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ABSTRACT

Density estimation is a fundamental problem that arises in many areas of astronomy, with applications such as selecting quasars
via colour distributions and characterizing stellar abundances. Astronomical observations are inevitably noisy, while the density
of a noise-free feature is often the desired outcome. The extreme-deconvolution (XD) method can be used to deconvolve the
noise and estimate the underlying density distribution by fitting a mixture of Gaussians to data with heteroscedastic Gaussian
noise. However, XD does not generalize to cases where some feature dimensions have distributions far away from Gaussian, and
no established method exists to overcome this limitation. Requiring negligible noise in these non-Gaussian features, we introduce
a possible solution that separates out the non-Gaussian features and models the Gaussian-like dimensions conditioned on the
non-Gaussian features using a neural network and Gaussian mixture model. The result is the CondXD algorithm, a generalization
of XD that takes in the non-Gaussian features and outputs the deconvolved conditional distribution of the Gaussian-like features
on the input features. We apply CondXD to a toy model, and compare it with an existing method that divides the samples into
bins of conditioning variables and applies XD separately to each bin. We find that CondXD is more accurate than the classical
approach. We further test CondXD on a real-world high-redshift quasar versus contaminant classification problem. It achieves
comparable results to the binning method but is roughly 10 times faster. Overall, our method has the potential to significantly

improve the deconvolution of non-Gaussian distributions and enable new discoveries in astronomy.

Key words: methods: statistical — methods: data analysis —quasars: general.

1 INTRODUCTION

Density distribution estimation is an active area of research in
astronomy, with key attention paid to uncovering the underlying
distributions of various astronomical properties. For example, Buder
et al. (2022) used deconvolution techniques to estimate the distri-
bution of the abundances of accreted stars, while Mortlock et al.
(2011a), Bovy et al. (2011b, 2012), and Nanni et al. (2022) et al.
applied similar methods to measure the flux distribution of quasars.
Other researchers, such as Bhave et al. (2022), Reddy Ch. & Desai
(2022), and Arumugam & Desai (2023), have used deconvolution
techniques to model the distributions of transients like pulsars and
gamma-ray bursts. Moreover, Bird et al. (2021) and Ivezi¢ & Ivezi¢
(2021) have used density distribution estimation to infer the galactic
structure and predict galaxy sizes measured by the Rubin Observatory
(Ivezi¢ et al. 2019), respectively.

In practice, the physical attributes of astronomical targets are rarely
measured without substantial and heteroscedastic uncertainties, and
the estimation of the underlying distribution is never an easy task. The
observations can be regarded as samples drawn from a (noiseless)

* E-mail: yi_kang @physics.ucsb.edu
© The Author(s) 2025.

underlying distribution convolved with the distribution of noise; thus
the estimation of the underlying distribution is also referred to as
deconvolution. While density deconvolution of noisy distributions
has been extensively studied in the literature, early works such as
Devroye (1989), Stefanski & Carroll (1990), Zhang (1990), and Fan
(1991a,b) often assumed that the distributions are univariate and
the noise distribution is identical for every measurement, neglecting
the heteroscedasticity of the measurements. Moreover, most of the
early studies applied non-parametric approaches that cannot be
implemented when samples with missing measurements (missing
data) are encountered.

To address these complications, Bovy, Hogg & Roweis (2011a)
developed the extreme-deconvolution (XD) algorithm that works for
data with heterogeneous noise—even accommodating missing data.!
They used a Gaussian mixture model (GMM) to fit the underlying
distribution of a set of noisy samples. With the assumption of
Gaussian underlying distribution and Gaussian noise distribution
with zero mean, the noisy density distribution (i.e. convolution of
the underlying and noise distribution) can be obtained efficiently
[see equation (6) in Section 2.2]. Iteratively applying the expectation

Thttps://github.com/jobovy/extreme-deconvolution
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and maximization process to increase the likelihood of the noisy
samples to the noisy distribution, the underlying distribution is
estimated. As demonstrated in Bovy et al. (2011a), XD is capable of
inferring the 3D velocity distribution of stars around the Sun given
the noisy 2D transverse velocity measurements from the Hipparcos
satellite. It is also resistant to poor initialization to obtain the
optimal fit. Later, the scalable XD algorithm developed by Ritchie &
Murray (2019) improved the XD code with modern machine-learning
algorithms (e.g. stochastic gradient descent and mini-batches) to seek
for the GMM best-fitting parameters, instead of using an iterative
expectation—maximization approach on the full data set. Similar
studies were also conducted by Hosseini & Sra (2015, 2020) and
Gepperth & Pfiilb (2019).

Subsequent to its publication, XD has gained wide applications,
particularly in the field of classifying quasars and contaminants based
on their photometric multiband fluxes (e.g. Bovy et al. 2011b, 2012;
White et al. 2012; DiPompeo et al. 2015; Myers et al. 2015; Nanni
et al. 2022). In some cases, however, the joint distributions of the
band fluxes cannot be easily deconvolved by XD. For example,
Nanni et al. (2022) found that the probability density of quasars
observed by JWST and Euclid will have a dominant power-law shape
corresponding to the number counts as a function of the J-band
magnitude, which is hard to approximate by combining a small
number of Gaussian distributions. As an alternative, they tried to
separate the J-band flux, and deconvolved the joint distribution of
the other band fluxes (relative to the J band) conditioning on the J-
band flux with XD. This idea is based on the definition of conditional
distribution:

p(x1, x2) = p(x1]|x2)p(x2), (1)

where p(x;, x;)1is the joint distribution of two sets of features x, and
X7, p(x1|xy) is the distribution of x; conditioning on x5, and p(x5)
is the marginal distribution for x,. Nanni et al. (2022) found that
their conditional joint distribution has no power-law-shaped marginal
distribution and can be well described by GMM across their J-band
flux range. Moreover, their J-band fluxes have significant signal-
to-noise ratio, such that the noise is negligible and binning data
based on the observed J-band flux is reliable. Consequently, the
joint distribution for all bands can be obtained by 1) grouping the
data into bins of the observed J-band fluxes, and deconvolving the
joint distribution of the other band fluxes with XD in each bin; 2)
deriving the marginal distribution of the J-band flux by estimating
the J-band magnitude distribution with a power-law function; and
3) multiplying them according to equation (1). Similar separation
and binning approaches are also employed in Bovy et al. (2011b,
2012), Bird et al. (2021), all noticing that the samples can only be
well modelled by GMM when conditioning on the non-Gaussian
features.

However, there are several major drawbacks to this binning
approach. First, the bin size must be small to reduce the variation
of the conditional distribution, but also large enough to include
sufficient samples in each bin for accurate estimation. Unfortunately,
there is no objective method to reconcile this trade-off and decide on
the bin size. Secondly, the continuity of the estimated distribution is
not guaranteed among the bins since the XD is applied individually.
Nanni et al. (2022) implemented complicated strategies to mitigate
these problems, resulting in inefficient algorithms. More details are
discussed in Section 4.

To address these issues, we propose using a mixture density
network (section 5.6 in Bishop 2006) to deconvolve the conditional
distributions [the first factor on the right-hand side of equation (1)]
under the assumption that the noise is negligible for the observed con-
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ditioning variables. A mixture density network can fit a conditional
distribution with a density mixture, i.e. a combined set of weighted
basic density distributions such as GMM. It allows the parameters of
the density mixture (e.g. for GMM, mixing coefficients,” means,
and covariance matrices) to be generated by a neural network
(NN) that takes the conditioning variables as the input. In other
words, once trained, the mixture density network can take in the
conditioning variable and output the joint distribution of the other
features conditioning on the input value of the conditioning variable.
This motivates us to combine the XD and mixture density networks
in order to deconvolve the conditional distributions of astronomical
sources with heteroscedastic noise.

In this paper, following Ritchie & Murray (2019), we use modern
machine-learning methods to deconvolve noisy conditional distri-
butions for both a simple toy model and an astronomical real
case classification problem, demonstrating the capabilities of our
conditional XD algorithm, CondXD. In Section 2 we provide a
general description of the CondXD method. In Section 3 we conduct
an experiment to test the performance of CondXD on a simple toy
model. Using the same toy model, in Section 4 we compare the
deconvolving capability of both CondXD and a binning approach
similar to the one from Nanni et al. (2022). In Section 5 we apply
CondXD to a realistic astronomy case and compare the results with
the binning method from Nanni et al. (2022). In Section 6 we provide
our conclusions and discussions.

