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A B S T R A C T 

The autocorrelation function of the L yman- α (L y α) forest flux from high- z quasars probes the small-scale structure of the 
intergalactic medium (IGM). The thermal state of the IGM, determined by the physics of reionization, sets the small-scale power 
observed in the Ly α forest. To explore the sensitivity of the autocorrelation function to the IGM’s thermal state, we compute 
the autocorrelation function from a cosmological hydrodynamical simulation with an instantaneous reionization model and 135 

post-processed thermal states. Using mock data sets of 20 quasars, we forecast constraints on T 0 and γ , which characterize the 
post-processed IGM thermal state, at 5 . 4 ≤ z ≤ 6. While this model simplifies the IGM’s thermal state, it serves as a key first step 

in assessing future observational prospects. We also perform an inference test on mocks and re-weight out posterior distributions 
to guarantee that the y e xhibit statistically correct behaviour. At z = 5 . 4, we find that an idealized data set constrains T 0 to 59 

per cent and γ to 16 per cent at the 1 σ equi v alent confidence level. To explore more realistic, non-instantaneous reionization 

scenarios, we analyse four models combining temperature and ultraviolet background (UVB) fluctuations at z = 5 . 8. We find 

that mock data generated from a model with both temperature and UVB fluctuations can rule out a model with only temperature 
fluctuations at the > 1 σ level 73.9 per cent of the time. 

Key words: methods: statistical – intergalactic medium – quasars: absorption lines – dark ages, reionization, first stars. 
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 I N T RO D U C T I O N  

nderstanding the epoch of reionization, the time period where the
rst luminous sources emitted photons that re-ionized the intergalac-

ic medium (IGM), remains a major open problem for studies of the
arly Universe.The midpoint of reionization has been constrained
s z re = 7 . 7 ± 0 . 7 from the cosmic microwave background (Planck
ollaboration VI 2020 ). Initial measurements of transmission in the
 yman- α (L y α) forest (Gunn & Peterson 1965 ; Lynds 1971 ) of
igh redshift quasars suggested that reionization was complete by
 ∼ 6 (Fan et al. 2006 ; McGreer, Mesinger & Fan 2011 ; McGreer,
esinger & D’Odorico 2015 ). Additional methods used to constrain

eionization include observations of Ly α emission from high redshift
alaxies (see e.g. Jung et al. 2020 ; Morales et al. 2021 ) and large Ly α
bsorption troughs (see e.g. Becker et al. 2018 ; Kashino et al. 2020 ).
easurements of the Ly α forest optical depths scatter on levels that

uggest reionization is not actually complete until z < 6 (Fan et al.
006 ; Becker et al. 2015 ; Bosman et al. 2018 ; Eilers, Davies &
ennawi 2018 ; Yang et al. 2020 ; Bosman et al. 2022 ). 
An alternative, indirect method to constrain reionization is by

ooking at the thermal history of the IGM at z > 5 (Boera et al.
019 ; Walther et al. 2019 ; Gaikwad et al. 2020 ). During reionization,
 E-mail: mawolfson@ucsb.edu 
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onization fronts propagate through the IGM and impulsively heat
he reionized gas in the IGM to ∼ 10 4 K (McQuinn 2012 ; Davies,
urlanetto & McQuinn 2016 ; D’Aloisio et al. 2019 ). The details
f the driving sources, the timing, and duration of reionization will
etermine the precise amount of heat injected. After reionization,
he IGM expands and cools through the adiabatic expansion of the
niv erse and inv erse Compton scattering off CMB photons. The

ombination of these physical processes will allow the IGM gas to
elax into a state described by a tight power-law relation between the
emperature and density: 

 = T 0 � 

γ−1 , (1) 

where � = ρ/ ̄ρ is the o v erdensity, ρ̄ is the mean density of
he Universe, T 0 is the temperature at mean density, and γ is the
lope of the relationship (Hui & Gnedin 1997 ; Puchwein et al. 2015 ;
cQuinn & Upton Sanderbeck 2016 ). The low-density IGM has long

ooling times, so the thermal memory of reionization will persist for
undreds of Myr. This means that thermal state of the IGM at the
nd and after reionization, z ∼ 5 − 6, can pro vide ke y insights into
eionization (Miralda-Escud ́e & Rees 1994 ; Hui & Gnedin 1997 ;
aehnelt & Steinmetz 1998 ; Theuns et al. 2002 ; Hui & Haiman
003 ; Lidz & Malloy 2014 ; O ̃ norbe et al. 2017 ; O ̃ norbe, Hennawi &
uki ́c 2017 ). 
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The Ly α optical depth, τLy α is related to the temperature via 

Ly α = n HI σLy α ∝ T −0 . 7 / 	 UVB , (2) 

ee Rauch ( 1998 ). Several statistics have been used to measure the
hermal state of the IGM from the Ly α forest, including the flux
robability density (Becker, Rauch & Sargent 2007 ; Bolton et al. 
008 ; Viel, Bolton & Haehnelt 2009 ; Calura et al. 2012 ; Lee et al.
015 ), the curvature (Becker et al. 2011 ; Boera et al. 2014 ; Gaikwad
t al. 2020 ), the Doppler parameter distribution (Schaye et al. 1999 ;
ryan & Machacek 2000 ; Ricotti, Gnedin & Shull 2000 ; Schaye
t al. 2000 ; McDonald et al. 2001 ; Bolton et al. 2010 , 2012 ; Rudie,
teidel & Pettini 2012 ; Bolton et al. 2014 ; Rorai et al. 2018 ; Gaikwad
t al. 2020 ), the joint distribution of the Doppler parameters with the
ydrogen Column Density (Hiss et al. 2018 ), and wavelets (Lidz

t al. 2010 ; Garzilli et al. 2012 ; Gaikwad et al. 2020 ). One of the
ost commonly used statistics for measuring the structure of the 
y α forest is the 1D flux power spectrum, P F ( k) (Theuns, Schaye &
aehnelt 2000 ; Zaldarriaga, Hui & Tegmark 2001 ; Walther et al.
017 ; Y ̀eche et al. 2017 ; Boera et al. 2019 ; Gaikwad et al. 2020 ;
olfson et al. 2021 ). 
The thermal state of the IGM significantly influences the Ly α

orest, primarily through two mechanisms: Doppler broadening, 
hich is driven by thermal motions, and Jeans (pressure) smooth- 

ng, which affects the distribution of the underlying baryons. To 
nderstand Jeans smoothing, it’s crucial to consider the role of 
ressure forces. Pressure forces, influenced by the thermal state, 
rase gravitational fluctuations at a rate determined by the local sound 
peed. At low densities, like those of the IGM, this sound-crossing
ime is approximately the Hubble time. Thus, the Jeans (pressure) 
moothing scale serves as a record of the thermal history of the IGM
 v er e xtensiv e time-scales (Gnedin & Hui 1998 ; Kulkarni et al. 2015 ;
asir, Bolton & Becker 2016 ; O ̃ norbe et al. 2017 ; Rorai et al. 2017 ).
oth Doppler broadening and Jeans smoothing reduce the small- 

cale structure of the Ly α forest. These reductions in small-scale 
tructure of the Ly α forest lead to a cut-off in P F ( k) at high- k. 

An alternative to the power spectrum is the Ly α forest flux auto-
orrelation function, its Fourier transform. In this work, we explore 
ts ability to constrain the thermal state of the IGM at z > 5. The
utocorrelation function of the Ly α forest offers two key advantages 
 v er the power spectrum in statistical analysis. First, uncorrelated 
oise, which is expected for astronomical spectrographs, averages to 
ero at non-zero lags in the autocorrelation function, eliminating the 
eed for noise correction. In contrast, uncorrelated noise contributes 
 constant positive value at all scales of the power spectrum, requiring
he subtraction of an estimates noise value that introduces additional 
ncertainty . Secondly , quasar spectra often contain masked regions 
e.g. to remo v e metal lines), which impose a complex window
unction on power spectrum measurements that must be corrected 
see e.g. Walther et al. 2019 ), further increasing uncertainty. The 
utocorrelation function, ho we ver, remains unaf fected, as masking 
nly reduces the number of pixel pairs available at a given velocity
ag. 

Many previous studies have measured the Ly α forest flux autocor- 
elation function at lower redshifts for a wide range of applications 
McDonald et al. 2000 ; Rollinde et al. 2003 ; Becker, Sargent & Rauch
004 ; D’Odorico et al. 2006 ). In addition, the first measurement of
he Ly α forest flux autocorrelation function at z > 5 was presented
n Wolfson et al. ( 2024 ) for moderate resolution quasar spectra. 

In this work, we investigate constraints on the IGM thermal state 
nder the assumption of a tight power-law relationship between 
emperature and density, as given by equation ( 1 ). This is a simplified
odel that does not fully capture the expected temperature fluctu- 
tions of the IGM at these redshifts (D’Aloisio, McQuinn & Trac
015 ; Davies, Becker & Furlanetto 2018b ). Additionally, we do not
odel pressure smoothing, only instantaneous temperature changes. 
espite these simplifications, this modelling choice is sufficient to 

ssess whether the autocorrelation function is sensitive enough to the 
hermal state to justify pursuing more realistic models. Specifically, 
e will quantify the constraints on T 0 and γ that can be achieved

rom Ly α forest flux autocorrelation function measurements using 
ock observational data sets. 
More realistically, reionization can lead to significant fluctuations 

n the temperature of the IGM (D’Aloisio et al. 2015 ; Davies
t al. 2018b ). At the same time, fluctuations in the ultraviolet
ackground (UVB) arise during reionization because the ionizing 
hotons produced will be absorbed by the remaining neutral hydro- 
en at short distances from their initial sources (Davies & Furlanetto
016 ; Gnedin, Becker & Fan 2017 ; D’Aloisio et al. 2018 ). These
istances are characterized by the mean free path of ionizing photons,
mfp (Mesinger & Furlanetto 2009 ). Various previous studies have 

nvestigated the effect of large scale variations in the UVB on the
utocorrelation function and power spectrum of the Ly α forest (Zuo 
992a , b ; Croft 2004 ; Meiksin & White 2004 ; McDonald et al. 2005 ;
ontcho A Gontcho, Miralda-Escud ́e & Busca 2014 ; Pontzen 2014 ;
ontzen et al. 2014 ; D’Aloisio et al. 2018 ; Meiksin & McQuinn
019 ; O ̃ norbe et al. 2019 ). In particular, Wolfson et al. ( 2023 ) showed
hat the positive fluctuations in the UVB that accompany small λmfp 

alues boost the flux of the Ly α forest on small scales, which can be
etected in the autocorrelation function. 

