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ABSTRACT

A common origin for a host of stellar phenomena in galactic centres is the tidal encounter between stellar binaries and a
massive black hole (MBH), known as the ‘Hills mechanism’. Following the encounter, binaries may disrupt into an ejected
star and a captured one, they may merge, or survive to either fly away or come back for one or more subsequent encounters,
until they are either disrupted or fly-away. In this paper, we analyse how a binary’s fate depends on its orbital parameters, by
following its evolution through up to three subsequent pericentre passages. We choose an initial population of circular binaries
on parabolic orbits. We present results from our restricted three-body formalism, whose strength lies in the ability to easily
explore a multidimensional parameter space and make predictions independent of the binary physical properties. We find that
fates depend strongly on orbital inclination, how deep the encounter is into the MBH tidal sphere and on the binary eccentricity,
developed during encounters. Generally, non-retrograde trajectories, high eccentricities or deep encounters produce disruptions
preferentially. Disruption is the most common fate. A significant fraction of the surviving binaries fly away at velocities typically
two orders of magnitude smaller than those of ejected stars. Including multiple encounter boosts the total disruption rate by 20
per cent or more. Finally, using an example system, we investigate the effect of finite stellar sizes and lifetimes, showing that

mergers occur 31 per cent of the time, and that disruptions are still boosted by ~10 per cent through subsequent passages.

Key words: black hole physics —binaries: close —stars: kinematic and dynamics — Galaxy: centre.

1 INTRODUCTION

Much has been discovered about the Galactic Centre (GC) of the
Milky Way (MW). Observational milestones include Jansky’s radio
detection of our Massive Black Hole (MBH), Sgr Ax, in 1931 (see
K. Jansky 1937), the development of infrared astronomy (e.g. E. E.
Becklin & G. Neugebauer 1968), to track trajectories of stars near
Sgr Ax in the early 2000s (see e.g. R. Schodel et al. 2002; A. M.
Ghez et al. 2003, 2005), and the first image of Sgr Ax, released
by (S. Markoff & Event Horizon Telescope Collaboration 2022).
Nevertheless, many questions remain unanswered, the origin and
assembly history of Sgr Ax, of the GC and, in particular, of its
stellar populations. The GC complex stellar dynamics is a rich field
of study too, tightly linked to the largely unknown rates of many
high-energy transients, including Tidal Disruption Events (TDEs)
and gravitational wave sources where stellar mass black holes spiral
inwards torwards the central MBH, called Extreme Mass Ratio
Inspirals (EMRIs).

Since direct observation of the GC is challenged by obscuration
and stellar crowding, a complementary and captivating tool to explore
these questions is hypervelocity stars (HVSs). These are stars ejected
from the GC at speeds up to a few thousands of kms~!, high enough
to be observable in the halo on unbound trajectories from the Galaxy.
HVSs can be used as tracers, as they carry information about their
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native GC to regions that are more easily observationally accessible.
Currently, only one candidate has been successfully traced back to the
GC and thus confirmed as an HVS by (S. E. Koposov et al. 2020):
S5-HVSI, an A-type main-sequence (MS) star, with a velocity of
1755 + 50 km s~'. The number of promising candidates is around a
dozen (see W. R. Brown, M. J. Geller & S. J. Kenyon 2014; B. C.
Bromley et al. 2018; W. R. Brown et al. 2018). Various methods have
been suggested to improve observations (see e.g. S. J. Kenyon et al.
2018; T. Marchetti, F. A. Evans & E. M. Rossi 2022; F. A. Evans,
T. Marchetti & E. M. Rossi 2022a, b; F. A. Evans et al. 2023; S.
Verberne et al. 2024) and several mechanisms have been proposed
to explain the origin of such fast stars. For instance, the ejection
of an HVS could be the result of the close interaction between a
globular cluster and a supermassive black hole (see e.g. R. Capuzzo-
Dolcetta & G. Fragione 2015; G. Fragione & R. Capuzzo-Dolcetta
2016; G. Fragione, R. Capuzzo-Dolcetta & P. Kroupa 2017), or of
the three-body interaction between a star and a binary black hole
(see e.g. Q. Yu & S. Tremaine 2003; I. Ginsburg & A. Loeb 2007;
A. Sesana, F. Haardt & P. Madau 2007, 2008; T. Marchetti et al.
2018; A. Rasskazov et al. 2019). In this paper, we focus on another
possible explanation which relies on the Hills mechanism, namely
the tidal separation of a binary stellar system by Sgr A%, which may
result in a binary component being ejected while the other remains
bound to the MBH on a tight eccentric orbit (see e.g. J. G. Hills
1988; R. Sari, S. Kobayashi & E. M. Rossi 2010; S. Kobayashi et al.
2012; E. M. Rossi, S. Kobayashi & R. Sari 2014; H. Brown et al.
2018).

© The Author(s) 2025.
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Various studies (see e.g. F. Zhang, Y. Lu & Q. Yu 2013; A.
Generozov & A.-M. Madigan 2020; A. Generozov 2021) showed
that this mechanism can simultaneously explain S5-HVS1 and the
presence of the young stellar cluster around Sgr Ax called the S-star
cluster (see for instance A. M. Ghez et al. 2008; S. Gillessen et al.
2009). In this scenario, S-stars are the previous binary companions
of HVSs. For instance, A. Generozov et al. (2025) found that
the observed S-star properties (including their thermal eccentricity
distribution), can be explained by continuous binary disruptions
near SgR Ax followed by angular momentum relaxation due to
repeated encounters with other objects in the GC. S. Verberne et al.
(2025) simulated the S-star and HVS populations and compared
both with state-of-the-art observations, finding that disruptions of
binaries injected from both the clockwise disc and the nuclear star
cluster reproduce all the observations simultaneously. The authors
also find that, regardless of the eccentricity distribution with which
the captured stars are deposited, their final distribution will be thermal
due to the rapid redistribution in angular momentum (see also A.
Generozov & A.-M. Madigan 2020).

Another possible explanation of the origin and morphology of the
S-star cluster has been suggested by T. Akiba, S. Naoz & A.-M.
Madigan (2025), based on a relatively recent merger between an
intermediate-mass BH and Sagittarius A%, which could reproduce
much of the orbital properties of the cluster.

In addition, the Hills mechanism has been invoked as a dynamical
channel to create EMRIs (M. C. Miller et al. 2005; Y. Raveh & H.
B. Perets 2021). In particular, I. Linial & R. Sari (2023) found that it
is expected to contribute to gravitational-wave driven stellar EMRIs
for galaxies with M > 10° Mg, which encompasses SgR Ax. This
mechanism may also be responsible for at least a subset of Quasi-
Period Eruptions (QPEs) observed in X-rays (e.g. . Linial & R. Sari
2023). R. Sari & G. Fragione (2019) showed that the Hills disruption
of stellar binaries in the vicinity of a SMBH may affect the shape
of the density stellar cusp, which in turn affects the rate of stellar
disruption (TDEs) and EMRIs. E. Addison et al. (2019) simulated
parabolic encounters between compact-object binaries and SMBH in
GCs and explored disruptions as a formation mechanism for EMRIs,
providing estimates of their rates within the context of gravitational-
wave observations. These are among the scientific motivations behind
this paper’s unprecedented detailed dynamical analysis of the Hills
mechanism.

Briefly, the characteristic scales of Hills mechanism ejecta can be
described as follows. Given a binary with semimajor axis a, and
total mass m interacting on a parabolic trajectory with a MBH with
mass M, the tidal forces of the latter overcome the self-gravity of the
binary at an approximate distance r; &~ a,(M /m)!/? from the MBH,
called the fidal separation radius or in short, tidal radius. Once the
binary crosses the tidal radius, it may be tidally separated, resulting in
one of the binary members (e.g. m.;) being ejected and the other (e.g.
Mcyp) captured by the MBH. The ejected star will have characteristic
ejection velocity of the order of

MN® [2Gme,
v=|— _—
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potentially ejecting one star from the MW and leaving the other on
a very close orbit to Sgr Ax.

This, however, is not the only possible outcome of this dynamical
encounter.

In their work, (R. Sari et al. 2010) found that there is a non-null
probability that a binary survives disruption. In this case, there are
two possible outcomes: binary members can merge (we call this
channel Ms for ‘mergers’) or they can remain bound to each other.
Mergers as a possible explanation of G-type objects (see e.g. A.
Ciurlo et al. 2021; R. Campbell, A. Ciurlo & M. Morris 2023; D.
S. Chu et al. 2023; S. Jia et al. 2023), have been analysed by A. P.
Stephan et al. (2016, 2019) through the Eccentric Kozai—Lidov (KL)
Mechanism and accounting for stellar evolution for binaries outside
the BH tidal radius. With our work, we can complement these results
by considering mergers that are purely dynamical in nature, in a non-
perturbative and non-secular regime, encompassing also mergers of
binaries diving much deeper into the tidal sphere through multiple
encounters. Mergers have also been analysed by I. Mandel & Y.
Levin (2015) and B. Bradnick, I. Mandel & Y. Levin (2017) for a
population of eccentric binaries with specific distributions of their
orbital parameters. The authors defined as ‘mergers’ the cases when
the distance between the two stars becomes smaller than the sum
of their radii (as in R. Sari et al. 2010) and integrated the evolution
of the system using REBOUND (H. Rein & S. F. Liu 2012; H.
Rein & D. S. Spiegel 2015). Our semi-analytical approach can be
used as an independent and complementary analysis of mergers after
one encounter and provides new information on multiple passages
between pericentres.

On the other hand, if they remain bound, binaries can either end up
on a bound orbit around the MBH and thus come back to interact with
it again in a second gravitational encounter, or they can end up on
unbound trajectories and fly away to populate the GC. We call these
two different types of binaries coming-back (CBs) and flying-away
(FAs), respectively. CBs can then either survive the second encounter
with the MBH (as a CB or a FA binary) or they can be disrupted and
dissolve into a HVS and an S-star (we dub disrupted binaries as Ds).
This series of events can occur for multiple subsequent pericentre
passages of their centre-of-mass (CM) orbit.

The dynamical interactions of stellar binaries with an MBH have
previously been investigated with different methods: three-body
scattering experiments (B. C. Bromley et al. 2006; A. Sesana et al.
2007; A. Generozov & H. B. Perets 2022), full N-body simulation
of a galactic nucleus (e.g. F. Antonini et al. 2010; F. Antonini, J. C.
Lombardi & D. Merritt 2011; I. Mandel & Y. Levin 2015; S. Prodan,
F. Antonini & H. B. Perets 2015; B. Bradnick et al. 2017), and
with the restricted three-body framework (e.g. R. Sari et al. 2010;
S. Kobayashi et al. 2012; H. Brown et al. 2018). The latter takes
advantage of the extreme mass ratio between the binary and the BH to
linearise the equation of motion and energy, so that they can provide
accurate results' with less computational resources; remarkably,
these results depend only on the geometry of the encounter and
eccentricities, but not on the physical properties of the binary.

In this paper, we use the restricted three-body framework, extend-
ing this formalism so as to be able to follow multiple encounters for
the first time. In particular, our goal is to provide the following.

(i) An identification of the orbital parameter space that mostly
contributes to any given outcome.

'We tested the accuracy of the approximation against full 3-body simulations
(similarly to what was done by R. Sari et al. 2010).