2 METHOD

In its standard form, XD estimates the underlying probability
distribution p(X) of a noisy multidimensional sample X using a
GMM p(X | &, i, V), defined by a set of K mixing coefficients
@&, means fi, and covariance matrices V. We use hat notation to
indicate estimated statistics and leave out the notation to represent
the true values of these quantities when they are generated from an
underlying Gaussian mixture. However, if the probability density,
p, is conditioned on a variable ¢ such that p(X]c), the correct form
for the estimator is p(X | &(c), ft(c)), V(c)). Here the conditioning
variable ¢ is bold, since it can also be multidimensional, i.e. the model
can depend on multiple variables. Furthermore, we only consider
noiseless ¢ to simplify our theory, which requires the noise of the
conditioning features of observations to be negligible.

In this work, we build our conditional GMM estimator using an NN
with weights ¢. In this case, the GMM parameters become functions
of ¢ and the conditioning variable ¢, written as: &(¢, ¢), (¢, ¢),
V(¢, ¢). Consequently, for notational simplicity we henceforth ex-
press the estimator as p(X | ¢, ¢).

In Section 2.1 we describe the architecture of our NN, while in
Section 2.2 we describe how we define the loss function of our
method; Section 3.3 introduces the technical details implemented to
improve training. Hereafter, we call our technique CondXD, the code
for which is available on GitHub.?

2.1 Architecture of the neural network

Our NN has a stem-branch structure, shown in Fig. 1. The stem
constitutes a sequence of three linear layers, which branches off
into three output layers for the mixing coefficients, means, and

2They are more often referred as ‘weights’, but we use the term ‘mixing
coefficients’ to avoid confusion with the ‘weights’ of neural networks.
3https:/github.com/enigma-igm/Cond XD
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Figure 1. Schematic of the CondXD neural network. It takes in conditioning
variable ¢ and outputs the parameters of a GMM, i.e. the mixing coefficients,
means, and Cholesky factors of the covariance matrices. Blocks are layers in
the architecture, the types of which are indicated by annotations. The yellow
ends refer to the PReLU activation functions after the current layer. K is the
number of Gaussians in the model, and D is the dimension of the Gaussians;
both are hyperparameters. In practice, D is automatically determined by the
dimension of the samples. The dimensions of the outputs computed by every
layer are also labelled.

covariances, respectively. It takes in the conditioning variable ¢
and outputs the parameters of the GMM. In general, the density
distribution of a noisy sample can depend on several variables, so
that the conditioning variable ¢ is actually multidimensional. The
number of Gaussians of the GMM (K) is a hyperparameter, and the
dimension of the GMM (D) is determined by the dimension of the
data from the observations, whose density is to be estimated.

In the structure of the NN we simply use Linear layers ev-
erywhere. The Linear layers multiply the input with matrices, the
elements of which are the weights ¢ of our neural network. In the stem
part, all the Linear layers are followed by the PReLU (parametric
rectified linear unit; He et al. 2015) activation functions. At the output
layer for the mixing coefficients branch (see orange block in Fig. 1)
we follow standard practice, using a softmax activation to ensure that
all mixing coefficients are positive and sum up to unity:

&j — L(ﬂf)’ 2)

> exp(B))

where &; is the mixing coefficient for the jth Gaussian, and f; is the
Jjthoutput of the last Linear layer of the mixing coefficients branch.
For the means branch we do not implement any further processing
than a Linear layer, since there is no rigorous requirement on
it. Finally, instead of directly generating the covariances that have
to satisfy symmetry and positive semidefiniteness, we again follow
standard practice, generating the Cholesky decomposition factors
L(¢, ¢). The Cholesky decomposition is defined as:

vV, =L,LT+1071, 3)

where L, ; is the jth Cholesky factor, which is a lower triangular
matrix with shape (D, D), v ;j is the jth covariance matrix of the
K Gaussians, and / is the identity matrix. Each of the K Cholesky
factors has all zero values in the upper right-hand triangle, and all
diagonal elements are positive for every matrix. Moreover, a small
positive value of 107* is added to the diagonal. In this way V j
is guaranteed to be symmetric and positive semidefinite. In the
covariance branch (see the green block in Fig. 1), the diagonal
elements of every Cholesky factor have been processed by an
exponential activation function to ensure positivity.
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With this architecture we generate all the GMM parameters.
In practice, these parameters define the model that describes the
deconvolved density distribution of the noisy samples.

2.2 Loss function

To train the NN, or, in other words, to find the best-fitting weights
¢ in the NN, we need to quantify how well the GMM represents the
data samples by utilizing a loss function. In our case, the Kullback—
Leibler divergence (KL divergence or Dy ; Kullback & Leibler 1951)
is chosen as a standard practice to measure how different the GMM
is from the underlying distribution. The KL divergence is defined as:

p(x | ¢;S(x)) )
p(x | ¢;¢;S(x))

= /p(x | ¢;S(x))In p(x | ¢;S(x)) dx

D (pl1) = / p(x | :S@x)In <

—/P(x | €:8(x))In p(x | ¢:¢;S(x)) dx, “)

where S(x) is the noise covariance of the random sample x, shaped
(D, D). S is always a diagonal matrix in our case assuming indepen-
dent noise. With the heteroscedastic assumption, each x; can have its
own noise; thus S can also be regarded as a function of x, i.e. S(x).
In practice, observed data are always noisy; thus both distributions
p and p in equation (4) have been convolved with noise. In the
above equation, p(x | ¢;S(x)) is short for p(X = x | ¢;S(x)), and
p(X'| ¢;S(x)) is the noise-convolved underlying density p(X | ¢).
Similarly, p(x | ¢;c;S(x)) is the probability of x under the noise-
convolved GMM estimator for p(X | ¢; S(x)). As the samples x are
from the noise-convolved distribution p(X | ¢; S(x)), the integration
in equation (4) is averaged over the sample space.

Our goal is to find the model p(X|@; ¢; S(x)) that minimizes the KL
divergence validated on the observation data {x, ¢, S}. The first term
in the second line of equation (4) is a constant that does not depend
on the NN weights ¢; therefore only the second term needs to be
minimized. Therefore, we can define the loss function as the second
term, i.e. the negative of the log-probability of the model averaged
over the underlying distribution. Since we do not have access to the
noise-convolved underlying distribution p(X | ¢;S) (this is what we
are trying to estimate), but we do have access to noisy data {x, S}, we
rewrite the second term in equation (4) as a Monte Carlo integral:

1 N
loss\n(@ | {x, ¢, 8) == In p(xi | ¢;¢:58), ®)
i=1

where N is the data sample size. Minimizing the loss in equation (5) is
equivalent to finding the parameters ¢ that maximize the probability
of the data {x} given the corresponding conditionals {c¢} and the noise
covariances {S}.

To evaluate the probability of noisy data x;, we need to convolve
the GMM with the noise probability distribution. Assuming that the
noise € has a Gaussian distribution N (€0, S;), the convolution is
trivial, and is simply the sum of S; and every covariance V j» due
to the closure of the Gaussian distribution under convolutions. The
model probability can thus be evaluated via

K
P | ¢seis8) =Y a;(@;c)N

j=1

x (xi | i j(die), Vilgse) +Si) . (6)

MNRAS 541, 2815-2829 (2025)
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at any noisy data given its location x;, conditioning variable c;, and
noise covariance S;, where &, i ;, and V, are the mixing coefficients,
mean, and covariance of the jth Gaussian.