We will use additional hydrodynamical simulations that model 
uctuations in both the temperature and the UVB to determine 

he effect on the Ly α forest flux autocorrelation function. Beyond 
xamining the qualitative differences between these models, we 
ill quantify the likelihood ratio for mock data sets, providing a

ystematic way to compare and constrain a discrete set of models. 
The structure of this paper is as follows. We discuss our simulation

nd grid of T 0 and γ in Section 2 . The autocorrelation function
nd our other statistical methods to constrain these parameters are 
escribed in Section 3 with our results being discussed in Section 3.4 .
e discuss our second set of simulations for models of the IGM
ith temperature and UVB fluctuations in Section 4 and use the

utocorrelation function to quantitatively distinguish between these 
odels in Section 4.3 . Finally, we summarize in Section 5 . 

 SIMULA  T I O N  DA  TA  

.1 Simulation box 

n this work we use a simulation box of size L box = 100 comoving
pc (cMpc) h −1 run with Nyx code (Almgren et al. 2013 ). Nyx is

 hydrodynamical simulation code that was designed for simulating 
he Ly α forest with updated physical rates from Luki ́c et al. ( 2015 ).
he simulation has 4096 3 dark matter particles and 4096 3 baryon 
rid cells. It is reionized by a Haardt & Madau ( 2012 ) uniform
VB that is switched on at z ∼ 15. We have two snapshots of this

imulation at z = 5 . 5 and z = 6 . 0. In this work, we consider seven
edshifts: 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 6.0. For redshifts without a
orresponding simulation snapshot, we use the density fluctuations 
nd velocities from the nearest available Nyx snapshot. Ho we ver, we
ompute the mean density and proper size of the simulation at the
esired redshift. To validate this approach, we tested an alternative 
t z = 5 . 7. While our standard method uses the z = 5 . 5 snapshot for
 = 5 . 7, we instead applied the density fluctuations and velocities
MNRAS 540, 1412–1431 (2025) 
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Figure 1. The blue squares, orange triangles, and green pentagons show 

previous measurements of T 0 and γ at high z from Gaikwad et al. ( 2020 ), 
Boera et al. ( 2019 ), and Walther et al. ( 2019 ), respectively. The dashed line 
shows the results for a thermal evolution model calculated with methods 
similar to Upton Sanderbeck et al. ( 2016 ) and Davies et al. ( 2018b ) This 
model has z reion = 7 . 7, �T = 20 000 K, and αUVB = 1 . 5. We use this model 
as our true redshift evolution for T 0 and γ in this work. The chosen models 
are shown as black circles. 
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Table 1. This table lists the central values of the redshift-dependent thermal 
state models used in this work. The last column states the central value of 
〈 F 〉 modelled in this work, which are the measurements from Bosman et al. 
( 2022 ). 

z T 0 (K) γ 〈 F 〉 
5.4 9149 1.352 0.0801 
5.5 9354 1.338 0.0591 
5.6 9572 1.324 0.0447 
5.7 9804 1.309 0.0256 
5.8 10 050 1.294 0.0172 
5.9 10 320 1.278 0.0114 
6.0 10 600 1.262 0.0089 
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rom the z = 6 . 0 snapshot and found no significant differences in
ur final results. 
We generate grids of thermal models by post-processing the

emperature along the sightlines. For each value of T 0 and γ , we set
he temperature of each cell following equation ( 1 ) for all densities
ith no cutoff. Our method does not take into account the full

volution of the thermal state of the IGM, only the instantaneous
emperature. This simple model is sufficient to achieve the aim of
his paper, which is to see if the autocorrelation function is sensitive
o the thermal state. To make our grid we use 15 values of T 0 
nd 9 values of γ resulting in 135 different combinations of these
arameters at each z. The values of T 0 and γ in our grid of thermal
odels were chosen based on the current models and available data,

s shown in Fig. 1 . We generate a model for the evolution of the
hermal state of the IGM by a method similar to Upton Sanderbeck,
’Aloisio & McQuinn ( 2016 ) with z reion = 7 . 7, �T = 20 , 000 K,

nd αUVB = 1 . 5. For more information on the calculation of the
emperature field see Davies et al. ( 2018b ). We select central T 0 and

values at each redshift from this model, which are shown as black
oints in Fig. 1 and listed in Table 1 . At all z, we use the errors
n the measurements reported in Gaikwad et al. ( 2020 ) at z = 5 . 8
 �T 0 = 2200 K and �γ = 0 . 22) and modelled from T 0 − 4 �T 0 to
 0 + 4 �T 0 and γ − 4 �γ to γ + 4 �γ in linear bins. 
Our simulations do not predict the o v erall av erage of the UVB,

 	 UVB 〉 , because this value originates from complicated galaxy
hysics that are not included in the simulations. Additionally, our
ethod of post-processing different thermal states would affect the

esulting 〈 	 UVB 〉 . Instead, we model a range of possible 〈 	 UVB 〉 values
hrough the mean transmitted flux, 〈 F 〉 , exploiting the relation τLy α ∝
 / 	 UVB as seen in equation ( 2 ). This is achieved by rescaling the
ptical depths along each skewer, τ , so that the average transmitted
ux across all skewers satisfies 〈 e −τ 〉 = 〈 F 〉 . These 〈 F 〉 model values
NRAS 540, 1412–1431 (2025) 
re centred on the values presented in Bosman et al. ( 2022 ) for each
edshift bin. We chose a range of models going from 〈 F 〉 − 4 � 〈 F 〉
o 〈 F 〉 + 4 � 〈 F 〉 where the � 〈 F 〉 is the largest of the two redshift-
ependent values reported in Bosman et al. ( 2022 ). These choices of
 F 〉 are listed in the last column of Table 1 . 

Our simulations are limited to a 100 cMpc h −1 box, which does not
apture density fluctuations on scales larger than this volume. This
ntroduces cosmic variance that may affect measurements of large-
cale Lyman-alpha forest clustering. Ho we ver, since our analysis
ocuses on small-scale structure and our UVB and thermal state
odelling do not include fluctuations, we expect this effect to be

ubdominant. 
We do not model Ly α forest contaminants, such as damped Ly α

ystems or metal lines, in this analysis. In observational studies,
hese contaminants are identified and masked to prevent biasing
he results (see e.g. Wolfson et al. 2024 ). For the autocorrelation
unction, the focus of this study, such masking reduces the number
f pixels in specific velocity bins, ef fecti vely lo wering the statistical
recision of the measurement. Since the impact of masking is well
nderstood, we leave the quantification of missed contaminants to
uture observational studies. 

We draw 1000 skewers from the simulation box. One example
kewer at z = 5 . 4 for different T 0 and γ models is shown in Fig. 2 .
he top panel shows the density of this skewer for all models in black.
here are then two pairs of panels each depicting the temperature

top) and flux (bottom) along this skewer. 
The second and third panels vary T 0 with constant γ = 1 . 352 and

 F 〉 = 0 . 0801. The coldest model, T 0 = 2863 K (blue), has some
f the sharpest features. This is seen at v ∼ −300 km s −1 where
he low T 0 (blue) model has a secondary sharp peak in the flux.
n comparison the hottest model, T 0 = 15 435 K (green), has one
ider transmission spike. In addition, increasing T 0 decreases τLy α as
escribed in equation ( 2 ), which in turn increases the transmitted flux.
or this reason we get the greatest transmission from the T 0 = 15435
 (green) model, seen in the transmission spike at v = 50 km s −1 .
ith fixed 〈 F 〉 this leads to greater variation in the flux for higher T 0 
odels. 
The fourth and fifth panels vary γ with constant T 0 = 9149 K and

 F 〉 = 0 . 0801. When γ > 1 (orange and green) the temperature is
irectly proportional to the density fluctuations while γ < 1 (blue)
auses the temperature to be inversely proportional to the density
uctuations. When temperature is inversely proportional to density,

ower densities have higher temperatures. Low densities and higher
emperatures will locally increase the flux so the γ < 1 (blue) model
ill lead to transmission spikes with the greatest flux, as seen at
 ∼ −100 km s −1 . 
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Figure 2. The top panel shows the density along a section of one skewer in black for z = 5 . 4. There are then two pairs of panels each depicting the temperature 
(top) and flux (bottom) along this skewer. The first pair varies T 0 with constant γ = 1 . 352 and 〈 F 〉 = 0 . 0801. Shifting T 0 causes a corresponding shift in 
the temperature values along the skewer. Hotter temperatures (orange and green) smooths the flux, as seen clearly in the loss of a second transmission spike 
at z ∼ −300 km s −1 . The second pair varies γ with constant T 0 = 9148 K and 〈 F 〉 = 0 . 0801. When γ > 1 (orange and green) the temperature is directly 
proportional to the density fluctuations while γ < 1 (blue) causes the temperature to be inversely proportional to the density fluctuations. When temperature is 
inversely proportional to density, lower densities have higher temperatures. Low densities and higher temperatures will locally increase the flux so the γ < 1 
(blue) model will lead to transmission spikes with the greatest flux, as seen at v ∼ −100 km s −1 . 
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.2 Forward modelling 

n order to mimic realistic high-resolution observational data from 

chelle spectrographs (e.g. from Keck/HIRES, VLT/UVES, and 
agellan/MIKE) we forward model our ideal simulation skewers to 

ave imperfect resolution and flux levels. We consider a resolution of
 = 30 000 and a signal-to-noise ratio per 10 km s −1 pixel ( SNR 10 )
f SNR 10 = 30 at all redshifts. 
We model this resolution by smoothing the flux by a Gaussian 

lter with FWHM = 10 km s −1 . After smoothing we re-sampled the
ew flux such that the new pixel size was �v = 2 . 5 km s −1 . With this
ixel scale, SNR 10 = 30 corresponds to a signal-to-noise ratio of the 
ixel size ( SNR �v ) of 15. For simplicity, we add flux-independent 
oise in the following way. We generate a single realization of random 

oise consisting of 1000 skewers, each of length matching the skewer 
ength, with values drawn from a Gaussian distribution with σN = 

 / SNR �v . This noise realization is added to every model at every
edshift. By using the same noise realization across all models, we 
re vent stochastic v ariations in the noise from introducing additional
ifferences between models. As a result, the noise modelling does 
ot unduly affect the parameter inference. 
As discussed in Section 2.1 simulation skewers are 100 cMpc h −1 

ong, much longer than the �z = 0 . 1 redshift bins we have chosen to
nalyse. Therefore, we split these skewers into two regions of length
z = 0 . 1 and treating these two regions as independent, resulting in
 total of 2000 skewers. Note that �z = 0 . 1 corresponds to 33 cMpc
 

−1 at z = 5 . 4 and 29 cMpc h −1 at z = 6 . 0. 
The initial and forward-modelled flux for one z = 5 . 4 skewer

s shown in Fig. 3 . This skewer has T 0 = 9149 K, γ = 1 . 352, and
 F 〉 = 0 . 0801 (our central parameters values at this redshift). The
orward modelled skewer, as is always true, uses R = 30 000 and
NR 10 = 30. The initial flux is plotted as the red dashed line while

he forward modelled flux is plotted as the black histogram. 
We assume a fiducial data set size of 20 quasar spectra that probe

 redshift interval of �z = 0 . 1 per quasar for a total path length of
MNRAS 540, 1412–1431 (2025) 
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Figure 3. A forward-modelled skewer at z = 5 . 4 with T 0 = 9149 K, γ = 

1 . 352, and 〈 F 〉 = 0 . 0801 (our central parameters values at this redshift). This 
skewer, as is true for all skewers, is forward modelled with R = 30 000 and 
SNR 10 = 30. The initial flux from the simulations is a red dashed line while 
the forward modelled flux is a black histogram. 
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z = 2 . 0 at all redshifts. This is a reasonable number of high- z, high
esolution quasar observations to consider for a future measurement.

