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ABSTRACT

Aims. We investigated the polarization and Faraday properties of Messier 87 (M87) and seven other radio-loud active galactic nuclei (AGNs) at
λ0.87 mm (345 GHz) using the Atacama Large Millimeter/submillimeter Array (ALMA). Our goal was to characterize the linear polarization (LP)
fractions, measure Faraday rotation measures (RMs), and examine the magnetic field structures in the emission regions of these AGNs.
Methods. We conducted full-polarization observations as part of the ALMA Band 7 very long baseline interferometry (VLBI) commissioning
during the April 2021 Event Horizon Telescope (EHT) campaign. We analyzed the LP fractions and RMs to assess the nature of Faraday screens
and magnetic fields in the submillimeter emission regions.
Results. We find LP fractions between 1% and 17% and RMs exceeding 105 rad m−2, which are 1–2 orders of magnitude higher than typically
observed at longer wavelengths (λ > 3 mm). This suggests denser Faraday screens or stronger magnetic fields. Additionally, we present the first
submillimeter polarized images of the M87 jet and the observed AGNs, revealing RM gradients and sign reversals in the M87 jet indicative of a
kiloparsec-scale helical magnetic field structure.
Conclusions. Our results provide essential constraints for calibrating, analyzing, and interpreting VLBI data from the EHT at 345 GHz, represent-
ing a critical step toward submillimeter VLBI imaging.

Key words. black hole physics – magnetic fields – polarization – radiation mechanisms: non-thermal – instrumentation: interferometers –
instrumentation: polarimeters

1. Introduction

The development of a phased-array capability for the Atacama
Large Millimeter/submillimeter Array (ALMA) has revolution-
ized very long baseline interferometry (VLBI) at millimeter
wavelengths (Matthews et al. 2018; Goddi et al. 2019a). By sig-
nificantly enhancing the sensitivity of VLBI baselines, particu-
larly at 230 GHz (λ ≈ 1.3 mm), the inclusion of phased-ALMA
arrays into existing VLBI arrays made possible the first horizon-
scale images of supermassive black holes, including M87* in
the Messier 87 Galaxy (Event Horizon Telescope Collaboration
2019a,b,c,d,e,f, 2021a,b, 2023, 2024a) and Sgr A* at the
heart of the Milky Way (Event Horizon Telescope Collaboration
2022a,b,c,d,e,f, 2024b).

In recent developments, ALMA’s phased array capabili-
ties were extended to the submillimeter (ALMA Band 7; ν ≈
345 GHz; λ ≈ 0.87 mm), enabling a performance comparable
to that of Band 6 (ν ≈ 230 GHz) under suitable observing
conditions (Crew et al. 2023). The first test of ALMA’s Band
7 phasing capability occurred in October 2018 during a global

VLBI campaign, marking the detection of the first VLBI fringes
in the submillimeter regime between ALMA and three other
Event Horizon Telescope (EHT) sites (Raymond et al. 2024).
Following this success, a full end-to-end test of the Band 7
VLBI capability was conducted at the end of the ALMA-EHT
science campaign in April 2021, with the aim of obtaining the
first 345 GHz VLBI fringes toward the EHT key target M87*
and selected radio-loud active galactic nuclei (AGNs), as well as
assessing the feasibility of VLBI imaging in the submillimeter
regime.

Observations at ν ≈ 345 GHz offer a 50% improve-
ment in angular resolution over 230 GHz and are expected to
enhance uv coverage through the combination with data from
lower frequencies. Such a multifrequency synthesis will enable
higher-fidelity imaging while minimizing interstellar scatter-
ing effects, which is particularly critical for imaging Sgr A*
(Event Horizon Telescope Collaboration 2022c).

To turn the ALMA array into a coherently phased aper-
ture for millimeter VLBI and integrate it with other VLBI
stations, the connected-element interferometric visibilities
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must first be calibrated (Goddi et al. 2019b). This process
inherently generates a full-polarization interferometric dataset
as a by-product of VLBI observations with ALMA. For
VLBI experiments, these interferometric datasets serve
multiple purposes: they provide source-integrated param-
eters to refine and validate VLBI calibration and imaging
workflows (Event Horizon Telescope Collaboration 2019b,c,
2021a, 2022b,c, 2024b) and provide critical observational
constraints for theoretical models and physical interpretations
(Event Horizon Telescope Collaboration 2021b, 2022d,e,f).
However, beyond their role in VLBI, these datasets have
significant standalone scientific value, enabling the derivation
of millimeter emission, polarization, and Faraday properties of
VLBI targets on arcsecond scales. At λ0.87 mm, synchrotron
emission originates from a more optically thin region closer
to the supermassive black hole when compared to λ > 1 mm,
providing a unique window into the jet base and accretion flow.

In this paper we present the analysis of connected-element
interferometric data from the ALMA Band 7 VLBI test con-
ducted in April 20211. Results from the full 345 GHz VLBI cam-
paign, including data from other stations, will be discussed in a
follow-up paper (EHTC et al., in prep.; hereafter Paper II).

Section 2 details the observational setup (Sect. 2.1), observed
targets (Sect. 2.2), calibration procedures (Sect. 2.3), and full-
polarization image deconvolution (Sect. 2.4). Section 3 describes
the data analysis, including the extraction of Stokes parameters,
polarimetric and Faraday property estimation (Sect. 3.1), and
polarized image production (Sect. 3.2). Section 4 presents the
polarimetric properties (Sect. 4.1) and spectral indices (Sect. 4.2)
of the observed AGN sources, with a focus on the submillimeter
polarized emission in the M87 jet (Sect. 4.3). Section 5 summa-
rizes our conclusions.

2. Observations, data calibration, and imaging

ALMA Band 7 observations were performed on April 19, 2021,
at the end of the EHT science campaign conducted in Band 6.
ALMA was operated as a phased array, and joined a global net-
work of VLBI stations operating at this frequency for an end-to-
end submillimeter VLBI commissioning observation.

Weather conditions at ALMA were excellent: typical opac-
ity values were τ225 ∼ 0.05, while system temperatures (Tsys)
ranged from 95 to 276 K. The measured phasing efficiencies dur-
ing the test varied between 81% and 97%, reflecting strong sys-
tem performance under favorable conditions (Crew et al. 2023).

