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ABSTRACT

The autocorrelation function of the Lyman-o (Ly o) forest flux from high-z quasars probes the small-scale structure of the
intergalactic medium (IGM). The thermal state of the IGM, determined by the physics of reionization, sets the small-scale power
observed in the Ly o forest. To explore the sensitivity of the autocorrelation function to the IGM’s thermal state, we compute
the autocorrelation function from a cosmological hydrodynamical simulation with an instantaneous reionization model and 135
post-processed thermal states. Using mock data sets of 20 quasars, we forecast constraints on 7y and y, which characterize the
post-processed IGM thermal state, at 5.4 < z < 6. While this model simplifies the IGM’s thermal state, it serves as a key first step
in assessing future observational prospects. We also perform an inference test on mocks and re-weight out posterior distributions
to guarantee that they exhibit statistically correct behaviour. At z = 5.4, we find that an idealized data set constrains T, to 59
percent and y to 16 percent at the 1o equivalent confidence level. To explore more realistic, non-instantaneous reionization
scenarios, we analyse four models combining temperature and ultraviolet background (UVB) fluctuations at z = 5.8. We find
that mock data generated from a model with both temperature and UVB fluctuations can rule out a model with only temperature

fluctuations at the > 1o level 73.9 per cent of the time.

Key words: methods: statistical —intergalactic medium — quasars: absorption lines —dark ages, reionization, first stars.

1 INTRODUCTION

Understanding the epoch of reionization, the time period where the
first luminous sources emitted photons that re-ionized the intergalac-
tic medium (IGM), remains a major open problem for studies of the
early Universe.The midpoint of reionization has been constrained
as ze = 7.7 £ 0.7 from the cosmic microwave background (Planck
Collaboration VI 2020). Initial measurements of transmission in the
Lyman-o (Lya) forest (Gunn & Peterson 1965; Lynds 1971) of
high redshift quasars suggested that reionization was complete by
z ~ 6 (Fan et al. 2006; McGreer, Mesinger & Fan 2011; McGreer,
Mesinger & D’Odorico 2015). Additional methods used to constrain
reionization include observations of Ly« emission from high redshift
galaxies (see e.g. Jung et al. 2020; Morales et al. 2021) and large Ly«
absorption troughs (see e.g. Becker et al. 2018; Kashino et al. 2020).
Measurements of the Ly forest optical depths scatter on levels that
suggest reionization is not actually complete until z < 6 (Fan et al.
2006; Becker et al. 2015; Bosman et al. 2018; Eilers, Davies &
Hennawi 2018; Yang et al. 2020; Bosman et al. 2022).

An alternative, indirect method to constrain reionization is by
looking at the thermal history of the IGM at z > 5 (Boera et al.
2019; Walther et al. 2019; Gaikwad et al. 2020). During reionization,
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ionization fronts propagate through the IGM and impulsively heat
the reionized gas in the IGM to ~ 10* K (McQuinn 2012; Davies,
Furlanetto & McQuinn 2016; D’Aloisio et al. 2019). The details
of the driving sources, the timing, and duration of reionization will
determine the precise amount of heat injected. After reionization,
the IGM expands and cools through the adiabatic expansion of the
Universe and inverse Compton scattering off CMB photons. The
combination of these physical processes will allow the IGM gas to
relax into a state described by a tight power-law relation between the
temperature and density:

T = TyA"™ ", (D

where A = p/p is the overdensity, p is the mean density of
the Universe, Ty is the temperature at mean density, and y is the
slope of the relationship (Hui & Gnedin 1997; Puchwein et al. 2015;
McQuinn & Upton Sanderbeck 2016). The low-density IGM has long
cooling times, so the thermal memory of reionization will persist for
hundreds of Myr. This means that thermal state of the IGM at the
end and after reionization, z ~ 5 — 6, can provide key insights into
reionization (Miralda-Escudé & Rees 1994; Hui & Gnedin 1997;
Haehnelt & Steinmetz 1998; Theuns et al. 2002; Hui & Haiman
2003; Lidz & Malloy 2014; Ofiorbe et al. 2017; Ofiorbe, Hennawi &
Luki¢ 2017).
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The Lya optical depth, 11y, is related to the temperature via
TLye = NHIOLyg X T7%7/Tyvs, (2)

see Rauch (1998). Several statistics have been used to measure the
thermal state of the IGM from the Lyo forest, including the flux
probability density (Becker, Rauch & Sargent 2007; Bolton et al.
2008; Viel, Bolton & Haehnelt 2009; Calura et al. 2012; Lee et al.
2015), the curvature (Becker et al. 2011; Boera et al. 2014; Gaikwad
et al. 2020), the Doppler parameter distribution (Schaye et al. 1999;
Bryan & Machacek 2000; Ricotti, Gnedin & Shull 2000; Schaye
et al. 2000; McDonald et al. 2001; Bolton et al. 2010, 2012; Rudie,
Steidel & Pettini 2012; Bolton et al. 2014; Rorai et al. 2018; Gaikwad
et al. 2020), the joint distribution of the Doppler parameters with the
Hydrogen Column Density (Hiss et al. 2018), and wavelets (Lidz
et al. 2010; Garzilli et al. 2012; Gaikwad et al. 2020). One of the
most commonly used statistics for measuring the structure of the
Lyo forest is the 1D flux power spectrum, Pr (k) (Theuns, Schaye &
Haehnelt 2000; Zaldarriaga, Hui & Tegmark 2001; Walther et al.
2017; Yeche et al. 2017; Boera et al. 2019; Gaikwad et al. 2020;
Wolfson et al. 2021).

The thermal state of the IGM significantly influences the Lyo
forest, primarily through two mechanisms: Doppler broadening,
which is driven by thermal motions, and Jeans (pressure) smooth-
ing, which affects the distribution of the underlying baryons. To
understand Jeans smoothing, it’s crucial to consider the role of
pressure forces. Pressure forces, influenced by the thermal state,
erase gravitational fluctuations at a rate determined by the local sound
speed. At low densities, like those of the IGM, this sound-crossing
time is approximately the Hubble time. Thus, the Jeans (pressure)
smoothing scale serves as a record of the thermal history of the IGM
over extensive time-scales (Gnedin & Hui 1998; Kulkarni et al. 2015;
Nasir, Bolton & Becker 2016; Onorbe et al. 2017; Rorai et al. 2017).
Both Doppler broadening and Jeans smoothing reduce the small-
scale structure of the Ly forest. These reductions in small-scale
structure of the Ly« forest lead to a cut-off in Pr(k) at high-k.

An alternative to the power spectrum is the Lyo forest flux auto-
correlation function, its Fourier transform. In this work, we explore
its ability to constrain the thermal state of the IGM at z > 5. The
autocorrelation function of the Ly« forest offers two key advantages
over the power spectrum in statistical analysis. First, uncorrelated
noise, which is expected for astronomical spectrographs, averages to
zero at non-zero lags in the autocorrelation function, eliminating the
need for noise correction. In contrast, uncorrelated noise contributes
aconstant positive value at all scales of the power spectrum, requiring
the subtraction of an estimates noise value that introduces additional
uncertainty. Secondly, quasar spectra often contain masked regions
(e.g. to remove metal lines), which impose a complex window
function on power spectrum measurements that must be corrected
(see e.g. Walther et al. 2019), further increasing uncertainty. The
autocorrelation function, however, remains unaffected, as masking
only reduces the number of pixel pairs available at a given velocity
lag.

Many previous studies have measured the Ly« forest flux autocor-
relation function at lower redshifts for a wide range of applications
(McDonald et al. 2000; Rollinde et al. 2003; Becker, Sargent & Rauch
2004; D’Odorico et al. 2006). In addition, the first measurement of
the Lyo forest flux autocorrelation function at z > 5 was presented
in Wolfson et al. (2024) for moderate resolution quasar spectra.

In this work, we investigate constraints on the IGM thermal state
under the assumption of a tight power-law relationship between
temperature and density, as given by equation (1). This is a simplified
model that does not fully capture the expected temperature fluctu-
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ations of the IGM at these redshifts (D’Aloisio, McQuinn & Trac
2015; Davies, Becker & Furlanetto 2018b). Additionally, we do not
model pressure smoothing, only instantaneous temperature changes.
Despite these simplifications, this modelling choice is sufficient to
assess whether the autocorrelation function is sensitive enough to the
thermal state to justify pursuing more realistic models. Specifically,
we will quantify the constraints on 7j and y that can be achieved
from Ly forest flux autocorrelation function measurements using
mock observational data sets.

More realistically, reionization can lead to significant fluctuations
in the temperature of the IGM (D’Aloisio et al. 2015; Davies
et al. 2018b). At the same time, fluctuations in the ultraviolet
background (UVB) arise during reionization because the ionizing
photons produced will be absorbed by the remaining neutral hydro-
gen at short distances from their initial sources (Davies & Furlanetto
2016; Gnedin, Becker & Fan 2017; D’Aloisio et al. 2018). These
distances are characterized by the mean free path of ionizing photons,
Amfp (Mesinger & Furlanetto 2009). Various previous studies have
investigated the effect of large scale variations in the UVB on the
autocorrelation function and power spectrum of the Ly« forest (Zuo
1992a, b; Croft 2004; Meiksin & White 2004; McDonald et al. 2005;
Gontcho A Gontcho, Miralda-Escudé & Busca 2014; Pontzen 2014;
Pontzen et al. 2014; D’Aloisio et al. 2018; Meiksin & McQuinn
2019; Ofiorbe et al. 2019). In particular, Wolfson et al. (2023) showed
that the positive fluctuations in the UVB that accompany small A g,
values boost the flux of the Lyo forest on small scales, which can be
detected in the autocorrelation function.

We will use additional hydrodynamical simulations that model
fluctuations in both the temperature and the UVB to determine
the effect on the Lyo forest flux autocorrelation function. Beyond
examining the qualitative differences between these models, we
will quantify the likelihood ratio for mock data sets, providing a
systematic way to compare and constrain a discrete set of models.

