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Abstract

The planet-hunting Atacama Large Millimeter/submillimeter Array (ALMA) large program exoALMA observed
15 protoplanetary disks at 0 .15~  angular resolution and ∼100 m s−1 spectral resolution, characterizing disk
structures and kinematics in enough detail to detect non-Keplerian features (NKFs) in the gas emission. As these
features are often small and low-contrast, robust imaging procedures are critical for identifying and characterizing
NKFs, including determining which features may be signatures of young planets. The exoALMA collaboration
employed two different imaging procedures to ensure the consistent detection of NKFs: CLEAN, the standard
iterative deconvolution algorithm, and regularized maximum likelihood (RML) imaging. This Letter presents the
exoALMA RML images, obtained by maximizing the likelihood of the visibility data given a model image and
subject to regularizer penalties. Crucially, in the context of exoALMA, RML images serve as an independent
verification of marginal features seen in the fiducial CLEAN images. However, best practices for synthesizing
RML images of multichanneled (i.e., velocity-resolved) data remain undefined, as prior work on RML imaging for
protoplanetary disk data has primarily addressed single-image cases. We used the open-source Python package
MPoL to explore RML image validation methods for multichanneled data and synthesize RML images from the
exoALMA observations of seven protoplanetary disks with apparent NKFs in the 12CO J= 3–2 CLEAN images.
We find that RML imaging methods independently reproduce the NKFs seen in the CLEAN images of these
sources, suggesting that the NKFs are robust features rather than artifacts from a specific imaging procedure.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Computational methods (1965); Planet
formation (1241); Deconvolution (1910); Submillimeter astronomy (1647)

1. Introduction

The Cycle 8 Atacama Large Millimeter/submillimeter Array
(ALMA) large program exoALMA has observed 15 proto-
planetary disks at sufficient angular and spectral resolution to
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search for kinematic signatures of young planets by identifying
localized deviations from Keplerian velocities, or non-
Keplerian features (NKFs), in the disk emission (R. Teague
et al. 2025). A key objective of the exoALMA program is to
make reliable detections of NKFs. Interferometers like ALMA
are composed of many individual antennas and deliver data in
the spatial frequency domain rather than the image domain.
Reconstructing images from interferometric data is an ill-posed
mathematical problem that requires assumptions to be made
about the unsampled spatial frequencies. Thus, recent
recommendations for kinematically detecting planets strongly
suggest using multiple image synthesis techniques to image the
data (Disk Dynamics Collaboration et al. 2020).

The standard ALMA pipeline uses the Common Astronomy
Software Applications (CASA) package for data calibration
and image synthesis. The CLEAN algorithm (especially the
CASA implementation, tclean), is the most common method
for imaging radio interferometric data and, in the absence of
noise, is equivalent to a least squares fit to the visibilities
(J. A. Högbom 1974; U. J. Schwarz 1978; J. P. McMullin et al.
2007; U. Rau & T. J. Cornwell 2011; CASA Team et al. 2022).
CLEAN is a procedural algorithm that builds a model image by
identifying the brightest pixels in the dirty image and placing a
CLEAN component at the same location in the model image.
Then, the CLEAN component is convolved with the dirty beam
(the instrument point-spread function) and subtracted from the
dirty image. At the end of the CLEANing process (e.g., after a
specified number of iterations or noise threshold is reached),
there are two products: the residual image and the model
image. The residual image is what remains after all the dirty-
beam-convolved CLEAN components have been subtracted
out of the original dirty image. The model image, composed of
the many CLEAN components, is typically added to the
residual image and convolved with a restoring beam (the
“CLEAN beam”) to obtain a final cleaned image. The fiducial
exoALMA images were made with CLEAN, as described in
R. Teague et al. (2025), R. Loomis et al. (2025).

However, despite the fact that the ALMA pipeline and users
rely primarily on CLEAN for imaging, it is ultimately a
heuristic, user-dependent algorithm that attempts to build well-
resolved and often complex structures from a set of point
source or Gaussian components. While this typically works
well enough, the hierarchical ringed substructures commonly
seen in disk observations (e.g., S. M. Andrews et al. 2018) are
particularly poorly matched to the basis sets of points and
Gaussians. Thus, the community should consider adopting
imaging methods that do not assume resolved sources like disks
are represented by a collection of discrete points. One alternative
to CLEAN is regularized maximum likelihood (RML) imaging,
a forward-modeling approach to imaging which aims to identify
the most likely set of image pixels given the data and
chosen regularizers (e.g., T. J. Cornwell & K. F. Evans 1985;
R. Narayan & R. Nityananda 1986; M. Cárcamo et al. 2018;
Event Horizon Telescope Collaboration et al. 2019). RML
imaging is an optimization-based imaging framework; the image
is obtained by maximizing a likelihood function subject to
regularizer penalties. The precise form of the likelihood function
can vary depending on the data characteristics (e.g., noise
qualities) and which regularizers are implemented. In this work,
RML models are directly parameterized by the image pixels and
are not composed of CLEAN-like components nor convolved

with a restoring beam (which can artificially degrade the
resolution of the image).
Though CLEAN and RML are distinct image synthesis

methods, both have been used successfully and complimenta-
rily for ALMA protoplanetary disk observations (e.g.,
M. Cárcamo et al. 2018; S. Pérez et al. 2019; M. Yamaguchi
et al. 2020, 2021; S. Casassus et al. 2021; B. Zawadzki et al.
2023). In particular, M. Cárcamo et al. (2018, 2019) introduced
the GPUVMEM package, which enabled GPU-accelerated RML
imaging with a focus on ALMA protoplanetary disk imaging,
establishing the use of efficient RML frameworks in the disk
community. Utilizing multiple imaging methods is particularly
worthwhile for testing the robustness of small or otherwise
tenuous features within a disk, such as emission features likely
caused by disk instabilities or embedded planets. Detecting
these features in multiple independently synthesized images
provides an additional layer of confidence that these features
are real, as these features can be subtle and difficult to
distinguish from spurious features arising from the imaging
procedure rather than the data itself (as done with the Event
Horizon Telescope observations of M87; e.g., A. A. Chael et al.
2018; Event Horizon Telescope Collaboration et al. 2019). For
example, the imperfect subtraction of the instrument PSF
during the CLEANing process could cause faint speckles to
appear in the image, causing misinterpretations in a study
attempting to directly image planets. Suppose an NKF appears
in the source emission regardless of the imaging method used.
In that case, the detected features are more likely real than an
artifact stemming from a specific imaging choice. If the
detected features do not appear in independently synthesized
images, then extra care should be taken to validate the feature
before drawing conclusions about the presence of protoplanets
or other disk processes. In order to fully characterize the
physical and dynamical structures of the disk at high
confidence, a comprehensive approach to imaging is essential.
Artifacts may be introduced either through imperfect