MNRAS 544, 1688-1709 (2025)
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(i) An assessment of how the single encounter distribution of
ejection velocities is affected by a second- and third-generation of
ejected stars, and of the fraction of those that can be considered as
HVS:s (in this work we define them as stars ejected from the GC with
velocity in excess of 1000 kms™!).

(iii) A description of the properties of S-stars and FAs.

(iv) The fraction of binary mergers.

The main novelty with respect to previous papers consists in the
detailed dynamical description of the outcomes (ratio and properties)
of multiple pericentre passages, where our results are independent of
the binary physical properties, such as masses, mass ratios and initial
separation. Additionally, we give an unprecedented description of
FAs that, as far as we know, have only been previously mentioned
but not analysed by 1. Mandel & Y. Levin (2015).

This paper is organized as follows. In Section 2, we introduce
the restricted three-body problem, by detailing how to compute the
binary and CM-orbit properties. In Sections 3 and 4, we present
results after one and three pericentre passages, respectively. In
Section 5, we present the distributions of binary and CM-orbit
properties (for ejected and captured stars and for FA binaries) in
a set of units rescaled with respect to the initial binary semimajor
axis, and normalized with respect to the initial binary energy and
angular momentum. These choices guarantee that our results hold
for a generic binary. Additionally, using physical units, we provide
an estimate on the predicted ratio of HVSs. Finally, in Section 6 we
discuss these results and draw our conclusions.

2 RESTRICTED THREE-BODY PROBLEM

The general three body problem is significantly simplified if we
restrict ourselves to an encounter between a stellar-mass binary (with
total m) and a MBH (of mass M). We can assume that the binary
components are initially much closer to each other than the massive
object, and that Q = M /mis Q > 1. For example when we consider
stellar-mass binaries orbiting Sgr As (M ~ 4 x 10°My) then Q is
of order 10°. This allows for the approximation of a ‘restricted three-
body problem’? where the MBH is taken to be always stationary.
Following R. Sari et al. (2010) and S. Kobayashi et al. (2012) we
solve the motion of the binary Centre of Mass (CM) around the MBH
a priori, as a simple keplerian orbit. We then integrate the evolution
of the binary system as its CM follows that fixed trajectory.

We now generically label the binary members 1 and 2 such that
m = m; + m, and define the binary mass ratio g = % (which we
take to be <1 always). Practically, we set out to calculate, as a
function of time, the distance of each binary member from the MBH,
ry =rem — (my/m)ryandry, = rey + (my/m)ry,, where rey, is the CM
distance, and r, = r, — ry the binary separation. We define the tidal
radius (i.e. the characteristic distance from the MBH at which a
binary would be expected to separate) as r, = Q%ab, where a;, is
the initial binary semimajor axis. Now we can make more explicit
the assumption that the binary separation is initially relatively small:
we require ap < ry initially. If above conditions are satisfied, the
formalism we present could apply to any scale, including planetary
systems and asteroids, and any type of ~point mass object, including

2Typically, the restricted three-body formalism is applied to a system where
only one of the three bodies can be considered as a test mass, e.g. the Moon
in the Earth—-Sun—Moon case. However, both the typical case and ours are
particular cases of ‘reductions’ of the three-body problem which assume that
some gravitational terms can be ignored, i.e. that some of the smaller masses
contribute negligibly to the dynamics of the larger masses.

MNRAS 544, 1688-1709 (2025)

cm

Figure 1. Diagram illustrating the frames of reference used in our calcu-
lations. [j . IA(} (solid light arrows) is a coordinate system centred on the
MBH, with I and J lying in the CM-trajectory plane (bigger ellipse), while K
is a versor perpendicular to it and parallel to L. A second coordinate system
(X, ¥, 2) (dotted arrows) is centred on the binary’s CM (at a distance r¢y, from
the MBH, marked with a black arrow). & and y lie in the binary orbital plane
(with X pointing towards the periapsis of the binary orbit — marked with a
small black dot). Z is perpendicular to it and parallel to the binary total angular
momentum Ly, (bold dark-ochre solid arrow). The inclination i is defined as
the angle between Ly, and its projection along the K direction.

compact stellar remnants like black holes and neutron stars. However,
given the case of interest here, we will generally refer to the massive
object as a MBH and to the binary components as stars.

Throughout this work, we will refer to the motion of the binary’s
CM around the MBH as CM trajectory, denoted with the subscript
cm. On the other hand, we call the orbit of the two stars the binary’s
orbit and denote their properties and characteristics with the subscript
b.

2.1 The centre of mass’s trajectory

In our restricted three-body problem, the MBH is always stationary
at the origin of our coordinate system. During each passage the
CM moves along a fixed trajectory. Although we start the first
encounter on a parabolic orbit, the trajectory changes between
successive passages and therefore the CM trajectory is a generic
conic orbit described by closest approach distance (pericentre) r,
and eccentricity e, and has position

ot | 1
T 14 eqmcos f r(l)f ’ M

rcm

and velocity

eY; —sin f
Vem = 4| ———— | €cm + COS . 2
rp(l + écm) 0 f @

Here, we have chosen the orientation of our coordinate system such
that the CM trajectory is confined to the /—J plane, with the CM
passing through the /-axis at periapse (see Fig. 1). The true anomaly,
[, is the phase of the CM trajectory (with f = 0 at periapse) and
follows

/= \/GrTBW(l + eem) 2(1 + €cmcos f)2. S
P
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The eccentricity of the trajectory obeys

2rpEcm 2Ecm L2,
o =1 Gatm =V T G @
with E., the CM-energy,
m . GMm
Em=— |rcm|2 - s (5)
2 Tem

aem the corresponding semimajor axis

GmM

aem = — s (6)
2Ecm

and L., the angular momentum

Lcm = mMrem X Vem, (7)

perpendicular to the plane of the CM trajectory (aligned to the
perpendicular versor K in the [i , ,7 , k] centred on the MBH). Note
that these expressions (using the appropriate mass) apply equally to
the individual components of a binary post-disruption. Fig. 1 gives a
visual representation of our coordinate system.

2.2 The orbit of the binary

A binary is fully described by its six orbital elements: semimajor
axis ay, eccentricity ey, binary phase ¢, inclination i, argument of
periapsis w and longitude of ascending node 2. The last three angles
together define the orientation of the binary’s orbital plane with
respect the CM-trajectory plane. It is useful to work in the frame of
the binary orbital plane, defined by unit vectors X, y, and Z, where
X is in the direction of the pericentre, and Z is perpendicular to the
plane of the orbit and parallel to the binary angular momentum (see
Fig. 1). In such frame, the binary motion is described by

1— 2
=== O (ot + sino)) ®)
and
G
m=va == o (iR + cos@) + ). ©)

In the CM-trajectory plane, the following relations hold

[cos Q cos w — sin 2 cos i sinw
X =|sinQcosw + coscosisinw |,
sin i sin w

[— cos 2 sinw — sin Q2 cosi cos w

y=|—sinQsinw+ cosQcosicosw |, (10)
sin i cos w
[ sin2sini
Z=|—cosQsini
cosi

These can be used to find the initial state of the binary for a given set
of initial conditions. Then, as r, and v}, evolve, we can compute the
new orbital elements via

Ey = poyvp — 2, (an
Ly = [|ILol| = pollre x v, (12)
ay = — Sam (13)

/ 2E, L2
ey = 1 —+ Gznl;z:g N (14)
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cosp = L (M _ 1) , (15)

€b b

. 1 ap(1-e?) ~
sing = -1/ =5, - Fo), (16)

and unit vectors

Fo = rp/lIroll,

Z = Ly/||Lyll,

; Ab/” all - (17)
X =Fycos¢ + (Fy X, Z)sin g,

y=ZxZ%,
which can be translated into

i = arctan ( (Z[0]2 + 2[11?), 2[2])

(13)

= arctan (£[2], §[2])
Q = arctan ([0], —2[1]) .

The inclination is of particular importance as it encodes the
direction of the angular momentum of the binary relative to that
of the CM trajectory, via cos(i) = L, - L., and thus, if the system
is prograde (cos(i) — 1), retrograde (cos(i) — —1) or intermediate
(cos(i) ~ 0).

2.2.1 EOM in the large mass ratio regime

The large mass ratio (M /m >> 1) ensures the validity of our ap-
proximation of a fixed CM trajectory and stationary MBH. We can
also simplify the Equation of Motion (EOM) governing the relative
motion of the two binary members, r,. Following S. Kobayashi et al.
(2012), we start by considering the EOM of each binary member
separately,

.. GM sz
Fl=——7Fr+——=(@r—-n),
T [ri —ra| (19)
Fp=——Frn—-———"=(@F—r).
r3 [ri —ra|
Then, the equation for the distance between the two stars is
. GM GM Gm
ry = —7,;r2 + 731'1 - Trb. (20)
ré ri }’B

We now assume that the distance between the two stars is much
smaller than that to the MBH and thus linearise the first two terms
of equation (20) around the position of the binary CM (rcy,),

GM GM Gm o\ 2
Foy = ———Fy + 3—— (P - Fem)Fem — —5-1o + O [ [ =) .
r3 rd r T
cm cm b cm

ey

We can rescale this equation in terms of a characteristic length-scale
A= (m/M)1/3rp and time-scalet = /rg/GM. The linearized EOM

can be rewritten in terms of the dimensionless variable n = %rb and
the shorthand for the derivative g’ = ¢ giving

3 2
0 = (’—") [0+ 30 - Fem) Fem] — 5 + O (i) .(22)
Tem [n] Yem

MNRAS 544, 1688-1709 (2025)
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1692  B. Sersante, Z. Penoyre and E. M. Rossi

Setting § = (1x, 1y, 1;), we explicitly rewrite equation (22) at first

order in dimensionless Cartesian coordinates,

(I + e cos )2
(1 + ecm)?

Nx
(2 +m2+n2)"

" N(l + eCmCOSf)3
(I + eem)’?

My
(3 +m + )"

v (temcosf) -
(1 + eem)? (r]% + 77% + r]?

Nx [—nx + 3(n, cos f + My sin f) cos f]

Ny [_ny +3(nycos f + Ny sin f)sin f7] 23)

z ) 3/2°
Numerical integrations can be performed in these general coordi-
nates, and the physical variables can be recovered by reintroducing
the dimensionally consistent combination of characteristics scales
(.. v = 21).

The relationship between time, ¢, and the CM phase, f, depends on
the trajectory under consideration; the results for a bound, parabolic
and hyperbolic trajectory are, respectively,

(1 - ecm)73/2(‘§ —emsing) for Ee, <0
/1= V2 (£ +8/3) for Eem =0 (24)
(ecm - 1)73/2(6(:"1 Sil’lhg - E) for Ecm > 07

where the eccentric anomaly & is related to the true anomaly
according to

A 1— 2 sin
arctan (M) for E., <O

eem-Hcos f
§€ =< tan(f/2) for Een=0 (25)
In (%ﬂm) for E., > 0.
(seee.g. L. Landau & E. Lifshitz 1976; C. D. Murray & S. F. Dermott
1999) where t = 0 at periapse.

2.2.2 Diving factor

One of the main parameter of our analysis is the dimensionless diving
factor, defined as

p=". (26)
p

which quantifies how deeply into the tidal sphere the binary can dive:
i.e. B < 1 corresponds to shallow encounters outside the tidal sphere
of influence, while 8 > 1 corresponds to deeper encounters within
it. The tidal radius, r, depends on ay,, which varies throughout the
interaction, thus we will use the initial value By to parametrize an
interaction, defined it in terms of the initial value of ay, 9. Specifying
the diving factor allows us to remove the degenerate term a:}—"o from
the initial conditions.