The structure of this paper is as follows. We discuss our simulation
and grid of Ty and y in Section 2. The autocorrelation function
and our other statistical methods to constrain these parameters are
described in Section 3 with our results being discussed in Section 3.4.
We discuss our second set of simulations for models of the IGM
with temperature and UVB fluctuations in Section 4 and use the
autocorrelation function to quantitatively distinguish between these
models in Section 4.3. Finally, we summarize in Section 5.

2 SIMULATION DATA

2.1 Simulation box

In this work we use a simulation box of size Lp,x = 100 comoving
Mpc (cMpc) h~! run with Nyx code (Almgren et al. 2013). Nyx is
a hydrodynamical simulation code that was designed for simulating
the Lyo forest with updated physical rates from Lukié et al. (2015).
The simulation has 40963 dark matter particles and 4096 baryon
grid cells. It is reionized by a Haardt & Madau (2012) uniform
UVB that is switched on at z ~ 15. We have two snapshots of this
simulation at z = 5.5 and z = 6.0. In this work, we consider seven
redshifts: 5.4, 5.5, 5.6,5.7, 5.8, 5.9, and 6.0. For redshifts without a
corresponding simulation snapshot, we use the density fluctuations
and velocities from the nearest available Nyx snapshot. However, we
compute the mean density and proper size of the simulation at the
desired redshift. To validate this approach, we tested an alternative
at z = 5.7. While our standard method uses the z = 5.5 snapshot for
z =5.7, we instead applied the density fluctuations and velocities
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Figure 1. The blue squares, orange triangles, and green pentagons show
previous measurements of 7y and y at high z from Gaikwad et al. (2020),
Boera et al. (2019), and Walther et al. (2019), respectively. The dashed line
shows the results for a thermal evolution model calculated with methods
similar to Upton Sanderbeck et al. (2016) and Davies et al. (2018b) This
model has Zyejon = 7.7, AT = 20000 K, and ayyp = 1.5. We use this model
as our true redshift evolution for 7 and y in this work. The chosen models
are shown as black circles.

from the z = 6.0 snapshot and found no significant differences in
our final results.

We generate grids of thermal models by post-processing the
temperature along the sightlines. For each value of T and y, we set
the temperature of each cell following equation (1) for all densities
with no cutoff. Our method does not take into account the full
evolution of the thermal state of the IGM, only the instantaneous
temperature. This simple model is sufficient to achieve the aim of
this paper, which is to see if the autocorrelation function is sensitive
to the thermal state. To make our grid we use 15 values of Ty
and 9 values of y resulting in 135 different combinations of these
parameters at each z. The values of T and y in our grid of thermal
models were chosen based on the current models and available data,
as shown in Fig. 1. We generate a model for the evolution of the
thermal state of the IGM by a method similar to Upton Sanderbeck,
D’Aloisio & McQuinn (2016) with zgion = 7.7, AT = 20, 000 K,
and ayyg = 1.5. For more information on the calculation of the
temperature field see Davies et al. (2018b). We select central 7y and
y values at each redshift from this model, which are shown as black
points in Fig. 1 and listed in Table 1. At all z, we use the errors
on the measurements reported in Gaikwad et al. (2020) at z = 5.8
(ATy =2200K and Ay = 0.22) and modelled from 7y — 4ATj to
To +4ATyand y —4Ay to y 4+ 4Ay in linear bins.

Our simulations do not predict the overall average of the UVB,
(I'uve), because this value originates from complicated galaxy
physics that are not included in the simulations. Additionally, our
method of post-processing different thermal states would affect the
resulting (I"'yvg). Instead, we model arange of possible (I'yyp) values
through the mean transmitted flux, (F'), exploiting the relation try, o
1/Tuyvs as seen in equation (2). This is achieved by rescaling the
optical depths along each skewer, 7, so that the average transmitted
flux across all skewers satisfies (¢ 7) = (F'). These (F') model values

MNRAS 540, 1412-1431 (2025)

Table 1. This table lists the central values of the redshift-dependent thermal
state models used in this work. The last column states the central value of
(F) modelled in this work, which are the measurements from Bosman et al.
(2022).

z To (K) Y (F)

5.4 9149 1.352 0.0801
5.5 9354 1.338 0.0591
5.6 9572 1.324 0.0447
5.7 9804 1.309 0.0256
5.8 10050 1.294 0.0172
5.9 10320 1.278 0.0114
6.0 10600 1.262 0.0089

are centred on the values presented in Bosman et al. (2022) for each
redshift bin. We chose a range of models going from (F) — 4A(F)
to (F) +4A(F) where the A(F) is the largest of the two redshift-
dependent values reported in Bosman et al. (2022). These choices of
(F) are listed in the last column of Table 1.

Our simulations are limited to a 100 cMpc #~! box, which does not
capture density fluctuations on scales larger than this volume. This
introduces cosmic variance that may affect measurements of large-
scale Lyman-alpha forest clustering. However, since our analysis
focuses on small-scale structure and our UVB and thermal state
modelling do not include fluctuations, we expect this effect to be
subdominant.

We do not model Lyo forest contaminants, such as damped Ly«
systems or metal lines, in this analysis. In observational studies,
these contaminants are identified and masked to prevent biasing
the results (see e.g. Wolfson et al. 2024). For the autocorrelation
function, the focus of this study, such masking reduces the number
of pixels in specific velocity bins, effectively lowering the statistical
precision of the measurement. Since the impact of masking is well
understood, we leave the quantification of missed contaminants to
future observational studies.

We draw 1000 skewers from the simulation box. One example
skewer at z = 5.4 for different 7y and y models is shown in Fig. 2.
The top panel shows the density of this skewer for all models in black.
There are then two pairs of panels each depicting the temperature
(top) and flux (bottom) along this skewer.

The second and third panels vary Tj with constant y = 1.352 and
(F) = 0.0801. The coldest model, Ty, = 2863 K (blue), has some
of the sharpest features. This is seen at v ~ —300kms~! where
the low 7, (blue) model has a secondary sharp peak in the flux.
In comparison the hottest model, 7p = 15435K (green), has one
wider transmission spike. In addition, increasing T, decreases Ty as
described in equation (2), which in turn increases the transmitted flux.
For this reason we get the greatest transmission from the 7, = 15435
K (green) model, seen in the transmission spike at v = 50kms~!.
With fixed (F) this leads to greater variation in the flux for higher Ty
models.

The fourth and fifth panels vary y with constant 7, = 9149 K and
(F) =0.0801. When y > 1 (orange and green) the temperature is
directly proportional to the density fluctuations while y < 1 (blue)
causes the temperature to be inversely proportional to the density
fluctuations. When temperature is inversely proportional to density,
lower densities have higher temperatures. Low densities and higher
temperatures will locally increase the flux so the y < 1 (blue) model
will lead to transmission spikes with the greatest flux, as seen at
v~ —100kms™!.
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Figure 2. The top panel shows the density along a section of one skewer in black for z = 5.4. There are then two pairs of panels each depicting the temperature
(top) and flux (bottom) along this skewer. The first pair varies Ty with constant y = 1.352 and (F) = 0.0801. Shifting 7p causes a corresponding shift in
the temperature values along the skewer. Hotter temperatures (orange and green) smooths the flux, as seen clearly in the loss of a second transmission spike
at z ~ —300kms~'. The second pair varies y with constant Ty = 9148 K and (F) = 0.0801. When y > 1 (orange and green) the temperature is directly
proportional to the density fluctuations while y < 1 (blue) causes the temperature to be inversely proportional to the density fluctuations. When temperature is
inversely proportional to density, lower densities have higher temperatures. Low densities and higher temperatures will locally increase the flux so the y < 1
(blue) model will lead to transmission spikes with the greatest flux, as seen at v ~ —100kms~!.

2.2 Forward modelling

In order to mimic realistic high-resolution observational data from
echelle spectrographs (e.g. from Keck/HIRES, VLT/UVES, and
Magellan/MIKE) we forward model our ideal simulation skewers to
have imperfect resolution and flux levels. We consider a resolution of
R = 30000 and a signal-to-noise ratio per 10km s~ pixel (SNR ()
of SNR ¢ = 30 at all redshifts.

We model this resolution by smoothing the flux by a Gaussian
filter with FWHM = 10kms~'. After smoothing we re-sampled the
new flux such that the new pixel size was Av = 2.5 km s~!. With this
pixel scale, SNRy = 30 corresponds to a signal-to-noise ratio of the
pixel size (SNR,,) of 15. For simplicity, we add flux-independent
noise in the following way. We generate a single realization of random
noise consisting of 1000 skewers, each of length matching the skewer
length, with values drawn from a Gaussian distribution with oy =
1/SNR,,. This noise realization is added to every model at every
redshift. By using the same noise realization across all models, we

prevent stochastic variations in the noise from introducing additional
differences between models. As a result, the noise modelling does
not unduly affect the parameter inference.

As discussed in Section 2.1 simulation skewers are 100 cMpc /™"
long, much longer than the Az = 0.1 redshift bins we have chosen to
analyse. Therefore, we split these skewers into two regions of length
Az = 0.1 and treating these two regions as independent, resulting in
a total of 2000 skewers. Note that Az = 0.1 corresponds to 33 cMpc
h~'atz =5.4and 29 cMpc h~! at 7 = 6.0.

The initial and forward-modelled flux for one z = 5.4 skewer
is shown in Fig. 3. This skewer has Ty = 9149K, y = 1.352, and
(F) = 0.0801 (our central parameters values at this redshift). The
forward modelled skewer, as is always true, uses R = 30000 and
SNR ¢ = 30. The initial flux is plotted as the red dashed line while
the forward modelled flux is plotted as the black histogram.