An issue that can arise during the optimization of the loss in
equation (5) is that a Gaussian in the mixture can collapse on to a
single sample. This will reduce the estimated covariance to nearly
zero. Although a finite positive value [equation (3)] and a finite
noise covariance are added to the diagonal of the covariance, a large
number of Gaussian (like K = 20) components makes it possible
that a certain component will focus on some outliers. This is clearly
undesirable and does not represent a viable optimum. We regularize
the loss by adding an additional term that amounts to a penalty when
the covariance diagonal elements approach zero:

1
1 reg — PN 7
0SSreg wzj:z diag(V,) @)

where w is a tunable parameter that is determined at 1076 via trial
and error, and diag(V;); is the ith diagonal element of the jth
covariance. As we have forced all covariance diagonals to be positive,
this regularization loss is also always positive but dominates only if
the diagonal elements approach zero. The total loss is then the sum
of the regularization loss and model loss:

loss = lossnn + 108Sye, ®

which is what we try to reduce for the samples.

2.3 Training strategies

After defining the NN architecture and the loss function, we now
turn to the specific strategies implemented to train our NN.

Before training, we normalize the data in every dimension.
Normalization ensures that each feature contributes equally during
training and prevents vanishing or exploding gradients to stabilize
convergence. Additionally, normalization generalizes our method
to different applications with contrasting orders of magnitude.
Specifically, we compute the mean and standard deviation of each
feature of all data samples (including training, validation, and test
sets; see later in this section), subtract the mean from each piece of
data x;, and divide each piece of data by the standard deviation:

(xin); = [(x); —m;1/o;. ®)

In the above equation, (x;); and (x;,); are the jth feature of
the ith piece of data before and after normalization respectively,
m; is the mean value of the jth feature over all the N samples
(before separating into training/validation/test sets; see the following
paragraphs), and o; is the standard deviation of the jth feature of all
the N samples. The means and standard deviations are stored to later
rescale the CondXD predicted samples after training. We proceed
by dividing the noise covariance of each by the outer product of the
standard deviation vector o = (o7, ..., op):

(Sin)jx = S j/ojon, (10)

where (S;)jx and (S; ) jx are the jth row and kth column of the noise
covariance matrix of the ith piece of data. In this way, we are in fact
deconvolving the normalized distribution; thus all the x; and S; in
equations (4)-(6) should be replaced by x; , and S; , respectively.
After training the NN, we transform the samples from the output
joint distribution back to the original scale: the output samples are
multiplied by the standard deviation vector ¢ and then added to the
mean vector m = (my, ..., mp). All subsequent plots have already
been rescaled.

MNRAS 541, 2815-2829 (2025)

We use stochastic gradient descent (Robbins & Monro 1951;
Kiefer & Wolfowitz 1952) with the torch.optim.Adam opti-
mizer (Kingma & Ba 2014) in the PYTORCH PYTHON package (Paszke
et al. 2019) to train our NN. This updates the weights of the NN in
stochastic directions around the loss gradient during training. The
stochasticity prevents it from having local optima provided with
only a limited number of samples. Moreover, we utilize the weight
decay method that introduces an additional loss term accounting for
the sum of squares of the NN weights multiplying with a coefficient,
equipped in the Adam optimizer. It penalizes large NN weight values
and encourages some weights to be close to 0, i.e. to prefer a simple
model and avoid overfitting. With trial and error on our toy model in
Section 3.1, we achieve a coefficient value of 107°.

To further avoid overfitting, we randomly divide the {x,, ¢, S;}
data triplets (the subscript n denotes ‘normalized’) into two sets: a
training set and a validation set with ratio 90 per cent : 10 per cent.
As long as the loss [equation (5)] of the validation set remains close
to that of the training set, the model does not overfit the training
set. In each set, the samples are further divided into mini-batches
with size equal to 250 samples. This number is determined rather
randomly from a typical value in the literature. Compared with the
sample size of 90 000 in our toy model in Section 3 and 1902071 in
the quasar contaminants in Section 5, the mini-batch has a small size.
It can be increased as long as one mini-batch still fits in the computer
memory. The NN weights are updated by the torch.optim.Adam
optimizer based on the loss and gradient computed on each mini-
batch. After looping over all of the mini-batches, we compute the
average training loss of the whole training set. We then compute the
validation loss, which is the loss averaged over the entire validation
set. An epoch is defined as the execution of stochastic gradient
descent on all the training mini-batches plus the computation of
the validation loss. The best model is defined as the one that achieves
the lowest value of the validation loss after 100 epochs.

The learning rate is the step size by which ¢ are updated when
trained on each mini-batch. In the early stages, the learning rate
should be large to speed up convergence, while later it should be small
to allow ¢ to converge on precise values. The Adam optimizer auto-
matically decreases the learning rate, and we find that implementing
an additional decrease results in faster convergence. We set the initial
learning rate to 0.001 in the Adam optimizer, and decrease it further
by multiplying by 0.4 every time when there is no decrease of the
validation loss for two subsequent epochs. The latter is achieved with
the torch.optim.lr_scheduler.ReducelLROnPlateau
scheduler. These values are obtained after experiments on the toy
model in Section 3.

Although these hyperparameters, i.e. weight decay coefficient,
training and validation set relative size, mini-batch size, learning rate
and its manual decay rate, are all determined on our models, they
generally exhibit reliable deconvolution performance (for example,
in the application to high-z quasar contaminants in Section 5). For
specific tasks, the user can decide on customized values via methods
such as grid search.

3 EXPERIMENTS ON A SIMULATED NOISY
GMM

3.1 Constructing the GMM toy model

To test the performance of our CondXD method when estimating the
underlying density given observations with heteroscedastic noise, we
constructed a simple toy model using a GMM with K = 10 Gaussian
components and D = 7 dimensions. To construct the model, we
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first generate the mixing coefficients a, means u, and Cholesky
factors L of the covariances as a function of the conditioning
variable. However, for simplicity we only consider the case of a
1D conditioning variable ¢, although our method can be generalized
to an N-dimensional conditioning variable.

The mixing coefficients vector « is calculated using power-law
functions and is integral to the generation of the Gaussian mixture.
Specifically, each component of the Gaussian mixture’s mixing
coefficients, «;, is computed as:

o = A1=i/10 14710

0= (11
Zi @0

where A is a number drawn from the uniform distribution in the
range [0, 2].* This sequence introduces sufficient randomness into
the mixing coefficients calculation process while constraining the
range of values. The formulation of the mixing coefficients ensures
that each «; varies distinctively with the conditioning variable while
collectively summing to unity.

The means for our Gaussian components are generated similarly.
We randomly draw K x D numbers from the uniform distribution in
the range [0, 10].°> The K x D numbers are reshaped into a matrix
B with shape (K, D), and the means are computed as:

w=B-B) c'? (12)

where B denotes the average of all the elements in B over both
dimensions. For simplicity we keep using a power-law behaviour
on the conditional, and the exponent 1.2 is randomly chosen and
is different from that of the mixing coefficients. By subtracting B
from B we effectively centre the elements of the means such that the
Gaussian clusters will be evenly distributed about the origin, which
simplifies the training of the NN.

The generation of Cholesky factors follows a slightly different
process. We opt to generate the diagonal and off-diagonal elements
respectively. We first retrieve K x D random numbers from the
uniform distribution in the range [0, 0.2].° Then these numbers are
reshaped into an array C, of dimensions (K, D). Simultaneously, we
randomly select K x D x (D — 1)//2 numbers from the uniform
distribution in the range [0, 0.2].7 These numbers are then reshaped
into an array C, of dimensions (K, D x (D — 1)//2). Finally, we
compute the Cholesky factor L as follows:

Ls=C;-c% +0.1%,
L =GC,- ", (13)

where L4 represents the diagonal part, and L; represents the unique
off-diagonal elements of the lower diagonal Cholesky factor L. To
ensure positive definiteness of the covariances V, a small constant
factor of 0.193 is added to Lg, which guarantees that the diagonal
elements of V are always greater than 0.1. The exponent 0.5 on
the conditioning variables allows C; and C, to intuitively indicate
the level of covariance, instead of having to intuit them from the
Cholesky factor. With the Cholesky factors L. we can compute the

4These were actually generated by permuting random integers and are hence
constrained to be integer multiples of 0.02.

SRandomly sampling and permuting non-repeating integers in [0, 10 x K x
D] and then multiplying by 1/(K x D).

SRandomly sampling and permuting non-repeating integers in [0, 10 x K x
D] and multiplying by 1/(50 x K x D).

