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Abstract 

T he a v erage nucleotide identity (ANI) metric has become the gold standard f or prokary otic species delineation in the genomics era. The most 
popular ANI algorithms are a v ailable as command-line tools and / or web applications, making it incon v enient to incorporate them into bioinformatic 
w orkflo ws, which utiliz e the popular Python programming language. Here, w e present PyOrthoANI, PyF astANI, and Py skani, Python libraries f or 
three popular ANI computation methods. ANI values produced b y PyOrthoANI, PyF astANI, and Py skani are virtually identical to those produced 
b y OrthoANI, F astANI, and skani, respectiv ely (adjusted R 

2 > 0.999). Compared to OrthoANI, PyOrthoANI is, on a v erage, 3 × f aster per genome, 
while PyFastANI has multithreading support for single queries. All three libraries integrate seamlessly with BioPython, making it easy and 
con v enient to use, compare, and benchmark popular ANI algorithms within Python-based bioinformatic workflows, software programs, and 
notebooks. Each library is a v ailable as part of the Python Package Index repository under the open-source MIT license, with source code available 
via GitHub (PyOrthoANI, https:// github.com/ althonos/ orthoani ; PyFastANI, https:// github.com/ althonos/ p yf astani ; Py skani, https://github.com/ 
althonos/p y skani ). 
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ntroduction 

he average nucleotide identity (ANI) metric of genomic sim-
larity is arguably the most popular method for prokaryotic
pecies delineation in the genomics era [ 1 , 2 ]. The calcula-
ion of ANI values shared between two genomes is a cru-
ial step in many bioinformatic pipelines, including popular
ethods / workflows for prokaryotic species identification [ 3 ,
 ], within-species lineage / strain delineation [ 5 , 6 ], and general
rokaryotic (meta)genomic data analysis [ 7 , 8 ]. 
While numerous ANI algorithm implementations have been

eveloped, nucleotide BLAST-based ANI (ANIb) algorithms
re considered to be the gold standard [ 1 , 9 ]. ANIb algorithms
re accurate in the sense that they share a strong correla-
ion with experimentally determined DNA–DNA hybridiza-
ion values [ 2 , 10–12 ]. However, due to the high time com-
lexity of BLAST and similar alignment-based algorithms,
NIb algorithms are notoriously slow [ 1 ] and thus most ap-
ropriate for users with smaller datasets (e.g. up to ≈10 

3 

enomes / 10 

6 pairwise comparisons), who prioritize accuracy
ver speed. 
To overcome the computational limitations of ANIb,

lignment-free ANI algorithms have been developed, most no-
ably FastANI [ 1 ] and skani [ 9 ]. Both FastANI and skani forgo
ome accuracy in favor of speed (i.e. they produce ANI values,
hich correlate with, but are not necessarily equivalent to,
NIb), and as such, they can readily scale to massive genomic
eceived: April 8, 2025. Revised: June 10, 2025. Editorial Decision: June 12, 202
The Author(s) 2025. Published by Oxford University Press on behalf of NAR G

his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
datasets (e.g. ≥10 

4 genomes / 10 

8 pairwise comparisons) [ 1 ,
9 ]. However, identifying the optimal alignment-free ANI al-
gorithm for a given dataset is not always straightforward.
FastANI is ≥50 × faster than ANIb methods and is more ac-
curate than skani on reference-quality genomes [ 1 , 9 ]. skani,
on the other hand, is > 20 × faster than FastANI and is more
accurate on fragmented, incomplete metagenome-assembled
genomes (MAGs) [ 9 ]. Thus, in addition to considering dataset
size and algorithm speed–accuracy trade-off, users may want
to consider dataset composition (e.g. isolate genomes versus
MAGs) and quality when selecting the optimal ANI algorithm
for their dataset. 

Regardless of whether they prioritize accuracy or speed,
the most popular ANI algorithms / methods [e.g. FastANI,
skani, ANI by Orthology (OrthoANI), JSpeciesWS, PyANI]
are available as command-line tools and / or web applica-
tions [ 1 , 9 , 12–14 ]. This makes it inconvenient for bioinfor-
maticians to incorporate ANI algorithms into bioinformatic
workflows, which utilize the popular Python programming
language [ 15 ]. 