2.1. Observational setup

The observations at Band 7 spanned a continuous session of
nearly 5 hours (from 01:16 to 06:08 UTC) and utilized 42 anten-
nas. Of these, 31 were configured within a 400-meter radius
around the reference antenna to form the phased array (base-
lines to 0.8 km). Eleven additional antennas (baselines to 1.3 km)
completed the array and were used as un-phased comparison
antennas for the determination of phasing efficiency estimates.
The antenna locations on April 19 are plotted in Fig. 1.

The setup incorporated four spectral windows (SPWs) in
dual linear polarization (LP); two in the lower sideband and
two in the upper sideband, with central frequencies of 335.600,
337.54112, 347.600, and 349.600 GHz. Each SPW offered an
effective bandwidth of 1875 MHz. The ALMA interferomet-
1 These ALMA commissioning data are made public with this publi-
cation.
2 The Local Oscillator setup at ALMA does not allow evenly spaced
basebands in Band 7, unlike in VLBI’s Band 6.

Fig. 1. ALMA antenna locations for the phased array (orange points)
and the un-phased comparison antennas (blue points) during the Band 7
observations on April 19, 2021. Positions are relative to the array refer-
ence antenna (Goddi et al. 2019b) and are plotted with positive values
of X toward local east and positive values of Y toward local north.

ric data were averaged by a factor of 8 in frequency, resulting
in 240 spectral channels per SPW with a channel spacing of
7.8125 MHz.

2.2. Observed targets

As these observations were designed as a comprehensive end-
to-end commissioning test, the well-known quasar 3C279 was
selected as the primary target. Given the novelty of VLBI at
345 GHz, there is currently limited guidance on suitable cali-
brators for this frequency. To address this, a selection of promis-
ing candidates was included for calibration and evaluation. This
candidate sample comprises bright quasars and other compact
extragalactic sources that had previously produced VLBI fringes
in Band 6 observations. Notably, the sample includes M87*, a
planned future science target for 345 GHz VLBI observations.
It should be noted that the observations include scans on three
targets during gaps in the VLBI schedule. These scans were
observed by ALMA for calibration purposes. In total, eight
targets were observed in VLBI mode, while one target was
observed exclusively by ALMA. A detailed list of the observed
sources and their adopted calibration roles is provided in Table 1
(see also Sect. 2.3).

2.3. Data calibration

The ALMA data were calibrated using the Common Astron-
omy Software Applications (casa) package, following the
specialized “Quality Assurance Level 2” (QA2) procedures
described in Goddi et al. (2019b, see also Crew et al. 2023).
As detailed in those studies, the VLBI and non-VLBI scans
are calibrated independently, resulting in separate calibration
solutions.

3C273 was adopted as an absolute flux-density calibrator, a
source routinely observed by ALMA as part of the flux-density
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Table 1. VLBI sources observed on April 19, 2021, in Band 7.

Source Coordinates Calibration Intenta Ton source
Common Name J2000 Name RA (J2000) Dec (J2000) (min)

3C 279 J1256−0547 12:56:11.167 −05:47:21.52 Target 1 34.4
3C 273 J1229+0203 12:29:06.700 +02:03:08.60 Flux, Bandpass 25.8
M87 NGC 4486 12:30:49.412 +12:23:28.27 Target 2 16.9
4C 01.28 J1058+0133 10:58:29.604 +01:33:58.83 Polarization 10.5
S4 1144+40 J1146+3958 11:46:58.298 +39:58:34.28 . . . 7.5
PKS 1510-089 J1512−0905 15:12:50.533 −09:05:59.83 . . . 3.8
PKS 1335-127 J1337−1257 13:37:39.783 −12:57:24.70 . . . 3.8

non-VLBI scansb

4C 01.28 J1058+0133 10:58:29.604 +01.33.58.83 Polarization 40.3
PKS 1243-072 J1246−0730 12:46:04.232 −07.30.46.575 Phase 24.7
3C 273 J1229+0203 12:56:11.167 −05:47:21.52 Flux, Bandpass 10.1

Notes. (a) In addition to the specified intent, amplitude and phase gains were estimated on each observed source. (b) These sources were observed
by ALMA for calibration purposes during gaps in the VLBI schedules.

monitoring program with the ALMA Compact Array (ACA;
see Appendix C). From the ALMA database, the flux density
at 342 GHz was derived as S 342 GHz = 4.164 Jy with a spectral
index α = −0.79.

Accurate calibration of ALMA VLBI science data requires
a full polarization calibration of interferometric visibilities.
ALMA’s linearly polarized feeds simultaneously receive both
orthogonal polarizations (X and Y), with all antennas in the
phased array aligned to the reference antenna. Since the ref-
erence antenna’s phase is set to zero in both polarizations,
a residual phase bandpass remains in the cross-hands of
all baselines. Correcting this residual XY phase is essential
for accurately combining cross- and parallel-hands to extract
Stokes parameters. Thus, the primary calibration requirement
for VLBI correlation is determining the X-Y phase differ-
ence and delay at the reference antenna (see Sect. 5 of
Goddi et al. 2019b for details). This step enables the conver-
sion of ALMA’s linearly polarized data into a circular polar-
ization basis, ensuring consistency with other VLBI stations
(Martí-Vidal et al. 2016; Goddi et al. 2019b). J1058+0133 (4C
01.28) was chosen as the polarization calibrator due to its ade-
quate parallactic angle coverage and the presence of a com-
pact, strongly polarized core (at the ∼8% level). This selec-
tion enabled the simultaneous determination of the source polar-
ization model and an estimate of the XY cross-phase at the
reference antenna. The Stokes parameters derived from the
polarization model were determined as IQUV = [1.50, 0.033,
−0.126, 0.0] Jy.

2.4. Full-Stokes imaging

All targets observed in Band 7 were imaged using the casa
task tclean in all Stokes parameters: I, Q, U, and V . A Briggs
weighting scheme (Briggs 1995) was adopted with a robust
parameter of 0.5 and a cleaning gain of 0.1.

A first cleaning step (100 iterations across all Stokes param-
eters) was performed within the inner 4′′. If significant emission
(>7σ) remained in the residual maps (e.g., for M87), an auto-
matic script updated the cleaning mask, and a second, deeper
cleaning (2000 iterations across all Stokes parameters) was con-
ducted down to 2σ. Both cleaning steps were run with the
parameter interactive = False. A final interactive cleaning
step (interactive = True) was performed to manually adjust
the mask, capturing any real emission missed by the automatic

process and cleaning deeper sources with complex structures or
high-residual signals.

