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A B S T R A C T 

Density estimation is a fundamental problem that arises in many areas of astronomy, with applications such as selecting quasars 
via colour distributions and characterizing stellar abundances. Astronomical observations are inevitably noisy, while the density 

of a noise-free feature is often the desired outcome. The extreme-deconvolution (XD) method can be used to deconvolve the 
noise and estimate the underlying density distribution by fitting a mixture of Gaussians to data with heteroscedastic Gaussian 

noise. Ho we ver, XD does not generalize to cases where some feature dimensions ha ve distrib utions far away from Gaussian, and 

no established method exists to o v ercome this limitation. Requiring ne gligible noise in these non-Gaussian features, we introduce 
a possible solution that separates out the non-Gaussian features and models the Gaussian-like dimensions conditioned on the 
non-Gaussian features using a neural network and Gaussian mixture model. The result is the CondXD algorithm, a generalization 

of XD that takes in the non-Gaussian features and outputs the deconvolved conditional distribution of the Gaussian-like features 
on the input features. We apply CondXD to a toy model, and compare it with an existing method that divides the samples into 

bins of conditioning variables and applies XD separately to each bin. We find that CondXD is more accurate than the classical 
approach. We further test CondXD on a real-world high-redshift quasar versus contaminant classification problem. It achieves 
comparable results to the binning method but is roughly 10 times faster. Overall, our method has the potential to significantly 

impro v e the deconvolution of non-Gaussian distributions and enable new disco v eries in astronomy. 

Key words: methods: statistical – methods: data analysis – quasars: general. 
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 I N T RO D U C T I O N  

ensity distribution estimation is an active area of research in 
stronomy, with key attention paid to uncovering the underlying 
istributions of various astronomical properties. For example, Buder 
t al. ( 2022 ) used deconvolution techniques to estimate the distri-
ution of the abundances of accreted stars, while Mortlock et al. 
 2011a ), Bovy et al. ( 2011b , 2012 ), and Nanni et al. ( 2022 ) et al.
pplied similar methods to measure the flux distribution of quasars. 
ther researchers, such as Bhave et al. ( 2022 ), Reddy Ch. & Desai

 2022 ), and Arumugam & Desai ( 2023 ), have used deconvolution
echniques to model the distributions of transients like pulsars and 
amma-ray bursts. Moreo v er, Bird et al. ( 2021 ) and Iv ezi ́c & Iv ezi ́c
 2021 ) have used density distribution estimation to infer the galactic
tructure and predict galaxy sizes measured by the Rubin Observatory 
Ivezi ́c et al. 2019 ), respectively. 

In practice, the physical attributes of astronomical targets are rarely 
easured without substantial and heteroscedastic uncertainties, and 

he estimation of the underlying distribution is never an easy task. The 
bservations can be regarded as samples drawn from a (noiseless) 
 E-mail: yi kang@physics.ucsb.edu 1
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ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
nderlying distribution convolved with the distribution of noise; thus 
he estimation of the underlying distribution is also referred to as
econ volution. While density decon volution of noisy distributions 
as been e xtensiv ely studied in the literature, early works such as
evro ye ( 1989 ), Stef anski & Carroll ( 1990 ), Zhang ( 1990 ), and Fan

 1991a , b ) often assumed that the distributions are uni v ariate and
he noise distribution is identical for every measurement, neglecting 
he heteroscedasticity of the measurements. Moreo v er, most of the
arly studies applied non-parametric approaches that cannot be 
mplemented when samples with missing measurements (missing 
ata) are encountered. 
To address these complications, Bovy, Hogg & Roweis ( 2011a )

eveloped the extreme-deconvolution (XD) algorithm that works for 
ata with heterogeneous noise—even accommodating missing data. 1 

hey used a Gaussian mixture model (GMM) to fit the underlying
istribution of a set of noisy samples. With the assumption of
aussian underlying distribution and Gaussian noise distribution 
ith zero mean, the noisy density distrib ution (i.e. conv olution of

he underlying and noise distribution) can be obtained efficiently 
see equation ( 6 ) in Section 2.2 ]. Iteratively applying the expectation
 https:// github.com/ jobovy/ extreme-deconvolution 
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2 They are more often referred as ‘weights’, but we use the term ‘mixing 
coefficients’ to a v oid confusion with the ‘weights’ of neural networks. 
3 https:// github.com/ enigma-igm/ CondXD 
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nd maximization process to increase the likelihood of the noisy
amples to the noisy distribution, the underlying distribution is
stimated. As demonstrated in Bovy et al. ( 2011a ), XD is capable of
nferring the 3D velocity distribution of stars around the Sun given
he noisy 2D transverse velocity measurements from the Hipparcos
atellite. It is also resistant to poor initialization to obtain the
ptimal fit. Later, the scalable XD algorithm developed by Ritchie &
urray ( 2019 ) impro v ed the XD code with modern machine-learning

lgorithms (e.g. stochastic gradient descent and mini-batches) to seek
or the GMM best-fitting parameters, instead of using an iterative
xpectation–maximization approach on the full data set. Similar
tudies were also conducted by Hosseini & Sra ( 2015 , 2020 ) and
epperth & Pf ̈ulb ( 2019 ). 
Subsequent to its publication, XD has gained wide applications,

articularly in the field of classifying quasars and contaminants based
n their photometric multiband fluxes (e.g. Bovy et al. 2011b , 2012 ;
hite et al. 2012 ; DiPompeo et al. 2015 ; Myers et al. 2015 ; Nanni

t al. 2022 ). In some cases, ho we ver, the joint distributions of the
and fluxes cannot be easily deconvolved by XD. For example,
anni et al. ( 2022 ) found that the probability density of quasars
bserved by JWST and Euclid will have a dominant power-law shape
orresponding to the number counts as a function of the J -band
agnitude, which is hard to approximate by combining a small

umber of Gaussian distributions. As an alternativ e, the y tried to
eparate the J -band flux, and deconvolved the joint distribution of
he other band fluxes (relative to the J band) conditioning on the J -
and flux with XD. This idea is based on the definition of conditional
istribution: 

( x 1 , x 2 ) = p( x 1 | x 2 ) p( x 2 ) , (1) 

here p( x 1 , x 2 ) is the joint distribution of two sets of features x 1 and
x 2 , p( x 1 | x 2 ) is the distribution of x 1 conditioning on x 2 , and p( x 2 )
s the marginal distribution for x 2 . Nanni et al. ( 2022 ) found that
heir conditional joint distribution has no power-law-shaped marginal
istribution and can be well described by GMM across their J -band
ux range. Moreo v er, their J -band flux es hav e significant signal-

o-noise ratio, such that the noise is negligible and binning data
ased on the observed J -band flux is reliable. Consequently, the
oint distribution for all bands can be obtained by 1) grouping the
ata into bins of the observed J -band fluxes, and deconvolving the
oint distribution of the other band fluxes with XD in each bin; 2)
eriving the marginal distribution of the J -band flux by estimating
he J -band magnitude distribution with a power-law function; and
) multiplying them according to equation ( 1 ). Similar separation
nd binning approaches are also employed in Bovy et al. ( 2011b ,
012 ), Bird et al. ( 2021 ), all noticing that the samples can only be
ell modelled by GMM when conditioning on the non-Gaussian

eatures. 
Ho we ver, there are several major drawbacks to this binning

pproach. First, the bin size must be small to reduce the variation
f the conditional distrib ution, b ut also large enough to include
ufficient samples in each bin for accurate estimation. Unfortunately,
here is no objective method to reconcile this trade-off and decide on
he bin size. Secondly, the continuity of the estimated distribution is
ot guaranteed among the bins since the XD is applied individually.
anni et al. ( 2022 ) implemented complicated strategies to mitigate