calibration or imaging procedures, the former of which would
affect both the CLEAN and RML images. R. Loomis et al.
(2025) describe steps taken to validate the exoALMA
calibration process, and here we focus on improving confidence
in the imaging results. We present the results of RML imaging
applied to seven exoALMA sources that displayed prominent
NKFs in their 12CO J= 3–2 CLEAN images. The source
selection was motivated by a preliminary visual search for
kink-like substructures caused by planets, resulting in an initial
sample of five disks: AA Tau, J1615, J1842, LkCa 15, and SY
Cha. These are the same five sources for which C. Pinte et al.
(2025) find evidence of embedded protoplanets and place
constraints on the planet masses. To explore the effects of
RML imaging on a wider variety of substructures, we add
HD 135344B and J1604 to our sample, which both display
large-scale non-Keplerian arcs (see Figure 1 in C. Pinte et al.
2025). For each of these seven sources, we present full 12CO
J= 3–2, 13CO J= 3–2, and CS J= 7–6 image cubes, as well
as comparisons to the CLEAN images for select channels of
interest.

2. Source Selection and Data Processing

The exoALMA large program obtained data of 15 large
and bright protoplanetary disks at moderate angular
(maximum baselines up to 3697 m) and high spectral (up
to 30.5 kHz, 26 m s−1) resolution (R. Loomis et al. 2025;
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R. Teague et al. 2025). Here, we use CLEAN image cubes
with 100 m s−1 channel spacings and 0 .15 restoring beams
as the fiducial image products for comparison with the RML
image products; this is equivalent to the fiducial set of
exoALMA images for 12CO J= 3–2 and 13CO J= 3–2, but
with a finer channel spacing than the CS J= 7–6 fiducial set
of images (which has 200 m s−1 spacings). The full data
calibration and CLEAN imaging procedures are detailed in
R. Loomis et al. (2025).

In this Letter, we focus on select exoALMA targets that
show clear NKFs in the 12CO J= 3–2 emission imaged with
tclean: protoplanetary disks around AA Tau, HD 135344B,
J1604, J1615, J1842, LkCa 15, and SY Cha. For an in-depth
analysis of the NKFs in the exoALMA sample, see C. Pinte
et al. (2025). To prepare the data for RML imaging, we first
transformed each calibrated measurement set (i.e., the set of
(u,v) points, complex visibilities, and visibility weights at each
frequency) using the CASA cvel2 task such that the data were
in an LSRK reference frame. This must be done explicitly prior
to exporting the data for RML imaging, as the reference frame
correction is normally built into the tclean procedure. The
data were regridded to a channel width of 0.1 km s−1; however,
the regridding process is not necessary for RML imaging. We
regridded the data to enable a direct comparison to the fiducial
CLEAN images.

We use the RML imaging package MPoL for all imaging
(I. Czekala et al. 2023, 2025; B. Zawadzki et al. 2023). We
exported each of the regridded measurement sets (both the
continuum-subtracted and non-continuum-subtracted 12CO
J= 3–2, 13CO J= 3–2, and CS J= 7–6 measurement sets for
each disk) as arrays of complex visibilities for use with MPoL,
and averaged the ungridded visibility data to grid cells in the
visibility domain before imaging (equivalent to uniform
weighting). The grid cells are specified in the image domain;
in this study, all RML images are 1024× 1024 pixels, with
each pixel measuring 0 .0125 across (half the size of the
fiducial CLEAN pixels). This pixel scaling was chosen to
ensure that the data with the highest angular resolutions (up to
0.06) still have several pixels across a resolution element while
still capturing the full extent of the disk emission. We then
defined a corresponding 1024× 1024 Fourier grid and
averaged the ungridded visibility data to the Fourier cells
using a simple weighted average. We have verified that this
gridding procedure does not introduce interpolation artifacts to
the images at the signal-to-noise ratio (SNR) of the data.

3. RML Techniques for Image Cubes

RML imaging aims to find the set of visibilities that
maximizes the likelihood function

( ∣ ) ( )D Ip , 1

where D is a set of visibility data and I is a model image. In
practice, we compute the negative log likelihood for
computational efficiency. Assuming that the noise is normally
distributed with standard deviation σ and is uncorrelated across
baselines, the negative natural logarithm of the likelihood
function is

(( ∣ ) ( ) ) ( )D I
I

p N
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where ND is the number of complex visibilities in the data set,
Di is a measured complex visibility at a (ui, vi) point, and Vi is
the predicted value of the model visibilities for the same (ui, vi)
generated from the model image. The rightmost term is
equivalent to 1/2 of the χ2 statistic, and the negative log
likelihood can be written as

( ) ( ∣ ) ( ∣ ) ( )I D I D IL pln
1

2
. 3nll

2c= - =

The Lnll(I) notation is adapted from the machine learning
community, where it is common to identify a function that can
be minimized in order to obtain optimal model parameter
values, known as a loss function (C. M. Bishop 2006). Though
minimizing Lnll(I) is equivalent to maximizing the likelihood
function, the resulting image may not be optimal due to the
incomplete (u, v) sampling of the data. In other words, the ill-
posed and underdetermined nature of radio interferometric
imaging means that the maximum likelihood image cannot be
uniquely determined. An image product can be improved from
this base maximum likelihood image by incorporating one or
more regularizers into the loss function; we adopt the same
basic loss function as in B. Zawadzki et al. (2023,
hereafter Z23), using a combination of entropy, sparsity, and
total squared variation (TSV; K. Kuramochi et al. 2018)
regularization.

3.1. The Loss Function

The maximum entropy loss is defined as

( )L I I
1

ln , 4
i

i ient åz=

where Ii is the intensity of an image pixel. Here, ζ is a
normalization factor, which we set equal to the total flux of the
CLEAN image. Maximum entropy regularization restricts pixel
values to positive nonzero values and favors uniformity in the
image, making it useful for identifying emission features
(S. F. Gull & G. J. Daniell 1978; J. A. Högbom 1979;
R. Narayan & R. Nityananda 1986).
The sparsity loss is defined as

∣ ∣ ( )L I 5
i

ispa å=

and is derived from the least absolute shrinkage and selection
operator (lasso; R. Tibshirani 1996). Sparsity regularization
uses the L1 norm to suppress the amplitudes of low-intensity
pixels, promoting an image that is a sparse collection of
nonzero valued pixels. This often has the effect of greatly
reducing background noise in the image and improving image
resolution (M. Honma et al. 2014).
Finally, the TSV loss is defined as