The array configuration during phased-array observa-
tions provided synthesized beams ranging from [0′′.36–
0′′.50]× [0′′.29–0′′.34], depending on the target. We produced
576× 576 pixel maps with a pixel size of 0′′.06, resulting in a
field of view of 34′′.6× 34′′.6, which comfortably covered the pri-
mary beam of ALMA Band 7 (18′′ at 350 GHz).

Maps were produced for individual SPWs and by com-
bining SPWs in each sideband (SPW = 0, 1 and SPW = 2,
3) using deconvolver = ‘hogbom’ with nterms = 1. Addi-
tionally, maps combining all four SPWs were created using
deconvolver = ‘mtmfs’ with nterms = 2, achieving better
sensitivity and producing higher-quality images3. Thus, the com-
bined SPW images were used for the imaging analysis presented
in this paper, except in cases where a per-SPW analysis was nec-
essary, such as for spectral index or Faraday rotation studies.

3. Data analysis

The data, calibrated and imaged as described in Sect. 2.1,
were analyzed following the procedures outlined in Goddi et al.
(2021). The analysis consisted of two main components:

– Extract the Stokes parameters in the compact cores of the
observed targets and estimate their polarimetric and Faraday
properties (Sect. 3.1).

– Produce polarized images for each target and determine the
spatial distribution of the polarimetric quantities on arcsec-
ond (kiloparsec) scales (Sect. 3.2).

3.1. Polarization analysis of point sources

To extract flux values for Stokes I, Q, U, and V , we employed
two alternative methods, one that utilizes the visibility data and
the other full-Stokes images.

3 The deconvolver = ‘mtmfs’ configuration outperformed
deconvolver = ‘hogbom’ when combining all four SPWs,
yielding 30–40% better sensitivity on average, as expected for
RMS∝ 1/

√
∆ν. However, deconvolver = ‘hogbom’ performed

poorly when combining all four SPWs, especially for sources with
steep spectral indices, resulting in up to 50% worse RMS compared to
deconvolver = ‘mtmfs’.
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Table 2. Frequency-averaged polarization properties of AGN targets (at a representative frequency of 343 GHz).

Source Day Ia Spectral Index LP χ χ0 RM
(2021) (Jy) (α) (%) (deg) (deg) (105 rad m−2)

3C273 Apr 19 4.17± 0.42 –0.781± 0.008 1.67± 0.03 –64.19± 0.52 –38.9± 7.3 –5.8± 1.7
3C279 Apr 19 8.73± 0.87 –0.48± 0.04 10.63± 0.03 –46.711± 0.081 –41.2± 1.1 –1.26± 0.26
4C01.28 Apr 19 1.50± 0.15 –0.42± 0.03 8.67± 0.03 –37.72± 0.11 –37.4± 1.5 –0.08± 0.35
J1146+3958 Apr 19 0.396± 0.040 –0.4± 0.2 2.66± 0.07 87.27± 0.77 107± 11 –4.4± 2.5
J1337–1257 Apr 19 3.13± 0.31 –0.38± 0.05 16.68± 0.03 –7.310± 0.055 –8.15± 0.77 0.19± 0.18
J1512–0905 Apr 19 1.74± 0.17 –0.42± 0.04 1.07± 0.04 –65.72± 0.95 –96± 13 6.9± 3.1
M87 Apr 19 0.970± 0.097 –1.24± 0.02 2.80± 0.03 12.60± 0.35 8.5± 5.0 0.9± 1.1

non-VLBI scans
3C273b Apr 19 4.17± 0.42 –0.68± 0.01 . . . . . . . . . . . .
4C01.28 Apr 19 1.50± 0.15 –0.36± 0.02 8.66± 0.03 –37.68± 0.11 –38.0± 1.6 0.07± 0.37
J1246–0730 Apr 19 0.280± 0.028 –0.56± 0.04 0.6± 0.1 –17.0± 6.6 –119± 95 23± 21

Notes. (a) Errors in Stokes I include thermal and 10% absolute flux systematic uncertainty summed in quadrature. (b) The short observation on
3C273 did not result in sufficiently good data to enable a meaningful polarization analysis.

In the uv-plane analysis, we used the external casa library
uvmultifit (Martí-Vidal et al. 2014). To optimize processing
time, we first averaged all 240 frequency channels to produce
eight-channel, four-SPW visibility uv files. Assuming the emis-
sion is dominated by a central point source at the phase center,
we fit a delta function to the visibilities, extracting Stokes I, Q,
U, and V parameters for each SPW individually.

For the image-based approach, we summed the central 5 × 5
pixels of the CLEANmodel component map. Summing only these
central pixels isolates core emission from the surroundings, which
is particularly important for sources with extended structure.

Goddi et al. (2021) performed a statistical comparison of
flux-extraction methods in the uv and image planes for a sam-
ple of VLBI targets observed in Bands 3 and 6. They found that
the median absolute deviation of the Stokes parameters between
methods is <1% for both point and extended sources. This agree-
ment holds for the current Band 7 observations as well.

Using the measured Stokes parameters, we determined polar-
ization properties for all targets, including the fractional LP
(LP =

√
Q2 + U2/I), the electric vector position angle (EVPA;

2χ = arctan(U/Q)), and its variation with frequency (Faraday
rotation; see Sect. 3.1.2). Uncertainties in LP include the ther-
mal errors of Stokes Q and U and a 1σ systematic error (added
in quadrature) associated with Stokes I leakage into Stokes Q
and U (0.03% of Stokes I). This analysis results in LP uncertain-
ties <0.1%, consistent with previous studies (Nagai et al. 2016;
Bower et al. 2018; Goddi et al. 2021).

The polarization quantities, averaged across the four SPWs,
are reported in Table 2. Table B.1 provides the polarimetric
quantities for each SPW. We note that while the polarization
parameters of 4C 01.28 from non-VLBI scans closely match
those from VLBI scans (indicating consistent independent polar-
ization calibrations), the short observation of 3C 273 did not
yield data of sufficient quality for meaningful polarization anal-
ysis. Consequently, non-VLBI scans of 3C 273 were excluded,
and the polarization analysis is based solely on VLBI scans.