hese problems, resulting in inefficient algorithms. More details are
iscussed in Section 4 . 
To address these issues, we propose using a mixture density

etwork (section 5.6 in Bishop 2006 ) to deconvolve the conditional
istributions [the first factor on the right-hand side of equation ( 1 )]
nder the assumption that the noise is negligible for the observed con-
NRAS 541, 2815–2829 (2025) 
itioning variables. A mixture density network can fit a conditional
istribution with a density mixture, i.e. a combined set of weighted
asic density distributions such as GMM. It allows the parameters of
he density mixture (e.g. for GMM, mixing coefficients, 2 means,
nd covariance matrices) to be generated by a neural network
NN) that takes the conditioning variables as the input. In other
ords, once trained, the mixture density network can take in the

onditioning variable and output the joint distribution of the other
eatures conditioning on the input value of the conditioning variable.
his moti v ates us to combine the XD and mixture density networks

n order to deconvolve the conditional distributions of astronomical
ources with heteroscedastic noise. 

In this paper, following Ritchie & Murray ( 2019 ), we use modern
achine-learning methods to deconvolve noisy conditional distri-

utions for both a simple toy model and an astronomical real
ase classification problem, demonstrating the capabilities of our
onditional XD algorithm, CondXD. In Section 2 we provide a
eneral description of the CondXD method. In Section 3 we conduct
n experiment to test the performance of CondXD on a simple toy
odel. Using the same toy model, in Section 4 we compare the

econvolving capability of both CondXD and a binning approach
imilar to the one from Nanni et al. ( 2022 ). In Section 5 we apply
ondXD to a realistic astronomy case and compare the results with

he binning method from Nanni et al. ( 2022 ). In Section 6 we provide
ur conclusions and discussions. 

 M E T H O D  

n its standard form, XD estimates the underlying probability
istribution p( X ) of a noisy multidimensional sample X using a
MM ˆ p ( X | ˆ α, ˆ μ, ˆ V ), defined by a set of K mixing coefficients

ˆ , means ˆ μ, and covariance matrices ˆ V . We use hat notation to
ndicate estimated statistics and leave out the notation to represent
he true values of these quantities when they are generated from an
nderlying Gaussian mixture. Ho we ver, if the probability density,
, is conditioned on a variable c such that p( X | c ), the correct form

or the estimator is ˆ p ( X | ˆ α( c ) , ˆ μ( c )) , ˆ V ( c )). Here the conditioning
ariable c is bold, since it can also be multidimensional, i.e. the model
an depend on multiple variables. Furthermore, we only consider
oiseless c to simplify our theory, which requires the noise of the
onditioning features of observations to be negligible. 

In this work, we build our conditional GMM estimator using an NN
ith weights φ. In this case, the GMM parameters become functions
f φ and the conditioning variable c , written as: ˆ α( φ, c ), ˆ μ( φ, c ),

ˆ 
 ( φ, c ). Consequently, for notational simplicity we henceforth ex-
ress the estimator as ˆ p ( X | φ, c ). 
In Section 2.1 we describe the architecture of our NN, while in

ection 2.2 we describe how we define the loss function of our
ethod; Section 3.3 introduces the technical details implemented to

mpro v e training. Hereafter, we call our technique CondXD, the code
or which is available on GitHub. 3 

.1 Ar chitectur e of the neural network 

ur NN has a stem–branch structure, shown in Fig. 1 . The stem
onstitutes a sequence of three linear layers, which branches off
nto three output layers for the mixing coefficients, means, and

https://github.com/enigma-igm/CondXD
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Figure 1. Schematic of the CondXD neural network. It takes in conditioning 
variable c and outputs the parameters of a GMM, i.e. the mixing coefficients, 
means, and Cholesky factors of the covariance matrices. Blocks are layers in 
the architecture, the types of which are indicated by annotations. The yellow 

ends refer to the PReLU acti v ation functions after the current layer. K is the 
number of Gaussians in the model, and D is the dimension of the Gaussians; 
both are hyperparameters. In practice, D is automatically determined by the 
dimension of the samples. The dimensions of the outputs computed by every 
layer are also labelled. 
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ov ariances, respecti vely. It takes in the conditioning variable c 
nd outputs the parameters of the GMM. In general, the density 
istribution of a noisy sample can depend on several variables, so
hat the conditioning variable c is actually multidimensional. The 
umber of Gaussians of the GMM ( K) is a hyperparameter, and the
imension of the GMM ( D) is determined by the dimension of the
ata from the observations, whose density is to be estimated. 
In the structure of the NN we simply use Linear layers ev-

rywhere. The Linear layers multiply the input with matrices, the 
lements of which are the weights φ of our neural network. In the stem
art, all the Linear layers are followed by the PReLU (parametric 
ectified linear unit; He et al. 2015 ) acti v ation functions. At the output
ayer for the mixing coefficients branch (see orange block in Fig. 1 )
e follow standard practice, using a softmax acti v ation to ensure that

ll mixing coefficients are positive and sum up to unity: 

ˆ j = 

exp ( βj ) ∑ 

j exp ( βj ) 
, (2) 

here ˆ αj is the mixing coefficient for the j th Gaussian, and βj is the
th output of the last Linear layer of the mixing coefficients branch. 
or the means branch we do not implement any further processing 

han a Linear layer, since there is no rigorous requirement on 
t. Finally, instead of directly generating the covariances that have 
o satisfy symmetry and positive semidefiniteness, we again follow 

tandard practice, generating the Cholesky decomposition factors 
ˆ 
 ( φ, c ). The Cholesky decomposition is defined as: 

ˆ 
 j = 

ˆ L j ̂
 L 

T 
j + 10 −4 I , (3) 

here ˆ L j is the j th Cholesky factor, which is a lower triangular 
atrix with shape ( D , D ), ˆ V j is the j th covariance matrix of the
 Gaussians, and I is the identity matrix. Each of the K Cholesky

actors has all zero values in the upper right-hand triangle, and all
iagonal elements are positive for every matrix. Moreover, a small 
ositi ve v alue of 10 −4 is added to the diagonal. In this way ˆ V j 

s guaranteed to be symmetric and positive semidefinite. In the 
ovariance branch (see the green block in Fig. 1 ), the diagonal
lements of every Cholesky factor have been processed by an 
xponential acti v ation function to ensure positi vity. 
With this architecture we generate all the GMM parameters. 
n practice, these parameters define the model that describes the 
econvolved density distribution of the noisy samples. 

.2 Loss function 

o train the NN, or, in other words, to find the best-fitting weights
in the NN, we need to quantify how well the GMM represents the

ata samples by utilizing a loss function. In our case, the Kullback–
eibler di vergence (KL di vergence or D KL ; Kullback & Leibler 1951 )

s chosen as a standard practice to measure how different the GMM
s from the underlying distribution. The KL divergence is defined as: 

 KL ( p‖ ̂  p ) = 

∫ 

p( x | c ; S ( x )) ln 
(

p( x | c ; S ( x )) 
ˆ p ( x | φ; c ; S ( x )) 

)
d x 

= 

∫ 

p( x | c ; S ( x )) ln p( x | c ; S ( x )) d x 

−
∫ 

p( x | c ; S ( x )) ln ˆ p ( x | φ; c ; S ( x )) d x , (4) 

here S ( x ) is the noise covariance of the random sample x , shaped
 D , D ). S is al w ays a diagonal matrix in our case assuming indepen-
ent noise. With the heteroscedastic assumption, each x i can have its 
wn noise; thus S can also be regarded as a function of x , i.e. S ( x ).
n practice, observed data are al w ays noisy; thus both distributions
 and ˆ p in equation ( 4 ) have been convolved with noise. In the
bo v e equation, p( x | c ; S ( x )) is short for p( X = x | c ; S ( x )), and
( X | c ; S ( x )) is the noise-convolved underlying density p( X | c ).
imilarly, ˆ p ( x | φ; c ; S ( x )) is the probability of x under the noise-
onvolved GMM estimator for p( X | c ; S ( x )). As the samples x are
rom the noise-convolved distribution p( X | c ; S ( x )), the integration
n equation ( 4 ) is averaged over the sample space. 