( ) ( ) ( )L I I I I , 6
l m

l m l m l m l mTSV
,

1, ,
2

, 1 ,
2å= - + -+ +

where l and m are indices over pixels corresponding to R.A.
and decl., respectively. TSV regularization takes the contiguity
of image pixels into account, favoring sharp changes in
intensity when needed and relatively smooth areas elsewhere.
Each of the above regularizers has an adjustable coefficient

λ, which determines the strength of that regularizer. Since each
λ affects the values of the model parameters (I) without itself
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being a free parameter in the model, it is known as a
hyperparameter. The total loss function is the sum of the
likelihood function and all regularizing terms,

( ) ( ) ( ) ( )
( ) ( )

I I I I

I

L L L L

L . 7
nll ent ent spa spa

TSV TSV

l l
l

= + +
+

3.2. Cross Validation for Multichanneled Data

Cross-validation methods are well-established in astronomy
as a quantitative procedure for obtaining hyperparameter values
(e.g., K. Akiyama et al. 2017a, 2017b; M. Aizawa et al. 2020;
M. Yamaguchi et al. 2020, 2021, 2024; B. Zawadzki et al.
2023). Following the suggestions in Z23, we use random cell
cross validation (CV) to identify the optimal hyperparameters
(λent, λspa, and λTSV) for imaging. Random cell CV works by
partitioning visibility grid cells into K pairs of training and
testing sets randomly, drawing cells without replacement with
the minor exception that grid cells with the highest 1% of
gridded weight values are included in each subset in order to
avoid numerical instabilities that delay or prevent convergence.
After defining the loss function, an RML model is generated
using the training data. This model is then compared to the
withheld testing data to quantify the predictive power of the
RML model and obtain a CV score,

( ∣ ) ( )D ICV , 8
k

K

k
2

trainå c=

where Dk is the test data set, and Itrain is the model image that
minimizes the loss function for the training data D−Dk. We
use K= 10, which has been shown to effectively balance bias
and variance in the parameter error estimates (L. Breiman &
P. Spector 1992; R. Kohavi 1995; A. M. Molinaro et al. 2005).

Previous work on RML imaging for protoplanetary disk
observations focused primarily on continuum images (e.g.,
M. Cárcamo et al. 2018; S. Casassus & S. Pérez 2019; S. Pérez
et al. 2019, 2020; M. Yamaguchi et al. 2020, 2021, 2024;
B. Zawadzki et al. 2023); however, extending the application of
RML methods to velocity-resolved gas observations presents a
new set of challenges. While some studies have used RML
methods for imaging the gas emission in protoplanetary disks
(e.g., M. Cárcamo et al. 2018), only a few present velocity-
resolved RML channel maps (S. Casassus et al. 2021, 2022).
As a result, there is not yet a firm consensus on best practices
for applying RML techniques to multichanneled data like the
observations presented here. In particular, it is unclear whether
CV must be performed on a channel-by-channel basis or
whether CV results from a representative channel can be
applied to the rest of (or at least a subsection of) the full data
cube. It is also unclear whether optimal hyperparameter values
are comparable for different observations or data products of
the same source (e.g., 12CO J= 3–2 versus 13CO J= 3–2, or
continuum-subtracted versus non-continuum-subtracted data).
The CV process is by far the most computationally expensive
component of RML imaging, so eliminating unnecessary
hyperparameter tuning results in significant time and resource
savings when working with a large sample like the exoALMA
disks.

To test this, we performed CV on the LkCa 15 data,
evaluating a grid of entropy, TSV, and sparsity hyperparameter
values spanning several orders of magnitude. We included the
12CO J= 3–2, 13CO J= 3–2, and CS J= 7–6 observations and

tested both the continuum-subtracted and non-continuum-
subtracted observations across multiple different channels
sampling different parts of the velocity space. Our findings
are summarized in Table 1, showing results from a subset of
our 30 CV tests. In total, we tested five nonadjacent channels
for each line (both continuum-subtracted and non-continuum-
subtracted). These channels are presented in Figure 1 and were
selected to probe different spatial extents and general
morphologies of the emission.
The optimal hyperparameter values tended to remain nearly

constant throughout a given image cube, with only slight
variations from channel to channel or no variation at all. We
verified that these minor variations did not significantly change
the emission morphologies in the resulting images. Optimal
hyperparameters resulting from the CV procedures also
remained largely consistent between the continuum-subtracted
and non-continuum-subtracted data. Lastly, hyperparameter
values remained similar across the 12CO J= 3–2, 13CO
J= 3–2, and CS J= 7–6 data despite often having substantial
differences in emission morphology and intensity.
These results suggest that hyperparameter values are more

dependent on the observational parameters (e.g., interferometer
baselines and on-source integration time, corresponding to the
resolution and sensitivity of the data) rather than the intensities
or specific morphological features across different molecular
lines. Thus, it is possible to exploit similarities between data to
significantly reduce the computational burden of CV for RML
hyperparameter tuning. A typical CV procedure for one
combination of hyperparameters can take 30 minutes on a
NVIDIA P100 GPU; with a comprehensive grid of

Table 1
Top: Tested Range of Regularizer Hyperparameter Values (λent, λspa, and

λTSV)

Tested Hyperparameter Values

λent [0, 8e-8, 2e-7, 8e-7, 2e-6, 8e-6, 2e-5]
λTSV [5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2]
λspa [5e-6, 1e-5, 5e-5]

line contsub? channel λent λTSV λspa

12CO J = 3–2 Yes 6.9 km s−1 0 5e-4 1e-5
12CO J = 3–2 Yes 6.3 km s−1 0 5e-4 1e-5
12CO J = 3–2 Yes 4.8 km s−1 0 1e-4 1e-5
12CO J = 3–2 No 6.9 km s−1 0 5e-4 1e-5
12CO J = 3–2 No 6.3 km s−1 0 5e-4 1e-5
12CO J = 3–2 No 4.8 km s−1 8e-8 1e-4 1e-5
13CO J = 3–2 Yes 6.9 km s−1 0 5e-4 1e-5
13CO J = 3–2 Yes 6.3 km s−1 0 5e-4 1e-5
13CO J = 3–2 Yes 4.8 km s−1 0 5e-4 1e-5
CS J = 7–6 Yes 6.9 km s−1 0 5e-4 1e-5
CS J = 7–6 Yes 6.3 km s−1 0 5e-4 1e-5
CS J = 7–6 Yes 4.8 km s−1 0 1e-3 1e-5

Note. Botton: optimal entropy, TSV, and sparsity λ values resulting from
random cell CV on various LkCa 15 data. The full CV process was conducted
on (1) 12CO J = 3–2, 13CO J = 3–2, and CS J = 7–6 data, (2) both the
continuum-subtracted and non-continuum-subtracted observations, and (3) five
individual channels (100 m s−1 channel width) across the data cubes displaying
different emission morphologies, including the channel with the apparent NKF
at 6.9 km s−1. The optimal λ values resulting from CV show little variation
across channels or lines, suggesting that CV on a single representative channel
is sufficient for setting hyperparameter values for an entire data cube or
multiple similar observations of the same source, greatly reducing the
computational burden of RML imaging across large data sets.
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hyperparameter values, the process requires tens of hours
(1–2 days) on a single GPU. If the CV-tuned hyperparameters
showed substantial variation within and across the cubes,
obtaining hyperparameter values with CV would quickly
become impractical for large data sets like the exoALMA data.