3.1.1. Comparison with the AMAPOLA survey

For the purposes of absolute flux calibration, ALMA regularly
monitors the flux density of bright sources (mainly blazars or
quasi-stellar objects) distributed across the entire right ascension
range (“the Grid”). These observations are conducted together

with solar system objects as part of the Grid Survey (GS) pro-
gram, which operates on a cadence of approximately 10 days.
The observations are executed with the Atacama Compact Array
(ACA) in Bands 3, 6, and 7. Since the full-polarization mode
is employed, it is possible to extract polarimetric information
from the GS sources. This polarimetric analysis is performed
using AMAPOLA4, a set of CASA-compatible Python scripts
designed to reduce the full-Stokes polarimetry of GS observa-
tions. While the AMAPOLA values are primarily used for obser-
vation planning and the ACA and ALMA-VLBI arrays cover
different uv ranges, comparing our data with the AMAPOLA
database helps identify any systematic effects or clear inconsis-
tencies due to variability within a week-long time frame.

The GS includes multiple measurements in Band 3 and
Band 7 from April 2021 for all our targets, except M87. Our
analysis shows that the polarimetric measurements are gener-
ally consistent with the historical trends reported for the Grid
sources. Additional details, including comparison plots, are pro-
vided in Appendix C.

3.1.2. Rotation measure

Since we measured the EVPA at four distinct frequencies (one
for each SPW) spanning a 16 GHz frequency range (334.6–
350.6 GHz), we could estimate the Faraday rotation measure
(RM) in the 0.87 mm band. Assuming that the Faraday rotation
arises from a single, external, homogeneous Faraday screen (i.e.,
the rotation occurs outside the plasma responsible for the polar-
ized emission), a linear dependence between the EVPA and the
wavelength squared is expected.

We modeled this relationship by fitting the RM and the mean
wavelength EVPA (χ̄) using the standard linear relation:

χ = χ̄ + RM(λ2 − λ̄2), (1)

where χ is the observed EVPA at wavelength λ, and χ̄ is the
EVPA at the mean wavelength λ̄ (corresponding to the band
center). Additionally, the EVPA extrapolated to zero wavelength
(assuming the λ2 dependence holds) is given by

χ0 = χ̄ − RMλ̄2. (2)

The RM fitting is performed using a weighted least-squares
method applied to χ as a function of λ2. The values of χ̄, χ0,
4 http://www.alma.cl/~skameno/AMAPOLA/
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Fig. 2. Polarization images of M87 at λ0.87 mm observed on April 19, 2021. The raster images in each panel cover an area of ≈1.5 × 0.8 kpc and
display the following: total intensity, spectral index, fractional LP, and Faraday RM (from the top left to bottom right). White vectors overlaid in
the LP panel (bottom left) represent the orientation of the EVPAs, with vector lengths linearly proportional to the polarized intensity. In each panel,
the white contour corresponds to the 4σI level, where σI = 0.11 mJy/beam is the RMS noise in the Stokes I map. The total intensity brightness is
plotted using a logarithmic scale starting at the 3σ level. For the spectral index map, we applied a threshold of 5×σ in Stokes I. For the LP fraction
and RM maps, thresholds are defined as 3 × σI for Stokes I and 2 × σI p for the polarized flux density (here the σI p = 0.08 mJy/beam includes the
thermal noise and the systematic error from Stokes I leakage into Stokes Q and U, combined in quadrature). The total intensity, spectral index,
LP fraction, and RM values at the peak of the compact core are annotated in the upper-left corner of each panel. EVPAs are sampled every six
pixels for clarity. The synthesized beam, represented as an ellipse in the lower-left corner of each panel, measures 0′′.40× 0′′.32 at a position angle
of −48◦. Note that no primary beam correction is applied to these maps.

and the fitted RM are reported in the sixth, seventh, and eighth
columns of Table 2. We determine EVPA uncertainties rang-
ing from 0.06◦ to 1◦ (excluding J1246-0730, where LP< 1%),
corresponding to RM propagated errors between 0.08 and 3 ×
105 rad m−2. Despite these relatively high uncertainties and the
limited frequency coverage at these high frequencies, we achieve
3σ RM detections in 3C273 and 3C279. Details on the calcula-
tion of EVPA and RM uncertainties, as well as an evaluation
of the robustness of RM fits derived from relatively narrow fre-
quency coverage (16–18 GHz) at submillimeter wavelengths, are
provided in Goddi et al. (2021).

3.2. Polarization images

We used the full-Stokes images (produced as described in
Sect. 2.4) to determine the spatial distribution of the polarimetric
quantities on arcsecond scales. Specifically, we executed custom
Python scripts in CASA that take as input the Stokes I, Q, and
U images and output images of the linear polarized intensity, the
fractional LP, the EVPA, and the Faraday RM. All these polar-
ization quantities were calculated as described in Sects. 3.1 and
3.1.2 on a pixel-by-pixel basis after convolving all SPW images
to the same synthesized beam. In generating the final images, we
applied a threshold defined as 3 × σ (rms noise level) for Stokes
I and 2 × σ for the polarized flux density5.

5 The σ error on the polarized flux includes the thermal error (residual
image rms noise) and the systematic error (added in quadrature) associ-
ated with Stokes I leakage onto Stokes Q and U (0.03% of Stokes I).

Representative images are presented in Fig. 2, showcasing
M87, and Fig. 3, featuring 3C 279, 3C 273, and 4C 01.286. The
raster image in each panel displays the total intensity, spectral
index (for M87), LP fraction, and RM. White vectors overlaid
on these images represent the orientation of the EVPAs, with
their lengths linearly proportional to the polarized flux. It should
be noted that these EVPAs are not corrected for Faraday rotation
and that the magnetic field vectors should be rotated by 90 deg.

4. Results and discussion

We derived polarimetric properties and produced polarized
images of eight AGNs observed in full-polarization mode with
ALMA in the 0.87 mm band for the first time. In Sect. 4.1 we
analyze the polarization characteristics of the AGN; in Sect. 4.2
we discuss their spectral indices; and in Sect. 4.3 we focus on
the polarized submillimeter emission from the kiloparsec-scale
jet in M87.

