the conventional method (see Section 2.5), shown in the left
columns. The differences between each method and the true
map used for the synthetic data are shown in the bottom rows.
The top-right panels show v0,truth, I0,truth, and w0,truth,
respectively.
Comparing the peak velocity maps (Figure 3, top plot), we

can see from the bottom panels that the new method provides a
less biased estimate of the velocity along the ring substructures.
As expected, the conventional method is biased by beam
smearing, resulting in the underestimation of the velocity
perturbations of 50–200 m s−1. This bias is not present in our
new method. This effect can also be seen in the contours drawn
in the top panels, which are commonly used to trace disk
substructures (e.g., J. Calcino et al. 2022). The “wiggles” in the
contours of the conventional method are smaller than in the true
map, while those in the new method map more accurately
match the truth. Both methods underestimate the velocities in
the central beam or so, although the new method performs
better as the biased region is smaller. The new method contains
some artifacts aligned with the vertical and horizontal
directions, which could be due the 2D Fourier basis causing
a preferred direction in the model.
The peak intensity maps (Figure 3, bottom plot) show that

the conventional map systematically underestimates the peak
intensity in most of the disk, although only by around 10%.
The new method does not contain this bias throughout most of
the disk. The central few beams are biased low in both
methods, except for the two lobes near the high-velocity wings,
where the new method performs better. The line width maps
(Figure 4) are similar to the intensity except that they are biased
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high in the conventional method and the bias is greater, around
25%. The new method is again unbiased apart for the same
inner region.

4. Results

Figure 5 shows the best-fitting nonparametric model for HD
135344B compared with the data. As in the benchmark, the
residuals are all on the scale of the noise or less, and again the
most significant difference is found toward the center. The
model prior to convolution contains steeper intensity gradients
near the obvious arc-like substructures found in the channels,
although the noise is increased.

4.1. Moment Maps

The probabilistic v0, I0, and w0 maps for HD 135344B, CQ
Tau, and MWC 758 are presented in Figures 6 and 7, and we
compare our method to the conventional approach. The
difference between the two methods is also shown, as well as
the 1σ uncertainty for each of the maps. There are common

features shared across the results from the three sources. As in
the benchmark, the new method finds greater peak intensities
and reduced line widths throughout the disk in each case. The
new method also finds greater velocity perturbation amplitudes
associated with disk substructures, particularly for HD
135344B. This difference in recovered perturbation size also
leads to coherent spiral structures in the panels showing the
difference between the v0 maps for each method. These disks
are all known to contain spirals (Y. Boehler et al. 2018;
S. Casassus et al. 2021; L. Wölfer et al. 2021; A. F. Izquierdo
et al. 2025), and so the model’s ability to recover them, in
combination with the benchmark, provides reassurance that it is
accurately reflecting the data rather than introducing artificial
features.
The maps for HD 135344B (Figure 6, top) show clear signs

of large-scale spiral structures spanning across the whole face
of the disk in both the velocities and line widths. Our method
resolves both of these better than the conventional one, finding
velocity perturbations along the spiral 50–100 m s−1 larger.
The plotted contours on the v0 maps (top row) show how this

Figure 2. Best-fitting nonparametric (NP) model cube fit to the benchmark model synthetic data, which has a 0.15 beam and noise comparable to the data. The top
row shows synthetic data. The second row shows the best fit after beam convolution (beam plotted in top left). The third row shows the best fit without beam
convolution. The fourth row shows the ground truth for comparison. We see that the model can resolve intensity gradients smeared by the beam. The fifth row shows
the residual between the synthetic data and the convolved model. The sixth row shows the residuals between the model and ground truth. The residuals show that the
model reconstructs the true intensity distribution up to the noise, except for in the central two beams or so.
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difference manifests as much larger and sharper wiggles in the
isovelocity curves, similar to that in the benchmark. Interest-
ingly, the line widths (bottom row) along the spiral are found to
be larger than with the conventional method, even though the
general trend is lower. The combined effect of smaller line
widths in most of the disk and larger line widths along the
spiral results in increased contrast of the spiral in the w0 map.

