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Abstract

The key planet-formation processes in protoplanetary disks remain an active matter of research. One promising
mechanism to radially and azimuthally trap millimeter-emitting dust grains, enabling them to concentrate and grow
into planetesimals, is anticyclonic vortices. While dust observations have revealed crescent structures in several
disks, observations of their kinematic signatures are still lacking. Studying the gas dynamics is, however, essential
to confirm the presence of a vortex and understand its dust trapping properties. In this work, we make use of the
high-resolution and sensitivity observations conducted by the exoALMA large program to search for such
signatures in the 12CO and 13CO molecular line emission of four disks with azimuthal dust asymmetries:
HD 135344B, HD 143006, HD 34282, and MWC 758. To assess the vortex features, we constructed an analytical
vortex model and performed hydrodynamical simulations. For the latter, we assumed two scenarios: a vortex
triggered at the edge of a dead zone and of a gap created by a massive embedded planet. These models reveal a
complex kinematical morphology of the vortex. When compared to the data, we find that none of the sources show
a distinctive vortex signature around the dust crescents in the kinematics. HD 135344B exhibits a prominent
feature similar to the predictions from the simulations, thus making this the most promising target for sensitive
follow-up studies at higher resolution and in particular with less abundant molecules at higher resolution and
sensitivity to trace closer to the disk midplane.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Planet formation (1241); Planetary-disk
interactions (2204); Submillimeter astronomy (1647)

1. Introduction

In recent years, high-resolution and sensitivity observations of
the dust and gas material in protoplanetary disks with facilities
such as the Atacama Large Millimeter/submillimeter Array
(ALMA; ALMA Partnership et al. 2015), the Spectro-Polarimetric
High-contrast Exoplanet Research (SPHERE; J. L. Beuzit et al.
2019), or the Gemini Planet Imager (B. Macintosh et al. 2014)
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have revealed that various substructures are ubiquitous in disks
and may indicate planet–disk interactions. In the dust, this
includes spiral arms, gaps or cavities, rings, and azimuthal
asymmetries (e.g., review in J. Bae et al. 2023). The latter two are
associated with local pressure maxima, where dust grains can be
radially and/or azimuthally trapped and prevented from under-
going processes such as inward drift or fragmentation (e.g.,
T. Birnstiel et al. 2010; P. Pinilla et al. 2012a, 2012b). Dust traps
can further enable the streaming instability (e.g., S. M. Stammler
et al. 2019), thus allowing dust to grow to larger sizes and form
planetesimals (e.g., X.-N. Bai & J. M. Stone 2010a, 2010b;
N. Raettig et al. 2015).

One possible origin of pressure bumps in disks is embedded
planets, which—if massive enough—are capable of opening a
gap in the disk and form symmetric dust rings (e.g.,
B. A. Ayliffe et al. 2012; G. Dipierro et al. 2015; G. P. Rosotti
et al. 2016; R. Dong et al. 2017a; G. Dipierro et al. 2018;
R. Dong et al. 2018a). In low-viscosity regions, the edges of
such gaps or cavities can then become unstable against the
Rossby wave instability (RWI; R. V. E. Lovelace et al. 1999;
H. Li et al. 2000), resulting in the formation of an anticyclonic
vortex where dust can be trapped radially and azimuthally,
possibly giving rise to the observed crescent-shaped asymme-
tries (e.g., T. Birnstiel et al. 2013; W. Fu et al. 2014; J. Bae
et al. 2016). Evidence of azimuthal dust trapping has been
found in a number of sources with ALMA, seen as a large
horseshoe structure (e.g., HD 142527, S. Casassus et al. 2013;
IRS 48, N. van der Marel et al. 2013; AB Aur, Y.-W. Tang
et al. 2012, 2017) or as a concentration of dust within a dust
ring (e.g., HD 135344B, SR 21 L. M. Pérez et al. 2014;
V1247 Ori S. Kraus et al. 2017; HD 34282 G. van der Plas
et al. 2017; MWC 758 Y. Boehler et al. 2018; HD 143006,
L. M. Pérez et al. 2018), with high-resolution observations
revealing more complex substructures in some of these sources
(e.g., N. van der Marel et al. 2016a; P. Cazzoletti et al. 2018;
G. A. Muro-Arena et al. 2020; Y. Yang et al. 2023).

Alternatively to dust trapping, azimuthal dust asymmetries
may be caused in a circumbinary disk by a sufficiently massive
companion carving an eccentric cavity, which results in a gas
overdensity at the cavity edge and a horseshoe structure (e.g.,
E. Ragusa et al. 2017; D. J. Price et al. 2018). N. van der Marel
et al. (2021) compare several disk observables in a number of
asymmetric disks to distinguish between vortices, horseshoes
created by binary companions, and spiral density waves,
concluding that the current data do not allow for a clear
classification. Apparent dust asymmetries may further arise in
inclined sources due to optically thick emission at the hot inner
rim of a disk cavity (O. M. Guerra-Alvarado et al. 2024;
Á. Ribas et al. 2024).