4.1. AGN polarization properties

The polarimetric quantities for our AGN targets, derived as
described in Sect. 3.1, are summarized in Table 2. The table also
includes the measured LP fractions, EVPAs, and RMs, which
can provide key insights into the magnetic field structures and
plasma conditions within the AGN jets. The LP fractions in the

6 Images for other targets are not included, as they remain unresolved
on arcsecond scales and do not provide additional information beyond
what is already summarized in Table 2.
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Fig. 3. Polarization images of selected AGNs observed with ALMA at 0.87 mm on April 19, 2021 (see Fig. 2 for a description of the plotted
quantities). The synthesized beams (represented as an ellipse in the lower-left corner of each panel) have the following sizes (and position angles):
0′′.36× 0′′.29 (−67.5◦) for 3C279, 0′′.38× 0′′.30 (−60.8◦) for 3C273, and 0′′.46× 0′′.30 (−58.7◦) for 4C01.28. Note that the EVPAs are not Faraday-
corrected and that the magnetic field vectors should be rotated by 90◦, ignoring Lorentz transformation and light aberration.

AGN central cores span a wide range, from .1% for weakly
polarized targets (e.g., PKS1243-072 and PKS1510-089) to 10–
17% for strongly polarized sources like 3C279 and PKS1335-
127, consistent with previous measurements (Appendix C).

This is the first time Faraday RMs have been measured
in the submillimeter. In 3C273, we measure RM = (−5.8 ±
1.6) × 105 rad m−2 at 0.87 mm, which is consistent with previ-
ous ALMA observations at 1.3 mm (December 2016: RM = (5.0±
0.3) × 105 rad m−2; April 2017: RM = (2.5 ± 0.3) × 105 rad m−2;
Hovatta et al. 2019; Goddi et al. 2021) and higher than 3 mm
observations (RM = (−0.60 ± 0.14) × 104 rad m−2; Goddi et al.
2021). Interestingly, the sign of the RM at 0.87 mm differs from
previous 1.3 mm observations, which we interpret as a result of
time variability rather than a frequency-dependent effect (Carlos
et al., in prep.).

In 3C279, earlier measurements showed RM values rang-
ing from 1800 to 2700 rad m−2 at 3.5 mm (e.g., Lee et al. 2015;
Goddi et al. 2021) and an upper limit of 5000 rad m−2 at 1.3 mm
(Goddi et al. 2021). Our new observations suggest a signifi-
cant increase in RM at shorter wavelengths, supporting the
idea that higher frequencies probe the innermost regions with
stronger magnetic fields and denser plasma. Given the time
variability of these sources, simultaneous multi-band observa-

tions are required to confirm this trend and establish the depen-
dence of RM on wavelength. Some targets, including M87,
3C279, 3C273, and 4C 01.28, were observed at lower frequen-
cies (Bands 3 and 6; ν ≈ 86 GHz and 230 GHz, respectively)
during the same week. A comparative analysis of polarization
properties across ALMA bands is planned for a future study
(Carlos et al., in prep.).

Our findings of RM exceeding 105 rad m−2 in AGN cores
at λ ∼ 0.87 mm align with previous studies at millimeter
wavelengths (e.g., Plambeck et al. 2014; Martí-Vidal et al. 2015;
Hovatta et al. 2019; Goddi et al. 2021). These high RM values,
which are 1–2 orders of magnitude greater than those typically
reported for AGNs at λ > 3 mm (e.g., Gabuzda et al. 2017;
Peng et al. 2024), point to a denser Faraday screen or stronger
magnetic fields in the submillimeter emission region.

4.2. AGN spectral indices

In addition to polarization parameters, we derived the total inten-
sity spectral index α for all sources, where α is defined such
that I(ν) ∝ να. The spectral index was computed “in-band”
using a weighted least-squares fit across the four flux-density
measurements in each SPW. The AGN cores systematically
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show negative spectral indices in the range α = −1.3 to −0.4,
consistent with previous findings at millimeter wavelengths
(e.g., Agudo et al. 2018; Goddi et al. 2021). This contrasts with
the flat spectral indices (α ≈ 0) typically observed at longer cen-
timeter wavelengths, further supporting the idea that AGN cores
become progressively more optically thin at shorter wavelengths.

For M87, the compact core exhibits a spectral index of
α = −1.25, consistent with previous measurements at 1.3 mm
(Goddi et al. 2021) but contrasting with the flatter spectra
observed at 3 mm (e.g., Doi et al. 2013) and at centimeter wave-
lengths (e.g., Kravchenko et al. 2020). This steep spectral index
suggests a spectral break between 3 mm and 1.3 mm, transition-
ing to a consistent power law from 1.3 mm to 0.87 mm. Such a
break is likely due to the inclusion of contributions from both the
compact core and the inner jet within the ALMA beam. While
the compact (VLBI) core typically displays a flat spectrum, the
jet component has a steeper spectral index, which dominates at
higher frequencies due to decreased opacity at the jet base, as
predicted by the standard jet model (Blandford & Königl 1979).

4.3. Polarization properties of the M87 jet at 345 GHz

High-resolution polarization imaging of the relativistic jet in
M87 at millimeter wavelengths has been achieved through
ALMA observations at λ3 mm with a resolution ∼2.5′′
(Peng et al. 2024) and λ1.3 mm with a resolution ∼1′′
(Goddi et al. 2021). These studies revealed the narrow, straight
kiloparsec-scale jet extending over ∼25′′ from the nucleus,
including several prominent knots (D, F, A, B, C) previously
identified in optical and radio images. At λ3 mm, the jet-inflated
radio lobes are also visible, with features imaged in greater detail
at lower frequencies (e.g., the NRAO 20 cm Very Large Array
image7).

Our λ0.87 mm ALMA observations show a similar structure
to the λ1.3 mm image (e.g., see Fig. 2 in Goddi et al. 2021) but
with improved angular resolution (∼0′′.3), allowing us to resolve
HST-1 from the core. HST-1 is a bright, knot-like feature dis-
covered with the Hubble Space Telescope and located approxi-
mately 0.85 arcseconds (about 60–70 parsecs) downstream from
the central black hole (Biretta et al. 1999). HST-1 has exhib-
ited remarkable properties over the years, including rapid vari-
ability, superluminal motion, and significant flaring activity
(Cheung et al. 2007; Giroletti et al. 2012), making it a critical
site for understanding particle acceleration, jet collimation, and
magnetic field dynamics in the M87 jet and in AGNs in general.