We assume a fiducial data set size of 20 quasar spectra that probe
a redshift interval of Az = 0.1 per quasar for a total path length of

MNRAS 540, 1412-1431 (2025)
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Figure 3. A forward-modelled skewer at z = 5.4 with Tp =9149K, y =
1.352, and (F) = 0.0801 (our central parameters values at this redshift). This
skewer, as is true for all skewers, is forward modelled with R = 30000 and
SNR g = 30. The initial flux from the simulations is a red dashed line while
the forward modelled flux is a black histogram.

Az = 2.0 at all redshifts. This is a reasonable number of high-z, high
resolution quasar observations to consider for a future measurement.

3 METHODS

3.1 Autocorrelation
The autocorrelation function of the flux, £-(Av), is defined as
§r(Av) = (F(v)F(v + Av)), 3

where F(v) is the flux of the Lya forest and the average is
performed over all pairs of pixels with the same velocity lag, Av.
Conventionally, the flux contrast field, § = (F — (F))/(F), is used
when measuring the power spectrum of the Ly« forest. However, we
use the flux directly since (F) is small and highly uncertain at high
z, where our forecast is focused. This avoids dividing by a small,
independently measured quantity, which could otherwise cause 4
to diverge. The autocorrelation function of the flux contrast can be
written as

£r(Av) — (F)°
(F)? '
&, can be computed via the Fourier transform of the dimension-

less power spectrum of the Ly« forest flux contrast, AgF(k) =
kPs,(k)/m. In 1D this can be written as:

&, (Av) = )

£s,(Av) = / N A3, (k) cos(kAv)dInk. ©)
’ 0

The dimensionless power, A2 (k), is a smoothly rising function
that has a sharp cutoff set by the thermal state of the IGM. Higher
temperature values lead to sharper cutoffs as the power at small scales
in the Lya forest is removed. Equation (5) can be particularly useful
when building intuition for the trends seen in the autocorrelation
function with changing 7, and y, which we will discuss later in this
section.

We compute the autocorrelation function with the following
consideration for the velocity bins. We set the left edge of the
smallest bin to be the resolution length, 10 km s~!, and continue
with linear bin sizes with a width of the resolution length, 10 km s!,
up to 300kms~!. Then we switch to logarithmic bin widths where

MNRAS 540, 1412-1431 (2025)

log(Av) = 0.029 out to a maximal distance of 2700kms~'. This
results in 59 velocity bins considered where the first 28 have linear
spacing. The centre of our smallest bin is 15kms~! and the centre
of our largest bin is 2295kms~'. This largest bin corresponds to
~ 16.5 cMpc h~! at z = 5.4. We chose to use linear bins on the
smallest scales because this is where the thermal state has the greatest
effect on the Ly« forest flux. At larger scales we switch to logarithmic
binning as this is only sensitive to ( F') and not the thermal parameters.
The main aim of this work is to constrain the thermal parameters so
having fine binning at large scales is not as important. To check this
we compared our results at z = 5.4 to those when using linear bins
at all scales and found no significant change to the constraints on
the parameters. However, using linear bins at all scales results in
268 total bins, which significantly slowed down our computations.
Therefore we used the linear-logarithmic bins at all z throughout the
rest of this work.

The model autocorrelation function is computed as the average
over all 2000 forward-modelled skewers. Each mock data set is
then generated by averaging the autocorrelation function over 20
randomly selected skewers, representing 20 quasar sightlines. Finite
resolution affects the autocorrelation function at the smallest velocity
lags, but this effect is consistently included in both the models and
mock data.

‘We show the correlation functions calculated for different thermal
state parameters in Fig. 4 at z = 5.4. The solid lines show the mean
values while the shaded regions represent the errors estimated from
the diagonal of the covariance matrices. We discuss the computation
of these covariance matrices later in this section.

The top panel shows models that vary 7; with constant y and (F').
Varying T results in small changes for the smallest velocity lags,
where the second bin centred on 25kms™! has the largest per cent
change in the models. The middle panel has models that vary y
with constant 7j and (F') where the effect of changing y is strongest
on small scales. The bottom panel has models that vary (F) with
constant 7y and y. (F) sets the amplitude of the autocorrelation
function at all velocity lags. Here the differences between models
are linear, with larger (F) producing higher autocorrelation values.
This scaling follows o< (F)?, as expected from the definition of the
autocorrelation function.

For the thermal models, larger 7 and smaller y lead to larger
correlation function values on small scales. Though these models do
not seem to show large differences by eye, we will investigate what
statistically rigorous measurements could look like in Section 3.4.

To build intuition for how the autocorrelation function depends on
the thermal parameters, we refer to equation (5). In Appendix A, we
show the integrand of this equation for Av = 15kms~!. As discussed
earlier, A2 (k) has a sharp thermal cutoff, which may naively suggest
hotter thermal states would result in lower autocorrelation values
at small scales. However Fig. 4 shows the opposite trend where
larger values of Ty correspond to higher autocorrelation values at
small scales. This behaviour can be explained by two factors. First,
hotter thermal states introduce greater flux variation, as noted earlier.
Secondly, A2 ; (k), the integrand from equation (5), has higher values
at small k for larger T values, particularly when viewed on a linear
scale, as shown in Fig. Al.

‘We compute the covariance matrices for the models by averaging
over randomly drawn mock data sets, each consisting of 20 skewers
(quasar sightlines):

1 Nmocks

Z (E, - &model)(si - gmodel)Tv (6)

i=1

X(To, v, (F)) =

N mocks
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Figure 4. This figure demonstrates the effects of varying the parameters on the autocorrelation function from the simulations at z = 5.4. Each of the three

panels varies one parameter from 7Ty, y, and (F) while keeping the others constant. The constant parameter values are written in the top left of each panel. The

solid lines show the model values and the shaded regions show errors estimated by the diagonals of the covariance matrices. Tp (top panel) and y (middle panel)
affect the autocorrelation function on small scales. (F) (bottom panel) affects the autocorrelation function on all scales.

where §; = &,(Ty, y, (F)) is the i-th mock autocorrelation function,
Enodel = Emodel(To, ¥, (F)) is the model value of the autocorrelation
function, and Npeceks 18 the number of forward-modelled mock data
sets used. Since the covariance is computed as an average over
multiple mock data sets (each consisting of 20 skewers), it naturally
incorporates the effects of sample variance. We use Nyocks = 500 000
for all models and redshifts in this work, see Appendix B for a
discussion on the convergence of the covariance matrix. Note that
&,(Ty, v, (F)) and X(Tp, v, (F)) are computed at each point on the
grid of Ty, y, and (F'), resulting in 1215 separate computations.

To visualize the covariance matrix, we define the correlation
matrix, C, which expresses the covariances between jth and kth
bins in units of the the diagonal elements of the covariance matrix.
Specifically, the jth, kth element of the correlation matrix is given
by:

Tk
VEiZu

One example correlation matrix is shown in Fig. 5 for z = 5.4
with Tp = 9149K, y = 1.352, (F) = 0.0801. We find that all bins
of the autocorrelation function are highly correlated, a result of each

pixel in the Ly forest contributing to multiple (in fact, almost all)
bins in the autocorrelation function.

Cix = &)

3.2 Parameter estimation

To quantitatively constrain the parameters we modelled 6 =
(T, y, (F)), we use Bayesian inference with a multivariate Gaussian
likelihood and a flat prior over the parameters. This likelihood,

To = 9149, y = 1.352, = 0.0801

1.00
2000 0.75
0.50
1500 0.25
0.00
1000
—0.25
—0.50
500
-0.75
-1.00

1000 1500 2000
Velocity (km/s)

Velocity (km/s)
Correlation

Figure 5. This figure shows the correlation matrix calculated with equation
(7) for the model at z = 5.4 with Tp = 9149K, y = 1.352, (F) = 0.0801.
The colour bar is fixed to span from —1 to 1, which is all possible values
of the correlation matrix. This illustrates that all bins in the autocorrelation
function are highly correlated with each other.

1
= Jaemany

)), has the form:

1
P (_E(g - gmodel)Tz:il(g - ‘gmodel)> ) (8)
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where & is the autocorrelation function from our mock data,
Enodel = Emodel (To, ¥, (F)) is the model value of the autocorrelation
function, ¥ = X(Tp, y, (F)) is the model-dependent covariance
matrix estimated by equation (6), and n =59 is the number of
points in the autocorrelation function. We discuss the assumption
of using a multivariate Gaussian likelihood in Appendix C. This
discussion shows that our mock data does not exactly follow a
Guassian distribution. This discrepancy may affect our parameter
inference, we investigate the consequences of this assumption in a
later section.

Our models are defined by three parameters 0 = (Ty, y, (F)).
Following Bayes’ theorem, we have

LE|To, y, (FHP(Ty, v, (F))
P(To, v, (F)§) P& ; ©)
where P(Ty, y, (F)|€) is the posterior distribution for = Ty, y, (F)
given observed autocorrelation function &. £ is the likelihood defined
in equation (8), P(Ty, y, (F)) is the prior on our parameters, and
P(&) is the probability of the data which can be interpreted as a
normalization constant since it is independent of 6.

We compute these posteriors using Markov Chain Monte Carlo
(MCMC) with the emcee (Foreman-Mackey et al. 2013) package.
We assumed uniform priors spanning the range of each parameter
we considered. Because we considered different central values at
each z, the priors are also z dependent. At z =5.4 these are
Ty € Uniform(349, 17949), y € Uniform(0.472,2.232), and (F) €
Uniform(0.0557, 0.1045). For £, we linearly interpolate the model
values and covariance matrix elements onto a finer 3D grid of Tj,
y, and (F) then use the nearest model during the MCMC. This fine
grid has 29 values of Ty, 33 values of y, and 41 values of (F) which
corresponds to adding 1, 3, and 4 points between the existing grid
points, respectively. Our MCMC was run with 16 walkers taking
3500 steps each and skipping the first 500 steps of each walker as a
burn-in, resulting in 48 000 samples.