Our goal is to find the model ˆ p ( X | φ; c ; S ( x )) that minimizes the KL
i vergence v alidated on the observ ation data { x , c , S } . The first term
n the second line of equation ( 4 ) is a constant that does not depend
n the NN weights φ; therefore only the second term needs to be
inimized. Therefore, we can define the loss function as the second

erm, i.e. the ne gativ e of the log-probability of the model averaged
 v er the underlying distribution. Since we do not have access to the
oise-convolved underlying distribution p( X | c ; S ) (this is what we
re trying to estimate), but we do have access to noisy data { x , S } , we
ewrite the second term in equation ( 4 ) as a Monte Carlo integral: 

oss NN ( φ | { x , c , S } ) = − 1 

N 

N ∑ 

i= 1 

ln ˆ p ( x i | φ; c i ; S i ) , (5) 

here N is the data sample size. Minimizing the loss in equation ( 5 ) is
qui v alent to finding the parameters φ that maximize the probability
f the data { x } given the corresponding conditionals { c } and the noise
ovariances { S } . 

To e v aluate the probability of noisy data x i , we need to convolve
he GMM with the noise probability distribution. Assuming that the 
oise ε has a Gaussian distribution N ( ε| 0 , S i ), the convolution is
rivial, and is simply the sum of S i and every covariance ˆ V j , due
o the closure of the Gaussian distribution under convolutions. The 
odel probability can thus be e v aluated via 

ˆ  ( x i | φ; c i ; S i ) = 

K ∑ 

j= 1 

ˆ αj ( φ; c i ) N 

× (
x i | ˆ μj ( φ; c i ) , ˆ V j ( φ; c i ) + S i 

)
, (6) 
MNRAS 541, 2815–2829 (2025) 
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t any noisy data given its location x i , conditioning variable c i , and
oise covariance S i , where ̂  αj , ˆ μj , and ˆ V j are the mixing coefficients,
ean, and covariance of the j th Gaussian. 
An issue that can arise during the optimization of the loss in

quation ( 5 ) is that a Gaussian in the mixture can collapse on to a
ingle sample. This will reduce the estimated covariance to nearly
ero. Although a finite positive value [equation ( 3 )] and a finite
oise covariance are added to the diagonal of the covariance, a large
umber of Gaussian (like K = 20) components makes it possible
hat a certain component will focus on some outliers. This is clearly
ndesirable and does not represent a viable optimum. We regularize
he loss by adding an additional term that amounts to a penalty when
he covariance diagonal elements approach zero: 

oss reg = w 

∑ 

j 

∑ 

i 

1 

diag ( V j ) i 
, (7) 

here w is a tunable parameter that is determined at 10 −6 via trial
nd error, and diag ( V j ) i is the ith diagonal element of the j th
o variance. As we hav e forced all co v ariance diagonals to be positi ve,
his regularization loss is also al w ays positive but dominates only if
he diagonal elements approach zero. The total loss is then the sum
f the regularization loss and model loss: 

oss = loss NN + loss reg , (8) 

hich is what we try to reduce for the samples. 

.3 Training strategies 

fter defining the NN architecture and the loss function, we now
urn to the specific strategies implemented to train our NN. 

Before training, we normalize the data in every dimension.
ormalization ensures that each feature contributes equally during

raining and prevents vanishing or exploding gradients to stabilize
onvergence. Additionally, normalization generalizes our method
o different applications with contrasting orders of magnitude.
pecifically, we compute the mean and standard deviation of each
eature of all data samples (including training, validation, and test
ets; see later in this section), subtract the mean from each piece of
ata x i , and divide each piece of data by the standard deviation: 

 x i, n ) j = [( x i ) j − m j ] /σj . (9) 

n the abo v e equation, ( x i ) j and ( x i, n ) j are the j th feature of
he ith piece of data before and after normalization respectively,
 j is the mean value of the j th feature o v er all the N samples

before separating into training/validation/test sets; see the following
aragraphs), and σj is the standard deviation of the j th feature of all
he N samples. The means and standard deviations are stored to later
escale the CondXD predicted samples after training. We proceed
y dividing the noise covariance of each by the outer product of the
tandard deviation vector σ = ( σ1 , ..., σD 

): 

 S i, n ) jk = ( S i ) jk /σj σk , (10) 

here ( S i ) jk and ( S i, n ) jk are the j th row and kth column of the noise
ovariance matrix of the ith piece of data. In this way, we are in fact
econvolving the normalized distribution; thus all the x i and S i in
quations ( 4 )–( 6 ) should be replaced by x i, n and S i, n respectively.
fter training the NN, we transform the samples from the output

oint distribution back to the original scale: the output samples are
ultiplied by the standard deviation vector σ and then added to the
ean vector m = ( m 1 , ..., m D 

). All subsequent plots have already
een rescaled. 
NRAS 541, 2815–2829 (2025) 
We use stochastic gradient descent (Robbins & Monro 1951 ;
iefer & Wolfowitz 1952 ) with the torch.optim.Adam opti-
izer (Kingma & Ba 2014 ) in the PYTORCH PYTHON package (Paszke

t al. 2019 ) to train our NN. This updates the weights of the NN in
tochastic directions around the loss gradient during training. The
tochasticity prevents it from having local optima provided with
nly a limited number of samples. Moreo v er, we utilize the weight
ecay method that introduces an additional loss term accounting for
he sum of squares of the NN weights multiplying with a coefficient,
quipped in the Adam optimizer. It penalizes large NN weight values
nd encourages some weights to be close to 0, i.e. to prefer a simple
odel and a v oid o v erfitting. With trial and error on our toy model in
ection 3.1 , we achieve a coefficient value of 10 −6 . 
To further a v oid o v erfitting, we randomly divide the { x n , c , S n }

ata triplets (the subscript n denotes ‘normalized’) into two sets: a
raining set and a validation set with ratio 90 per cent : 10 per cent .
s long as the loss [equation ( 5 )] of the validation set remains close

o that of the training set, the model does not o v erfit the training
et. In each set, the samples are further divided into mini-batches
ith size equal to 250 samples. This number is determined rather

andomly from a typical value in the literature. Compared with the
ample size of 90 000 in our toy model in Section 3 and 1902 071 in
he quasar contaminants in Section 5 , the mini-batch has a small size.
t can be increased as long as one mini-batch still fits in the computer
emory. The NN weights are updated by the torch.optim.Adam

ptimizer based on the loss and gradient computed on each mini-
atch. After looping o v er all of the mini-batches, we compute the
verage training loss of the whole training set. We then compute the
alidation loss, which is the loss averaged over the entire validation
et. An epoch is defined as the e x ecution of stochastic gradient
escent on all the training mini-batches plus the computation of
he validation loss. The best model is defined as the one that achieves
he lowest value of the validation loss after 100 epochs. 