The I0 map (middle row), on the other hand, does not differ
much between the methods in terms of substructures, and the
difference plot shows a general trend toward higher intensities
in the new method.
The new method also recovers stronger velocity perturba-

tions in CQ Tau (Figure 6, bottom), with a difference along the
large one-armed spiral in the top left of 50–150 m s−1. Unlike

Figure 3. Top: peak velocity maps v0 extracted from the benchmark model synthetic data, using both the conventional method (left; see Section 2.5) and our method
(right). The right-most panel shows the true benchmark model line-of-sight velocities v0, truth. The v0 maps also show isovelocity contours spaced by 200 m s−1, and
the beam is shown in the top left panel. The second row shows the difference between the recovered v0 maps and the truth. Our method debiases the v0 map and
recovers the full amplitude of the substructures. Bottom: same as above except showing recovered peak intensity maps I0.
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for HD 135344B, the w0 map (bottom row) does not show
significant substructure, but the I0 map (middle row) does show
hints of the spiral found in v0 (top row) and is more obvious in
the new method result.

MWC 758, unlike the other two sources, shows clear signs
of substructure in all three maps (Figure 7, bottom). Our

method again finds larger velocity perturbations (top row)
associated with the spiral structure, in the 50–150 m s−1 range,
and the contour wiggles are sharper. Both the w0 and I0 maps
(middle and bottom rows) show increased contrast of the spiral.
The 1σ uncertainty on the v0 maps correlates with I0 in all

three sources, which is to be expected as the line center

Figure 4. The same as Figure 3 except showing recovered line width maps w0.

Figure 5. Best-fitting nonparametric (NP) model cube for HD 135344B. The top row shows the data. The second row shows the best fit after beam convolution. The
third row shows the best fit prior to beam convolution. The fourth row shows the residual between the data and the convolved model.
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measurement precision is ultimately set by the signal-to-noise
ratio. HD 135344B shows the highest precision, with an
uncertainty of 5–10 m s−1 across most of the disk (note the
same color map scaling for the v0 uncertainties in all figures).
Both CQ Tau and MWC 758 have uncertainties in the range
10–30 m s−1. This demonstrates that, despite the spatially
correlated noise, we can still constrain the line center with a
precision comparable to or better than the native spectral
resolution of 26 m s−1 (R. A. Loomis et al. 2025), which

ultimately sets the fundamental velocity resolution in the
absence of additional information about the line profile.

4.2. DISCMINER

In Figure 8, we show the best-fitting nonparametric model to
J1842 for one channel compared to the data in the top row. The
residuals are mostly noise. The bottom row shows three copies
of the same channel from different sample cubes drawn from

Figure 6. Peak velocity, peak intensity, and line width maps for HD 135344B (top) and CQ Tau (bottom). The left column shows the results using the conventional
method. The second column shows the results using our new method. The third column shows the difference of these. The fourth column shows the 1σ uncertainty on
the results from the new method. As in the benchmark, the new method better resolves the velocity perturbations associated with substructures.

10

The Astrophysical Journal Letters, 984:L13 (18pp), 2025 May 1 Hilder et al.



the model posterior and convolved with the beam to
demonstrate the typical difference between samples. The large
and bright structures are constant across the samples, while the
smaller and dimmer features show more variation. Thirty such

samples were used with DISCMINER for the combined approach
outlined in Section 2.6.
Figure 9 shows the posterior distributions from the DIS-

CMINER results. We compare the distributions from running

Figure 7. The same as Figure 6 except for MWC 758.

Figure 8. Single channel for the best-fitting nonparametric (NP) model and posterior samples for J1842. The top left panel shows the data and beam. The top middle
panel shows the best-fitting model convolved with the beam. The top right panel shows the residual between the data and best fit. The bottom row shows three
posterior model channel samples convolved with the beam.
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DISCMINER on the data directly (red) with the those from
running on individual cube samples (blue–green color map) as
well as the combined distribution from all cube samples
(black). As outlined in Section 2.6, this combined approach
allows us to approximate the results that DISCMINER would
find, were it to account for the spatially correlated noise.

We find that for all the parameters, the uncertainties are
increased by approximately an order of magnitude. The
exception is the systemic velocity vLSRK, where the increase
is only a factor of a few.