As we saw earlier in this section, it is convenient to rescale lengths
and times in terms of A and 7, which can be re-expressed in terms of
the properties of the binary and the diving factor as

A= Q0 '"Pr, =By ayo. Q27

| %[22 3P
P L g2 20 28
GM Gm Po 2n 28)

MNRAS 544, 1688-1709 (2025)

and
T =

where P, = 2m \/g is the period of the binary. Hence for g ~ 1
the characteristic scales of the problem are approximately the
characteristic length, time and mass scales of the binary.

In summary, the full behaviour of the system can be captured by
the initial parameters Q, g, Bo, €cm. €b.0, Po, i0, wo, 0, and fy (and
then scaled to physical units by specifying, for example, m and ay ).

3 THE FIRST PERICENTRE PASSAGE

In this section, we illustrate the numerical integration procedure
followed to analyse a single encounter between a binary and the
MBH.

3.1 Initial conditions and orbit integration

We need to choose an initial time early enough that the tidal influence
of the MBH is initially minor, but late enough that the simulation
only has to run for a few binary periods until the tidal influence starts
to become significant. Hence we choose #, (< 0 as periapse occurs
at t = 0) such that

. {—(t,l +NPy) iffy>landt, > 1z,
0:

—(tz + NPy) else (29

where t,, is the (positive) time at which the CM trajectory passes
through the tidal radius, ¢z is the time at which f = 7, and N
is approximately the number of binary periods before each of
these times occur. For systems which do not pass through the tidal
radius (8o < 1) or do so just before periapse (f, < tz) starting the
simulation slightly before f = —7% captures much of the curvature of
the CM trajectory without overly-long integration times. Generally
we have found N = 3 to be sufficient to capture the full interaction.
This recipe for choosing a suitable #, (as a function of By and ey)
essentially removes another initial parameter for our integration.
The initial position and velocity in our rescaled coordinates, 7,
and n; can be found from the initial orbital elements using the
relationships defined in Section 2.2, converting using a, o = BoA

Gm __ p—-1A
and o = By %

We integrate the system of equations (23) using the SCIPY function
odeint. Due to the presence of typically very different character-

istic time-scales we choose time-steps df = & min( Py o, t4yn) Where

[ : 32
tapn(f) = 2w/ &% =27 (|+21;";,"5(f)) T (30)

is the dynamical time for a given f. ¢ is a small factor chosen to
balance sufficient accuracy and low computational cost, for which
we find ¢ = 0.01 to be a generally suitable choice. In general the
binary period is small far from periapse (and thus sets the time-step
there) but the dynamical time defines the behaviour near periapse.

Comparison simulations performed with a full adaptive n-body
integrator, REBOUND (H. Rein & S. F. Liu 2012; H. Rein & D. S.
Spiegel 2015), shows in general excellent agreement, validating both
the numerical method and our analytically simplified EOM.

3.2 Outcomes of the interaction

As the CM trajectory is taken to be fixed, the associated energy, Ecp,
is constant. Over the integration the internal energy of the binary
changes by

AEy = Ey f — Ep,. 31
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From this we can approximate the transfer of tidal energy between
the CM trajectory and the binary orbit by conservation of energy,
and thus

Ecm.f = E;n — AEy, (32)

with E,; <0 (and E., taken to be O in the case of a parabolic
trajectory). If the binary final energy is positive (that is Ep, ; > 0),
then the binary will be unbound; we call these systems disruptions
(Ds). If instead the binary final energy is still negative, then the binary
will remain bound. Now there can be two outcomes: if Ep , > 0
the the CM is on an unbound trajectory, and these we call fly-away
binaries (FAs); if Ecn s < 0, the CM is bound to the MBH and the
system will return for a subsequent passage. We call these come-back
binaries (CBs).

In Fig. 2, we provide some examples of interactions representing
the three possible fates for a binary: a dirsupted system with
Bo = 1.17, a fly-away binary with By = 0.46, and a come-back
binary with B, = 0.61. Otherwise the initial conditions are all the
same with initially circular binaries (ep o = 0) on parabolic CM-
trajectories (e, = 1), initial orientation iy = wy = Q¢ = /2, and
binary phase ¢y = 7.

For parabolic CM trajectories (E., = 0) the eventual fate depends
entirely on whether the binary gains or loses energy: Ecp, f = —AEy,.
Thus, surviving binaries that shrink (ay, s < ay, ;) will be FAs while
if they become larger (ap, ; > ay;) they will be CBs.

Fig. 3 shows the likelihood of a given outcome as a function of
and i for initially circular binaries on parabolic orbits (marginalized
over ¢y, 20 and wy chosen uniformly and randomly between 0 and
2m). From here on, B is logarithmically sampled within the range
(0.33,3.00). This range is smaller than that considered in R. Sari et al.
(2010), S. Kobayashi et al. (2012), and H. Brown et al. (2018), as
it excludes very deep encounters. This choice allows us to focus on
the range of B preferred by dynamical scattering (see N. Stone &
B. D. Metzger 2015) and diving orbits in an axisymmetric potential
(Z. Penoyre, E. M. Rossi & N. C. Stone 2025). Finally, and most
importantly, these relatively shallower values of g yield the richer
range of outcomes, which is the topic of this paper.’

According to previous literature (see again R. Sari et al. 2010; S.
Kobayashi et al. 2012; H. Brown et al. 2018), the highest (lowest)
fraction of ejected stars is produced by initially prograde (retrograde)
binaries with at least B, = 0.4779703, while for smaller B, there
are no disruptions of initially circular binaries.

Now with a full range of inclinations we can further analyse
the possible outcomes. We can generally divide the behaviour be-
tween a strongly prograde regime (1 < cos(ip) < %), an intermediate
regime (% < cos(ip) S —%) and a strongly retrograde regime (—} <
cos(ip) < —1). We can see that Ds are prevalent in the prograde
regime for By > Bum but that this behaviour extends to intermediate
inclinations at slightly higher By, including frequent disruptions for
weakly prograde systems (0 < cos(ip) < —é) for By 2 1. Strongly
retrograde systems are much more resistant to disruption, with the
fraction never reaching 50 per cent.

3We do not account for the possibility of a star to be tidally disrupted. Indeed,
to determine if a given encounter can result in a TDE, we can find the value of
the diving factor that corresponds to r, ~ rrpg, where rpE is the tidal disrup-

) ) X u 1/3 ~1/3
tion radius of the star. As rrpg ~ 0.74 au (%) (m> (]"\"T"O) ,

i onds to 8 ~ Olotm) A
this corresponds to  ~ —glws ~
in this work.

13.5 which is beyond the range analysed
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Figure 2. Examples of orbits for a CB (orange), a FA (blue), and a
disrupted binary (green) obtained from initially-circular binaries on parabolic
trajectories for a set of phases and angular parameters sampled as described
in the text. In all panels coordinates are expressed in code units (see 2.2.2)
Upper panel: secondaries’ orbits in the comoving frame of their respective
primaries (colours change from lighter to darker as the system evolves). For
clarity, the initial trajectories are marked in black (dashed line for CBs, dotted
line for FAs and solid line for Ds). Centre panel: trajectories of the CMs after
tidally interacting with the MBH. In black the initial parabolic CM-trajectory
common to all the binaries. Lower panel: Zoom in on the captured and ejected
stars’ trajectories.

One way to understand the dependence on inclination is to think
about the timespan over which one member of the binary is the
closest to the MBH. Prograde binaries rotate with the trajectory, and
thus this timespan is longer, and the inverse is true for retrograde
systems. Thus, for more prograde binaries, the tidal force is acting
on the binary in a consistent sense for longer. A larger tidal force
(deeper encounter) is needed to have the same time-integrated effect
and disrupt more retrograde systems (on the stability of retrograde
and prograde systems see e.g. K. A. Innanen 1980; J. I. Read et al.
2006).

Below Biim almost all prograde and intermediate systems are
FAs; these also occur occasionally for retrograde orbits and in-

MNRAS 544, 1688-1709 (2025)
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Figure 3. Fractions of disruptions (D), fly-aways (F) and coming-backs (C) as a function of the diving factor By and the initial inclination io. The green, blue,
and orange contour lines highlight the regions of parameter space where D,F and C, are, respectively, at least 0.5. Lines are thicker when the contour is in the
corresponding panel. This figure is generated for 100 000 interactions with random initial conditions, except for ey o = O (initially circular binary) and ey, = 1
(on a parabolic orbit). The vertical dashed line corresponds to an inclination of % The dotted horizontal line is at Bjim = 0.4779703, the smallest value at
which an initially circular binary can disrupt. Top row: Fractions after a single passage. The equivalent behaviour for non-circular initial binaries can be seen in
Fig. Al. Bottom row: Overall fractions after three passages (as detailed in Section 4). The remnant fraction of comebacks (€3) will eventually add to either Ds

or FAs.

frequently across the remaining part of the parameter space. Ini-
tially retrograde systems are most likely to end up as CAs, even
at large Bps. Our simulations only cover By > 0.25 but there
is putative evidence that F' and C tend to 0.5 (i.e. both out-
comes equally likely) for shallower interactions, independent of the
inclination.

In summary, the three outcomes broadly occupy different parts of
the parameter space:

(i) Ds tend to occupy the area where cos(ip) = —1/3 and By >
ﬁlims

(ii) FAs the area where cos(ip) 2 —1/3 and By < 0.6,

(iii) CBs spans the entire B, range preferentially for cos(ip) <
—1/34

4We note that the values cos(ip) & 1/3 have been chosen pragmatically, with
the purpose of dividing the parameter space under consideration more clearly
and referring to the corresponding three channels of interest more easily.

MNRAS 544, 1688-1709 (2025)

We also perform the same analysis on non-circular initial binaries
in Appendix A, with broadly the same conclusions — excepting that
eccentric binaries can disrupt with By < By and that the overall
fraction of FAs is reduced.

In Fig. 4 (upper panel), we show the fraction of each outcome as a
function of B, marginalized over cos(i), i.e. the average for random
binary orientations. As expected, Ds dominate at high Bys (and are
still rising for our maximum value of 3.3), though, as shown in R.
Sari et al. (2010), even at very high 8 some small fraction of binaries
can survive. FAs are most common for 8 < 0.6 (~80 percent of
outcomes) and drop off steeply for deeper encounters. CBs are almost
always sub-dominant but consistently account for 220 percent of
the outcomes.

For a more complete characterization of the properties of FAs
and CBs after the encounter, we now refer to Figs (5) and (6),
respectively. Many surviving binaries have significant eccentricity,
with only strongly retrograde and low B, systems with e, ; < 0.2. As
regards the change in inclination, we see a clear difference between
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Figure 4. Upper panel: Fractions of Ds, FAs, and CBs (green, blue, and
orange, respectively), after one pericentre passage. Central panel: Compari-
son between the fractions of Ds, FAs, and CBs before (thin lines, same as in
the upper panel) and after period cut (dotted lines, same colours) as detailed
in Section 3.3.1 assuming an example binary with a, o = 0.1 au, m = 4Mg,
and g = % Lower panel: Comparison between the fractions of Ds, FAs, and
CBs before and after accounting for mergers (dotted lines, same colours) as
detailed in Section 3.3.2 assuming the same example binary. The gold dotted
lines marks the fraction of Ms after one passage.