7Randomly sampling and permuting non-repeating integers in [0, 10 x K x
D x (D — 1)//2] and multiplying by 1/(50 x K x D x (D —1)//2).
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underlying noiseless covariance of the toy model as:
VvV =LL". (14)

In practice, real-world samples are always subject to noise. To
construct a noisy toy model, we introduce the noise covariance
matrices S using:

S = LgLg". (15)

In this equation, the Cholesky factor Lg is responsible for modelling
the noise characteristics. The diagonal part of Lg is sampled from
a uniform distribution U(0, 1), while the lower left-hand part is
sampled from another uniform distribution U (—0.5, 0.5). This choice
of distribution introduces both positive and negative elements in the
noise covariance Cholesky factors, simulating non-trivial covariant
noise in a real astronomical application. Following equation (6), the
noise covariance S can be added to the underlying covariance V in
equation (14) to obtain the noisy distribution.

The choice of power-law behaviour as a function of the condition-
ing variable and the exponents used in our equations allows a broad
range of behaviours for our toy model. In particular, the exponent
on the conditioning variable used in the means [equation (12)] is
larger than the one in the underlying covariance [equation (13)].
When ¢ takes on smaller values, the larger exponent in equation
(12) causes the Gaussian clusters to overlap. The orange points and
contours in Fig. 2 illustrate the samples and their densities from the
noise-convolved underlying distribution, in contrast to the noise-free
underlying distribution shown in black. The influence of our noise
dominates the dispersion within the clusters. Conversely, when ¢
assumes larger values, as shown in Fig. 3, the Gaussian cluster centres
separate more distinctly. Under such conditions, the influence of the
noise diminishes, allowing the underlying covariances of the GMM
to become more evident.

3.2 Training CondXD

To illustrate the capabilities of CondXD, we generate 90 000 {c, x, S}
training samples and 10000 validation samples from a noisy toy
model defined by the simulated parameters in equations (11)—(14).
To obtain a single noisy sample x, the conditioning variable c is
uniformly sampled in the range [0, 1], and input in our toy model.
Then, we compute the noise covariance S using equation (15), add it
to the noiseless covariance V, and finally draw samples x from this
noisy distribution. Samples from the Gaussian mixture are drawn
following the standard approach (Harris et al. 2020): the specific
Gaussian cluster to be sampled is first decided via a random draw
employing the mixing coefficients as weights, and then a sample is
drawn from that Gaussian cluster.

We train CondXD on the 90000 training samples after normal-
ization with the strategies described in Section 3.3, implementing
a mini-batch size of 250. After training for 100 epochs, the loss
[see equation (5)] for the training and validation sets converges
to a constant value. The training and validation loss as a function
of training epoch is shown in Fig. 4. Both losses decrease with
training epoch, indicating that the NN has learned to fit the parameters
governing the conditioned noisy distribution. In fact, overfitting is not
significant, as there is only minimal disparity between the validation
loss and the training loss.

3.3 Results from the toy model

In this subsection we provide a visual comparison of the afore-
mentioned distributions. After training, to test the deconvolution
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Figure 2. The distribution and density contours of 10 000 samples from the noisy toy model, the underlying toy model, and the deconvolution when ¢ = 0.10.
Orange scatters are samples from the noise-convolved underlying distribution with orange contours representing their density contours. Black scatters and
contours are for the samples from the underlying distribution, while red is for the deconvolution result. The upper or right-hand panels show the 1D marginal
distribution of the samples. Orange histograms represent the samples from the noise-convolved underlying distribution, black is for the underlying distribution,
and red is for the deconvolution. All corner plots in this paper are created by the PYTHON package CORNER (Foreman-Mackey 2016).

capability of CondXD, we compare the estimated deconvolved
distribution with the noiseless underlying distribution. Note that the
underlying model is conditioned and we train on a continuous range
of ¢ over [0, 1], but in this section we evaluate the performance
of our method only for two extreme values, ¢ = 0.1 and ¢ = 0.9,
whereas the result for another intermediate case ¢ = 0.5 is shown in
the Appendix.

The best way to visualize how well we are deconvolving is to
compare the distribution of samples drawn from our underlying
noiseless model to the distribution of samples from the trained
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CondXD distribution, which is usually achieved by making density
contour plots of these samples. We input the specific aforementioned
values of ¢ into our toy model, and generate 10 000 samples from the
underlying noiseless GMM as the test set. For comparisons with the
noisy distribution, we also generate 10 000 noisy samples by drawing
10000 random noise covariances, adding each to the covariance
matrice of the same noiseless GMM, and sampling the noisy GMM.
For CondXD, the same c is input in the trained model, and 10000
noiseless samples are drawn from it. Note that these samples have
been transformed to the original scale in the way described in Section
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Figure 3. The distribution and density contours of 10000 samples from the noisy toy model, the underlying toy model, and the deconvolution when ¢ = 0.90.
The upper or right-hand panels show the 1D marginal distribution of the samples. The colour scheme is the same as in Fig. 2.

2.3, i.e. multiplied by the standard deviation and added to the mean
of the 90 000 training samples on each feature. The density contours
and 1D marginal histograms for these three sets of samples are shown
in Figs 2 (¢ = 0.1) and 3 (¢ = 0.9).

The black histograms and contours in Fig. 2 show that for ¢ = 0.1
the underlying Gaussians in the Gaussian mixture strongly overlap.
The orange lines show the density distribution of the noisy samples
from the noise-convolved Gaussian mixture, which are significantly
broader than the width of the underlying distribution, indicating that
the noise level is larger than the underlying dispersion of the Gaussian
mixture. Nevertheless, CondXD still successfully deconvolves and
uncovers a robust estimate of the underlying distribution. Our
estimate for the deconvolved distribution is shown by the red lines.

One sees qualitatively that they differ negligibly from the underlying
distribution in black.

On increasing the value of ¢ to 0.9, the means of the Gaussians
separate more, as shown in Fig. 3. The orange contours of noisy
samples from the GMM toy model show that the noise level is
comparable to the intrinsic dispersion of the Gaussians in the mixture,
which blurs the distinction between the individual components of
the mixture. CondXD is still capable of estimating the noiseless
underlying distribution under such conditions. Most of the red
contours are consistent with the black ones, indicating that most of
the individual Gaussian clusters have been recovered correctly. This
is also confirmed in the panels showing the 1D marginal distributions,
as the estimated 1D histograms differ very little from the underlying
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Figure 4. The loss reduction process using the 60 000 training samples from
our GMM noisy toy model. The solid red line is the training loss and the
dashed one is the validation loss.

distribution. Nevertheless, in rare cases, the deconvolution does not
perform well. For example, in the subpanel showing dimensions 1
and 6, two nearby noiseless Gaussians (black contours) are fitted
with a single deconvolved Gaussian (red contours). We repeat the
whole training and testing process for 10 different toy models (each
has a different random seed &), and our visual assessment shows
that four of the 10 realizations fail to recover all the underlying
Gaussians, while the other six succeed in recovering every Gaussian.
In our toy model, the value of ¢ controls the separation of Gaussians.
At ¢ = 0.9, we have almost reached the most extreme value for
c. However, the Gaussian clusters remain insufficiently separated
because the noise level amplitude is still relatively significant. As a
result, CondXD struggles to perfectly differentiate every Gaussian. If
we had allowed c to be beyond 1 and included more training samples,
the Gaussian cluster could be more separated, and CondXD might
be able to distinguish them.

