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Abstract

Background Previous case—control studies have reported aberrations of the gut microbiota in individuals with pre-
diabetes. The primary objective of the present study was to explore the dynamics of the gut microbiota of individuals
with prediabetes over 4 years with a secondary aim of relating microbiota dynamics to temporal changes of meta-
bolic phenotypes.

Methods The study included 486 European patients with prediabetes. Gut microbiota profiling was conducted
using shotgun metagenomic sequencing and the same bioinformatics pipelines at study baseline and after 4 years.
The same phenotyping protocols and core laboratory analyses were applied at the two timepoints. Phenotyping
included anthropometrics and measurement of fasting plasma glucose and insulin levels, mean plasma glucose

and insulin under an oral glucose tolerance test (OGTT), 2-h plasma glucose after an OGTT, oral glucose insulin sensi-
tivity index, Matsuda insulin sensitivity index, body mass index, waist circumference, and systolic and diastolic blood
pressure. Measures of the dynamics of bacterial microbiota were related to concomitant changes in markers of host
metabolism.
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Results Over 4 years, significant declines in richness were observed in gut bacterial and viral species and microbial
pathways accompanied by significant changes in the relative abundance and the genetic composition of multiple
bacterial species. Additionally, bacterial-viral interactions diminished over time. Despite the overall reduction in bacte-
rial richness and microbial pathway richness, 80 dominant core bacterial species and 78 core microbial pathways were
identified at both timepoints in 99% of the individuals, representing a resilient component of the gut microbiota. Over

the same period, individuals with prediabetes exhibited a significant increase in glycemia and insulinemia along-
side a significant decline in insulin sensitivity. Estimates of the gut bacterial microbiota dynamics were significantly
correlated with temporal impairments in host metabolic health.

Conclusions In this 4-year prospective study of European patients with prediabetes, the gut microbiota exhibited
major changes in taxonomic composition, bacterial species genetics, and microbial functional potentials, many

of which paralleled an aggravation of host metabolism. Whether the temporal gut microbiota changes represent
an adaptation to the progression of metabolic abnormalities or actively contribute to these in prediabetes cases

remains unsettled.

Trial registration The Diabetes Research on Patient Stratification (DIRECT) study, an exploratory observational study
initiated on October 15, 2012, was registered on ClinicalTrials.gov under the number NCT03814915.

Keywords Long-term dynamics, Gut bacterial microbiota, Gut viral microbiota, Microbial functional pathways, Gut
bacterial genetics, Prediabetes, Metabolism, Insulin sensitivity

Background

Prediabetes is a condition characterized by elevated
blood glucose levels that fall below the threshold for a
diabetes mellitus diagnosis [1]. In 2021, the prevalence of
prediabetes was estimated at 9.1% for impaired glucose
tolerance, affecting approximately 464 million individu-
als, and 5.8% for impaired fasting glucose, affecting 298
million people worldwide [2]. Even though prediabetes is
not classified as a disease, it is often associated with obe-
sity, hypertension and dyslipidemia, and with elevated
plasma concentrations of triglycerides and/or low plasma
concentrations of HDL cholesterol. Prediabetes is an
important risk factor for the development of type 2 dia-
betes mellitus (T2D) and ischemic heart disease [1].

Prediabetes may, however, be a reversible metabolic
condition. Some progress to incident T2D, while others
either remain prediabetic or regress to normal glucose
metabolism [3]. Therefore, understanding the factors that
influence the trajectory of prediabetes is essential for the
attempts to develop effective prevention strategies.

One factor that may influence the trajectory of pre-
diabetes is the gut microbiota that in several independ-
ent cross-sectional studies have been reported to show
gut dysbiosis in prediabetes cases when compared with
matched healthy individuals [4—6]. Still, longitudinal
studies are needed to capture gut microbial features that
are stable or variable over time and to assess their asso-
ciations with host metabolic fluctuations.

To date, studies of the dynamics of the gut microbiota
have primarily been conducted in healthy populations
[7-9]. For instance, a 1-year prospective study of 75

healthy Swedish individuals found that intra-individual
variation accounted for 23% of gut microbiota variance,
with lower variability linked to higher abundances of
gut bacteria related to metabolic health such as Fae-
calibacterium prausnitzii and Bifidobacterium species
[8]. In another gut microbiota study of 338 individuals
from the Netherlands followed for 4 years, a microbial
fingerprint was identified. This approach achieved up to
85% accuracy in classifying microbiota samples taken
4 years apart [7]. These studies offer important insights
into gut microbiota dynamics in healthy individuals
or focus primarily on broad population-level trends,
rather than examining specific metabolic health asso-
ciations in at-risk groups.

Here, we conducted a 4-year longitudinal study
involving 486 European adults with prediabetes as
part of the Innovative Medicines Initiative Diabetes
Research on Patient Stratification (IMI-DIRECT) Pro-
ject [10]. Gut microbiota profiling of stool samples
collected at two timepoints with 4 years apart was con-
ducted using the same metagenomic sequencing proto-
col and identical pipelines for data processing, ensuring
consistency across all samples. Bioclinical assessments
following the same protocols were performed at study
baseline and after 4 years.

The primary aim of our study was to characterize the
long-term dynamics of the gut microbiota in predia-
betic individuals and the secondary aim was to associ-
ate the dynamics of the gut microbiota with temporal
changes of host metabolic variables. An overview of the
study design and main outcomes is given in Fig. 1.



Lyu et al. Genome Medicine (2025) 17:78 Page 3 of 23

IMI-DIRECT cohort of prediabetic individuals from four study centers
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Fig. 1 Overview of study materials, methods, and major study outcomes. The figure is created with biorender.com
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Table 1 Anthropometric and bioclinical characteristics of 486 individuals in the IMI-DIRECT study. Values are presented as
mean + standard deviation or count and percentage. Statistical significance between baseline and endline measurements was
assessed using Wilcoxon paired t-test for samples where both baseline and endline data were available. Adjusted p values were
derived using the Benjamini-Hochberg method to correct for multiple comparisons

Baseline Endline Adjusted p value

n=486 n=486"
Study center
The Netherlands 173 (36%) 173 (36%)
Finland 158 (33%) 158 (33%)
Denmark 122 (25%) 122 (25%)
Sweden 33 (7%) 33 (7%)
Age (years) 62+6 66+6
Sex
Female 169 (35%) 169 (35%)
Male 317 (65%) 317 (65%)
Waist circumference (cm) 99.7+10.8 100.7+11.0 9.9e-05
Body mass index (kg/mz) 282438 283+4.0 1.1e-01
Fasting plasma glucose (mmol/L) 59405 6.2+0.7 1.5e—14
Mean plasma glucose (mmol/L) 80+15 86+17 44e—15
Fasting plasma insulin (pmol/L) 93+67 96+70 45e-02
Mean plasma insulin (pmol/L) 466+313 529+365 8.6—08
Oral glucose insulin sensitivity index 358+58 336+61 26e-15
Matsuda insulin sensitivity index 33+19 31+£20 44e—-05
2-h plasma glucose after an OGTT (mmol/L) 62+17 69+2.1 24e—-11
Systolic blood pressure (mmHg) 130£15 13116 56e-02
Diastolic blood pressure (mmHg) 80+8 79+9 6.8e—02