 M E T H O D S  

.1 Autocorrelation 

he autocorrelation function of the flux, ξF ( �v), is defined as 

F ( �v) = 〈 F ( v) F ( v + �v) 〉 , (3) 

here F ( v) is the flux of the Ly α forest and the average is
erformed o v er all pairs of pix els with the same velocity lag, �v.
onventionally, the flux contrast field, δF = ( F − 〈 F 〉 ) / 〈 F 〉 , is used
hen measuring the power spectrum of the Ly α forest. However, we
se the flux directly since 〈 F 〉 is small and highly uncertain at high
, where our forecast is focused. This a v oids dividing by a small,
ndependently measured quantity, which could otherwise cause δF 

o diverge. The autocorrelation function of the flux contrast can be
ritten as 

δf 
( �v ) = 

ξF ( �v ) − 〈 F 〉 2 
〈 F 〉 2 . (4) 

δf 
can be computed via the Fourier transform of the dimension-

ess power spectrum of the Ly α forest flux contrast, � 

2 
δF 

( k) =
 P δf 

( k ) /π . In 1D this can be written as: 

δf 
( �v) = 

∫ ∞ 

0 
� 

2 
δf 

( k ) cos ( k �v )d ln k . (5) 

The dimensionless power, � 

2 
δf 

( k), is a smoothly rising function
hat has a sharp cutoff set by the thermal state of the IGM. Higher
emperature values lead to sharper cutoffs as the power at small scales
n the Ly α forest is remo v ed. Equation ( 5 ) can be particularly useful
hen building intuition for the trends seen in the autocorrelation

unction with changing T 0 and γ , which we will discuss later in this
ection. 

We compute the autocorrelation function with the following
onsideration for the velocity bins. We set the left edge of the
mallest bin to be the resolution length, 10 km s −1 , and continue
ith linear bin sizes with a width of the resolution length, 10 km s −1 ,
p to 300 km s −1 . Then we switch to logarithmic bin widths where
NRAS 540, 1412–1431 (2025) 
og ( �v) = 0 . 029 out to a maximal distance of 2700 km s −1 . This
esults in 59 velocity bins considered where the first 28 have linear
pacing. The centre of our smallest bin is 15 km s −1 and the centre
f our largest bin is 2295 km s −1 . This largest bin corresponds to

16 . 5 cMpc h −1 at z = 5 . 4. We chose to use linear bins on the
mallest scales because this is where the thermal state has the greatest
ffect on the Ly α forest flux. At larger scales we switch to logarithmic
inning as this is only sensitive to 〈 F 〉 and not the thermal parameters.
he main aim of this work is to constrain the thermal parameters so
aving fine binning at large scales is not as important. To check this
e compared our results at z = 5 . 4 to those when using linear bins

t all scales and found no significant change to the constraints on
he parameters. Ho we ver, using linear bins at all scales results in
68 total bins, which significantly slowed down our computations.
herefore we used the linear-logarithmic bins at all z throughout the

est of this work. 
The model autocorrelation function is computed as the average

 v er all 2000 forward-modelled skewers. Each mock data set is
hen generated by averaging the autocorrelation function over 20
andomly selected skewers, representing 20 quasar sightlines. Finite
esolution affects the autocorrelation function at the smallest velocity
ags, but this effect is consistently included in both the models and
ock data. 
We show the correlation functions calculated for different thermal

tate parameters in Fig. 4 at z = 5 . 4. The solid lines show the mean
alues while the shaded regions represent the errors estimated from
he diagonal of the covariance matrices. We discuss the computation
f these covariance matrices later in this section. 
The top panel shows models that vary T 0 with constant γ and 〈 F 〉 .

arying T 0 results in small changes for the smallest velocity lags,
here the second bin centred on 25 km s −1 has the largest per cent

hange in the models. The middle panel has models that vary γ
ith constant T 0 and 〈 F 〉 where the effect of changing γ is strongest
n small scales. The bottom panel has models that vary 〈 F 〉 with
onstant T 0 and γ . 〈 F 〉 sets the amplitude of the autocorrelation
unction at all velocity lags. Here the differences between models
re linear, with larger 〈 F 〉 producing higher autocorrelation values.
his scaling follows ∝ 〈 F 〉 2 , as expected from the definition of the
utocorrelation function. 

For the thermal models, larger T 0 and smaller γ lead to larger
orrelation function values on small scales. Though these models do
ot seem to show large differences by eye, we will investigate what
tatistically rigorous measurements could look like in Section 3.4 . 

To build intuition for how the autocorrelation function depends on
he thermal parameters, we refer to equation ( 5 ). In Appendix A , we
how the integrand of this equation for �v = 15 km s −1 . As discussed
arlier, � 

2 
δf 

( k) has a sharp thermal cutoff, which may naively suggest
otter thermal states would result in lower autocorrelation values
t small scales. Ho we ver Fig. 4 shows the opposite trend where
arger values of T 0 correspond to higher autocorrelation values at
mall scales. This behaviour can be explained by two factors. First,
otter thermal states introduce greater flux variation, as noted earlier.
econdly, � 

2 
δf 

( k), the integrand from equation ( 5 ), has higher values
t small k for larger T 0 values, particularly when viewed on a linear
cale, as shown in Fig. A1 . 

We compute the covariance matrices for the models by averaging
 v er randomly drawn mock data sets, each consisting of 20 skewers
quasar sightlines): 

( T 0 , γ, 〈 F 〉 ) = 

1 

N mocks 

N mocks ∑ 

i= 1 

( ξ i − ξmodel )( ξ i − ξmodel ) 
T , (6) 
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Figure 4. This figure demonstrates the effects of varying the parameters on the autocorrelation function from the simulations at z = 5 . 4. Each of the three 
panels varies one parameter from T 0 , γ , and 〈 F 〉 while keeping the others constant. The constant parameter values are written in the top left of each panel. The 
solid lines show the model values and the shaded regions show errors estimated by the diagonals of the covariance matrices. T 0 (top panel) and γ (middle panel) 
affect the autocorrelation function on small scales. 〈 F 〉 (bottom panel) affects the autocorrelation function on all scales. 
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here ξ i = ξ i ( T 0 , γ, 〈 F 〉 ) is the i-th mock autocorrelation function,
model = ξmodel ( T 0 , γ, 〈 F 〉 ) is the model value of the autocorrelation
unction, and N mocks is the number of forward-modelled mock data 
ets used. Since the covariance is computed as an average over 
ultiple mock data sets (each consisting of 20 skewers), it naturally 

ncorporates the effects of sample variance. We use N mocks = 500 000
or all models and redshifts in this work, see Appendix B for a
iscussion on the convergence of the covariance matrix. Note that 

i ( T 0 , γ, 〈 F 〉 ) and �( T 0 , γ, 〈 F 〉 ) are computed at each point on the
rid of T 0 , γ , and 〈 F 〉 , resulting in 1215 separate computations. 
To visualize the covariance matrix, we define the correlation 
atrix, C, which expresses the covariances between j th and kth 

ins in units of the the diagonal elements of the covariance matrix.
pecifically, the j th, kth element of the correlation matrix is given 
y: 

 jk = 

� jk √ 

� jj � kk 

. (7) 

One example correlation matrix is shown in Fig. 5 for z = 5 . 4
ith T 0 = 9149 K, γ = 1 . 352, 〈 F 〉 = 0 . 0801. We find that all bins
f the autocorrelation function are highly correlated, a result of each 
ixel in the Ly α forest contributing to multiple (in fact, almost all)
ins in the autocorrelation function. 

.2 Parameter estimation 

o quantitatively constrain the parameters we modelled θ = 

 T 0 , γ, 〈 F 〉 ), we use Bayesian inference with a multi v ariate Gaussian
ikelihood and a flat prior o v er the parameters. This likelihood,
 = L ( ξ | θ ) = L ( ξ | T 0 , γ, 〈 F 〉 ), has the form: 

 = 

1 √ 

det ( �)(2 π ) n 
exp 

(
−1 

2 
( ξ − ξmodel ) 

T � 

−1 ( ξ − ξmodel ) 

)
, (8) 
MNRAS 540, 1412–1431 (2025) 
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here ξ is the autocorrelation function from our mock data,
model = ξmodel ( T 0 , γ, 〈 F 〉 ) is the model value of the autocorrelation
unction, � = �( T 0 , γ, 〈 F 〉 ) is the model-dependent covariance
atrix estimated by equation ( 6 ), and n = 59 is the number of

oints in the autocorrelation function. We discuss the assumption
f using a multi v ariate Gaussian likelihood in Appendix C . This
iscussion shows that our mock data does not exactly follow a
uassian distribution. This discrepancy may affect our parameter

nference, we investigate the consequences of this assumption in a
ater section. 

Our models are defined by three parameters θ = ( T 0 , γ, 〈 F 〉 ).
ollowing Bayes’ theorem, we have 

 ( T 0 , γ, 〈 F 〉| ξ ) = 

L ( ξ | T 0 , γ, 〈 F 〉 ) P ( T 0 , γ, 〈 F 〉 ) 
P ( ξ ) 

, (9) 

here P ( T 0 , γ, 〈 F 〉| ξ ) is the posterior distribution for θ = T 0 , γ, 〈 F 〉
iv en observ ed autocorrelation function ξ . L is the likelihood defined
n equation ( 8 ), P ( T 0 , γ, 〈 F 〉 ) is the prior on our parameters, and
 ( ξ ) is the probability of the data which can be interpreted as a
ormalization constant since it is independent of θ . 
We compute these posteriors using Markov Chain Monte Carlo

MCMC) with the emcee (F oreman-Macke y et al. 2013 ) package.
e assumed uniform priors spanning the range of each parameter
e considered. Because we considered different central values at

ach z, the priors are also z dependent. At z = 5 . 4 these are
 0 ∈ Uniform (349 , 17949), γ ∈ Uniform (0 . 472 , 2 . 232), and 〈 F 〉 ∈
niform (0 . 0557 , 0 . 1045). For L , we linearly interpolate the model
 alues and cov ariance matrix elements onto a finer 3D grid of T 0 ,
, and 〈 F 〉 then use the nearest model during the MCMC. This fine
rid has 29 values of T 0 , 33 values of γ , and 41 values of 〈 F 〉 which
orresponds to adding 1, 3, and 4 points between the existing grid
oints, respectively. Our MCMC was run with 16 w alk ers taking
500 steps each and skipping the first 500 steps of each w alk er as a
urn-in, resulting in 48 000 samples. 