The learning rate is the step size by which φ are updated when
rained on each mini-batch. In the early stages, the learning rate
hould be large to speed up convergence, while later it should be small
o allow φ to converge on precise values. The Adam optimizer auto-
atically decreases the learning rate, and we find that implementing

n additional decrease results in faster convergence. We set the initial
earning rate to 0.001 in the Adam optimizer, and decrease it further
y multiplying by 0.4 every time when there is no decrease of the
alidation loss for two subsequent epochs. The latter is achieved with
he torch.optim.lr scheduler.ReduceLROnPlateau
cheduler. These values are obtained after experiments on the toy
odel in Section 3 . 
Although these hyperparameters, i.e. weight decay coefficient,

raining and validation set relative size, mini-batch size, learning rate
nd its manual decay rate, are all determined on our models, they
enerally exhibit reliable deconvolution performance (for example,
n the application to high- z quasar contaminants in Section 5 ). For
pecific tasks, the user can decide on customized values via methods
uch as grid search. 

 EXPERI MENTS  O N  A  SI MULATED  NOIS Y  

M M  

.1 Constructing the GMM toy model 

o test the performance of our CondXD method when estimating the
nderlying density given observations with heteroscedastic noise, we
onstructed a simple toy model using a GMM with K = 10 Gaussian
omponents and D = 7 dimensions. To construct the model, we
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rst generate the mixing coefficients α, means μ, and Cholesky 
actors L of the covariances as a function of the conditioning 
 ariable. Ho we ver, for simplicity we only consider the case of a
D conditioning variable c, although our method can be generalized 
o an N -dimensional conditioning variable. 

The mixing coefficients vector α is calculated using power-law 

unctions and is integral to the generation of the Gaussian mixture. 
pecifically, each component of the Gaussian mixture’s mixing 
oefficients, αi , is computed as: 

i, 0 = A 

1 −i/ 10 c 1 + i/ 10 

αi = 

αi, 0 ∑ 

i αi, 0 
, (11) 

here A is a number drawn from the uniform distribution in the
ange [0 , 2]. 4 This sequence introduces sufficient randomness into 
he mixing coefficients calculation process while constraining the 
ange of values. The formulation of the mixing coefficients ensures 
hat each αi varies distinctively with the conditioning variable while 
ollectively summing to unity. 

The means for our Gaussian components are generated similarly. 
e randomly draw K × D numbers from the uniform distribution in 

he range [0 , 10]. 5 The K × D numbers are reshaped into a matrix
 with shape ( K, D), and the means are computed as: 

= ( B − B ) · c 1 . 2 , (12) 

here B denotes the average of all the elements in B o v er both
imensions. For simplicity we keep using a power -law beha viour 
n the conditional, and the exponent 1.2 is randomly chosen and 
s different from that of the mixing coefficients. By subtracting B
rom B we ef fecti vely centre the elements of the means such that the
aussian clusters will be evenly distributed about the origin, which 

implifies the training of the NN. 
The generation of Cholesky factors follows a slightly different 

rocess. We opt to generate the diagonal and off-diagonal elements 
espectively. We first retrieve K × D random numbers from the 
niform distribution in the range [0 , 0 . 2]. 6 Then these numbers are
eshaped into an array C 1 of dimensions ( K, D). Simultaneously, we
andomly select K × D × ( D − 1) // 2 numbers from the uniform
istribution in the range [0 , 0 . 2]. 7 These numbers are then reshaped
nto an array C 2 of dimensions ( K, D × ( D − 1) // 2). Finally, we
ompute the Cholesky factor L as follows: 

 d = C 1 · c 0 . 5 + 0 . 1 0 . 5 , 

L l = C 2 · c 0 . 5 , (13) 

here L d represents the diagonal part, and L l represents the unique 
ff-diagonal elements of the lower diagonal Cholesky factor L . To 
nsure positive definiteness of the covariances V , a small constant 
actor of 0 . 1 0 . 5 is added to L d , which guarantees that the diagonal
lements of V are al w ays greater than 0.1. The exponent 0.5 on
he conditioning v ariables allo ws C 1 and C 2 to intuitively indicate
he level of covariance, instead of having to intuit them from the
holesky factor. With the Cholesky factors L we can compute the 
 These were actually generated by permuting random integers and are hence 
onstrained to be integer multiples of 0.02. 
 Randomly sampling and permuting non-repeating integers in [0 , 10 × K ×
] and then multiplying by 1 / ( K × D). 

 Randomly sampling and permuting non-repeating integers in [0 , 10 × K ×
] and multiplying by 1 / (50 × K × D). 

 Randomly sampling and permuting non-repeating integers in [0 , 10 × K ×
 × ( D − 1) // 2] and multiplying by 1 / (50 × K × D × ( D − 1) // 2). 

o  

t  

g  

s
l

3

I  

m

nderlying noiseless covariance of the toy model as: 

 = LL 

T . (14) 

In practice, real-world samples are always subject to noise. To 
onstruct a noisy toy model, we introduce the noise covariance 
atrices S using: 

 = L S L S 
T . (15) 

n this equation, the Cholesky factor L S is responsible for modelling
he noise characteristics. The diagonal part of L S is sampled from 

 uniform distribution U (0 , 1), while the lower left-hand part is
ampled from another uniform distribution U ( −0 . 5 , 0 . 5). This choice
f distribution introduces both positive and ne gativ e elements in the
oise covariance Cholesky factors, simulating non-trivial covariant 
oise in a real astronomical application. Following equation ( 6 ), the
oise covariance S can be added to the underlying covariance V in
quation ( 14 ) to obtain the noisy distribution. 

The choice of power-law behaviour as a function of the condition-
ng variable and the exponents used in our equations allows a broad
ange of behaviours for our toy model. In particular, the exponent
n the conditioning variable used in the means [equation ( 12 )] is
arger than the one in the underlying covariance [equation ( 13 )].

hen c takes on smaller values, the larger exponent in equation
 12 ) causes the Gaussian clusters to o v erlap. The orange points and
ontours in Fig. 2 illustrate the samples and their densities from the
oise-convolved underlying distribution, in contrast to the noise-free 
nderlying distribution shown in black. The influence of our noise 
ominates the dispersion within the clusters. Conversely, when c 
ssumes larger values, as shown in Fig. 3 , the Gaussian cluster centres
eparate more distinctly. Under such conditions, the influence of the 
oise diminishes, allowing the underlying covariances of the GMM 

o become more evident. 

.2 Training CondXD 

o illustrate the capabilities of CondXD, we generate 90 000 { c, x , S }
raining samples and 10 000 validation samples from a noisy toy
odel defined by the simulated parameters in equations ( 11 )–( 14 ).
o obtain a single noisy sample x , the conditioning variable c is
niformly sampled in the range [0 , 1], and input in our toy model.
hen, we compute the noise covariance S using equation ( 15 ), add it

o the noiseless covariance V , and finally draw samples x from this
oisy distribution. Samples from the Gaussian mixture are drawn 
ollowing the standard approach (Harris et al. 2020 ): the specific
aussian cluster to be sampled is first decided via a random draw

mploying the mixing coefficients as weights, and then a sample is
rawn from that Gaussian cluster. 
We train CondXD on the 90 000 training samples after normal-

zation with the strategies described in Section 3.3 , implementing 
 mini-batch size of 250. After training for 100 epochs, the loss
see equation ( 5 )] for the training and validation sets converges
o a constant value. The training and validation loss as a function
f training epoch is shown in Fig. 4 . Both losses decrease with
raining epoch, indicating that the NN has learned to fit the parameters
o v erning the conditioned noisy distribution. In fact, o v erfitting is not
ignificant, as there is only minimal disparity between the validation 
oss and the training loss. 