The posterior medians are not different between the data and
combined approach to a statistically significant level, indicating
that the nonparametric model is not causing a bias. A few values
are slightly offset, namely, vLSRK and the upper surface
parameters p and Rb. The differences in median surface
parameters could be related to the fact that the parameters cause
mostly spatially small changes to the shape of the channels and
so are potentially affected by accounting for the correlated noise.

Figure 9 also shows the posterior median and 1σ quantiles
for the production DISCMINER model fit to the data with
additional downsampling. These estimates are mostly compa-
tible with the others, except for Må and i, which are offset to a
significant level even accounting for the increased uncertainty
from the correlated noise. This could be caused by the extra
downsampling inducing spurious smoothing, biasing the
inclination low and the mass high to adjust. While this bias
is only on the order of 1%, it is statistically significant and
important to consider if the uncertainties from the analysis are
to be used.

Since the combined posterior distributions shown are only
from 30 cube samples, their overall shape is likely not

accurately reconstructed, and so their non-Gaussian appearance
in Figure 9 should not be taken too seriously, including the
apparent bimodality in z0 and p. However, we verified that the
estimates of the medians and quantiles become stable at around
10–20 cube samples.

5. Discussion

We have demonstrated that our method for generating
probabilistic moment maps is capable of debiasing line-of-sight
velocity measurements associated with partially resolved
substructures. The correction is important for any studies
looking to measure planet masses (F. Bollati et al. 2021), disk
masses (B. Veronesi et al. 2021; G. Lodato et al. 2023;
C. Longarini et al. 2025; P. Martire et al. 2024; J. Speedie et al.
2024), or vertical shear instability strength (M. Barraza-Alfaro
et al. 2021; M. Barraza-Alfaro et al. 2025) directly from the
strength of velocity perturbations, as the bias would result in
the underestimation of those quantities. For example, measure-
ments of disk mass using the so-called gravitational instability
“wiggle” (C. Longarini et al. 2021; J. P. Terry et al. 2022) rely
on comparing the deflection of the isovelocity curve near
systemic to an analytic model. As we have shown, these
wiggles are systematically underestimated by conventional
methods but (at least partially) corrected for by our approach.
Analyses within exoALMA that rely on measuring velocity
perturbations, for example, the measurement of rotation curve
deviations (J. Stadler et al. 2025), may be similarly affected,
although an in-depth study is beyond the scope of this paper.
Our method is less useful in the limits where the substructures
are either not resolved or well resolved. As seen in C. Pinte
et al. (2025), the sample contains many partially resolved

Figure 9. Posterior distributions for a subset of the J1842 DISCMINER model. Posteriors are plotted in each panel, with the corresponding median and 1σ quantiles
indicated by the points and lines above the distributions. Fits from individual cube samples are shown in the blue–green color map, and the combined distribution is
shown in black. Red shows the posterior from fitting the data directly. Pink is taken from the production exoALMA model. The y-scale of the red and black curves has
been scaled for easier comparison. The DISCMINER model parameters shown are stellar mass Må, systemic velocity vLSRK, inclination i, position angle PA, model
origin (xc, yc), reference height z0, height power-law index p, taper radius Rb, and taper index q (see A. F. Izquierdo et al. 2025).
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substructures. The model is also likely to perform significantly
worse for low signal-to-noise observations, although we did not
test this.

The debiasing effect may also be important for measure-
ments that rely on intensity, such as temperature and pressure,
both of which exhibit substructures in the exoALMA sample
(M. Galloway-Sprietsma et al. 2025; J. Stadler et al. 2025).
Measures of turbulence may also be affected by the reduced
line widths recovered with our method (R. Teague et al. 2016),
although forward models that fit to visibilities are not subject to
bias from beam smearing (K. M. Flaherty et al. 2015;
K. Flaherty et al. 2020). The additional contrast we found in
the line widths along the substructures may be useful for
searches of embedded planets through line broadening
(A. F. Izquierdo et al. 2025).

Additionally, our method provides uncertainties that take
into account the spatially correlated nature of the noise. Since
many samples of each map are created, it is straightforward to
propagate this uncertainty downstream into data products. This
could be used to quantify the correlation in adjacent data points
along extracted rotation curves, as existing approaches are not
able to take this into account (C. Longarini et al. 2025).