The radio core dominates the Stokes I emission with a peak
brightness of ∼1 Jy beam−1 (Fig. 2, top left). In contrast, the jet
knots become more prominent in the linearly polarized inten-
sity, relative to the total intensity, as the fractional polarization
increases from the core outward. The LP image (Fig. 2, bot-
tom left) shows the lowest fractional polarization (.3%) at the
core, which rises to ∼20% toward HST-1 and peaks at ∼55%,
42%, and 40% in between knots D, E, and A, respectively. The
high degree of polarization observed in the knots is indicative
of a well-ordered magnetic field structure within these regions,
likely resulting from shock compression or shear flows in the jet
plasma (e.g., Laing 1980).

The EVPA distribution observed at λ0.87 mm closely
matches prior results at λ1.3 mm (Goddi et al. 2021) and λ3 mm
(Peng et al. 2024) and agrees with centimeter-wave polarization
measurements from the Very Large Array (VLA; Algaba et al.
2016; Pasetto et al. 2021). This consistency across multiple

7 https://www.nrao.edu/archives/items/show/33382

epochs suggests a stable magnetic field configuration. The EVPA
distribution is generally perpendicular to the jet axis, except in
the regions HST-1 and Knot A. Ignoring Lorentz transformation
and light aberration, rotating the EVPA by 90◦ (without Faraday
correction) indicates that the magnetic field is mostly parallel
to the jet axis, except in HST-1 and Knot A, where it becomes
nearly perpendicular. These deviations are likely caused by rec-
ollimation or standing shocks, which can alter the helicity of the
magnetic field locally due to variations in the radial profiles of
the poloidal and toroidal components (Mizuno et al. 2015).

The RM, derived from EVPA measurements between
334.6 GHz and 350.6 GHz (Fig. 2, bottom right), reveals both
gradients and sign reversals along the jet. Near the core, the
RM exhibits an east-to-west gradient, ranging from (2.5± 3.9)×
105 rad m−2 at 0.3′′ east to (−1.2±0.5)×105 rad m−2 at 0.3′′ west.
Downstream in HST-1, the RM reaches (44±18)×105 rad m−2 at
0.96′′ from the core, decreasing with distance. Knot D exhibits
RM values ranging from (47± 23)× 105 rad m−2 to (−29± 11)×
105 rad m−2, while knot A displays an RM of (20.3 ± 4.1) ×
105 rad m−2 that varies significantly across the region.

The observed reversals in RM sign along the jet indicate
changes in the line-of-sight magnetic field direction, while the
RM gradients across the jet width reveal oppositely directed
line-of-sight magnetic fields at the jet edges. These results
are consistent with previous lower-frequency studies, which
reported similar RM gradients observed with ALMA at 3 mm
(Peng et al. 2024) and the VLA at 1.7–7.5 cm (Pasetto et al.
2021). Such RM gradients and sign reversals are evidence of
a helical magnetic field threading the jet, potentially persisting
up to kiloparsec scales (Pasetto et al. 2021). This configuration
aligns with theoretical predictions of dynamically significant
poloidal magnetic fields being twisted into a helix by the rotation
of the black hole-accretion disk system (Tchekhovskoy et al.
2011), and possibly with the “cosmic battery” model (e.g.,
Myserlis & Contopoulos 2021; Contopoulos et al. 2022). Inde-
pendent support for this interpretation is provided by EHT
observations of polarized emission near the M87 black hole
(Event Horizon Telescope Collaboration 2021b), further corrob-
orating the presence of a helical magnetic field structure.

A helical magnetic field could potentially also explain
another feature observed in the M87 core, its high RM variabil-
ity (Goddi et al. 2021). Several scenarios may account for this
variability, including turbulence in the accretion flow causing
internal Faraday rotation, a dynamically changing external Fara-
day screen, or a rapidly varying source at horizon scales with
a static external screen. Alternatively, a helical magnetic field
could introduce RM variability through beam-averaging effects.
Variations in beam size across different observations may sample
regions with oppositely directed magnetic fields along the line of
sight, leading to distinct RM measurements.

Our submillimeter observations, however, are limited by
angular resolution, sensitivity, and frequency coverage, prevent-
ing a definitive differentiation between internal and external
Faraday rotation and a precise characterization of the helical
magnetic field in the M87 jet. While spatial RM variations along
the jet axis are evident, the current imaging sensitivity is insuf-
ficient to continuously recover the polarized emission structure
on kiloparsec scales. This limitation prevents us from confirm-
ing whether consistent RM and LP transverse gradients persist
along the full extent of the jet. Moreover, the limited resolu-
tion impedes the separation of emissions originating from the
jet’s edges and central axis, leaving open the possibility that the
observed RM gradients are due to external material rather than
the jet’s intrinsic magnetic field. Simultaneous observations with
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the EHT (which will be discussed in Paper II) are expected to
shed light on the properties of the Faraday rotation medium in
the core region and provide insights into the magnetic field struc-
ture at the base of the jet.

The observed time variability in RM (Goddi et al. 2021)
adds another layer of complexity, as it precludes using nonsi-
multaneous datasets to reliably confirm RM-wavelength depen-
dences. Addressing these challenges requires simultaneous,
beam-matched, and multifrequency ALMA observations. To this
end, we plan to analyze a comprehensive dataset of ALMA obser-
vations, covering multiple frequency bands (Bands 3, 6, and 7) and
spanning several years, with data obtained on multiple days. This
systematic approach will enable a detailed investigation of time-
and frequency-dependent effects and thus a more robust determi-
nation of the RM’s frequency dependence. Such an analysis will
provide critical insights into whether the Faraday rotation is inter-
nal or external and refine our understanding of the helical mag-
netic field structure in the M87 jet. The findings from this extended
analysis will be presented in an upcoming publication.

5. Summary and conclusions

We have presented the first submillimeter full-polarization study
of radio-loud AGNs with ALMA, analyzing their polarization
and Faraday properties. We find LP fractions ranging from 1%
to 17% and RMs exceeding 105 rad m−2, consistent with earlier
studies at millimeter wavelengths (e.g., Plambeck et al. 2014;
Martí-Vidal et al. 2015; Hovatta et al. 2019; Goddi et al. 2021).
These RM values are 1–2 orders of magnitude higher than those
observed in AGNs at λ > 3 mm (e.g., Gabuzda et al. 2017;
Peng et al. 2024), indicating a denser Faraday screen or stronger
magnetic fields in the submillimeter emission regions.