The edge of a disk cavity or gap favors vortex formation
regardless of the underlying process creating the structure, not
limited to planets. The RWI can further be triggered by
infalling material (J. Bae et al. 2015; A. Kuznetsova et al.
2022) or at the edge of a dead zone (e.g., M. Flock et al.
2015, 2017). Moreover, there are other instabilities that can
lead to the formation of vortices: the vertical shear instability
(S. Richard et al. 2016; M. Flock et al. 2020; N. Manger et al.
2020; T. Pfeil & H. Klahr 2021), the convective overstability
(W. Lyra 2014; N. Raettig et al. 2021), or the zombie vortex
instability (e.g., P. S. Marcus et al. 2013, 2015, 2016). To
differentiate the mechanisms and understand the process of

dust trapping in vortices, it is important to study their gas
dynamics.
The gas in protoplanetary disks is studied through a range of

molecular lines, tracing different disk regions and probing
various physical and chemical processes. While it is easier to
observe substructures in the dust component of the disk due to
the higher achieved sensitivity, an increasing number of
substructures have also been observed in the gas (e.g., S. Bruderer
et al. 2014; K. Zhang et al. 2014; N. van der Marel et al. 2016b;
R. Dong et al. 2017b; C. J. Law et al. 2021; L. Wölfer et al. 2023;
R. Teague et al. 2025). Similar to the dust, this includes spirals,
rings, and gaps or cavities. Narrowband line emission brings the
advantage of providing information about the gas dynamics.
Studying the velocity field of the rotating gas and identifying
deviations from purely Keplerian rotation yields information
about the underlying processes that are shaping the rotation
pattern (for a review, see C. Pinte et al. 2023). The different disk
processes leave individual fingerprints in the kinematics, but it
remains difficult to disentangle them. Yet, observations of
localized (e.g C. Pinte et al. 2018, 2019, 2020; R. Teague et al.
2018, 2019a; S. Casassus & S. Pérez 2019; G. P. Rosotti et al.
2021; H. Yu et al. 2021; F. Alarcón et al. 2022; S. Casassus et al.
2022; A. F. Izquierdo et al. 2022) and more extended (e.g.,
non-Keplerian spirals; R. Teague et al. 2019b, 2021, 2022;
G. P. Rosotti et al. 2020; S. Casassus et al. 2021; H. Garg et al.
2021; L. Wölfer et al. 2021; J. Stadler et al. 2023) kinematical
deviations from recent years are generally consistent with the
presence of massive embedded planets.
Identifying vortex signatures in the gas dynamics is crucial

to not only confirm their presence but also to study their dust-
trapping properties and understand the formation of the dust
concentrations in disks. As shown by C. M. T. Robert et al.
(2020), vortices produce signatures potentially discernible in
the line-of-sight velocity through observations with current
facilities. This includes the anticyclonic motions around the
density maximum of a vortex as well as vortex-driven spirals,
with the latter being comparable to those excited by a planet
with a mass of a few to a few tens of Earth masses (P. Huang
et al. 2019). H.-W. Yen & P.-G. Gu (2020) indeed report
kinematical deviations in the HD 142527 disk, which are
consistent with a local pressure bump and colocated with the
large horseshoe structure seen in the dust disk, yet their
observations do not allow them to distinguish if the pressure
bump is formed by a vortex or massive planet. Y. Boehler et al.
(2021) compare CO emission lines of the same disk with a
vortex model and find kinematic signatures consistent with the
presence of a large vortex; however, due to limitations in the
spatial resolution of the data, artificial velocity deviations
generated by beam smearing cannot be ruled out.
In this work, we make use of the unprecedented sensitivity at

high resolution of the exoALMA data (R. Teague et al. 2025)
to study the kinematical features seen around the azimuthal
asymmetries of four disks in the sample and search for a
kinematical vortex counterpart. In that regard, we compare the
observations with both an analytical model of vortices and
hydrodynamical simulations of a vortex triggered at the edge of
a dead zone and gap created by a massive planet, respectively.
The Letter is structured as follows: In Section 2 we describe the
source sample and present the observations. Our models are
outlined in Section 3 and 4 and compared to the data in
Section 5. Our results are summarized in Section 6.
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2. Observations

Our source sample consists of four sources—namely
HD 135344B, HD 143006, HD 34282, and MWC 758—which
were observed as part of the exoALMA large program
(R. Teague et al. 2025). They are among the six most
asymmetric disks in continuum (P. Curone et al. 2025) in the
exoALMA sample, and all show evidence of azimuthal dust
traps in their millimeter continuum (compare top row of
Figure 1), possibly caused by the presence of a vortex. Three of
the sources—HD 135344B, HD 34282, and MWC 758—are

further marked by spiral structures in near-infrared (NIR)
scattered light (compare middle row of Figure 1; T. Stolker
et al. 2017; J. de Boer et al. 2021; B. B. Ren et al. 2023). A
summary of each source is provided in Appendix A. The
inclination and position angle of the targets, obtained with
DISCMINER (A. F. Izquierdo et al. 2025), are summarized in
Table 1.
To study the gas features seen around the dust azimuthal

asymmetries in our sample, we make use of the fiducial
exoALMA images (R. Teague et al. 2025) of the 12CO and
13CO J= 3–2 emission lines (0.15; 100 m s−1, continuum

Figure 1. Overview of the four sources studied in this work, shown on the same spatial scale for the dust (top two rows) and gas (bottom row). Top: millimeter dust
continuum as observed within the exoALMA program (P. Curone et al. 2025). Middle: micron-sized dust observed through NIR scattered light with SPHERE
(T. Stolker et al. 2017; J. de Boer et al. 2021; B. B. Ren et al. 2023). The SPHERE images are normalized to the peak value and shown with a logarithmic
normalization of the color map to emphasize the structures in the outer disk. To highlight the location of the crescents, two continuum contours around the peak of the
dust asymmetries are overlaid on the dust images. Bottom: peak intensity of the 12CO J = 3–2 emission line with overlaid continuum emission (five contour levels
equally placed between 3σ and the peak flux). Note the larger spatial scale of the gas vs. dust images.
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subtracted). The CS J= 7–6 images are excluded from this
work due to their much lower signal-to-noise ratio (SNR) at the
same resolution. For the full details of the imaging techniques,
we refer the reader to R. Loomis et al. (2025). For both lines,
the molecular emission channels were modeled with the
DISCMINER package (A. F. Izquierdo et al. 2021), which
returns a smooth Keplerian model of the line intensity profile.
To identify perturbations in the gas dynamics, it is then
necessary to extract observables—such as the centroid velocity,
line peak intensity, and line width—in a postprocessing step
and to compute deviations between the data and model
(residuals). Here, this is done by fitting both the data and
model line profiles with a Gaussian function, except for the
HD 34282 disk for which a double-peaked bell profile is
adopted. While for low-inclination disks, a single-peak profile
is sufficient to represent the morphology of the profile, higher-
inclination disks such as HD 34282 are better reproduced with
a double-peak profile since emission from the back side of the
disk is visible. This approach then allows us to separate the
contribution from the front and back sides of the disk. Details
of the modeling procedures and choice of extraction methods
can be found in A. F. Izquierdo et al. (2025).