As alluded to in Section 2.4, the method is applicable to any
measurement derived from the data. For example, while we
assumed Gaussian line profiles for the creation of moment
maps, there is nothing about the method that requires this
choice. Recent improvements that more realistically character-
ize the line profile using higher-order functions or multiple
components (R. Teague & D. Foreman-Mackey 2018;
A. F. Izquierdo et al. 2025) could be used in place of the
Gaussians assumed here. The only stipulation is that it must be
computationally feasible to calculate the data product over
many sample cubes.

Moreover, the nonparametric model itself makes few
assumptions about the form of the data. While we used the
fiducial exoALMA 12CO images here, in principle, the data
may have any channel spacing or beam size and shape. At full
spectral resolution, adjacent channels will be correlated
(R. A. Loomis et al. 2018), which we do not account for.
More broadly, the model may be applied to any image subject
to a point-spread function and noise, provided that the point-
spread function is known.

By combining our approach with DISCMINER, we estimated
how the accuracy of the inferred model is affected when
accounting for spatially correlated noise. For J1842, the
uncertainties are increased by an order of magnitude. Despite
this, Må and i are still constrained to within approximately 1%.
Additionally, we found that it only takes around 10–20 cube
samples for the uncertainty estimates to stabilize. The
computational cost for this calculation is greater than that
involved in fitting DISCMINER to the data but is still achievable
in a few days on a 64 core node. The cost is eased by the fact
that all runs after the first can be initialized near the typical set,
as the difference between the cube samples is small. For studies
concerned with reliable uncertainties on the outputs of
DISCMINER, this approach is viable. This uncertainty is purely
statistical, however, and if the data are more complicated than
assumed in the model, there will be systematic uncertainty that
is unaccounted for. This is the case in exoALMA, as the
DISCMINER model assumes Keplerian rotation when in reality
there are deviations due to self-gravity, pressure support, and
substructures (A. F. Izquierdo et al. 2025; C. Longarini et al. 2025;

J. Stadler et al. 2025). The combined approach could also be
extended to calculate uncertainties on data products derived
using DISCMINER, as each cube sample has its own associated
inferred disk model. This would allow for probabilistic 2D
residuals, which would aid in probing the robustness of features
like Doppler flips (S. Pérez et al. 2018, 2020; C. Pinte et al.
2023), spirals (R. Teague et al. 2021, 2022; J. Calcino et al.
2022; A. F. Izquierdo et al. 2023, 2025), and vortices
(P. Huang et al. 2018b; Y. Boehler et al. 2021; L. Wölfer
et al. 2025) while accounting for both the correlated noise in
the data and the uncertainty in the subtracted disk model.
The model presented in this paper has its own unique

advantages, but it is similar to existing methods in the literature.
The model itself is of the true intensity distribution in each
channel, so it is similar to CLEAN (J. A. Högbom 1974) or
regularized maximal likelihood (RML) imaging (K. Akiyama
et al. 2017; Event Horizon Telescope Collaboration et al. 2019;
B. Zawadzki et al. 2023; B. Zawadzki et al. 2025). Unlike those
methods, our model fits to the already-imaged data and not the
raw visibilities. We argue that our method therefore constitutes
image analysis and not image creation like in CLEAN or RML,
although we admit this distinction is not sharply defined. RML is
likely to provide higher accuracy, as it utilizes more information.
The benefit provided by our model is that it is linear and so the
posterior distribution has an analytic form that is cheap to sample
from. While in principle it may be possible to sample from the
RML posterior, it may prove intractable, even with samplers like
Hamiltonian Monte Carlo that scale well to high dimensions
(S. Duane et al. 1987; R. Neal 2011).
FRANK (J. Jennings et al. 2020) fits an axisymmetric model

to visibilities directly. Our methods share similarities in that
both construct a model from a Fourier series (FRANK uses a
generalized Fourier series) and regularization with a GP prior.
The most practical difference between our approaches is that
our model is of the 2D intensity distribution while FRANK fits
for the radial intensity profile. FRANK also operates under the
empirical Bayes paradigm, where the covariance structure of
the GP is nonparametric, whereas our regularization is
equivalent to an exponential covariance kernel.