4 COMPARISON WITH BINNING METHOD

One of the main advantages introduced by the method that we
described in Section 2 is that it can deconvolve and fit distributions
that depend on conditioning variables. This is usually a common
situation in astrophysics, where physical properties of sources often
depend on other properties (e.g. the variation of colour distributions
with the magnitude of the sources). Capturing these dependences
is not an easy task, and has no standard approach. Previous works
usually divide the samples into bins of conditioning variables, and
estimate the distribution of samples in every bin respectively (e.g.
Bovy et al. 2011b, 2012; Bird et al. 2021; Nanni et al. 2022). The
main drawback of the binning method is that the continuity of
the distribution variation, which is dependent on the conditioning
variable, among the different bins is not easily guaranteed. The
distribution is supposed to vary smoothly among the bins, but the
independent estimations within each bin might be trapped in some
local optima, resulting in discontinuity. Furthermore, to limit the
variance within each bin, the bin width should be narrow enough.
However, the number of samples in each bin decreases as the bin
width decreases, affecting the accuracy of the estimation. Therefore,
amanual choice of a trade-off between the bin width and sample size
is inevitable, and there is no objective way to define it. In contrast,
the neural network of CondXD trained by all the samples naturally
provides continuity, and this does not require any binning of the
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conditioning variable. To demonstrate the advantages of CondXD
compared to the aforementioned binning approach, we apply a
binning deconvolution algorithm (denoted as bin-XD hereafter) to
the GMM toy model described in Section 3 and compare the results
with CondXD.

Using the same training samples described in Section 3, the
conditioning variables and corresponding data samples are split
into 10 conditioning variable bins of equal size 0.1. Since the
bins are narrow, we assume that the dependence of the sample
properties with respect to the conditioning variable inside each bin is
negligible. For every bin, we apply the XDGMM method (Holoien,
Marshall & Wechsler 2017), which is an implementation of the
extreme deconvolution, to the training sets. XDGMM is a PYTHON
package that models mixed Gaussians with the SCIKIT-LEARN APL® It
performs density estimation of noisy, heterogeneous, and incomplete
data with the extreme-deconvolution algorithm (Bovy et al. 2011a)
when an uncertainty covariance is provided, as in our case. The
hyperparameters in XDGMM are the number of Gaussians, set to
K = 10, and dimensions D = 7, which are consistent with those
used in CondXD. The bin-XD code is progressively applied starting
from the smallest conditioning variable values (c € [0, 0.1]) to the
largest ones (c € [0.9, 1]). The fitting in individual bins does not
necessarily guarantee the continuity of the model among different
bins. Following Nanni et al. (2022), the bin-XD code fits for all
the conditioning variable bins are initialized using the best-fitting
parameters for the previous bin. The starting bin is the only one that
is initialized without reference.

After training bin-XD, to derive the test set, we uniformly sample
25000 conditioning variables in the range [0, 1], and draw 25000
corresponding samples from the noiseless toy model (underlying
GMM). The test set is divided into conditioning variable bins as
described in the previous paragraph. To quantify the performance
of CondXD and bin-XD, we use the discrete KL divergence as a
measure of the difference between the underlying density and the
estimated. Similar to equation (4), the discrete KL divergence is
defined as:

N

1 i i
Dxu(pllpie) =+ > log (%) : (16)

where x; are the test samples from the underlying density without
normalization, N is the sample size, p(x; | ¢;) is the probability
density of sample x; under the underlying GMM, and p(x; | ¢;)is the
probability under the GMM estimated by either CondXD or bin-XD
without normalization. Specifically, since both CondXD or bin-XD
are deconvolving the normalized samples, we scale the output mean
and covariance of CondXD or bin-XD to obtain the unnormalized
estimated GMM:

M=, +mj,
Ve = (Vo) oo, (17

where m is the mean and o is the standard deviation of all the 90 000
training samples on each feature. In fact, equation (16) is calculated
for every conditioning variable bin. When p and p are close, Dgy.
should be close to zero. In general, the probability for the underlying
distribution, p(x; | ¢;), should be higher than the probability for the
estimated distribution p(x; | ¢;), since they are being evaluated at
sample x; from the underlying distribution. Thus the KL divergence
is generically expected to be positive. Besides, if we instead consider

8https://github.com/tholoien/XDGMM
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Figure 5. KL divergence of different methods as a function of the condition-
ing variable ¢ in our experiments. Solid lines are KL divergence measured
on the underlying distributions and CondXD estimated distributions. The
dashed lines are computed on the noise-reconvolved underlying distributions
and noise-reconvolved estimated distributions. The dash—dotted line is an
estimation of the possible maximum Dy, assuming that CondXD is only
fitting the noisy underlying GMM while not deconvolving at all (for details
see Section 4). The red curves show the KL divergence of CondXD, while
the blue curves are for bin-XD (see Section 4).

p in equation (16) to be the underlying noiseless GMM and p as the
noise-reconvolved estimated probability, equation (16) is just the KL
divergence of an algorithm that simply fits a Gaussian mixture to the
noisy distribution without deconvolving. This situation represents the
worst case (no deconvolution performed) and it yields a maximum
value for Dy , which provides a useful reference. In fact, Dg; should
lie within zero and the aforementioned maximum.

We compute the Dk value of every bin, resulting in a relation
between Dyg; and c. For a more general examination we repeat
our experiment 10 times with 10 different random seeds & that
determine the toy model. In every experiment, CondXD and bin-
XD are applied to the same training samples. We average the 10
D, versus c curves and compute the standard deviation. The results
are shown as solid curves and shaded regions respectively in Fig. 5.
Meanwhile, we also plot the estimated maximum of Dg; (defined in
the previous paragraph) with CondXD (dash—dotted red line in Fig.
5) as a reference.

Fig. 5 shows that CondXD could deconvolve (solid red line) the
noisy distribution for all values of conditioning variable c¢. The solid
red line is flat and close to zero compared to the estimated maximum
(dash—dotted red line). This indicates globally good performance.
In contrast, bin-XD (solid blue line) shows less capability than
CondXD at any value of the conditioning variable, as its Dgp, is
much higher. Especially at ¢ < 0.2 values, the KL divergence of
the bin-XD increases remarkably. This implies that bin-XD is not
a promising method for cases of overlapping Gaussians and noise
domination.

One may argue that the poor performance of our bin-XD method
at small ¢ values might be related to the fact that our fit to the
first bin with the lowest conditioning variable value is not initialized
with reference to a trained bin. To verify this, we perform more
experiments by training bin-XD on the opposite direction: starting
from the largest ¢ value bin with random initialization and proceeding
toward the smallest value bin. However, the results are consistent
with those presented in Fig. 5 (solid blue line). Bin-XD’s inability
to effectively deconvolve the data in bins with low values of the
conditioning variable is inherent. The poor performance may result
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from the fact that we did not implement any strategy to prevent
overfitting in the bin-XD method. As ¢ decreases and the Gaussian
clusters merge, using K = 20 Gaussians for density estimation can
lead to significant degeneracy.

By evaluating Dy with ¢, we note that the value of Dy of
CondXD rises with increasing c. This increase in Dy is likely due
to the fact that CondXD is fitting two close underlying Gaussians
with a single one, as described in Section 3. The noisy Gaussians in
the noise-convolved toy model are not separated sufficiently so that
CondXD may not be able to fit every single Gasussian correctly. If the
¢ range is broadened to larger ¢, the Gaussians are more separated,
and CondXD is more likely to estimate well.

The performance of the reconstruction of the noisy distributions
can also be compared if we compute a set of noise covariances from
equation (15) and convolve them with p and p in equation (16). The
test samples x; should also be resampled after reconvolution. We
compute the same number, i.e. 25000, of noise covariances, draw
test samples after adding the noise covariances to the underlying
GMM, and calculate the KL divergence of the two noise-reconvolved
density distributions. The results are shown as dashed lines in Fig. 5.
Both Dy are very close to zero for all ¢ values, which implies that
the reconstruction is very precise. CondXD also outperforms bin-XD
in the reconstruction globally.

5 DECONVOLVING THE DISTRIBUTION OF
QUASAR CONTAMINANTS

Luminous high-redshift (high-z) quasars are a key tool for studying
the primordial universe during the epoch of reionization (for some
recent works, see Becker et al. 2021; Bosman 2021; Davies et al.
2021; Wolfson et al. 2024). However, finding the most distant quasars
is challenging. Currently, only eight quasars are known at z > 7
(Mortlock et al. 2011b; Bafiados et al. 2018; Wang et al. 2018, 2021;
Matsuoka et al. 2019; Yang et al. 2019, 2020), primarily due to the
limited photometric depth of current near-infrared surveys and the
decreasing number density of quasars with increasing redshift (=~
1073 deg2 at J = 21, where J is a flux band in the VIKING survey;
Wang et al. 2019). Moreover, the number of contaminants, which
mostly consist of cool galactic dwarfs and early-type galaxies, is
much higher (= 20 deg™? at J = 21), making efficient classification
methods critical. Bayesian probabilistic methods offer a principled
way to classify quasar candidates (e.g. Mortlock et al. 2011a; Euclid
Collaboration et al. 2019). One can estimate the density distribution
of quasars and contaminants and compute the probability that a
source belongs to quasars or contaminants (see Section 5.2). In
this section, we apply our CondXD method to a real astrophysical
example: to deconvolve the flux distribution of quasar contaminants.
We train our model using the same contaminant data set described
in Nanni et al. (2022). We present the results of our deconvolution
and reconstruction, as well as a brief comparison with the previous
method of Nanni et al. (2022).