# For all metadata, data were available for over 89% of individuals at both time points

Methods

Recruitment and phenotyping of study participants

In this protocol, we recruited participants who met
the inclusion criteria: White European ethnicity, aged
between 35 and 75 years, and meeting at least one of the
three 2011 American Diabetes Association (ADA) cri-
teria for prediabetes were recruited and phenotyped in
the baseline study between November 2012 and August
2014 from four European study centers: Finland [11],
the Netherlands [12, 13] Denmark [14—16], and Sweden
[17], as part of the IMI-DIRECT consortium [18]. The
ADA prediabetes criteria include fasting plasma glucose
(100 mg/dL (5.6 mmol/L) to 125 mg/dL (6.9 mmol/L));
2-h plasma glucose after an OGTT (140 mg/dL
(7.8 mmol/L) to 199 mg/dL (11.0 mmol/L)); or HbAlc
(5.7-6.4%, 39-47 mmol/mol) [19]. A total of 813 par-
ticipants with impaired glucose regulation were recruited
and phenotyped. However, 327 individuals were excluded
due to failure to meet specific criteria, including antibiot-
ics use within the past 3 months, insufficient stool sam-
ple quantity or quality, or lack of available metagenomic
sequencing data after 4 years (Additional file 2: Fig. S1).
The final prediabetes cohort comprised 486 adults with

prediabetes (169 females and 317 males), with 173 partic-
ipants from the Netherlands, 158 from Finland, 122 from
Denmark, and 33 from Sweden (Fig. 1). At study entry,
participants had a mean age of 62+6 years (Table 1).
Study participants were phenotyped in the baseline study
between November 2012 and August 2014, and in the
endline study between November 2016 and August 2018.

Consortium-wise standard operation procedures
(SOPs) for phenotyping were applied in each of the four
study centers. Clinical examinations and blood sam-
pling for biochemistry were conducted in the morning
after a 10-h overnight fast. Height was measured with-
out shoes using calibrated wall-mounted stadiometers,
while weight was recorded without shoes and with par-
ticipants wearing light clothing using calibrated scales.
Body mass index (BMI) was calculated by dividing weight
in kilograms by the square of height in meters. Waist cir-
cumference was measured in the standing position with
non-stretchable measuring tapes placed midway between
the lower rib margin and the iliac crest. Blood pres-
sure was measured after 10 min of rest using calibrated
manual or automatic sphygmomanometers with appro-
priately sized arm cuffs. On the day of the examination,
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three seated blood pressure readings were recorded and
averaged for each study participant.

A standardized OGTT was done where the individual
over 5 min drank 75-g glucose dissolved in 325 mL water.
Blood samples were collected at fasting and at 30, 60,
90, and 120 min to measure plasma glucose and insulin
levels. Mean plasma glucose or insulin represents the
average concentration of glucose or insulin measured
during the OGTT. This value is calculated using the trap-
ezoidal rule for numerical integration, which divides the
total area under the concentration—time curve (AUC)
by the duration time of the test. This variable provided
a standardized estimate of the mean glucose or insu-
lin levels over the test period. Oral glucose insulin sen-
sitivity (OGIS) index was determined using a validated
mathematical model that incorporates plasma glucose
and insulin levels at fasting, 90, and 120 min [20]. Addi-
tionally, the Matsuda insulin sensitivity index, which
assesses whole-body insulin sensitivity, was calculated
using plasma glucose and insulin levels at fasting, 30,
60, 90, and 120 min based on the defined formula [21].
Plasma glucose and insulin concentrations were meas-
ured centrally in batches at the University of Eastern Fin-
land, Kuopio. Plasma glucose was quantified using the
enzymaPc glucose hexokinase method with photometric
detecPon on a Konelab 20 XT Clinical Chemistry Ana-
lyzer (Thermo Fisher ScienPfic, Vantaa, Finland). Plasma
insulin was measured through electrochemiluminescence
on Roche E170 Analyzers (Hoffmann-La Roche). All
plasma samples were stored at—80 °C prior to analysis.
To control for inter-assay variability, reference samples
were included in all assays. This core laboratory regularly
engaged in international external quality assessments and
to control for inter-assay variability, reference samples
were included in all assays.

Stool sample collection, bacterial cell counting, and gut
microbial DNA extraction

Participants collected stool samples at home, adhering
to SOPs that included immediate freezing of the samples
at—18 °C in their home freezers. The samples were then
transported to the laboratory in an insulating cooler bag
or styrofoam box containing cooling elements or dry ice.
Upon arrival at the laboratory, the samples were stored at
80 °C until DNA extraction.

Bacterial cells in stool samples were counted using
staining and flow cytometry [22]. Data on bacterial cell
counts was used for quantitative microbial profiling, as
described [22].

Microbial DNA was extracted and purified from the
frozen fecal samples using the NucleoSpin Soil DNA
extraction kit (Machery-Nagel, catalog No. 740780.50)
following the manufacturer’s protocol.
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Metagenomic sequencing and data processing

Library preparation and next-generation sequenc-
ing were conducted at the University of Lille-CNRS,
France. Shotgun sequencing was performed on the Illu-
mina HiSeq 4000 system, utilizing a paired-end 2x 150
base pair (bp) protocol with one pool per lane. The
resulting reads underwent quality filtering with Kne-
adData (http://huttenhower.sph.harvard.edu/knead
data) to remove low-quality bases. Reads aligning to the
human genome were excluded by mapping the quality-
filtered reads to the human genome (GRCh38 release)
using Bowtie2 [23] (version 0.2.3.2). Polymerase chain
reaction (PCR) and optical duplicates were removed
from the data using samtools [24] (version 1.6).

High-quality metagenomic sequencing reads were
processed using Phanta [25] (version 1.1.0) to generate
species count data, including species of bacteria, virus,
and fungi, with default settings. The default Phanta
database was used for annotations. For bacteria and
archaea, the HumGut collection, comprising 30,691
dereplicated genomes from Unified Human Gastro-
intestinal Genome (UHGG) [26] and RefSeq [27], was
used. For viruses, the Metagenomic Gut Virus catalog
[28] and RefSeq were employed, while for gut eukary-
otes, annotation was based on RefSeq. We rarefied this
dataset to a minimum of 3.9 million total reads among
all the sequencing samples. The compositional data was
then categorized into gut bacterial species, gut viral
species, and gut fungi, based on kingdom classifica-
tion. Within kingdom, species abundances were filtered
stringently based on both read number and prevalence.
Gut fungi data is not included in the present communi-
cation due to insufficient sequencing coverage.

To reduce bias from very low-abundance taxa, we
included only species with more than ten reads that were
present in at least 20% of the samples. The calculation of
Bray—Curtis distance was made on relative abundance
following rarefication. The abundance data for gut bac-
terial and viral species were analyzed independently to
describe the stability of gut microbiota across bacterial
and viral kingdoms.

HUMANN3 [29] was used to construct MetaCyc [30]
pathways from gene family data with default settings,
providing insights into the functional potentials of the
microbial community. MetaCyc pathways with relative
abundance > e — 05 in >20% of samples were included.

Structural variant (SV) profiles were extracted based on
high-quality metagenomic sequencing reads. SGV-Finder
[31] was used to identify both deletion SVs and variable
SVs using the default parameters [7, 31, 32]. The SV data
with >20% non-missing values at both study baseline and
endline were included to minimize bias from sequencing
errors.
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Statistical analysis—general approaches

Statistical analyses of differences between study base-
line and endline were performed for microbial richness,
Shannon and Simpson diversity, inter-individual dis-
tances, the first and second principal coordinates (PCol
and PCo2) from principal coordinate analysis (PCoA)
[33], and microbial relative abundance using the Wil-
coxon signed-rank test. In the association analyses, con-
tinuous variables were scaled using the scale function
in R to ensure comparability and mitigate differences in
measurement scales. Unless otherwise stated, temporal
association analyses were conducted using linear regres-
sion models, adjusted for baseline age, sex, study center,
and bacterial cell load changes. All adjusted p values were
calculated using the Benjamini—Hochberg method to
account for multiple comparisons.