N. Dia et al. (2023) presented a method to perform image
reconstruction in the framework of Bayesian inference, thus
providing a posterior distribution over the images. Their
method uses score-based priors calculated from a neural
network trained on many images of galaxies. This approach
is promising but hinges on the choice of training set for the
prior. For their test case, continuum images of HD 143006 and
AS 209 from the DSHARP program (S. M. Andrews et al.
2018; J. Huang et al. 2018a), the model produced biased fits
due to the mismatch in the prior. Variational Bayesian methods
such as flows using deep learning have also been shown to be
capable of providing tractable sampling from the image
posterior (H. Sun & K. L. Bouman 2021), although these
methods are formally approximate.

5.1. Caveats

We assumed that the beam is Gaussian. This is true for the
CLEAN beam, which is obtained by matching a Gaussian to
the synthesized beam’s central component. The synthesized
beam contains side lobes, meaning that in the final image, the
noise is not correlated exactly according to the CLEAN beam
(T. Tsukui et al. 2022). We suspect that for the exoALMA data,
the impact on the analysis would be minor, due to the large
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number of baselines that ALMA has. Parametric analyses on
ALMA line emission data have found that switching from
fitting in the image plane to complex visibilities results in
negligible difference (K. M. Flaherty et al. 2018). It is unclear
whether this generalizes to our model, however, due to the
increased flexibility as compared to parametric approaches. The
impact of this on the model could be tested by processing the
benchmark in a more realistic way with finite sampling of the
uv-plane, but we leave this for future work.

The unconvolved model channels show boundary artifacts in
the outermost couple of pixels. This is caused by representing
the beam convolution with matrix multiplication, as this
implicitly assumes that the pixel values are 0 outside the
image. This problem is minimized by ensuring that the images
are cropped such that a few signal-free pixels are included
along the edges.

With the implementation described here, the complexity of
the model scales ( )n p p2 3+ , since we fit with numerical least
squares (see Appendix B). This makes it prohibitive to use
more pixels than around 100× 100. The memory required to
store A also approaches 1 TB at around 125× 125 pixels.
Conjugate gradient descent (M. R. Hestenes & E. Stiefel 1952)
would provide a dramatic speed-up in solve time (e.g.,
J. R. Shewchuk 1994) but does not solve the memory issue.
Methods that avoid the construction of A, instead representing
the system using linear operators (D. C.-L. Fong &
M. Saunders 2011; M. Ravasi & I. Vasconcelos 2020), are a
potential avenue for massive speed increases and memory
requirement decreases.

As already touched on, our model fits to the CLEAN image
and not the raw visibilities. This is a drawback, as information
is being discarded. The model is also subject to biases or
correlations induced through the CLEANing process. Our
approach hinges on the GP prior for the image itself, where the
Fourier series is a computational trick more than a model of
visibility space. It is not immediately clear how this approach
could be modified to fit visibilities instead. A GP prior could be
used for the visibilities, although a kernel that encourages
smoothness would not be appropriate. This kind of regulariza-
tion would be weaker than that used in successful approaches
like RML, and so it is unclear whether or not it would be
viable.

6. Conclusions

We present a new method for generating probabilistic data
products from spectral line data of protoplanetary disks and
apply it to a subset of the exoALMA sample. Our main findings
are summarized as follows.

1. We model the data with a flexible linear model of the
image intensities prior to beam convolution, assuming
spatially correlated noise. The model is composed of a
Fourier basis, where modes with higher frequencies are
increasingly suppressed.

2. Model linearity results in an analytic posterior. This allows
for the fast generation of sample cubes, which can be used
to estimate the posterior distribution for any data product,
taking into account the correlated noise in the data.

3. As an example, we presented probabilistic peak velocity,
peak intensity, and line width maps of HD 135344B, CQ
Tau, and MWC 758. We show that our method more
accurately reconstructs line-of-sight velocities associated

with substructures than with conventional methods,
which underestimate localized perturbations due to beam
smearing. Our method recovers perturbation amplitudes
50–150 m s−1 larger than conventional methods. This
debiasing allows more accurate estimates of planet
masses, disk masses, vertical shear instability strength,
and other analyses that rely on measuring deviations from
Keplerian rotation.