Fig. 6 shows the result of our inference procedure for one mock
ata set at z = 5 . 4. The top panel shows the mock data set along
ith various lines relating to the inference procedure as follows.
he green dotted line and accompanying text show the model value

or the simulation from which the mock data was drawn. The mock
ata set is plotted as black points with error bars derived from the
iagonal elements of the covariance matrix of the model nearest to
he inferred model. The inferred model, represented by the red line
nd accompanying text, is based on the median of each parameter’s
amples, determined by the 50th percentile of the MCMC chains. The
rror on the inferred model written in the text is given by the 16th
nd 84th percentiles of the MCMC chains. The blue lines represent
00 random draws from the MCMC chain, illustrating the variety of
odels in the posterior distribution. The bottom left panel shows a

orner plot of the posteriors for T 0 , γ , and 〈 F 〉 . 

.3 Inference test and re-weighting 

o assess the reliability of our inference method, we perform a
tatistical validation test (inference test). This test evaluates whether
ur posterior distributions are statistically robust and whether the
ssumptions underlying our likelihood function are valid. The
rocedure is described in detail in Hennawi et al. ( 2025 ), though
ee also Wolfson et al. ( 2023 ). Below, we provide a brief summary
f the method and its moti v ation. 
Statistically, the true parameter values, θ true , should fall within the

 th credibility contour n per cent of the time when the experiment
s repeated (see e.g. Prangle et al. 2014 ; Ziegel & Gneiting 2014 ;
NRAS 540, 1412–1431 (2025) 
orrison & Simon 2018 ; Sellentin & Starck 2019 ). Mathematically,
his condition can be expressed as follows: the probability, α, ob-
ained by integrating the posterior probability density from equation
 9 ) o v er a volume, V , of parameter space, θ , 

= 

∫ 

V α

P ( θ | ξ )d θ , (10) 

hould correspond to the co v erage probability, C( α), which is the
raction of cases in which the true parameters, θ true , lie within
 α , the region enclosed by the α-th credibility contour. Thus, by

esting whether C( α) = α for multiple values of α, we can assess the
tatistical validity of our posteriors. 

Overall, our inference test is done as follows: 

(i) Draw N = 300 parameter vectors θ true = ( T 0 , γ, 〈 F 〉 ) true , from
heir uniform priors, which were described in 3.2 . 

(ii) Generate N = 300 mock autocorrelation data set correspond-
ng to these ( T 0 , γ, 〈 F 〉 ) true , as described in 3.1 . 

(iii) Perform parameter inference on each mock data set as
escribed in 3.2 , resulting in 48 000 samples each in the posterior
istributions. 
(iv) Consider a set of M credibility contour levels α ∈ [0 , 1].

or each value α and each mock, test whether the true values,
true = ( T 0 , γ, 〈 F 〉 ) true , reside within the volume V α enclosed by α-th
ontour. For each α, the coverage probability C( α) is the fraction of
he N mock data sets for which the true values lie within the volume
 α defined by equation ( 10 ). 

The co v erage probability, C( α), is determined by the fraction
f trials in which θ true falls within V α . Since this corresponds to
ounting successes in N independent trials, C( α) follows a Binomial
istribution, B( N, C( α)). We estimate the uncertainty on C( α) using
he 16th and 84th percentiles of this distribution. 

We plot the results of our inference procedure at z = 5 . 4 from 300
osteriors in the left panel of Fig. 7 . The grey shaded regions around
ur resulting line show the 1 σ errors on C( α) from B( N, C( α)). We
xpect C( α) = α, shown as the red dashed line. To interpret this plot,
onsider a point such as α ≈ 0 . 6, which represents the 60th percentile
ontour, calculated from the 60th percentile of probabilities from the
CMC chain draws for each mock data set. Here, the true parameters

all within the 60th percentile contour only C( α) ∼ 52 per cent of
he time, implying that our posteriors are too narrow . Consequently ,
e are underestimating the errors and need to widen them so that

he true parameters will fall within the 60th percentile contour more
ften. We run this inference test at all z considered in this work
nd find the deviation from the C( α) = α line is larger at higher
edshifts. For more details, see Appendix D for the inference test at
 = 6. We also run the inference test for mock data generated from a
ulti v ariate Gaussian distribution in Appendix E , where the results

lign with the C( α) = α line. This suggests that the discrepancy when
sing forward-modelled data arises because the data distribution is
ot perfectly Gaussian. 
Recent work has focused on correcting posteriors that fail the

o v erage probability test (see e.g. Prangle et al. 2014 ; Gr ̈unwald &
an Ommen 2017 ; Sellentin & Starck 2019 ). Specifically, Sellentin &
tarck ( 2019 ) proposed relabelling the credibility contours, α, using

he calculated C( α). In this work, we adopt the method of Hennawi
t al. ( 2025 ), which involves calculating a set of weights for the
CMC draws that mathematically broaden the posteriors in a

igorous way. This approach is described in detail in Wolfson et al.
 2023 ) and Hennawi et al. ( 2025 ), and we refer the reader to those
apers for specifics on computing the weights. Here, we will only
iscuss the effect of adding these weights to the posteriors. 



IGM thermal state from Ly α autocorrelation 1419 

Figure 6. This figure illustrates the results of our inference procedure applied to one mock data set at z = 5 . 4. The top panel shows the data and models that 
resulted from our inference procedure, the bottom left has the corner plot resulting from the fit, and the bottom right has the same corner plot which has been 
re-weighted to pass our inference test. In the top panel, the black points are the mock data with error bars from the diagonals of the covariance matrix of the 
inferred model. The inferred model was calculated by the median (50th percentile) of the MCMC chains of each parameter independently. The inferred model 
is shown as a red line while the accompanying red text reports errors calculated from the 16th and 84th percentiles of each parameter. In comparison, the true 
model, which was used to generate the data, is shown as a green dotted line. The parameters for this model is written in the accompanying green text. To 
demonstrate the width of the posterior, multiple faint blue lines are shown which are the models corresponding to the parameters from 100 random draws of 
the MCMC chain. The bottom left panel shows a corner plot of the values of T 0 , γ , and 〈 F 〉 that immediately result from our inference procedure. The bottom 

right panel shows the corner plot of the values of T 0 , γ , and 〈 F 〉 from our inference procedure that has been re-weighted with the weights calculated from our 
inference test as described in Section 3.3 . For this mock data set, the true model parameters fall within the 68th percentile contours. 
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We show the re-weighted posteriors for T 0 , γ , and 〈 F 〉 in the
ottom right panel of Fig. 6 . The weights give greater importance
o values of T 0 , γ , and 〈 F 〉 that lie outside the 68 per cent contour,
f fecti vely broadening the posteriors and increasing the errors on the
t. For the mock data set in Fig. 6 , the marginalized re-weighted
osterior for T 0 gives T 0 = 7341 + 2752 

−2617 K, resulting in a ∼ 6 per cent
ncrease in the error when compared to the previous measurement 
f 7282 + 2646 

−2435 K. Similarly, the re-weighted posterior for γ gives 
= 1 . 399 + 0 . 126 −0 . 144 , resulting in a ∼ 6 per cent increase in 

he error when compared to whereas the previous measurement of 
 . 400 + 0 . 120 −0 . 132 . The error on 〈 F 〉 does not change. Examining the
D distributions in this corner plot, such as the ( γ , 〈 F 〉 ) distribution
n the middle panel of the bottom row, we observe small regions
utside the main 95 per cent contour that are up-weighted. This arises
rom giving one particular draw a higher weight, illustrating how 

he weights introduce an additional source of noise to the posterior
istribution. We also note that since the changes are around 6–7
er cent, this difference is difficult to discern visually in the corner
lots. 
The need for re-weighting, or some method to correct our pos-

eriors to pass an inference test, comes from our incorrect (though
requently used) assumption of a multi v ariate Gaussian likelihood. 
he values of the autocorrelation function at these high z do not
dequately follow a multivariate Gaussian distribution, which should 
erve as a cautionary note for other studies of the Ly α forest at
hese z. Using a more appropriate form of the likelihood, such as a
kewed distribution, or likelihood-free inference [e.g. approximate 
ayesian computation as used in Davies et al. ( 2018a ) or other
MNRAS 540, 1412–1431 (2025) 
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M

Figure 7. The left panel shows the co v erage resulting from the inference test at z = 5 . 4 from 300 mock data sets with parameters drawn from our priors on T 0 , 
γ , and 〈 F 〉 . This shows that, for example, the true parameters fall above the 60th percentile in the MCMC chain ∼ 50 per cent of the time. The line falls below 

the C( α) = α line, meaning that the posteriors are o v erconfident (too narro w). The right panel of this figure sho ws the co v erage resulting from the inference test 
with the use of one set of weights to re-weight the posteriors, which passes. 
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Figur e 8. 100 mar ginalized re-weighted posteriors of T 0 and γ at z = 5 . 4 
from mock data sets with true T 0 = 9149, γ = 1 . 352, and 〈 F 〉 = 0 . 0801 
(faint blue lines). The top panel shows the marginalized posteriors for T 0 
and the bottom panel shows the marginalized posteriors for γ . Both panels 
also show the re-weighted posterior from the idealized data set (thick blue 
histograms). The measurement resulting from fitting the idealized data set are 
written in blue text. The idealized autocorrelation function was taken as the 
av erage o v er 2000 skewers with error from the covariance matrices computed 
from 20 quasar (skewer) data sets. This demonstrates the different possible 
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achine learning methods] may yield more optimal posteriors that
etter capture the information content of the autocorrelation function.
xploring these approaches has been left for future work. 