Analysis of the temporal dynamics at the microbial
community level
Alpha diversity (microbiota composition) of the gut
microbial species was assessed as richness, and Shan-
non’s and Simpson’s diversity indices [34], following data
rarefaction but before any filtering. Specifically, compo-
sitional richness, which is the number of different micro-
bial species present within one sample, was calculated
using the specnumber function from the “vegan” pack-
age (version 2.6—6.1) in R (version 4.3.2). Species diver-
sity and dominance were analyzed using the Shannon
and Simpson indices [34], respectively, from the diversity
function. The Shannon index measures species diversity
by accounting for both the richness (number of species)
and the evenness (distribution of individuals among spe-
cies) within a community. Higher values indicate greater
diversity, with a balance in the abundance of species. The
Simpson index, on the other hand, focuses on species
dominance by quantifying the probability that two ran-
domly selected individuals from a sample belong to the
same species. Lower values in the Simpson index reflect
higher diversity, while higher values suggest dominance
by one or a few species. Similarly, MetaCyc pathway rich-
ness was calculated applying the specnumber function.
The overall compositional variation and beta diver-
sity of the gut microbiota were assessed using the Bray—
Curtis distance from microbial species-level abundance
profiles. This variation was further partitioned into intra-
individual and inter-individual distances. Intra-individ-
ual distance quantified the dissimilarity between paired
samples from the same individual across two different
timepoints, illustrating temporal shifts in overall bacte-
rial species abundance. The “inter-individual distance at
study baseline” and “inter-individual distance at study
endline” were calculated to measure the median value of
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dissimilarities between a sample of one individual against
those of other individuals at the same timepoints.

Additionally, permutational multivariate analysis of
variance (PERMANOVA) using the adonis2 function was
conducted on Bray-Curtis distance matrix to evaluate
the impact of various host or environmental factors on
the compositional variation. This analysis included cat-
egorical factors such as timepoint, study center, and sex,
alongside scaled continuous variables including age, body
mass index, waist circumference, fasting plasma glucose
and insulin, mean plasma glucose and insulin under an
OGTT, 2-h plasma glucose after an OGTT, OGIS index,
Matsuda insulin sensitivity index, systolic and dias-
tolic blood pressure, and bacterial cell load. In our PER-
MANOVA analysis, 999 permutations were involved,
with the proportion of variance explained and adjusted
p values reported. Principal coordinate analysis (PCoA)
was executed through the cmdscale function in R. The
first two principal coordinates were used for visualiza-
tion. The variance explained by these coordinates was
derived from their eigenvalues and expressed as a per-
centage of the total variance.

To specifically assess host factors influencing the
dynamics of bacterial species richness and the asso-
ciation between baseline bacterial species richness and
intra-individual distance, Spearman’s rank correlation
analysis was performed in two settings: (1) between
changes in bacterial species richness and changes in host
metabolic variables and (2) between study baseline rich-
ness and intra-individual distance.

Analysis of microbiota dynamics at the level of the single
microbial species or pathway

The variation of specific taxa and pathways were explored
with higher resolution. Differentially abundant microbial
species and pathways between study baseline and endline
samples were identified using the Wilcoxon signed-rank
test, with significance set at an adjusted p value <0.05.

In the assessment of temporal variance (intra-indi-
vidual variance) or individual variance (inter-individual
variance), we applied linear mixed-effects models with
subject identity (subject ID) as the random effect. We
included all variables used in PERMANOVA as fixed
effects. Consequently, the calculations of intra- and inter-
individual variances were adjusted to account for system-
atic influences from these variables. For each microbial
feature (bacterial species, viral species, or microbial
pathways), we calculated variance components from the
results of linear mixed-effects models. Inter-individual
variance was extracted from the first component of the
random effect variance—covariance matrix (subject ID),
and intra-individual variance from the residual variance
[8, 9]. The intraclass correlation coefficient (ICC) [35]
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was calculated as inter-individual variance/(inter-indi-
vidual variance +intra-individual variance) to quantify
the proportion of total variance attributable to variance
between individuals.

To explore variance patterns across all gut microbial
taxa or pathways, we conducted association analyses
between total variances and relative abundance of the
pertinent microbial feature using Spearman’s rank corre-
lation analysis.

Analysis of the variations at bacterial genetics level

To evaluate the dynamics of bacterial genetics within
bacterial species over time and across individuals, we cal-
culated intra-individual and inter-individual distance for
each species from their SV profiles.

For all SVs derived from the same bacterial species,
intra-individual and inter-individual distances were cal-
culated using the Canberra distance metric for variable
SVs and the Jaccard distance metric for deletion SVs,
implemented via the vegdist function from the R package
vegan (version 2.6—8).

The degree of microbial individuality (DMI) [9] was
calculated as the mathematical difference between
inter-individual distance and intra-individual distance.
Given that distance is mathematically defined as dis-
tance=1—similarity, the DMI effectively captures the
mathematical difference between intra-individual simi-
larity (1 —intra-individual distance) and inter-individ-
ual similarity (1 —inter-individual distance). This index
highlights how much more similar SV profiles are within
individuals compared to between individuals, serving as a
measure of microbial individuality.

Network analyses of gut microbiota

To analyze the interaction network among bacterial
and viral species, we applied the SparCC (sparse corre-
lations for compositional data) algorithm [36] to iden-
tify significant correlations both within and between
microbial kingdoms. We focused on correlations with an
absolute value of the correlation coefficient >0.3, which
were considered strong enough to construct the interac-
tion network [37]. The network was visualized using the
Fruchterman—Reingold layout, which was implemented
through the R igraph package (version 2.1.1). To assess
the significance of each microbial node in the network’s
transition between study baseline and endline groups,
we calculated the NetMoss [38] score for each node. This
score was compared to a null distribution generated by
a permutation test with 100 iterations. In each iteration,
sample labels were randomly shuffled, and the network
was reconstructed to create a distribution of expected
node scores under random conditions. For visualization
and comparison of bacterial-viral interactions between
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study baseline and endline groups, we excluded bacterial-
bacterial and viral-viral interactions from the network to
focus solely on the cross-kingdom interactions.

Association analyses between temporal changes in the
relative abundance of the individual bacterial species and
temporal changes in gut bacterial community indices, or
host metabolic variables.

The host metabolic variables included in the associa-
tion analyses were waist circumference, body mass index,
fasting plasma glucose and insulin, mean plasma glucose
and insulin under an OGTT, 2-h plasma glucose after an
OGTT, OGIS index, Matsuda insulin sensitivity index,
and systolic and diastolic blood pressure. For the analysis,
linear regression models were used where changes in the
relative abundance of the bacterial species were regressed
against richness change and intra-individual distance or
host metabolic variables alterations, controlling for base-
line age, sex, study center, and bacterial cell load changes
from study baseline to endline.

Mediation analysis

To explore whether changes in gut bacterial richness
influenced host metabolic variables via specific bacte-
rial species, we conducted mediation analyses using the
R package mediation (v4.5.0). Candidate triplets (Agut
bacterial richness — Abacterial abundance - Ametabolic
variable) were selected based on significant pairwise
associations (adjusted p value<0.1). For each triplet,
two linear models were fitted, adjusting for baseline
age, sex, study center, and changes in total bacterial
load, including (1) mediator model: Abacterial abun-
dance ~Agut bacterial richness+ covariates and (2)
outcome model: Ametabolic variable ~Agut bacterial
richness + Abacterial abundance + covariates. We esti-
mated the average causal mediation effect (ACME), aver-
age direct effect (ADE), and the proportion mediated
(ACME/[ACME + ADE]). Mediation triplet with adjusted
p value<0.1 of ACME were considered significant.