FAs, which tend to become more retrograde, and CBs, which mostly
become more prograde. Finally for CBs we can ask what the initial
B of their next interaction will be. In general, the CM trajectory is
only marginally altered (e.g. the CM eccentricity changes by less
than 1 percent), and thus the dominant change is the enlarged ay,
causing essentially all CBs to come back with larger 8 (though only
marginally so in many cases). Combining these observations we can
see that CBs tend to come back with higher Bs, more prograde and
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Figure 5. Set of FAs resulting from one interaction between an initial
population of 100000 circular binaries on a parabolic orbit and the MBH
in the Bo—cos(ip) plane (marginalized over w, 2 and the binary phase),
coloured by the final FA binary eccentricity (top panel) and by the differ-
ence between their final (if r) and initial (ipr) binary inclinations (bottom
panel).

more eccentric. Thus, they generally move up and right in S, cos(i)
space towards the region where Ds are more likely. Even where the
change is marginal, they are moving towards the region where the
next encounter will cause greater changes in their properties and
thus, uninterrupted, may be expected to evolve eventually towards
disruption.

3.3 Physical constraints

The results presented so far are general and, therefore, applicable
to any kind of binary, independent of any physical properties of
the system, encoded in the underlying rescalings and characteristic
units. However, the channels presented so far can be influenced by
the star properties; in particular, we consider their finite lifetime
and size. The former can lead to CBs with a long CM trajectory
period to not survive until the next encounter. The latter can
lead to mergers. Smaller separation systems will have a smaller
characteristic dynamical time-scales compared to their lifetime, and
smaller radii objects will be less likely to interact tidally — thus
our previous conclusions can be expected to hold for tight compact
object binaries but may be increasingly affected for longer period
stellar objects.

In the next two sub-sections, we analyse these alternative
fates, by choosing an example binary (thus setting the physi-
cal time and length-scales) with apo =0.1au, m =4Mg (and

MNRAS 544, 1688-1709 (2025)
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Figure 6. Similar to Fig. 5, we show the properties of CBs coloured by the
final binary eccentricity (top panel), the difference between their final (if c),
and initial binary inclinations (ip,c) (centre panel), and the ratio between their
final (B c) and initial (By c) diving factors (bottom panel).

thus for Sgr Ax Q =10°), ¢ = 1 and stellar radii which obey

3
R/Ro ~ M /M.

3.3.1 Impact of stellar lifetime on coming-back binaries

If the lifetime of either star is shorter than the CM trajectory period,
these binaries can be considered to be FAs (in that they will not
experience a subsequent passage). In most cases we can expect that
the more massive primary has the shorter lifetime.

The MS lifetime of the primary in our example system (m; =
3Mp) is of order 100 Myr. In theory a system may not undergo a
Hills mechanism encounter until part way through their life, giving
a more stringent constraint, but we will ignore this for our simple
order of magnitude analysis.

MNRAS 544, 1688-1709 (2025)
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Figure 7. Distributions of the periods of the CM-trajectory of CBs as a
function of By, coloured by the cosine of the initial binary inclination (ip).
The vertical dashed line corresponds to Sjim. The horizontal dotted black line
marks periods of the order 108 yr (approximate life-time of MS stars).

We will compare the stellar lifetime with the period of the CM
trajectory of CBs around the MBH, which is’

m

GM’
The smallest possible P, corresponds to a CM trajectory with

the largest possible (negative) E.;,. Assuming an initially parabolic

CM trajectory E., = —AE}, and the largest possible A E}, is just less
than Ej o (the binary is almost but not quite unbound). In this case

P, =21

(33)

GMm Mm (1+¢q)*
Adem,min — — = ap,0 = Qiqab,O (34)
2E,o  mymy q
and thus
(1+4¢)°
Panmin = 0 Py . (35)
q 2

There is no maximum period as A Ey, can be vanishingly small, but
we can reasonably expect a characteristic period of CBs to be within
a few orders of magnitude of Pey min-

In Fig. 7, we show the periods of CBs from an initial population of
100 000 randomly oriented circular binaries. Below By, the energy
exchange is minimal (< E}, o) and the periods are generally very long.
Above B, the change in energy is much more significant, especially
for more prograde systems, and we see periods approaching Pem, min-
The median P, drops below 108 yrs for By ~ 0.75.

We can see the total effect in the middle panel of Fig. 4. As we
would expect the fraction of CBs is significantly reduced, with almost
none below By, with the effect reducing at higher 8. The fraction
of FAs is raised by the same amount (and Ds are unaffected).

3.3.2 Impact of mergers

Taking into account the finite size of the binary components allows us
to account for the possibility that components of a binary merge. We

5The definition we are using to compute the period is valid for orbits in a
Kepler potential. However, if the binary travels outside the MBH sphere of
influence, our description is no longer completely valid. Including the excess
mass enclosed at larger distances would reduce P.p,. Thus, in this respect our
cut is conservative, in that we use the maximum possible period.
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use merger to refer to any time the two binary members come close
enough to lose significant energy to tidal deformation. These systems
would evolve internally in a way not captured by our integration. In
some cases this may result in true collisions, in others possible mass
transfer and tight tidally circularized binaries.

Including mergers means introducing a new channel, which will be
referred to as Ms. In this section, we quantify the fraction of mergers
after one pericentre passage and assess the consequent impact on the
fractions of Ds, CBs, and FAs.

Practically, we consider a binary star as ‘merged’ when the primary
fills its Roche lobe (see P. P. Eggleton 1983),

0.49¢%"

R =
H T 06g75 +In(1 + ¢

: (36)

and become tidally deformed, i.e. when Ry ; < R;. We note that Ry ;
amounts to ~0.289 r for g = 1/3.

Thus a system is considered to merge if at any point the binary
separation r < Tmerge Where Ry 1 (Fmerge) = Ry Using a simple proxy
for the radius of a ~stellar mass star of R/Ry = M /Mg, this means
our example system has 7perge & 0.048 au ~ %ab,o. Although in our
model we do not explicitly follow the internal evolutionary processes
(such as tides) that can lead to a merger, our definition of ‘mergers’
implicitly encompasses all the possible pathways through which
a binary can internally evolve to eventually satisfy our merging
condition. Possible pathways would be, for instance, the effect
of tides resulting in an enhancement of the Roche lobe overflow
(causing it even before it naturally would via stellar evolution); other
possibilities would be a direct collision or the decay of the orbit into
a tight circular one. As we do not specify the mechanism leading to
the Roche lobe filling, what we call ‘mergers’ includes actually also
the case of tidally-interacting binaries.

Nevertheless, our treatment of tides is simplified and does not
capture potentially interesting regimes such as the weak tidal limit
or brief episodes of strong interaction (e.g. transient mass transfer
during periapse), as these cases lie beyond the scope of this work.

The minimum radii that our simulated systems reach are shown
in Fig. 8. Binaries that contribute to different channels (FAs, CBs,
Ds) reach the smallest rpi,/ap o in the same part of the cos(iy), Bo
parameter space: the blue stripe which is most evident in the second
panel. The exception for this is that for FAs there is no upper limit
where I'min/ap o returns to ~1. The behaviour is relatively uniform
up to this stripe, and then much more varied above it — which as
previously suggested may be due to encounters where the binary
undergoes multiple periods of deformation.

Returning now to the last panel of Fig. 4 we see that a significant
fraction of systems above B, merge, 20 percent or more. At 8 2
Biim the fraction peaks at 40 per cent, with most mergers coming from
systems that would otherwise be FAs. For 8 2 1 some of all three
outcomes contribute to the merger fraction, though the proportion of
FAs that become Ms remains the highest, and about 10 per cent of
systems that would disrupt on the first passage instead merge.

The stripe of low rp;, can have potentially large effects on CBs
at later passages (as we will detail in the next Section) since these
systems evolve towards becoming Ds by subsequent passages being
deeper and more prograde (up- and right-wards in these plots).
However, now they must pass through this merger valley to get there,
with many likely being forced to merge before they can become
Ds. The major exception to this will be systems that make large
enough jumps in B and cos(i) such that they pass right over it in one
jump.

Binaries’ encounters with Sgr Ax 1697
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Figure 8. Set of 100 000 initially-circular binaries on a parabolic orbit in the
Bo—cos(ip) plane, coloured by the ratio between the minimum dimensionless
distance rpyin and the initial binary semimajor axis ayo, after one pericentre
passage (marginalized over w, 2 and the binary phase) and divided into FAs
(top panel), CBs (central panel) and Ds (bottom panel). For our choice of the
binary and our definition of the merger condition (see Section 3.3.2), mergers
happen for rmin/ap,0 < 0.48, marked on the colourbar.

4 MULTIPLE PERICENTRE PASSAGES

Motivated by the presence of a significant fraction of CBs, we
proceed in this section with the analysis of multiple pericentre
passages. We start by defining the initial conditions that allow us
to follow the evolution of CB binaries from one passage to the next.
We then compare the fractions of binaries in the three channels after
three subsequent passages.

We start from our first set of simulations considering circular
binaries injected with different initial phases, inclinations, and
orientations on a parabolic orbit with a diving factor fy. We record
their final state, separating them into Ds, FAs, and CBs. The fates of

MNRAS 544, 1688-1709 (2025)
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any binaries that are disrupted or flyaway are resolved, but the CBs
will undergo subsequent encounters and should (after sufficiently
many passages) end up as either Ds or FAs.

Generally we assume that the final parameters of the binary after
one passage tell us the initial parameters for the next passage, i.e.
that any subsequent evolution away from pericentre or diffusion of
the parameters is small. The one parameter we cannot safely do
this with is the binary phase, ¢. It would be possible to calculate
this (via the final binary phase and the binary and CM period) but
as there will be many binary periods for a single CM period any
small dispersion in the total change in phase will, when mapped
to the interval 0 < ¢ < 2m, lead to almost complete uncertainty on
the actual phase. Thus for each comeback binary we simulate the
next passage with N,; = int(1/C,) random phases (which means
that for each encounter we simulate roughly the same number of
systems).

This procedure can be iterated for many passages, considering
only the CBs from the previous passage as initial conditions for
the next. Thus, each subsequent passage only explores the subspace
of parameters where CBs occurred previously, and, unlike the first
passage, all binaries will have E ., < 0 and e, > 0.

4.1 Binary initial conditions for subsequent passages

We can denote the properties at the final properties at the end of
the nth passage as, for example ¢ .. Similarly we can denote initial
properties at the beginning of the next passage, for example e’;jl . We
reserve the subscript 0, for example ey, o, for the initial conditions at
the beginning of the first passage.

Many parameters are assumed to be unchanged from the end of
one passage to the beginning of the next (i.e. egf,-rl = ¢}, ;) but others
need to be more carefully updated.

During an encounter, the binary changes its internal energy AE},
and angular momentum AL,. We assume that total energy and
angular momentum are conserved and thus these changes come at
the expense of those of its CM orbit:

EXl = E' — AE, ;, 37)

cm

Lt =L — ALy, ;. (38)

From these we can derive the orbital parameters of the new orbit
according to equations (4) and (6) respectively as

n n 2
en-H _ 1_|_ 2EC$1 (LCI:IFI) (39)
om = G2MPm®
GmM
art' = 270 (40)
2E7

Apart from the phase, all binary orbital elements are unchanged from
the end of the previous passage to the start of the next.’

