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A B S T R A C T 

A common origin for a host of stellar phenomena in galactic centres is the tidal encounter between stellar binaries and a 
massive black hole (MBH), known as the ‘Hills mechanism’. Following the encounter, binaries may disrupt into an ejected 

star and a captured one, they may merge, or survive to either fly away or come back for one or more subsequent encounters, 
until they are either disrupted or fly-away. In this paper, we analyse how a binary’s fate depends on its orbital parameters, by 

following its evolution through up to three subsequent pericentre passages. We choose an initial population of circular binaries 
on parabolic orbits. We present results from our restricted three-body formalism, whose strength lies in the ability to easily 

explore a multidimensional parameter space and make predictions independent of the binary physical properties. We find that 
fates depend strongly on orbital inclination, how deep the encounter is into the MBH tidal sphere and on the binary eccentricity, 
developed during encounters. Generally, non-retrograde trajectories, high eccentricities or deep encounters produce disruptions 
preferentially. Disruption is the most common fate. A significant fraction of the surviving binaries fly away at velocities typically 

two orders of magnitude smaller than those of ejected stars. Including multiple encounter boosts the total disruption rate by 20 

per cent or more. Finally, using an example system, we investigate the effect of finite stellar sizes and lifetimes, showing that 
mergers occur 31 per cent of the time, and that disruptions are still boosted by ∼10 per cent through subsequent passages. 

Key words: black hole physics – binaries: close – stars: kinematic and dynamics – Galaxy: centre. 
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 I N T RO D U C T I O N  

uch has been discovered about the Galactic Centre (GC) of the
ilky Way (MW). Observational milestones include Jansky’s radio

etection of our Massive Black Hole (MBH), Sgr A ∗, in 1931 (see
. Jansky 1937 ), the development of infrared astronomy (e.g. E. E.
ecklin & G. Neugebauer 1968 ), to track trajectories of stars near
gr A ∗ in the early 2000s (see e.g. R. Schödel et al. 2002 ; A. M.
hez et al. 2003 , 2005 ), and the first image of Sgr A ∗, released
y (S. Markoff & Event Horizon Telescope Collaboration 2022 ).
evertheless, many questions remain unanswered, the origin and

ssembly history of Sgr A ∗, of the GC and, in particular, of its
tellar populations. The GC complex stellar dynamics is a rich field
f study too, tightly linked to the largely unknown rates of many
igh-energy transients, including Tidal Disruption Events (TDEs)
nd gravitational wave sources where stellar mass black holes spiral
nwards torwards the central MBH, called Extreme Mass Ratio
nspirals (EMRIs). 

Since direct observation of the GC is challenged by obscuration
nd stellar crowding, a complementary and captivating tool to explore
hese questions is hypervelocity stars (HVSs). These are stars ejected
rom the GC at speeds up to a few thousands of km s−1 , high enough
o be observable in the halo on unbound trajectories from the Galaxy.
VSs can be used as tracers, as they carry information about their
 E-mail: sersante@strw.leidenuniv.nl 
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ative GC to regions that are more easily observationally accessible.
urrently, only one candidate has been successfully traced back to the
C and thus confirmed as an HVS by (S. E. Koposov et al. 2020 ):
5-HVS1, an A-type main-sequence (MS) star, with a velocity of
755 ± 50 km s−1 . The number of promising candidates is around a
ozen (see W. R. Brown, M. J. Geller & S. J. Kenyon 2014 ; B. C.
romley et al. 2018 ; W. R. Brown et al. 2018 ). Various methods have
een suggested to improve observations (see e.g. S. J. Kenyon et al.
018 ; T. Marchetti, F. A. Evans & E. M. Rossi 2022 ; F. A. Evans,
. Marchetti & E. M. Rossi 2022a , b ; F. A. Evans et al. 2023 ; S.
erberne et al. 2024 ) and several mechanisms have been proposed

o explain the origin of such fast stars. For instance, the ejection
f an HVS could be the result of the close interaction between a
lobular cluster and a supermassive black hole (see e.g. R. Capuzzo-
olcetta & G. Fragione 2015 ; G. Fragione & R. Capuzzo-Dolcetta
016 ; G. Fragione, R. Capuzzo-Dolcetta & P. Kroupa 2017 ), or of
he three-body interaction between a star and a binary black hole
see e.g. Q. Yu & S. Tremaine 2003 ; I. Ginsburg & A. Loeb 2007 ;
. Sesana, F. Haardt & P. Madau 2007 , 2008 ; T. Marchetti et al.
018 ; A. Rasskazov et al. 2019 ). In this paper, we focus on another
ossible explanation which relies on the Hills mechanism, namely
he tidal separation of a binary stellar system by Sgr A ∗, which may
esult in a binary component being ejected while the other remains
ound to the MBH on a tight eccentric orbit (see e.g. J. G. Hills
988 ; R. Sari, S. Kobayashi & E. M. Rossi 2010 ; S. Kobayashi et al.
012 ; E. M. Rossi, S. Kobayashi & R. Sari 2014 ; H. Brown et al.
018 ). 
© The Author(s) 2025.
y. This is an Open Access article distributed under the terms of the Creative
ch permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.
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1 We tested the accuracy of the approximation against full 3-body simulations 
(similarly to what was done by R. Sari et al. 2010 ). 
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Various studies (see e.g. F. Zhang, Y. Lu & Q. Yu 2013 ; A.
enerozov & A.-M. Madigan 2020 ; A. Generozov 2021 ) showed 

hat this mechanism can simultaneously explain S5-HVS1 and the 
resence of the young stellar cluster around Sgr A ∗ called the S-star
luster (see for instance A. M. Ghez et al. 2008 ; S. Gillessen et al.
009 ). In this scenario, S-stars are the previous binary companions 
f HVSs. For instance, A. Generozov et al. ( 2025 ) found that
he observed S-star properties (including their thermal eccentricity 
istribution), can be explained by continuous binary disruptions 
ear SgR A ∗ followed by angular momentum relaxation due to 
epeated encounters with other objects in the GC. S. Verberne et al.
 2025 ) simulated the S-star and HVS populations and compared 
oth with state-of-the-art observations, finding that disruptions of 
inaries injected from both the clockwise disc and the nuclear star
luster reproduce all the observations simultaneously. The authors 
lso find that, regardless of the eccentricity distribution with which 
he captured stars are deposited, their final distribution will be thermal
ue to the rapid redistribution in angular momentum (see also A. 
enerozov & A.-M. Madigan 2020 ). 
Another possible explanation of the origin and morphology of the 

-star cluster has been suggested by T. Akiba, S. Naoz & A.-M.
adigan ( 2025 ), based on a relatively recent merger between an

ntermediate-mass BH and Sagittarius A ∗, which could reproduce 
uch of the orbital properties of the cluster. 
In addition, the Hills mechanism has been invoked as a dynamical 

hannel to create EMRIs (M. C. Miller et al. 2005 ; Y. Raveh & H.
. Perets 2021 ). In particular, I. Linial & R. Sari ( 2023 ) found that it

s expected to contribute to gravitational-wave driven stellar EMRIs 
or galaxies with M � 105 M�, which encompasses SgR A ∗. This
echanism may also be responsible for at least a subset of Quasi-
eriod Eruptions (QPEs) observed in X-rays (e.g. I. Linial & R. Sari
023 ). R. Sari & G. Fragione ( 2019 ) showed that the Hills disruption
f stellar binaries in the vicinity of a SMBH may affect the shape
f the density stellar cusp, which in turn affects the rate of stellar
isruption (TDEs) and EMRIs. E. Addison et al. ( 2019 ) simulated
arabolic encounters between compact-object binaries and SMBH in 
Cs and explored disruptions as a formation mechanism for EMRIs, 
roviding estimates of their rates within the context of gravitational- 
ave observations. These are among the scientific motivations behind 

his paper’s unprecedented detailed dynamical analysis of the Hills 
echanism. 
Briefly, the characteristic scales of Hills mechanism ejecta can be 

escribed as follows. Given a binary with semimajor axis ab and 
otal mass m interacting on a parabolic trajectory with a MBH with

ass M , the tidal forces of the latter overcome the self-gravity of the
inary at an approximate distance rt ≈ ab ( M/m )1 / 3 from the MBH, 
alled the tidal separation radius or in short, tidal radius . Once the
inary crosses the tidal radius, it may be tidally separated, resulting in
ne of the binary members (e.g. mej ) being ejected and the other (e.g.
cap ) captured by the MBH. The ejected star will have characteristic 

jection velocity of the order of 

= 

(
M 

m 

) 1 
6 

√ 

2 Gmcap 

ab 

≈ 1300 km s−1 

(
M 

4 × 106 M�

) 1 
6 
(

m 

4 M�

)− 1 
6 
(

mcap 

3 M�

) 1 
2 ( ab 

0 . 1 au 

)− 1 
2 

nd the captured component will end up on a bound orbit with
emimajor axis of order 

= 

1 

2 
Q

2 
3 

m 

mej 
ab 

≈ 3 × 10−3 pc 

(
M 

4 × 106 M�

) 2 
3 
(

m 

4 M�

) 1 
3 
(

mej 

M�

)−1 ( ab 

0 . 1 au 

)

otentially ejecting one star from the MW and leaving the other on
 very close orbit to Sgr A ∗. 

This, however, is not the only possible outcome of this dynamical
ncounter. 

In their work, (R. Sari et al. 2010 ) found that there is a non-null
robability that a binary survives disruption. In this case, there are
wo possible outcomes: binary members can merge (we call this 
hannel Ms for ‘mergers’) or they can remain bound to each other.
ergers as a possible explanation of G-type objects (see e.g. A.
iurlo et al. 2021 ; R. Campbell, A. Ciurlo & M. Morris 2023 ; D.
. Chu et al. 2023 ; S. Jia et al. 2023 ), have been analysed by A. P.
tephan et al. ( 2016 , 2019 ) through the Eccentric Kozai–Lidov (KL)
echanism and accounting for stellar evolution for binaries outside 

he BH tidal radius. With our work, we can complement these results
y considering mergers that are purely dynamical in nature, in a non-
erturbative and non-secular regime, encompassing also mergers of 
inaries diving much deeper into the tidal sphere through multiple 
ncounters. Mergers have also been analysed by I. Mandel & Y.
evin ( 2015 ) and B. Bradnick, I. Mandel & Y. Levin ( 2017 ) for a
opulation of eccentric binaries with specific distributions of their 
rbital parameters. The authors defined as ‘mergers’ the cases when 
he distance between the two stars becomes smaller than the sum
f their radii (as in R. Sari et al. 2010 ) and integrated the evolution
f the system using REBOUND (H. Rein & S. F. Liu 2012 ; H.
ein & D. S. Spiegel 2015 ). Our semi-analytical approach can be
sed as an independent and complementary analysis of mergers after 
ne encounter and provides new information on multiple passages 
etween pericentres. 

On the other hand, if they remain bound, binaries can either end up
n a bound orbit around the MBH and thus come back to interact with
t again in a second gravitational encounter, or they can end up on
nbound trajectories and fly away to populate the GC. We call these
wo different types of binaries coming-back (CBs) and flying-away 
FAs), respectively. CBs can then either survive the second encounter 
ith the MBH (as a CB or a FA binary) or they can be disrupted and
issolve into a HVS and an S-star (we dub disrupted binaries as Ds).
his series of events can occur for multiple subsequent pericentre 
assages of their centre-of-mass (CM) orbit. 
The dynamical interactions of stellar binaries with an MBH have 

reviously been investigated with different methods: three-body 
cattering experiments (B. C. Bromley et al. 2006 ; A. Sesana et al.
007 ; A. Generozov & H. B. Perets 2022 ), full N -body simulation
f a galactic nucleus (e.g. F. Antonini et al. 2010 ; F. Antonini, J. C.
ombardi & D. Merritt 2011 ; I. Mandel & Y. Levin 2015 ; S. Prodan,
. Antonini & H. B. Perets 2015 ; B. Bradnick et al. 2017 ), and
ith the restricted three-body framework (e.g. R. Sari et al. 2010 ;
. Kobayashi et al. 2012 ; H. Brown et al. 2018 ). The latter takes
dvantage of the extreme mass ratio between the binary and the BH to
inearise the equation of motion and energy, so that they can provide
ccurate results 1 with less computational resources; remarkably, 
hese results depend only on the geometry of the encounter and
ccentricities, but not on the physical properties of the binary. 

In this paper, we use the restricted three-body framework, extend- 
ng this formalism so as to be able to follow multiple encounters for
he first time. In particular, our goal is to provide the following. 

(i) An identification of the orbital parameter space that mostly 
ontributes to any given outcome. 
MNRAS 544, 1688–1709 (2025)
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Figure 1. Diagram illustrating the frames of reference used in our calcu- 
lations.