.4 Thermal state measurements 

ow that we have established the reliability of our posterior distribu-
ions, we can discuss constraints on the thermal state. We investigate
he impact of sample variance by analysing the distribution of

easurements across 100 mock data sets, all generated with the
ame true parameters, θ true = ( T 0 , γ, 〈 F 〉 ) true . For each z, we adopt
he values of T 0 , γ , and 〈 F 〉 from Table 1 . As stated earlier, each
ock data set is created by randomly selecting and averaging the

utocorrelation function o v er 20 skewers. F or each mock data set, we
erform MCMC sampling as described in Section 3.2 and then apply
he re-weighting procedure from Section 3.3 . Using these weighted
osteriors, we compute the marginalized distributions for T 0 and γ . 
In addition to analysing the 100 mock data sets, we consider an

dealized data set where the autocorrelation function is averaged
 v er all 2000 skewers instead of 20. The measurement errors for this
ata set are still derived from the covariance matrices assuming a 20
uasar sample. Notably, this 2000 skewer average is also used for
he models shown in Fig. 4 and in the likelihood defined by equation
 8 ). Av eraging o v er all 2000 skewers remo v es random fluctuations
rom the choice of 20 skewers, providing an estimate with optimal
recision. This idealized mock data set is then fit using MCMC and
e-weighted following the same procedure as the 20 quasar mock
ata sets. 
At z = 5 . 4, Fig. 8 shows all 100 marginalized re-weighted pos-

eriors as thin blue curves for T 0 (top panel) and γ (bottom panel).
he thick blue histogram shows the posterior from the idealized data
et described abo v e. The corresponding idealized measurement is
ritten in blue text in Fig. 8 . The measurements of the idealized data

ets at every redshift are reported in Table 2 . 
The re-weighted posteriors appear noisy, similar to what is

bserved in the bottom right panel of Fig. 6 . This noise is a
NRAS 540, 1412–1431 (2025) 

behaviours the posterior can have for different mock data sets with the same 
T 0 , γ , and 〈 F 〉 values. 
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Table 2. The results of fitting to the idealized mock data sets described in 
Section 3.4 . The value of the autocorrelation functions for these mock data 
sets was taken as the average over 2000 skewers and the error was set by 
the covariance matrices computed for a 20 quasar (skewer) data set. The first 
(third) column contains the modelled value of T 0 ( γ ) at each z. The second 
(fourth) column contains the measurements for T 0 ( γ ) calculated by the 16th, 
50th, and 84th percentiles. In general the trend of the errors is to increase 
with increasing redshift. 

z Model T 0 Measured T 0 Model γ Measured γ

5.4 9149 8455 + 2642 
−2379 1.352 1 . 408 + 0 . 104 

−0 . 122 

5.5 9354 8643 + 3152 
−3054 1.338 1 . 422 + 0 . 116 

−0 . 141 

5.6 9572 8480 + 3720 
−3642 1.324 1 . 433 + 0 . 121 

−0 . 151 

5.7 9804 8222 + 5188 
−4176 1.309 1 . 460 + 0 . 139 

−0 . 166 

5.8 10 050 8346 + 4926 
−4576 1.294 1 . 485 + 0 . 157 

−0 . 204 

5.9 10 320 7892 + 6111 
−4655 1.278 1 . 513 + 0 . 170 

−0 . 223 

6.0 10 600 9574 + 6219 
−5133 1.262 1 . 511 + 0 . 196 

−0 . 256 
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Figur e 9. The mar ginalized posteriors for two random mock data sets at each 
z for T 0 and γ . The first and third panels show the marginalized posteriors for 
T 0 while the second and fourth panels show the same for γ . For each posterior, 
the light blue shaded region demarcates the 2.5th and 97.5th percentile of the 
weighted MCMC draws while the darker blue shaded region demarcates the 
17th and 83rd percentile of the weighted MCMC draws. There are 14 total 
random mock data sets used to make this figure. For a given T 0 and γ posterior 
pair (in the first and second or third and fourth panels) the mock data set is the 
same. The behaviour of each posterior is partially determined by the specific 
mock data set considered, due to sample variance. The size of the data set 
is consistent across z but the true parameter values of the mock data varies 
as shown by the black dot dashed line. This black dot dashed line was also 
shown in Fig. 1 and the values at each z are reported in Table 1 . 
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irect consequence of our re-weighting procedure and is expected 
o impro v e with future developments in likelihood-free inference 

ethods. For T 0 , the posterior obtained from the model fit has a width
omparable to the typical widths of the mock data set posteriors. For
, the model-fit posterior is slightly narrower than most individual 
ock data set posteriors. Additionally, the posteriors for γ show 

n asymmetry: those peaking at lo wer γ v alues tend to be broader
han those peaking at higher γ values. The model-derived posteriors 
thick blue lines) for both T 0 and γ contain the true parameter values
ithin their 1 σ confidence intervals. Across the 100 mock data sets,

he model value of T 0 falls within the 1 σ confidence region 75 times,
hile the model value of γ falls within it 69 times. Statistically, 
e expect the true values to fall within these intervals 68 times,
hich is within 1 . 5 σ of the expectation for the binomial distribution
(100 , . 75) and well within 1 σ for B(100 , . 69). This agreement

gain demonstrates the reliability of our inference method. 
Table 2 reports the parameter constraints obtained when using 

he model values of the autocorrelation function as our data at all
. This represents an idealized scenario that eliminates the impact 
f statistical fluctuations from individual mock data sets. The first 
third) column contains the modelled value of T 0 ( γ ) at each z 
sed in this measurement. The second (fourth) column contains the 
orresponding constraints on T 0 ( γ ) given by the 16th, 50th, and 84th
ercentiles of the marginalized re-weighted posterior distributions. 
n general, the uncertainties increase with redshift. At z = 5 . 4, the
odel constrains T 0 to 59 per cent and γ to 16 per cent, providing

he strongest constraints. By z = 6 . 0, these constraints weaken to
19 per cent for T 0 and 30 per cent for γ . 
To visualize the differences between measurements at different 

edshifts, we plot the results for two random mock data sets in Fig.
 . The first and third panels show the marginalized posteriors for T 0 ,
hile the second and fourth panels show the marginalized posteriors 

or γ . Each violin illustrates the marginalized re-weighted posterior 
or one randomly selected mock data set at the corresponding 
edshift. The light blue shaded region indicates the 2.5th and 
7.5th percentiles (2 σ ) of the MCMC draws, while the darker blue
haded region indicates the 16th and 84th percentiles (1 σ ) of the

CMC draws. The dot dashed line shows the simulated model value 
volution, as shown in Fig. 1 and reported in Table 1 . 

Looking at the posteriors for a given redshift (one column in the
gure), the only difference between the posteriors is the random 

ock data set drawn. This results in varying precision, as seen in
ig. 8 for z = 5 . 4, due to sample variance. Across the different z
alues, both the random mock data set and the true values of T 0 and
dif fer. As mentioned, the indi vidual posteriors are noisy due to the

e-weighting procedure described in Section 3.3 . The behaviour here 
chos the results found with the idealized measurements, where the 
recision of the constraints on T 0 and γ decreases with increasing 
edshift. For the highest redshift bins ( z > 5 . 7), the posteriors for the
ock data sets tend to show large values at the boundary of our prior
ore frequently. 

 I N H O M O G E N E O U S  R E I O N I Z AT I O N  

o far in this work, we have post-processed simulations to have differ-
nt thermal states following a tight temperature–density relationship. 
his is a simple yet necessary first step in exploring the sensitivity
f the Ly α forest flux autocorrelation function to the thermal state of
he IGM at high-redshifts. Ho we ver, as pre viously discussed, recent

easurements of the Ly α optical depth at z > 5 . 5 have shown scatter
MNRAS 540, 1412–1431 (2025) 
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Figure 10. This figure shows slices of density field (top left), the temperature 
field (bottom row), and UVB (top right) for the Nyx simulation described 
in Section 4 . The bottom left panel shows the temperature field without 
fluctuations. The bottom right panel right shows the temperature field with 
fluctuations. The model with temperature fluctuations has a greater scatter 
in the temperature field, as can be seen by the greater abundance of colder 
(darker blue) regions. These cold regions correspond to the regions of higher 
density in the top left panel. The top right panel shows a slice through the UVB 

field of the simulation with λmfp = 15 cMpc, which gives a fluctuating UVB. 
The largest UVB values are in the same location as the high density areas 
shown in the top left panel. These are the densest regions of the simulation 
which contain the majority of the sources of ionizing photons. 
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hat cannot be explained by density fluctuations alone (Fan et al.
006 ; Becker et al. 2015 ; Bosman et al. 2018 ; Eilers et al. 2018 ;
osman et al. 2022 ). It is possible that these fluctuations come from
uctuations in the temperature field (D’Aloisio et al. 2015 ; Davies
t al. 2018b ) or fluctuations in the UVB (Davies & Furlanetto 2016 ;
nedin et al. 2017 ; D’Aloisio et al. 2018 ). Fluctuations in either of

hese fields can arise if reionization is extended or patchy. 
On top of the measurements of fluctuations in the Ly α forest

ptical depth at z > 5 . 5, recent measurements of the mean free
ath of ionizing photons at z > 5 suggest a UVB that cannot be
ell described by uniform fields (Becker et al. 2021 ; Bosman 2021 ;
aikwad et al. 2023 ; Zhu et al. 2023 ). 
In order to explore the effect of temperature and UVB fluctuations

n the Ly α forest flux autocorrelation function, we consider a set
f four simulation models. These simulations have two different
eionization models (one of which causes temperature fluctuations)
nd two UVB models (one of which has UVB fluctuations). These
imulations and their results will be described in detail in the
ollowing sections. 

.1 Simulation box 

or these models we use an additional Nyx simulation box with
 size of L box = 40 cMpc h −1 and 2048 3 resolution elements at
 = 5 . 8. We comment on the effect of this box size on the resulting
utocorrelation function at the end of Section 4.2 . A slice through
he density field of this simulation is shown in the top left panel of
ig. 10 . 
We consider two reionization models: an instantaneous model and

n extended, inhomogeneous model [the ‘flash’ and inhomogeneous
ethods described in O ̃ norbe et al. ( 2019 ), respectively]. The

nstantaneous model of reionization assigns all resolution elements
he same redshift of reionization, z reion, HI . For this work we use
 reion, HI = 7 . 75. A brief summary of the inhomogeneous model of
eionization is as follows, each resolution element is assigned its own
edshift of reionization such that reionization has a given midpoint,
 

median 
reion, HI , and duration, �z reion, HI . For this work we use z median 

reion, HI = 7 . 75
nd �z reion, HI = 4 . 82. It is possible for cells to be ionized before the
edshift of reionization through other processes such as collisional
eionization. In both models, at the redshift of reionization for a given
esolution element heat, �T , is injected. In both of our reionization
odels �T = 2 × 10 4 K. These two models result in two different

emperature fields. We say that the instantaneous reionization model
as ‘no temperature fluctuations’ and the inhomogeneous reioniza-
ion model has ‘temperature fluctuations’. 

The bottom row of Fig. 10 shows slices through the resulting
emperature field from these two simulations: one with no temper-
ture fluctuations on the left and one with temperature fluctuations
n the right. From this figure we see that model with temperature
uctuations has a larger scatter in the temperature with the greater
bundance of colder (darker blue) regions. These cold regions
orrespond to the regions of higher density in the top left panel. This
ollows from the model of reionization where the denser regions
eionize (and are heated) first and thus have more time to cool to a
ower temperature by z = 5 . 8. 