We have been working with lengths and times rescaled in terms of A
and 7 (see Section 2.2.2). When analysing subsequent passages, these
require adjustment. Some of the binaries that survive disruptions
(CBs) will come back on elliptical CM-orbits, each with a different

®In theory, we should track also the orbital elements of the CM-trajectory
(fcm» Wem, and Qcm) and reorient our inertial frame for the next passage.
However, our assumption of a fixed CM trajectory means that our calculated
L., is inconsistent with our simulated r¢,, and vey, and thus weny, and Qe
are undefined. i¢y, can be found (and is always small, as the CM trajectory
changes only marginally between orbits) but given the lack of the other two
angles we do not consistently adjust the frame of reference.
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pericentre distance rp* = a%f'(1 — e¥"). The masses and mass
ratios are unchanged, and thus the total change to the characteristic

units are captured by

n+1 rn+l
)“n+l — PT)Ln — LK (41)
rp rp

and thus

3
rn+| rn+1 2
'L'n+1 = < P > " = (p T (42)
rl T
p p

(where rp, A, and 7 are the values for the first passage).
The new diving factor is

(ST

n+1 n+1 hn n+1

ﬂiH—l — ¢ — ab,i p n _ b,i rP ﬂ (43)
pn+l a. pntl a i+l 0-
P bi 'p b.0 Tp

Each subsequent passage effectively samples a subspace of the
B, cos(i), e, space (as shown in Appendix A) set by the CBs of
the previous passage cluster. The CM-trajectory is only marginally
perturbed (rp, ~ 7, and ey ~ 1) by the encounter and thus
our previous analysis of the parabolic case is still representative
of the behaviour. The slight negative offset from E., =0 bi-
ases the outcomes marginally towards CBs, and allows for rare
cases where the binary disrupts and both single stars remain
bound to the MBH (see S. Kobayashi et al. 2012 for further
discussion).

We can denote the overall fraction of CBs at the end of the nth
passage as

Cn = ﬁC,-, (44)
i=1

with C; the fraction of CBs for just the ith passage (it will also
be useful to define Cy = 1). We can then calculate D,, the overall
fraction of Ds at the end of the nth passages, by weighting the
contributions at each passages based on the corresponding fraction
of CBs giving

D, = Z C;_\D;. (45)
i=1

Similarly for FAs, the overall fraction of binaries that fly away to
populate the GC is

F,=) CiiF. (46)
i=l

We choose to characterize the eventual fate based on the initial
conditions at the first passage (especially By and ij), even when
there may be multiple subsequent passages with varying initial
parameters before the system resolves. This is equivalent to asking
what the end state of a given sample of initial close encounters
is, rather than focusing on the internal evolution between passages.
In other words, if we start with a given binary we describe the
state it ends in, agnostic to how many encounters it took to get
there.

4.2 Results for three passages

At each passage the remnant fraction of CBs decreases, eventually
resolving into either FAs or Ds. The process could be considered
complete when €, — 0. As we will show, most systems resolve
after a few passages but there are regions of parameter space that
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produce persistent CBs and would require a large number of passages
to asymptotically deplete. Thus we choose to show results after
three passages, by which point the remnant fraction is small and the
results likely capture all of the large scale behaviours of the high n
limit.

Returning to Fig. 3, we can now examine and compare the
cumulative fractions after three passages (bottow row). The most
striking feature is that there is now almost no dependence on
inclination for the prograde and intermediate regime (cos(i) 2 —%).
The population of CBs with intermediate inclination has almost
completely resolved, splitting relatively cleanly into Ds for 8 = 0.6
and FAs below that. There is a non-vanishing number of FAs even
at high B, especially for retrograde binaries. Interestingly there are
also some Ds with By < Bim and the fraction of disruptions close to
that limit is markedly increased. Essentially all of the remnant CBs
after three passages are retrograde, and the fraction is significantly
reduced everywhere except for a cluster of strongly retrograde
binaries.

We break this behaviour down in Fig. 9 where we show the
fractions of the binary population that go into different channels at
each passage. As CBs are more frequent in some regions of parameter
space, and as the returning binaries are now commonly eccentric,
we see different fractions from each passage. Most prominently
the fraction of FAs decreases markedly, and the fraction of CBs
increases — leading to diminishing returns on resolving the fate of
CBs with each subsequent passage. The total remnant fraction after
three passages, C; is generally small, at most 20 per cent for low S
and declining for deeper encounters.

We also show the weighted sum of individual passages, D3 and F3,
and can examine in particular how they are augmented from D; and
F). Particularly we note that there are now many more disruptions at,
and a small fraction slightly below Bjin. It is generally expected that
shallower encounters are more frequent (see for example N. Stone &
B. D. Metzger 2015; Z. Penoyre et al. 2025) and thus even a small
boost to D at low  may give a sizable increase to the actual number
of disrupted systems.

We examine these boosts more directly in the upper panel of
Fig. 10, showing the percentage increase in the fraction of Ds and
FAs after accounting for three passages. We see that FAs are boosted
by around 10 per cent for all 8, and that the effect for disruptions is
higher still. For 8 2 1 there is a consistent boost of around 20 per cent
to the number of disrupted systems, and this grows significantly
larger as we go to shallower encounters approaching By, (where
very few systems disrupt on the first passage). Extending beyond
three passages would (marginally) increase these boosts further, and
thus we can conclude that accounting for CBs significantly increases
the inferred number of FAs and, even more strongly, the number of
Ds.

We note that CBs could undergo secular KL oscillations (for their
characteristic period see Fig. 7). Including secular KL in between
passages (which is beyond the scope of this work) could affect the
final fate of the CB-binary, possibly enhancing mergers. Although our
calculations do not include scattering relaxation interactions with the
surrounding stellar cusp, B. Bradnick et al. (2017) show that these
can suppress KL resonance for binaries on highly eccentric orbits
around the MBH (which is the case for the CM-trajectories of CBs)
since they change L., on a time-scale that is shorter than the KL
time-scale. While our comparison is therefore only qualitative, we
expect that a full treatment including these effects would likely lead
to similar suppression of KL oscillations for the CM-trajectories of
CBs.

Binaries’ encounters with Sgr Ax 1699

4.2.1 Physical constraints for multiple passages

As we did for a single passage in Section 3.3 we can consider
limitations to which systems can comeback based on the physical
time and length-scales of the binary. Using again our example system,
with ap, o = 0.1 au and m = 4 M, we can discard the effects of CBs
whose CM trajectory is longer than their expected stellar lifetime
(period cut) or where the binary members come close enough to
tidally interact (merger cut). CBs which fail the period cut will be
treated as FAs, whilst those which fail the merger cut are classified
by a separate category of merged systems, Ms Including multiple
passages means that now both cuts can effect the total number of Ds
(whearas for a single passage the period cut only shifts the balance
between CBs and FAs) as some systems previously analysed will
now ‘fail” to comeback.

Fig. 11 shows effects of these physical constraints on the fractions
of Ds, FAs, CBs, and Ms after three passages. As we saw for the
first passage all low B systems are FAs, as the CM period of CBs is
so large here and the stars expire before they can return. Above By,
Ms are common (>20 per cent of outcomes), and the net effect of
these is to primarily suppress CBs and Ds. In particular CBs that,
after the first passage, would likely have evolved towards disruption,
are now pushed towards merging. It is still the case that Ds are
ubiquitous, if reduced in number by around 20 percent for 8 2 1,
though almost no systems close to By, disrupt. The number of FAs
above Biin is decreases with increasing 8, and may become negligible
for slightly higher $ than simulated here. These results would suggest
(if our example system is representative of the broader population)
a significant number of merged binaries in the GC, which are an
interesting object of study in their own right as they could possibly
explain G-type objects (see A. P. Stephan et al. 2019; A. Ciurlo et al.
2020).

The bottom panel of Fig. 10 shows the percentage boosts, subject
to these cuts, to Ds and FAs when including three passages. The
cuts slightly reduce the importance of subsequent passages, as they
generally reduce the number of CBs, but there is still a ~10 per cent
or greater increase to the number of disrupted systems, and slightly
less than 10 per cent for FAs with By > 1. The boost to FAs goes to
zero now at low S as no CBs in this space survive the period cut.
The boost to Ds is consistently of order 10 per cent, and the boost to
FAs is similar for 8 2 1. The number of Ms is significantly boosted
when including three passages, by 20 per cent or more for 8 2 0.6.
Thus we see again that if we did not follow the full evolution of CBs
to their resolution we would moderately underestimate the fraction
of Ds, FAs, and Ms that are produced by the Hills mechanism.

5 CLOSER LOOK AT EJECTIONS AND
CAPTURES

As seen we have shown in Section 4, multiple pericentre passages
should be taken into account to fully characterize the distributions of
ejected and captured stars as well as of FAs. Thus, in this Section,
we present the characteristic distributions of velocities, semimajor
axes and inclinations of Ds and FAs following three passages.
The characteristic units (as derived in Appendix B), which can be
rescaled for any three bodies that satisty the assumptions of the Hills
mechanism, are:

(i) vp = Q% A /2% is the characteristic velocity of an ejected
star, where m.,p is the mass of the corresponding captured component
(showing that we can get substantially faster ejections for the lighter
component);

MNRAS 544, 1688-1709 (2025)
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Figure 9. Top row: Fractions of Ds (D;, green), FAs (F;, blue), and CBs (C;, coral) as a function of Sy at the end of the ith passage. The vertical dashed grey
line marks Bjim. Panel 1 corresponds to passage 1 (bold lines), panel 2 to passage 2 (dashed lines), and panel 3 to passage 3 (dotted lines). Bottom row: In each
panel we show the fractions of systems ending up as Ds (left panel), FAs (centre panel), and CBs (right panel), respectively, after every passage (same lines as
the top row). We add the overall fraction after three passages, weighted on the number of CBs from the previous passage (Ds in dark green, FAs in navy, and

CBs in dark red).

(i) ap = %Qs - ay is the characteristic semimajor axis of the

captured componerijt of a disrupted system, where m,; is the mass
of the other component, and §p = 2Q*% %ﬁ” is the magnitude of
the characteristic change in the CM trajectory eccentricity (from the
initial value of 1 for a parabolic orbit).

(i) v, = ,/%‘b”o’z is the characteristic ejection velocity of an
ejected binary; .

@iv) &y = Q*% % B! is the characteristic deviation from 1 of
the CM-eccentricity of an ejected binary;

where for our example binary with initial semimajor axis of 0.1 au,
m=4Mog, g = 1 we find vp ~ 1300 km s~!, ap ~ 6.67 - 10% au,
and 8, ~ 0.0158~!, assuming the lighter component is ejected and
v, A~ 82 km s~ and 8, &~ 1.88 x 1078~ if the binary survives
the encounter. Note that only 8,/p depend on B, generally deeper
encounters do not generally produce more extreme outcomes.

5.1 Disrupted binaries

In this section, we present our results for the star properties following
abinary tidal separation: distributions of velocity for the ejected stars,
and those of eccentricity and semimajor axis for the captured stars.
We show results obtained after three passages and compare them
with those obtained after the first encounter.

MNRAS 544, 1688-1709 (2025)

5.1.1 Ejected stars

Fig. 9 shows the properties the ejected stars, as a function of Sy,
after one and three passages. We see that the characteristic vp well
captures the measured ejection velocity, except at low 8 where it is
a slight overestimate. The distribution after one passage shows that
for B 2 0.6 the majority of systems have v, between 0.75vp and
1.25\1]3.