In the bottom row of Figure 1, a gallery of the 12CO peak
intensity is shown for the four targets studied here. Emission
below 5σ is masked. The continuum emission (top row) is

overlaid as contours, placed equally between 3σ and the
continuum peak, highlighting the location of the potential
vortices at relatively small radii compared to the large extents
of the gas disk. The latter exceeds the dust disk by a factor of
roughly 2–3, which is expected from processes such as radial
drift or the difference between dust and gas opacities (S. Fac-
chini et al. 2017; L. Trapman et al. 2019). Given that 12CO
emission is optically thick, the peak intensity traces the
temperature of the gas, with the observed temperatures of up
to ∼100 K being as expected in the upper disk layers (e.g.,
S. Bruderer 2013; S. Bruderer et al. 2014; M. Leemker et al.
2022). A thorough analysis of the two-dimensional temperature
structure of the disks can be found in M. Galloway-Sprietsma
et al. (2025).

2.1. Velocity Residuals

In Figure 2, we present the velocity centroid residuals of our
targets after subtraction of the Keplerian DISCMINER model
from the 12CO (top row) and 13CO (bottom row) data (M.
Fukagawa et al. 2025, in preparation), respectively. For the
HD 34282 disk, the contribution from the back side has been
subtracted in the computation of the residuals, as discussed in
A. F. Izquierdo et al. (2025). The other three disks are close to
face-on and do not require a removal of the lower surface.
The HD 135344B kinematics are marked by prominent

asymmetric arc- and spiral-like structures, seen in both
emission lines, as well as by features resembling a Doppler
flip. Similarly, MWC 758 shows a large spiral arm, covering
more than one full azimuth. For both disks, similar features are
seen in the peak intensities and line widths (compare Figure 7).
Altogether, this suggests strong perturbations in these disks.
Interestingly, they are also the two disks in our sample that
exhibit extended spirals in the NIR scattered light (see
Appendix B). The patterns seen for the HD 143006 disk are
less clear or consistent, but a prominent redshifted arc can be
distinguished in the kinematics traced by both lines (even
though at an offset), which may connect to the extended

Table 1
Inclination and Position Angle of the Sources, Obtained by Modeling the 12CO

Emission Line with DISCMINER (A. F. Izquierdo et al. 2025)

Source HD 135344B HD 143006 HD 34282 MWC 768
(deg)

i 16 17 58 19
PA 243 168 117 240

Note. The position angle is measured counterclockwise from the north to the
redshifted axis of the disk.

Figure 2. Velocity residuals Δv0 after subtraction of the Keplerian model from the data, shown for 12CO and 13CO J = 3–2 and all four targets. For HD 34282, only
emission from the top side of the disk was considered when making the v0 map, following the procedure described in A. F. Izquierdo et al. (2025). The beam is shown
in the bottom left corner of the top row. The red-blue circle and arrow in the bottom right corner of the second row indicate the underlying rotation pattern of each disk.
To highlight the location of the crescents, two continuum contours around the dust asymmetries are overlaid on the images.
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redshifted arc in the outer disk. The residuals of the HD 34282
disk are particularly difficult to interpret due to the high-
inclination nature of the source. Even though the DISCMINER
model and subsequent fit with a double-peaked bell profile
account for both the upper and lower disk surface, contribu-
tions from the lower side seem to still be visible in the upper
surface residuals, and the vertical structure off the disk is seen
as a butterfly pattern in the inner disk regions.

3. Methods I: Analytical Vortex Model

In the following sections, we model the kinematical
signature of a vortex to compare with the deviations seen in
the residuals of our sample. For that purpose, we first construct
a simple analytical model similar to Y. Boehler et al. (2021),
which serves as a guideline for understanding the general
kinematical patterns triggered by a vortex and helps to gain
intuition for the more complex residuals. Subsequently, we
perform two-dimensional hydrodynamical simulations (see
Section 4). By doing so, we are mostly interested in comparing
the kinematical patterns of a vortex to the data rather than a full
representation of the vortex properties, which remains challen-
ging (P. Huang et al. 2019; C. M. T. Robert et al. 2020).

3.1. Model Description

We follow Y. Boehler et al. (2021) in setting up the vortex
flow as streamlines of constant velocity around a central
position (r0, f0) in polar disk coordinates, with the rotation
velocity of the vortex varying as a Gaussian in the radial
direction. In contrast to Y. Boehler et al. (2021), the streamlines
are elliptical in the vortex frame in Cartesian coordinates,
analogous to a shearing box. Our parameterization is depicted
in the first panel of Figure 3. Here, the vortex is shown in the
Cartesian vortex frame (subscript v) and is thus centered
around the origin of this frame. The velocity in the vortex
increases to a maximum velocity vmax at the radius rv. The
vortex is further described by an aspect ratio χ, the ratio of the
major axis in the azimuthal direction to the minor axis in
the radial direction. The width of the Gaussian profile is given
by ωV.