In addition to a constant UVB model, we have a model with
VB fluctuations. This UVB model was generated by the same
ethod presented in O ̃ norbe et al. ( 2019 ) with λmfp = 15 cMpc.
he method follows the approach of Davies & Furlanetto ( 2016 )
here we consider modulations in the ionization state of optically

hick absorbers assuming that λmfp ∝ 	 

2 / 3 
UVB /� where � is the local

atter density. For the fluctuating UVB, 	 UVB was calculated on
NRAS 540, 1412–1431 (2025) 
 uniform grid of 64 3 at z = 6 and then linearly interpolated the
og 	 UVB field to match the hydrodynamical simulation with 2048 3 .
he top right panel of Fig. 10 shows a slice through the UVB model
ith fluctuations. The largest UVB values are in the same location

s the high density areas shown in the top left panel. These are the
ensest regions of the simulation which contain the majority of the
ources of ionizing photons. We do not show the model without UVB
uctuations as this is a constant field. 
Thus our four models of reionization are (1) no temperature

uctuations and no UVB fluctuations; (2) no temperature fluctuations
ith UVB fluctuations; (3) temperature fluctuations with no UVB
uctuations, and (4) both temperature and UVB fluctuations. All four
odels are normalized to 〈 F 〉 = . 0172, which is the measured value

t z = 5 . 8 from Bosman et al. ( 2022 ). We do not consider multiple
alues of 〈 F 〉 for these models since they represent four discrete
odels and we will not try to constrain any parameters. 
We now consider the effect of these four simulation models on

he transmitted flux. Fig. 11 shows one skewer from each of the four
ifferent reionization models at z = 5 . 8. The top panel shows the
esulting Ly α forest flux. The second panel shows the density field
long the skewer. The third panel shows the temperature along the
kewer. The bottom panel shows the UVB background values. Each
anel has four lines representing models with no temperature and no
VB fluctuations (solid blue), no temperature fluctuations with UVB
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Figure 11. This figure shows one skewer from the four various reionization models at z = 5 . 8. The top panel shows the resulting Ly α forest flux. The second 
panel shows the density field along the skewer. The third panel shows the temperature along the skewer. The bottom panel shows the UVB background values. 
Each panel has four lines representing models with no temperature and no UVB fluctuations (solid blue), no temperature fluctuations with UVB fluctuations 
(dashed blue), temperature fluctuations with no UVB fluctuations (solid red), and both temperature and UVB fluctuations (dashed red). Comparing the solid lines 
to each other isolates the effect of temperature fluctuations only. When comparing these two models, we see that a positive scatter in the temperature of the IGM 

leads to increased flux o v er −1600 km s −1 < v < −1000 km s −1 . Comparing the dashed lines to the solid lines of the same colour isolates the effect of UVB 

fluctuations. F or e xample consider v > 1000 km s −1 where the models with UVB fluctuations (dashed) in the bottom panel are constantly greater than the models 
without UVB fluctuations (solid). In the top panel, these positive fluctuations in the UVB boost the flux in these dashed lines o v er the solid lines of the same colour. 
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uctuations (dashed blue), temperature fluctuations with no UVB 

uctuations (solid red), and both temperature and UVB fluctuations 
dashed red). Comparing the solid lines to each other isolates the 
ffect of temperature fluctuations only. When comparing these two 
odels, we see that a positive scatter in the temperature of the IGM

eads to increased flux o v er −1600 km s −1 < v < −1000 km s −1 .
omparing the dashed lines to the solid lines of the same colour

solates the effect of UVB fluctuations. F or e xample consider 
 > 1000 km s −1 where the models with UVB fluctuations (dashed)
n the bottom panel are constantly greater than the models without 
VB fluctuations (solid). In the top panel, these positive fluctuations 

n the UVB boost the flux in these dashed lines o v er the solid lines
f the same colour. 
In general, UVB fluctuations are anticorrelated with temperature 

uctuations. This can be explained by the fact that dense regions 
n the simulations are cooler because they reionized earlier, but 
he y hav e higher UVB values due to the increased number of
onizing photon sources, as discussed earlier. An example of this 
nticorrelation is seen at −1600 km s −1 < v < −1000 km s −1 , where
here is a positive temperature fluctuation and a negative UVB 

uctuation. Overall, this anticorrelation causes the effects of these 
wo fluctuating fields to cancel each other out. As a result, the
ux from the model with both temperature and UVB fluctuations 
dashed red line) closely resembles the flux from the model with no
emperature fluctuations and no UVB fluctuations (solid blue line). 
his behaviour is consistently observed in the flux panel of Fig. 11 . 
From here, we forward model the skewers in the same way as dis-

ussed in Section 2.2 with R = 30 000 and SNR 10 = 30. The only dif-
erence is that we leave the skewers with the full 40 cMpc h −1 length
nd then use only 15 (where before we used 20) skewers when cal-
ulating mock data sets. The mock data sets here and in the previous
ection contain the same path length corresponding to 20 observed 
MNRAS 540, 1412–1431 (2025) 
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M

Figure 12. This figure shows the correlation function for the four reionization models at z = 5 . 8 with a logarithmic y-axis. The lines show the model values 
of the correlation function while the shaded region shows the errors estimated from the diagonal of the covariance matrices. The colours and line styles here 
match those in Fig. 11 with the model with no temperature fluctuations and no UVB fluctuations (solid blue), no temperature fluctuations with UVB fluctuations 
(dashed blue), temperature fluctuations with no UVB fluctuations (solid red), and both temperature and UVB fluctuations (dashed red). Comparing the red to 
the blue lines with the same style isolates the effect of temperature fluctuations while comparing the dashed to the solid line with the same colour isolates the 
effect of UVB fluctuations. Note that the shaded regions are about the same size for all four models. The inset shows the first 100 km s −1 of the autocorrelation 
functions with a linear y-axis to see the differences at small scales. 
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uasars with �z = 0.1. We do not show an example of the forward
odelled skewer here as they are very similar to that shown in Fig. 3 .

.2 Autocorrelation 

he autocorrelation functions are computed via equation ( 3 ) and the
ovariance matrices are computed via equation ( 6 ). 

Fig. 12 shows the correlation function for the four reionization
odels at z = 5 . 8 with a logarithmic y-axis. The inset shows the
rst 100 km s −1 of the autocorrelation functions with a linear y-
xis to highlight the differences at small scales. The lines show
he model value while the shaded regions are the error estimated
rom the diagonals of the covariance matrices. The colours and
ine styles here match those in Fig. 11 with the model with no
emperature fluctuations and no UVB fluctuations (solid blue),
o temperature fluctuations with UVB fluctuations (dashed blue),
emperature fluctuations with no UVB fluctuations (solid red), and
oth temperature and UVB fluctuations (dashed red). Comparing
he red to the blue lines with the same style isolates the effect of
emperature fluctuations while comparing the dashed to the solid line
ith the same colour isolates the effect of UVB fluctuations. Note

hat the shaded regions are about the same size for all four models. 
First compare the model with no temperature fluctuations and

o UVB fluctuations (solid blue) and the model with temperature
uctuations with no UVB fluctuations (solid red), which isolates

he effect of temperature fluctuations. The model values for these
odels show that adding temperature fluctuations boosts the value

f the autocorrelation function for �v < 1800 km s −1 . This follows
rom the additional variation added by the temperature fluctuations. 

Now consider the model with no temperature fluctuations and no
VB fluctuations (solid blue) and the model with no temperature
uctuations with UVB fluctuations (dashed blue), which adds UVB
uctuations to a model without temperature fluctuations. Comparing

hese line in the inset shows that adding UVB fluctuations increases
he value of the autocorrelation function on small scales. This result
alls in line with that found in Wolfson et al. ( 2023 ) which says that
 shorter λmfp value leads to greater boosts on small scales of the
NRAS 540, 1412–1431 (2025) 
utocorrelation function. At larger scales there is a slight boost in
he model with no temperature fluctuations with UVB fluctuations
dashed blue) seen with the logarithmic scale. 

Finally consider the model with temperature fluctuations with no
VB fluctuations (solid red) and the model with both temperature

nd UVB fluctuations (dashed red), which compares adding UVB
uctuations to a model with temperature fluctuations. In this case
dding UVB fluctuations decreases the value of the autocorrelation
unction for �v < 1800 km s −1 . This is the opposite effect as adding
VB fluctuations to a model without temperature fluctuations (seen

n comparing the blue lines) and the results from Wolfson et al.
 2023 ). Ho we ver, there is an anticorrelation between the UVB and
emperature fluctuations resulting from the correlations with the
ensity field. For a fluctuating UVB, the UVB is highest where
he density is greatest, since this is where ionizing photon sources
re located. For a fluctuating temperature model, the temperature is
owest where the density is greatest, which decreases the transmitted
ux. This causes more constant flux levels and decreases the
utocorrelation function values at these small scales, as seen in these
ines. Ultimately, the correlations with density cause the model with
oth temperature and UVB fluctuations (dashed red) to be most
imilar to the model with no temperature fluctuations and no UVB
uctuations (solid blue). Note that on small scales there is still a boost

n the model with both temperature and UVB fluctuations (dashed
ed) o v er the model without both fluctuations (solid blue), which
omes from increased variation in the flux. 

Note that the UVB models used in this section were computed in
 relatively small box (40 cMpc h −1 ). This box size was shown to
uppress UVB fluctuations on all scales in Wolfson et al. ( 2023 ). As a
esult, suppressing UVB fluctuations leads to a lower autocorrelation
ignal at small scales. It is reasonable to assume that temperature
uctuations would also be suppressed in this box size, following
n analogous argument to the UVB fluctuation suppression, though
nvestigating this further is left for future work. Additionally, under-
tanding the interplay between temperature and UVB fluctuations in
 larger box is another aspect left to future research. This work will
e crucial for assessing the realistic impact of these fluctuations on
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Figure 13. This figure shows the distribution of likelihood ratios from 1000 
mock data sets where the mock data originates from the model with both 
temperature and UVB fluctuations. The violin plots show the full distribution 
where the light orange shaded region demarcates the 2.5th and 97.5th 
percentiles (2 σ ) of the ratio values while the darker orange shaded region 
demarcates the 16th and 84th percentiles (1 σ ) of the ratio values. The solid 
black line shows where the ratio is equal to 1, which is where both models 
are just as likely given the mock data. The dashed, dot-dashed, and dotted 
back lines show the value where the alternative models are ruled out at the 1, 
2, and 3 σ levels respectively. 
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bservations of the Ly α forest at high- z and for understanding the
otential of these observations to constrain reionization. 