As we saw earlier, CBs increase the number of Ds produced in
shallow encounters, and in particular they extend their production
below By iim (see Fig. 9). These additional ejected stars have me-
dian velocities higher than those produced in the first passage for
Bo ~ Biim, While they substantially extend the high-velocity tail at
each By for By < 0.75 (top panel in Fig. 12). Going towards deeper
encounters the median velocity after three passages is slightly lower
than after one encounter; i.e. the extra disruptions for later passages
are generally of lower velocity (though note that including more
passages only adds systems, so all of the high velocity ejecta are still
present).

We present the role of inclinations in the central panel of Fig. 12,
showing only our results for the first passage for clarity. Although
both prograde and less inclined (ip < 7/2) binaries can reach high
ejection velocities, there is an overall trend at a fixed B, where
increasingly prograde binary progenitors produce increasingly faster
ejections. In this trend, three regions stand out. At shallow encoun-
ters, the high-velocity tail is completely dominated by prograde
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Figure 10. Upper panel: Percentage boosts in the fractions of Ds (dark green,
upper line) and FAs (navy, lower line), between the first and third pericentre
passage, as a function of fy. Bottom panel: Fractions of Ds (dark green, inter-
mediate line) and FAs (navy, lower line), but accounting for Ms (gold, lighter
upper line) and stellar ages for a apo = 0.1au, m =4Mgp, ¢ = % example
system.

binaries, which also feature prominently at the value of the median
velocity vej/[vp] 22 1 for all By. On the other hand, the low-velocity
tail for our deepest encounters is entirely due to retrograde binaries.
As emphasized in the lower panel in Fig. 12 from g, ~ 1, the median
of the ejection velocity distribution is made by prograde binaries that
disrupt earlier’ (at the moment when the CM-trajectory crosses the
tidal sphere) than binaries populating the envelope. Their semimajor
axes become tighter then initially about the same time. The median is
made by binaries that disrupt before their initial properties undergo
significant change. Namely, disruptions resulting in the slowest
prograde ejections happen when a binary completes at most one inner
orbit while experiencing the MBH'’s strongest tidal interaction. The
upper envelope, on the other hand, is made by prograde binaries that
disrupt later on (after tidal crossing). Their initial properties undergo
significant change, for instance they evolve to be as tight as they
can be and still disrupt. Disruptions resulting in the fastest prograde
ejections happen when a binary completes more than one inner orbit
throughout the time of maximal tidal effects from the MBH. The
fastest ejections can analytically be explained as follows. We find that
all disruptions happen above a certain Sy, and in Section 5 we show
that the characteristic velocity vp of an ejected star is proportional
to ay (])/ 2 (see derivation of Equation (B32) in Appendix B). We note
that this confirms that the fastest ejections correspond to systems that
shrink to become the smallest binaries that can still disrupt. Then,
considering equation (27), we have that vp o B "2 Thus, we can

7We recall that f is a proxy of time, with f = 0 corresponding to pericentre
passage.
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Figure 11. Upper panel: Fraction of Ds, FAs, CBs, and Ms after three
passages (dotted lines — green, blue, red, and yellow, respectively) including
period and merger cuts based on our example binary. We compare these
to the fraction of Ds, FA, and CBs without cuts (thin lines). Lower panel:
Ratios between the fractions of Ds, CBs, FAs (same colour scheme), at the
end of three encounters, before and after accounting for mergers and stellar
age.

define a critical value of the characteristic velocity corresponding

ﬁ“f%’ describes the fastest

ejections possible, with B}, defining the scale of the smallest possible
semimajor axis that can be reached by a system while still being able
to disrupt.

Multiple encounters do not affect the maximum ejection velocities
but add ejections, of mostly retrograde binaries, across the full
velocity range, which is broadened at lower velocities with respect
to the first passage.

—-1/2 VD, li
t0 Biim, a8 Vp 1im X By, - Thus, = o

5.1.2 Captured stars

Fig. 13 shows the distribution of the characteristic changes (from 1)
in eccentricity and of the semimajor axes of the S-stars’ orbits around
the MBH. Analogously to those of the ejected stars, both are altered
at shallow encounters by additional disruptions from CB binaries.
With respect to the change in eccentricity, the median is about
the characteristic scale dp, such that e, ~ 0.98 for our example
binary. High eccentricities for the bound stars are compatible with
the observed eccentricities in the S star cluster (for instance S2 has
an eccentricity of 0.88466 %+ 0.00018). As regards the semimajor
axis, the median sits around the characteristic semimajor axis, which

MNRAS 544, 1688-1709 (2025)
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Figure 12. Distributions of the velocities of ejected stars as function of Sy.
Ejection velocities are expressed in units of the characteristic velocity vp (e.g.
~1300 km s~ for our binary of choice). Upper panel: Distribution after one
passage (black bold line) and three passages (dark blue dotted line). The
solid and dashed lighter lines show the 68 per cent and 95 per cent confidence
intervals for the first passage. The shaded regions show the equivalent for three
passages. Centre panel: Distributions of ejection velocities after one passage
as a function of By, coloured by cos(ip)), for 100000 sets of uniformly-
sampled initial conditions. Lower panel: Distributions of ejection velocities
after one passage as a function of By, of only prograde binaries, coloured by
f atdisruption for 100 000 sets of uniformly-sampled initial conditions. The
slope of the black dashed line is ~/Bo/Blim-

for our chosen binary is of the order of 10%au, also compatible
with the observed values in the S star cluster (S2 has a pericentre
distance of about 120 au and semimajor axis of about 970 au).
However, the dispersion is large especially for deeper encounter,
spanning one and half order of magnitude. The change in the
eccentricity of the captured star is of the order of §p ~ 0.015 (for
our example binary with 8 = 1), which remains around ~10~' in
our beta range (reaching ~0.045 for the shallowest encounter in the
range, corresponding to 8 = 0.33). Thus, it is the initial eccentricity
distribution of the injected binaries that shapes the final eccentricity
distribution of the captured stars. Our estimate for §p are consistent
with the work by D. C. Heggie & F. A. Rasio (1996), as shown
more explicitly by E. Addison et al. (2019) (see e.g. Fig. 3), where
the authors work in the approximation of the third body being more
massive than the binary.

We remark that the eccentricity distribution of the deposited stars
will rapidly thermalize due to the rapid redistribution in angular
momentum (see A. Generozov & A.-M. Madigan 2020).

As regards their final inclination, it can be estimated with equation

(B35), which provides the characteristic scale for the change in
inclination of the captured star. For our example binary this amounts,

MNRAS 544, 1688-1709 (2025)
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Figure 13. Similar to Fig. 12, we show the properties of the captured star
from a disrupted binary. We show the distributions of the eccentricities (upper
panel) and semimajor axes (lower panel) of captured stars as a function of
Bo- 11 — ecap| is expressed in units of dp (e.g. ~0.0158~" for our example
binary) and acap| in units of ap (e.g. 667 au for our example binary).

approximately, to

L e 0o 71/6( Mej ) (L) (E)m
Map = 5 QAT ”0'04(106) Mo ) \aMg ) \ T SO

which remains around ~10~2 in our beta range (reaching ~20.065 for
the deepest encounter we are considering, namely 8 = 3), meaning
that the inclination of the orbit of the captured stars around the MBH
does not significantly depart from the initial inclination of the CM-
trajectory of the binary system.

5.2 Hypervelocity stars fraction

In this section, we use our example binary to get an estimate for the
fraction of encounters that leads to HVSs. These are stars ejected
from the GC with velocities greater than the escape speed from
the Galaxy, and can therefore be potentially observed on their way
out in the halo of our Galaxy. As a velocity threshold, we choose
Vese = 1000kms™! which is a typical galactic escape speed for a
McMillan model of the MW potential (see P. J. McMillan 2017)
and is a reasonable assumption in our case, considering the order of
magnitude of the characteristic velocity vp for a solar mass binary
with initial separation of 0.1 au. We define

Hj = P(Uej > Uesc|Dj)7 (48)
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Figure 14. Top panel: fractions of HVSs (unbound stars with ve; > 1000
km s~ 1) ejected after three passages, using our example binary, as a function
of By. Before any cuts (dark red, upper underlying line), after period cut
(Peue = 108 yr) (yellow, upper front line), after merger cut (dark blue, bottom
underlying line), and after applying both cuts at the same time (light blue,
bottom front line). Bottom panel: fractions of HVSs after the first and third
passage (solid and dotted lines, respectively) without any cuts (dark red) and
with both cuts applied together (light blue).

the fraction of systems in passage with v¢j > vy and thus the overall
fraction after multiple passage is

A, =3 G H, (49)
j=1

Fig. 14 shows the fraction of interactions, as function of §, that result
in our example binary disrupting and giving a HVS. We include both
the period and merger cut, the former of which has only a marginal
effect except at low S, whilst the latter reduces the fraction by around
a quarter. We also show the difference between the fractions after
one and three passages, where we can see that without the period and
merger cut later passages significantly boost the fraction of HVS, but
that this boost is much reduced when including the cuts. Thus for a
system like our example binary most HVSs are produced on the first
passage. We can understand this as a consequence of the fact that
Ds at later passages tend to have lower v, generally. R. Sari et al.
(2010) showed that both stars, regardless of g, are equally likely to
be captured/ejected, however the characteristic velocity depends on
the mass of the captured star. This means that in the majority of these
HVSs are the lighter component, and that the heavier component can
only become a HVS for 8 2 0.6. For 8 2 1 we find that more than
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Figure 15. Similar to Figs 12 and 13 we show the properties of a fly-away
binary, after one passage (coral, lighter dotted line) and three passages (dark
red, dotted line). From top to bottom we show the: binary eccentricity, relative
semimajor axis, deviation from 1 of the eccentricity of the CM trajectory in
units of 83 (e.g. ~1.88 x 10~ for By = 1), and ejection velocity in units of
vg (e.g. ~82 km s~ ! for our binary of choice).

40 per cent of encounters involving our example binary produce a
HVS.

5.3 Flying-away binaries

In Fig. 15, we show the properties of FAs, binaries that are unbound
from the MBH but likely remain in the GC and are thus another
potential signature of Hills mechanism interactions. Although their
progenitors are circular, FAs are eccentric binaries with a typical
eccentricity of e, ~ 0.5 (approaching the average for a thermal
distribution of eccentricities of %) for By 2, Biim- Some near-circular
binaries persist up to 8 ~ 1, and below B, the induced eccentricity
reduces. The semimajor axis of the binary is slightly reduced by
the interaction, but by a factor of less than % even at the highest
B. Even for shallow interactions, 8 ~ 0.3, many binaries have still
been imparted with eccentricities of order e, ~ 0.1, whilst their
semimajor axes are essentially unchanged. This suggests that the
Hills mechanism is efficient in transferring angular momentum even

when energy transfer is marginal.

MNRAS 544, 1688-1709 (2025)
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Table 1. Fractions of the total initial systems ending up in each of the
channels at different passages and considering different or no cuts. Fractions
are here marginalized over all the parameters, including the diving factor.