Analysis of relationships between variation in bacterial
genetics and host metabolic variables
SVs in bacterial species were tested for correlations with
host metabolic variables. The first set of association stud-
ies was performed between the delta values of host meta-
bolic variables and the intra-individual distance derived
from multiple SVs within each bacterial species. The ana-
lytical approach followed that used in delta association
analyses between host metabolic changes and bacterial
species abundance changes but applied at the bacterial
genetics level.

The second set of association analyses was conducted
using a linear mixed-effects model to explore the rela-
tionships between host metabolic variables and the
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prevalence of deletion SVs or the coverage of variable
SVs. The models were constructed with the formula: host
phenotypic markers ~ coverage of variable SVs or preva-
lence of deletion SVs+sex+age + study center + bacterial
cell load + (1|SubjectID).

Results

Deterioration of metabolism in prediabetes cases

over 4 years

For all measurements, data were available for>89%
of individuals at both timepoints. After 4 years, we
observed significant deteriorations in host metabo-
lism across multiple markers. These were evidenced by
a 4.4% increase in fasting plasma glucose (adjusted p
value=1.5e —14), a 7.4% increase in mean plasma glucose
under an OGTT (adjusted p value=4.4e—15), a 13.8%
increase in 2-h plasma glucose after an OGTT (adjusted
p value=2.4e—11), a 14.6% increase of fasting plasma
insulin (adjusted p value=4.5e—02), a 19.3% increase
in mean plasma insulin under an OGTT (adjusted p
value=_8.6e —08), and a 1.2% increase of waist circumfer-
ence (adjusted p value=9.9e—05), but a 4.9% decrease
in OGIS index (adjusted p value=2.6e—15) and a 3.8%
decrease in Matsuda insulin sensitivity index (adjusted
p value=4.4e —05) (Table 1). In line with these changes,
we observed heterogeneous glycemic outcomes among
individuals with impaired glycemic regulation at base-
line: 16% reverted to normal glycemic regulation, 73%
remained impaired, and 11% progressed to type 2 diabe-
tes over 4 years (Additional file 1: Table S1).

Identification of a core bacterial microbiota and core
microbial pathways that are present both at study baseline
and endline

To investigate the temporal dynamics of the human gut
microbiota, we first analyzed the shotgun metagenomic
sequencing reads. After rarefying the sequencing data
to a minimum total matched reads of 3.9 million (Addi-
tional file 1: Table S2) and filtering out low-abundance
species across all 972 metagenomes, we identified 571
bacterial species and 183 viral species (Additional file 1:
Tables S3 and S4).

For the gut bacterial species, the median cumulative
relative abundance across all 571 bacterial species was
98% (interquartile range, IQR: 96-99%) (Additional file 1:
Table S3). Within this bacterial community, we identified
80 core bacterial species that were consistently present
(read counts>10) in>99% of the 486 individuals at both
timepoints, representing a stable and ubiquitous compo-
nent of the gut bacterial microbiota. The median cumula-
tive relative abundance of these 80 dominant core species
was 59% (IQR: 53—-66%) despite representing only 14%
(80 out of 571) of the total number of distinct bacterial
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species. Within the core bacterial microbiota, the ten
most abundant genera included Clostridium, Bacteroides,
Ruminococcus, Eubacterium, Alistipes, Collinsella, Rose-
buria, Blautia, Streptococcus, and Prevotella. Among
these, Faecalibacterium prausnitzii exhibited the highest
relative abundance of 4.6% (Additional file 1: Table S3).

In the analysis of the gut viral microbiota, we identified
183 prevalent viral species across the 972 samples with
a median cumulative relative abundance of 36% (IQR:
27-44%, Additional file 1: Table S4). Most of the identi-
fied viral species belonged to Brigitvirus, Mushuvirus,
Svunavirus, Taranisvirus, Toutatisvirus, Oengusvirus,
and Lilyvirus genera. Notably, unlike the core bacterial
microbiota, no core viral gut microbiota at species level
was observed in our study, potentially implying the high
sensitivity of viral species to environmental factors or
host health condition.

After filtering out unannotated and unintegrated path-
ways, we identified 531 microbial pathways, representing
a relative abundance range of 3-6%, illustrating the fact
that only a small portion of the gut microbial pathways
are known. After filtering of low abundant pathways, we
defined 278 prevalent microbial pathways. Among these,
78 core pathways were consistently present (relative
abundance >0.01% in > 99% of individuals), representing a
stable and likely essential configuration of the gut micro-
bial functional potentials (Additional file 1: Table S5).
The cumulative relative abundance of the 78 core path-
ways represents a substantial proportion, amounting to
73% of total abundance of 531 annotated pathways (IQR:
70-75%). Among the core pathways, sucrose biosynthe-
sis II pathway showing the highest relative abundance
accounted for 1.4% of total abundance of all annotated
pathways in the present analysis.

Temporal declines of bacterial and viral microbiota
richness that correlate with an aggravation of host
metabolism

Over 4 years, the median value of compositional rich-
ness of gut bacterial species was decreased by 9.1% at
the study endline (adjusted p value=1.1e—31, Fig. 2A).
Despite the decrease in bacterial species richness over
time, Shannon and Simpson diversity indices (Additional
file 2: Fig. S2A and B) remained unchanged between the
two timepoints, suggesting a preserved ecological bal-
ance over time. In addition, the number of distinct micro-
bial pathways decreased by 2.4% (p value=9.5e—04,
Fig. 2D) over the 4 years. The compositional richness of
gut viruses showed a 14.3% decline at the study endline
(p value=2.1e—15, Fig. 2G), with virulent viruses show-
ing the larger decline (16.3% and p value=19e-17,
Fig. 2J-L). Yet, Shannon and Simpson diversity indices
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for the viral microbiota remained unchanged (Additional
file 2: Fig. S2E and F).

Importantly, the decrease in bacterial species rich-
ness was significantly associated with adverse metabolic
changes over the 4-year period, such as increases in body
mass index (BMI), waist circumference, mean plasma
insulin, and reductions in insulin sensitivity (Fig. 3 and
Additional file 1: Table S7). These findings suggest that
the lowering of gut bacterial richness and the loss of key
bacterial species are closely linked to a worsening of the
metabolic health in individuals with prediabetes. Strati-
fied analyses further revealed that the temporal associa-
tions between declining bacterial richness and worsening
metabolic traits were more pronounced in males than
in females (Additional file 2: Fig. S3), which may reflect
underlying sex-specific host-microbiota interactions as
well as reduced statistical power in the female subgroup
due to sample size imbalance (#=317 males vs. =169
females, Table 1).

Prediabetes individuals with higher initial microbial
species richness show smaller intra-individual distance
calculated from overall microbial species relative
abundance

Bray—Curtis dissimilarity analysis based on the relative
abundance of gut bacterial species showed smaller com-
positional differences within the same individual than
between individuals (Fig. 2B). This was the case both at
study baseline (adjusted p value=6.7e —116) and at study
endline (adjusted p value=3.4e—101, Fig. 2B). Com-
pared to the inter-individual distance observed at study
baseline, the inter-individual distance at study endline
was smaller, indicating a greater resemblance in bacterial
microbiota composition among the cohort’s endline sam-
ples (adjusted p value =4.3e — 20, Fig. 2B).