[
ˆ I , ˆ J , ˆ K 

]
(solid light arrows) is a coordinate system centred on the 

MBH, with ˆ I and ˆ J lying in the CM-trajectory plane (bigger ellipse), while ˆ K 

is a versor perpendicular to it and parallel to L cm 

. A second coordinate system 

(ˆ x , ˆ y , ˆ z ) (dotted arrows) is centred on the binary’s CM (at a distance r cm 

from 

the MBH, marked with a black arrow). ˆ x and ˆ y lie in the binary orbital plane 
(with ˆ x pointing towards the periapsis of the binary orbit – marked with a 
small black dot). ˆ z is perpendicular to it and parallel to the binary total angular 
momentum L b (bold dark-ochre solid arrow). The inclination i0 is defined as 
the angle between L b and its projection along the ˆ K direction. 
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(ii) An assessment of how the single encounter distribution of
jection velocities is affected by a second- and third-generation of
jected stars, and of the fraction of those that can be considered as
VSs (in this work we define them as stars ejected from the GC with
elocity in excess of 1000 km s−1 ). 

(iii) A description of the properties of S-stars and FAs. 
(iv) The fraction of binary mergers. 

The main novelty with respect to previous papers consists in the
etailed dynamical description of the outcomes (ratio and properties)
f multiple pericentre passages, where our results are independent of
he binary physical properties, such as masses, mass ratios and initial
eparation. Additionally, we give an unprecedented description of
As that, as far as we know, have only been previously mentioned
ut not analysed by I. Mandel & Y. Levin ( 2015 ). 

This paper is organized as follows. In Section 2 , we introduce
he restricted three-body problem, by detailing how to compute the
inary and CM-orbit properties. In Sections 3 and 4 , we present
esults after one and three pericentre passages, respectively. In
ection 5 , we present the distributions of binary and CM-orbit
roperties (for ejected and captured stars and for FA binaries) in
 set of units rescaled with respect to the initial binary semimajor
xis, and normalized with respect to the initial binary energy and
ngular momentum. These choices guarantee that our results hold
or a generic binary. Additionally, using physical units, we provide
n estimate on the predicted ratio of HVSs. Finally, in Section 6 we
iscuss these results and draw our conclusions. 

 RESTRIC TED  THREE-BODY  PROBLEM  

he general three body problem is significantly simplified if we
estrict ourselves to an encounter between a stellar-mass binary (with
otal m ) and a MBH (of mass M). We can assume that the binary
omponents are initially much closer to each other than the massive
bject, and that Q ≡ M/m is Q � 1. For example when we consider
tellar-mass binaries orbiting Sgr A ∗ ( M � 4 × 106 M�) then Q is
f order 106 . This allows for the approximation of a ‘restricted three-
ody problem’ 2 where the MBH is taken to be always stationary.
ollowing R. Sari et al. ( 2010 ) and S. Kobayashi et al. ( 2012 ) we
olve the motion of the binary Centre of Mass (CM) around the MBH
 priori, as a simple keplerian orbit. We then integrate the evolution
f the binary system as its CM follows that fixed trajectory. 
We now generically label the binary members 1 and 2 such that
 = m1 + m2 and define the binary mass ratio q = m2 

m1 
(which we

ake to be ≤1 always). Practically, we set out to calculate, as a
unction of time, the distance of each binary member from the MBH,
 1 = r cm 

− ( m2 /m )r b and r 2 = r cm 

+ ( m1 /m )r b , where r cm 

is the CM
istance, and r b ≡ r 2 − r 1 the binary separation. We define the tidal
adius (i.e. the characteristic distance from the MBH at which a
inary would be expected to separate) as rt = Q

1 
3 ab , where ab is

he initial binary semimajor axis. Now we can make more explicit
he assumption that the binary separation is initially relatively small:
e require ab 
 rt initially. If above conditions are satisfied, the

ormalism we present could apply to any scale, including planetary
ystems and asteroids, and any type of ∼point mass object, including
NRAS 544, 1688–1709 (2025)

 Typically, the restricted three-body formalism is applied to a system where 
nly one of the three bodies can be considered as a test mass, e.g. the Moon 
n the Earth–Sun–Moon case. However, both the typical case and ours are 
articular cases of ‘reductions’ of the three-body problem which assume that 
ome gravitational terms can be ignored, i.e. that some of the smaller masses 
ontribute negligibly to the dynamics of the larger masses. 

H  

t  

p  

f  

f

f

ompact stellar remnants like black holes and neutron stars. However,
iven the case of interest here, we will generally refer to the massive
bject as a MBH and to the binary components as stars. 
Throughout this work, we will refer to the motion of the binary’s

M around the MBH as CM trajectory , denoted with the subscript
m . On the other hand, we call the orbit of the two stars the binary’s
rbit and denote their properties and characteristics with the subscript
 . 

.1 The centre of mass’s trajectory 

n our restricted three-body problem, the MBH is always stationary
t the origin of our coordinate system. During each passage the
M moves along a fixed trajectory. Although we start the first
ncounter on a parabolic orbit, the trajectory changes between
uccessive passages and therefore the CM trajectory is a generic
onic orbit described by closest approach distance (pericentre) rp 

nd eccentricity ecm 

and has position 

 cm 

= rp (1 + ecm 

) 

1 + ecm 

cos f 

⎡ 

⎣ 

cos f 
sin f 

0 

⎤ 

⎦ , (1) 

nd velocity 

 cm 

=
√ 

GM 

rp (1 + ecm 

) 

⎡ 

⎣ 

− sin f 
ecm 

+ cos f 
0 

⎤ 

⎦ . (2) 

ere, we have chosen the orientation of our coordinate system such
hat the CM trajectory is confined to the I–J plane, with the CM
assing through the I -axis at periapse (see Fig. 1 ). The true anomaly,
 , is the phase of the CM trajectory (with f = 0 at periapse) and
ollows 

 ̇=
√ 

GM 

r3 
p 

(1 + ecm 

)−3 / 2 (1 + ecm 

cos f )2 . (3) 
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The eccentricity of the trajectory obeys 

cm 

= 1 + 2 rp Ecm 

GMm 

=
√ 

1 + 2 Ecm 

L2 
cm 

G2 M2 m3 
, (4) 

ith Ecm 

the CM-energy, 

cm 

= m 

2 
| ̇r cm 

| 2 − GMm 

rcm 

, (5) 

cm 

the corresponding semimajor axis 

cm 

= −GmM 

2 Ecm 

, (6) 

nd Lcm 

the angular momentum 

 cm 

= mr cm 

× v cm 

, (7) 

erpendicular to the plane of the CM trajectory (aligned to the 
erpendicular versor ˆ K in the [ˆ I , ˆ J , ˆ K ] centred on the MBH). Note 
hat these expressions (using the appropriate mass) apply equally to 
he individual components of a binary post-disruption. Fig. 1 gives a 
isual representation of our coordinate system. 

.2 The orbit of the binary 

 binary is fully described by its six orbital elements: semimajor 
xis ab , eccentricity eb , binary phase φ, inclination i, argument of
eriapsis ω and longitude of ascending node �. The last three angles
ogether define the orientation of the binary’s orbital plane with 
espect the CM-trajectory plane. It is useful to work in the frame of
he binary orbital plane, defined by unit vectors ˆ x , ˆ y , and ˆ z , where 
ˆ 
 is in the direction of the pericentre, and ˆ z is perpendicular to the 
lane of the orbit and parallel to the binary angular momentum (see
ig. 1 ). In such frame, the binary motion is described by 

 b = r 2 − r 1 = ab (1 − e2 
b ) 

1 + eb cos ( φ) 

(
cos ( φ)ˆ x + sin ( φ)ˆ y 

)
(8) 

nd 

 b = v 2 − v 1 =
√ 

Gm 

ab (1 − e2 
b ) 

(
− sin ( φ)ˆ x + (cos ( φ) + eb )ˆ y 

)
. (9) 

n the CM-trajectory plane, the following relations hold 

ˆ x = 

⎡ 

⎣ 

cos � cos ω − sin � cos i sin ω 

sin � cos ω + cos � cos i sin ω 

sin i sin ω 

⎤ 

⎦ , 

ˆ y = 

⎡ 

⎣ 

− cos � sin ω − sin � cos i cos ω 

− sin � sin ω + cos � cos i cos ω 

sin i cos ω 

⎤ 

⎦ , 

ˆ z = 

⎡ 

⎣ 

sin � sin i 
− cos � sin i 

cos i 

⎤ 

⎦ . 

(10) 

hese can be used to find the initial state of the binary for a given set
f initial conditions. Then, as r b and v b evolve, we can compute the 
ew orbital elements via 

b = μb 
1 
2 v

2 
b − Gm1 m2 

rb 
, (11) 

b = ||L b || = μb ||r b × v b || , (12) 

b = −Gm1 m2 
2 Eb 

, (13) 

b =
√ 

1 + 2 Eb L
2 
b 

G2 m2 μ3 
b 
, (14) 
cos φ = 1 
eb 

(
ab (1 −e2 

b ) 
rb 

− 1
)

, (15) 

sin φ = 1 
eb 

√ 

ab (1 −e2 
b ) 

Gm 

(v b · ˆ r b ) , (16) 

nd unit vectors 

ˆ r b = r b / ||r b || , 
ˆ z = L b / ||L b || , 
ˆ x = ˆ r b cos φ + (ˆ r b ×, ˆ z ) sin φ, 

ˆ y = ˆ z × ˆ x , 

(17) 

hich can be translated into 

i = arctan 
(√ 

(ˆ z [0]2 + ˆ z [1]2 ) , ˆ z [2]
)

ω = arctan ( ̂ x [2] , ˆ y [2]) 

� = arctan ( ̂ z [0] , −ˆ z [1]) . 

(18) 

The inclination is of particular importance as it encodes the 
irection of the angular momentum of the binary relative to that
f the CM trajectory, via cos ( i) = ˆ L b · ˆ L cm 

and thus, if the system
s prograde (cos ( i) → 1), retrograde (cos ( i) → −1) or intermediate
cos ( i) ∼ 0). 

.2.1 EOM in the large mass ratio regime 

he large mass ratio ( M/m � 1) ensures the validity of our ap-
roximation of a fixed CM trajectory and stationary MBH. We can
lso simplify the Equation of Motion (EOM) governing the relative 
otion of the two binary members, r b . Following S. Kobayashi et al.

 2012 ), we start by considering the EOM of each binary member
eparately, 

r̈ 1 = −GM 

r3 
1 

r 1 + Gm2 

| r 1 − r 2 | 3 
( r 2 − r 1 ) , 

r̈ 2 = −GM 

r3 
2 

r 2 − Gm1 

| r 1 − r 2 | 3 
( r 2 − r 1 ) . 

(19) 

hen, the equation for the distance between the two stars is 

 b = −GM 

r3 
2 

r 2 + GM 

r3 
1 

r 1 − Gm 

r3 
b 

r b . (20) 

e now assume that the distance between the two stars is much
maller than that to the MBH and thus linearise the first two terms
f equation ( 20 ) around the position of the binary CM ( rcm 

), 

 b = −GM 

r3 
cm 

r b + 3
GM 

r5 
cm 

( r b · r cm 

) r cm 

− Gm 

r3 
b 

r b + O
( (

rb 

rcm 

)2 
) 

. 

(21) 

e can rescale this equation in terms of a characteristic length-scale

= ( m/M)1 / 3 rp and time-scale τ =
√ 

r3 
p /GM . The linearized EOM 

an be rewritten in terms of the dimensionless variable η ≡ 1 
λ

r b and 
he shorthand for the derivative g′ = τ ġ giving 

′′ =
(

rp 

rcm 

)3 

[ −η + 3 ( η · ˆ r cm 

) ̂  r cm 

] − η

|η|3 + O
( (

η

rcm 

)2 
) 

. (22) 
MNRAS 544, 1688–1709 (2025)
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etting η = ( ηx , ηy , ηz ), we explicitly rewrite equation ( 22 ) at first
rder in dimensionless Cartesian coordinates, 

ηx 
′′ ≈ (1 + ecm 

cos f )3 

(1 + ecm 

)3 
[ −ηx + 3( ηx cos f + ηy sin f ) cos f ] 

− ηx (
η2 

x + η2 
y + η2 

z 

)3 / 2 , 

ηy 
′′ ≈ (1 + ecm 

cos f )3 

(1 + ecm 

)3 
[ −ηy + 3( ηx cos f + ηy sin f ) sin f ] 

− ηy (
η2 

x + η2 
y + η2 

z 

)3 / 2 , 

ηz 
′′ ≈ − (1 + ecm 

cos f )3 

(1 + ecm 

)3 
ηz − ηz (

η2 
x + η2 

y + η2 
z 

)3 / 2 . 

(23) 

umerical integrations can be performed in these general coordi-
ates, and the physical variables can be recovered by reintroducing
he dimensionally consistent combination of characteristics scales
e.g. v b = λ

τ
η′ ). 