The Cartesian vortex coordinates (xV, yV) can be related to
the polar disk coordinates (r, f) through

( ) ( )f f= -x r & 1V 0

( )= -y r r , 2V 0

where (r0, f0) describes the center of the vortex. These can
further be transformed into polar vortex coordinates ( )f¢ ¢r , via
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The absolute rotation velocity of the vortex is then given as
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In Figure 3, the absolute orbital velocity is shown in the
vortex frame (first panel) alongside the sky frame (second
panel), using an inclination of 16° and position angle of 243°
for the projection (same as for HD 135344B). The velocity
projected along the line of sight is then given as

| ( ) | ( ) ( )f f= ⋅ + ⋅¢v v x y i, cos sin , 60

where i represents the disk inclination. The projected velocity
of the vortex is presented in the last panel of Figure 3 in the sky
frame, showing a clear red-blue pattern with a complex
morphology, which purely results from projection effects.

3.2. Parameter Exploration

In Figure 4, we present the line-of-sight velocity for different
disk geometries as well as parameters of the analytical vortex
model. In this context, the parameters given on top of the figure
correspond to the base model shown in the first panel, while the
individual parameters changed compared to this model are
given in each panel. This exercise highlights that while
generally, a similar red-blue pattern is visible in all cases, the
exact morphology and strength of the pattern vary substantially
for different combinations of parameters. We further note that

Figure 3. Analytical model of a vortex, described as elliptic streamlines of constant velocity with a Gaussian velocity profile. The first two panels show the absolute
velocity of the vortex in both the vortex frame and sky frame. The last panel depicts the velocity projected along the line of sight, showing a complex morphology
purely resulting from the projection. In the last two panels, the underlying disk geometry is overlaid as gray contours, corresponding to a position angle of 243 ° and
inclination of 16 ° (same as for HD 135344B).
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the vortex edges have strong radial components, while along
the “arcs,” the deviations are dominated by azimuthal motions.

We attempted to constrain the basic properties of the dust
crescents seen in our targets by implementing the simple vortex
model in the eddy code (R. Teague 2019), which allows us to
fit a Keplerian profile to a rotation map. In this context, we first
conducted a run to find a good representation of the main
rotation pattern and in subsequent runs fixed those values to only
fit for the vortex parameters described in Section 3.1, fitting
different disk regions. However, none of these runs converged
and resulted in very degenerate distributions. Given the complex
kinematical patterns seen in our targets (see Figure 2), we
conclude that a simple model is not sufficient to constrain the
properties of the vortex. We are further limited by the low
inclination of three of the four sources, making it hard to detect
azimuthal motions projected into the line of sight. This is
different for vertical motions. The importance of vertical motions
is unclear at this point (e.g., H. Meheut et al. 2010, 2012;
M.-K. Lin 2012; S. Richard et al. 2013), but they may dominate
the vortex signature in some cases, which cannot be captured by
our simple 2D model. Moreover, other disk processes such as
planet–disk interactions can create dynamical patterns that
overlay the vortex signatures and make it challenging to isolate
them (see also M. Barraza-Alfaro et al. 2024). Nevertheless, the
analytical model is useful to gain intuition for the general
patterns created by a vortex and can help to interpret both the
simulations and observations (see Section 4).

4. Methods II: Simulations

We explore the kinematic structure from a vortex (and vortex
+planet) by conducting 2D numerical simulations with the grid-

based code PLUTO (A. Mignone et al. 2007), version 4.4. In this
context, we do not aim for a comprehensive parameter study but
intend to expand beyond the relatively simple analytical model to
try to capture some of the complexity seen in the data. We follow
the disk evolution, solving the Navier–Stokes equations of fluid
dynamics (for details, see Section 2 in M. Barraza-Alfaro et al.
2024) for two scenarios: a vortex triggered by the RWI at the
inner edge of a magnetorotational instability (MRI) dead zone,
and RWI triggered at the edge of a gap opened by a Jupiter-mass
planet. Even though the inner edge of the dead zone—in contrast
to the outer edge—is unlikely to be relevant on exoALMA scales,
we set up the simulation in this way to trigger a vortex at a
particular location. The mechanism generating the vortex is the
same for both the inner and outer edges but in the latter case
results in a less clean vortex and uncertain location due to radial
migration. Here we are mainly interested in the morphology of the
vortex, and creating a vortex in the same location for both the
dead zone and embedded planet simulation makes it easier to
compare the two cases. In both cases, a vortex spontaneously
forms within a few hundred orbits, computed at 1 code unit length
in the dead-zone scenario and corresponding to planetary orbits in
the planetary case.
We use a PLUTO numerical setup with LINEAR reconstruction

method, second-order Runge–Kutta time stepping, the Linearized
Roe Riemann solver (P. L. Roe 1981), and we include the disk
viscosity as a diffusion term integrated with super-time-stepping
technique. We set the Courant number to 0.4.

4.1. Disk Setup

We consider a two-dimensional disk in polar coordinates,
including the evolution of the gas only. The disk initial

Figure 4. Line-of-sight velocity of the analytical vortex model, shown for different disk geometries and vortex parameters. The parameters given on top of the figure
correspond to the morphology shown in the first panel. In the top of each individual panel, the parameters changed compared to this base vortex model are given. The
underlying disk geometry is overlaid as gray contours.
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conditions are based on the numerical setup presented in
R. Miranda et al. (2017). Our simulations follow a locally
isothermal equation of state = SP cs

2 , where P is the vertically
integrated gas pressure, and the disk gas surface density Σg

follows

( )S = S
-r

r
, 7g 0

0

1

⎜ ⎟
⎛
⎝

⎞
⎠

with r0 the code unit of length and Σ0 the gas surface density at
r = r0. The disk sound speed cs has a radial dependency

( )/= -c c r rs s,0 0
0.25. The value of cs,0 is set so that

H(r0)/r0 = 0.05, with H the disk pressure scale height and

H = cs/ΩK, where /W = GM rK
3

 is the Keplerian orbital
frequency. Our disk model results in a flared disk, with
H ∝ r1.25.