5.1 Training data: quasar contaminants

The training data that we use to apply the CondXD method to the
problem of high-z quasar classification is identical to the data set
described in Nanni et al. (2022), which contains 1902 071 sources of
quasar contaminants. In summary, our model is trained on 1076 deg’
of overlapping area from the DELS (Dey et al. 2019), VIKING (Edge
et al. 2013), and unWISE (Meisner et al. 2019; Schlafly, Meisner &
Green 2019) imaging surveys. The multiband fluxes are obtained
from the DELS z optical band, the VIKING Y J H K, near-infrared
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(NIR) bands, and the unWISE W1W2 mid-infrared (MIR) bands
with forced photometry. The construction algorithms are described
in detail in section 3.1 of Nanni et al. (2022). The aim of Nanni et al.
(2022) is to find high-redshift quasars (6 < z < 8), whose Ly« lines
shift to the ¥ band, while the VIKING J band could reach a depth of
22.1 at the 5o level. Therefore, all sources in the sample are selected
with high signal-to-noise ratio in the J band: SNR(J) > 5.

5.2 Density in the Bayesian theorem

To classify sources based on observed fluxes {F}, we need to
calculate the conditioned probability that a source belongs to a certain
class according to the Bayesian theorem:

p({F;}10€eB)P(OeB
r({£})
where O is the object and B is the class, i.e. quasars or contaminants.

If we denote quasars as A and contaminants as B, the denominator
of the right-hand side in equation (18) is defined as

p({E}) =p({EY10eA)POeA)
+p ({ﬁz} | O e B) P(O € B), (19)

P(0eB|{F})= (18)

as a source can only be a quasar or contaminant. The factor P(O € B)
in the numerator on the right-hand side of equation (18) is the prior,
which could be approximated as the fraction of quasars in the data
set. The other factor, p ({F,} | O e B), is the density of quasars in
flux space that is to be estimated.

As stated in Section 1, the number density of quasars observed
by JWST and Euclid will have a dominant power-law shape as
a function of the J-band magnitude. This means that the J-band
magnitude feature has a distribution that is far from Gaussian. In the
context of a Gaussian mixture model, a large number of Gaussian
components would be required to model this distribution accurately.
In contrast, their colour (logarithm of relative flux) distribution is flat
enough to be modelled by a small number of Gaussians. Furthermore,
crucial information for distinguishing quasars and contaminants lies
mostly in colour. This motivates people to search for a colour-based
distribution model. Additionally, relative fluxes are easier to derive
and more straightforward to model than colours. In the case of
faint sources that drop out in certain bands (e.g. high-z quasars),
the measured fluxes could be non-positive, and it is infeasible to
compute the colour, i.e. logarithm of zero or a negative value.
Furthermore, the observational uncertainties of the relative fluxes
are closer to Gaussian than colours, especially when the uncertainty
in the reference J band is small. In fact, as both the numerators
and denominators are noisy, the Gaussian approximation of the
flux ratio density can only be validated when the noise of the
denominators is small. If the noise of the denominators is large,
the distribution of the ratio of two Gaussian random variables is not
Gaussian. In our case, since the observed J-band flux, F 7, is always
significantly detected at great than 5o significance, this condition
is well satisfied. Hence, instead of fitting the distribution of the
measured fluxes, we choose to model the fluxes relative to the J-band
flux.

We separate the flux relative to the J band from the absolute flux
in the likelihood as follows:

p({F}10eB)oxp({F/F} | F,0€ B)
xp(F;10¢e B), (20)

where I:", are the fluxes of the z, Y, H, K, W1, W2 bands. In this
equation, the probability density of the absolute fluxes is separated
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Figure 6. The loss decrease process of CondXD in the experiment of
application to the quasar contaminants of Nanni et al. (2022). The solid
red line is the training loss and the dashed line is the validation loss.

into the distribution of the relative fluxes conditioned on the J-band
flux and the distribution of the J-band fluxes. In this paper, we mainly
discuss the first factor, and the derivation of the second factor can be
found in section 4.3 in Nanni et al. (2022).

5.3 Density estimation

Nanni et al. (2022) employed their XD-based XDHZQSO algorithm
to fit the distribution of the contaminants and simulated high-
redshift quasars with a GMM. The algorithm has demonstrated
high efficiency, accuracy, and stability. XDHZQSO, however, has to
divide the contaminants into a discrete number of J-band magnitude
bins, because the colour distribution of the contaminants is a strong
function of magnitude, and XDHZQSO cannot be used to estimate
in the continuous limit. They implemented complicated strategies to
capture the variation of the relative flux distribution with magnitude
and guarantee continuity. The authors used 50 overlapping bins, with
the width of each bin determined by a broken sigmoid function of the
J-band bin right edge. As the right edges are uniformly distributed,
the bins overlap with their neighbors. The overlap between the bins
improves continuity among adjacent bins as well as a sufficient
number of sources at the faint and bright ends of the J-band
magnitude. Within each bin, they used the XD algorithm to estimate
the density, with the same initialization strategy as that described in
Section 4, to further improve the model’s continuity. These strategies
slow the training process, as some samples belong to multiple bins
and will be input to the training process multiple times. Moreover,
this binning strategy results in additional problems. Since the bin
width is very large at the two ends, e.g. a resulting magnitude range
of 5 mag compared with the right edge step of 0.05 magnitude at
the faintest end, it is hard to correctly capture the variation of the
model.

Instead, with our CondXD method, the J-band magnitude is a
conditioning variable ¢ and we can build a continuous and general
model by entering it into the NN and obtaining the Gaussian
parameters. We model the six-dimensional density distribution of
relative fluxes { f2/ fs, fv/fr, fulfs, fx./Fos fwr/ o fwa/ fi}
using K = 20 Gaussian components. The number of Gaussians
adopted is consistent with the number chosen by Bovy et al.
(2011b) and Nanni et al. (2022). Empirically, models with fewer
than 20 components overly smooth the observed distribution, while
those with more than 20 components are likely to suffer from
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Figure 7. The relative fluxes of all quasar contaminant samples in the 22.0 < J < 22.3 bin and their density contours are plotted in black. After deconvolution
with CondXD, the samples from the deconvolved distribution and their density contours are shown in red. The red contours are narrower because the noise has

been deconvolved.

overfitting. As we are deconvolving the relative noisy fluxes instead
of the measured fluxes, the uncertainty covariance matrix should be
computed. The validity and derivation of the uncertainty covariance
matrix of relative fluxes have been discussed in appendix A of Nanni
et al. (2022). Specifically, one needs to remove the off-diagonal
elements (i.e. set them to 0) in the relative flux noise covariances
when J > 21. This is because, in the limit of the faint J-band
regime, the noise becomes significant compared with the flux, and the
distribution of the relative fluxes violates the Gaussian assumption
as discussed earlier. As we are estimating with a GMM assuming
Gaussian noise, the non-Gaussian noise should be approximated
by a Gaussian. We convolve the GMM output by CondXD with

the uncertainties of the relative fluxes by adding the uncertainty
covariance to the GMM covariance. The samples are divided into
training and validation sets with ratio 9 : 1. After training and
validating the NN with the strategies described in Section 3.3 for
100 epochs, our model converges. The loss decrease is shown in
Fig. 6.