The relationship between time, t , and the CM phase, f , depends on
he trajectory under consideration; the results for a bound, parabolic
nd hyperbolic trajectory are, respectively, 

/τ =
⎧ ⎨ 

⎩ 

(1 − ecm 

)−3 / 2 ( ξ − ecm 

sin ξ ) for Ecm 

< 0 √ 

2 
(
ξ + ξ 3 / 3

)
for Ecm 

= 0 
( ecm 

− 1)−3 / 2 ( ecm 

sinh ξ − ξ ) for Ecm 

> 0 , 
(24) 

here the eccentric anomaly ξ is related to the true anomaly
ccording to 

=

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

arctan 

(√ 

1 −e2 
cm sin f 

ecm +cos f 

)
for Ecm 

< 0 

tan ( f / 2) for Ecm 

= 0 

ln 
(√ 

ecm + 1 +√ 

ecm −1 tan ( f / 2) √ 

ecm + 1 −√ 

ecm −1 tan ( f / 2) 

)
for Ecm 

> 0 . 

(25) 

see e.g. L. Landau & E. Lifshitz 1976 ; C. D. Murray & S. F. Dermott
999 ) where t = 0 at periapse. 

.2.2 Diving factor 

ne of the main parameter of our analysis is the dimensionless diving
actor, defined as 

= rt 

rp 
, (26) 

hich quantifies how deeply into the tidal sphere the binary can dive:
.e. β < 1 corresponds to shallow encounters outside the tidal sphere
f influence, while β > 1 corresponds to deeper encounters within
t. The tidal radius, rt , depends on ab , which varies throughout the
nteraction, thus we will use the initial value β0 to parametrize an
nteraction, defined it in terms of the initial value of ab , 0 . Specifying
he diving factor allows us to remove the degenerate term rp 

ab , 0 
from

he initial conditions. 
As we saw earlier in this section, it is convenient to rescale lengths

nd times in terms of λ and τ , which can be re-expressed in terms of
he properties of the binary and the diving factor as 

= Q−1 / 3 rp = β−1 
0 ab , 0 , (27) 

nd 

=
√ 

r3 
p 

GM 

=
√ 

λ3 

Gm 

= β
− 3 

2 
0 

Pb , 0 

2 π
, (28) 
NRAS 544, 1688–1709 (2025)
here Pb = 2 π
√ 

a3 
b 

Gm 

is the period of the binary. Hence for β ∼ 1
he characteristic scales of the problem are approximately the
haracteristic length, time and mass scales of the binary. 

In summary, the full behaviour of the system can be captured by
he initial parameters Q, q, β0 , ecm 

, eb , 0 , φ0 , i0 , ω0 , �0 , and t0 (and
hen scaled to physical units by specifying, for example, m and ab , 0 ).

 T H E  FIRST  PERI CENTRE  PA SSAGE  

n this section, we illustrate the numerical integration procedure
ollowed to analyse a single encounter between a binary and the

BH. 

.1 Initial conditions and orbit integration 

e need to choose an initial time early enough that the tidal influence
f the MBH is initially minor, but late enough that the simulation
nly has to run for a few binary periods until the tidal influence starts
o become significant. Hence we choose t0 ( < 0 as periapse occurs
t t = 0) such that 

0 =
{−( trt + NPb ) if β0 ≥ 1 and trt > t π

2 
, 

−( t π
2 

+ NPb ) else 
(29) 

here trt is the (positive) time at which the CM trajectory passes
hrough the tidal radius, t π

2 
is the time at which f = π

2 , and N 

s approximately the number of binary periods before each of
hese times occur. For systems which do not pass through the tidal
adius ( β0 ≤ 1) or do so just before periapse ( trt < t π

2 
) starting the

imulation slightly before f = − π
2 captures much of the curvature of

he CM trajectory without overly-long integration times. Generally
e have found N = 3 to be sufficient to capture the full interaction.
his recipe for choosing a suitable t0 (as a function of β0 and ecm 

)
ssentially removes another initial parameter for our integration. 

The initial position and velocity in our rescaled coordinates, η0 

nd η′ 
0 can be found from the initial orbital elements using the

elationships defined in Section 2.2 , converting using ab , 0 = β0 λ

nd
√ 

Gm 

ab , 0 
= β−1 

0 
λ
τ

. 

We integrate the system of equations ( 23 ) using the SCIPY function
deint . Due to the presence of typically very different character-

stic time-scales we choose time-steps d t = ε min ( Pb , 0 , tdyn ) where 

dyn ( f ) = 2 π
√ 

r3 
cm 

GM 

= 2 π
(

1 + ecm 
1 + ecm cos ( f ) 

)3 / 2 
τ (30) 

s the dynamical time for a given f . ε is a small factor chosen to
alance sufficient accuracy and low computational cost, for which
e find ε = 0 . 01 to be a generally suitable choice. In general the
inary period is small far from periapse (and thus sets the time-step
here) but the dynamical time defines the behaviour near periapse. 

Comparison simulations performed with a full adaptive n -body
ntegrator, REBOUND (H. Rein & S. F. Liu 2012 ; H. Rein & D. S.
piegel 2015 ), shows in general excellent agreement, validating both

he numerical method and our analytically simplified EOM. 

.2 Outcomes of the interaction 

s the CM trajectory is taken to be fixed, the associated energy, Ecm 

,
s constant. Over the integration the internal energy of the binary
hanges by 

Eb = Eb ,f − Eb ,i . (31) 
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Figure 2. Examples of orbits for a CB (orange), a FA (blue), and a 
disrupted binary (green) obtained from initially-circular binaries on parabolic 
trajectories for a set of phases and angular parameters sampled as described 
in the text. In all panels coordinates are expressed in code units (see 2.2.2 ) 
Upper panel : secondaries’ orbits in the comoving frame of their respective 
primaries (colours change from lighter to darker as the system evolves). For 
clarity, the initial trajectories are marked in black (dashed line for CBs, dotted 
line for FAs and solid line for Ds). Centre panel : trajectories of the CMs after 
tidally interacting with the MBH. In black the initial parabolic CM-trajectory 
common to all the binaries. Lower panel : Zoom in on the captured and ejected 
stars’ trajectories. 
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rom this we can approximate the transfer of tidal energy between 
he CM trajectory and the binary orbit by conservation of energy, 
nd thus 

cm ,f = Ecm 

− �Eb , (32) 

ith Eb ,i < 0 (and Ecm 

taken to be 0 in the case of a parabolic
rajectory). If the binary final energy is positive (that is Eb ,f > 0),
hen the binary will be unbound; we call these systems disruptions
Ds). If instead the binary final energy is still negative, then the binary
ill remain bound. Now there can be two outcomes: if Ecm ,f > 0

he the CM is on an unbound trajectory, and these we call fly-away
inaries (FAs); if Ecm ,f < 0, the CM is bound to the MBH and the
ystem will return for a subsequent passage. We call these come-back 
inaries (CBs). 
In Fig. 2 , we provide some examples of interactions representing 

he three possible fates for a binary: a dirsupted system with 
0 = 1 . 17, a fly-away binary with β0 = 0 . 46, and a come-back
inary with β0 = 0 . 61. Otherwise the initial conditions are all the
ame with initially circular binaries ( eb , 0 = 0) on parabolic CM-
rajectories ( ecm 

= 1), initial orientation i0 = ω0 = �0 = π/ 2, and
inary phase φ0 = π . 
For parabolic CM trajectories ( Ecm 

= 0) the eventual fate depends 
ntirely on whether the binary gains or loses energy: Ecm ,f = −�Eb . 
hus, surviving binaries that shrink ( ab ,f < ab ,i ) will be FAs while

f they become larger ( ab ,f > ab ,i ) they will be CBs. 
Fig. 3 shows the likelihood of a given outcome as a function of β0 

nd i0 for initially circular binaries on parabolic orbits (marginalized 
ver φ0 , �0 and ω0 chosen uniformly and randomly between 0 and 
 π ). From here on, β0 is logarithmically sampled within the range 
0.33,3.00). This range is smaller than that considered in R. Sari et al.
 2010 ), S. Kobayashi et al. ( 2012 ), and H. Brown et al. ( 2018 ), as
t excludes very deep encounters. This choice allows us to focus on
he range of β preferred by dynamical scattering (see N. Stone & 

. D. Metzger 2015 ) and diving orbits in an axisymmetric potential
Z. Penoyre, E. M. Rossi & N. C. Stone 2025 ). Finally, and most
mportantly, these relatively shallower values of β yield the richer 
ange of outcomes, which is the topic of this paper. 3 

According to previous literature (see again R. Sari et al. 2010 ; S.
obayashi et al. 2012 ; H. Brown et al. 2018 ), the highest (lowest)

raction of ejected stars is produced by initially prograde (retrograde) 
inaries with at least βlim 

≡ 0 . 4779703, while for smaller β0 there 
re no disruptions of initially circular binaries. 

Now with a full range of inclinations we can further analyse 
he possible outcomes. We can generally divide the behaviour be- 
ween a strongly prograde regime (1 ≤ cos ( i0 ) � 1 

3 ), an intermediate 
egime ( 1 

3 � cos ( i0 ) � − 1 
3 ) and a strongly retrograde regime ( − 1 

3 �
os ( i0 ) ≤ −1). We can see that Ds are prevalent in the prograde
egime for β0 > βlim 

but that this behaviour extends to intermediate 
nclinations at slightly higher β0 , including frequent disruptions for 
eakly prograde systems (0 < cos ( i0 ) � − 1 

3 ) for β0 � 1. Strongly
etrograde systems are much more resistant to disruption, with the 
raction never reaching 50 per cent. 
 We do not account for the possibility of a star to be tidally disrupted. Indeed, 
o determine if a given encounter can result in a TDE, we can find the value of 
he diving factor that corresponds to rp ∼ rTDE , where rTDE is the tidal disrup- 

ion radius of the star. As rTDE ≈ 0 . 74 au 
(

R∗
R�

) (
M 

4 ×106 M�

)1 / 3 (
m∗

1M�

)−1 / 3 
, 

his corresponds to β ≈ 10
(

a 
0 . 1 au 

)
0 . 74 ≈ 13 . 5 which is beyond the range analysed 

n this work. 

c  

t  

s  

o  

(
a
a  

2

F

One way to understand the dependence on inclination is to think
bout the timespan over which one member of the binary is the
losest to the MBH. Prograde binaries rotate with the trajectory, and
hus this timespan is longer, and the inverse is true for retrograde
ystems. Thus, for more prograde binaries, the tidal force is acting
n the binary in a consistent sense for longer. A larger tidal force
deeper encounter) is needed to have the same time-integrated effect 
nd disrupt more retrograde systems (on the stability of retrograde 
nd prograde systems see e.g. K. A. Innanen 1980 ; J. I. Read et al.
006 ). 
Below βlim 

almost all prograde and intermediate systems are 
As; these also occur occasionally for retrograde orbits and in- 
MNRAS 544, 1688–1709 (2025)
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M

Figure 3. Fractions of disruptions (D), fly-aways (F) and coming-backs (C) as a function of the diving factor β0 and the initial inclination i0 . The green, blue, 
and orange contour lines highlight the regions of parameter space where D,F and C, are, respectively, at least 0.5. Lines are thicker when the contour is in the 
corresponding panel. This figure is generated for 100 000 interactions with random initial conditions, except for eb , 0 = 0 (initially circular binary) and ecm 

= 1 
(on a parabolic orbit). The vertical dashed line corresponds to an inclination of π

2 . The dotted horizontal line is at βlim 

= 0 . 4779703, the smallest value at 
which an initially circular binary can disrupt. Top row : Fractions after a single passage. The equivalent behaviour for non-circular initial binaries can be seen in 
Fig. A1 . Bottom row : Overall fractions after three passages (as detailed in Section 4 ). The remnant fraction of comebacks ( ˜ C3 ) will eventually add to either Ds 
or FAs. 
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requently across the remaining part of the parameter space. Ini-
ially retrograde systems are most likely to end up as CAs, even
t large β0 s. Our simulations only cover β0 > 0 . 25 but there
s putative evidence that F and C tend to 0.5 (i.e. both out-
omes equally likely) for shallower interactions, independent of the
nclination. 

In summary, the three outcomes broadly occupy different parts of
he parameter space: 

(i) Ds tend to occupy the area where cos ( i0 ) � −1 / 3 and β0 >

lim 

, 
(ii) FAs the area where cos ( i0 ) � −1 / 3 and β0 � 0 . 6, 
(iii) CBs spans the entire β0 range preferentially for cos ( i0 ) �
1 / 3. 4 
NRAS 544, 1688–1709 (2025)

 We note that the values cos ( i0 ) ± 1 / 3 have been chosen pragmatically, with 
he purpose of dividing the parameter space under consideration more clearly 
nd referring to the corresponding three channels of interest more easily. 