The simulation domain covers 0.3–3.0 code units of length
in the radial direction and 2π rad in azimuth. The simulations
were run with a grid of 1024 and 2048 cells in r and f,
respectively, with a mesh uniformly spaced in both the radial
and azimuthal directions. The grid uniform radial spacing
allows a better resolved dead-zone edge transition and outer
planetary gap edge relative to a logarithmic mesh. The effects
of disk self-gravity are not taken into account in our models.

4.1.1. Dead-zone Edge

To mimic an MRI-dead-zone transition, we follow R. Mira-
nda et al. (2017); however, for the inner edge of a dead zone
instead of the outer one. We implement a transition between
two levels of viscosity described by a radially dependent
α-viscosity model, ν = αcsH (N. I. Shakura & R. A. Sunyaev
1973), with α following
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with αDZ = 10−5 and α0 = 10−3 being the α-viscosity
parameters in the MRI-dead and MRI-active regions, respec-
tively. The location of the transition between the active and
dead zones is put as 1.2 code units of length (rDZ = 1.2r0), and
ΔDZ sets the width of the transition. We set ΔDZ = H(rDZ),
corresponding to the standard run from R. Miranda et al. (2017;
see their Table 1).

4.2. Planet

In a second setup, we include a 1MJ planet and the star as
the gravitational potential of points of mass and the indirect
acceleration term

| |
( )fF = -

- +
+

r r

GM

r

Gm

s

Gm

r
r cos , 9

p

p
2 2

p

p
2



where rp is the distance from the star to the planet and s is a
potential smoothing length set to 60% of the local disk pressure
scale height (see, e.g., F. S. Masset 2002; T. W. A. Müller et al.
2012; P. Weber et al. 2019). We fix the planet orbital distance
to 1 code unit of length (or rp = r0). In addition, we include a
tapering such that the planet mass smoothly reaches its final

value in 30 planetary orbits. Finally, for the planet simulation,
we use a constant α-viscosity value of 10−5-.
In Figure 5, we show the density (left panel), radial velocity

(middle panel), and azimuthal velocity relative to a sub-
Keplerian background (right panel) resulting from the simula-
tions of a vortex triggered by the RWI at the edge of a dead
zone (top row) and gap created by a massive planet (bottom
row), respectively. We have used a scaling radius of 70 au to
convert from code units to physical units (thus rDZ = 84 au and
rp = 70 au). To highlight the patterns created by the vortex, we
have subtracted the density field and sub-Keplerian rotation
velocity of a smooth disk from the perturbed density and
velocity fields. Since in this work we are primarily interested in
the patterns created by a vortex and not the exact magnitude of
the perturbation, we have further normalized the quantities by
the local sub-Keplerian velocity. The simulation snapshots
depicted correspond to 400 orbits measured at 1 code unit of
length (dead zone) and 580 planetary orbits, respectively.

5. Results

Similar to previous works (e.g., P. Huang et al. 2019;
C. M. T. Robert et al. 2020), it is apparent that the vortex
creates a prominent azimuthally asymmetric feature in the gas
dynamics, seen as a clear red-blue dipole pattern, as well as
spiral structures (Figures 4 and 5). The vortex motion looks
similar in both the simulations and analytical model, but the
spiral features cannot be captured by the latter. If a planet is
included in the disk, it creates its own Doppler-flip signature
and much stronger spiral features, which overlay the pattern
associated with the vortex, thus making it much harder to
distinguish.
To compare the vortex signatures predicted by the simula-

tions with the features seen in the velocity residuals, we
postprocessed the dead zone simulation with RADMC-3D
(C. P. Dullemond et al. 2012) and computed mock images of a
flat disk model. In this context, we took the geometry of the
sources into account and then matched the radial and azimuthal
location of the vortex with the dust asymmetries seen in the
data. To directly obtain the expected residuals from the
simulated vortex dynamics, we subtracted the sub-Keplerian
background from the azimuthal velocity used as an input in the
radiative transfer model. We then created synthetic 12CO
channel maps via ray tracing with the same spectral resolution
as the data. As a final step, we convolved the synthetic data
cubes with a 0.15 Gaussian beam and computed the line-of-
sight velocity maps using BETTERMOMENTS (R. Teague &
D. Foreman-Mackey 2018).
The result of this test is shown in Figure 6, where the first

two rows represent the 12CO and 13CO residuals, and the
bottom row represents the dead-zone vortex simulation. The
continuum emission is overlaid on the data to highlight the
location of the dust crescents. For MWC 758, two representa-
tions are included since this disk is marked by several
azimuthal asymmetries. The unconvolved model images are
shown in Appendix C.
Comparing the data and model, it becomes apparent that

most disks do not show a clear vortex kinematic signature
around the dust crescents as predicted by the simulation. In
HD 135344B, a similar red-blue pattern is traced by both
emission lines, yet it is shifted with respect to the dust
asymmetry. It is further overlaid by the strong spiral features,
and it is nearby the disk minor axis, where a change of sign due
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to coherent azimuthal variations is expected (Figure 5 in
R. Teague et al. 2019b). Even though the vortex also triggers a
similar spiral pattern, it is generally not expected to be strong
enough to distinguish it in the kinematics (see also P. Huang
et al. 2019). Close to the inner crescent in MWC 758, a red-
blue flip is present, which resembles the vortex model, but it is
part of the red and blue spiral arms and less distinct than the
red-blue pair spanning the dust asymmetry in HD 135344B.
Among our sample, this makes HD 135344B the most
convincing example of a vortex and the best target to pursue
with even deeper observations at very high angular resolution.
Connected to that, when comparing the size of the dust
asymmetries with the size of the beam, it becomes clear that
they are very similar; thus, the vortex signatures may not be
resolved and therefore do not clearly show up in the
kinematics.