Given these results, we followed the RML workflow laid out
in Z23, except adapted for working with multichanneled data:

1. For each source, we selected a single channel to use for
CV by examining the fiducial continuum-subtracted 12CO
J= 3–2 data CLEAN images. For sources with a spatially
small NKF localized to a few channels, we used one of the
channels where the NKF is visible in the fiducial CLEAN
images. For sources with large-scale NKFs spanning many
channels, we selected a representative channel where the
NKFs are clearly seen in the fiducial CLEAN images.
Following the extensive CV testing summarized in Table 1,
we do not expect the choice of channel at this step to have
a significant impact on the final RML images.

2. We performed tenfold CV on the continuum-subtracted
12CO J= 3–2 data at this channel for the range of
hyperparameter values (λent, λTSV, and λspa) presented in
Table 1.

3. We applied the hyperparameter values that minimized the
CV score at this channel to our loss function (Equation (8)).
We used this loss function for all channels in the cube.

4. With the loss function for each source now specified with
the optimized hyperparameters, we synthesized full RML
image cubes for the continuum-subtracted and non-
continuum-subtracted 12CO J= 3–2, 13CO J= 3–2, and
CS J= 7–6 data.

The CV results are summarized in Table 2. Five of the seven
sources yielded optimal λent values of zero, effectively “turning
off” entropy regularization and indicating that TSV and
sparsity regularization alone yielded the model with the best
predictive power between the training and testing data during
CV. Other recent studies have also obtained high-quality
protoplanetary disk images using only a combination of TSV
and sparsity regularization (e.g., M. Yamaguchi et al. 2024).
The two remaining disks, J1615 and J1842, favor a modest
degree of entropy regularization, and each has an optimal λent
of 8× 10−6. For all seven disks, the optimal λTSV values range
from 5× 10−5 to 5× 10−4, and the optimal λspa values range
from 1× 10−5 to 5× 10−5.

We note that it is also possible to continue tuning
hyperparameters by hand after the CV process. However,
deviating from the set of hyperparameters that minimize the

CV score introduces human bias, as hand-tuning is simply
adjusting the hyperparameters manually to obtain a more
desirable image appearance (evaluated by eye rather than a
quantitative metric like a CV score; see the discussion on
hyperparameter tuning in Z23). To treat the exoALMA sample
more uniformly, we do not take this optional tuning step and
use strictly the hyperparameter values that minimize the CV
score for each source.
We also find that the optimal hyperparameter values remain

similar across different exoALMA sources; however, there are
small differences between most sources (Table 2). We do not
automatically apply any results from one source to another,
conducting CV independently for each disk. As optimal
hyperparameter values appear to be driven primarily by the
(u, v) coverage and sensitivity of the observations, CV results
from one target can be used as a starting point for the rest of the
sample in large, relatively uniform programs like exoALMA.
Given that only two disks (LkCa 15 and SY Cha) had identical
optimal hyperparameters, however, we recommend performing
CV at least once per source.
This apparent dependence on (u, v) coverage and sensitivity

also means that the simple CV procedure used here may not be
as effective for observations with less uniform (u, v) coverage
or lower SNRs. For applications to such data, it may be
necessary to repeat the CV process multiple times with
different visibility partitioning to further validate and avoid
artificially skewing the hyperparameter values based on the
random partitioning into training and testing sets. In this case, it
would also be useful to test the performance of CV on
simulated data with comparably sparse or nonuniform (u, v)

Figure 1. Five channels of LkCa 15 selected for thorough CV testing (RML images pictured). Channels were selected arbitrarily across the range of velocity space
where gas emission is prominent in all three molecular lines, testing channels that varied in the spatial extent and general morphology of the emission. We
intentionally include a channel with a prominent NKF at v = 6.9 km s−1. The color bar has units of Jy arcsec−2.

Table 2
Hyperparameter Values Resulting from Tenfold CV on the Continuum-

subtracted 12CO J = 3–2 Data for Each Source

Source Channel λent λTSV λspa
(km s−1)

AA Tau v = 7.9 0 5e-5 1e-5
HD 135344B v = 6.6 0 5e-5 5e-5
J1604 v = 4.5 0 1e-4 5e-5
J1615 v = 3.7 8e-6 5e-4 5e-5
J1842 v = 5.1 8e-6 5e-5 5e-5
LkCa 15 v = 6.9 0 5e-4 1e-5
SY Cha v = 3.6 0 5e-4 1e-5

Note. These values were obtained from running CV on a single channel of
interest (100 m s−1 channel width), then applied to the rest of the cube.
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coverage to better characterize the behavior of CV in this low
sensitivity regime.

4. Results

Following the recommendations from Z23 and incorporating
the new findings for spectral line data described in Section 3,
we generated continuum-subtracted and non-continuum-sub-
tracted RML image cubes of the 12CO J= 3–2, 13CO J= 3–2,
and CS J= 7–6 emission with 100 m s−1 channel spacing for
seven exoALMA targets. Each source is summarized with a
figure comparing the RML and CLEAN images (Figures 2–8).
Each figure displays three channels, centered on a channel
where the NKF(s) appear prominently in the 12CO J= 3–2 data

(see C. Pinte et al. 2025). Figure 9 displays the most prominent
NKFs in the continuum-subtracted 12CO J= 3–2 emission for
each source, showing the difference between the RML and
CLEAN images with a zoomed-in look at the NKFs. The RML
images presented in these figures were made with the optimal
hyperparameter values presented in Table 2, following the
procedure described in Section 3.2.