We produced the highest-frequency polarized images ever
of these AGNs, which included M87 and its jet. For M87,
we observe RM gradients and sign reversals both along and
across the jet axis, potentially reflecting reversals in the mag-
netic field direction relative to the line of sight. If confirmed,
this would support a helical magnetic field configuration on
kiloparsec scales, as suggested by lower-frequency VLA stud-
ies (e.g., Pasetto et al. 2021). In future work we will analyze
multifrequency, multi-epoch ALMA data and explore the time-
and frequency-dependent properties of Faraday rotation to better
constrain the magnetic field structure in M87.

The ALMA data were obtained in the 0.87 mm band dur-
ing VLBI commissioning tests conducted in collaboration with
the EHT Collaboration. These data provided essential calibration
and interpretation for simultaneous VLBI observations with the
EHT. Notably, phased ALMA observations on April 19, 2021,
enabled the first detection of VLBI fringes at 345 GHz for M87
and selected AGNs (Matthews & Crew 2024, Paper II). This
milestone represents a key step in evaluating VLBI imaging fea-
sibility in the submillimeter band.

Very long baseline interferometry observations at this fre-
quency offer a 50% improvement in resolution compared to
230 GHz and substantially reduce interstellar scattering, which
is especially relevant for imaging Sgr A*. The combination
of 230 GHz and 345 GHz data enhances uv coverage, enabling
high-fidelity imaging with multifrequency synthesis. These
advancements will open new pathways for studying black hole
shadows in M87 and Sgr A*, as well as accretion and jet forma-
tion in nearby AGNs. Reduced opacity at 345 GHz allows jet-
launching regions closer to the black hole to be probed, offering
critical insights into jet formation, collimation, acceleration, and
the phenomenon of limb-brightening in inner jets, and thus deep-
ening our understanding of AGN physics.
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Appendix B: Stokes parameters per ALMA frequency band (SPW)

Table 2 in the main text reports the polarization quantities averaged across the four SPWs. Here we report the polarimetric quantities
(Stokes IQUV , LP, and EVPA) for each SPW in Table B.1. The quoted uncertainties include the thermal error, the 1σ systematic
error associated with Stokes I leakage into Stokes Q, U (0.03% of Stokes I), and Stokes V (0.6% of Stokes I), as recommended by
the ALMA observatory (see ALMA Technical Handbook; Remijan et al. 2019). The total uncertainties are computed by combining
these contributions in quadrature. The uncertainty in LP is primarily dominated by systematic errors, except for the weakest sources,
where thermal noise becomes significant. Unlike Goddi et al. (2021), we did not apply an LP bias correction because our sample does
not include low-polarization sources with LP<< 1%. We note that Stokes V is assumed to be zero during polarization calibration (see
Goddi et al. 2019b), and no additional calibration step was applied to reliably constrain circular polarization (CP) in this experiment.
Consequently, we do not claim CP detections for the observed sources. For an assessment of the reliability of Stokes V detections
in interferometric observations using linearly polarized feeds, we refer the reader to Appendix G in Goddi et al. (2021).

Appendix C: Comparison of Stokes parameters with the AMAPOLA polarimetric Grid Survey

Figures C.1 and C.2 illustrate the polarimetric parameters reported in Table B.1 (green data points and error bars), specifically Stokes
I, Q, U, LP, and EVPA. The shaded ±1σ regions represent the time-variance of the same parameters as measured by AMAPOLA
over a 20-day period surrounding the VLBI observations (April 9 to 29, 2021). Inflections in the shaded trend lines indicate the times
of GS observations. Blue corresponds to Band 3 measurements, while green and red corresponds to Bands 6 and 7, respectively. The
figures show that most Band 7 measurements derived from our current study fall within the red-shaded regions, demonstrating gen-
eral consistency with the AMAPOLA trends. The observed discrepancies may align with inter-GS cadence variability or differential
time-variability between frequency bands, as also seen in some AMAPOLA monitoring cases.
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We conclude that, despite differences in array configurations and data reduction methods, the ALMA-VLBI results are consistent
with AMAPOLA. This consistency validates the accuracy of flux density and polarization calibration in VLBI mode for Band 7,
extending the reliability previously demonstrated in Bands 3 and 6 (Goddi et al. 2019b, 2021).

Table B.1. Polarization parameters of targeted AGN sources per frequency band (SPW).

Frequency I Q U V LP EVPA
(GHz) (Jy) (mJy) (mJy) (mJy) (%) (deg)

VLBI scans
3C279

335.60 8.8086 ± 0.0003 -63.2 ± 2.6 -923.0 ± 2.6 -52 ± 53 10.50 ± 0.03 -46.960 ± 0.082
337.54 8.7961 ± 0.0003 -59.9 ± 2.6 -927.2 ± 2.6 -49 ± 53 10.56 ± 0.03 -46.849 ± 0.081
347.60 8.6754 ± 0.0003 -50.1 ± 2.6 -929.0 ± 2.6 -43 ± 52 10.72 ± 0.03 -46.542 ± 0.080
349.60 8.6327 ± 0.0003 -48.2 ± 2.6 -923.8 ± 2.6 -53 ± 52 10.72 ± 0.03 -46.492 ± 0.080

3C273
335.60 4.2364 ± 0.0001 -45.4 ± 1.3 -53.1 ± 1.3 -44 ± 25 1.65 ± 0.03 -65.28 ± 0.52
337.54 4.2165 ± 0.0001 -45.1 ± 1.3 -54.2 ± 1.3 -41 ± 25 1.67 ± 0.03 -64.88 ± 0.52
347.60 4.1226 ± 0.0001 -41.1 ± 1.2 -55.0 ± 1.2 -36 ± 25 1.67 ± 0.03 -63.39 ± 0.52
349.60 4.1019 ± 0.0002 -40.9 ± 1.2 -55.4 ± 1.2 -43 ± 25 1.68 ± 0.03 -63.22 ± 0.52