We compare the distribution of the entire contaminant set with the
corresponding predictions by our trained model in Figs 7 and 8. As
we do not have access to the underlying noiseless distribution of the
relative fluxes, we can only compare our predictions, either noiseless
or convolved with noise, with the noisy data set. We select the same
J-band range as in the appendix of Nanni et al. (2022), i.e. 22.0 <
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Figure 8. The relative fluxes of all quasar contaminant samples in the 22.0 < J < 22.3 bin and their density contours are plotted in black. In order to illustrate
that, after deconvolution by CondXD, we are still capable of reconstructing the noisy data, we reconvolve the deconvolved distribution in Fig. 8 with the noise
of the quasar contaminants. The samples from the noise-reconvolved model and their density contours are shown in red. The red contours show only negligible

differences from the black, proving that the reconstruction is successful.

J < 22.3, for display and comparison purposes. For each object in
this J-band bin, its J-band magnitude is input to the CondXD model
and a GMM is output. Then, for each object one noiseless predicted
data point is sampled from the GMM. After convolving the GMM
with the object’s uncertainty distribution, we also sample a noisy
prediction. The distribution of the noisy predictions is shown in Fig.
8. When comparing Fig. 7 with fig. A1l in Nanni et al. (2022), the two
deconvolutions yield similar results. In Fig. 8, the noisy prediction
distribution (red) matches the original samples (black) promisingly.
CondXD has reconstructed the noisy distribution precisely. When
compared with fig. A2 in Nanni et al. (2022), we see that our model

MNRAS 541, 2815-2829 (2025)

performs similarly to theirs. The distributions of the noisy predictions
(red) in all the other bins produced with our model are also consistent
with those in Nanni et al. (2022). Besides performance, our model
finishes training within three hours on 1902071 samples with a
2.8 GHz Quad-Core Intel Core i7 for MacBook, compared with
~ 30 h with their model. This is partly because many pieces of
data in the overlap of different bins are used in training multiple
times, which substantially increases the time required to construct
a model for all the bins. Note that no GPU is implemented in
any of our experiments. With a GPU the time cost can be greatly
reduced.
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6 CONCLUSIONS AND DISCUSSION

In this paper we built a conditional density deconvolution algorithm,
CondXD, with a neural network. This is an extension of the existing
XD method and is combined with mixture density networks. It
features the ability to estimate the underlying density of noisy
properties, which depends on some conditioning variables, given
a set of data with large and heteroscedastic uncertainties. CondXD
works in the background of deconvolving data with features far from
Gaussian with negligible noise: the distribution of the non-Gaussian
features can be separated from the joint distribution and modelled
independently, and CondXD can be applied to deconvolve the
distribution of the other features conditioning on the non-Gaussian
features.

We test CondXD on a toy model, a GMM whose parameters (i.e.
mixing coefficients, means, and covariances) are dependent on a
conditional. The samples are drawn from the GMM convolved with
non-identical noise covariances. The result shows that CondXD is
able to deconvolve the heteroscedastic uncertainties and estimate
the underlying conditional GMM. It can also reconstruct the noisy
distribution given the noise. Further experiments applying a classical
binning XD to the same toy model show that CondXD consistently
achieves higher continuity and better accuracy (Fig. 5). It shows
a flat KL divergence Dy curve throughout the conditional range,
which is globally smaller than the binning method, indicating
comprehensively more solid estimation. In particular, in the low
signal-to-noise ratio region (¢ < 0.05 in Fig. 5), the Dy of CondXD
is close to 0, while the binning method approaches the estimated
worst value. We further apply our method to a real astronomical
case, i.e. inferring the underlying distribution of a set of noisy high-z
quasar contaminant fluxes. Compared with the method used by Nanni
et al. (2022), which used a binning approach, our method outputs a
comparable result, but ~ 10 times faster.

Although we only apply CondXD to 1D conditioning variables, it
can be easily generalized to multidimensional conditioning variable
cases. For example, Bovy et al. (2012) included not only the reference
band flux but also the redshift as new features in addition to the origi-
nal band fluxes, in order to obtain the flux density in different redshift
ranges. There are no appreciable uncertainties on redshift, as quasar
colours do not vary significantly within typical redshift uncertainties.
Therefore, the redshift perfectly matches our requirement that the
noise of conditioning variables should be negligible. In conclusion,
the redshift is certainly another reasonable conditioning variable that
is worth including.

However, restrictions still exist in our algorithm. This method
only deconvolves the Gaussian features, and it cannot deconvolve
the conditioning variables. Our conditioning variables need to be
noiseless, while this is rarely satisfied in practice, like in Section 5.
Therefore, the conditioning variables should all have a high signal-
to-noise ratio to approximate the noise-free assumption. Another
commonly used approach in density estimation that could possibly
help solve such an issue is normalizing flow (Tabak & Vanden-
Eijnden 2010; Tabak & Turner 2013). Normalizing flows transform
a density that is easy to describe into a complicated density by a
set of invertible functions, and have shown good scalability and
flexibility in density estimation (e.g. Jimenez Rezende & Mohamed
2015; Cranmer et al. 2019). This class of methods does not require
any feature (dimension) of data to be noise free, nor any marginal
distribution to be Gaussian. Although these works did not consider
conditional densities, normalizing flows can take the conditioning
variables as new features (dimensions), deconvolve the general
distribution, and further compute the conditional density like in Bovy
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et al. (2012). However, to our knowledge, only homoscedastic noise
(identical noise distribution for all samples) has been considered
(Dockhorn et al. 2020) when data have non-Gaussian features. Our
CondXD might still be the best method for deconvolving conditional
densities with heteroscedastic noise.

ACKNOWLEDGEMENTS

We would like to express our sincere appreciation for the constructive
comments made by the ENIGMA group at Leiden Observatory
and UCSB on this project. We also extend our gratitude to James
A. Ritchie and lain Murray for making their code SCALABLE_XD
available, which served as a foundation for parts of our own code.
Additionally, we are grateful to Tom Holoien, Phil Marshall, and Risa
Wechsler for providing their XDGMM code, which made it possible
to conduct the experiment comparing our model with the classical
binning method.

We are also grateful to the developers and contributors of the
following PYTHON packages, whose invaluable tools and libraries
greatly facilitated our research: NUMPY for providing efficient array
operations and numerical computing capabilities that formed the
backbone of our data analysis and modelling; ASTROPY for its
comprehensive set of astronomical tools and utilities, enabling us
to manipulate astronomical data with ease; PYTORCH for its cutting-
edge deep learning framework, which empowered us to implement
and train our complex neural network model; and MATPLOTLIB and
CORNER for their powerful visualization capabilities, which allowed
us to create informative plots to present our results.

DATA AVAILABILITY

We present the code for our work, including the basics of CondXD
and the toy model, in the CondXD repository at https://github.com
/enigma-igm/CondXD. The pipeline for conducting the experiment
comparing CondXD and the classical binning method is also made
publicly available, as well as the example estimating the density of
quasar contaminants.

REFERENCES

Arumugam S., Desai S., 2023, J. High Energy Astrophys., 37, 46

Baiados E. et al., 2018, Nature, 553, 473

Becker G. D., D’Aloisio A., Christenson H. M., Zhu Y., Worseck G., Bolton
J. S.,2021, MNRAS, 508, 1853

Bhave A., Kulkarni S., Desai S., Srijith P. K., 2022, Ap&SS, 367, 39

Bird S. A., Xue X.-X., Liu C., Shen J., Flynn C., Yang C., Zhao G., Tian
H.-J.,, 2021, ApJ, 919, 66

Bishop C. M., 2006, Pattern Recognition and Machine Learning. Springer,
New York

Bosman S. E. 1., 2021, preprint (arXiv:2108.12446)

Bovy J., Hogg D. W., Roweis S. T., 2011a, Ann. Applied Statistics, 5, 1657

Bovy J. et al., 2011b, ApJ, 729, 141

Bovy J. et al.,, 2012, AplJ, 749, 41

Buder S. et al., 2022, MNRAS, 510, 2407

Cranmer M. D., Galvez R., Anderson L., Spergel D. N., Ho S., 2019, preprint
(arXiv:1908.08045)

Davies E. B., Bosman S. E. I, Furlanetto S. R., Becker G. D., D’ Aloisio A.,
2021, ApJ, 918, L35