Fig. 6 shows the result of our inference procedure for one mock
data set at z = 5.4. The top panel shows the mock data set along
with various lines relating to the inference procedure as follows.
The green dotted line and accompanying text show the model value
for the simulation from which the mock data was drawn. The mock
data set is plotted as black points with error bars derived from the
diagonal elements of the covariance matrix of the model nearest to
the inferred model. The inferred model, represented by the red line
and accompanying text, is based on the median of each parameter’s
samples, determined by the 50th percentile of the MCMC chains. The
error on the inferred model written in the text is given by the 16th
and 84th percentiles of the MCMC chains. The blue lines represent
100 random draws from the MCMC chain, illustrating the variety of
models in the posterior distribution. The bottom left panel shows a
corner plot of the posteriors for Ty, y, and (F').

3.3 Inference test and re-weighting

To assess the reliability of our inference method, we perform a
statistical validation test (inference test). This test evaluates whether
our posterior distributions are statistically robust and whether the
assumptions underlying our likelihood function are valid. The
procedure is described in detail in Hennawi et al. (2025), though
see also Wolfson et al. (2023). Below, we provide a brief summary
of the method and its motivation.

Statistically, the true parameter values, 0., should fall within the
nth credibility contour n per cent of the time when the experiment
is repeated (see e.g. Prangle et al. 2014; Ziegel & Gneiting 2014;

MNRAS 540, 1412-1431 (2025)

Morrison & Simon 2018; Sellentin & Starck 2019). Mathematically,
this condition can be expressed as follows: the probability, o, ob-
tained by integrating the posterior probability density from equation
(9) over a volume, V, of parameter space, 6,

a:/ PO1E)d6, (10)

should correspond to the coverage probability, C(«), which is the
fraction of cases in which the true parameters, 6., lie within
V., the region enclosed by the «-th credibility contour. Thus, by
testing whether C(«) = « for multiple values of «, we can assess the
statistical validity of our posteriors.

Overall, our inference test is done as follows:

(1) Draw N = 300 parameter vectors 0, = (7o, ¥, (F))irue, from
their uniform priors, which were described in 3.2.

(ii) Generate N = 300 mock autocorrelation data set correspond-
ing to these (7o, ¥, (F))uue, as described in 3.1.

(iii) Perform parameter inference on each mock data set as
described in 3.2, resulting in 48 000 samples each in the posterior
distributions.

(iv) Consider a set of M credibility contour levels « € [0, 1].
For each value o and each mock, test whether the true values,
0ve = (T, ¥, (F))uue, reside within the volume V,, enclosed by «-th
contour. For each «, the coverage probability C () is the fraction of
the N mock data sets for which the true values lie within the volume
V. defined by equation (10).

The coverage probability, C(«), is determined by the fraction
of trials in which @, falls within V,. Since this corresponds to
counting successes in N independent trials, C(«) follows a Binomial
distribution, B(N, C(«)). We estimate the uncertainty on C(«) using
the 16th and 84th percentiles of this distribution.

We plot the results of our inference procedure at z = 5.4 from 300
posteriors in the left panel of Fig. 7. The grey shaded regions around
our resulting line show the 1o errors on C(«) from B(N, C(«)). We
expect C(«) = o, shown as the red dashed line. To interpret this plot,
consider a point such as o =~ 0.6, which represents the 60th percentile
contour, calculated from the 60th percentile of probabilities from the
MCMC chain draws for each mock data set. Here, the true parameters
fall within the 60th percentile contour only C(a) ~ 52 per cent of
the time, implying that our posteriors are too narrow. Consequently,
we are underestimating the errors and need to widen them so that
the true parameters will fall within the 60th percentile contour more
often. We run this inference test at all z considered in this work
and find the deviation from the C(«x) = « line is larger at higher
redshifts. For more details, see Appendix D for the inference test at
z = 6. We also run the inference test for mock data generated from a
multivariate Gaussian distribution in Appendix E, where the results
align with the C(«) = « line. This suggests that the discrepancy when
using forward-modelled data arises because the data distribution is
not perfectly Gaussian.

Recent work has focused on correcting posteriors that fail the
coverage probability test (see e.g. Prangle et al. 2014; Griinwald &
van Ommen 2017; Sellentin & Starck 2019). Specifically, Sellentin &
Starck (2019) proposed relabelling the credibility contours, «, using
the calculated C(w). In this work, we adopt the method of Hennawi
et al. (2025), which involves calculating a set of weights for the
MCMC draws that mathematically broaden the posteriors in a
rigorous way. This approach is described in detail in Wolfson et al.
(2023) and Hennawi et al. (2025), and we refer the reader to those
papers for specifics on computing the weights. Here, we will only
discuss the effect of adding these weights to the posteriors.
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Figure 6. This figure illustrates the results of our inference procedure applied to one mock data set at z = 5.4. The top panel shows the data and models that
resulted from our inference procedure, the bottom left has the corner plot resulting from the fit, and the bottom right has the same corner plot which has been
re-weighted to pass our inference test. In the top panel, the black points are the mock data with error bars from the diagonals of the covariance matrix of the
inferred model. The inferred model was calculated by the median (50th percentile) of the MCMC chains of each parameter independently. The inferred model
is shown as a red line while the accompanying red text reports errors calculated from the 16th and 84th percentiles of each parameter. In comparison, the true
model, which was used to generate the data, is shown as a green dotted line. The parameters for this model is written in the accompanying green text. To
demonstrate the width of the posterior, multiple faint blue lines are shown which are the models corresponding to the parameters from 100 random draws of
the MCMC chain. The bottom left panel shows a corner plot of the values of Tp, y, and (F) that immediately result from our inference procedure. The bottom
right panel shows the corner plot of the values of Ty, y, and (F) from our inference procedure that has been re-weighted with the weights calculated from our
inference test as described in Section 3.3. For this mock data set, the true model parameters fall within the 68th percentile contours.

We show the re-weighted posteriors for Ty, y, and (F) in the
bottom right panel of Fig. 6. The weights give greater importance
to values of Ty, y, and (F') that lie outside the 68 per cent contour,
effectively broadening the posteriors and increasing the errors on the
fit. For the mock data set in Fig. 6, the marginalized re-weighted
posterior for Ty gives Ty = 734172132 K, resulting in a ~ 6 per cent
increase in the error when compared to the previous measurement
of 7282728 K. Similarly, the re-weighted posterior for y gives
y = 1.399%0126_0 144, resulting in a ~ 6 per cent increase in
the error when compared to whereas the previous measurement of
1.400+%-120-0.132. The error on (F) does not change. Examining the
2D distributions in this corner plot, such as the (y, (F)) distribution
in the middle panel of the bottom row, we observe small regions
outside the main 95 per cent contour that are up-weighted. This arises

from giving one particular draw a higher weight, illustrating how
the weights introduce an additional source of noise to the posterior
distribution. We also note that since the changes are around 6-7
per cent, this difference is difficult to discern visually in the corner
plots.

The need for re-weighting, or some method to correct our pos-
teriors to pass an inference test, comes from our incorrect (though
frequently used) assumption of a multivariate Gaussian likelihood.
The values of the autocorrelation function at these high z do not
adequately follow a multivariate Gaussian distribution, which should
serve as a cautionary note for other studies of the Lya forest at
these z. Using a more appropriate form of the likelihood, such as a
skewed distribution, or likelihood-free inference [e.g. approximate
Bayesian computation as used in Davies et al. (2018a) or other

MNRAS 540, 1412-1431 (2025)
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Gaussian Likelihood

Gaussian Likelihood

Figure 7. The left panel shows the coverage resulting from the inference test at z = 5.4 from 300 mock data sets with parameters drawn from our priors on 7Tp,
y, and (F). This shows that, for example, the true parameters fall above the 60th percentile in the MCMC chain ~ 50 per cent of the time. The line falls below

the C(«) = « line, meaning that the posteriors are overconfident (too narrow). The right panel of this figure shows the coverage resulting from the inference test

with the use of one set of weights to re-weight the posteriors, which passes.

machine learning methods] may yield more optimal posteriors that
better capture the information content of the autocorrelation function.
Exploring these approaches has been left for future work.

3.4 Thermal state measurements

Now that we have established the reliability of our posterior distribu-
tions, we can discuss constraints on the thermal state. We investigate
the impact of sample variance by analysing the distribution of
measurements across 100 mock data sets, all generated with the
same true parameters, 0, = (7o, ¥, (F))wue- For each z, we adopt
the values of Ty, y, and (F) from Table 1. As stated earlier, each
mock data set is created by randomly selecting and averaging the
autocorrelation function over 20 skewers. For each mock data set, we
perform MCMC sampling as described in Section 3.2 and then apply
the re-weighting procedure from Section 3.3. Using these weighted
posteriors, we compute the marginalized distributions for 7y and y.

In addition to analysing the 100 mock data sets, we consider an
idealized data set where the autocorrelation function is averaged
over all 2000 skewers instead of 20. The measurement errors for this
data set are still derived from the covariance matrices assuming a 20
quasar sample. Notably, this 2000 skewer average is also used for
the models shown in Fig. 4 and in the likelihood defined by equation
(8). Averaging over all 2000 skewers removes random fluctuations
from the choice of 20 skewers, providing an estimate with optimal
precision. This idealized mock data set is then fit using MCMC and
re-weighted following the same procedure as the 20 quasar mock
data sets.

At z = 5.4, Fig. 8 shows all 100 marginalized re-weighted pos-
teriors as thin blue curves for Ty (top panel) and y (bottom panel).
The thick blue histogram shows the posterior from the idealized data
set described above. The corresponding idealized measurement is
written in blue text in Fig. 8. The measurements of the idealized data
sets at every redshift are reported in Table 2.