Here, we present a suite of Python libraries for popular ANI
algorithms, specifically (i) PyOrthoANI, a Python-based im-
plementation of the OrthoANI algorithm (a highly accurate
ANIb method) [ 12 ]; (ii) PyFastANI, and (iii) Pyskani, Python
bindings for the FastANI and skani algorithms, respectively
(fast, alignment-free methods) [ 1 , 9 ]. Each Python library
5. Accepted: June 21, 2025 
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2 Larralde et al. 

Figure 1. Correlation between ANI values produced by ( A ) PyOrthoANI, ( B ) PyFastANI, and ( C ) Pyskani (Y-axes) with ANI values produced by OrthoANI, 
FastANI, and skani, respectively ( X -axes) for genomes used in the FastANI validation / benchmarking datasets (black dots; Supplementary Tables S1 –S6 ). 
Dashed lines denote the best-fitting linear model for each method pair, with adjusted R 

2 and P -values reported in the upper left corner of each subplot. 
Py skani v alues w ere multiplied b y 100. Per-genome real (w all clock) time in seconds (Y-ax es, log-scale) f or ( D ) OrthoANI / PyOrthoANI, ( E ) 
F astANI / PyF astANI, and ( F ) skani / Pyskani ((X-axes), using 1, 8, and / or 16 CPUs on the FastANI validation / benchmarking datasets (violin plots; 
Supplementary Table S7 ). For fairness, PyFastANI and Pyskani times include the time it took to load Python modules and parse genomes using 
BioPython (performed for every genome / computation). For extended versions of this figure, see Supplementary Figs S1 –S7 . Raw data used to 
construct all plots are a v ailable in Supplementary Tables S1 –S7 . 
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integrates seamlessly with BioPython [ 16 ], making it simple
and convenient to perform ANI computations within Python-
based bioinformatic workflows, software programs, and note-
books (e.g. Jupyter) [ 17 ]. By providing a unified Python inter-
face, our suite allows users to easily swap out different ANI
algorithms, making it simple and convenient to test, compare,
and benchmark methods. 

Materials and methods 

The PyOrthoANI algorithm ( https:// github.com/ althonos/
orthoani ) was implemented in the same manner as the original
OrthoANI Java implementation [ 12 ]. Briefly, to calculate ANI
values between a query and reference genome, both genomes
are partitioned into 1020-bp-long fragments. Fragments that
are < 1020 bp in length and / or contain > 80% ambiguous
( N ) nucleotides are discarded. Nucleotide BLAST (blastn) [ 18 ]
values are then calculated between the set of query and refer-
ence genome fragments using the following blastn parameters
(all other parameters are set to their respective defaults): -task
blastn, -evalue 1e-15, -xdrop_gap 150, -dust no, -penalty -1,
-reward 1, -num_alignments 1, -outfmt 7. The resulting frag-
ments are considered to be orthologous if they produce recip-
rocal best hits, which cover at least 35% of the total length
of the fragment. Final ANI values are calculated by averaging 
the nucleotide identity values for all reciprocal blastn hits. 

For PyFastANI ( https:// github.com/ althonos/ pyfastani ), the 
original FastANI code (written in C++) [ 1 ] was wrapped into 

a Python extension module using the Cython language (v3.0) 
[ 19 ]. While PyFastANI uses the original FastANI code for 
hashing and core-genome identity computations, we reim- 
plemented the sketching to support passing plain Python 

strings as input sequences. In addition, we implemented 

serialization / deserialization support to allow querying a ref- 
erence database several times. To speed up the querying of 
individual sequences, we parallelized the fragment sketching 
step using Python thread pools and re-entrant code. 

For Pyskani ( https:// github.com/ althonos/ pyskani ), the 
original skani code (written in Rust) [ 9 ] was wrapped into 

a Python extension module using the PyO3 library (v0.22.5; 
https://pyo3.rs ) for bindings generation. To accelerate query- 
ing, we implemented a more generic strategy for the storage of 
reference markers, allowing to either load the markers from 

a file iteratively (as in the original skani) or pre-load them in 

memory to reduce I / O costs for successive querying. 
Validation and benchmarking were carried out on the five 