.3 Results from the toy model 

n this subsection we provide a visual comparison of the afore-
entioned distributions. After training, to test the deconvolution 
MNRAS 541, 2815–2829 (2025) 
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M

Figure 2. The distribution and density contours of 10 000 samples from the noisy toy model, the underlying toy model, and the deconvolution when c = 0 . 10. 
Orange scatters are samples from the noise-convolved underlying distribution with orange contours representing their density contours. Black scatters and 
contours are for the samples from the underlying distribution, while red is for the deconvolution result. The upper or right-hand panels show the 1D marginal 
distribution of the samples. Orange histograms represent the samples from the noise-convolved underlying distribution, black is for the underlying distribution, 
and red is for the deconvolution. All corner plots in this paper are created by the PYTHON package CORNER (F oreman-Macke y 2016 ). 
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apability of CondXD, we compare the estimated deconvolved
istribution with the noiseless underlying distribution. Note that the
nderlying model is conditioned and we train on a continuous range
f c o v er [0 , 1], but in this section we e v aluate the performance
f our method only for two extreme values, c = 0 . 1 and c = 0 . 9,
hereas the result for another intermediate case c = 0 . 5 is shown in

he Appendix. 
The best way to visualize how well we are deconvolving is to

ompare the distribution of samples drawn from our underlying
oiseless model to the distribution of samples from the trained
NRAS 541, 2815–2829 (2025) 
ondXD distribution, which is usually achieved by making density
ontour plots of these samples. We input the specific aforementioned
alues of c into our toy model, and generate 10 000 samples from the
nderlying noiseless GMM as the test set. For comparisons with the
oisy distribution, we also generate 10 000 noisy samples by drawing
0 000 random noise covariances, adding each to the covariance
atrice of the same noiseless GMM, and sampling the noisy GMM.
or CondXD, the same c is input in the trained model, and 10 000
oiseless samples are drawn from it. Note that these samples have
een transformed to the original scale in the way described in Section
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Figure 3. The distribution and density contours of 10 000 samples from the noisy toy model, the underlying toy model, and the deconvolution when c = 0 . 90. 
The upper or right-hand panels show the 1D marginal distribution of the samples. The colour scheme is the same as in Fig. 2 . 
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.3 , i.e. multiplied by the standard deviation and added to the mean
f the 90 000 training samples on each feature. The density contours
nd 1D marginal histograms for these three sets of samples are shown
n Figs 2 ( c = 0 . 1) and 3 ( c = 0 . 9). 

The black histograms and contours in Fig. 2 show that for c = 0 . 1
he underlying Gaussians in the Gaussian mixture strongly o v erlap. 
he orange lines show the density distribution of the noisy samples 

rom the noise-convolved Gaussian mixture, which are significantly 
roader than the width of the underlying distribution, indicating that 
he noise level is larger than the underlying dispersion of the Gaussian

ixture. Nev ertheless, CondXD still successfully deconvolv es and 
nco v ers a robust estimate of the underlying distribution. Our 
stimate for the deconv olved distrib ution is shown by the red lines.
ne sees qualitatively that they differ negligibly from the underlying 
istribution in black. 
On increasing the value of c to 0.9, the means of the Gaussians

eparate more, as shown in Fig. 3 . The orange contours of noisy
amples from the GMM toy model show that the noise level is
omparable to the intrinsic dispersion of the Gaussians in the mixture, 
hich blurs the distinction between the individual components of 

he mixture. CondXD is still capable of estimating the noiseless 
nderlying distribution under such conditions. Most of the red 
ontours are consistent with the black ones, indicating that most of
he individual Gaussian clusters have been recovered correctly. This 
s also confirmed in the panels showing the 1D marginal distributions, 
s the estimated 1D histograms differ very little from the underlying
MNRAS 541, 2815–2829 (2025) 
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M

Figure 4. The loss reduction process using the 60 000 training samples from 

our GMM noisy toy model. The solid red line is the training loss and the 
dashed one is the validation loss. 
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istribution. Nevertheless, in rare cases, the deconvolution does not
erform well. For example, in the subpanel showing dimensions 1
nd 6, two nearby noiseless Gaussians (black contours) are fitted
ith a single deconvolved Gaussian (red contours). We repeat the
hole training and testing process for 10 different toy models (each
as a different random seed ξ ), and our visual assessment shows
hat four of the 10 realizations fail to reco v er all the underlying
aussians, while the other six succeed in reco v ering ev ery Gaussian.

n our toy model, the value of c controls the separation of Gaussians.
t c = 0 . 9, we have almost reached the most extreme value for

. Ho we ver, the Gaussian clusters remain insufficiently separated
ecause the noise level amplitude is still relatively significant. As a
esult, CondXD struggles to perfectly dif ferentiate e very Gaussian. If
e had allowed c to be beyond 1 and included more training samples,

he Gaussian cluster could be more separated, and CondXD might
e able to distinguish them. 

 C O M PA R I S O N  WITH  B I N N I N G  M E T H O D  

ne of the main advantages introduced by the method that we
escribed in Section 2 is that it can deconvolve and fit distributions
hat depend on conditioning variables. This is usually a common
ituation in astrophysics, where physical properties of sources often
epend on other properties (e.g. the variation of colour distributions
ith the magnitude of the sources). Capturing these dependences

s not an easy task, and has no standard approach. Previous works
sually divide the samples into bins of conditioning variables, and
stimate the distribution of samples in every bin respectively (e.g.
ovy et al. 2011b , 2012 ; Bird et al. 2021 ; Nanni et al. 2022 ). The
ain drawback of the binning method is that the continuity of

he distribution variation, which is dependent on the conditioning
ariable, among the different bins is not easily guaranteed. The
istribution is supposed to vary smoothly among the bins, but the
ndependent estimations within each bin might be trapped in some
ocal optima, resulting in discontinuity. Furthermore, to limit the
ariance within each bin, the bin width should be narrow enough.
o we ver, the number of samples in each bin decreases as the bin
idth decreases, affecting the accuracy of the estimation. Therefore,
 manual choice of a trade-off between the bin width and sample size
s inevitable, and there is no objective way to define it. In contrast,
he neural network of CondXD trained by all the samples naturally
rovides continuity, and this does not require any binning of the
NRAS 541, 2815–2829 (2025) 
onditioning variable. To demonstrate the advantages of CondXD
ompared to the aforementioned binning approach, we apply a
inning deconvolution algorithm (denoted as bin-XD hereafter) to
he GMM toy model described in Section 3 and compare the results
ith CondXD. 
Using the same training samples described in Section 3 , the

onditioning variables and corresponding data samples are split
nto 10 conditioning variable bins of equal size 0.1. Since the
ins are narrow, we assume that the dependence of the sample
roperties with respect to the conditioning variable inside each bin is
e gligible. F or ev ery bin, we apply the XDGMM method (Holoien,
arshall & Wechsler 2017 ), which is an implementation of the

xtreme deconvolution, to the training sets. XDGMM is a PYTHON

ackage that models mixed Gaussians with the SCIKIT-LEARN API. 8 It
erforms density estimation of noisy, heterogeneous, and incomplete
ata with the extreme-deconvolution algorithm (Bovy et al. 2011a )
hen an uncertainty covariance is provided, as in our case. The
yperparameters in XDGMM are the number of Gaussians, set to
 = 10, and dimensions D = 7, which are consistent with those

sed in CondXD. The bin-XD code is progressively applied starting
rom the smallest conditioning variable values ( c ∈ [0 , 0 . 1]) to the
argest ones ( c ∈ [0 . 9 , 1]). The fitting in individual bins does not
ecessarily guarantee the continuity of the model among different
ins. Following Nanni et al. ( 2022 ), the bin-XD code fits for all
he conditioning variable bins are initialized using the best-fitting
arameters for the previous bin. The starting bin is the only one that
s initialized without reference. 