Permutational multivariate analysis of variance (PER-
MANOVA) based on the Bray—Curtis distance matrix
revealed that both host and environmental factors sig-
nificantly influenced the variation of the bacterial com-
position at the species level (Additional file 2: Fig. S2C).

(See figure on next page.)
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Notably, the study center confounder accounted for
1.6% of the explained variance, implying that the demo-
graphics of each of the four study centers have impacts
on the observed microbial community structures (Addi-
tional file 2: Fig. S2C). In addition, host factors like age,
sex, waist circumference, body mass index, mean plasma
glucose level under an OGTT, and Matsuda insulin
sensitivity index exerted modest, yet significant influ-
ence (Additional file 2: Fig. S2C). The timepoint factor
alone, though contributing a small fraction, significantly
impacted the bacterial composition variance (PER-
MANOVA R?>=4.9e—03, adjusted p value=3.2e—03).
Similarly, principal coordinate analysis (PCoA) based on
the Bray—Curtis distance metric of bacterial species-level
profiles revealed significant shifts in bacterial composi-
tion over time, as indicated by a change in PCol values
between samples obtained at study baseline and endline
(p value=2.7e — 04, Fig. 2C).

Next, we found an inverse link between bacterial spe-
cies richness at study baseline and intra-individual
distance (Spearman’s correlation coefficient= —0.13,
p=2.2e—18, Additional file 2: Fig. S2D), indicating that
individuals with higher initial bacterial species richness
experienced smaller intra-individual changes in gut bac-
terial abundance over time.

Similarly, for microbial pathways and gut viral spe-
cies, Bray-Curtis distance index revealed greater
inter-individual differences than intra-individual dif-
ferences, with reduced variability at study endline
(Fig. 2E and H). PERMANOVA showed that both
host metabolism markers and demographics signifi-
cantly influenced viral composition (Additional file 2:
Fig. S2G). PCoA analysis confirmed the significant
temporal shifts in microbial functional pathways and
viral composition (Fig. 2F and I). Additionally, base-
line viral species richness was inversely associated
with intra-individual distance (Spearman’s correlation
coefficient= —0.26, p=1.6e— 18, Additional file 2:
Fig. S2H). Interestingly, our observations also showed
that microbial pathways exhibited a higher degree of

Fig. 2 Temporal changes of gut microbial features between study baseline and endline. A, D, and G show the compositional richness

of gut bacterial species, microbial pathways, and viral species, respectively, at study baseline and study endline. B, E, and H display

the intra- and inter-individual Bray—Curtis distances of gut bacterial species, microbial pathways, and viral species, respectively. The dots in brown,
yellow, or pink colors show the Bray—Curtis distances derived from the relative abundance of gut bacterial species, microbial pathways, or viral
species, respectively, illustrating variability within and between individuals at study baseline and study endline. In C, F, and |, the principal
coordinate analysis (PCoA) of overall composition of gut bacterial species, microbial pathways, and viral species, respectively, based on Bray-Curtis
dissimilarity matrix, are shown. Yellow and pink dots represent the mean PCo1 and PCo2 coordinates for all study baseline and study endline
samples with error bars indicating the standard error of the mean (SEM). J-L Changes in the compositional richness of temperate and virulent
viruses, as well as the ratio of virulent to temperate viral species, respectively, from study baseline to endline. All adjusted p values were derived
from p values corrected for multiple comparisons using the Benjamini-Hochberg method. The compositional richness and Bray—Curtis distance are

expressed in arbitrary units
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Fig. 3 Relationships between temporal changes of bacterial species richness and temporal changes of host metabolic variables. This bar plot
illustrates the delta associations, referring to the relationship between changes in bacterial species richness and host metabolic variables over time,
as determined by partial Spearman’s correlation analyses adjusting for baseline age, sex, study centers, and bacterial cell load. The x-axis shows

the strength of the associations by partial Spearman’s correlation coefficient values, with orange bars indicating positive correlation coefficients
(aligned co-variation) and green bars indicating negative correlation coefficients (counter co-variation). The y-axis lists the host metabolic variables.
OGTT means oral glucose tolerance test. Significance levels are denoted as * for adjusted p values < 0.1 derived from p values corrected for multiple

comparisons using the Benjamini-Hochberg method

DMI than microbial species (Additional file 2: Fig.
S4), implying a greater intra-individual stability of the
former.

Temporal changes of the prevalence of gut bacterial
species

Following the observed decline in gut bacterial micro-
biota richness, we examined the prevalence changes of
bacterial species that underwent the most significant
shifts. Our analysis revealed that the reduction in bac-
terial richness was accompanied by a>30% decrease
in the prevalence of 14 highly prevalent bacterial spe-
cies (prevalence >50% at study baseline). These species
include Coprococcus eutactus, Bacteroides eggerthii,
Alistipes inops, Phocaeicola massiliensis, and Evtepia
gabavorous (Additional file 2: Fig. S5A and Additional
file 1: Table S6). For gut microbial pathways and gut
viral microbiota, by performing the same filtering
criteria, we did not find prevalent pathways or viral
microbiota that showed any major decrease (data not
shown).

Temporal shifts of the abundance of gut microbial species
and pathways

Building upon the community-level analysis of alpha
and beta diversity, we then focused on species-specific
and pathway-specific features to explore their abun-
dance dynamics from study baseline to endline. Signifi-
cant changes were observed in the relative abundance of
species and microbial pathways. Specifically, 295 bacte-
rial species, 51 viral species, and 64 microbial pathways
showed differential abundance (adjusted p value<0.05),
as shown in Additional file 2: Fig. S5B, C and Additional
file 1: Tables S3-S5. Notably, multiple bacterial species
from Bifidobacterium genus, such as Bifidobacterium
adolescentis, Bifidobacterium pseudocatenulatum, and
Bifidobacterium catenulatum, showed a decreased rela-
tive abundance over time, while the relative abundance
of Ruthenibacterium lactatiformans, which may have
pro-inflammatory effects, was higher at study endline
(Additional file 1: Table S3). Additionally, microbial path-
ways involved in glucose degradation, as well as in energy
production via the TCA cycle II, also declined over time
(Additional file 1: Table S5).
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Variance of microbial species and pathways observed

in this longitudinal study

Furthermore, the longitudinal study design allowed us
to investigate the variance observed among individuals.
Hence, after adjusting for all the potential covariates, we
profiled intra-individual variance, inter-individual vari-
ance, ICC, and total variance for all microbial species and
pathways (Additional file 1: Tables S3-S5).

For total variance, bacterial and viral species exhib-
ited similar values with bacterial species showing
slightly lower medians. MetaCyc pathways had the low-
est median value of total variance, indicating a higher
temporal stability (Additional file 2: Fig. S6A). Interest-
ingly, for gut bacterial species and microbial pathways,
total variance was inversely correlated with the relative
abundance of these microbiota components, suggesting
that more abundant features tend to have lower vari-
ance both across two timepoints and between individuals
(Spearman’s correlation coefficient= —0.37 for bacteria
and—0.93 for pathways, with both p value<2.2e—16,
Additional file 2: Fig. S6B and C).

Dynamics of structural variants of gut bacteria

Applying the filtering criterion of >20% non-missing val-
ues at both study baseline and endline, we found 3831
deletion SVs and 1820 variable SVs across the genomes of
39 bacterial species (Additional file 2: Fig. S7) with Dorea
formicigenerans and Dorea longicatena having the high-
est number of SVs (350 and 269 SVs, respectively).