 

a  

r  

w  

r  
We also perform the same analysis on non-circular initial binaries
n Appendix A , with broadly the same conclusions – excepting that
ccentric binaries can disrupt with β0 < βlim 

and that the overall
raction of FAs is reduced. 

In Fig. 4 (upper panel), we show the fraction of each outcome as a
unction of β0 , marginalized over cos ( i), i.e. the average for random
inary orientations. As expected, Ds dominate at high β0 s (and are
till rising for our maximum value of 3.3), though, as shown in R.
ari et al. ( 2010 ), even at very high β some small fraction of binaries
an survive. FAs are most common for β � 0 . 6 (∼80 per cent of
utcomes) and drop off steeply for deeper encounters. CBs are almost
lways sub-dominant but consistently account for � 20 per cent of
he outcomes. 

For a more complete characterization of the properties of FAs
nd CBs after the encounter, we now refer to Figs ( 5 ) and ( 6 ),
espectively. Many surviving binaries have significant eccentricity,
ith only strongly retrograde and low β0 systems with eb ,f < 0 . 2. As

egards the change in inclination, we see a clear difference between
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Figure 4. Upper panel : Fractions of Ds, FAs, and CBs (green, blue, and 
orange, respectively), after one pericentre passage. Central panel : Compari- 
son between the fractions of Ds, FAs, and CBs before (thin lines, same as in 
the upper panel) and after period cut (dotted lines, same colours) as detailed 
in Section 3.3.1 assuming an example binary with ab , 0 = 0 . 1 au, m = 4M�, 
and q = 1 

3 . Lower panel : Comparison between the fractions of Ds, FAs, and 
CBs before and after accounting for mergers (dotted lines, same colours) as 
detailed in Section 3.3.2 assuming the same example binary. The gold dotted 
lines marks the fraction of Ms after one passage. 
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Figure 5. Set of FAs resulting from one interaction between an initial 
population of 100 000 circular binaries on a parabolic orbit and the MBH 

in the β0 –cos ( i0 ) plane (marginalized over ω, � and the binary phase), 
coloured by the final FA binary eccentricity (top panel) and by the differ- 
ence between their final (if, F ) and initial (i0 , F ) binary inclinations (bottom 

panel). 
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As, which tend to become more retrograde, and CBs, which mostly
ecome more prograde. Finally for CBs we can ask what the initial
of their next interaction will be. In general, the CM trajectory is

nly marginally altered (e.g. the CM eccentricity changes by less 
han 1 per cent), and thus the dominant change is the enlarged ab ,
ausing essentially all CBs to come back with larger β (though only 
arginally so in many cases). Combining these observations we can 

ee that CBs tend to come back with higher βs, more prograde and
ore eccentric. Thus, they generally move up and right in β, cos ( i)
pace towards the region where Ds are more likely. Even where the
hange is marginal, they are moving towards the region where the
ext encounter will cause greater changes in their properties and 
hus, uninterrupted, may be expected to evolve eventually towards 
isruption. 

.3 Physical constraints 

he results presented so far are general and, therefore, applicable 
o any kind of binary, independent of any physical properties of
he system, encoded in the underlying rescalings and characteristic 
nits. However, the channels presented so far can be influenced by
he star properties; in particular, we consider their finite lifetime 
nd size. The former can lead to CBs with a long CM trajectory
eriod to not survive until the next encounter. The latter can
ead to mergers. Smaller separation systems will have a smaller 
haracteristic dynamical time-scales compared to their lifetime, and 
maller radii objects will be less likely to interact tidally – thus
ur previous conclusions can be expected to hold for tight compact
bject binaries but may be increasingly affected for longer period 
tellar objects. 

In the next two sub-sections, we analyse these alternative 
ates, by choosing an example binary (thus setting the physi- 
al time and length-scales) with ab , 0 = 0 . 1 au, m = 4 M� (and
MNRAS 544, 1688–1709 (2025)



1696 B. Sersante, Z. Penoyre and E. M. Rossi

M

Figure 6. Similar to Fig. 5 , we show the properties of CBs coloured by the 
final binary eccentricity (top panel), the difference between their final (if, C ), 
and initial binary inclinations (i0 , C ) (centre panel), and the ratio between their 
final ( βf, C ) and initial ( β0 , C ) diving factors (bottom panel). 
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Figure 7. Distributions of the periods of the CM-trajectory of CBs as a 
function of β0 , coloured by the cosine of the initial binary inclination ( i0 ). 
The vertical dashed line corresponds to βlim 

. The horizontal dotted black line 
marks periods of the order 108 yr (approximate life-time of MS stars). 
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Kepler potential. However, if the binary travels outside the MBH sphere of 
influence, our description is no longer completely valid. Including the excess 
mass enclosed at larger distances would reduce Pcm 

. Thus, in this respect our 
cut is conservative, in that we use the maximum possible period. 
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hus for Sgr A ∗ Q = 106 ), q = 1 
3 and stellar radii which obey

/R� ∼ M/ M�. 

.3.1 Impact of stellar lifetime on coming-back binaries 

f the lifetime of either star is shorter than the CM trajectory period,
hese binaries can be considered to be FAs (in that they will not
xperience a subsequent passage). In most cases we can expect that
he more massive primary has the shorter lifetime. 

The MS lifetime of the primary in our example system ( m1 =
 M�) is of order 100 Myr. In theory a system may not undergo a
ills mechanism encounter until part way through their life, giving
 more stringent constraint, but we will ignore this for our simple
rder of magnitude analysis. 
NRAS 544, 1688–1709 (2025)
We will compare the stellar lifetime with the period of the CM
rajectory of CBs around the MBH, which is 5 

cm 

= 2 π

√ 

a3 
cm 

GM 

. (33) 

The smallest possible Pcm 

corresponds to a CM trajectory with
he largest possible (negative) Ecm 

. Assuming an initially parabolic
M trajectory Ecm 

= −�Eb and the largest possible �Eb is just less
han Eb , 0 (the binary is almost but not quite unbound). In this case 

cm , min = −GMm 

2 Eb , 0 
= Mm 

m1 m2 
ab , 0 = Q

(1 + q)2 

q 
ab , 0 (34) 

nd thus 

cm , min = Q
(1 + q)3 

q
3 
2 

Pb , 0 . (35) 

here is no maximum period as �Eb can be vanishingly small, but
e can reasonably expect a characteristic period of CBs to be within
 few orders of magnitude of Pcm , min . 

In Fig. 7 , we show the periods of CBs from an initial population of
00 000 randomly oriented circular binaries. Below βlim 

the energy
xchange is minimal (
Eb , 0 ) and the periods are generally very long.
bove βlim 

the change in energy is much more significant, especially
or more prograde systems, and we see periods approaching Pcm , min .
he median Pcm 

drops below 108 yrs for β0 ≈ 0 . 75. 
We can see the total effect in the middle panel of Fig. 4 . As we

ould expect the fraction of CBs is significantly reduced, with almost
one below βlim 

, with the effect reducing at higher β. The fraction
f FAs is raised by the same amount (and Ds are unaffected). 

.3.2 Impact of mergers 

aking into account the finite size of the binary components allows us
o account for the possibility that components of a binary merge. We
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Figure 8. Set of 100 000 initially-circular binaries on a parabolic orbit in the 
β0 –cos ( i0 ) plane, coloured by the ratio between the minimum dimensionless 
distance rmin and the initial binary semimajor axis ab0 , after one pericentre 
passage (marginalized over ω, � and the binary phase) and divided into FAs 
(top panel), CBs (central panel) and Ds (bottom panel). For our choice of the 
binary and our definition of the merger condition (see Section 3.3.2 ), mergers 
happen for rmin /ab , 0 ≤ 0 . 48, marked on the colourbar. 
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se merger to refer to any time the two binary members come close
nough to lose significant energy to tidal deformation. These systems 
ould evolve internally in a way not captured by our integration. In

ome cases this may result in true collisions, in others possible mass
ransfer and tight tidally circularized binaries. 

Including mergers means introducing a new channel, which will be 
eferred to as Ms . In this section, we quantify the fraction of mergers
fter one pericentre passage and assess the consequent impact on the 
ractions of Ds, CBs, and FAs. 

Practically, we consider a binary star as ‘merged’ when the primary 
lls its Roche lobe (see P. P. Eggleton 1983 ), 

L , 1 = 0 . 49 q2 / 3 

0 . 6 q2 / 3 + ln (1 + q1 / 3 ) 
r, (36) 

nd become tidally deformed, i.e. when RL , 1 ≤ R1 . We note that RL , 1 

mounts to ≈0 . 289 r for q = 1 / 3 . 
Thus a system is considered to merge if at any point the binary

eparation r � rmerge where RL, 1 ( rmerge ) = R1 . Using a simple proxy
or the radius of a ∼stellar mass star of R/R� = M/ M� this means
ur example system has rmerge ≈ 0 . 048 au ≈ 1 

2 ab , 0 . Although in our
odel we do not explicitly follow the internal evolutionary processes 

such as tides) that can lead to a merger, our definition of ‘mergers’
mplicitly encompasses all the possible pathways through which 
 binary can internally evolve to eventually satisfy our merging 
ondition. Possible pathways would be, for instance, the effect 
f tides resulting in an enhancement of the Roche lobe overflow 

causing it even before it naturally would via stellar evolution); other 
ossibilities would be a direct collision or the decay of the orbit into
 tight circular one. As we do not specify the mechanism leading to
he Roche lobe filling, what we call ‘mergers’ includes actually also 
he case of tidally-interacting binaries. 

Nevertheless, our treatment of tides is simplified and does not 
apture potentially interesting regimes such as the weak tidal limit 
r brief episodes of strong interaction (e.g. transient mass transfer 
uring periapse), as these cases lie beyond the scope of this work. 
The minimum radii that our simulated systems reach are shown 

n Fig. 8 . Binaries that contribute to different channels (FAs, CBs,
s) reach the smallest rmin / ab , 0 in the same part of the cos ( i0 ) , β0 

arameter space: the blue stripe which is most evident in the second
anel. The exception for this is that for FAs there is no upper limit
here rmin / ab , 0 returns to ∼1. The behaviour is relatively uniform 

p to this stripe, and then much more varied above it – which as
reviously suggested may be due to encounters where the binary 
ndergoes multiple periods of deformation. 
Returning now to the last panel of Fig. 4 we see that a significant

raction of systems above βlim 

merge, 20 per cent or more. At β �
lim 

the fraction peaks at 40 per cent, with most mergers coming from
ystems that would otherwise be FAs. For β � 1 some of all three
utcomes contribute to the merger fraction, though the proportion of 
As that become Ms remains the highest, and about 10 per cent of
ystems that would disrupt on the first passage instead merge. 

The stripe of low rmin can have potentially large effects on CBs
t later passages (as we will detail in the next Section) since these
ystems evolve towards becoming Ds by subsequent passages being 
eeper and more prograde (up- and right-wards in these plots). 
owever, now they must pass through this merger valley to get there,
ith many likely being forced to merge before they can become 
s. The major exception to this will be systems that make large

nough jumps in β and cos ( i) such that they pass right over it in one
ump. 
 MULTI PLE  PERI CENTRE  PA SSAGES  

otivated by the presence of a significant fraction of CBs, we
roceed in this section with the analysis of multiple pericentre 
assages. We start by defining the initial conditions that allow us
o follow the evolution of CB binaries from one passage to the next.

e then compare the fractions of binaries in the three channels after
hree subsequent passages. 

We start from our first set of simulations considering circular 
inaries injected with different initial phases, inclinations, and 
rientations on a parabolic orbit with a diving factor β0 . We record
heir final state, separating them into Ds, FAs, and CBs. The fates of
MNRAS 544, 1688–1709 (2025)
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ny binaries that are disrupted or flyaway are resolved, but the CBs
ill undergo subsequent encounters and should (after sufficiently
any passages) end up as either Ds or FAs. 
Generally we assume that the final parameters of the binary after

ne passage tell us the initial parameters for the next passage, i.e.
hat any subsequent evolution away from pericentre or diffusion of
he parameters is small. The one parameter we cannot safely do
his with is the binary phase, φ. It would be possible to calculate
his (via the final binary phase and the binary and CM period) but
s there will be many binary periods for a single CM period any
mall dispersion in the total change in phase will, when mapped
o the interval 0 < φ < 2 π , lead to almost complete uncertainty on
he actual phase. Thus for each comeback binary we simulate the
ext passage with Nn + 1 = int (1 /Cn ) random phases (which means
hat for each encounter we simulate roughly the same number of
ystems). 

This procedure can be iterated for many passages, considering
nly the CBs from the previous passage as initial conditions for
he next. Thus, each subsequent passage only explores the subspace
f parameters where CBs occurred previously, and, unlike the first
assage, all binaries will have Ecm 

< 0 and eb > 0. 