Ds FAs CBs Ms HVSs
percent percent percent percent percent

Passage 1 No cuts 45.63 28.37 26 - 31.06
Lifetime 45.63  40.05 1432 - 31.06

Mergers 39.40 18.86 20.13 21.61 26.86

Mergers and lifetime 39.40 2956 9.44  21.61 26.86

Passage 2 No cuts 55.41 31.19  13.40 - 33.85
Lifetime 5436 4092 472 - 40.44

Mergers 4285 20.67 811 2836 33.32

Mergers and lifetime 42.46 29.81 195 2578 3299

Passage 3 No cuts 59.61 3232 8.07 - 3472
Lifetime 5726  41.07 1.67 - 34.15

Mergers 4385 2139 405 3070 27.34

Mergers and lifetime 43.14 29.84 047 2654 2698

The change in eccentricity of the CM trajectory and ejection
velocities are low, around an order of magnitude less than the
limiting characteristic units ég and vg. For our example binary these
correspond to Aec, ~ —107° and Vej ~ 10km s~! (two or three
orders of magnitude slower than stars ejected by disruptions), giving
a population of binaries only marginally unbound from the MBH on
very radial orbits.

6 DISCUSSION AND CONCLUSION

We have investigated multiple close encounters between a stellar
binary and a MBH, with the aim of characterizing the properties
of the resulting population of binaries, single stars, and merger
products. The mathematical formalism underlying our investigation
is based on the analytical treatment of the Hills mechanism (J. G.
Hills 1988). We model the interaction as a restricted three-body
problem under approximations made possible by exploiting the very
large difference in mass and length-scales between the binary and
the MBH (following R. Sari et al. 2010; S. Kobayashi et al. 2012;
H. Brown et al. 2018). We also tested our results against a full direct
three-body integration and confirm that our results are accurate.

We started with a population of circular binaries on parabolic tra-
jectories around the MBH, for a random distribution of binary phases,
orientations, inclinations, and diving factors. We first analysed the
fates of our systems after a single tidal encounter. Systems can resolve
into two definitive channels — disruptions (dubbed Ds) and ejections
of the binaries (Fly-Aways FAs). There is a third temporary channel
— the binaries survive the encounter and come back (CBs) to the
MBH for a subsequent encounter. By specifying the finite sizes of
the stars another resolution, mergers (Ms), are also possible (see
Section 5). Finally, employing the complete framework proposed in
(S. Kobayashi et al. 2012), we map the initial population into the
various fates mentioned above, and analyse each of them after three
encounters.

In the following, we summarize our results. We quote fractions
marginalizing over all parameters (see Table 1) and present both the
results of a single encounter — which depend on the properties of the
incoming binaries (diving factor 8, eccentricity ey, and inclination
cosi) — and results at the end of multiple encounters, cast in terms
of the initial parameters (i.e. of those at the beginning of the first
passage), such as the initial 8y and inclination cos iy, of the binary.

(i) CBs. There is a significant fraction of CBs (~26 percent)
after the first passage; this fraction is progressively reduced in later
passages, and reaches ~8 per cent at the end of the third one, as CBs
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become FAs or Ds. As a consequence of the first encounter, when
approaching as circular binaries, CBs become eccentric, and follow
deeper-diving CM-trajectories than initially; if they change their
inclination at all, they become more intermediate or prograde (see
Fig. 6). CB binaries preferentially originate from mildly retrograde
and retrograde encounters, that can occur through the whole B
range explored here, with eccentricity up to e, ~ 0.8; approaching
prograde binaries can also become CBs, when on shallow encounters
(B < 0.48) and modest or high eccentricities of at least e, ~ 0.2 (see,
rightmost upper panel of Fig. 3 and rightmost column of Fig. A1).

(ii) Ds. Binary disruption is the most common outcome in our
parameter space. The disruption fraction is ~46 per cent after one
passage, and increases to ~60 percent (with an almost constant
boost of 16 percent for 8y > 1) at the end of the third encounter,
due to the fresh batch of CBs, whose aforementioned properties
(eccentric, more prograde, on deeper encounters) make them more
prone to disruption in the subsequent passage. Indeed, binaries end
up preferentially disrupted for intermediate and prograde orbits
and for deep encounters (8 2 0.4); retrograde binaries can also be
disrupted, if highly eccentric (e, 2 0.7), and/or on a deep encounter,
increasingly deeper for increasingly retrograde binaries (see leftmost
upper panel of Fig. 3 and leftmost column of Fig. A1). This explains
why, in the parameter space of the initial encounter (leftmost lower
panel of Fig. 3), multiple passages allow disruptions to populate
the space below By & 0.48 as well as retrograde inclinations (i.e.
cosip S —0.5), where instead no disruptions occur in the first
passage.

(iii) Captured stars. The binary member captured by the MBH,
ends up on a bound eccentric orbit; when using our example binary,
the median values of its orbital properties are the typical ones: the
eccentricity is eg ~ 0.98 and the semimajor axis is as ~ 6.67 x
10? au (with the bigger spread, between ~67 and ~2000 au, at deeper
encounters), consistent with the orbit of S2 in the GC, (see Fig. 13).

(iv) Ejected stars. After three passages, ejected stars have a

median velocity about the characteristic velocity vp = Q'/¢, / %

(*1300kms~! for our example binary) for B, > 0.48, while lower
velocities down to 20.5vp are reached for smaller fys. The velocity
distribution is shaped mostly by the first encounter, while subsequent
passages extend the distribution at lower Bys, and lower the median
velocity at deep encounters by ~0.1vp, : e.g. for our example binary
the median after three passages at deep encounters is smaller by
~130kms~! than that at first passage, (see Fig. 12).

(v) HVSs. When considering our example binary, we refer to
HVSs as stars ejected with a velocity greater than 1000 km s~!, which
occur preferentially (i.e. for more than 50 percent of the total) for
Bo = 1, with the dominant contribution due to the first passage. The
fraction of HVSs after one passage is about ~31 percent of the
total injected binaries, reaching ~35 per cent at the end of the third
one. Preferencially, the lighter compation is ejected as an HVSs
independenty of Ss: this is because CBs are on bound orbits, and the
more massive — carrying most of the orbital energy — is more likely
to continue on a bound orbit, i.e. to be ‘captured’, (see S. Kobayashi
etal. 2012).

(vi) FAs. The FA fraction goes from ~28 percent at the end of
the first passage to ~32 percent at the end of the third one (with
the an almost constant 10 percent boost below Bj,, which then
decreases at deeper encounters). FA binaries preferentially originate
from shallow encounters (below By ~ 0.48); additionally, when the
approaching binary has an intermediate or prograde inclination, it
becomes a FA if of low eccentricity up to e, ~ 0.4, while the opposite
is true for retrograde binaries (see, central upper panel of Fig. 3 and
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central column of Fig. Al). Their fraction distribution is shaped
primarily by the first passage because, once again, the CBs are more
inclined to disrupt at the subsequent encounter (due to their orbital
properties). FAs are ejected on slightly hyperbolic orbits (e, = 1),
with velocities lower than those of ejected stars by ~2 order of
magnitudes (8.2 kms~! for our example binary). They get tighter
after tidally interacting with the MBH (due to energy conservation)
and become eccentric: e, < 0.4 below 8 ~ 0.48 and ¢, < 0.6 for
deeper encounters (see Fig. 15).

(vii) Impact of lifetime. When considering our example binary,
we take into account the finite lifetime of MS stars to assess if CBs
in fact have time to go through a subsequent encounter. CBs are
reduced by a ~12 percent (to ~14 per cent) at first passage. This
progressive reduction in the CB fraction, by the end of the third
encounter determines a reduction of the D-fraction by ~3 per cent
and a boost of the FA-fraction by =9 per cent.

(viii) Mergers. When considering our example binary, we can
introduce mergers as a fourth channel. By the end of the third passage,
the fraction of mergers is ~31 per cent and it causes the D-fraction
to be reduced by 16 per cent, the F-fraction by by 10 per cent and the
CB-leftover fraction by 4 per cent. If we consider, on top of mergers,
the effect of the stars’ lifetime, after three pericentre passages 43.14
per cent of the binaries disrupts, 29.84 per cent flies away and 26.54
per cent merges (with a leftover of CBs of 0.47 per cent).

(ix) The median parameters distributions after multiple encounters
is generally similar (slightly more moderate) to the distribution after
the first passage. The exception to this is shallow encounters (low S)
where Ds from later passages can result in faster ejecta and tighter
bound captured stars.

(x) Including three passages boosts the number of Ds by 20
per cent or more, and markedly increases the number of disruptions
from shallower initial encounters. FAs are boosted by about 10
per cent, showing that CBs after the first passage are more likely
to resolve as Ds. For stars of finite size and lifetime we can also
apply a period and merger cut, reducing the boost to Ds to about 10
per cent, but with 20 per cent or more systems merging after three
passages compared to just one. We limit ourselves to three passages
to limit computational cost, with most CBs having been depleted by
this point, but simulating further passages is possible and will further
(marginally) boost the number of Ds, FAs, and Ms.

In their work, A. P. Stephan et al. (2016) find a significant fraction
of KL-induced mergers, of about 13 per cent of their initial population
after a few million years and 29 per cent after a few billion years using
Monte Carlo simulations (including the orbits secular evolution,
general relativistic precession, tides, and post-MS stellar evolution).
F. Antonini et al. (2010) also follow binaries that remain bound
for several revolutions around the SMBH with N-body simulations.
They find that HVSs are primarily produced in the first passage while
collisions and mergers increase significantly for multiple encounters
(due to KL resonance of the internal binary). The mergers presented
in this work are a different class of systems: dynamically-originated
mergers, occurring on the binary time-scale at pericentre and for
much shallower encounters than those investigated in the above-
mentioned works. I. Mandel & Y. Levin (2015) and B. Bradnick
et al. (2017) estimated that the fractions of such mergers for
a population of 1000 binaries in radial and shallow encounters
(Bo ~ 0.5), is, respectively, ~6 per cent and 80 per cent. They follow
the binaries until their complete depletion (into HVSs or mergers,
without analysing FAs). Our work complements the above results by
exploring the full 8 and cos(i) range, especially as the treatment used
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allows many quick and efficient simulations. We follow systems to
their final outcome and show the properties of the resulting systems.

Most of our findings are general, allowing any choice of the initial
binary. These results apply to any system where the physical length
and time-scales do not interrupt the repeated interactions, and is
thus directly relevant for a tight compact object binary (a promising
progenitor population for EMRIs). We also choose a specific example
system, a massive stellar binary, aiming to highlight the relevance
of this approach to HVS candidates and the nuances presented by a
short-lived system that may be subject to the binary merging. In this
work we only account for stellar MS lifetimes. Post-MS evolution,
although rapid and therefore unlikely to overlap significantly with
tidal interactions, is expected to lead to mergers; in fact, the hybrid
cases of overlap could provide an interesting addition for future
work. More explicitly, mergers would be facilitated by the evolution
of the stellar radius; during the MS phase, the radius of a star (with
mass below ~10 Mg) changes typically within less than a factor 2,
while when the star enters the red-giant branch (RGB) its outer layers
expand significantly, leading to an increase in radius of roughly one to
two orders of magnitude (R. Kippenhahn & A. Weigert 1990). Thus,
during the RGB phase it becomes more likely that a binary merges
(according to our definition of merger), more so for FAs than for CBs,
as the former are tighter and the latter wider. For instance, mergers
in wide binaries due to Roche lobe overflow during the post-MS
expansion of the more massive star, are considered by A. P. Stephan
etal. (2016) who, after 6 Myrs of evolution, register only a few of such
mergers, reaching 10 per cent after 10 Gyrs. For disrupted binaries,
the captured companion will eventually evolve into a red giant and
may undergo a TDE. However, since most of the evolution of a low-
and intermediate-mass star is dominated by the MS phase, during
which the radius remains relatively stable, the overall influence of
stellar evolution for low- and intermediate-mass binaries would be
an increase of mergers (in the narrow time-window between the end
of MS and the dynamical merger of the binary). Massive stars, on the
other hand, would not have time to come back for a second encounter
(due to their shorter lifetimes). So, the multiple-passages analysis
presented in this work does not apply for massive stars (unless the
encounter happens on very short time-scales). Accounting for stellar-
evolution in this case would result in having as outcomes only FAs
and Ds (the latter when the binary components are driven apart if
one becomes supernova).