4. We also combined our approach with DISCMINER, using
J1842 as a case study. We found that when taking into
account the spatially correlated noise in the data, the
uncertainties on the DISCMINER model parameters
increase by an order of magnitude.

The following data products will be publicly available:

1. cube samples for our fits to HD 135344B, CQ Tau, MWC
758, and J1842 and

2. probabilistic peak velocity, peak intensity, and line width
maps for HD 135344B, CQ Tau, and MWC 758, including
the best fit, uncertainties, and individual samples.
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Appendix A
Impact of Hyperparameter Selection

As the hyperparameters λ and s appear directly in the
expression for the model posterior mean (Equation (16)) and
covariances (Equation (17)), the choice of their values will
impact both the predictions and uncertainties in our results.
Increasing either λ or s in general leads to spatially smoother
predictions and decreased variance in the model. Setting λ and
s to be too large will result in models that smear out the
substructures we are interested in, while setting them too small
will result in model images with too much high-frequency
noise.

Ideally, one would set the values of λ and s using the data
themselves. This can be achieved with cross-validation (CV),
where the hyperparameters are tuned iteratively by partitioning
the data into testing and training sets and assessing
the predictive performance on the held-out data (e.g.,
M. W. Browne 2000). For our method, varying the
hyperparameters does affect the model predictions, but the
convolved model predictions are altered only negligibly, since
the regularization mostly impacts modes of higher frequencies.
Since the CV error metric would be between the data and the

convolved model, this avenue does not provide a reliable way
to ensure that the model prior to convolution is performant.
Alternatively, we could forward model a set of realistic

known images to create synthetic data that could then be used
as a means of calibrating the prior and selecting hyperpara-
meter values. While an analysis of this type would strengthen
confidence in the hyperparameter choice, a full implementation
is out of scope for the immediate focus of this work, in which
our priority is to introduce the core methodology. Nonetheless,
as demonstrated in the benchmark (Section 3), our chosen
hyperparameters yield plausible reconstructions of the intensity
gradients around substructures leading to more accurate
inferences when compared with the ground truth.
We should also be concerned with the impact of the

hyperparameter choices on the uncertainties in our results. To
assess this, we calculated Σ for a large range of possible λ
values for the fit to the HD 135344B data. We varied only λ
and kept s = 0.1 fixed because it has been found that for this
kernel, only the product s2l is actually identifiable from the
data in general (H. Zhang 2004; A. Gelman et al. 2017). We
then found the marginal standard deviation on the model
predictions for each pixel before and after convolution as

( ) ( ) ( )I A Adiag , A1xy xys S= 

( ) ( ) ( )I A Adiag , A2convs S= 

where diag extracts the diagonal of a matrix as a vector. We
note that the calculated variance is almost identical in each
pixel for a given λ. The resultant values are shown in
Figure 10. We see the model prediction uncertainty decreases
approximately linearly with logl, while the convolved model
uncertainty is essentially flat. At λ≈ 104, there is a turnoff from
this behavior where the model uncertainty decreases more
rapidly and the convolved model uncertainty begins to decrease
as well. This difference is because the regularization acts in the
model to suppress high-frequency modes: as the prior becomes
weaker, the model can contain more high-frequency noise, but
the convolved model is basically unchanged, as the high-
frequency information does not survive the convolution. At
very large λ, shaded red in the figure, the regularization is
strong enough to suppress modes of lower frequencies such
that the variance in the convolved model predictions is
affected. This corresponds to a prior so strong that the
convolved model predictions will be smoother than the beam,
so we label this as overregularized.
The green shaded area in Figure 10 corresponds to the level

of regularization we used in our results, λ= 10−1. The
downstream data products presented in Section 4.1 depend
on per-pixel quantities, and so their uncertainty will also be
underestimated if our regularization is too strong. This will
likely be a minor effect, as a decrease in regularization of 4
orders of magnitude only increases the uncertainty by a factor
of around 30%. For the analysis using DISCMINER presented in
Section 4.2, we used samples from the convolved model, and
so the results and uncertainties should be unaffected by a
different choice of hyperparameters unless overregularized.
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Appendix B
Numerical Considerations

In Section 2.2, when outlining our model, we gave the
solution for X̂ as Equation (16). In practice, we instead solve
for the equivalent expression (H. V. Henderson & S. R. Searle
1981) when μ= 0,

ˆ ( ) ( )X A A A C I , B11
dataL L= + - 

since it is faster and more numerically stable for the case where
p> n (e.g., D. W. Hogg & S. Villar 2021), which we used in
this work. It also avoids inverting C. The solution in
Equation (16) is faster and more numerically stable if n< p,
and we left it in the main text since its connection to the regular
GLS solution in Equation (13) is more obvious.