.1 Binary initial conditions for subsequent passages 

e can denote the properties at the final properties at the end of
he nth passage as, for example en 

b ,f . Similarly we can denote initial
roperties at the beginning of the next passage, for example en + 1 

b ,i . We
eserve the subscript 0, for example eb , 0 , for the initial conditions at
he beginning of the first passage. 

Many parameters are assumed to be unchanged from the end of
ne passage to the beginning of the next (i.e. en + 1 

b ,i = en 
b ,f ) but others

eed to be more carefully updated. 
During an encounter, the binary changes its internal energy �Eb 

nd angular momentum � Lb . We assume that total energy and
ngular momentum are conserved and thus these changes come at
he expense of those of its CM orbit: 

n + 1 
cm 

= En 
cm 

− �Eb ,f , (37) 

n + 1 
cm 

= Ln 
cm 

− � Lb ,f . (38) 

From these we can derive the orbital parameters of the new orbit
ccording to equations ( 4 ) and ( 6 ) respectively as 

n + 1 
cm 

=
√ 

1 + 2 En + 1 
cm 

(
Ln + 1 

cm 

)2 

G2 M2 m3 
, (39) 

n + 1 
cm 

= −GmM 

2 En + 1 
cm 

. (40) 

part from the phase, all binary orbital elements are unchanged from
he end of the previous passage to the start of the next. 6 

We have been working with lengths and times rescaled in terms of λ
nd τ (see Section 2.2.2 ). When analysing subsequent passages, these
equire adjustment. Some of the binaries that survive disruptions
CBs) will come back on elliptical CM-orbits, each with a different
NRAS 544, 1688–1709 (2025)

 In theory, we should track also the orbital elements of the CM-trajectory 
 icm 

, ωcm 

, and �cm 

) and reorient our inertial frame for the next passage. 
owever, our assumption of a fixed CM trajectory means that our calculated 
 cm 

is inconsistent with our simulated r cm 

and v cm 

and thus ωcm 

and �cm 

re undefined. icm 

can be found (and is always small, as the CM trajectory 
hanges only marginally between orbits) but given the lack of the other two 
ngles we do not consistently adjust the frame of reference. 

t

4

A  

r  

c  

a  
ericentre distance rn + 1 
p = an + 1 

cm 

(1 − en + 1 
cm 

). The masses and mass
atios are unchanged, and thus the total change to the characteristic
nits are captured by 

n + 1 = rn + 1 
p 

rn 
p 

λn = rn + 1 
p 

rp 
λ (41) 

nd thus 

n + 1 =
( 

rn + 1 
p 

rn 
p 

) 

3 
2 

τn =
( 

rn + 1 
p 

rp 

) 

3 
2 

τ (42) 

where rp , λ, and τ are the values for the first passage). 
The new diving factor is 

n + 1 = rn + 1 
t 

rn + 1 
p 

= an + 1 
b ,i 

an 
b ,i 

rn 
p 

rn + 1 
p 

βn = an + 1 
b ,i 

ab , 0 

rp 

rn + 1 
p 

β0 . (43) 

Each subsequent passage effectively samples a subspace of the
, cos ( i) , eb space (as shown in Appendix A ) set by the CBs of

he previous passage cluster. The CM-trajectory is only marginally
erturbed ( rp , n ∼ rp and ecm , n ∼ 1) by the encounter and thus
ur previous analysis of the parabolic case is still representative
f the behaviour. The slight negative offset from Ecm 

= 0 bi-
ses the outcomes marginally towards CBs, and allows for rare
ases where the binary disrupts and both single stars remain
ound to the MBH (see S. Kobayashi et al. 2012 for further
iscussion). 
We can denote the overall fraction of CBs at the end of the n th

assage as 

˜ 
n =

n ∏ 

i= 1 

Ci , (44) 

ith Ci the fraction of CBs for just the ith passage (it will also
e useful to define ˜ C0 ≡ 1). We can then calculate D̄n , the overall
raction of Ds at the end of the n th passages, by weighting the
ontributions at each passages based on the corresponding fraction
f CBs giving 

¯
n =

n ∑ 

i= 1 

˜ Ci−1 Di . (45) 

imilarly for FAs, the overall fraction of binaries that fly away to
opulate the GC is 

¯
n =

n ∑ 

i= 1 

˜ Ci−1 Fi . (46) 

We choose to characterize the eventual fate based on the initial
onditions at the first passage (especially β0 and i0 ), even when
here may be multiple subsequent passages with varying initial
arameters before the system resolves. This is equivalent to asking
hat the end state of a given sample of initial close encounters

s, rather than focusing on the internal evolution between passages.
n other words, if we start with a given binary we describe the
tate it ends in, agnostic to how many encounters it took to get
here. 

.2 Results for three passages 

t each passage the remnant fraction of CBs decreases, eventually
esolving into either FAs or Ds. The process could be considered
omplete when ˜ Cn → 0. As we will show, most systems resolve
fter a few passages but there are regions of parameter space that
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roduce persistent CBs and would require a large number of passages
o asymptotically deplete. Thus we choose to show results after 
hree passages, by which point the remnant fraction is small and the
esults likely capture all of the large scale behaviours of the high n
imit. 

Returning to Fig. 3 , we can now examine and compare the
umulative fractions after three passages (bottow row). The most 
triking feature is that there is now almost no dependence on 
nclination for the prograde and intermediate regime (cos ( i) � − 1 

3 ).
he population of CBs with intermediate inclination has almost 
ompletely resolved, splitting relatively cleanly into Ds for β � 0 . 6
nd FAs below that. There is a non-vanishing number of FAs even
t high β, especially for retrograde binaries. Interestingly there are 
lso some Ds with β0 < βlim 

and the fraction of disruptions close to
hat limit is markedly increased. Essentially all of the remnant CBs
fter three passages are retrograde, and the fraction is significantly 
educed everywhere except for a cluster of strongly retrograde 
inaries. 
We break this behaviour down in Fig. 9 where we show the

ractions of the binary population that go into different channels at 
ach passage. As CBs are more frequent in some regions of parameter
pace, and as the returning binaries are now commonly eccentric, 
e see different fractions from each passage. Most prominently 

he fraction of FAs decreases markedly, and the fraction of CBs
ncreases – leading to diminishing returns on resolving the fate of 
Bs with each subsequent passage. The total remnant fraction after 

hree passages, ˜ C3 is generally small, at most 20 per cent for low β0 

nd declining for deeper encounters. 
We also show the weighted sum of individual passages, D̄3 and F̄3 , 

nd can examine in particular how they are augmented from D1 and 
1 . Particularly we note that there are now many more disruptions at,
nd a small fraction slightly below βlim 

. It is generally expected that
hallower encounters are more frequent (see for example N. Stone & 

. D. Metzger 2015 ; Z. Penoyre et al. 2025 ) and thus even a small
oost to D at low β may give a sizable increase to the actual number
f disrupted systems. 
We examine these boosts more directly in the upper panel of

ig. 10 , showing the percentage increase in the fraction of Ds and
As after accounting for three passages. We see that FAs are boosted
y around 10 per cent for all β, and that the effect for disruptions is
igher still. For β � 1 there is a consistent boost of around 20 per cent
o the number of disrupted systems, and this grows significantly 
arger as we go to shallower encounters approaching βlim 

(where 
ery few systems disrupt on the first passage). Extending beyond 
hree passages would (marginally) increase these boosts further, and 
hus we can conclude that accounting for CBs significantly increases 
he inferred number of FAs and, even more strongly, the number of
s. 
We note that CBs could undergo secular KL oscillations (for their 

haracteristic period see Fig. 7 ). Including secular KL in between 
assages (which is beyond the scope of this work) could affect the
nal fate of the CB-binary, possibly enhancing mergers. Although our 
alculations do not include scattering relaxation interactions with the 
urrounding stellar cusp, B. Bradnick et al. ( 2017 ) show that these
an suppress KL resonance for binaries on highly eccentric orbits 
round the MBH (which is the case for the CM-trajectories of CBs)
ince they change Lcm 

on a time-scale that is shorter than the KL
ime-scale. While our comparison is therefore only qualitative, we 
xpect that a full treatment including these effects would likely lead 
o similar suppression of KL oscillations for the CM-trajectories of 
Bs. 
c

.2.1 Physical constraints for multiple passages 

s we did for a single passage in Section 3.3 we can consider
imitations to which systems can comeback based on the physical 
ime and length-scales of the binary. Using again our example system, 
ith ab , 0 = 0 . 1 au and m = 4 M�, we can discard the effects of CBs
hose CM trajectory is longer than their expected stellar lifetime 

 period cut ) or where the binary members come close enough to
idally interact ( merger cut ). CBs which fail the period cut will be
reated as FAs, whilst those which fail the merger cut are classified
y a separate category of merged systems, Ms Including multiple 
assages means that now both cuts can effect the total number of Ds
whearas for a single passage the period cut only shifts the balance
etween CBs and FAs) as some systems previously analysed will 
ow ‘fail’ to comeback. 
Fig. 11 shows effects of these physical constraints on the fractions

f Ds, FAs, CBs, and Ms after three passages. As we saw for the
rst passage all low β systems are FAs, as the CM period of CBs is
o large here and the stars expire before they can return. Above βlim 

s are common (> 20 per cent of outcomes), and the net effect of 
hese is to primarily suppress CBs and Ds. In particular CBs that,
fter the first passage, would likely have evolved towards disruption, 
re now pushed towards merging. It is still the case that Ds are
biquitous, if reduced in number by around 20 per cent for β � 1,
hough almost no systems close to βlim 

disrupt. The number of FAs
bove βlim 

is decreases with increasing β, and may become negligible 
or slightly higher β than simulated here. These results would suggest 
if our example system is representative of the broader population) 
 significant number of merged binaries in the GC, which are an
nteresting object of study in their own right as they could possibly
xplain G-type objects (see A. P. Stephan et al. 2019 ; A. Ciurlo et al.
020 ). 
The bottom panel of Fig. 10 shows the percentage boosts, subject

o these cuts, to Ds and FAs when including three passages. The
uts slightly reduce the importance of subsequent passages, as they 
enerally reduce the number of CBs, but there is still a ∼10 per cent
r greater increase to the number of disrupted systems, and slightly
ess than 10 per cent for FAs with β0 > 1. The boost to FAs goes to
ero now at low β as no CBs in this space survive the period cut.
he boost to Ds is consistently of order 10 per cent, and the boost to
As is similar for β � 1. The number of Ms is significantly boosted
hen including three passages, by 20 per cent or more for β � 0 . 6.
hus we see again that if we did not follow the full evolution of CBs

o their resolution we would moderately underestimate the fraction 
f Ds, FAs, and Ms that are produced by the Hills mechanism. 

 CLOSER  L O O K  AT  E J E C T I O N S  A N D  

APTURES  

s seen we have shown in Section 4 , multiple pericentre passages
hould be taken into account to fully characterize the distributions of
jected and captured stars as well as of FAs. Thus, in this Section,
e present the characteristic distributions of velocities, semimajor 

xes and inclinations of Ds and FAs following three passages. 
he characteristic units (as derived in Appendix B ), which can be

escaled for any three bodies that satisfy the assumptions of the Hills
echanism, are: 

(i) νD = Q
1 
6 

√ 

2 Gmcap 

ab , 0 
is the characteristic velocity of an ejected 

tar, where mcap is the mass of the corresponding captured component 
showing that we can get substantially faster ejections for the lighter
omponent); 
MNRAS 544, 1688–1709 (2025)
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M

Figure 9. Top row : Fractions of Ds ( Di , green), FAs ( Fi , blue), and CBs ( Ci , coral) as a function of β0 at the end of the ith passage. The vertical dashed grey 
line marks βlim 

. Panel 1 corresponds to passage 1 (bold lines), panel 2 to passage 2 (dashed lines), and panel 3 to passage 3 (dotted lines). Bottom row : In each 
panel we show the fractions of systems ending up as Ds (left panel), FAs (centre panel), and CBs (right panel), respectively, after every passage (same lines as 
the top row). We add the overall fraction after three passages, weighted on the number of CBs from the previous passage (Ds in dark green, FAs in navy, and 
CBs in dark red). 
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(ii) αD = 1 
2 Q

2 
3 m 

mej 
ab0 is the characteristic semimajor axis of the

aptured component of a disrupted system, where mej is the mass

f the other component, and δD = 2 Q− 1 
3 

mej 

m 

β−1 is the magnitude of
he characteristic change in the CM trajectory eccentricity (from the
nitial value of 1 for a parabolic orbit). 