Aside from planet–disk interactions, other processes such as
(magneto)hydrodynamical instabilities and the gravitational
instability (C. Hall et al. 2020; M. Barraza-Alfaro et al. 2025;
M. Barraza-Alfaro et al. 2024), stellar interactions including
binaries (J. Calcino et al. 2020; B. J. Norfolk et al. 2022)
and flybys (N. Cuello et al. 2020), or magnetic winds

(M. Galloway-Sprietsma et al. 2023) can contribute to the
kinematics and may obscure the signatures from a vortex,
resulting in complex patterns that are hard to disentangle.
E. Ragusa et al. (2024) make predictions for the kinematics
expected from an eccentric circumbinary disk, finding that they
result in a single lobed pattern at the cavity edge. Compared to
our data, we cannot distinguish such a pattern though this may
result from resolution effects.

6. Summary and Conclusions

In this work, we have studied four disks within the
exoALMA sample that show evidence of dust trapping in a
vortex to search for a kinematic counterpart of the latter. Our
main results are summarized as follows.

1. The kinematics of our targets, which all show azimuthal
dust asymmetries, are marked by complex patterns,
including spirals and Doppler-flip features (Figure 2).
Two of the sources, HD 135344B and MWC 758, show
prominent spirals in both the NIR scattered light and all
three residuals, with the substructures partially coinciding
(Appendix B).

Figure 5. PLUTO simulations of a vortex triggered by the RWI at the edge of a dead zone (top row) and a Jupiter-mass planet (bottom row), using a scaling radius of
70 au to convert from code units to physical units. Shown are the gas density (left panels), radial velocity (middle panels), and azimuthal velocity (right panels). The
density field and sub-Keplerian rotation velocity of a smooth disk have been removed (in case of vr this is zero), and the quantities are normalized. The location of the
planet is marked with a circle in the bottom row panels.
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2. An analytical model of the velocity perturbation from a
vortex reveals a distinct red-blue pattern but shows
different morphologies depending on the underlying disk
geometry and exact vortex parameters (Figure 3, 4). This
simple model is, however, insufficient to explain the
complexity of structure seen in the data.

3. Hydrodynamical simulations of a vortex and vortex
+planet also reveal a clear red-blue kinematical pattern in
addition to spiral features. In the planetary scenario, the
signatures of the vortex are mixed with the strong
perturbations from the planet, making it much more
difficult to distinguish them (Figure 5). Other disk
processes perturbing the gas dynamics are expected to
further complicate this picture.

4. Comparing the kinematical patterns of the data and model
shows that the features seen around the dust crescents
cannot unambiguously be linked to a vortex (Figure 6).
Aside from the complications arising due to different
physical processes impacting the kinematics, our results
may also be limited by the spatial resolution in comparison
to the size of the dust asymmetries. While fully resolving
the vortex is not necessarily needed to trace the red-blue
flip, it is essential if we are to parameterize it and trace the
pressure profile across the vortex. As shown by J. Stadler
et al. (2025), the pressure morphology of dust rings can
only be inferred if they are spatially resolved and we are
faced with same challenge in the context of vortices.

While it is necessary to aim for higher spatial resolution to
unambiguously detect the kinematic signature of a vortex, it can
also be useful to study emission lines that trace closer to
the midplane, where vortices reside, to be more sensitive to the
vortex dynamics (compare C. Pinte et al. 2019, showing how the
strength of a planet’s perturbation diminishes with height). This
is the case for CS J = 7−6 (compare M. Galloway-Sprietsma
et al. 2025), which was observed within the exoALMA program
(G. Cataldi et al. 2025, in preparation). Both the SNR at high

spatial resolution and likely the resolution itself are, however,
insufficient to draw conclusions about the kinematical pattern
around the dust asymmetries but could be studied in a future
work. Getting as close as possible to the midplane may increase
our chance of detecting the vortex in the gas dynamics
significantly.
The vortex predictions presented in this work rely on 2D

models. However, to reveal the full dynamics of a vortex and in
particular understand the role of vertical motions, global 3D
simulations are essential. These simulations are challenging, and
the formation and stability of three-dimensional vortices remain
an active matter of debate. Earlier works have addressed the
question of 2D versus 3D vortices triggered by the RWI but have
resulted in different conclusions: while the general vortex patters
are consistent between 2D and 3D simulations, some studies
suggest vertical motions to be negligible (M.-K. Lin 2012;
S. Richard et al. 2013); others show that they can be more
significant in certain cases (H. Meheut et al. 2010, 2012). More
detailed theoretical studies are needed to understand how the
strength of features varies with height and if they may be reliably
detectable in tracers such as 12CO and 13CO.
Within the exoALMA sample, the most promising source for

follow-up observations to detect the kinematic signature of an
anticyclonic vortex is HD 135344B, as it is marked by a
relatively large dust crescent, and the kinematics show a pattern
that resembles the signatures of a vortex. In terms of the
expected strength of the kinematic signature from a vortex,
HD 34282 may be another useful target to follow up with
higher spatial resolution and less abundant tracers at higher
sensitivity due to its large inclination. The dust asymmetry in
this source is, however, relatively small and located closer to
the star, making such observations challenging.
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Appendix A
Summary of the Sources