.3 Ruling-out reionization scenarios 

or these four reionization models, there is no grid of parameters 
hat can be constrained via MCMC. Instead, we will investigate how 

onfidently other models can be ruled out given mock data from a
ingle model. We will rule out models via the likelihood ratio, R ,
hich is defined as 

 = 

L ( model ) 

L ( reference model ) 
(11) 

Again for this we assume the likelihood, L , is the multi v ariate
aussian likelihood from equation ( 8 ). 
Here we assume that the mock data comes from the model with

oth temperature and UVB fluctuations (red dashed lines in the 
igs 11 and 12 ). Therefore, we will be looking at the value of the

ikelihood for the mock data sets using the other three reionization 
odels divided by the likelihood for what we know is the true
ock data model (with both temperature and UVB fluctuations). 
o investigate the distribution of potential likelihood ratio values, we 
se 1000 mock data sets. 
The distribution of the 1000 likelihood ratio values for each of

he alternative reionization models are shown in Fig. 13 . The violin
lots show the full distribution where the light orange shaded region 
emarcates the 2.5th and 97.5th percentiles (2 σ ) of the ratio values
hile the darker orange shaded region demarcates the 16th and 84th 
ercentiles (1 σ ) of the ratio values. The solid black line shows where
he ratio is equal to 1, which is where both models are just as likely
iven the mock data. The dashed, dot-dashed, and dotted back lines
how the value where the alternative models are ruled out at the 1, 2,
nd 3 σ levels, respectively. 

Overall, it is most difficult to rule out the model with no tempera-
ure fluctuations and no UVB fluctuations (solid blue lines in previous
lots), as is seen in the left most violin in Fig. 13 . This distribution
as 44.6 per cent of the mock data sets that fa v our the incorrect,
lternative reionization scenario than the true model with both 
emperature and UVB fluctuations. Then only 40.4 per cent, 17.4 
er cent, and 3.4 per cent of mock data sets can be ruled out at the 1,
, and 3 σ levels, respectively. This follows from the autocorrelation 
alues for these models seen in Fig. 12 and the discussion there
bout how the temperature fluctuations and UVB fluctuations are 
nticorrelated and thus produce an autocorrelation function most 
imilar to the model which lacks both of these fluctuations. 

The next most difficult model to rule out is the model with no
emperature fluctuations but with UVB fluctuations (dashed blue 
ines in the previous plot) as seen in the central violin in Fig. 13 . This
istribution has 26.5 per cent of the mock data sets that fa v our the
ncorrect, alternative reionization scenario than the true model with 
oth temperature and UVB fluctuations. Then 60.6 per cent, 23.8 
er cent, and only 0.3 per cent of mock data sets can be ruled out at
he 1, 2, and 3 σ le vels, respecti vely. Between this and the left plot
here are fewer mock data sets here that can be ruled out at least at
he 3 σ level but over half of them can be ruled out at 1 σ . 

The easiest model to rule out is the model with temperature
uctuations but with no UVB fluctuations (solid red lines in the
revious plots) as seen in the right most violin in Fig. 13 . This
istribution has only 21.8 per cent of the mock data sets that fa v our
he incorrect, alternative reionization scenario than the true model 
ith both temperature and UVB fluctuations. Then 73.9 per cent, 
4.0 per cent, and 7.9 per cent of mock data sets can be ruled
ut at the 1, 2, and 3 σ levels, respectively, which is the greatest
ercentages out of the three alternative models. This also follows 
rom the differences between these models in Fig. 12 . The model with
emperature fluctuations but no UVB fluctuations has the greatest 
alues of the autocorrelation function at most scales, making it the
asiest to distinguish. 

This is the distribution of the likelihood ratio for 1000 mock
ata sets. The actual gi ven observ ational data set would ultimately
etermine if it is possible to rule out each model. It is possible for
he incorrect models to be fa v oured o v er the true model from which
he mock data was drawn, though this w as al w ays true for less than
alf of the mock data sets. 

 C O N C L U S I O N S  

n this work we investigated the precision of possible constraints on
he thermal state of the IGM from the autocorrelation function of Ly α
orest flux in high resolution quasar observations. This came in two
orms: constraining T 0 and γ when the IGM thermal state follows 
 tight power law of the form of equation ( 1 ) and investigating
he likelihood ratio for models with temperature fluctuations from 

ifferent reionization scenarios. 
We discussed the constraints on T 0 and γ in Section 3 . Overall, we

ound that the autocorrelation function is sensitive to both T 0 and γ
cross multiple redshift bins for realistic mock data sets of 20 quasars
ith a resolution of R = 30 000. We computed the marginalized re-
eighted posteriors for 100 mock data sets at 5 . 4 ≤ z ≤ 6 . 0. These

e-weighted posteriors showed a variety of behaviours, depending 
n the specific mock data set chosen and the true values of T 0 and γ
MNRAS 540, 1412–1431 (2025) 
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or the mock data set. We also considered an idealized data set with
he model value of the autocorrelation function and a covariance

atrix derived from 20 quasar sightlines. The errors on both T 0 and
increase with redshift, which may come from the lower values of

 F 〉 at higher z. At z = 5 . 4, the idealized data constrained T 0 to 59
er cent and γ to 16 per cent. At higher redshifts, these constraints
eaken. Specifically at z = 6 . 0, the idealized data constrained T 0 to
19 per cent and γ to 30 per cent. 
Note that our procedure uses a multi v ariate Gaussian likelihood,
CMC, and a set of weights for the MCMC chains that ensures our

osteriors pass an inference test. This guarantees that our reported
rrors are statistically correct and can be trusted. The initial failure
f our procedure to pass this test arose from the incorrect assumption
hat the autocorrelation function follows a multi v ariate Gaussian
istribution, as discussed in Appendix C . This highlights the caution
eeded when using a multi v ariate Gaussian likelihood with statistics
f the Ly α forest at high z, including both the autocorrelation function
nd the power spectrum, as similar issues with non-Gaussian data
ay arise. Impro v ed lik elihoods or lik elihood-free inference methods
ay offer a more optimal inference procedure (see e.g. Davies et al.

018a ; Alsing et al. 2019 ). We have left the exploration of these
ethods to future work. 
We discussed the likelihood ratios for four different reionization
odels in Section 4 , assuming a Gaussian distribution of the data.
ooking at mock data from a model which has temperature and
VB fluctuations, we found that it is easiest to rule out a model
ith temperature fluctuations and no UVB fluctuations and it is most
ifficult to rule out a model with no temperature or UVB fluctuations.
he actual ability to distinguish between models depends on the
pecific mock data set considered. In the most difficult case, we
ound that 40.4 per cent of mock data sets could rule out a model
ithout temperature or UVB fluctuations at > 1 σ level. In the easiest

ase, we found that 73.9 per cent of mock data sets could rule out a
odel with only temperature fluctuations at > 1 σ level. 
As discussed in Section 4.2 , the temperature and UVB fluctuations

ere generated in a relatively small simulation box, which may
uppress their impact on the autocorrelation function. Wolfson
t al. ( 2023 ) demonstrated this suppression of the autocorrelation
unction on small scales for UVB fluctuations in a small box size.
onsequently, distinguishing between models with and without UVB
uctuations w ould lik ely be easier if they were generated in a larger
imulation box. The analogous effect on temperature fluctuations
rom a larger box has not yet been studied. Therefore, future work
n fluctuating temperature and UVB models will be essential for
btaining the best possible constraints on reionization. 
Both the thermal state and the UVB fluctuations affect the Ly α

orest flux autocorrelation function. Modelling both of these physical
ffects by varying multiple parameters in a larger box will allow the
utocorrelation function to constrain the two simultaneously. This
ill allow us to put quantitative constraints on the thermal state of the

GM, the λmfp that describes the UVB, and ultimately reionization.
e leave this exploration to future work. 
This work assumed 20 high-resolution quasar observations in our

orecasting. There are currently o v er 100 known quasars abo v e
 redshift of 6, a subset of which already have high resolution
pectroscopic observations. Thus the 20 quasars used in this work
s reasonable for a near-future observational constraint. In addition,
he number of known quasars with high resolution observations is
xpected to continue to grow in the coming years which would only
mpro v e the prospects of this constraint. 

Here we used the autocorrelation function of the Ly α forest flux.
e chose to look at this clustering statistic for a couple statistical
NRAS 540, 1412–1431 (2025) 
roperties: namely that uncorrelated noise averages out and spectral
asking is easy to implement. In comparison to the power spectra,

he autocorrelation function has a covariance matrix with large off-
iagonal values which makes it more difficult to intuitively look at
he resulting fits to data (e.g. Fig. 6 ). In addition to the intuition, these
arge of f-diagonal v alues also make it more dif ficult to trouble-shoot
he inference procedure using a Gaussian likelihood. Using a statistic
ith a more diagonal covariance matrix, like the power spectra, is

asier to implement when fitting data. 
Constraining the thermal state of the IGM at z > 5 is a crucial
ethod for probing the end of reionization. Ho we ver, measuring the

hermal state at these redshifts is challenging, and only a few methods
ave been employed thus far (Boera et al. 2019 ; Walther et al. 2019 ;
aikwad et al. 2020 ). This work demonstrates that the autocorrelation

unction of the Ly α forest flux provides a ne w, competiti ve approach
o constrain the thermal state across multiple redshift bins at z ≥
 . 4. Specifically, it does so with a simplified thermal state model
haracterized by a tight power-law relation with parameters T 0 and
. This represents an essential first step toward using this method to
onstrain the IGM’s thermal state at high redshifts. 
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PPENDI X  A :  POWER  SPECTRA  M O D E L S  

s explained in Section 3.1 , the dimension-less power, � 

2 
δf 

( k), can
e written as the Fourier transform of the autocorrelation function 
f the flux contrast, ξδf 

( �v). ξδf 
( �v) is explicitly written in terms

f � 

2 
δf 

( k) in equation ( 5 ), which says ξδf 
( �v) is the integral of

 

2 
δf 

( k ) cos ( k �v ) in logarithmic k bins. We refer to � 

2 
δf 

( k ) cos ( k �v )
s the integrand for the rest of this discussion. To build intuition for
he autocorrelation function at small scales we show the integrand 
or �v = r = 15 km s −1 in Fig. A1 . 
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Figure A1. This figure shows the mean value of � 

2 cos ( kr) where r = 15 km s −1 for different sets of parameters. Each panels varies one parameter while 
keeping the others constant with T 0 , γ , and 〈 F 〉 varying in the top, middle, and bottom panels, respectiv ely. F or these panels the solid lines show the model 
values calculated by averaging � 

2 from all forward modelled ske wers av ailable. This figure is meant to explain the behaviour of the autocorrelation seen in Fig. 
4 at �v = r = 15 km s −1 due to the relation in equation ( 5 ). 
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Figure B1. This figure shows the behaviour of four elements of the model 
covariance matrix ( z = 5 . 4, T 0 = 9149 K, γ = 1 . 352, and 〈 F 〉 = 0 . 0801) 
for different numbers of mock draws. At all values of the number of mocks 
considered, the covariance elements fall within 2 per cent of their final value. 
By around ∼ 100 000 draws, all of the values fall within 0.5 per cent of the 
final value. For this reason, using 500 000 mock draws is sufficient to generate 
the covariance matrices used in this study. 500 000 mock draws is represented 
by the vertical dashed grey line. 
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This figure mimics the set up of Fig. 4 for the autocorrelation
unction where each panels varies one parameter while keeping the
thers constant. For these panels the solid lines show the model
alues calculated by averaging � 

2 from all forward modelled skewers
vailable. The vertical grey dashed line shows where cos ( kr) = 0. 