The re-weighted posteriors appear noisy, similar to what is
observed in the bottom right panel of Fig. 6. This noise is a
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Figure 8. 100 marginalized re-weighted posteriors of 7p and y at z = 5.4
from mock data sets with true 7o = 9149, y = 1.352, and (F) = 0.0801
(faint blue lines). The top panel shows the marginalized posteriors for Tp
and the bottom panel shows the marginalized posteriors for y. Both panels
also show the re-weighted posterior from the idealized data set (thick blue
histograms). The measurement resulting from fitting the idealized data set are
written in blue text. The idealized autocorrelation function was taken as the
average over 2000 skewers with error from the covariance matrices computed
from 20 quasar (skewer) data sets. This demonstrates the different possible
behaviours the posterior can have for different mock data sets with the same
To, v, and (F) values.
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Table 2. The results of fitting to the idealized mock data sets described in
Section 3.4. The value of the autocorrelation functions for these mock data
sets was taken as the average over 2000 skewers and the error was set by
the covariance matrices computed for a 20 quasar (skewer) data set. The first
(third) column contains the modelled value of Ty () at each z. The second
(fourth) column contains the measurements for 7y (y) calculated by the 16th,
50th, and 84th percentiles. In general the trend of the errors is to increase
with increasing redshift.

z Model Ty Measured Ty Model y Measured y
5.4 9149 84551284 1352 1.408+0-19%
55 9354 864313122 1.338 1.42275-116
5.6 9572 848013729 1.324 1.43375121
5.7 9804 822073188 1309 146070 12
5.8 10050 834614226 1.294 1.48570-257
5.9 10320 789246111 1278 151340508
6.0 10600 95741819 1.262 1.511%57%

direct consequence of our re-weighting procedure and is expected
to improve with future developments in likelihood-free inference
methods. For Tj, the posterior obtained from the model fit has a width
comparable to the typical widths of the mock data set posteriors. For
y, the model-fit posterior is slightly narrower than most individual
mock data set posteriors. Additionally, the posteriors for y show
an asymmetry: those peaking at lower y values tend to be broader
than those peaking at higher y values. The model-derived posteriors
(thick blue lines) for both Tj and y contain the true parameter values
within their 1o confidence intervals. Across the 100 mock data sets,
the model value of Ty falls within the 1o confidence region 75 times,
while the model value of y falls within it 69 times. Statistically,
we expect the true values to fall within these intervals 68 times,
which is within 1.5¢0 of the expectation for the binomial distribution
B(100, .75) and well within 1o for B(100,.69). This agreement
again demonstrates the reliability of our inference method.

Table 2 reports the parameter constraints obtained when using
the model values of the autocorrelation function as our data at all
z. This represents an idealized scenario that eliminates the impact
of statistical fluctuations from individual mock data sets. The first
(third) column contains the modelled value of Ty (y) at each z
used in this measurement. The second (fourth) column contains the
corresponding constraints on T (y) given by the 16th, 50th, and 84th
percentiles of the marginalized re-weighted posterior distributions.
In general, the uncertainties increase with redshift. At z = 5.4, the
model constrains 7j to 59 percent and y to 16 percent, providing
the strongest constraints. By z = 6.0, these constraints weaken to
119 percent for Ty and 30 per cent for y.

To visualize the differences between measurements at different
redshifts, we plot the results for two random mock data sets in Fig.
9. The first and third panels show the marginalized posteriors for 7,
while the second and fourth panels show the marginalized posteriors
for y. Each violin illustrates the marginalized re-weighted posterior
for one randomly selected mock data set at the corresponding
redshift. The light blue shaded region indicates the 2.5th and
97.5th percentiles (20) of the MCMC draws, while the darker blue
shaded region indicates the 16th and 84th percentiles (1) of the
MCMC draws. The dot dashed line shows the simulated model value
evolution, as shown in Fig. 1 and reported in Table 1.

Looking at the posteriors for a given redshift (one column in the
figure), the only difference between the posteriors is the random
mock data set drawn. This results in varying precision, as seen in
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Figure 9. The marginalized posteriors for two random mock data sets at each
z for Ty and y. The first and third panels show the marginalized posteriors for
Ty while the second and fourth panels show the same for y . For each posterior,
the light blue shaded region demarcates the 2.5th and 97.5th percentile of the
weighted MCMC draws while the darker blue shaded region demarcates the
17th and 83rd percentile of the weighted MCMC draws. There are 14 total
random mock data sets used to make this figure. For a given Tp and y posterior
pair (in the first and second or third and fourth panels) the mock data set is the
same. The behaviour of each posterior is partially determined by the specific
mock data set considered, due to sample variance. The size of the data set
is consistent across z but the true parameter values of the mock data varies
as shown by the black dot dashed line. This black dot dashed line was also
shown in Fig. 1 and the values at each z are reported in Table 1.

Fig. 8 for z = 5.4, due to sample variance. Across the different z
values, both the random mock data set and the true values of T and
y differ. As mentioned, the individual posteriors are noisy due to the
re-weighting procedure described in Section 3.3. The behaviour here
echos the results found with the idealized measurements, where the
precision of the constraints on 7y and y decreases with increasing
redshift. For the highest redshift bins (z > 5.7), the posteriors for the
mock data sets tend to show large values at the boundary of our prior
more frequently.

4 INHOMOGENEOUS REIONIZATION

So far in this work, we have post-processed simulations to have differ-
ent thermal states following a tight temperature—density relationship.
This is a simple yet necessary first step in exploring the sensitivity
of the Ly forest flux autocorrelation function to the thermal state of
the IGM at high-redshifts. However, as previously discussed, recent
measurements of the Ly« optical depth at z > 5.5 have shown scatter
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that cannot be explained by density fluctuations alone (Fan et al.
2006; Becker et al. 2015; Bosman et al. 2018; Eilers et al. 2018;
Bosman et al. 2022). It is possible that these fluctuations come from
fluctuations in the temperature field (D’Aloisio et al. 2015; Davies
et al. 2018b) or fluctuations in the UVB (Davies & Furlanetto 2016;
Gnedin et al. 2017; D’ Aloisio et al. 2018). Fluctuations in either of
these fields can arise if reionization is extended or patchy.

On top of the measurements of fluctuations in the Ly forest
optical depth at z > 5.5, recent measurements of the mean free
path of ionizing photons at z > 5 suggest a UVB that cannot be
well described by uniform fields (Becker et al. 2021; Bosman 2021;
Gaikwad et al. 2023; Zhu et al. 2023).

In order to explore the effect of temperature and UVB fluctuations
on the Ly forest flux autocorrelation function, we consider a set
of four simulation models. These simulations have two different
reionization models (one of which causes temperature fluctuations)
and two UVB models (one of which has UVB fluctuations). These
simulations and their results will be described in detail in the
following sections.

4.1 Simulation box

For these models we use an additional Nyx simulation box with
a size of Ly =40 cMpc h~! and 2048° resolution elements at
z = 5.8. We comment on the effect of this box size on the resulting
autocorrelation function at the end of Section 4.2. A slice through
the density field of this simulation is shown in the top left panel of
Fig. 10.

We consider two reionization models: an instantaneous model and
an extended, inhomogeneous model [the ‘flash’ and inhomogeneous
methods described in Ofiorbe et al. (2019), respectively]. The
instantaneous model of reionization assigns all resolution elements
the same redshift of reionization, Zejon, mi- For this work we use
Zreion, 11 = 7.75. A brief summary of the inhomogeneous model of
reionization is as follows, each resolution element is assigned its own
redshift of reionization such that reionization has a given midpoint,
zmedian  and duration, AZyeion, . For this work we use znesat, = 7.75
and AZyeion, u1 = 4.82. It is possible for cells to be ionized before the
redshift of reionization through other processes such as collisional
reionization. In both models, at the redshift of reionization for a given
resolution element heat, AT, is injected. In both of our reionization
models AT =2 x 10* K. These two models result in two different
temperature fields. We say that the instantaneous reionization model
has ‘no temperature fluctuations’ and the inhomogeneous reioniza-
tion model has ‘temperature fluctuations’.

The bottom row of Fig. 10 shows slices through the resulting
temperature field from these two simulations: one with no temper-
ature fluctuations on the left and one with temperature fluctuations
on the right. From this figure we see that model with temperature
fluctuations has a larger scatter in the temperature with the greater
abundance of colder (darker blue) regions. These cold regions
correspond to the regions of higher density in the top left panel. This
follows from the model of reionization where the denser regions
reionize (and are heated) first and thus have more time to cool to a
lower temperature by z = 5.8.

In addition to a constant UVB model, we have a model with
UVB fluctuations. This UVB model was generated by the same
method presented in Ofiorbe et al. (2019) with Ag = 15 cMpe.
The method follows the approach of Davies & Furlanetto (2016)
where we consider modulations in the ionization state of optically
thick absorbers assuming that Ay, o Ffj/\fB/ A where A is the local
matter density. For the fluctuating UVB, I'yyg was calculated on
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Figure 10. This figure shows slices of density field (top left), the temperature
field (bottom row), and UVB (top right) for the Nyx simulation described
in Section 4. The bottom left panel shows the temperature field without
fluctuations. The bottom right panel right shows the temperature field with
fluctuations. The model with temperature fluctuations has a greater scatter
in the temperature field, as can be seen by the greater abundance of colder
(darker blue) regions. These cold regions correspond to the regions of higher
density in the top left panel. The top right panel shows a slice through the UVB
field of the simulation with Ayfp = 15 cMpc, which gives a fluctuating UVB.
The largest UVB values are in the same location as the high density areas
shown in the top left panel. These are the densest regions of the simulation
which contain the majority of the sources of ionizing photons.

a uniform grid of 64° at z = 6 and then linearly interpolated the
log I'yyg field to match the hydrodynamical simulation with 20483,
The top right panel of Fig. 10 shows a slice through the UVB model
with fluctuations. The largest UVB values are in the same location
as the high density areas shown in the top left panel. These are the
densest regions of the simulation which contain the majority of the
sources of ionizing photons. We do not show the model without UVB
fluctuations as this is a constant field.