After training bin-XD, to derive the test set, we uniformly sample
5 000 conditioning variables in the range [0 , 1], and draw 25 000
orresponding samples from the noiseless toy model (underlying
MM). The test set is divided into conditioning variable bins as
escribed in the previous paragraph. To quantify the performance
f CondXD and bin-XD, we use the discrete KL divergence as a
easure of the difference between the underlying density and the

stimated. Similar to equation ( 4 ), the discrete KL divergence is
efined as: 

 KL ( p ‖ ̂  p ; c) = 

1 

N 

N ∑ 

i 

log 

(
p ( x i | c i ) 
ˆ p ( x i | c i ) 

)
, (16) 

here x i are the test samples from the underlying density without
ormalization, N is the sample size, p( x i | c i ) is the probability
ensity of sample x i under the underlying GMM, and ˆ p ( x i | c i ) is the
robability under the GMM estimated by either CondXD or bin-XD
ithout normalization. Specifically, since both CondXD or bin-XD

re deconvolving the normalized samples, we scale the output mean
nd covariance of CondXD or bin-XD to obtain the unnormalized
stimated GMM: 

μj = μn ,j + m j , 

V jk = ( V n ) jk σj σk , (17) 

here m is the mean and σ is the standard deviation of all the 90 000
raining samples on each feature. In fact, equation ( 16 ) is calculated
or every conditioning variable bin. When p and ˆ p are close, D KL 

hould be close to zero. In general, the probability for the underlying
istribution, p( x i | c i ), should be higher than the probability for the
stimated distribution ˆ p ( x i | c i ), since they are being e v aluated at
ample x i from the underlying distribution. Thus the KL divergence
s generically expected to be positive. Besides, if we instead consider

https://github.com/tholoien/XDGMM
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Figur e 5. KL diver gence of different methods as a function of the condition- 
ing variable c in our experiments. Solid lines are KL divergence measured 
on the underlying distributions and CondXD estimated distributions. The 
dashed lines are computed on the noise-reconvolved underlying distributions 
and noise-reconvolved estimated distributions. The dash–dotted line is an 
estimation of the possible maximum D KL , assuming that CondXD is only 
fitting the noisy underlying GMM while not deconvolving at all (for details 
see Section 4 ). The red curves show the KL divergence of CondXD, while 
the blue curves are for bin-XD (see Section 4 ). 
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 in equation ( 16 ) to be the underlying noiseless GMM and ˆ p as the
oise-reconvolved estimated probability, equation ( 16 ) is just the KL 

ivergence of an algorithm that simply fits a Gaussian mixture to the
oisy distribution without deconvolving. This situation represents the 
orst case (no deconvolution performed) and it yields a maximum 

alue for D KL , which provides a useful reference. In fact, D KL should
ie within zero and the aforementioned maximum. 

We compute the D KL value of every bin, resulting in a relation
etween D KL and c. For a more general examination we repeat 
ur experiment 10 times with 10 different random seeds ξ that 
etermine the toy model. In every experiment, CondXD and bin- 
D are applied to the same training samples. We average the 10
 KL v ersus c curv es and compute the standard deviation. The results

re shown as solid curves and shaded re gions respectiv ely in Fig. 5 .
eanwhile, we also plot the estimated maximum of D KL (defined in 

he previous paragraph) with CondXD (dash–dotted red line in Fig. 
 ) as a reference. 
Fig. 5 shows that CondXD could deconvolve (solid red line) the 

oisy distribution for all values of conditioning variable c. The solid
ed line is flat and close to zero compared to the estimated maximum
dash–dotted red line). This indicates globally good performance. 
n contrast, bin-XD (solid blue line) shows less capability than 
ondXD at any value of the conditioning variable, as its D KL is
uch higher. Especially at c ≤ 0 . 2 v alues, the KL di vergence of

he bin-XD increases remarkably. This implies that bin-XD is not 
 promising method for cases of o v erlapping Gaussians and noise
omination. 
One may argue that the poor performance of our bin-XD method 

t small c values might be related to the fact that our fit to the
rst bin with the lowest conditioning variable value is not initialized 
ith reference to a trained bin. To verify this, we perform more

xperiments by training bin-XD on the opposite direction: starting 
rom the largest c value bin with random initialization and proceeding 
oward the smallest value bin. However, the results are consistent 
ith those presented in Fig. 5 (solid blue line). Bin-XD’s inability 

o ef fecti v ely deconvolv e the data in bins with lo w v alues of the
onditioning variable is inherent. The poor performance may result 
rom the fact that we did not implement any strategy to prevent
 v erfitting in the bin-XD method. As c decreases and the Gaussian
lusters merge, using K = 20 Gaussians for density estimation can
ead to significant de generac y. 

By e v aluating D KL with c, we note that the v alue of D KL of
ondXD rises with increasing c. This increase in D KL is likely due

o the fact that CondXD is fitting two close underlying Gaussians
ith a single one, as described in Section 3 . The noisy Gaussians in

he noise-convolved toy model are not separated sufficiently so that 
ondXD may not be able to fit every single Gasussian correctly. If the
 range is broadened to larger c, the Gaussians are more separated,
nd CondXD is more likely to estimate well. 

The performance of the reconstruction of the noisy distributions 
an also be compared if we compute a set of noise covariances from
quation ( 15 ) and convolve them with p and ˆ p in equation ( 16 ). The
est samples x i should also be resampled after reconvolution. We 
ompute the same number, i.e. 25 000, of noise co variances, dra w
est samples after adding the noise covariances to the underlying 
MM, and calculate the KL divergence of the two noise-reconvolved 
ensity distributions. The results are shown as dashed lines in Fig. 5 .
oth D KL are very close to zero for all c values, which implies that

he reconstruction is very precise. CondXD also outperforms bin-XD 

n the reconstruction globally. 

 D E C O N VO LV I N G  T H E  DI STRI BU TI ON  O F  

UASAR  C O N TA M I NA N T S  

uminous high-redshift (high- z) quasars are a key tool for studying
he primordial universe during the epoch of reionization (for some 
ecent works, see Becker et al. 2021 ; Bosman 2021 ; Davies et al.
021 ; Wolfson et al. 2024 ). Ho we ver, finding the most distant quasars
s challenging. Currently, only eight quasars are known at z ≥ 7
Mortlock et al. 2011b ; Ba ̃ nados et al. 2018 ; Wang et al. 2018 , 2021 ;

atsuoka et al. 2019 ; Yang et al. 2019 , 2020 ), primarily due to the
imited photometric depth of current near-infrared surv e ys and the
ecreasing number density of quasars with increasing redshift ( ≈
0 −3 deg −2 at J = 21, where J is a flux band in the VIKING surv e y;
ang et al. 2019 ). Moreo v er, the number of contaminants, which
ostly consist of cool galactic dwarfs and early-type galaxies, is 
uch higher ( ≈ 20 deg −2 at J = 21), making efficient classification
ethods critical. Bayesian probabilistic methods offer a principled 
ay to classify quasar candidates (e.g. Mortlock et al. 2011a ; Euclid
ollaboration et al. 2019 ). One can estimate the density distribution
f quasars and contaminants and compute the probability that a 
ource belongs to quasars or contaminants (see Section 5.2 ). In
his section, we apply our CondXD method to a real astrophysical
 xample: to deconvolv e the flux distribution of quasar contaminants.
e train our model using the same contaminant data set described

n Nanni et al. ( 2022 ). We present the results of our deconvolution
nd reconstruction, as well as a brief comparison with the previous
ethod of Nanni et al. ( 2022 ). 