4.1. AA Tau

The CLEAN images of AA Tau show an NKF in the 12CO
J= 3–2 emission centered at roughly v= 7.8 km s−1 and
visible in multiple adjacent channels. Figure 2 shows a
comparison of the RML and CLEAN images of AA Tau for
the continuum-subtracted 12CO J= 3–2, 13CO J= 3–2, and CS
J= 7–6 data. All of the RML images in Figure 2 were made
with λent= 0, λTSV= 5× 10−5, and λspa= 1× 10−5.
The RML images of AA Tau appear sharper than the

corresponding CLEAN images. All the features appearing in
the CLEAN images are recovered in the corresponding RML

Figure 2. RML and CLEAN comparison for continuum-subtracted observa-
tions of AA Tau in 12CO J = 3–2, 13CO J = 3–2, and CS J = 7–6. Shown are
three adjacent channels, centered at v = 7.8 km s−1 where the 12CO J = 3–2
non-Keplerian feature appears most prominently. All six panels for each
molecular line (the three RML panels and three CLEAN panels) are plotted on
the same color scale, and the color bars for each molecule are in units of
Jy arcsec−2. The white arrows indicate the NKF, which can be seen in the 12CO
J = 3–2 emission; while the feature is present in all three channels shown, we
only place the arrows in one RML image and one CLEAN image to highlight
the location of the feature.

Figure 3. Same as Figure 2, but for HD 135344B. As HD 135344B displays
large NKFs that persist throughout the cube, we show three adjacent and
representative channels centered at v = 6.6 km s−1.
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images, except the RML images have more uniform back-
ground emission due to the sparsity regularization. This can
also be thought of as background noise suppression through
regularization. The NKF is visible in both the RML and
CLEAN 12CO J= 3–2 images and is consistent with a 2MJup

planet embedded in the disk (C. Pinte et al. 2025). This feature
is not as apparent in the 13CO J= 3–2 or CS J= 7–6 images,
but there are bright clumps present in these channels at the
rough location of the NKF.

4.2. HD 135344B

The CLEAN images of HD 135344B show NKFs con-
sistently throughout the 12CO J= 3–2 emission. Figure 3
shows a comparison of the RML and CLEAN images of
HD 135344B for the continuum-subtracted 12CO J= 3–2,
13CO J= 3–2, and CS J= 7–6 data. Though the NKFs in this
disk are not localized to only a handful of channels like planet-
driven NKFs, we select three adjacent channels centered at
v= 6.6 km s−1 for illustrative purposes. All of the RML images

in Figure 3 were made with λent= 0, λTSV= 5× 10−5, and
λspa= 5× 10−5.
The RML images of HD 135344B appear sharper than the

corresponding CLEAN images and have more uniform
background emission due to the sparsity regularization. The
RML images consistently reproduce the large-scale NKFs seen
in the CLEAN images.

4.3. J1604

The CLEAN images of J1604 show NKFs consistently
throughout the 12CO J= 3–2 emission. Figure 4 shows a
comparison of the RML and CLEAN images of J1604 for the
continuum-subtracted 12CO J= 3–2, 13CO J= 3–2, and CS
J= 7–6 data. Though the NKFs in this disk are not localized to
only a handful of channels like planet-driven NKFs, we select
three adjacent channels centered at v= 4.5 km s−1 for
illustrative purposes. All of the RML images in Figure 4 were
made with λent= 0, λTSV= 1× 10−4, and λspa= 5× 10−5.

Figure 4. Same as Figure 2, but for J1604. As J1604 displays large NKFs that
persist throughout the cube, we show three adjacent and representative
channels centered at v = 4.5 km s−1.

Figure 5. Same as Figure 2, but for J1615. Shown are three adjacent channels,
centered at v = 3.9 km s−1 where the 12CO J = 3–2 non-Keplerian feature
appears most prominently.
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Here, the RML images look extremely similar to the fiducial
CLEAN images, with only a small degree of added sharpness,
which appears more obvious in the fainter 13CO J= 3–2 and
CS J= 7–6 emission. Features like the smoothness of the
emission, edge sharpness, and presence of NKFs appear to be
fully reproduced in the RML images. Background noise is
suppressed in the RML images due to sparsity regularization.

4.4. J1615

The CLEAN images of J1615 show an NKF in the 12CO
J= 3–2 emission centered at roughly v= 3.9 km s−1. Figure 5
shows a comparison of the RML and CLEAN images of J1615
for the continuum-subtracted 12CO J= 3–2, 13CO J= 3–2, and
CS J= 7–6 data. All of the RML images in Figure 5 were made
with λent= 8× 10−6, λTSV= 5× 10−4, and λspa= 5× 10−5.

While the RML images appear slightly more blurred than the
CLEAN images for this target, the NKF remains visible in
multiple channels. This feature is consistent with a 2MJup

planet embedded in the disk (C. Pinte et al. 2025).

Incorporating the additional step of hand-tuning hyperpara-
meter values after CV may result in a sharper RML image. The
largest difference between the RML and CLEAN images is in
the CS J= 7–6 emission; the disk emission stands out more
prominently in the RML images than in the CLEAN images,
which are comparatively noise dominated. This is due to the
sparsity regularization incorporated into the RML model,
which reduces the number of image pixels with nonzero values
and effectively suppresses background noise in the image.

4.5. J1842

The CLEAN images of J1842 show an NKF in the 12CO
J= 3–2 emission centered at roughly v= 5.2 km s−1. Figure 6
shows a comparison of the RML and CLEAN images of J1842
for the continuum-subtracted 12CO J= 3–2, 13CO J= 3–2, and
CS J= 7–6 data. All of the RML images in Figure 6 were made
with λent= 8× 10−6, λTSV= 5× 10−5, and λspa= 5× 10−5.
The RML images are sharper than the corresponding CLEAN

images, and the NKF seen in the 12CO J= 3–2 CLEAN images

Figure 6. Same as Figure 2, but for J1842. Shown are three adjacent channels,
centered at v = 5.2 km s−1 where the 12CO J = 3–2 non-Keplerian feature
appears most prominently.

Figure 7. Same as Figure 2, but for LkCa 15. Shown are three adjacent
channels, centered at v = 6.9 km s−1 where the 12CO J = 3–2 non-Keplerian
feature appears most prominently.
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is clearly reproduced in the RML images. This feature is
consistent with a 1MJup planet embedded in the disk (C. Pinte
et al. 2025). Like J1615, the CS J= 7–6 emission for J1842 is
dominated by noise and appears more prominently in the RML
images due to the sparsity regularization. However, the structure
of the CS J= 7–6 emission is not clear in either the RML or
CLEAN images at this sensitivity; further spectral averaging
could reveal the CS J= 7–6 morphology with more clarity.

4.6. LkCa 15

The CLEAN images of LkCa 15 show an NKF in the 12CO
J= 3–2 emission centered at roughly v= 6.9 km s−1. Figure 7
shows a comparison of the RML and CLEAN images for the
continuum-subtracted 12CO J= 3–2, 13CO J= 3–2, and CS
J= 7–6 data. All of the RML images in Figure 7 were made
with λent= 0, λTSV= 5× 10−4, and λspa= 1× 10−5.