A.1. HD 135344B

HD 135344B—or SAO 206462—is a young (8.9 Myr;
R. Asensio-Torres et al. 2021) Herbig F-type star located in
the Upper Centaurus–Lupus star-forming region at a distance
of ∼135 pc (Gaia DR3; Gaia Collaboration et al. 2023). It is
part of a visual binary system (separation 21″, i.e., ∼2800 au;
B. D. Mason et al. 2001) and surrounded by a low-inclination
transition disk that has been extensively studied at different
wavelengths.
The disk was first resolved with the Hubble Space Telescope

(C. A. Grady et al. 2009), with subsequent scattered-light
observations revealing substructures such as an inner dust cavity
(∼28 au) and two prominent spiral arms on a scale of ∼0.2–0.6″
(T. Muto et al. 2012; A. Garufi et al. 2013; T. Stolker et al.
2016, 2017), one being marked by a brightness asymmetry and
pitch-angle change, possibly caused by the spiral moving
through a high-density vortex region (J. Bae et al. 2016).
Moreover, the scattered-light images exhibit shadow features
that may be related to misaligned inner disk regions (T. Stolker
et al. 2016, 2017).
A large dust cavity (∼50 au), originally suggested through

spectral energy distribution (SED) modeling by J. M. Brown
et al. (2007), was later confirmed in the millimeter continuum
with the Submillimeter Array(SMA; J. M. Brown et al. 2009;
S. M. Andrews et al. 2011) and ALMA (L. M. Pérez et al.
2014; N. van der Marel et al. 2016a; P. Cazzoletti et al. 2018).
Additionally, these data revealed an asymmetric crescent located
farther out (∼80 au), which is marked by an azimuthal peak shift
with wavelength and matches the predictions of a dust-trapping
vortex (N. van der Marel et al. 2016a; P. Cazzoletti et al. 2018).
The two dust rings are connected by a filament, which colocates
with the deviation in the spiral arm and may be tracing a
planetary wake crossing the dust gap (S. Casassus et al. 2021).
Observations of CO gas in the disk revealed an inner gas

cavity peaking inside the dust cavity (∼30 au) and a spiral
feature in the kinematics (N. van der Marel et al. 2016a;
S. Casassus et al. 2021). Similar to the NIR data, shadows are
seen in archival C18O and exoALMA CS data (G. Cataldi et al.
2025, in preparation). Several works have shown that the
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different observations may be explained by one or more
massive embedded planets (e.g., T. Muto et al. 2012; A. Garufi
et al. 2013; J. Fung & R. Dong 2015; J. Bae et al. 2016;
T. Stolker et al. 2016; R. Dong & J. Fung 2017; S. Casassus
et al. 2021; A. F. Izquierdo et al. 2025). While such
companions were previously not found in a variety of high-
contrast imaging programs (e.g., A. L. Maire et al. 2017;
G. Cugno et al. 2019; A. Zurlo et al. 2020; R. Asensio-Torres
et al. 2021; K. B. Follette et al. 2023), a potential candidate
located at ∼300 au in the disk was identified by G. Cugno et al.
(2024) in JWST data.

A.2. HD 143006

The HD 143006 system, located at a distance of ∼167 pc
(Gaia Collaboration et al. 2023) in the Upper Scorpius star-
forming region, consists of a G-type T Tauri star of age
7–12Myr (S. M. Andrews et al. 2018; A. Garufi et al. 2018)
and a disk seen close to face-on.

Imaging of the disk’s infrared scattered light revealed
various brightness asymmetries, including a broad dark region
covering the west side of the disk, two narrow shadow lanes,
and a prominent overbrightness located in the southeast of a
ring at ∼18–30 au (M. Benisty et al. 2018). A similar, yet less
pronounced, overbrightness is also present in the outer disk
ring at ∼50–83 au.

The millimeter continuum, on the other hand, is marked by
three concentric dust rings (8, 40, and 64 au) and a bright
crescent-like structure in the southeast, just outside the outer
dust ring at 74 au (L. M. Pérez et al. 2018). The latter is further
substructured into three different peaks and generally consistent
with a vortex formed at the edge of a cavity, with its
morphology, however, pointing toward a second-generation
vortex (L. M. Pérez et al. 2018). Moreover, the bright arc
coincides with the outer overbrightness in the scattered-light
emission but is less extended, which matches predictions of
dust trapping in vortices (C. Baruteau & Z. Zhu 2016).

Observations of CO gas emission in HD 143006 exhibit less
structures but indicate gas depletion in the very inner disk and
the presence of a kink feature in some redshifted channels
(L. M. Pérez et al. 2018; C. Pinte et al. 2020). Both the
scattered-light and millimeter observations support the scenario
of a misaligned inner disk (M. Benisty et al. 2018; L. M. Pérez
et al. 2018), with the morphology possibly being explained by
the combination of a misaligned binary and an embedded
aligned planet in the outer disk (G. Ballabio et al. 2021).

A.3. HD 34282

The Herbig Ae star HD 34282—or V1366 Ori—is about
8.9 Myr old (R. Asensio-Torres et al. 2021) and located at a
distance of ∼309 pc (Gaia Collaboration et al. 2023). A highly
inclined circumstellar disk around the source was resolved in
the millimeter emission by V. Piétu et al. (2003). A large inner
dust cavity in the disk was suggested through modeling of the
SED and mid-infrared Q-band images (B. Acke et al. 2009;
S. Khalafinejad et al. 2016) and later confirmed (∼80 au) in
ALMA data by G. van der Plas et al. (2017). These images
further revealed that the ∼300 au wide dust ring contains an
azimuthal asymmetry in the southeast. The authors suggest a
massive brown dwarf companion (∼50 MJ) to be responsible
for both observed substructures.