(iii) νb =
√ 

Gm1 m2 
mab , 0 

is the characteristic ejection velocity of an

jected binary; 
(iv) δb = Q− 2 

3 
m1 m2 
m2 β−1 is the characteristic deviation from 1 of

he CM-eccentricity of an ejected binary; 

where for our example binary with initial semimajor axis of 0 . 1 au,
 = 4 M�, q = 1 

3 we find νD ≈ 1300 km s−1 , αD ≈ 6 . 67 · 102 au ,
nd δb ≈ 0 . 015 β−1 , assuming the lighter component is ejected and
b ≈ 82 km s−1 and δb ≈ 1 . 88 × 10−5 β−1 if the binary survives
he encounter. Note that only δb / D depend on β, generally deeper
ncounters do not generally produce more extreme outcomes. 

.1 Disrupted binaries 

n this section, we present our results for the star properties following
 binary tidal separation: distributions of velocity for the ejected stars,
nd those of eccentricity and semimajor axis for the captured stars.
e show results obtained after three passages and compare them
ith those obtained after the first encounter. 
NRAS 544, 1688–1709 (2025)

t  
.1.1 Ejected stars 

ig. 9 shows the properties the ejected stars, as a function of β0 ,
fter one and three passages. We see that the characteristic νD well
aptures the measured ejection velocity, except at low β where it is
 slight overestimate. The distribution after one passage shows that
or β � 0 . 6 the majority of systems have vej between 0 . 75 νD and
 . 25 νD . 
As we saw earlier, CBs increase the number of Ds produced in

hallow encounters, and in particular they extend their production
elow β0 ,lim 

(see Fig. 9 ). These additional ejected stars have me-
ian velocities higher than those produced in the first passage for
0 ≈ βlim 

, while they substantially extend the high-velocity tail at
ach β0 for β0 ≤ 0 . 75 (top panel in Fig. 12 ). Going towards deeper
ncounters the median velocity after three passages is slightly lower
han after one encounter; i.e. the extra disruptions for later passages
re generally of lower velocity (though note that including more
assages only adds systems, so all of the high velocity ejecta are still
resent). 
We present the role of inclinations in the central panel of Fig. 12 ,

howing only our results for the first passage for clarity. Although
oth prograde and less inclined ( i0 < π/ 2) binaries can reach high
jection velocities, there is an overall trend at a fixed β0 , where
ncreasingly prograde binary progenitors produce increasingly faster
jections. In this trend, three regions stand out. At shallow encoun-
ers, the high-velocity tail is completely dominated by prograde
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Figure 10. Upper panel : Percentage boosts in the fractions of Ds (dark green, 
upper line) and FAs (navy, lower line), between the first and third pericentre 
passage, as a function of β0 . Bottom panel : Fractions of Ds (dark green, inter- 
mediate line) and FAs (navy, lower line), but accounting for Ms (gold, lighter 
upper line) and stellar ages for a ab , 0 = 0 . 1 au, m = 4 M�, q = 1 
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Figure 11. Upper panel : Fraction of Ds, FAs, CBs, and Ms after three 
passages (dotted lines – green, blue, red, and yellow, respectively) including 
period and merger cuts based on our example binary. We compare these 
to the fraction of Ds, FA, and CBs without cuts (thin lines). Lower panel : 
Ratios between the fractions of Ds, CBs, FAs (same colour scheme), at the 
end of three encounters, before and after accounting for mergers and stellar 
age. 
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inaries, which also feature prominently at the value of the median 
elocity vej / [ νD ] � 1 for all β0 . On the other hand, the low-velocity
ail for our deepest encounters is entirely due to retrograde binaries. 
s emphasized in the lower panel in Fig. 12 from β0 ≈ 1, the median
f the ejection velocity distribution is made by prograde binaries that 
isrupt earlier 7 (at the moment when the CM-trajectory crosses the 
idal sphere) than binaries populating the envelope. Their semimajor 
xes become tighter then initially about the same time. The median is
ade by binaries that disrupt before their initial properties undergo 

ignificant change. Namely, disruptions resulting in the slowest 
rograde ejections happen when a binary completes at most one inner 
rbit while experiencing the MBH’s strongest tidal interaction. The 
pper envelope, on the other hand, is made by prograde binaries that
isrupt later on (after tidal crossing). Their initial properties undergo 
ignificant change, for instance they evolve to be as tight as they
an be and still disrupt. Disruptions resulting in the fastest prograde 
jections happen when a binary completes more than one inner orbit
hroughout the time of maximal tidal effects from the MBH. The 
astest ejections can analytically be explained as follows. We find that 
ll disruptions happen above a certain βlim 

and in Section 5 we show
hat the characteristic velocity νD of an ejected star is proportional 
o a−1 / 2 

b , 0 (see derivation of Equation ( B32 ) in Appendix B ). We note
hat this confirms that the fastest ejections correspond to systems that 
hrink to become the smallest binaries that can still disrupt. Then, 
onsidering equation ( 27 ), we have that νD ∝ β

−1 / 2 
0 . Thus, we can
 We recall that f is a proxy of time, with f = 0 corresponding to pericentre 
assage. 

b
t  

a  

a

efine a critical value of the characteristic velocity corresponding 

o βlim 

, as νD , lim 

∝ β
−1 / 2 
lim 

. Thus, νD , lim 
νD 

∝
√ 

β0 
βlim 

describes the fastest 

jections possible, with βlim 

defining the scale of the smallest possible 
emimajor axis that can be reached by a system while still being able
o disrupt. 

Multiple encounters do not affect the maximum ejection velocities 
ut add ejections, of mostly retrograde binaries, across the full 
elocity range, which is broadened at lower velocities with respect 
o the first passage. 

.1.2 Captured stars 

ig. 13 shows the distribution of the characteristic changes (from 1)
n eccentricity and of the semimajor axes of the S-stars’ orbits around
he MBH. Analogously to those of the ejected stars, both are altered
t shallow encounters by additional disruptions from CB binaries. 
ith respect to the change in eccentricity, the median is about

he characteristic scale δD 

, such that ecap ∼ 0 . 98 for our example
inary. High eccentricities for the bound stars are compatible with 
he observed eccentricities in the S star cluster (for instance S2 has
n eccentricity of 0 . 88466 ± 0 . 00018). As regards the semimajor
xis, the median sits around the characteristic semimajor axis, which 
MNRAS 544, 1688–1709 (2025)
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Figure 12. Distributions of the velocities of ejected stars as function of β0 . 
Ejection velocities are expressed in units of the characteristic velocity νD (e.g. 
≈1300 km s−1 for our binary of choice). Upper panel : Distribution after one 
passage (black bold line) and three passages (dark blue dotted line). The 
solid and dashed lighter lines show the 68 per cent and 95 per cent confidence 
intervals for the first passage. The shaded regions show the equivalent for three 
passages. Centre panel : Distributions of ejection velocities after one passage 
as a function of β0 , coloured by cos ( i0 )), for 100 000 sets of uniformly- 
sampled initial conditions. Lower panel : Distributions of ejection velocities 
after one passage as a function of β0 , of only prograde binaries, coloured by 
f at disruption for 100 000 sets of uniformly-sampled initial conditions. The 
slope of the black dashed line is

√ 

β0 /βlim 
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Figure 13. Similar to Fig. 12 , we show the properties of the captured star 
from a disrupted binary. We show the distributions of the eccentricities (upper 
panel) and semimajor axes (lower panel) of captured stars as a function of 
β0 . | 1 − ecap | is expressed in units of δD (e.g. ≈0 . 015 β−1 for our example 
binary) and αcap | in units of αD (e.g. ≈667 au for our example binary). 
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or our chosen binary is of the order of 102 au, also compatible
ith the observed values in the S star cluster (S2 has a pericentre
istance of about 120 au and semimajor axis of about 970 au).
owever, the dispersion is large especially for deeper encounter,

panning one and half order of magnitude. The change in the
ccentricity of the captured star is of the order of δD ∼ 0 . 015 (for
ur example binary with β = 1), which remains around ∼10−1 in
ur beta range (reaching ≈0 . 045 for the shallowest encounter in the
ange, corresponding to β = 0 . 33). Thus, it is the initial eccentricity
istribution of the injected binaries that shapes the final eccentricity
istribution of the captured stars. Our estimate for δD are consistent
ith the work by D. C. Heggie & F. A. Rasio ( 1996 ), as shown
ore explicitly by E. Addison et al. ( 2019 ) (see e.g. Fig. 3 ), where

he authors work in the approximation of the third body being more
assive than the binary. 
We remark that the eccentricity distribution of the deposited stars

ill rapidly thermalize due to the rapid redistribution in angular
omentum (see A. Generozov & A.-M. Madigan 2020 ). 
As regards their final inclination, it can be estimated with equation

 B35 ), which provides the characteristic scale for the change in
nclination of the captured star. For our example binary this amounts,
NRAS 544, 1688–1709 (2025)
pproximately, to 

cap = 1 

2 
Q−1 / 6 β1 / 2 mej 

m 

≈ 0 . 04

(
Q 

106 

)−1 / 6 (
mej 

3M�

) (
m 

4M�

) (
β

1 

)1 / 2 

(47) 

hich remains around ∼10−2 in our beta range (reaching ≈0 . 065 for
he deepest encounter we are considering, namely β = 3), meaning
hat the inclination of the orbit of the captured stars around the MBH
oes not significantly depart from the initial inclination of the CM-
rajectory of the binary system. 

.2 Hypervelocity stars fraction 

n this section, we use our example binary to get an estimate for the
raction of encounters that leads to HVSs. These are stars ejected
rom the GC with velocities greater than the escape speed from
he Galaxy, and can therefore be potentially observed on their way
ut in the halo of our Galaxy. As a velocity threshold, we choose
esc = 1000 km s−1 which is a typical galactic escape speed for a
cMillan model of the MW potential (see P. J. McMillan 2017 )

nd is a reasonable assumption in our case, considering the order of
agnitude of the characteristic velocity νD for a solar mass binary
ith initial separation of 0.1 au. We define 

j = P ( vej > vesc | Dj ) , (48) 
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Figure 14. Top panel : fractions of HVSs (unbound stars with vej > 1000 
km s−1 ) ejected after three passages, using our example binary, as a function 
of β0 . Before any cuts (dark red, upper underlying line), after period cut 
(Pcut = 108 yr) (yellow, upper front line), after merger cut (dark blue, bottom 

underlying line), and after applying both cuts at the same time (light blue, 
bottom front line). Bottom panel : fractions of HVSs after the first and third 
passage (solid and dotted lines, respectively) without any cuts (dark red) and 
with both cuts applied together (light blue). 
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νB (e.g. ≈82 km s−1 for our binary of choice). 
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he fraction of systems in passage with vej > vesc and thus the overall
raction after multiple passage is 

¯
n =

n ∑ 

j= 1 

˜ Cj−1 Hj . (49) 

ig. 14 shows the fraction of interactions, as function of β, that result
n our example binary disrupting and giving a HVS. We include both
he period and merger cut, the former of which has only a marginal
ffect except at low β, whilst the latter reduces the fraction by around
 quarter. We also show the difference between the fractions after 
ne and three passages, where we can see that without the period and
erger cut later passages significantly boost the fraction of HVS, but 

hat this boost is much reduced when including the cuts. Thus for a
ystem like our example binary most HVSs are produced on the first
assage. We can understand this as a consequence of the fact that
s at later passages tend to have lower vej generally. R. Sari et al.

 2010 ) showed that both stars, regardless of q, are equally likely to
e captured/ejected, however the characteristic velocity depends on 
he mass of the captured star. This means that in the majority of these
VSs are the lighter component, and that the heavier component can 
nly become a HVS for β � 0 . 6. For β � 1 we find that more than
0 per cent of encounters involving our example binary produce a
VS. 

.3 Flying-away binaries 

n Fig. 15 , we show the properties of FAs, binaries that are unbound
rom the MBH but likely remain in the GC and are thus another
otential signature of Hills mechanism interactions. Although their 
rogenitors are circular, FAs are eccentric binaries with a typical 
ccentricity of eb ∼ 0 . 5 (approaching the average for a thermal
istribution of eccentricities of 2 

3 ) for β0 � βlim 

. Some near-circular 
inaries persist up to β ∼ 1, and below βlim 

the induced eccentricity 
educes. The semimajor axis of the binary is slightly reduced by
he interaction, but by a factor of less than 1 

2 even at the highest
. Even for shallow interactions, β ∼ 0 . 3, many binaries have still
een imparted with eccentricities of order eb ∼ 0 . 1, whilst their
emimajor axes are essentially unchanged. This suggests that the 
ills mechanism is efficient in transferring angular momentum even 
hen energy transfer is marginal. 
MNRAS 544, 1688–1709 (2025)
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Table 1. Fractions of the total initial systems ending up in each of the 
channels at different passages and considering different or no cuts. Fractions 
are here marginalized over all the parameters, including the diving factor. 