Figure 8. Same as Figure 2, but for SY Cha. Shown are three adjacent
channels, centered at v = 3.6 km s−1 where the 12CO J = 3–2 non-Keplerian
feature appears most prominently.

Figure 9. Zoomed-in view of the 12CO J = 3–2 NKFs present in the RML
(left) and CLEAN (right) images for each source. The color bars are in units of
Jy arcsec−2.
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The NKF in the 12CO J= 3–2 emission is present in both the
RML and CLEAN images and appears across all three channels
pictured. This feature is consistent with a 2MJup planet
embedded in the disk (C. Pinte et al. 2025). The RML images
reproduce all features seen in the fiducial CLEAN images,
though the CLEAN images are slightly sharper. The RML
features more uniform background emission due to the sparsity
regularization.

4.7. SY Cha

The CLEAN images of SY Cha show an NKF in the 12CO
J= 3–2 emission, centered at roughly v= 3.6 km s−1. Figure 8
shows a comparison of the RML and CLEAN images of SY
Cha for the continuum-subtracted 12CO J= 3–2, 13CO
J= 3–2, and CS J= 7–6 data. All of the RML images in
Figure 8 were made with λent= 0, λTSV= 5× 10−4, and
λspa= 1× 10−5.

The emission in the RML images generally appears
smoother and more blurred compared to the CLEAN images,
but all features seen in the CLEAN images are reproduced,
including the NKF in multiple channels. This feature is
consistent with a 5MJup planet embedded in the disk (C. Pinte
et al. 2025). The sparsity regularization heavily suppresses
background noise in the RML images compared to the CLEAN
images, particularly in the fainter 13CO J= 3–2 and CS
J= 7–6 emission.

5. Discussion

5.1. Resolution and Noise of RML Images

Because RML images do not need to be convolved with a
restoring beam (as is common practice in the final step of
synthesizing CLEAN images), the spatial resolution of RML
images can be difficult to define precisely. Taking the extra step
to convolve RML images with a restoring beam is a
straightforward way to place a firm resolution limit on the
image. While RML images can often achieve a modest degree
of super-resolution, the theoretical limit is roughly a factor of 4
compared to the nominal resolution of the interferometer

/R bmin maxl= , where bmax is the longest baseline in the array.
However, given that there is no measured information on the
scale of these super-resolved features, this is only possible for
data with extremely high SNRs and (u, v) coverage combined
with regularizers that are well-matched to the source structure
(e.g., R. Narayan & R. Nityananda 1986; M. A. Holdaway
1990; M. Honma et al. 2014). Some RML imaging applications
to EHT data have achieved resolutions of 25%–30% of the
diffraction limit (K. Akiyama et al. 2017a, 2017b), while others
find resolutions of ∼30% of the CLEAN beam (K. Kuramochi
et al. 2018). Studies that apply RML imaging techniques to
ALMA protoplanetary disk observations typically quote the
resolution in relation to the CLEAN beam (which depends on
the data weighting and is often significantly larger than the
diffraction limit), achieving angular resolutions of up to 1/3 the
nominal CLEAN beam (e.g., M. Yamaguchi et al. 2020, 2021,
2024; B. Zawadzki et al. 2023). We thus generate two sets of
beam-convolved RML cubes: one with a circular 0.15
convolution kernel (equivalent to the fiducial CLEAN beam)
and one with a circular 0.05 convolution kernel (1/3 of fiducial
CLEAN beam).

A comparison of the fiducial 0.15 CLEAN, 0.15 RML, 0.05
RML, and native RML (no restoring beam) images is shown in

Figure 10. We show a single channel (v= 5.2 km s−1) of 12CO
J= 3–2 emission for J1842 for each image product. The 0.15
RML and CLEAN images show that the RML images
reproduce all of the features seen in the CLEAN images, with
the only major difference being the background noise
suppression in the RML image. We note that a convolution
kernel of a given size does not necessarily result in images with
an equivalent resolution, as the true resolution of the restored
image depends on both the native resolution of the RML image
as well as the size of the convolution kernel. The true resolution
of the convolved cube can be estimated by adding the native
RML image resolution and the convolution kernel size in
quadrature. For example, if the native resolution of the RML
image of J1824 (rightmost panel, Figure 10) is 0.05, then
convolving the image with a 0.15 convolution kernel results in
a restored image with a resolution of 0.158. As the resolution
of the native RML image cannot easily be determined, may
vary spatially, and differs from source to source, we have not
attempted to correct for this effect. As a result, the stated
resolutions of our beam-convolved RML image cubes are
lower limits on the true resolutions of the images.
With a ground truth image for comparison, it would be

possible to convolve the image with a variety of beam sizes to
determine the resolution that minimizes the normalized rms
error. This is commonly used to evaluate the quality of a
reconstructed image (e.g., A. A. Chael et al. 2016; K. Akiyama
et al. 2017a, 2017b; K. Kuramochi et al. 2018; M. Yamaguchi
et al. 2020; B. Zawadzki et al. 2023), but without a “true”
image it is not possible to firmly identify an optimal restoring
beam size.
Estimating the noise of RML images also poses challenges,

as regularization (particularly sparsity regularization) can
effectively suppress background noise beyond the inherent
thermal noise expected from the instrument. Figure 11 shows
the rms noise in a signal-free region of three image products: a
native RML, 0.15 RML, and 0.15 CLEAN channel of the
12CO J= 3–2 emission in AA Tau. The 0.15 RML and 0.15
CLEAN images offer the most direct comparison, as the image
products are in the same units (Jy beam−1, with identical beam
sizes). The rms noise is nearly a factor of 100 smaller in the
0.15 RML image compared to the 0.15 CLEAN image
(0.043 mJy beam−1 and 3.953 mJy beam−1, respectively).
This is because RML and CLEAN images are synthesized

with fundamentally different procedures; while the CLEANing
process results in a residual map, RML images are subject to
regularizer penalties which can favor image qualities like sparsity
or smoothness. With sparsity regularization in particular, when
the data do not support any significant emission in a region (as in
the noisy background of a high-SNR image), the pixel values will
tend to zero. This has the overall effect of heavily suppressing
noise in signal-free regions of the image, far beyond expected
values from the thermal noise of the instrument. This does not
mean that the overall noise in the RML images is truly orders of
magnitude better than the corresponding CLEAN products.
Rather, the noise across an RML image may not be spatially
uniform, as sparsity regularization only suppresses pixel values in
regions where there is not likely to be any emission at all.