Scattered-light observations allowed J. de Boer et al. (2021)
to identify two inclined rings and a tightly wound single-arm
spiral, which is generally consistent with a Jupiter-mass planet
and coincides with the millimeter crescent. The latter may be
the signature of a vortex in the disk, which, as shown by
M. Marr & R. Dong (2022), can resemble a spiral arm in a
highly inclined source. So far, no direct evidence of a
companion in HD 34282 has been found (R. Asensio-Torres
et al. 2021; Y. Boehler et al. 2021; J. Quiroz et al. 2022). The
study of A. J. Bohn et al. (2022), who compare position angle
and inclination of the inner disk measured with VLTI/
GRAVITY and the outer disk measured with ALMA, suggests
a misalignment between the inner and outer disks of the
system, yet no clear shadow signatures are visible in the
scattered-light images.

A.4. MWC 758

Located in the Taurus star-forming region at a distance of
156 pc (Gaia Collaboration et al. 2023), the young (∼8.9Myr;
R. Asensio-Torres et al. 2021) Herbig Ae star MWC 758—also
known as HD 36112—is surrounded by a low-inclination
transition disk that has been the subject of a range of high-
resolution studies, revealing a complex asymmetric morphology.
NIR scattered-light observations unveiled two prominent

spiral arms (C. A. Grady et al. 2013; M. Benisty et al. 2015)
and other nonaxisymmetric arc-like features (M. Benisty et al.
2015). The detection of a third spiral arm and potential point-
like source at ∼17 au were reported by M. Reggiani et al.
(2018). Both gravitational instability (R. Dong et al. 2015a) and
massive planets (R. Dong et al. 2015b; J. Bae & Z. Zhu 2018;
C. Baruteau et al. 2019; J. Calcino et al. 2020) have been
suggested as the driving mechanism of the spirals, with the
latter being favored by an imaging study of the spiral pattern
over 5 yr (B. Ren et al. 2020).
No fully depleted cavity was found in the scattered-light

data, but the millimeter continuum of the disk is marked by a
large and eccentric cavity (∼40 au; R. Dong et al. 2018b),
possibly carved by an embedded planet (A. Isella et al. 2010;
S. M. Andrews et al. 2011; S. Marino et al. 2015; Y. Boehler
et al. 2018). Additionally, two bright emission clumps inside a
double-ring structure are present at radii of ∼47 and 82 au
(S. Marino et al. 2015; Y. Boehler et al. 2018; R. Dong et al.
2018b; S. Casassus et al. 2019) and may be related to dust-
trapping pressure maxima in a vortex.
Several spirals have been identified in both the continuum

emission (Y. Boehler et al. 2018; R. Dong et al. 2018b;
B.-T. Shen et al. 2020) and CO data (Y. Boehler et al. 2018),
which are partly colocated with the spirals observed in the
infrared data. C. Baruteau et al. (2019) performed hydrodyna-
mical simulations showing that the spirals, the eccentric and
asymmetric ring structure, and the crescent-shaped features may
all be explained by two Jupiter-mass planets, one located inside
and one outside the spirals. High-contrast imaging searches have
reported the detection of such planets (M. Reggiani et al. 2018;
K. Wagner et al. 2019, 2023), but they remain to be confirmed.

Appendix B
Spiral Features

In Figure 7, we present the polar-deprojected CO residuals
for the centroid velocity, peak intensity, and line width
alongside the polar-deprojected scattered-light emission for
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the two disks that show prominent spiral features: HD 135344B
and MWC 758. For comparison, the spirals found in the NIR
are further overlaid as contours on the gas emission residuals.
The deprojection is performed by using the inclination and
position angle (see Table 1; A. F. Izquierdo et al. 2025) of the
individual sources. This is sufficient due to the face-on nature
of the disks.

For both disks, the inner spirals seen in the velocity residuals
appear to align somewhat with the NIR spirals. In
HD 135344B, both NIR spiral arms are located just inside the
redshifted velocity arms. In MWC 758, one of the NIR spirals
(−90° to 90°) has a redshifted counterpart in the velocity
residuals, while the other has a blueshifted counterpart (−180°
to −90°). For the peak intensity, on the other hand, the spiral
patterns seen for MWC 758 align very well with the NIR
spirals, whereas this is not the case for HD 135344B. We note
that the strong temperature decrement seen around 80 au in this
source is the result of continuum subtraction. In the line width,
spiral patterns are mostly visible in the negative residuals,
which again seem to somewhat align with the NIR spirals for

MWC 758 but not HD 135344B (for a detailed discussion, see
M. Benisty et al. 2025, in preparation).

Appendix C
Unconvolved Model Images

In Figure 8, we show the unconvolved model images of the
dead-zone simulation alongside the convolved images (0.15
beam). The continuum observations are overlaid as contours to
highlight that the model has been adapted to each disk, such
that the vortex is present at the same location as the dust
asymmetries. In this work, we are mainly interested in the
kinematical patterns of a vortex, and we note that the exact
strength of these features depends on various factors. More-
over, we assume a flat disk and the magnitude of the vortex
may be significantly underestimated. In that regard, the
unconvolved images nevertheless emphasize the need for
higher spatial resolution. In particular, an inclined source such
as HD 34282 may show very strong vortex features if resolved
at very high resolution.

Figure 7. Polar-deprojected residuals of the centroid velocity, peak intensity, and line width, shown for both CO lines and the HD 135344B (top) and MWC 758
(bottom) disks. The deprojection of the NIR scattered-light emission is included in the fourth panel of each row (T. Stolker et al. 2017; B. B. Ren et al. 2023),
highlighting the observed spiral features that are overlaid as contours on the other three panels. The SPHERE images are normalized to the peak value and shown with
a logarithmic normalization of the color map. Note the different spatial scale of the rows.
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