Ds 
per cent 

FAs 
per cent 

CBs 
per cent 

Ms 
per cent 

HVSs 
per cent 

Passage 1 No cuts 45.63 28.37 26 – 31.06 
Lifetime 45.63 40.05 14.32 – 31.06 
Mergers 39.40 18.86 20.13 21.61 26.86 

Mergers and lifetime 39.40 29.56 9.44 21.61 26.86 

Passage 2 No cuts 55.41 31.19 13.40 – 33.85 
Lifetime 54.36 40.92 4.72 – 40.44 
Mergers 42.85 20.67 8.11 28.36 33.32 

Mergers and lifetime 42.46 29.81 1.95 25.78 32.99 

Passage 3 No cuts 59.61 32.32 8.07 – 34.72 
Lifetime 57.26 41.07 1.67 – 34.15 
Mergers 43.85 21.39 4.05 30.70 27.34 

Mergers and lifetime 43.14 29.84 0.47 26.54 26.98 
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The change in eccentricity of the CM trajectory and ejection
elocities are low, around an order of magnitude less than the
imiting characteristic units δB and νB . For our example binary these
orrespond to �ecm 

∼ −10−6 and vej ∼ 10 km s−1 (two or three
rders of magnitude slower than stars ejected by disruptions), giving
 population of binaries only marginally unbound from the MBH on
ery radial orbits. 

 DISCUSSION  A N D  C O N C L U S I O N  

e have investigated multiple close encounters between a stellar
inary and a MBH, with the aim of characterizing the properties
f the resulting population of binaries, single stars, and merger
roducts. The mathematical formalism underlying our investigation
s based on the analytical treatment of the Hills mechanism (J. G.
ills 1988 ). We model the interaction as a restricted three-body
roblem under approximations made possible by exploiting the very
arge difference in mass and length-scales between the binary and
he MBH (following R. Sari et al. 2010 ; S. Kobayashi et al. 2012 ;
. Brown et al. 2018 ). We also tested our results against a full direct

hree-body integration and confirm that our results are accurate. 
We started with a population of circular binaries on parabolic tra-

ectories around the MBH, for a random distribution of binary phases,
rientations, inclinations, and diving factors. We first analysed the
ates of our systems after a single tidal encounter. Systems can resolve
nto two definitive channels – disruptions (dubbed Ds ) and ejections
f the binaries (Fly-Aways FAs ). There is a third temporary channel
the binaries survive the encounter and come back ( CBs ) to the
BH for a subsequent encounter. By specifying the finite sizes of

he stars another resolution, mergers ( Ms ), are also possible (see
ection 5 ). Finally, employing the complete framework proposed in
S. Kobayashi et al. 2012 ), we map the initial population into the
arious fates mentioned above, and analyse each of them after three
ncounters. 

In the following, we summarize our results. We quote fractions
arginalizing over all parameters (see Table 1 ) and present both the

esults of a single encounter – which depend on the properties of the
ncoming binaries (diving factor β, eccentricity eb , and inclination
os i) – and results at the end of multiple encounters, cast in terms
f the initial parameters (i.e. of those at the beginning of the first
assage ), such as the initial β0 and inclination cos i0 , of the binary. 

(i) CBs. There is a significant fraction of CBs (∼26 per cent )
fter the first passage; this fraction is progressively reduced in later
assages, and reaches ∼8 per cent at the end of the third one, as CBs
NRAS 544, 1688–1709 (2025)
ecome FAs or Ds. As a consequence of the first encounter, when
pproaching as circular binaries, CBs become eccentric, and follow
eeper-diving CM-trajectories than initially; if they change their
nclination at all, they become more intermediate or prograde (see
ig. 6 ). CB binaries preferentially originate from mildly retrograde
nd retrograde encounters, that can occur through the whole β
ange explored here, with eccentricity up to eb ≈ 0 . 8; approaching
rograde binaries can also become CBs, when on shallow encounters
 β � 0 . 48) and modest or high eccentricities of at least eb ≈ 0 . 2 (see,
ightmost upper panel of Fig. 3 and rightmost column of Fig. A1 ). 

(ii) Ds. Binary disruption is the most common outcome in our
arameter space. The disruption fraction is ∼46 per cent after one
assage, and increases to ∼60 per cent (with an almost constant
oost of 16 per cent for β0 > 1) at the end of the third encounter,
ue to the fresh batch of CBs, whose aforementioned properties
eccentric, more prograde, on deeper encounters) make them more
rone to disruption in the subsequent passage. Indeed, binaries end
p preferentially disrupted for intermediate and prograde orbits
nd for deep encounters ( β � 0 . 4); retrograde binaries can also be
isrupted, if highly eccentric ( eb � 0 . 7), and/or on a deep encounter,
ncreasingly deeper for increasingly retrograde binaries (see leftmost
pper panel of Fig. 3 and leftmost column of Fig. A1 ). This explains
hy, in the parameter space of the initial encounter (leftmost lower
anel of Fig. 3 ), multiple passages allow disruptions to populate
he space below β0 ≈ 0 . 48 as well as retrograde inclinations (i.e.
os i0 � −0 . 5), where instead no disruptions occur in the first
assage. 
(iii) Captured stars. The binary member captured by the MBH,

nds up on a bound eccentric orbit; when using our example binary,
he median values of its orbital properties are the typical ones: the
ccentricity is eS ∼ 0 . 98 and the semimajor axis is aS ≈ 6 . 67 ×
02 au (with the bigger spread, between ≈67 and ≈2000 au, at deeper
ncounters), consistent with the orbit of S2 in the GC, (see Fig. 13 ).

(iv) Ejected stars. After three passages, ejected stars have a

edian velocity about the characteristic velocity νD = Q1 / 6 
√ 

2 Gmμ

m12 ab , 0 

≈1300 km s−1 for our example binary) for β0 � 0 . 48, while lower
elocities down to ≈0 . 5 νD are reached for smaller β0 s. The velocity
istribution is shaped mostly by the first encounter, while subsequent
assages extend the distribution at lower β0 s, and lower the median
elocity at deep encounters by ≈0 . 1 νD : e.g. for our example binary
he median after three passages at deep encounters is smaller by

130 km s−1 than that at first passage, (see Fig. 12 ). 
(v) HVSs. When considering our example binary, we refer to

VSs as stars ejected with a velocity greater than 1000 km s−1 , which
ccur preferentially (i.e. for more than 50 per cent of the total) for
0 � 1, with the dominant contribution due to the first passage. The
raction of HVSs after one passage is about ∼31 per cent of the
otal injected binaries, reaching ∼35 per cent at the end of the third
ne. Preferencially, the lighter compation is ejected as an HVSs
ndependenty of βs: this is because CBs are on bound orbits, and the

ore massive – carrying most of the orbital energy – is more likely
o continue on a bound orbit, i.e. to be ‘captured’, (see S. Kobayashi
t al. 2012 ). 

(vi) FAs. The FA fraction goes from ∼28 per cent at the end of
he first passage to ∼32 per cent at the end of the third one (with
he an almost constant 10 per cent boost below βlim 

, which then
ecreases at deeper encounters). FA binaries preferentially originate
rom shallow encounters (below β0 ≈ 0 . 48); additionally, when the
pproaching binary has an intermediate or prograde inclination, it
ecomes a FA if of low eccentricity up to eb ≈ 0 . 4, while the opposite
s true for retrograde binaries (see, central upper panel of Fig. 3 and
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entral column of Fig. A1 ). Their fraction distribution is shaped 
rimarily by the first passage because, once again, the CBs are more
nclined to disrupt at the subsequent encounter (due to their orbital 
roperties). FAs are ejected on slightly hyperbolic orbits ( ecm 

� 1),
ith velocities lower than those of ejected stars by ∼2 order of
agnitudes (≈8 . 2 km s−1 for our example binary). They get tighter

fter tidally interacting with the MBH (due to energy conservation) 
nd become eccentric: eb � 0 . 4 below β ≈ 0 . 48 and eb � 0 . 6 for
eeper encounters (see Fig. 15 ). 

(vii) Impact of lifetime. When considering our example binary, 
e take into account the finite lifetime of MS stars to assess if CBs

n fact have time to go through a subsequent encounter. CBs are
educed by a ∼12 per cent (to ∼14 per cent ) at first passage. This 
rogressive reduction in the CB fraction, by the end of the third
ncounter determines a reduction of the D-fraction by ≈3 per cent 
nd a boost of the FA-fraction by ≈9 per cent . 

(viii) Mergers. When considering our example binary, we can 
ntroduce mergers as a fourth channel. By the end of the third passage,
he fraction of mergers is ≈31 per cent and it causes the D-fraction 
o be reduced by 16 per cent, the F-fraction by by 10 per cent and the
B-leftover fraction by 4 per cent. If we consider, on top of mergers,

he effect of the stars’ lifetime, after three pericentre passages 43.14 
er cent of the binaries disrupts, 29.84 per cent flies away and 26.54
er cent merges (with a leftover of CBs of 0.47 per cent). 

(ix) The median parameters distributions after multiple encounters 
s generally similar (slightly more moderate) to the distribution after 
he first passage. The exception to this is shallow encounters (low β)
here Ds from later passages can result in faster ejecta and tighter
ound captured stars. 
(x) Including three passages boosts the number of Ds by 20 

er cent or more, and markedly increases the number of disruptions
rom shallower initial encounters. FAs are boosted by about 10 
er cent, showing that CBs after the first passage are more likely
o resolve as Ds. For stars of finite size and lifetime we can also
pply a period and merger cut, reducing the boost to Ds to about 10
er cent, but with 20 per cent or more systems merging after three
assages compared to just one. We limit ourselves to three passages
o limit computational cost, with most CBs having been depleted by 
his point, but simulating further passages is possible and will further
marginally) boost the number of Ds, FAs, and Ms. 

In their work, A. P. Stephan et al. ( 2016 ) find a significant fraction
f KL-induced mergers, of about 13 per cent of their initial population 
fter a few million years and 29 per cent after a few billion years using
onte Carlo simulations (including the orbits secular evolution, 

eneral relativistic precession, tides, and post-MS stellar evolution). 
. Antonini et al. ( 2010 ) also follow binaries that remain bound
or several revolutions around the SMBH with N -body simulations. 
hey find that HVSs are primarily produced in the first passage while
ollisions and mergers increase significantly for multiple encounters 
due to KL resonance of the internal binary). The mergers presented 
n this work are a different class of systems: dynamically-originated 

ergers, occurring on the binary time-scale at pericentre and for 
uch shallower encounters than those investigated in the above- 
entioned works. I. Mandel & Y. Levin ( 2015 ) and B. Bradnick

t al. ( 2017 ) estimated that the fractions of such mergers for
 population of 1000 binaries in radial and shallow encounters 
 β0 ≈ 0 . 5), is, respectively, ≈6 per cent and 80 per cent. They follow 

he binaries until their complete depletion (into HVSs or mergers, 
ithout analysing FAs). Our work complements the above results by 

xploring the full β and cos ( i) range, especially as the treatment used 
llows many quick and efficient simulations. We follow systems to 
heir final outcome and show the properties of the resulting systems.

Most of our findings are general, allowing any choice of the initial
inary. These results apply to any system where the physical length
nd time-scales do not interrupt the repeated interactions, and is 
hus directly relevant for a tight compact object binary (a promising
rogenitor population for EMRIs). We also choose a specific example 
ystem, a massive stellar binary, aiming to highlight the relevance 
f this approach to HVS candidates and the nuances presented by a
hort-lived system that may be subject to the binary merging. In this
ork we only account for stellar MS lifetimes. Post-MS evolution, 

lthough rapid and therefore unlikely to overlap significantly with 
idal interactions, is expected to lead to mergers; in fact, the hybrid
ases of overlap could provide an interesting addition for future 
ork. More explicitly, mergers would be facilitated by the evolution 
f the stellar radius; during the MS phase, the radius of a star (with
ass below ∼10 M�) changes typically within less than a factor 2,
hile when the star enters the red-giant branch (RGB) its outer layers

xpand significantly, leading to an increase in radius of roughly one to 
wo orders of magnitude (R. Kippenhahn & A. Weigert 1990 ). Thus,
uring the RGB phase it becomes more likely that a binary merges
according to our definition of merger), more so for FAs than for CBs,
s the former are tighter and the latter wider. For instance, mergers
n wide binaries due to Roche lobe overflow during the post-MS
xpansion of the more massive star, are considered by A. P. Stephan
t al. ( 2016 ) who, after 6 Myrs of evolution, register only a few of such
ergers, reaching 10 per cent after 10 Gyrs. For disrupted binaries,

he captured companion will eventually evolve into a red giant and
ay undergo a TDE. However, since most of the evolution of a low-

nd intermediate-mass star is dominated by the MS phase, during 
hich the radius remains relatively stable, the overall influence of 

tellar evolution for low- and intermediate-mass binaries would be 
n increase of mergers (in the narrow time-window between the end
f MS and the dynamical merger of the binary). Massive stars, on the
ther hand, would not have time to come back for a second encounter
due to their shorter lifetimes). So, the multiple-passages analysis 
resented in this work does not apply for massive stars (unless the
ncounter happens on very short time-scales). Accounting for stellar- 
volution in this case would result in having as outcomes only FAs
nd Ds (the latter when the binary components are driven apart if
ne becomes supernova). 
In a follow-up paper, we will further explore different astro- 

hysically motivated initial binary populations, to provide valuable 
redictions and insights on a broad range of transient phenomena 
EMRIs, TDEs, QPEs) occurring in the GC, and the impacts on its
tellar population. 
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PPENDI X  A :  EFFECT  O F  ECCENTRI CI T Y  

lthough we start with initially circular binaries those that comeback
or subsequent passages can be (and generally are) eccentric. Thus
n Fig. A1 , we show the fractions of outcomes (D, F, and C) for a flat
istribution of eccentricities (as can be compared to Fig. 3 ). 
We see that more eccentric systems are more susceptible to

isruption and allow disruptions at lower β0 . For high eb , 0 (� 0 . 8)
he dependence on inclination almost disappears, with retrograde
ystems similarly likely to disrupt as prograde. The fraction of
As is much reduced for even mild eccentricities ( eb , 0 � 0 . 1) and
orrespondingly there are more systems that comeback. 