To evaluate the genetic stability of the gut bacte-
rial species using the DMI metric, inter-individual and
intra-individual dissimilarities were calculated sepa-
rately for both deletion SVs and variable SVs. For both
types of bacterial SVs, we found a wide range of DMI val-
ues across bacterial species (Fig. 4A). For deletion SVs,
Prevotella copri had the highest DMI of 0.52, followed
by Akkermansia muciniphila (DMI1=0.50) and Rumino-
coccus bicirculans (DMI=0.49), indicating a high degree
of genetic stability over time. Prevotella copri also stood
out with a highest DMI value of 0.32 for variable SVs
(Fig. 4B). Roseburia hominis, Roseburia intestinalis, and
Faecalibacterium prausnitzii exhibited low DMI values
based on both types of SV profiles. Particularly, Rose-
buria hominis showed similar intra- and inter-individual
distance values for its deletion SVs (DMI=0.06) suggest-
ing a very low temporal genetic stability.

Fewer bacterial-viral interactions in the gut microbiota

at study endline

To explore how overall gut microbial interactions evolve
over time, we first analyzed the interactions within king-
dom and between kingdoms at the study baseline and
endline. Network analyses of bacterial and viral species
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revealed a diminished microbial interactome at study
endline compared to study baseline (Fisher’s exact test p
value=3.0e — 02, Additional file 2: Fig. S8A—C). To iden-
tify the taxa driving the interactome shifts, we calculated
the NetMoss score for each microbial node (see Meth-
ods) and visualized the top 50 features significantly con-
tributing to the network alterations from study baseline
to endline. Notably, the interactions centered at Coproc-
occus comes, a butyrate producer, that contributed most
substantially to the network changes (Additional file 2:
Fig. S8D and Additional file 1: Table S8).

Next, we specifically examined bacterial-viral interac-
tions by excluding bacterial-bacterial and viral-viral inter-
actions from the overall network to assess the influence
of viral dynamics on bacterial populations. The network
at study baseline was denser and more interconnected,
whereas the endline network became more dispersed
and sparser (Fig. 5A and B). Compared to study base-
line, there were significantly fewer bacterial-viral interac-
tions after 4 years (Fisher’s exact test p value=3.0e —02,
Fig. 5C). Both positive and negative associations
decreased, with positive mutualistic relationships declin-
ing more markedly (615 versus 359 and 248 versus 186,
respectively, for study baseline versus endline in positive
and negative correlations, Fig. 5C). This reduction in bac-
terial-viral interactions aligns with the observed tempo-
ral decrease in species richness among both bacteria and
viruses (Fig. 2A and G). Additionally, the substantial loss
of virulent viruses may indicate a reduced viral predation
pressure (Fig. 2J), potentially leading to fewer trans-king-
dom interactions.

Temporal changes of the abundance of specific gut
bacterial species are associated with overall bacterial
community dynamics
By performing delta values correlation analysis on
bacterial species abundance, we found that temporal
abundance changes of Alistipes putredinis, Oxalobac-
ter formigenes, and Coprobacter secundus co-varied
directly with total bacterial species richness (beta coef-
ficient=0.14 to 0.19, adjusted p value=2.8¢—03 to
2.5e—02), suggesting that the increased abundance of
these bacteria may drive a higher overall bacterial species
richness (Fig. 6A and Additional file 1: Table S9). Con-
versely, inverse co-occurrence was seen between compo-
sitional richness and abundance changes of Anaerostipes
hadrus, Blautia wexlerae, Evtepia gabavorous, and Shi-
gella flexneri (beta coefficient= —0.17 to—0.25, adjusted
p value=22e—05 to 1.7e—03), indicating that the
increased abundance of these bacteria may contribute to
reduce overall bacterial species richness.

Further association analyses showing counter- or
aligned co-variation to the intra-individual distance
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Fig. 4 Gut bacterial genetics stability within the individual and between individuals. To evaluate the dynamics of bacterial genetics within bacterial
species over time and between individuals, we calculated intra-individual and inter-individual distance for each species from their structural

variant (SV) profiles. A Profiles of Jaccard distance of deletion structural variants (dSVs) and B profiles of Canberra distance of variable structural
variants (vSVs) of 39 bacterial species. Degree of microbial individuality (DMI) was labeled. Each box plot represents the distance calculated

from the genetic structural variant profiles within one bacterial species (see Methods), with light-colored boxes indicating intra-individual distances,
while dark-colored boxes are showing inter-individual distances. Bacterial species are listed along the y-axis in descending order based on their DMI
values. Distances are displayed on the x-axis

(See figure on next page.)

Fig. 5 Gut bacterial-viral interactions at study baseline and endline. The interaction network of bacterial and viral microbiota at the species level

at study baseline (A) and study endline (B) was constructed using SparCC (sparse correlations for compositional data). A more dispersed and sparser
network was observed at study endline (B) compared that at study baseline (A). Interactions with absolute value of correlation coefficient>0.3 are
shown in the network. Each edge in the network represents an interaction between a pair of taxa with edge thickness reflecting the absolute value
of the correlation coefficient. Bacterial species and viral species are shown as blue or yellow nodes, respectively. C Bar plot showing the counts

of positive or negative bacterial-viral interactions that decline at study endline compared to that at study baseline, with a more pronounced
reduction observed in positive mutualistic relationships
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metric of bacterial species abundance (Fig. 6A and Addi-
tional file 1: Table S9) suggested the existence of both
stabilizing bacterial species and destabilizing species.
Thus, the abundance changes of Dorea sp. AF36-15AT
or Prevotella copri exhibited inverse correlations to
the intra-individual distance calculated from the rela-
tive abundances of overall bacterial species (beta coef-
ficient= —0.17 and —0.16, adjusted p values=5.6e —02),
suggesting their potential role in stabilizing the overall
gut bacterial community (lowering intra-individual dis-
tance). In contrast, the abundance changes in Intestini-
monas butyriciproducens showed an inverse correlation
to the intra-individual distance calculated from the rela-
tive abundances of overall bacterial species (beta coeffi-
cient=0.19, adjusted p value=1.1e—02), implying that
the abundance of Intestinimonas butyriciproducens may
contribute to, or serve as an indicator of the overall gut
bacterial microbiota variation.

Temporal changes of the abundance of specific gut
bacterial species are associated with changes in host
metabolism

Association analysis revealed that changes in the rela-
tive abundance of specific bacterial species correlate
with alterations in host metabolism, especially insulin
sensitivity over time. Notably, increases in Oxalobacter
formigenes and an uncultured Clostridiales bacterium
positively correlate with changes in the Matsuda insulin
sensitivity index and OGIS index (beta coefficients=0.13
to 0.18, adjusted p values=6.0e — 03 to 3.0e — 02, Fig. 6B
and Additional file 1: Table S9). Furthermore, additional
associations were noted between changes in the Matsuda
insulin sensitivity index and in the abundance change of
Proteobacteria bacterium CAG:495, Ruminococcaceae
bacterium D5, Ruminococcus sp. CAG:382, and Lachno-
spiraceae bacterium OMO04-12BH (beta coefficient=0.16
to 0.22, adjusted p value=2.0e — 02 to 3.0e — 02) as well
as Parabacteroides goldsteinii (beta coefficient= —0.20,

(See figure on next page.)
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adjusted p value=2.0e — 02). Changes in mean plasma
insulin levels were shown to be positively correlated with
changes in the relative abundance of Anaeromassilibacil-
lus sp. An250 and Clostridium sp. CAG:451 (beta coef-
ficient=0.19 to 0.22, adjusted p value=1.0e — 02 and
9.0e — 02). Conversely, 2-h plasma glucose levels after an
OGTT were negatively associated with Clostridium sp.
CAG:253 (beta coefficient= —0.18, adjusted p value=8.0e
— 02). To further explore potential causal links beyond
associations, mediation analysis revealed that part of the
association between gut bacterial richness and host meta-
bolic traits—most notably BMI—may be indirectly medi-
ated through specific bacterial taxa, such as Clostridia
bacterium DTU025 (Additional file 2: Fig. S9).