5.2. Emission Surfaces and Temperatures

We compared the nonparametric emission surfaces and radial
temperature profiles, presented in full in M. Galloway-Sprietsma
et al. (2025), between the CLEAN cubes and the RML cubes. To
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compare the two, we used RML cubes of the same spatial and
spectral resolution as those used for the CLEAN cube analysis
(0.15, 100 m s−1). We use the non-continuum-subtracted cubes
so as to not underestimate the temperature.

We follow identical procedures to those outlined in Section 3
of M. Galloway-Sprietsma et al. (2025) to obtain the RML
emission surfaces. The procedure is summarized as follows.
We utilize the open-source Python package disksurf, which
obtains emission surfaces via the method first demonstrated in
C. Pinte et al. (2018). To trace the emission surface,
disksurf locates intensity maxima along a vertical line
intersecting isovelocity contours. For disks of moderate
inclination, the front and back surfaces will be well-separated,
allowing us to distinguish between the front and back surfaces,
and to trace the r− z location of emission. As in
M. Galloway-Sprietsma et al. (2025), we do this process over
five iterations, each time increasing the minimum SNR from
1.0 to 5.0 for 12CO J= 3–2 and 1.0 to 3.5 for 13CO J= 3–2.
Minimal masking is applied to the surfaces so that we can
assess the differences between CLEAN and RML. This allows
us to obtain the “raw” surfaces, comprising r− z points. We
completed this procedure with the RML cubes of AA Tau,
J1615, J1842, LkCa 15, and SY Cha for both 12CO J= 3–2
and 13CO J= 3–2 emission.

Figure 12 shows the results for J1615 and SY Cha. The top
two panels show 12CO J= 3–2 emission surfaces, and the
bottom two show 13CO J= 3–2 surfaces. The raw r− z points
are shown in the background in gray for the CLEAN cubes, and
in aqua blue (12CO J= 3–2) and red (13CO J= 3–2) for the
RML cubes. The larger points show the raw surfaces binned by
a quarter of the beam size for visual clarity. The dashed vertical
lines show the maximum radial extent of the retrieved surfaces.
In general, the emission surfaces are in agreement, which is
also what we find for the nonpictured disks (AA Tau, J1842,
and LkCa 15). The J1615 emission surfaces both have the same
characteristic tapered power-law shape. The morphology of the
SY Cha 12CO J= 3–2 RML emission surface has the biggest
difference among the five disks tested; the surfaces begin to
diverge at ∼300 au. Past 300 au, the CLEAN emission surface
continues to rise, whereas the RML surface begins to drop
down. The reasons for these morphological differences are
unclear. Eventually, both surfaces drop at ∼400 au.

Additionally, the RML emission surfaces tend to extend
further out in both 12CO J= 3–2 and 13CO J= 3–2. This can
be seen in nearly all of the surfaces shown in Figure 12. One of
the most dramatic differences is in SY Cha 12CO J= 3–2 and
13CO J= 3–2 emission, whose RML surface extends over
200 au further than that found using the CLEAN cube for both
molecules. The effect is less pronounced in J1615, but there is
still a ∼100 au size difference between the 12CO J= 3–2
emission surfaces. This is likely due to the decreased rms noise
present in the RML cube versus the CLEAN cube. With lower
noise, the disksurf surface-finding process will be able to
identify more points that were previously cut off by the 5 SNR
noise limit.
In addition to the emission surfaces, we compare the radial

temperature profiles between the CLEAN and RML cubes. We
obtain the temperature as a function of the radius using the
r− z points extracted by disksurf. For further details, see
Section 4 of M. Galloway-Sprietsma et al. (2025). Figure 13
shows a comparison of the brightness temperatures between the
CLEAN cubes and the RML cubes for 12CO J= 3–2 (top
panels) and 13CO J= 3–2 (bottom panels). For visual clarity,
we have binned the data by a quarter of the beam size for each
corresponding cube. As noted in the previous paragraph, the
maximum radial extent is larger for the RML cubes. We find
that the temperatures derived from the RML cubes are
systematically lower at each radius; this can be seen in the
offset between the binned points. For the 12CO J= 3–2
emission, the difference, on average, is only ∼3 K, but in some
places, it becomes as large as 13 K, such as in the inner radial
regions of SY Cha. For J1615 in 13CO J= 3–2, the temperature
difference, on average, is only 1.3 K. The 13CO J= 3–2
emission in SY Cha exhibits the largest temperature difference
between the CLEAN and RML cubes, with the average offset
being 8 K.
The causes of the temperature offset between the CLEAN

and RML cubes may, in part, be due to resolution differences.
To test this, we derived the temperatures using RML cubes of
SY Cha and AA Tau convolved with multiple beam sizes (0.5,
0.15, and 0.30). These sources were selected because the
native RML images of SY Cha seem to have a slightly worse
resolution than the fiducial CLEAN cubes, while the native
RML images of AA Tau appear to be super-resolved. The SY

Figure 10. Left to right: fiducial 0.15 CLEAN, 0.15 RML, 0.05 RML, and native RML (no restoring beam) images. We show each image product for the continuum-
subtracted 12CO J = 3–2 emission in J1842 at v = 5.2 km s−1, with each panel plotted on an independent color scale. While beam convolution is not necessary in the
RML imaging process, it can be useful to enable more direct comparisons between CLEAN and RML, as well as for constraining the resolution of the RML images.
Beam-convolved images are also necessary for compatibility with some analysis software (e.g., tasks that require information about the restoring beam, which does not
exist in the native RML image).
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Cha temperatures extracted from the 0.05 and 0.15 RML
images were indistinguishable, while the 0.30 RML images
yielded a slightly lower temperature. This behavior is observed
to a larger extent with the CLEAN images, where the 0.30
images result in significantly lower derived temperatures
compared to the fiducial 0.15 images (and also significantly
lower than temperatures derived from any of the 0.05, 0.15, or
0.30 RML images). The AA Tau temperatures from the 0.5,
0.15, and 0.30 images were consistent with each other, with
only minor differences in the 0.05 temperature profile. In
particular, the derived temperature profile for the 0.05 cube
was not consistently hotter than the 0.15 and 0.30
temperatures but was hotter at some radii. This suggests that
disk temperature profiles derived from RML images may be
more robust to resolution differences than CLEAN images,

though further analysis is needed to characterize this behavior
in detail.
Another possible explanation for the temperature offset

between the CLEAN and RML cubes is the lower rms of the
RML images. It may be that the additional emission surface
points found with the RML cubes belong to colder regions of
the disk. These points may be cut out by the SNR clip applied
when using disksurf on the CLEAN cubes, but with a
lower-noise RML cube, they could remain, thus causing the
offset. Another explanation could be the imaging process itself.
The final intensities, and thus temperatures, are dependent on
the imaging process. Fundamental differences between
CLEAN and RML could lead to slight offsets in the intensities.
Further exploration of this is needed. However, despite these
offsets, we find consistent radial profile morphology, and most

Figure 11. Three different image products showing continuum-subtracted 12CO J = 3–2 emission in AA Tau at v = 7.8 km s−1. We estimate the noise by taking the
rms of a signal-free region, shown with the cyan circles. Before beam convolution, the native RML images are in units of Jy arcsec−2 (left). To enable a more direct
comparison of the noise properties between RML and CLEAN images, we calculate the rms in the RML image convolved with a circular 0.15 beam (center) along
with the fiducial CLEAN image, which also has a circular 0.15 beam (right). The rms in the 0.15 RML image is nearly 2 orders of magnitude lower than the rms in the
0.15 fiducial CLEAN image (0.043 mJy beam−1 and 3.953 mJy beam−1, respectively), demonstrating that regularization can suppress the background noise far below
what is expected from instrumental thermal noise.