Thus our four models of reionization are (1) no temperature
fluctuations and no UVB fluctuations; (2) no temperature fluctuations
with UVB fluctuations; (3) temperature fluctuations with no UVB
fluctuations, and (4) both temperature and UVB fluctuations. All four
models are normalized to (F) = .0172, which is the measured value
at z = 5.8 from Bosman et al. (2022). We do not consider multiple
values of (F) for these models since they represent four discrete
models and we will not try to constrain any parameters.

We now consider the effect of these four simulation models on
the transmitted flux. Fig. 11 shows one skewer from each of the four
different reionization models at z = 5.8. The top panel shows the
resulting Lyo forest flux. The second panel shows the density field
along the skewer. The third panel shows the temperature along the
skewer. The bottom panel shows the UVB background values. Each
panel has four lines representing models with no temperature and no
UVB fluctuations (solid blue), no temperature fluctuations with UVB
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Figure 11. This figure shows one skewer from the four various reionization models at z = 5.8. The top panel shows the resulting Ly« forest flux. The second
panel shows the density field along the skewer. The third panel shows the temperature along the skewer. The bottom panel shows the UVB background values.
Each panel has four lines representing models with no temperature and no UVB fluctuations (solid blue), no temperature fluctuations with UVB fluctuations
(dashed blue), temperature fluctuations with no UVB fluctuations (solid red), and both temperature and UVB fluctuations (dashed red). Comparing the solid lines
to each other isolates the effect of temperature fluctuations only. When comparing these two models, we see that a positive scatter in the temperature of the IGM
leads to increased flux over —1600kms~! < v < —1000kms~!. Comparing the dashed lines to the solid lines of the same colour isolates the effect of UVB
fluctuations. For example consider v > 1000 km s~! where the models with UVB fluctuations (dashed) in the bottom panel are constantly greater than the models
without UVB fluctuations (solid). In the top panel, these positive fluctuations in the UVB boost the flux in these dashed lines over the solid lines of the same colour.

fluctuations (dashed blue), temperature fluctuations with no UVB
fluctuations (solid red), and both temperature and UVB fluctuations
(dashed red). Comparing the solid lines to each other isolates the
effect of temperature fluctuations only. When comparing these two
models, we see that a positive scatter in the temperature of the IGM
leads to increased flux over —1600kms™' < v < —1000kms~!.
Comparing the dashed lines to the solid lines of the same colour
isolates the effect of UVB fluctuations. For example consider
v > 1000km s~! where the models with UVB fluctuations (dashed)
in the bottom panel are constantly greater than the models without
UVB fluctuations (solid). In the top panel, these positive fluctuations
in the UVB boost the flux in these dashed lines over the solid lines
of the same colour.

In general, UVB fluctuations are anticorrelated with temperature
fluctuations. This can be explained by the fact that dense regions
in the simulations are cooler because they reionized earlier, but

they have higher UVB values due to the increased number of
ionizing photon sources, as discussed earlier. An example of this
anticorrelation is seenat —1600kms~! < v < —1000kms~!, where
there is a positive temperature fluctuation and a negative UVB
fluctuation. Overall, this anticorrelation causes the effects of these
two fluctuating fields to cancel each other out. As a result, the
flux from the model with both temperature and UVB fluctuations
(dashed red line) closely resembles the flux from the model with no
temperature fluctuations and no UVB fluctuations (solid blue line).
This behaviour is consistently observed in the flux panel of Fig. 11.

From here, we forward model the skewers in the same way as dis-
cussed in Section 2.2 with R = 30 000 and SNR ¢ = 30. The only dif-
ference is that we leave the skewers with the full 40 cMpc A~! length
and then use only 15 (where before we used 20) skewers when cal-
culating mock data sets. The mock data sets here and in the previous
section contain the same path length corresponding to 20 observed
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Figure 12. This figure shows the correlation function for the four reionization models at z = 5.8 with a logarithmic y-axis. The lines show the model values
of the correlation function while the shaded region shows the errors estimated from the diagonal of the covariance matrices. The colours and line styles here
match those in Fig. 11 with the model with no temperature fluctuations and no UVB fluctuations (solid blue), no temperature fluctuations with UVB fluctuations
(dashed blue), temperature fluctuations with no UVB fluctuations (solid red), and both temperature and UVB fluctuations (dashed red). Comparing the red to
the blue lines with the same style isolates the effect of temperature fluctuations while comparing the dashed to the solid line with the same colour isolates the
effect of UVB fluctuations. Note that the shaded regions are about the same size for all four models. The inset shows the first 100 km s~ of the autocorrelation

functions with a linear y-axis to see the differences at small scales.

quasars with Az = 0.1. We do not show an example of the forward
modelled skewer here as they are very similar to that shown in Fig. 3.

4.2 Autocorrelation

The autocorrelation functions are computed via equation (3) and the
covariance matrices are computed via equation (6).

Fig. 12 shows the correlation function for the four reionization
models at z = 5.8 with a logarithmic y-axis. The inset shows the
first 100kms™! of the autocorrelation functions with a linear y-
axis to highlight the differences at small scales. The lines show
the model value while the shaded regions are the error estimated
from the diagonals of the covariance matrices. The colours and
line styles here match those in Fig. 11 with the model with no
temperature fluctuations and no UVB fluctuations (solid blue),
no temperature fluctuations with UVB fluctuations (dashed blue),
temperature fluctuations with no UVB fluctuations (solid red), and
both temperature and UVB fluctuations (dashed red). Comparing
the red to the blue lines with the same style isolates the effect of
temperature fluctuations while comparing the dashed to the solid line
with the same colour isolates the effect of UVB fluctuations. Note
that the shaded regions are about the same size for all four models.

First compare the model with no temperature fluctuations and
no UVB fluctuations (solid blue) and the model with temperature
fluctuations with no UVB fluctuations (solid red), which isolates
the effect of temperature fluctuations. The model values for these
models show that adding temperature fluctuations boosts the value
of the autocorrelation function for Av < 1800 kms~!. This follows
from the additional variation added by the temperature fluctuations.

Now consider the model with no temperature fluctuations and no
UVB fluctuations (solid blue) and the model with no temperature
fluctuations with UVB fluctuations (dashed blue), which adds UVB
fluctuations to a model without temperature fluctuations. Comparing
these line in the inset shows that adding UVB fluctuations increases
the value of the autocorrelation function on small scales. This result
falls in line with that found in Wolfson et al. (2023) which says that
a shorter Ay value leads to greater boosts on small scales of the
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autocorrelation function. At larger scales there is a slight boost in
the model with no temperature fluctuations with UVB fluctuations
(dashed blue) seen with the logarithmic scale.

Finally consider the model with temperature fluctuations with no
UVB fluctuations (solid red) and the model with both temperature
and UVB fluctuations (dashed red), which compares adding UVB
fluctuations to a model with temperature fluctuations. In this case
adding UVB fluctuations decreases the value of the autocorrelation
function for Av < 1800 km s~ This is the opposite effect as adding
UVB fluctuations to a model without temperature fluctuations (seen
in comparing the blue lines) and the results from Wolfson et al.
(2023). However, there is an anticorrelation between the UVB and
temperature fluctuations resulting from the correlations with the
density field. For a fluctuating UVB, the UVB is highest where
the density is greatest, since this is where ionizing photon sources
are located. For a fluctuating temperature model, the temperature is
lowest where the density is greatest, which decreases the transmitted
flux. This causes more constant flux levels and decreases the
autocorrelation function values at these small scales, as seen in these
lines. Ultimately, the correlations with density cause the model with
both temperature and UVB fluctuations (dashed red) to be most
similar to the model with no temperature fluctuations and no UVB
fluctuations (solid blue). Note that on small scales there is still a boost
in the model with both temperature and UVB fluctuations (dashed
red) over the model without both fluctuations (solid blue), which
comes from increased variation in the flux.

Note that the UVB models used in this section were computed in
a relatively small box (40 cMpc h~'). This box size was shown to
suppress UVB fluctuations on all scales in Wolfson et al. (2023). As a
result, suppressing UVB fluctuations leads to a lower autocorrelation
signal at small scales. It is reasonable to assume that temperature
fluctuations would also be suppressed in this box size, following
an analogous argument to the UVB fluctuation suppression, though
investigating this further is left for future work. Additionally, under-
standing the interplay between temperature and UVB fluctuations in
a larger box is another aspect left to future research. This work will
be crucial for assessing the realistic impact of these fluctuations on
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Figure 13. This figure shows the distribution of likelihood ratios from 1000
mock data sets where the mock data originates from the model with both
temperature and UVB fluctuations. The violin plots show the full distribution
where the light orange shaded region demarcates the 2.5th and 97.5th
percentiles (20) of the ratio values while the darker orange shaded region
demarcates the 16th and 84th percentiles (10) of the ratio values. The solid
black line shows where the ratio is equal to 1, which is where both models
are just as likely given the mock data. The dashed, dot-dashed, and dotted
back lines show the value where the alternative models are ruled out at the 1,
2, and 30 levels respectively.

observations of the Ly forest at high-z and for understanding the
potential of these observations to constrain reionization.

4.3 Ruling-out reionization scenarios

For these four reionization models, there is no grid of parameters
that can be constrained via MCMC. Instead, we will investigate how
confidently other models can be ruled out given mock data from a
single model. We will rule out models via the likelihood ratio, R,
which is defined as

_ L(model)
~ L(reference model)

an

Again for this we assume the likelihood, £, is the multivariate
Gaussian likelihood from equation (8).