M87
335.60 0.9944 ± 0.0002 25.22 ± 0.34 12.04 ± 0.34 -14.9 ± 6.0 2.81 ± 0.03 12.76 ± 0.35
337.54 0.9881 ± 0.0002 25.33 ± 0.33 12.03 ± 0.33 -14.3 ± 5.9 2.84 ± 0.03 12.70 ± 0.34
347.60 0.9526 ± 0.0002 24.00 ± 0.32 11.37 ± 0.33 -12.2 ± 5.7 2.79 ± 0.03 12.67 ± 0.35
349.60 0.9451 ± 0.0002 23.66 ± 0.33 10.79 ± 0.33 -13.6 ± 5.7 2.75 ± 0.04 12.26 ± 0.37

4C01.28
335.60 1.5159 ± 0.0002 32.89 ± 0.50 -126.68 ± 0.50 1.0 ± 9.1 8.63 ± 0.03 -37.72 ± 0.11
337.54 1.5102 ± 0.0002 32.80 ± 0.49 -126.78 ± 0.49 1.0 ± 9.1 8.67 ± 0.03 -37.75 ± 0.11
347.60 1.4915 ± 0.0002 32.61 ± 0.49 -125.31 ± 0.49 1.1 ± 8.9 8.68 ± 0.03 -37.71 ± 0.11
349.60 1.4906 ± 0.0002 32.67 ± 0.50 -125.56 ± 0.50 1.3 ± 8.9 8.70 ± 0.03 -37.71 ± 0.11

J1146+3958
335.60 0.4007 ± 0.0003 -10.78 ± 0.29 1.24 ± 0.29 -7.0 ± 2.4 2.71 ± 0.07 86.73 ± 0.76
337.54 0.3975 ± 0.0002 -10.65 ± 0.27 1.34 ± 0.27 -6.2 ± 2.4 2.70 ± 0.07 86.42 ± 0.71
347.60 0.3921 ± 0.0003 -10.49 ± 0.28 0.79 ± 0.27 -5.8 ± 2.4 2.68 ± 0.07 87.85 ± 0.74
349.60 0.3953 ± 0.0003 -10.03 ± 0.30 0.67 ± 0.30 -7.0 ± 2.4 2.54 ± 0.08 88.08 ± 0.86

J1512-0905
335.60 1.7563 ± 0.0004 -12.30 ± 0.63 -14.67 ± 0.62 -18 ± 10 1.09 ± 0.04 -64.99 ± 0.94
337.54 1.7541 ± 0.0003 -11.27 ± 0.61 -14.16 ± 0.61 -16 ± 10 1.03 ± 0.03 -64.25 ± 0.97
347.60 1.7340 ± 0.0004 -12.91 ± 0.61 -14.21 ± 0.61 -14 ± 10 1.11 ± 0.04 -66.14 ± 0.92
349.60 1.7254 ± 0.0004 -12.90 ± 0.63 -12.91 ± 0.63 -18 ± 10 1.06 ± 0.04 -67.48 ± 0.99

J1337-1257
335.60 3.1590 ± 0.0004 505.4 ± 1.0 -132.5 ± 1.0 -105 ± 19 16.54 ± 0.03 -7.344 ± 0.055
337.54 3.1469 ± 0.0004 504.46 ± 0.99 -129.79 ± 0.99 -99 ± 19 16.55 ± 0.03 -7.214 ± 0.055
347.60 3.1199 ± 0.0004 508.98 ± 0.99 -132.01 ± 0.99 -88 ± 19 16.85 ± 0.03 -7.270 ± 0.054
349.60 3.1042 ± 0.0004 503.87 ± 1.00 -133.33 ± 1.00 -104 ± 19 16.79 ± 0.03 -7.411 ± 0.055

non-VLBI scansa

J1246-0730
335.60 0.2826 ± 0.0003 1.50 ± 0.36 -0.49 ± 0.36 0.7 ± 1.7 0.6 ± 0.1 -9.1 ± 6.5
337.54 0.2822 ± 0.0003 1.35 ± 0.35 -1.03 ± 0.35 0.5 ± 1.7 0.6 ± 0.1 -18.6 ± 6.0
347.60 0.2776 ± 0.0004 1.16 ± 0.36 -1.25 ± 0.36 0.0 ± 1.7 0.6 ± 0.1 -23.5 ± 6.1
349.60 0.2761 ± 0.0004 1.17 ± 0.38 -0.76 ± 0.38 0.4 ± 1.7 0.5 ± 0.1 -16.6 ± 7.9

4C01.28
335.60 1.5126 ± 0.0002 33.13 ± 0.52 -126.08 ± 0.52 -0.0 ± 9.1 8.62 ± 0.03 -37.64 ± 0.11
337.54 1.5079 ± 0.0002 32.94 ± 0.52 -126.40 ± 0.52 -0.0 ± 9.1 8.66 ± 0.03 -37.70 ± 0.11
347.60 1.4920 ± 0.0003 32.82 ± 0.51 -125.19 ± 0.51 0.1 ± 9.0 8.67 ± 0.03 -37.66 ± 0.11
349.60 1.4906 ± 0.0003 32.66 ± 0.52 -125.53 ± 0.52 0.1 ± 8.9 8.70 ± 0.03 -37.71 ± 0.12

(a) Non-VLBI scans on 3C273 were not included in this polarization analysis.
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Fig. C.1. Comparison of the polarimetric results obtained for all sources observed in VLBI mode on April 19, 2021, with those retrieved from the
AMAPOLA polarimetric analysis of GS data. Each row shows a specific parameter (from top to bottom: Stokes I, Q, U, LP, and EVPA), while
each column corresponds to a different source (labels in the top panel; see also Fig. C.2 for more sources). The measurements from the ALMA-
VLBI observations are indicated as red stars with associated error bars. The shaded regions correspond to AMAPOLA’s ±1σ uncertainties for
Band 3 (97.5 GHz; blue shading), Band 6 (221.1 GHz; green shading), and Band 7 (343.4 GHz; red shading). These uncertainties are derived from
the ACA GS data, while their temporal evolution (lines) is interpolated between individual GS measurements. This figure and Fig. C.2 highlight
that, for most cases, the ALMA-VLBI measurements agree well with the AMAPOLA trends, helping confirm the reliability of the polarization
calibration across bands.
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Fig. C.2. Same as Fig. C.1 but for different sources. The apparent discrepancy between the Band 7 GS prediction and our measurement of the
EVPA for J1512-0905 and J1146+3958 is attributed to the ±π ambiguity in estimating the polarization direction (e.g., Taylor et al. 2009).
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