Figure 12. Emission surfaces for 12CO J = 3–2 and 13CO J = 3–2 for J1615
and SY Cha found using the CLEAN cubes and the RML cubes. Raw r − z
points are shown in purple for the CLEAN data and in aqua blue and red for the
RML data. The larger points show the binned surfaces. The horizontal dashed
lines show the maximum surface radius, rmax. The beam size of 0.15 is shown
in the upper left corner.

Figure 13. Radial temperature profiles, found using the disksurf surface
points, for 12CO J = 3–2 and 13CO J = 3–2 for J1615 and SY Cha using the
CLEAN and RML cubes. The larger points show the temperatures binned by a
quarter of the beam size. The beam size of 0.15 is shown in the upper left
corner.
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of the temperature differences are within the intrinsic
temperature scatter of ∼5 K.

5.3. Limitations and Future Work

In this work, we have presented RML images of seven
exoALMA protoplanetary disks, with the primary goal of
detecting protoplanets at high confidence. However, RML
imaging can have other benefits beyond validating CLEAN
images, namely, the potential for improved resolution in
comparison to the CLEAN beam (see Section 5.1). We do not
achieve a clear improvement in resolution in all the images
presented here. This is likely due to the fact that we have
treated all disks uniformly, i.e., tuning hyperparameters using
strictly CV. This could be improved by repeating the CV
procedure with different visibility partitioning or by fine-tuning
hyperparameters by hand following the CV process. A more
individual RML exploration of each disk could result in a
higher degree of super-resolution in the images, potentially
reaching resolutions several times better than the fiducial
CLEAN images and enabling the potential to reveal new
substructure not resolved in the CLEAN images. This detailed
and source-specific procedure would require large amounts of
human input and computational power and thus is not practical
for a first analysis of a large sample like the exoALMA data.
However, future work should include detailed RML imaging of
the full exoALMA data set (and other protoplanetary disk data
of comparable quality) with the explicit goal of obtaining
super-resolved images and searching for previously unseen
structures, particularly in disks for which we currently do not
see evidence of embedded protoplanets. While the CLEAN
images would not necessarily be able to support the detection
of such features, comparison with other RML algorithms could
provide a path toward confidently identifying features not seen
with CLEAN imaging.

This would also require imaging the RML images with
smaller pixel sizes to ensure that the model parameterization
enables the highest potential degree of super-resolution. Given
that the highest resolution data from the interferometer
corresponds to resolutions of about 0.06, the pixel size of
0.0125 used in this study may not sufficiently sample the image
for the best possible degree of super-resolution relative to the
nominal resolution of the interferometer (but does not affect the
results presented here). Pushing to a smaller pixel size would
further increase the computational demands of the imaging
process and would require a new suite of hydrodynamical
simulations for comparison. It would also be worthwhile to
obtain RML images at the highest spectral resolution possible
from the data (i.e., 28m s−1), as careful RML imaging may be
able to mitigate the lower SNR without the spectral averaging,
which would further increase the computational load. Never-
theless, this may be the best path forward for identifying the
smallest protoplanets with the currently available data.

Additionally, future work should explore the impact of
normalization schemes for different regularizers in greater depth.
Here, we find that optimal hyperparameter values do not vary
significantly across the cube, observing stable performance
across channels even without explicitly normalizing the sparsity
and TSV regularizers. However, a more detailed investigation of
regularizer normalization for ALMA protoplanetary disk data,
such as testing the various normalization factors presented in
Event Horizon Telescope Collaboration et al. (2019), could offer
further improvements. In particular, incorporating normalization

factors to account for flux variations across velocity space may
enhance the image quality for fainter emission, such as the 13CO
J= 3–2, and CS J= 7–6 data, or in the wings of the line
emission, where small variations in the regularizer strength could
have a stronger effect.

6. Conclusions

We have presented RML images for seven exoALMA
targets. Our main conclusions are summarized below.

1. The RML methods independently and consistently
reproduce the features seen in the fiducial CLEAN
images, including all NKFs. The agreement between the
two sets of independently synthesized image products
suggests that these features are real and strengthens
findings related to the interpretation of these features
(such as those presented in C. Pinte et al. 2025).

2. Additionally, RML methods generally reproduce the
azimuthally averaged emission surfaces and temperature
profiles found with CLEAN cubes. The emission surface
morphology and features are consistent, but the surfaces
of the RML cubes extend further radially, sometimes by
200 au. We find that the temperature profiles measured
with the RML cubes are systematically lower by ∼5 K,
which varies radially and on a per-disk basis. This is
likely due to the artificially high SNR of the RML cubes
stemming from sparsity regularization, but further
exploration is needed to fully characterize this effect.

3. Using CV for hyperparameter tuning, we found that the
set of hyperparameters that minimized the CV score
(corresponding to a model with the highest predictive
power) remained stable from channel to channel in a
given cube, having only minor variations that did not
significantly change the resulting image products.

4. Furthermore, we find that optimal hyperparameters
remain stable for all of the 12CO J= 3–2, 13CO
J= 3–2, and CS J= 7–6 images for a given source,
suggesting that optimal hyperparameter values depend
more on observational parameters like interferometer
baselines and integration time rather than the specific
emission morphologies.

For each target, the following data products will be publicly
available:

1. Full 12CO J= 3–2 RML cubes (both continuum-subtracted
and non-continuum-subtracted).

2. Full 13CO J= 3–2 RML cubes (both continuum-subtracted
and non-continuum-subtracted).

3. Full CS J= 7–6 RML cubes (both continuum-subtracted
and non-continuum-subtracted).

Different versions will be released with the native RML
resolution (no beam convolution), convolution with a 0.05
restoring beam, and convolution with a 0.15 restoring beam.
We have also released sample imaging scripts, available
directly on the MPoL GitHub.29
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