Additionally, the condition number of H, and so also A and
C, can be very large due to the small tails of the Gaussian
distribution used for the beam kernel h in Equation (6). This
problem worsens when the beam is more resolved, i.e., when
the number of pixels per beam is increased. We deal with this
issue in two ways. First, we downsample the cubes spatially by
a factor of 2, which reduces the number of pixels per beam, but
not so much so that the correlations between nearby pixels are
no longer resolved. This also helps reduce computation cost
since it reduces n by a factor of 4. Second, following the advice
of D. W. Hogg & S. Villar (2021), we avoid directly
calculating the inverse of matrices (with the exception of
Λ−1, since it is diagonal). We instead solve for products of the
inverse using numerical least squares with NUMPY’s linalg.
lstsq function with RCOND set to 10−16 to zero out small
eigenvalues near machine precision. That is, for some system
AX=B, we use linalg.lstsq(A, B) to find X instead of
ever calculating A−1. This approach is especially important for

calculating the uncertainties on X̂ since it requires the inverse
of C. We break the solution in Equation (17) into the following
steps. We set Γ= AC−1 giving ΓC= A, where we can then
solve for Γ using the above approach. We then calculate
the expression inside the brackets with ΓA+Λ−1 =

AC−1A+Λ−1. Finally, we use an LU decomposition for
the final unavoidable direct inversion, yielding Σ.
After calculating X̂ and Σ, we need to draw samples from

the posterior distribution given by Equation (15), which is a p-
dimensional normal distribution. Let Z be a vector containing p
independent draws from the standard normal distribution (zero
mean and unit variance), and let B be any real matrix such that
Σ= BB. We can then generate samples X from the desired
distribution using

ˆ ( )X X BZ. B2= +

In theory,Σ is guaranteed to be symmetric, and it may be positive
definite or positive semidefinite. In practice, Σ is often not quite
symmetric due to numerical precision, and so we calculated a
symmetric version ( )0.5S S S= +¢  , which we use to find B. If
Σ is positive definite, then we use a Cholesky decomposition,

( )LL , B3S = 

where L is a real lower-triangular matrix. If Σ is only positive
semidefinite, we instead use a spectral decomposition,

( )( ) ( )/ /QDQ QD QD , B41 2 1 2S = = 

where Q is an orthogonal matrix containing the eigenvectors ofΣ
as columns and D is a diagonal matrix whose diagonal elements
are the corresponding eigenvalues, which are all nonnegative.

Appendix C
Benchmark Model

The radial intensity profile we use is

and the line width profile is

( ) ( )w r
r

0.65 exp
500 au

km s . C2
0.2

1= - -
⎜ ⎟
⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

Figure 10. Uncertainty in model prediction as a function of regularization strength λ for the model before (orange) and after (blue) convolution with the beam. The
green region indicates the value of λ used in our results. The red region indicates the region where the model is clearly overregularized.
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We assume azimuthal Keplerian motions v(r)= vf(r), with
three Gaussian ring perturbations placed at different radii,

( ) [ ( ) ( )
( )] ( ) ( )

v r G r G r

G r v r

1 0.25 0.35

0.25 , C3
70 90

140 K

= - +
+

f

( ) ( )v r
GM

r
, C4K = 

( ) ( )G r
r R

exp
1

2

au

10 au
, C5R

2

= -
-

⎜ ⎟
⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

such that the perturbations have amplitudes of −0.25, 0.35, and
0.25 Keplerian at radii of 70, 90, and 140 au, respectively. The
intensity and line width radial profiles were chosen by hand to
produce roughly similar channels to HD 135344B, and their
exact form should not be treated as a careful fit to the data.
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