.1 Training data: quasar contaminants 

he training data that we use to apply the CondXD method to the
roblem of high- z quasar classification is identical to the data set
escribed in Nanni et al. ( 2022 ), which contains 1902 071 sources of
uasar contaminants. In summary, our model is trained on 1076 deg 2 

f o v erlapping area from the DELS (De y et al. 2019 ), VIKING (Edge
t al. 2013 ), and unWISE (Meisner et al. 2019 ; Schlafly, Meisner &
reen 2019 ) imaging surv e ys. The multiband flux es are obtained

rom the DELS z optical band, the VIKING Y J H K s near-infrared
MNRAS 541, 2815–2829 (2025) 
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Figure 6. The loss decrease process of CondXD in the experiment of 
application to the quasar contaminants of Nanni et al. ( 2022 ). The solid 
red line is the training loss and the dashed line is the validation loss. 
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NIR) bands, and the unWISE W 1 W 2 mid-infrared (MIR) bands
ith forced photometry. The construction algorithms are described

n detail in section 3.1 of Nanni et al. ( 2022 ). The aim of Nanni et al.
 2022 ) is to find high-redshift quasars (6 ≤ z ≤ 8), whose Ly α lines
hift to the Y band, while the VIKING J band could reach a depth of
2.1 at the 5 σ level. Therefore, all sources in the sample are selected
ith high signal-to-noise ratio in the J band: SNR( J ) ≥ 5. 

.2 Density in the Bayesian theorem 

o classify sources based on observed fluxes { ̂  F } , we need to
alculate the conditioned probability that a source belongs to a certain
lass according to the Bayesian theorem: 

 

(
O ∈ B | { ˆ F i 

}) = 

p 

({
ˆ F i 

} | O ∈ B 

)
P ( O ∈ B) 

p 

({
ˆ F i 

}) , (18) 

here O is the object and B is the class, i.e. quasars or contaminants.
f we denote quasars as A and contaminants as B, the denominator
f the right-hand side in equation ( 18 ) is defined as 

 

({
ˆ F i 

}) = p 

({
ˆ F i 

} | O ∈ A 

)
P ( O ∈ A ) 

+ p 

({
ˆ F i 

} | O ∈ B 

)
P ( O ∈ B) , (19) 

s a source can only be a quasar or contaminant. The factor P ( O ∈ B)
n the numerator on the right-hand side of equation ( 18 ) is the prior,
hich could be approximated as the fraction of quasars in the data

et. The other factor, p 

({
ˆ F i 

} | O ∈ B 

)
, is the density of quasars in

ux space that is to be estimated. 
As stated in Section 1 , the number density of quasars observed

y JWST and Euclid will have a dominant power-law shape as
 function of the J -band magnitude. This means that the J -band
agnitude feature has a distribution that is far from Gaussian. In the

ontext of a Gaussian mixture model, a large number of Gaussian
omponents would be required to model this distribution accurately.
n contrast, their colour (logarithm of relative flux) distribution is flat
nough to be modelled by a small number of Gaussians. Furthermore,
rucial information for distinguishing quasars and contaminants lies
ostly in colour. This moti v ates people to search for a colour-based

istribution model. Additionally, relative fluxes are easier to derive
nd more straightforward to model than colours. In the case of
aint sources that drop out in certain bands (e.g. high- z quasars),
he measured fluxes could be non-positive, and it is infeasible to
ompute the colour, i.e. logarithm of zero or a ne gativ e value.
urthermore, the observational uncertainties of the relative fluxes
re closer to Gaussian than colours, especially when the uncertainty
n the reference J band is small. In fact, as both the numerators
nd denominators are noisy, the Gaussian approximation of the
ux ratio density can only be validated when the noise of the
enominators is small. If the noise of the denominators is large,
he distribution of the ratio of two Gaussian random variables is not
aussian. In our case, since the observed J -band flux, ˆ F J , is al w ays

ignificantly detected at great than 5 σ significance, this condition
s well satisfied. Hence, instead of fitting the distribution of the
easured fluxes, we choose to model the flux es relativ e to the J -band
ux. 
We separate the flux relative to the J band from the absolute flux

n the likelihood as follows: 

 

({
ˆ F i 

} | O ∈ B 

) ∝ p 

({
ˆ F i / ̂  F J 

} | ˆ F J , O ∈ B 

)
×p 

(
ˆ F J | O ∈ B 

)
, (20) 

here ˆ F i are the fluxes of the z, Y , H , K , W 1, W 2 bands. In this
quation, the probability density of the absolute fluxes is separated
NRAS 541, 2815–2829 (2025) 
nto the distribution of the relative fluxes conditioned on the J -band
ux and the distribution of the J -band fluxes. In this paper, we mainly
iscuss the first factor, and the deri v ation of the second factor can be
ound in section 4.3 in Nanni et al. ( 2022 ). 

.3 Density estimation 

anni et al. ( 2022 ) employed their XD-based XDHZQSO algorithm
o fit the distribution of the contaminants and simulated high-
edshift quasars with a GMM. The algorithm has demonstrated
igh efficienc y, accurac y, and stability. XDHZQSO, ho we ver, has to
ivide the contaminants into a discrete number of J -band magnitude
ins, because the colour distribution of the contaminants is a strong
unction of magnitude, and XDHZQSO cannot be used to estimate
n the continuous limit. They implemented complicated strategies to
apture the variation of the relative flux distribution with magnitude
nd guarantee continuity. The authors used 50 o v erlapping bins, with
he width of each bin determined by a broken sigmoid function of the
 -band bin right edge. As the right edges are uniformly distributed,
he bins o v erlap with their neighbors. The o v erlap between the bins
mpro v es continuity among adjacent bins as well as a sufficient
umber of sources at the faint and bright ends of the J -band
agnitude. Within each bin, they used the XD algorithm to estimate

he density, with the same initialization strategy as that described in
ection 4 , to further impro v e the model’s continuity. These strategies
low the training process, as some samples belong to multiple bins
nd will be input to the training process multiple times. Moreo v er,
his binning strategy results in additional problems. Since the bin
idth is very large at the two ends, e.g. a resulting magnitude range
f 5 mag compared with the right edge step of 0.05 magnitude at
he faintest end, it is hard to correctly capture the variation of the

odel. 
Instead, with our CondXD method, the J -band magnitude is a

onditioning variable c and we can build a continuous and general
odel by entering it into the NN and obtaining the Gaussian

arameters. We model the six-dimensional density distribution of
elativ e flux es { f z /f J , f Y /f J , f H 