In the top panel T 0 varies while γ and 〈 F 〉 are constant. At small
 the larger values of T 0 have larger values of the integrand while
t small k there is thermal cutoff and smaller values of T 0 now
ave larger values of the integrand. When integrating over these
ogarithmic bins the greater T 0 values end up with more area and
hus the autocorrelation functions are also greater. 

PPENDIX  B:  C O N V E R G E N C E  O F  T H E  

OVA R I A N C E  M ATRICES  

e calculate the covariance matrices for our models with mock
raws, as defined in equation ( 6 ). Using mock draws is inherently
oisy and it should converge as 1 / 

√ 

N where N is the number of
raws used. As stated in the text, we used 500 000 mock draws.
o check that this number is sufficient to minimize the error in our
alculation, we looked at the behaviour of elements of one covariance
atrix in Fig. B1 . This covariance matrix is for the model with
 = 5 . 4, T 0 = 9149 K, γ = 1 . 352, and 〈 F 〉 = 0 . 0801, which is the
entral model at this redshift. The correlation matrix for this model
s also shown in Fig. 5 . 

The values in the plot have been normalized to 1 at 10 6 draws. The
our elements have been chosen such that there is one diagonal value
nd three of f-diagonal v alues in different regions of the matrix. At
ll values of the number of mock draws considered, the covariance
NRAS 540, 1412–1431 (2025) 
lements fall within 2 per cent of their final value. By around ∼
00 000 draws, the values fall within 0.5 per cent of the final value.
or this reason, using 500 000 mock draws is sufficient to generate

he covariance matrices used in this study. In Fig. B1 , 500 000 mock
raws is represented by the vertical dashed grey line. 
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Figure C1. This figure shows the distribution 1000 mock draws from 

two bins of the autocorrelation function ( �v = 25 . 0 km s −1 and �v = 

65 . 0 km s −1 ) for one model ( z = 5 . 4, T 0 = 9148 K, γ = 1 . 352, and 〈 F 〉 = 

0 . 0801). The top panel shows the distribution of only the �v = 65 . 0 km s −1 

bin while the right panel shows the distribution of only the �v = 25 . 0 km s −1 

bin. The blue (green) circle represents the 68 per cent (95 per cent) ellipse 
calculated from the covariance matrix calculated for this model from equation 
( 6 ). The red plus shows the calculated mean. Additionally the per cent of mock 
draws that fall within each of these contours is written in the top right. Both 
the 1D and 2D distributions seem relatively well described by a Gaussian 
distribution. In the 2D plot, there are more points outside the 95 per cent 
contour to the top right than on any other side but it is not extreme. 
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Figure C2. This figure shows the distribution 1000 mock draws from 

two bins of the autocorrelation function ( �v = 25 . 0 km s −1 and �v = 

65 . 0 km s −1 ) for one model ( z = 6, T 0 = 10 600 K, γ = 1 . 262, and 〈 F 〉 = 

0 . 0089). The top panel shows the distribution of only the �v = 65 . 0 km s −1 

bin while the right panel shows the distribution of only the �v = 25 . 0 km s −1 

bin. The blue (green) circle represents the 68 per cent (95 per cent) ellipse 
calculated from the covariance matrix calculated for this model from equation 
( 6 ). The red plus shows the calculated mean. Additionally the per cent of 
mock draws that fall within each of these contours is written in the top right. 
Both the 1D and 2D distributions are not well described by a Gaussian with 
72.3 per cent of the mock draws falling within the 68 per cent contour and 94. 
per cent of the mock draws falling within the 95 per cent contour. 
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PPEN D IX  C :  N O N - G AU S S I A N  DISTRIBU TI ON  

F  T H E  VA LUES  O F  T H E  AU TO C O R R E L AT I O N  

U N C T I O N  

or our inference, we used the multi v ariate Gaussian likelihood 
efined in equation ( 8 ). This functional form assumes that the dis-
ribution of mock draws of the autocorrelation function is Gaussian 
istributed about the mean for each bin. In order to visually check
his we will look at the distribution of mock draws from two bins of
he autocorrelation function for two different models. 

Both Figs C1 and C2 show the distribution of 1000 mock data sets
rom the velocity bins of the autocorrelation function with �v = 

5 . 0 km s −1 and �v = 65 . 0 km s −1 . The bottom left panels show
he 2D distribution of the autocorrelation values from these bins. 
he blue (green) ellipses represents the theoretical 68 per cent (95 
er cent) percentile contour calculated from the covariance matrix 
alculated for each model from equation ( 6 ). The red crosses shows
he calculated mean. The top panels show the distribution of only the
 = 65 . 0 km s −1 bins while the right panels show the distribution of
nly the v = 25 . 0 km s −1 bins. 
Fig. C1 shows mock values of two bins of the autocorrelation 

unction for the model at z = 5 . 4 with T 0 = 9148 K, γ = 1 . 352,
nd 〈 F 〉 = 0 . 0801. Both the 1D and 2D distributions seem relatively
ell described by Gaussian distributions by eye though they do show 

ome evidence of non-Gaussian tails to larger values. The number 
f points falling in each contour both fall within 1 per cent of the
xpected values. In the bottom left panel with the 2D distribution
here are more mock values falling outside the 95 per cent contour
o the top right (higher values) than in any other direction. For this
eason the distribution is not exactly Gaussian but a Gaussian visually
ppears as an acceptable approximation. 

Fig. C2 shows mock values of two bins of the autocorrelation
unction for the model at z = 6 with T 0 = 10 600 K, γ = 1 . 262,
nd 〈 F 〉 = 0 . 0089. In both the top and right panels, which show the
istribution of values for one bin of the autocorrelation function, the
istribution of mock draws is skewed with tails to the right. This
s quantified by the per cent of points in the two ellipses from the
ottom left panel labelled in the top right with 72.3 per cent of the
ock draws falling within the 68 per cent contour and 94.0 per cent

f the mock draws falling within the 95 per cent contour. The points
utside of the contours are highly skewered towards the top right
higher values). It is only possible for the autocorrelation function 
o be ne gativ e due to noise, which generally averages to very small
alues approaching zero at the non-zero lags of the autocorrelation 
unction. This can be seen in the black points and histogram do not
o below 0, though the 95 per cent ellipse shown in green in the
ottom left panel does go ne gativ e for �v = 65 km s −1 . 
Figs C1 and C2 show the changing distribution of the autocorre-

ation value with z, T 0 , γ , and 〈 F 〉 . There is a greater deviation from
 multi v ariate Gaussian distribution at higher z. It is possible that
dding additional sightlines will cause the autocorrelation function 
o better follow a multivariate Gaussian distribution due to the central
imit theorem, though investigating this in detail is beyond the scope
f the paper. Ho we ver, e ven with more sightlines 〈 F 〉 will be low
t high- z so we still expect the distribution to be skewed as the
alues mainly will not fall below 0. The incorrect assumption of
he multi v ariate Gaussian likelihood thus contributes to the failure
MNRAS 540, 1412–1431 (2025) 
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f our method to pass an inference test as discussed in Section 3.3
or z = 5 . 4 and Appendix D for z = 6. For our final constraints,
e calculated weights for our MCMC chains such that the resulting
osteriors do pass our inference test, as discussed in Section 3.3 . The
hole method of assuming a multi v ariate Gaussian then re-weighting

he posteriors in non-optimal and future work using a more correct
ikelihood or likelihood-free inference will impro v e our results. 

PPENDIX  D :  IN FERENCE  TEST  AT  H I G H  

EDSHIFT  

ere we present the results of the inference test at z = 6. This calcula-
ion was done following the procedure described in Section 3.3 . Fig.
1 shows the results for z = 6 and can be compared to the z = 5 . 4

esults in Fig. 7 . The left panel here shows the initial co v erage plot
hich deviates greatly from the expected C( α) = α line, much more

o than the z = 5 . 4. This likely comes from a greater deviation from
he assumption of a multi v ariate Gaussian likelihood as described in
ppendix C . The z = 6 mock data show highly skewed distributions

hat are not well described by a Gaussian likelihood. The inference
ines at other redshifts are available upon request. 
NRAS 540, 1412–1431 (2025) 

igure D1. The left panel of this figure shows the co v erage resulting from the inf
 F 〉 . Here we see that the true parameters for the models fall abo v e the 60th perce
anel of this figure shows the co v erage resulting from the inference test with the use
ble to pass the inference test. 
PPENDI X  E:  GAUSSI AN  DATA  I NFERENCE  

EST  

s shown in Appendix C , the distribution of mock values of the
utocorrelation function is not exactly Gaussian distributed. In order
o confirm the failure of our mock data to pass an inference test (as
iscussed in Section 3.3 and Appendix D ) comes from the use of a
ulti v ariate Gaussian likelihood, we generate Gaussian-distributed

ata and run inference tests. For one value of T 0 , γ , and 〈 F 〉 , we
andomly generate a mock data set from a multi v ariate Gaussian
ith the given mean model and covariance matrix calculated from
ur mock data as described in Section 3.1 . We can then continue
ith the inference test as described in Section 3.3 . The results for

his inference test for z = 5 . 4 and z = 6 . 0 are shown in Fig. E1 .
ere both redshifts inference lines fall along the C( α) = α line that

s expected for all α values. This behaviour is also seen at the other
edshifts. The fact that perfectly Gaussian data passes an inference
est with the same likelihood, priors, and method as was used on
ock data confirms that the failure of our mock data to pass an

nference test is due to the non-Gaussian distribution of the mock
ata. 
erence test from 300 models at z = 6 . drawn from our priors on T 0 , γ , and 
ntile in the MCMC chain ∼ 35 per cent of the time, for example. The right 
 of one set of weights to re-weight the posteriors. With these weights we are 
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Figure E1. Both panels of this figure show the co v erage plot resulting from the inference test from 300 data sets generated by randomly drawing points from 

the mean model and covariance matrix. The means and covariance matrices used come from z = 5 . 4 in the left panel and z = 6 . 0 in the right panel. The true 
parameter values for both panels were drawn from our priors on T 0 , γ , and 〈 F 〉 . In both panels, the Gaussian mock data produced inference lines that fall on top 
of the C( α) = α line within errors, as expected for the statistically correct posteriors. 
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