(meta)genomic datasets used to validate and benchmark Fas- 
tANI [ n = 14 952 total (meta)genomes]: (i) Dataset 1 (D1),
with 1662 closed prokaryotic genomes from NCBI’s RefSeq 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
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atabase; (ii) Dataset 2 (D2), with 571 draft genomes derived
rom Bacillus cereus group isolates; (iii) Dataset 3 (D3), with
350 draft genomes derived from Esc heric hia coli isolates; (iv)
ataset 4 (D4), with 468 draft genomes derived from Bacillus

nthracis isolates; and (v) Dataset 5 (D5), with 7901 MAGs
erived from public metagenomes ( Supplementary Text ) [ 1 ,
0 ]. Each of the following methods was used to calculate
NI values between each (meta)genome in Datasets D1–D5
nd its respective query genome ( Supplementary Text ): (i) Or-
hoANI (OAT_cmd.jar v1.40) [ 12 ]; (ii) FastANI v1.33 [ 1 ]; (iii)
kani v0.1.4 [ 9 ]; (iv) PyOrthoANI v0.6.0 (developed here); (v)
yFastANI v0.6.0 (developed here); and (vi) Pyskani v0.1.2
developed here). Five methods (all but Pyskani) were evalu-
ted using 1, 8, and 16 CPUs in triplicate; Pyskani was eval-
ated using 1 CPU in triplicate, as skani, and thus, Pyskani,
oes not parallelize when performing a single pairwise dis-
ance computation (per the skani source code and as demon-
trated here, Supplementary Fig. S1 and Supplementary Text ;
 = 717 651 total ANI computations). For each computa-
ion, “trace” in Nextflow v24.04.2 [ 21 ] was used to log speed
real / wall clock time) and memory usage [peak resident set
ize (RSS); Supplementary Text ]. 

esults and discussion 

sing each of the five datasets used to validate and bench-
ark FastANI [ n = 14 952 total (meta)genomes] [ 1 ], we com-
ared ANI values produced by PyOrthoANI, PyFastANI, and
yskani to those produced by OrthoANI, FastANI, and skani,
espectively. We additionally benchmarked the speed of all six
ethods on each genome individually using 1, 8, and / or 16
PUs in triplicate ( n = 717 651 total ANI computations; Fig.
 , Supplementary Figs S1 –S7 , Supplementary Tables S1 –S7 ,
upplementary Text ). 

ANI values calculated by PyOrthoANI, PyFastANI,
nd Pyskani were virtually identical to those produced
y OrthoANI, FastANI, and skani, respectively (adjusted
 

2 > 0.999 and P < 2.2e −16 for all methods; Fig. 1 A–C).
ompared to OrthoANI, PyOrthoANI was, on average,
 × faster per genome (Fig. 1 D). PyFastANI and Pyskani
erformed similarly to FastANI and skani, respectively,
ven when Python module load times and genome parsing
via BioPython) were included in the PyFastANI / Pyskani
untime; however, differences in FastANI / PyFastANI and
kani / Pyskani runtime and memory usage varied by dataset
Fig. 1 E and F, Supplementary Figs S1 –S7 ). 

Overall, PyOrthoANI, PyFastANI, and Pyskani enable
sers to perform ANI computations within Python-based soft-
are, workflows, and notebooks. Because each Python li-
rary integrates with BioPython and is easily interchange-
ble, we anticipate that our Python suite will be particularly
seful for comparing / benchmarking ANI algorithms, and for
evelopers / users who frequently encounter highly heteroge-
eous datasets (e.g. genomic datasets varying in size, quality,
nd isolate / MAG composition) that require flexibility in ANI
omputation algorithms. 
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Data availability 

PyOrthoANI, PyFastANI, and Pyskani are available (i)
as part of the Python Package Index repository un-
der the open-source MIT license at https://pypi.org/
project/ orthoani/ , https:// pypi.org/ project/ pyfastani/ , and
https:// pypi.org/ project/ pyskani/ , respectively; (ii) via GitHub
(source code) at https:// github.com/ althonos/ orthoani ,
https:// github.com/ althonos/ pyfastani , and https:// github.
com/ althonos/ pyskani , respectively; and (iii) as Sin-
gularity containers (used for benchmarking) at https:
// cloud.sylabs.io/ library/ lmc297/ pyorthoani/ pyorthoani , 
https:// cloud.sylabs.io/ library/ lmc297/ pyfastani/ pyfastani , 
and https:// cloud.sylabs.io/ library/ lmc297/ pyskani/ pyskani ,
respectively. Source code is additionally available as Supple-
mentary data. 
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