Structural variants in gut bacterial genomes are associated
with markers of host metabolism

In the analysis of SVs within bacterial genomes (Fig. 7A
and Additional file 1: Table S10), intra-individual dis-
tances of SV profiles in Ruminococcus sp. SR1/5 were
negatively associated with changes of fasting plasma glu-
cose (beta coefficient= —0.24, adjusted p value=1.0e —
03, Fig. 7A and B). Positive temporal associations were
identified between intra-individual distances calculated
from SVs in Methanobrevibacter smithii and changes in
BM]I, diastolic blood pressure, and fasting plasma glucose
(beta coefficients =0.22 to 0.27, adjusted p values =2.0e —
02 to 8.0e — 02, Fig. 7A and C), while inversely associated
with changes in OGIS index (beta coefficient= —0.27,
adjusted p value=2.3e — 02, Fig. 7A). Similarly, intra-
individual distances calculated from SVs in Alistipes
shahii and Alistipes putredinis demonstrated positive
associations with changes in mean plasma insulin dur-
ing an OGTT and Matsuda insulin sensitivity index (beta
coefficients=0.17 to 0.29 and adjusted p values=7.0e
— 02 to 8.0e — 02, Fig. 7A). These findings suggest that
genetic convergence, divergence, or sub-species shifts

Fig. 6 Associations of temporal changes of the relative abundance of bacterial species and temporal changes in gut bacterial community

indices or host metabolic variables. A Correlations between temporal changes of the relative abundance of bacterial species and temporal

shifts in overall gut bacterial species richness and intra-individual distance of bacterial species abundance profiles, highlighting the bacterial
species that are driving the community changes. The y-axis lists bacterial species, and the x-axis shows the beta coefficient and standard error
values calculated from linear regression models. The figure includes the top 10 bacterial species, ranked in ascending order by adjusted p value.
The dots are colored yellow and blue for positive and negative coefficient values, respectively. Dots size indicates the —log10 (adjusted p value)

of the correlation, with larger dots showing smaller adjusted p value. B Correlations between temporal changes in relative abundance of bacterial
species and temporal changes of host metabolic variables, highlighting changes in relative abundance of bacterial species with parallel changes
in host metabolism. Y-axis lists bacterial species, while x-axis lists host metabolic variable. The dots are colored yellow for positive coefficient
values and blue for negative coefficient values with color intensity indicating the effect size. Dots size indicates the—log10 (adjusted p value)

of the correlation, with larger dots showing smaller adjusted p value. In A and B, beta coefficients and adjusted p values were calculated from linear
regression models after adjusting for co-variates of individual's age at baseline, sex, study centers, and delta value of bacterial cell load. All
correlations shown are statistically significant after adjustment for multiple comparisons using the Benjamin-Hochberg procedure, with adjusted p

value <0.1. OGTT means oral glucose tolerance test
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Compositional richness
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within bacterial species may influence or respond (adapt
or contribute) to alterations in host metabolism.
Focusing on single SVs within gut bacterial genomes,
we identified 25 associations between host metabolic
markers and SVs across 15 bacterial species (Fig. 7D
and Additional file 1: Table S11). Coprococcus catus had

the highest number of SVs that correlated with host
metabolism. As noteworthy examples, in the genome of
Prevotella copri, deletion SVs involved in genes encod-
ing TonB-dependent receptor were positively associated
with Matsuda insulin sensitivity index of the host (beta
coeflicient=0.55, adjusted p value=4.0e — 02, Fig. 7E,
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Additional file 1: Table S11). In Coprococcus catus, dele-
tion SVs at 1101-1102 kbp and 3414-3415 kbp within
genes encoding hydrogenase were associated with a
higher mean plasma insulin level (beta coefficient=0.92,
adjusted p value=9.9e — 02, see Fig. 7F and Additional
file 1: Table S11).

Discussion

In the present 4-year prospective study of 486 European
prediabetic patients, we explored the temporal dynam-
ics of the gut bacterial and viral microbiota at different
resolution levels (Fig. 8) and related these gut micro-
bial changes to the concomitant deterioration of host
metabolism. The gut microbiota underwent a temporal
community-level shift characterized by reduced bacterial
and viral richness, fewer trans-kingdom interactions, and
increased microbial convergence within the population.
These microbiota shifts were correlated with changes
in host metabolic markers that included an increase in
glycemia and a decline of insulin sensitivity. When com-
pared to the European LifeLines-DEEP cohort [7], which
included non-prediabetic individuals, the prediabetic
individuals in the present European cohort exhibited a
more substantial increase in fasting plasma glucose dur-
ing a 4-year follow-up.

At study endline, the gut bacterial microbiota showed a
depletion of several bacterial species that are known to relate
to metabolic health such as Bifidobacterium adolescentis,
Bifidobacterium pseudocatenulatum [39), Bifidobacterium
catenulatum, and Coprococcus eutactus [40], but an enrich-
ment of pro-inflammatory bacteria, like Ruthenibacterium
lactatiformans [41]. In parallel, the abundance of pathways
involved in glucose degradation and energy production

(See figure on next page.)

Page 17 of 23

decreased, while transitioning to less efficient, non-oxidative
metabolic processes potentially associated with inflamma-
tion and metabolic stress occurred. Some of these findings
correspond with discoveries in the gut microbiota of indi-
viduals at risk for type 1 diabetes (T1D) [42—47]. The over-
lapped bacteria and the potential mechanisms for T1D and
T2D are shown in Additional file 1: Tables S12. Besides these
partially overlapped gut microbiota features, individuals at
risk of T1D and T2D exhibit disease-specific gut microbiota
signatures that may reflect pathogenesis differences and age
at diabetes onset [48].

Despite the metabolic deterioration observed in
prediabetic individuals at study endline, we noted an
increase in the relative abundance ofAkkermansia
muciniphila. This finding may seem paradoxical given
the beneficial role of various A.muciniphila strains
in metabolism [49-53]. However, the changes in A.
muciniphila species abundance in our study despite an
aggravation of metabolism may reflect broader ecologi-
cal shifts in the gut microbiota.lt might also represent
a compensatory response to metabolic stress [54], with
A. muciniphila attempting to restore gut ecological bal-
ance and mitigate further metabolic damage. Aligning
with findings from a multi-cohort study that reported
an upward trend in Flavonifractor plautii abundance
across normoglycemic, prediabetic, and T2D individ-
uals [55], we observed an increase in F plautii abun-
dance at study endline. Again, an unexpected finding
that may exhibit some of the knowledge gaps in the
current understanding of intestinal microbial ecology,
since this bacterium has the genetic potential to pro-
duce monophenolic acid that has been suggested to
counteract liver steatosis [56].