Here we assume that the mock data comes from the model with
both temperature and UVB fluctuations (red dashed lines in the
Figs 11 and 12). Therefore, we will be looking at the value of the
likelihood for the mock data sets using the other three reionization
models divided by the likelihood for what we know is the true
mock data model (with both temperature and UVB fluctuations).
To investigate the distribution of potential likelihood ratio values, we
use 1000 mock data sets.

The distribution of the 1000 likelihood ratio values for each of
the alternative reionization models are shown in Fig. 13. The violin
plots show the full distribution where the light orange shaded region
demarcates the 2.5th and 97.5th percentiles (20') of the ratio values
while the darker orange shaded region demarcates the 16th and 84th
percentiles (1o) of the ratio values. The solid black line shows where

IGM thermal state from Ly a autocorrelation
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the ratio is equal to 1, which is where both models are just as likely
given the mock data. The dashed, dot-dashed, and dotted back lines
show the value where the alternative models are ruled out at the 1, 2,
and 3 o levels, respectively.

Overall, it is most difficult to rule out the model with no tempera-
ture fluctuations and no UVB fluctuations (solid blue lines in previous
plots), as is seen in the left most violin in Fig. 13. This distribution
has 44.6 percent of the mock data sets that favour the incorrect,
alternative reionization scenario than the true model with both
temperature and UVB fluctuations. Then only 40.4 percent, 17.4
per cent, and 3.4 per cent of mock data sets can be ruled out at the 1,
2, and 3 o levels, respectively. This follows from the autocorrelation
values for these models seen in Fig. 12 and the discussion there
about how the temperature fluctuations and UVB fluctuations are
anticorrelated and thus produce an autocorrelation function most
similar to the model which lacks both of these fluctuations.

The next most difficult model to rule out is the model with no
temperature fluctuations but with UVB fluctuations (dashed blue
lines in the previous plot) as seen in the central violin in Fig. 13. This
distribution has 26.5 per cent of the mock data sets that favour the
incorrect, alternative reionization scenario than the true model with
both temperature and UVB fluctuations. Then 60.6 percent, 23.8
per cent, and only 0.3 per cent of mock data sets can be ruled out at
the 1, 2, and 3 o levels, respectively. Between this and the left plot
there are fewer mock data sets here that can be ruled out at least at
the 3o level but over half of them can be ruled out at 1o.

The easiest model to rule out is the model with temperature
fluctuations but with no UVB fluctuations (solid red lines in the
previous plots) as seen in the right most violin in Fig. 13. This
distribution has only 21.8 per cent of the mock data sets that favour
the incorrect, alternative reionization scenario than the true model
with both temperature and UVB fluctuations. Then 73.9 per cent,
54.0 percent, and 7.9 percent of mock data sets can be ruled
out at the 1, 2, and 3 o levels, respectively, which is the greatest
percentages out of the three alternative models. This also follows
from the differences between these models in Fig. 12. The model with
temperature fluctuations but no UVB fluctuations has the greatest
values of the autocorrelation function at most scales, making it the
easiest to distinguish.

This is the distribution of the likelihood ratio for 1000 mock
data sets. The actual given observational data set would ultimately
determine if it is possible to rule out each model. It is possible for
the incorrect models to be favoured over the true model from which
the mock data was drawn, though this was always true for less than
half of the mock data sets.

5 CONCLUSIONS

In this work we investigated the precision of possible constraints on
the thermal state of the IGM from the autocorrelation function of Ly«
forest flux in high resolution quasar observations. This came in two
forms: constraining 7y and y when the IGM thermal state follows
a tight power law of the form of equation (1) and investigating
the likelihood ratio for models with temperature fluctuations from
different reionization scenarios.

We discussed the constraints on 7j and y in Section 3. Overall, we
found that the autocorrelation function is sensitive to both 7 and y
across multiple redshift bins for realistic mock data sets of 20 quasars
with a resolution of R = 30 000. We computed the marginalized re-
weighted posteriors for 100 mock data sets at 5.4 < z < 6.0. These
re-weighted posteriors showed a variety of behaviours, depending
on the specific mock data set chosen and the true values of 7y and y

MNRAS 540, 1412-1431 (2025)

920z Arenuer Gz uo 1sanb Aq y£Z.Z18/Z L L/2/0YS/aI0IME/SeIuw/Wwod"dno-olWapeo.//:sdiy oy papeojumod



1426 M. Wolfson et al.

for the mock data set. We also considered an idealized data set with
the model value of the autocorrelation function and a covariance
matrix derived from 20 quasar sightlines. The errors on both 7; and
y increase with redshift, which may come from the lower values of
(F) at higher z. At z = 5.4, the idealized data constrained Ty to 59
percent and y to 16 percent. At higher redshifts, these constraints
weaken. Specifically at z = 6.0, the idealized data constrained 7 to
119 percent and y to 30 per cent.

Note that our procedure uses a multivariate Gaussian likelihood,
MCMC, and a set of weights for the MCMC chains that ensures our
posteriors pass an inference test. This guarantees that our reported
errors are statistically correct and can be trusted. The initial failure
of our procedure to pass this test arose from the incorrect assumption
that the autocorrelation function follows a multivariate Gaussian
distribution, as discussed in Appendix C. This highlights the caution
needed when using a multivariate Gaussian likelihood with statistics
of the Ly« forest at high z, including both the autocorrelation function
and the power spectrum, as similar issues with non-Gaussian data
may arise. Improved likelihoods or likelihood-free inference methods
may offer a more optimal inference procedure (see e.g. Davies et al.
2018a; Alsing et al. 2019). We have left the exploration of these
methods to future work.

We discussed the likelihood ratios for four different reionization
models in Section 4, assuming a Gaussian distribution of the data.
Looking at mock data from a model which has temperature and
UVB fluctuations, we found that it is easiest to rule out a model
with temperature fluctuations and no UVB fluctuations and it is most
difficult to rule out a model with no temperature or UVB fluctuations.
The actual ability to distinguish between models depends on the
specific mock data set considered. In the most difficult case, we
found that 40.4 per cent of mock data sets could rule out a model
without temperature or UVB fluctuations at > 1o level. In the easiest
case, we found that 73.9 per cent of mock data sets could rule out a
model with only temperature fluctuations at > 1o level.

As discussed in Section 4.2, the temperature and UVB fluctuations
were generated in a relatively small simulation box, which may
suppress their impact on the autocorrelation function. Wolfson
et al. (2023) demonstrated this suppression of the autocorrelation
function on small scales for UVB fluctuations in a small box size.
Consequently, distinguishing between models with and without UVB
fluctuations would likely be easier if they were generated in a larger
simulation box. The analogous effect on temperature fluctuations
from a larger box has not yet been studied. Therefore, future work
on fluctuating temperature and UVB models will be essential for
obtaining the best possible constraints on reionization.

Both the thermal state and the UVB fluctuations affect the Ly
forest flux autocorrelation function. Modelling both of these physical
effects by varying multiple parameters in a larger box will allow the
autocorrelation function to constrain the two simultaneously. This
will allow us to put quantitative constraints on the thermal state of the
IGM, the Anyg, that describes the UVB, and ultimately reionization.
We leave this exploration to future work.

This work assumed 20 high-resolution quasar observations in our
forecasting. There are currently over 100 known quasars above
a redshift of 6, a subset of which already have high resolution
spectroscopic observations. Thus the 20 quasars used in this work
is reasonable for a near-future observational constraint. In addition,
the number of known quasars with high resolution observations is
expected to continue to grow in the coming years which would only
improve the prospects of this constraint.

Here we used the autocorrelation function of the Ly« forest flux.
We chose to look at this clustering statistic for a couple statistical
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properties: namely that uncorrelated noise averages out and spectral
masking is easy to implement. In comparison to the power spectra,
the autocorrelation function has a covariance matrix with large off-
diagonal values which makes it more difficult to intuitively look at
the resulting fits to data (e.g. Fig. 6). In addition to the intuition, these
large off-diagonal values also make it more difficult to trouble-shoot
the inference procedure using a Gaussian likelihood. Using a statistic
with a more diagonal covariance matrix, like the power spectra, is
easier to implement when fitting data.

Constraining the thermal state of the IGM at z > 5 is a crucial
method for probing the end of reionization. However, measuring the
thermal state at these redshifts is challenging, and only a few methods
have been employed thus far (Boera et al. 2019; Walther et al. 2019;
Gaikwad et al. 2020). This work demonstrates that the autocorrelation
function of the Ly forest flux provides a new, competitive approach
to constrain the thermal state across multiple redshift bins at z >
5.4. Specifically, it does so with a simplified thermal state model
characterized by a tight power-law relation with parameters 7 and
y. This represents an essential first step toward using this method to
constrain the IGM’s thermal state at high redshifts.
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APPENDIX A: POWER SPECTRA MODELS

As explained in Section 3.1, the dimension-less power, A§ y (k), can
be written as the Fourier transform of the autocorrelation function
of the flux contrast, & f(Av). Eaf(Av) is explicitly written in terms
of A§ f(k) in equation (5), which says &;,(Av) is the integral of
Agf (k) cos(kAv) in logarithmic k bins. We refer to A%f(k) cos(kAv)
as the integrand for the rest of this discussion. To build intuition for
the autocorrelation function at small scales we show the integrand
for Av =r = 15kms~! in Fig. Al.
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Figure Al. This figure shows the mean value of A% cos(kr) where r = 15kms™! for different sets of parameters. Each panels varies one parameter while
keeping the others constant with Ty, y, and (F') varying in the top, middle, and bottom panels, respectively. For these panels the solid lines show the model
values calculated by averaging A2 from all forward modelled skewers available. This figure is meant to explain the behaviour of the autocorrelation seen in Fig.

4at Av=r = 15kms~! due to the relation in equation (5).

This figure mimics the set up of Fig. 4 for the autocorrelation
function where each panels varies one parameter while keeping the
others constant. For these panels the solid lines show the model
values calculated by averaging A2 from all forward modelled skewers
available. The vertical grey dashed line shows where cos(kr) = 0.