/f J , f K s 
/f J , f W1 /f J , f W2 /f J }

sing K = 20 Gaussian components. The number of Gaussians
dopted is consistent with the number chosen by Bovy et al.
 2011b ) and Nanni et al. ( 2022 ). Empirically, models with fewer
han 20 components o v erly smooth the observed distribution, while
hose with more than 20 components are likely to suffer from
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Figure 7. The relative fluxes of all quasar contaminant samples in the 22 . 0 < J < 22 . 3 bin and their density contours are plotted in black. After deconvolution 
with CondXD, the samples from the deconv olved distrib ution and their density contours are shown in red. The red contours are narrower because the noise has 
been deconvolved. 
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 v erfitting. As we are deconvolving the relative noisy fluxes instead
f the measured fluxes, the uncertainty covariance matrix should be 
omputed. The validity and derivation of the uncertainty covariance 
atrix of relative fluxes have been discussed in appendix A of Nanni

t al. ( 2022 ). Specifically, one needs to remo v e the off-diagonal
lements (i.e. set them to 0) in the relative flux noise covariances
hen J > 21. This is because, in the limit of the faint J -band

egime, the noise becomes significant compared with the flux, and the 
istribution of the relativ e flux es violates the Gaussian assumption 
s discussed earlier. As we are estimating with a GMM assuming
aussian noise, the non-Gaussian noise should be approximated 
y a Gaussian. We convolve the GMM output by CondXD with 
he uncertainties of the relative fluxes by adding the uncertainty 
ovariance to the GMM covariance. The samples are divided into 
raining and validation sets with ratio 9 : 1. After training and
alidating the NN with the strategies described in Section 3.3 for
00 epochs, our model converges. The loss decrease is shown in
ig. 6 . 
We compare the distribution of the entire contaminant set with the

orresponding predictions by our trained model in Figs 7 and 8 . As
e do not have access to the underlying noiseless distribution of the

elativ e flux es, we can only compare our predictions, either noiseless
r convolved with noise, with the noisy data set. We select the same
 -band range as in the appendix of Nanni et al. ( 2022 ), i.e. 22 . 0 <
MNRAS 541, 2815–2829 (2025) 
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M

Figure 8. The relative fluxes of all quasar contaminant samples in the 22 . 0 < J < 22 . 3 bin and their density contours are plotted in black. In order to illustrate 
that, after deconvolution by CondXD, we are still capable of reconstructing the noisy data, we reconvolve the deconv olved distrib ution in Fig. 8 with the noise 
of the quasar contaminants. The samples from the noise-reconvolved model and their density contours are shown in red. The red contours show only negligible 
differences from the black, proving that the reconstruction is successful. 
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 < 22 . 3, for display and comparison purposes. For each object in
his J -band bin, its J -band magnitude is input to the CondXD model
nd a GMM is output. Then, for each object one noiseless predicted
ata point is sampled from the GMM. After convolving the GMM
ith the object’s uncertainty distribution, we also sample a noisy
rediction. The distribution of the noisy predictions is shown in Fig.
 . When comparing Fig. 7 with fig. A1 in Nanni et al. ( 2022 ), the two
econvolutions yield similar results. In Fig. 8 , the noisy prediction
istribution (red) matches the original samples (black) promisingly.
ondXD has reconstructed the noisy distribution precisely. When
ompared with fig. A2 in Nanni et al. ( 2022 ), we see that our model
NRAS 541, 2815–2829 (2025) 
erforms similarly to theirs. The distributions of the noisy predictions
red) in all the other bins produced with our model are also consistent
ith those in Nanni et al. ( 2022 ). Besides performance, our model
nishes training within three hours on 1902 071 samples with a
.8 GHz Quad-Core Intel Core i7 for MacBook, compared with

30 h with their model. This is partly because many pieces of
ata in the o v erlap of different bins are used in training multiple
imes, which substantially increases the time required to construct
 model for all the bins. Note that no GPU is implemented in
ny of our experiments. With a GPU the time cost can be greatly
educed. 
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 C O N C L U S I O N S  A N D  DISCUSSION  

n this paper we built a conditional density deconvolution algorithm, 
ondXD, with a neural network. This is an extension of the existing
D method and is combined with mixture density networks. It 

eatures the ability to estimate the underlying density of noisy 
roperties, which depends on some conditioning v ariables, gi ven 
 set of data with large and heteroscedastic uncertainties. CondXD 

orks in the background of deconvolving data with features far from
aussian with negligible noise: the distribution of the non-Gaussian 

eatures can be separated from the joint distribution and modelled 
ndependently, and CondXD can be applied to deconvolve the 
istribution of the other features conditioning on the non-Gaussian 
eatures. 

We test CondXD on a toy model, a GMM whose parameters (i.e.
ixing coef ficients, means, and cov ariances) are dependent on a 

onditional. The samples are drawn from the GMM convolved with 
on-identical noise covariances. The result shows that CondXD is 
ble to deconvolve the heteroscedastic uncertainties and estimate 
he underlying conditional GMM. It can also reconstruct the noisy 
istribution given the noise. Further experiments applying a classical 
inning XD to the same toy model show that CondXD consistently 
chieves higher continuity and better accuracy (Fig. 5 ). It shows
 flat KL divergence D KL curve throughout the conditional range, 
hich is globally smaller than the binning method, indicating 

omprehensively more solid estimation. In particular, in the low 

ignal-to-noise ratio region ( c < 0 . 05 in Fig. 5 ), the D KL of CondXD
s close to 0, while the binning method approaches the estimated 
orst value. We further apply our method to a real astronomical 

ase, i.e. inferring the underlying distribution of a set of noisy high- z 
uasar contaminant fluxes. Compared with the method used by Nanni 
t al. ( 2022 ), which used a binning approach, our method outputs a
omparable result, but ≈ 10 times faster. 

Although we only apply CondXD to 1D conditioning variables, it 
an be easily generalized to multidimensional conditioning variable 
ases. F or e xample, Bo vy et al. ( 2012 ) included not only the reference
and flux but also the redshift as new features in addition to the origi-
al band fluxes, in order to obtain the flux density in different redshift
anges. There are no appreciable uncertainties on redshift, as quasar 
olours do not vary significantly within typical redshift uncertainties. 
herefore, the redshift perfectly matches our requirement that the 
oise of conditioning variables should be negligible. In conclusion, 
he redshift is certainly another reasonable conditioning variable that 
s worth including. 

Ho we v er, restrictions still e xist in our algorithm. This method
nly deconvolves the Gaussian features, and it cannot deconvolve 
he conditioning variables. Our conditioning variables need to be 
oiseless, while this is rarely satisfied in practice, like in Section 5 .
herefore, the conditioning variables should all have a high signal- 

o-noise ratio to approximate the noise-free assumption. Another 
ommonly used approach in density estimation that could possibly 
elp solve such an issue is normalizing flow (Tabak & Vanden- 
ijnden 2010 ; Tabak & Turner 2013 ). Normalizing flows transform
 density that is easy to describe into a complicated density by a
et of invertible functions, and have shown good scalability and 
exibility in density estimation (e.g. Jimenez Rezende & Mohamed 
015 ; Cranmer et al. 2019 ). This class of methods does not require
ny feature (dimension) of data to be noise free, nor any marginal
istribution to be Gaussian. Although these works did not consider 
onditional densities, normalizing flows can take the conditioning 
 ariables as ne w features (dimensions), deconvolve the general 
istribution, and further compute the conditional density like in Bovy 
t al. ( 2012 ). Ho we ver, to our kno wledge, only homoscedastic noise
identical noise distribution for all samples) has been considered 
Dockhorn et al. 2020 ) when data have non-Gaussian features. Our
ondXD might still be the best method for deconvolving conditional 
ensities with heteroscedastic noise. 
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A N TO U R S  

T g. A1 , as an intermediate case in the range of c ∈ [0 , 1]. 

F  noisy toy model, the underlying toy model, and the deconvolution when c = 0 . 90. 
T ples. The colour scheme is the same as in Figs 2 and 3 . 
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