So for initially higher eccentricities, systems are generally more
rone to disrupt and CBs more likely (the FAs fraction changes
ccordingly), with inclination playing a reduced role at high eccen-
ricities. These results motivates the analysis of multiple passages and
elp to interpret the consequent results (e.g. the fractions distributions
n the lower panel of Fig. 3 or the disruption boost observed in Fig. 9
fter subsequent passages). 
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Figure A1. Fractions of disruptions (D, top), fly-aways (F, middle), and 
coming-backs (C, bottom) after a single passage for binaries with a flat 
distribution of initial eccentricities. We show the outcomes as a function of 
the initial conditions β0 , cos ( i0 ), and eb , 0 . For each two dimensional plot 
the results are marginalized over the third dimension. The vertical dashed 
line corresponds to an inclination of π

2 : we call binaries around this angle 
intermediate , those on its left retrograde , and those on its right, prograde . 
The dotted horizontal line is at βlim 

. This figure is generated for 100 000 sets 
of initial conditions. 
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PPENDI X  B:  CHARAC TERI STI C  UNI TS  O F  

H E  HI LLS  MECHANI SM  

et us start by considering a generic situation where the energy of a
article of mass mi is perturbed by the presence of a mass M by an
mount �E and its angular momentum by �L ; the particle’s final
roperties can be described as 

 = E0 + �E, (B1) 

 = L 0 + �L . (B2) 

rom these, we can define the (change of) characteristic scale of the
ther orbital properties (i.e. semimajor axis, velocity, eccentricity, 
nd inclination, respectively) as 

 = − GMmi 

2( E0 + �E) (B3) 

 =
√ 

2( E0 + �E) 
mi 

(B4) 

2 = 1 − 2 E(L · L ) 

G2 M2 m3 
i 

= 1 − 2 E0 L
2 
0 

G2 M2 m3 
i 

− 2 

G2 M2 m3 
i 

(B5) 

(
( E0 + �E)(2((L 0 · �L ) + ( �L · �L )) + �EL2 

0 

)
cos ( i) = 1 + ( �L · ˆ L 0 ) √ 

1 + 2 1 
L0 

( �L · ˆ L 0 ) +
(

�L 
L0 

)2 
= 1 + �Lz √ 

1 + 2 �Lz 
L0 

+
(

�L 
L0 

)2 
(B6) 

here, in the last equality of the expression for cos ( i) we assumed
hat L 0 = L0 ̂ z (i.e. that the initial orbit is in the x , y plane). 

We can define the characteristic scale of �E and | �L | as ε and � ,
hich then set the characteristic scale of the (change of) other orbital
roperties. With relevance to this work (following S. Kobayashi et al.
012 ), we make the simplifying assumptions that 

(i) | �E| ∼ ε � | E0 | (i.e. the particle’s trajectory is close enough
o parabolic to ignore its initial energy); 

(ii) | �L | ∼ � 
 |L 0 | (i.e. the initial orbit has significant angular
omentum). 

The former assumption (of a parabolic trajectory) implies that 
hether the new orbit of the particle is bound or unbound depends
nly on the sign of �E. 
If �E > 0 the particle’s will move a trajectory unbound from the
assive perturber and will escape to infinity with a characteristic 

elocity 

∼
√ 

2 ε

mi 

. (B7) 

If �E < 0, the particle moves on a bound orbit around the mass
. The characteristic semimajor axis of the new orbit is 

∼ GMmi 

2 ε
(B8) 

nd its eccentricity (in the parabolic case, to first order) is 

2 ∼ 1 − 2 �EL2 
0 

G2 M2 m3 
i 

. (B9) 

e can express this in terms of δ, which corresponds to the
haracteristic size of | 1 − e| , as follows 

∼ L2 
0 ε

G2 M2 m3 
i 

. (B10) 

In the parabolic approximation and making a small angle approxi- 

ation as
√ 

L2 
x + L2 

y = �Lt 
 L0 , we can derive the characteristic 
MNRAS 544, 1688–1709 (2025)
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hange in inclination as 

∼ �t 

L0 
∼ � √ 

2 L0 

, (B11) 

here �t is the characteristic change in angular momentum tangen-
ial to the initial direction. We have found it a reasonable assumption
or the Hills mechanism that �t ∼ �z ∼ � √ 

2 
(i.e. that on average

here is equal transfer of angular momentum in the perpendicular
nd parallel directions). 

1 Characteristic change of energy and angular momentum 

e now determine the values for ε and � corresponding to the
imensions of the problem at hand (for a bound binary and a disrupted
ne, respectively). 

1.1 Characteristics of a bound binary 

e now consider an initial binary with masses m1 and m2 , mass ratio
 = m2 /m1 < 1 and initial semimajor axis ab ,i , moving around and
BH with mass M (with Q = M/m � 1). Its initial energy is given

y 

b ,i = −Gm1 m2 

2 ab ,i 
= −Gμm 

2 ab ,i 
. (B12) 

ny change in energy of the binary, �Eb , while the binary remains
ound, will be of order | Eb ,i | . Thus, it is natural to define a
haracteristic energy 8 of the binary 

b = | Eb ,i | = Gμm 

2 ab ,i 
, (B13) 

here the reduced mass μ = m1 m2 /m . 
Similarly we can define the characteristic angular momentum of

he binary in terms of the maximum angular momentum (for a given
nergy) corresponding to a circular orbit 

b = Lb ,circ ,i = μ
√ 

Gmab ,i . (B14) 

If we consider the restricted three-body treatment of the problem
nd use the natural units of the Hills mechanism introduced in Section
.2.2 , we can express the above scales as εb = 1 

2 β
q 

(1 + q)2 
mλ2 

τ2 and

b =
√ 

β
q 

(1 + q)2 
mλ2 

τ
. 

1.2 Characteristics of a disrupted binary 

he characteristic units in case of disruption can be found in the
igh β limit (though, as shown in the main text, they agree within a
actor of a few across all β). Extreme β corresponds to an rp → 0,
hich reduces to the simpler dynamical case of radial infall of the
M. Taking t = 0 as the moment when rcm 

= 0, then the CM motion
ollows 

cm 

=
(

9 GMt2 

2 

) 1 
3 
, (B15) 

cm 

= 1 
t 

(
4 GMt2 

3 

) 1 
3 

(B16) 

with vcm 

negative during infall, t < 0, and positive afterwards). At
arge times, the distance goes to infinity and the velocity to 0, and
NRAS 544, 1688–1709 (2025)

 As Eb is the most energy a binary could gain and remain bound this 
haracteristic energy is an upper limit, and thus all characteristic units that 
epend on εB will be upper or lower limits. 

B

F  

r  
hus the energy of the CM-orbit is 0. Similarly, as the motion is along
 straight line towards the origin the angular momentum is also zero.

To determine the corresponding characteristic scales, we can
pproximate the true behaviour of the binary assuming that it
s unaffected by the MBH until it reaches the tidal radius, and
ompletely dominated by it after that point. This approximation is
he more accurate the deeper the encounter is (large β limit). Thus,

he binary will have characteristic separation ab and speed
√ 

Gm 

ab 
up

o and including the moment it reaches the tidal radius. 

At the moment of separation ( rcm 

= rt ), t = tt = −
√ 

2 r3 
t 

9 GM 

and

cm 

= vt = −
√ 

2 GM 

rt 
. Taking the binary’s instantaneous relative

isplacement and velocity to be r = r 2 − r 1 and v = v 2 − v 1 , re-
pectively, then the positions and velocities of either mass 1 or 2
s 

 12 = r cm 

∓ m21 

m 

r and v 12 = v cm 

∓ m21 

m 

v . (B17) 

Until the binary has separated we have that |r | 
 |r cm 

| and |v | 

v cm 

| ; thus, we can expand the energy and angular momentum to first
rder as 

E1 , 2 = m (v 12 · v 12 ) 

2 
− GMm 

|r 12 | 
∼ m12 

m 

E0 ∓ m1 m2 

m 

(
v cm 

· v + GM 

r3 
cm 

(r cm 

· r )
) (B18) 

nd 

L 1 , 2 = m12 r 12 ∧ v 12 

∼ m12 

m 

L 0 ∓ m1 m2 

m 

( r ∧ v cm 

+ r cm 

∧ v ) , 
(B19) 

here E0 and L0 are the initial energy and angular momentum of the
M. 
We now consider our case of interest, where E0 and L0 = 0 (radial

ase). We substitute for the centre of mass |r cm 

| ∼ rt , |v cm 

| ∼ vt 

nd for the binary |r | ∼ ab , |v | ∼
√ 

Gm 

ab 
and use rt ∼ Q

1 
3 ab . Then,

gnoring geometric terms of order unity, the characteristic changes
n energy and angular momentum are, respectively: 

D = Q
1 
3 

Gm1 m2 
ab 

= 2 Q
1 
3 εb , (B20) 

D = Q
1 
3 

m1 m2 
m 

√ 

Gmab = Q
1 
3 �b . (B21) 

In characteristic units they can be expressed as εD = Q
1 
3 

β

q 

(1 + q)2 
mλ2 

τ2 

nd �D = Q
1 
3 
√ 

β
q 

(1 + q)2 
mλ2 

τ
. 

These characteristic units hold true for a wide range of β (� 1)
here the assumption of a radial orbit with zero angular momentum

s no longer true. For general β the initial angular momentum of the
entre of mass orbit is 

cm 

=
√ 

(1 + ecm 

) GMm2 rp =
√ 

ab 

β

√ 

2 GQ
4 
3 m3 . (B22) 

2 Characteristic scales of orbital properties 

rom the characteristic energy and angular momentum scales ob-
ained in the previous section, we now derive the corresponding
cales for the orbital properties of bound and disrupted binaries. 

2.1 Bound binaries 

or surviving binaries (e.g. FAs), mi = m and L0 = Lcm 

, and the
elevant characteristic units to use are εB and �B . These translate
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o the following characteristic scales for semimajor axis, velocity, 
eviation of eccentricity from 1 and inclination, respectively: 

b = Qm 

μ
ab , (B23) 

b =
√ 

Gμ

ab 
, (B24) 

b = Q− 2 
3 1 

β

μ

m 

, (B25) 

b = Q− 1 
2 

√ 

β

2 
μ

m 

. (B26) 

2.2 Disrupted binaries 

or disrupted binaries the characteristic units are εD and λD and the 
ass of interest is mi is either m1 or m2 . Now L0 = mi 

m 

Lcm 

(and 
0 = 0). If we define the factor 

 ≡ 2 Q
1 
3 

m 

mi 
. (B27) 

hen the characteristic scales for a disruption can be written simply
s: 

D = �
1 
2 · νb , (B28) 

D = �−1 · αb , (B29) 

D = � · δb , (B30) 
The Author(s) 2025. 
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D = 1 
2 � · ηb . (B31) 

Given that � is significantly greater than one, we can see that
isrupted binaries result in faster ejections, much more eccentric and 
nclined orbits, and substantially tighter orbits with respect to bound 
inaries. 
We note that while � can be arbitrarily large for a small m2 , it is,

n every case, balanced by μ → m2 . In these cases, namely when
 
 1, the properties of surviving binaries are barely changed, and
ts only the lighter companion that can have extreme velocities. 

Re-expressing these in terms of the physical scales of the problem
e obtain, 

D = Q
1 
6 

√ 

2 G
mμ

mi ab 
, (B32) 

D = 1 
2 Q

2 
3 mi 

μ
ab , (B33) 

D = 2 Q− 1 
3 β−1 μ

mi 
. (B34) 

nd 

D = 1 

2 
Q− 1 

6 β
1 
2 

μ

mi 
, (B35) 
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