Devroye L., 1989, Canadian J. Statistics, 17, 235

Dey A. etal., 2019, AJ, 157, 168

DiPompeo M. A., Bovy J., Myers A. D., Lang D., 2015, MNRAS, 452, 3124

Dockhorn T., Ritchie J. A., Yu Y, Murray I, 2020, preprint
(arXiv:2006.09396)

MNRAS 541, 2815-2829 (2025)

920z Arenuer Gz uo 1sanb Aq 188€128/G18Z/¥/L ¥S/aI0IE/SeIuw/Wwoo"dno-olwapeoe//:sdjy oy papeojumod


https://github.com/enigma-igm/CondXD
http://dx.doi.org/10.1038/nature25180
http://dx.doi.org/10.1093/mnras/stab2696
http://dx.doi.org/10.1007/s10509-022-04068-z
http://dx.doi.org/10.3847/1538-4357/abfa9e
http://arxiv.org/abs/2108.12446
http://dx.doi.org/10.1214/10-AOAS439
http://dx.doi.org/10.1088/0004-637X/729/2/141
http://dx.doi.org/10.1088/0004-637X/749/1/41
http://dx.doi.org/10.1093/mnras/stab3504
http://arxiv.org/abs/1908.08045
http://dx.doi.org/10.3847/2041-8213/ac1ffb
http://dx.doi.org/10.2307/3314852
http://dx.doi.org/10.3847/1538-3881/ab089d
http://dx.doi.org/10.1093/mnras/stv1562
http://arxiv.org/abs/2006.09396

2828 Y. Kang et al.

Edge A., Sutherland W., Kuijken K., Driver S., McMahon R., Eales S.,
Emerson J. P, 2013, The Messenger, 154, 32

Euclid Collaboration, 2019, A&A, 631, A85

Fan J., 1991a, Statistica Sinica, 1, 541

Fan J., 1991b, Ann. Statistics, 19, 1257

Foreman-Mackey D., 2016, J. Open Source Software, 1, 24

Gepperth A., Pfiilb B., 2019, preprint (arXiv:1912.09379)

Harris C. R. et al., 2020, Nature, 585, 357

He K., Zhang X., Ren S., Sun J., 2015, in Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification, 2015
IEEE International Conference on Computer Vision (ICCV). IEEE,
Piscataway, NJ, USA, p. 1026

Holoien T. W. S., Marshall P. J., Wechsler R. H., 2017, AJ, 153, 249

Hosseini R., Sra S., 2015, Advances Neural Inf. Processing Syst., 28, 910

Hosseini R., Sra S., 2020, Math. Programming, 181, 187

Ivezi¢ V., Ivezi¢ Z., 2021, Icarus, 357, 114262

Ivezi¢ Z. et al., 2019, Apl, 873, 111

Jimenez Rezende D., Mohamed S., 2015, preprint (arXiv:1505.05770)

Kiefer J., Wolfowitz J., 1952, Ann. Math. Statistics, 23, 462

Kingma D. P, Ba J., 2014, preprint (arXiv:1412.6980)

Kullback S., Leibler R. A., 1951, Ann. Math. Statistics, 22, 79

Matsuoka Y. et al., 2019, ApJ, 883, 183

Meisner A. M., Lang D., Schlafly E. F,, Schlegel D. J., 2019, PASP, 131,
124504

MNRAS 541, 2815-2829 (2025)

Mortlock D. J., Patel M., Warren S. J., Hewett P. C., Venemans B. P.,
McMahon R. G., Simpson C., 2011a, MNRAS, 419, 390

Mortlock D. J. et al., 2011b, Nature, 474, 616

Myers A. D. et al., 2015, ApJS, 221, 27

Nanni R., Hennawi J. F., Wang F., Yang J., Schindler J.-T., Fan X., 2022,
MNRAS, 515, 3224

Paszke A. etal., 2019, in Advances in Neural Information Processing Systems,
Vol. 32. Curran Associates, Inc., New York, p. 8024

Reddy Ch. T. T., Desai S., 2022, New Astron., 91, 101673

Ritchie J. A., Murray 1., 2019, preprint (arXiv:1911.11663)

Robbins H., Monro S., 1951, Ann. Math. Statistics, 22, 400

Schlafly E. F., Meisner A. M., Green G. M., 2019, ApJS, 240, 30

Stefanski L. A., Carroll R. J., 1990, Statistics, 21, 169

Tabak E., Turner C., 2013, Communications Pure Applied Math., 66, 145

Tabak E., Vanden-Eijnden E., 2010, Communications Math. Sci., 8, 217

Wang F. et al., 2018, ApJ, 869, L9

Wang F. et al., 2019, ApJ, 884, 30

Wang F. et al., 2021, ApJ, 907, L1

White M. et al., 2012, MNRAS, 424, 933

Wolfson M., Hennawi J. F., Davies F. B., Ofiorbe J., 2024, 531, 3069

Yang J. et al., 2019, AJ, 157, 236

Yang J. et al., 2020, ApJ, 904, 26

Zhang C.-H., 1990, Ann. Statistics, 18, 806

920z Arenuer Gz uo 1sanb Aq 188€128/G18Z/¥/L ¥S/aI0IE/SeIuw/Wwoo"dno-olwapeoe//:sdjy oy papeojumod


http://dx.doi.org/10.1051/0004-6361/201936427
http://dx.doi.org/10.1214/aos/1176348248
http://dx.doi.org/10.21105/joss.00024
http://arxiv.org/abs/1912.09379
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.3847/1538-3881/aa68a1
http://dx.doi.org/10.1007/s10107-019-01381-4
http://dx.doi.org/10.1016/j.icarus.2020.114262
http://dx.doi.org/10.3847/1538-4357/ab042c
http://arxiv.org/abs/1505.05770
http://dx.doi.org/10.1214/aoms/1177729392
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.3847/1538-4357/ab3c60
http://dx.doi.org/10.1088/1538-3873/ab3df4
http://dx.doi.org/10.1111/j.1365-2966.2011.19710.x
http://dx.doi.org/10.1038/nature10159
http://dx.doi.org/10.1088/0067-0049/221/2/27
http://dx.doi.org/10.1093/mnras/stac1944
http://arxiv.org/abs/1911.11663
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.3847/1538-4365/aafbea
http://dx.doi.org/10.1080/02331889008802238
http://dx.doi.org/10.1002/cpa.21423
http://dx.doi.org/10.4310/CMS.2010.v8.n1.a11
http://dx.doi.org/10.3847/2041-8213/aaf1d2
http://dx.doi.org/10.3847/1538-4357/ab2be5
http://dx.doi.org/10.3847/2041-8213/abd8c6
http://dx.doi.org/10.1111/j.1365-2966.2012.21251.x
http://dx.doi.org/10.3847/1538-3881/ab1be1
http://dx.doi.org/10.3847/1538-4357/abbc1b
http://dx.doi.org/10.1214/aos/1176347627

Deconvolving conditional distributions 2829

APPENDIX A: DENSITY DISTRIBUTION AND CONTOURS

The deconvolution result of our toy model at ¢ = 0.5 is plotted in Fig. A1, as an intermediate case in the range ofc € [0, 1].
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Figure A1. The distribution and density contours of 10 000 samples from the noisy toy model, the underlying toy model, and the deconvolution when ¢ = 0.90.
The upper or right-hand panels show the 1D marginal distribution of the samples. The colour scheme is the same as in Figs 2 and 3.

This paper has been typeset from a TEX/ITEX file prepared by the author.

© The Author(s) 2025.
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 541, 2815-2829 (2025)

920z Arenuer Gz uo 1sanb Aq 188€128/G18Z/¥/L ¥S/aI0IE/SeIuw/Wwoo"dno-olwapeoe//:sdjy oy papeojumod


https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 METHOD
	3 EXPERIMENTS ON A SIMULATED NOISY GMM
	4 COMPARISON WITH BINNING METHOD
	5 DECONVOLVING THE DISTRIBUTION OF QUASAR CONTAMINANTS
	6 CONCLUSIONS AND DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: DENSITY DISTRIBUTION AND CONTOURS