Fig. 7 Correlations between gut bacterial structural variants and host metabolic variables. A Temporal associations between changes in profiles

of bacterial genetics (shown by intra-individual distance within bacterial species) and changes in host metabolic variables. The y-axis lists bacterial
species, and the x-axis displays delta values of host metabolic variables. Dots are shaped by types of structural variants (circle for deletion structural
variants (dSVs) and square for variable structural variants (vSVs)), colored based on beta coefficient values, and sized according to—log10 (adjusted
p value). Beta coefficients and adjusted p values were calculated from linear regression models after adjusting for co-variates of individual's age

at baseline, sex, study centers, and delta value of bacterial cell load. B and C Scatter plots showing selected examples of the temporal association
results in A. B Temporal associations between the delta values of diastolic blood pressure and the intra-individual Canberra distance calculated
from the profile of 19 vSVs within the Methanobrevibacter smithii genome, and C temporal associations between the delta values of fasting plasma
glucose and the intra-individual Jaccard distance calculated from the profiles of 81 dSVs within the Ruminococcus sp. SR1/5 genome. Each dot
represents an individual participant. D A circular chord diagram illustrating the associations between specific gut bacterial species (right side)

and host phenotypes (left side) categorized by SV types, either dSVs or vSVs, summarizing the links between single SVs and host phenotypes. Each
bacterial species is labeled with its name and the count of associated SVs in parentheses, with the color of each link and species label showing

the variant type involved (green for dSVs; purple for vSVs). The width of each link reflects the count of associated SVs. Beta coefficients and adjusted
p values were calculated from linear mixed-effects models after adjusting for co-variates of individual’s age, sex, study center, and bacterial cell load.
E and F Bar plots showing selected examples of association results given in D. E Comparison of Matsuda insulin sensitivity index values in samples
retaining (n=105) or deleting (n=111) gene fragments of 50-52 kbp in Prevotella copri, predicted to encode a TonB-dependent receptor protein. F
Comparison of fasting plasma insulin in samples where gene fragments 11011102 and 3414-3415 kbp in Coprococcus catus are retained (n =486)
or deleted (n=13). The encoding protein is predicted as hydrogenases. Statistical significance from linear mixed-effects model was labeled. All
correlations shown are statistically significant after adjustment for multiple comparisons using the Benjamin-Hochberg procedure, with adjusted p

value <0.1. OGTT means oral glucose tolerance test
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Despite the reduction in the richness of bacteria,
viruses, and microbial pathways over time, we mapped
the presence of 80 dominant core bacterial species and
78 dominant core microbial pathways. Moreover, micro-
bial pathways showed only a small decrease in richness
from study baseline to endline, with major functional
potentials being largely preserved. Collectively, these
findings suggest a robust microbial ecology over 4 years
in prediabetes individuals that maintains essential micro-
bial functions, likely through functional redundancy
and ecological compensation [8]. The presence of a core
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bacterial microbiota and stable microbial pathways in
prediabetes individuals across diverse European demo-
graphics may suggest that these features play an essential
role in gut microbial ecology that strive to maintain host
metabolic health. Future lifestyle and drug interventions
are warranted to explore whether targeting these core
microbiota components can add to prevention of T2D in
individuals at risk.

Notably, no core viral microbiota at species levels was
observed in our study, potentially indicating a higher
sensitivity of viral species to environmental factors
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Dynamics of gut microbiota over four years
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Fig. 8 Summary of temporal changes in host metabolism and gut microbiota dynamics in prediabetes over 4-year follow-up. Created
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or host health conditions [57]. Additionally, the rela-
tively shallow sequencing depth (with a rarefaction to
3.9 million reads) may have further limited the detec-
tion of low-abundance viral species, contributing to the
absence of a distinct core gut viral microbiota in the
present study.

A particularly interesting observation was the
decrease of bacterial-viral interactions over the four
years, coherently with the observed reduction in both
bacterial and viral richness. The decline in virulent
viruses may imply a reduced viral predation pressure,
which could lead to less regulation of bacterial popu-
lations [58]. Viruses regulate bacterial communities
by preventing overgrowth, thereby maintaining bal-
ance within the microbiota [59]. A reduction in these

interactions might allow opportunistic or pathogenic
bacterial species to dominate, potentially exacerbating
metabolic dysfunction [60].

Regarding the interplay of gut microbiota and host
metabolism, we observed several correlations between
temporal changes in microbial abundance and host
metabolic markers. For example, we found inverse co-
variations between the abundance of Clostridium sp.
CAG:253 and 2-hour plasma glucose after an OGTT,
as well as positive co-variations between Ruminococ-
caceae bacterium D5 abundance and insulin sensitivity.
The findings that align with previous reports [55, 61,
62] may suggest a beneficial role for these gut bacteria
in enhancing glucose metabolism and insulin sensitiv-
ity of their host.
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At the bacterial genetics level, we observed significant
associations between bacterial genome variation and
host metabolic changes over time. Notably, the retention
of hydrogenase-encoding bacterial genes in Coprococcus
catus was linked to low plasma insulin level. Bacterial
hydrogenases may play a critical role in butyrate produc-
tion [63] and in neutralization of reactive oxygen species
[64], both of which may potentially enhance host insulin
sensitivity.

In addition, the temporal association analysis identified
key bacterial species influencing the overall dynamics of
the gut bacterial community. Thus, changes in the abun-
dance of Alistipes putredinis,Oxalobacter formigenes, and
Coprobacter secundus were positively linked to increases
in bacterial species richness. It has been reported that A.
putredinis supports butyrate production in a bacterial
community [65],0. formigenes aids in oxalate regulation
and hyperoxaluria prevention [66—68], and C. secundus
contributes to butyrate synthesis [69, 70]. These versa-
tile bacteria may potentially foster cross-feeding to other
bacteria, enhancing microbial diversity. Conversely, tem-
poral changes of the abundance of Prevotella copri, with
its anti-inflammatory and short-chain fatty acid (SCFA)-
producing functions [71], showed an inverse association
with the measure of intra-individual distance, underscor-
ing its potential role in stabilizing gut microbiota resil-
ience and temporal stability.

In accordance with what has been reported in a pre-
vious study of the gut bacterial microbiota in healthy
individuals [8], we observed that the dynamics of gut
microbiota tend to follow specific patterns. For example,
high-abundance bacterial species in our study were more
stable both within individuals and between individuals,
while low-abundance bacterial species often exhibited
multi-modal distributions in abundance as indicated by a
high variance. These findings may imply that high-abun-
dance bacterial species which often are evolutionarily
dominant within microbial communities [72] are more
resilient to perturbations. Another pattern we observed
was the inverse relationship between bacterial species
richness at study baseline and the temporal stability as
measured by the intra-individual distance metric, indi-
cating that a diverse microbial community may confer
resilience against environmental or physiological pertur-
bations [7].

Our study has limitations. The present prospective
study focused on the dynamics of the gut microbiota in
prediabetes cases and was not designed to explore any
role of the gut microbiota in prediction of metabolic out-
comes over the four years. Achieving such a goal would
require a much larger study population monitored over
a much longer period, along with detailed information
on additional potential confounders, such as medication,
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lifestyle factors and interfering comorbidities. Although
height has been linked to 2-hour glucose levels [73], we
did not adjust for it as its effect is largely captured by sex,
and including both would risk multicollinearity, but it
may be relevant in future stratified or mediation analyses.
To explore if the abberant gut microbiota in prediabetes
is a therapeutic target, drug or lifestyle interventions are
needed. Another shortcoming includes the DNA extrac-
tion and sequencing protocols that were optimized for
bacterial DNA recovery and not for viral recovery. There-
fore, the actual genetic material analyzed may only rep-
resents a fraction of the total viral DNA in stool samples.

Conclusions

In conclusion, in this 4-year longitudinal study of Euro-
pean prediabetic patients, we observed a decline in gut
bacterial and viral richness, microbial functional poten-
tials and bacterial-viral interactions as well as changes
of bacterial relative abundance, and bacterial genetics,
with the former being directly linked to a deterioration of
metabolic health. At present, it is unsettled whether the
observed dynamics of the gut microbiota in individuals
with prediabetes reflect adaptations or contributions to
the observed metabolic deterioration.
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