In a follow-up paper, we will further explore different astro-
physically motivated initial binary populations, to provide valuable
predictions and insights on a broad range of transient phenomena
(EMRIs, TDEs, QPEs) occurring in the GC, and the impacts on its
stellar population.
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APPENDIX A: EFFECT OF ECCENTRICITY

Although we start with initially circular binaries those that comeback
for subsequent passages can be (and generally are) eccentric. Thus
in Fig. A1, we show the fractions of outcomes (D, F, and C) for a flat
distribution of eccentricities (as can be compared to Fig. 3).

We see that more eccentric systems are more susceptible to
disruption and allow disruptions at lower Sy. For high e, (20.8)
the dependence on inclination almost disappears, with retrograde
systems similarly likely to disrupt as prograde. The fraction of
FAs is much reduced for even mild eccentricities (ep o 2 0.1) and
correspondingly there are more systems that comeback.

So for initially higher eccentricities, systems are generally more
prone to disrupt and CBs more likely (the FAs fraction changes
accordingly), with inclination playing a reduced role at high eccen-
tricities. These results motivates the analysis of multiple passages and
help to interpret the consequent results (e.g. the fractions distributions
in the lower panel of Fig. 3 or the disruption boost observed in Fig. 9
after subsequent passages).
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Figure Al. Fractions of disruptions (D, top), fly-aways (F, middle), and
coming-backs (C, bottom) after a single passage for binaries with a flat
distribution of initial eccentricities. We show the outcomes as a function of
the initial conditions By, cos(ip), and ey o. For each two dimensional plot
the results are marginalized over the third dimension. The vertical dashed
line corresponds to an inclination of Z: we call binaries around this angle
intermediate, those on its left retrograde, and those on its right, prograde.
The dotted horizontal line is at Bjim. This figure is generated for 100 000 sets
of initial conditions.
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APPENDIX B: CHARACTERISTIC UNITS OF
THE HILLS MECHANISM

Let us start by considering a generic situation where the energy of a
particle of mass m; is perturbed by the presence of a mass M by an
amount AE and its angular momentum by AL; the particle’s final
properties can be described as

E = Ey+ AE, (B1)

L=Ly+ AL (B2)

From these, we can define the (change of) characteristic scale of the
other orbital properties (i.e. semimajor axis, velocity, eccentricity,
and inclination, respectively) as

GMm;

4= —3GrAB (B3)

v = /2(E0JAE) (B4)
2E(L-L 2EoL3 2

2o 2EE D 2Bk . (BS)
G>M?m; G’M?m;  G>M?’m;

((Eo + AE)2((Lo - AL) + (AL - AL)) + AEL()

1+(AL-Lg) _ 1+AL, B6
\/1+2LLO(AL~IA,0)+(%)2 \/1+2AL—%Z+(§—5)2 (B0
where, in the last equality of the expression for cos(i) we assumed
that Ly = Loz (i.e. that the initial orbit is in the x,y plane).
We can define the characteristic scale of AE and |AL| as € and A,
which then set the characteristic scale of the (change of) other orbital

properties. With relevance to this work (following S. Kobayashi et al.
2012), we make the simplifying assumptions that

cos(i) =

(1) |AE| ~ € > |Ey| (i.e. the particle’s trajectory is close enough
to parabolic to ignore its initial energy);

(i) |AL| ~ A < |Lo| (i.e. the initial orbit has significant angular
momentum).

The former assumption (of a parabolic trajectory) implies that
whether the new orbit of the particle is bound or unbound depends
only on the sign of AE.

If AE > 0 the particle’s will move a trajectory unbound from the
massive perturber and will escape to infinity with a characteristic
velocity

v~ 1/2—6. B7)
m;

If AE < 0, the particle moves on a bound orbit around the mass
M. The characteristic semimajor axis of the new orbit is

GMm;
o ~ 2 (B8)
2¢
and its eccentricity (in the parabolic case, to first order) is
S 2AEL} B
< Gy ®

We can express this in terms of §, which corresponds to the

characteristic size of |1 — e[, as follows
Lie

~0 B10

G*M*m} ®B10)

In the parabolic approximation and making a small angle approxi-

mationas , /L2 + L§ = AL, < Lg, we can derive the characteristic

MNRAS 544, 1688-1709 (2025)

920z Atenuer 6z uo 1senb Aq €61 7628/889L/2/FS/0101E/SEIUW/WOD dNODlWaPEIE//:SA)Y WO} PSPEOJUMOQ



1708  B. Sersante, Z. Penoyre and E. M. Rossi

change in inclination as

A, A

n Lo ﬁLo ,
where A, is the characteristic change in angular momentum tangen-
tial to the initial direction. We have found it a reasonable assumption
for the Hills mechanism that A, ~ A, ~ % (i.e. that on average
there is equal transfer of angular momentum in the perpendicular
and parallel directions).

(B11)

B1 Characteristic change of energy and angular momentum

We now determine the values for € and A corresponding to the
dimensions of the problem at hand (for a bound binary and a disrupted
one, respectively).

B1.1 Characteristics of a bound binary

We now consider an initial binary with masses m; and m,, mass ratio
q = my/m; < 1 and initial semimajor axis ay ;, moving around and
MBH with mass M (with Q = M /m > 1). Its initial energy is given
by

Ey = ——72 P2 (B12)

Any change in energy of the binary, A E},, while the binary remains
bound, will be of order |Ey;|. Thus, it is natural to define a
characteristic energy® of the binary

Gum

€ = |Epi| = (B13)

Zab,i ’

where the reduced mass u = mm,/m.
Similarly we can define the characteristic angular momentum of

the binary in terms of the maximum angular momentum (for a given

energy) corresponding to a circular orbit

Ab = Ly cire,i = pn/Gmay,;. (B14)

If we consider the restricted three-body treatment of the problem
and use the natural units of the Hills mechanism introduced in Sgction
2.2.2, we can express the above scales as €, = ml

1 _q _m
2 vy o and
_ g mi?
Ao = VB

B1.2 Characteristics of a disrupted binary

The characteristic units in case of disruption can be found in the
high g limit (though, as shown in the main text, they agree within a
factor of a few across all B). Extreme B corresponds to an r, — 0,
which reduces to the simpler dynamical case of radial infall of the
CM. Taking ¢ = 0 as the moment when r.,;, = 0, then the CM motion
follows

1
Fem = (%) ' (B15)

1
ven = 1 (441%) (B16)
(with v, negative during infall, r < 0, and positive afterwards). At

large times, the distance goes to infinity and the velocity to 0, and

8As Eyp is the most energy a binary could gain and remain bound this
characteristic energy is an upper limit, and thus all characteristic units that
depend on e will be upper or lower limits.
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thus the energy of the CM-orbit is 0. Similarly, as the motion is along
a straight line towards the origin the angular momentum is also zero.

To determine the corresponding characteristic scales, we can
approximate the true behaviour of the binary assuming that it
is unaffected by the MBH until it reaches the tidal radius, and
completely dominated by it after that point. This approximation is
the more accurate the deeper the encounter is (large $ limit). Thus,

: : s ot : Gm
the binary will have characteristic separation ap and speed o up

to and including the moment it reaches the tidal radius.

2r[3
IGM

At the moment of separation (rem = 1), t =1 = — and

VUem = Uy = —4/ g Taking the binary’s instantaneous relative
displacement and velocity to be r =r, —r; and v = v, — vy, re-
spectively, then the positions and velocities of either mass 1 or 2
is
rip =Fem F @r and v, =ven F @v. (B17)
m m

Until the binary has separated we have that |r| < |ren| and |v| <
|vem|; thus, we can expand the energy and angular momentum to first
order as
m@y-vi2)) GMm

Ei»,=
2 12

myy minm, GM
~ EyF (vcm'v+ 3 (rcm'r))
m m re

cm

(B18)

and

Lo =mprip Avip

(B19)
~ L112L() F i (r Avem +Fem /\V),
m

where Ej and L are the initial energy and angular momentum of the
CM.

We now consider our case of interest, where E( and Ly = 0 (radial
case). We substitute for the centre of mass |re,| ~ i, |Vem| ~ Vs

Gm

. 1
and for the binary |r| ~ ay, |v| ~ e and use r, ~ Q3ay. Then,

ignoring geometric terms of order unity, the characteristic changes
in energy and angular momentum are, respectively:

e = Q3 9™ = 20i¢, (B20)
_ nimm _ Nt
Ap = Q3™™2 /Gmay = Q3 Ay. (B21)
1
In characteristic units they can be expressed as ep = % a f(,)z ”?22

and Ap = Q%\/Fafq)z @

These characteristic units hold true for a wide range of g (1)
where the assumption of a radial orbit with zero angular momentum
is no longer true. For general § the initial angular momentum of the
centre of mass orbit is

Lem = \/(1+ecm)GMm2rp= 1/%\/ ZGQ%I’”3 (B22)

B2 Characteristic scales of orbital properties

From the characteristic energy and angular momentum scales ob-
tained in the previous section, we now derive the corresponding
scales for the orbital properties of bound and disrupted binaries.

B2.1 Bound binaries

For surviving binaries (e.g. FAs), m; = m and Ly = L., and the
relevant characteristic units to use are €g and Ag. These translate
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to the following characteristic scales for semimajor axis, velocity,
deviation of eccentricity from 1 and inclination, respectively:

op = Q%ab, (B23)
vy =4/ K, (B24)
b= Q35 (B25)
M = Q*%@%, (B26)

B2.2 Disrupted binaries

For disrupted binaries the characteristic units are €p and Ap and the
mass of interest is m; is either m; or m,. Now Ly = %Lcm (and
Ey = 0). If we define the factor

r=20"2.

m;

(B27)

then the characteristic scales for a disruption can be written simply
as:

Vp = F% Vb, (BZS)
ap =Ty, (B29)
op =T -6, (B30)
© The Author(s) 2025.

Binaries’ encounters with Sgr Ax 1709

np = 5T - mp. (B31)

Given that T" is significantly greater than one, we can see that
disrupted binaries result in faster ejections, much more eccentric and
inclined orbits, and substantially tighter orbits with respect to bound
binaries.

We note that while I" can be arbitrarily large for a small m,, it is,
in every case, balanced by u — m,. In these cases, namely when
q < 1, the properties of surviving binaries are barely changed, and
its only the lighter companion that can have extreme velocities.

Re-expressing these in terms of the physical scales of the problem
we obtain,

vp = 06,262 (B32)
m;iay

ap = 505 Ma, (B33)

sp =205 1. (B34)

and

1

=307t (B35)

mi
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