In the top panel 7 varies while y and (F') are constant. At small
k the larger values of Tj have larger values of the integrand while
at small k there is thermal cutoff and smaller values of 7; now
have larger values of the integrand. When integrating over these
logarithmic bins the greater 7y values end up with more area and
thus the autocorrelation functions are also greater.

APPENDIX B: CONVERGENCE OF THE
COVARIANCE MATRICES

We calculate the covariance matrices for our models with mock
draws, as defined in equation (6). Using mock draws is inherently
noisy and it should converge as 1/+/N where N is the number of
draws used. As stated in the text, we used 500000 mock draws.
To check that this number is sufficient to minimize the error in our
calculation, we looked at the behaviour of elements of one covariance
matrix in Fig. B1. This covariance matrix is for the model with
z7=54,Ty=9149 K, y = 1.352, and (F) = 0.0801, which is the
central model at this redshift. The correlation matrix for this model
is also shown in Fig. 5.

The values in the plot have been normalized to 1 at 10° draws. The
four elements have been chosen such that there is one diagonal value
and three off-diagonal values in different regions of the matrix. At
all values of the number of mock draws considered, the covariance
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Figure B1. This figure shows the behaviour of four elements of the model
covariance matrix (z = 5.4, Top = 9149 K, y = 1.352, and (F) = 0.0801)
for different numbers of mock draws. At all values of the number of mocks
considered, the covariance elements fall within 2 per cent of their final value.
By around ~ 100 000 draws, all of the values fall within 0.5 per cent of the
final value. For this reason, using 500 000 mock draws is sufficient to generate
the covariance matrices used in this study. 500 000 mock draws is represented
by the vertical dashed grey line.

elements fall within 2 percent of their final value. By around ~
100 000 draws, the values fall within 0.5 per cent of the final value.
For this reason, using 500 000 mock draws is sufficient to generate
the covariance matrices used in this study. In Fig. B1, 500 000 mock
draws is represented by the vertical dashed grey line.
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Figure C1. This figure shows the distribution 1000 mock draws from
two bins of the autocorrelation function (Av =25.0kms~! and Av =
65.0kms™1) for one model (z = 5.4, Ty = 9148 K, y = 1.352, and (F) =
0.0801). The top panel shows the distribution of only the Av = 65.0kms~!
bin while the right panel shows the distribution of only the Av = 25.0kms~!
bin. The blue (green) circle represents the 68 percent (95 percent) ellipse
calculated from the covariance matrix calculated for this model from equation
(6). The red plus shows the calculated mean. Additionally the per cent of mock
draws that fall within each of these contours is written in the top right. Both
the 1D and 2D distributions seem relatively well described by a Gaussian
distribution. In the 2D plot, there are more points outside the 95 per cent
contour to the top right than on any other side but it is not extreme.

APPENDIX C: NON-GAUSSIAN DISTRIBUTION
OF THE VALUES OF THE AUTOCORRELATION
FUNCTION

For our inference, we used the multivariate Gaussian likelihood
defined in equation (8). This functional form assumes that the dis-
tribution of mock draws of the autocorrelation function is Gaussian
distributed about the mean for each bin. In order to visually check
this we will look at the distribution of mock draws from two bins of
the autocorrelation function for two different models.

Both Figs C1 and C2 show the distribution of 1000 mock data sets
from the velocity bins of the autocorrelation function with Av =
25.0kms™! and Av = 65.0kms~'. The bottom left panels show
the 2D distribution of the autocorrelation values from these bins.
The blue (green) ellipses represents the theoretical 68 per cent (95
per cent) percentile contour calculated from the covariance matrix
calculated for each model from equation (6). The red crosses shows
the calculated mean. The top panels show the distribution of only the
v = 65.0kms~! bins while the right panels show the distribution of
only the v = 25.0km s~! bins.

Fig. C1 shows mock values of two bins of the autocorrelation
function for the model at z = 5.4 with T, = 9148 K, y = 1.352,
and (F') = 0.0801. Both the 1D and 2D distributions seem relatively
well described by Gaussian distributions by eye though they do show
some evidence of non-Gaussian tails to larger values. The number
of points falling in each contour both fall within 1 percent of the
expected values. In the bottom left panel with the 2D distribution
there are more mock values falling outside the 95 per cent contour
to the top right (higher values) than in any other direction. For this

IGM thermal state from Ly o autocorrelation
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Figure C2. This figure shows the distribution 1000 mock draws from
two bins of the autocorrelation function (Av =25.0kms~! and Av =
65.0 km S’l) for one model (z =6, Tp = 10600 K, y = 1.262, and (F) =
0.0089). The top panel shows the distribution of only the Av = 65.0kms~!
bin while the right panel shows the distribution of only the Av = 25.0kms™!
bin. The blue (green) circle represents the 68 percent (95 percent) ellipse
calculated from the covariance matrix calculated for this model from equation
(6). The red plus shows the calculated mean. Additionally the percent of
mock draws that fall within each of these contours is written in the top right.
Both the 1D and 2D distributions are not well described by a Gaussian with
72.3 per cent of the mock draws falling within the 68 per cent contour and 94.
per cent of the mock draws falling within the 95 per cent contour.

reason the distribution is not exactly Gaussian but a Gaussian visually
appears as an acceptable approximation.

Fig. C2 shows mock values of two bins of the autocorrelation
function for the model at z = 6 with 75 = 10600 K, y = 1.262,
and (F) = 0.0089. In both the top and right panels, which show the
distribution of values for one bin of the autocorrelation function, the
distribution of mock draws is skewed with tails to the right. This
is quantified by the per cent of points in the two ellipses from the
bottom left panel labelled in the top right with 72.3 per cent of the
mock draws falling within the 68 per cent contour and 94.0 per cent
of the mock draws falling within the 95 per cent contour. The points
outside of the contours are highly skewered towards the top right
(higher values). It is only possible for the autocorrelation function
to be negative due to noise, which generally averages to very small
values approaching zero at the non-zero lags of the autocorrelation
function. This can be seen in the black points and histogram do not
go below 0, though the 95 percent ellipse shown in green in the
bottom left panel does go negative for Av = 65kms™!.

Figs C1 and C2 show the changing distribution of the autocorre-
lation value with z, Ty, y, and (F). There is a greater deviation from
a multivariate Gaussian distribution at higher z. It is possible that
adding additional sightlines will cause the autocorrelation function
to better follow a multivariate Gaussian distribution due to the central
limit theorem, though investigating this in detail is beyond the scope
of the paper. However, even with more sightlines (F) will be low
at high-z so we still expect the distribution to be skewed as the
values mainly will not fall below 0. The incorrect assumption of
the multivariate Gaussian likelihood thus contributes to the failure
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of our method to pass an inference test as discussed in Section 3.3
for z = 5.4 and Appendix D for z = 6. For our final constraints,
we calculated weights for our MCMC chains such that the resulting
posteriors do pass our inference test, as discussed in Section 3.3. The
whole method of assuming a multivariate Gaussian then re-weighting
the posteriors in non-optimal and future work using a more correct
likelihood or likelihood-free inference will improve our results.

APPENDIX D: INFERENCE TEST AT HIGH
REDSHIFT

Here we present the results of the inference test at z = 6. This calcula-
tion was done following the procedure described in Section 3.3. Fig.
D1 shows the results for z = 6 and can be compared to the z = 5.4
results in Fig. 7. The left panel here shows the initial coverage plot
which deviates greatly from the expected C(«) = « line, much more
so than the z = 5.4. This likely comes from a greater deviation from
the assumption of a multivariate Gaussian likelihood as described in
Appendix C. The z = 6 mock data show highly skewed distributions
that are not well described by a Gaussian likelihood. The inference
lines at other redshifts are available upon request.

Gaussian Likelihood

Figure D1. The left panel of this figure shows the coverage resulting from the inference test from 300 models at z = 6. drawn from our priors on Tp, y, and
(F'). Here we see that the true parameters for the models fall above the 60th percentile in the MCMC chain ~ 35 per cent of the time, for example. The right

APPENDIX E: GAUSSIAN DATA INFERENCE
TEST

As shown in Appendix C, the distribution of mock values of the
autocorrelation function is not exactly Gaussian distributed. In order
to confirm the failure of our mock data to pass an inference test (as
discussed in Section 3.3 and Appendix D) comes from the use of a
multivariate Gaussian likelihood, we generate Gaussian-distributed
data and run inference tests. For one value of Tj, y, and (F), we
randomly generate a mock data set from a multivariate Gaussian
with the given mean model and covariance matrix calculated from
our mock data as described in Section 3.1. We can then continue
with the inference test as described in Section 3.3. The results for
this inference test for z = 5.4 and z = 6.0 are shown in Fig. EI.
Here both redshifts inference lines fall along the C(«) = « line that
is expected for all o values. This behaviour is also seen at the other
redshifts. The fact that perfectly Gaussian data passes an inference
test with the same likelihood, priors, and method as was used on
mock data confirms that the failure of our mock data to pass an
inference test is due to the non-Gaussian distribution of the mock
data.

Gaussian Likelihood

Cla)

panel of this figure shows the coverage resulting from the inference test with the use of one set of weights to re-weight the posteriors. With these weights we are

able to pass the inference test.
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Gaussian Likelihood - Gaussian Data Gaussian Likelihood - Gaussian Data

z=>5.4 z=6.0

Figure E1. Both panels of this figure show the coverage plot resulting from the inference test from 300 data sets generated by randomly drawing points from
the mean model and covariance matrix. The means and covariance matrices used come from z = 5.4 in the left panel and z = 6.0 in the right panel. The true
parameter values for both panels were drawn from our priors on Ty, v, and (F). In both panels, the Gaussian mock data produced inference lines that fall on top
of the C(a) = « line within errors, as expected for the statistically correct posteriors.
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