Universiteit

4 Leiden
The Netherlands

PyOrthoANI, PyFastANI, and Pyskani: a suite of Python libraries for

computation of average nucleotide identity
Larralde, M.; Zeller, G.; Carroll, L.M.

Citation

Larralde, M., Zeller, G., & Carroll, L. M. (2025). PyOrthoANI, PyFastANI, and Pyskani: a suite
of Python libraries for computation of average nucleotide identity. Nar Genomics And
Bioinformatics, 7(3). doi:10.1093/nargab/lqaf095

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license

Downloaded from: https://hdl.handle.net/1887/4290216

Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4290216

NAR Genomics and Bioinformatics, 2025, 7, |qaf095
https://doi.org/10.1093/nargab/lqaf095
Application Notes

OXFORD

PyOrthoANI, PyFastANI, and Pyskani: a suite of Python
libraries for computation of average nucleotide identity

Martin Larralde ©12-*, Georg Zeller ©'-2-3, Laura M. Carroll ©4.5.6.7.%

'Structural and Computational Biology Unit, EMBL, 69117 Heidelberg, Germany

2Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333ZA Leiden, Netherlands
3Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, 2333ZA Leide, Netherlands
*Department of Clinical Microbiology, SciLifeLab, Ume& University, 90187 Ume&, Sweden

SLaboratory for Molecular Infection Medicine Sweden (MIMS), Umeé University, 90187 Ume4, Sweden

8Umeé Centre for Microbial Research (UCMR), Umed University, 90187 Ume&, Sweden

"Integrated Science Lab (IceLab), Ume& University, 90187 Umed, Sweden

"To whom correspondence should be addressed. Email: martin.larralde@embl.de

Correspondence may also be addressed to Laura M. Carroll. Email: laura.carroll@umu.se

Abstract

The average nucleotide identity (ANI) metric has become the gold standard for prokaryotic species delineation in the genomics era. The most
popular ANl algorithms are available as command-line tools and/or web applications, making it inconvenient to incorporate them into bioinformatic
workflows, which utilize the popular Python programming language. Here, we present PyOrthoANI, PyFastANI, and Pyskani, Python libraries for
three popular ANI computation methods. ANI values produced by PyOrthoANI, PyFastANI, and Pyskani are virtually identical to those produced
by OrthoANI, FastANI, and skani, respectively (adjusted R > 0.999). Compared to OrthoANI, PyOrthoANI is, on average, 3x faster per genome,
while PyFastANI has multithreading support for single queries. All three libraries integrate seamlessly with BioPython, making it easy and
convenient to use, compare, and benchmark popular ANI algorithms within Python-based bioinformatic workflows, software programs, and
notebooks. Each library is available as part of the Python Package Index repository under the open-source MIT license, with source code available
via GitHub (PyOrthoANI, https://github.com/althonos/orthoani; PyFastANI, https://github.com/althonos/pyfastani; Pyskani, https://github.com/

althonos/pyskani).

Introduction

The average nucleotide identity (ANI) metric of genomic sim-
ilarity is arguably the most popular method for prokaryotic
species delineation in the genomics era [1, 2]. The calcula-
tion of ANI values shared between two genomes is a cru-
cial step in many bioinformatic pipelines, including popular
methods/workflows for prokaryotic species identification [3,
4], within-species lineage/strain delineation [5, 6], and general
prokaryotic (meta)genomic data analysis [7, 8].

While numerous ANTI algorithm implementations have been
developed, nucleotide BLAST-based ANI (ANIb) algorithms
are considered to be the gold standard [1, 9]. ANIb algorithms
are accurate in the sense that they share a strong correla-
tion with experimentally determined DNA-DNA hybridiza-
tion values [2, 10-12]. However, due to the high time com-
plexity of BLAST and similar alignment-based algorithms,
ANIb algorithms are notoriously slow [1] and thus most ap-
propriate for users with smaller datasets (e.g. up to ~10°
genomes/10° pairwise comparisons), who prioritize accuracy
over speed.

To overcome the computational limitations of ANIb,
alignment-free ANI algorithms have been developed, most no-
tably FastANI [1] and skani [9]. Both FastANI and skani forgo
some accuracy in favor of speed (i.e. they produce ANI values,
which correlate with, but are not necessarily equivalent to,
ANIDb), and as such, they can readily scale to massive genomic

datasets (e.g. >10* genomes/10% pairwise comparisons) [1,
9]. However, identifying the optimal alignment-free ANI al-
gorithm for a given dataset is not always straightforward.
FastANI is >50x faster than ANIb methods and is more ac-
curate than skani on reference-quality genomes [1, 9]. skani,
on the other hand, is >20x faster than FastANI and is more
accurate on fragmented, incomplete metagenome-assembled
genomes (MAGs) [9]. Thus, in addition to considering dataset
size and algorithm speed-accuracy trade-off, users may want
to consider dataset composition (e.g. isolate genomes versus
MAGs) and quality when selecting the optimal ANI algorithm
for their dataset.

Regardless of whether they prioritize accuracy or speed,
the most popular ANI algorithms/methods [e.g. FastANI,
skani, ANI by Orthology (OrthoANI), JSpeciesWS, PyANI]
are available as command-line tools and/or web applica-
tions [1, 9, 12-14]. This makes it inconvenient for bioinfor-
maticians to incorporate ANI algorithms into bioinformatic
workflows, which utilize the popular Python programming
language [15].

Here, we present a suite of Python libraries for popular ANI
algorithms, specifically (i) PyOrthoANI, a Python-based im-
plementation of the OrthoANI algorithm (a highly accurate
ANIb method) [12]; (ii) PyFastANI, and (iii) Pyskani, Python
bindings for the FastANI and skani algorithms, respectively
(fast, alignment-free methods) [1, 9]. Each Python library

Received: April 8,2025. Revised: June 10, 2025. Editorial Decision: June 12, 2025. Accepted: June 21,2025

© The Author(s) 2025. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

920z Arenuga4 ¢| uo Jasn ualesH qooer Aq L8196 1 8/S601ebl/g///e1911ue/qebieu/w oo dno-ojwapeoe//:sdpy wol) papeojumoq

https://doi.org/10.1093/nargab/lqaf095
https://orcid.org/0000-0002-3947-4444
https://orcid.org/0000-0003-1429-7485
https://orcid.org/0000-0002-3677-0192
https://github.com/althonos/orthoani;
https://github.com/althonos/pyfastani;
https://github.com/althonos/pyskani

2 Larralde et al.

A B C
100 : 1001 - 100 - -
Adj R? > 0.999 Adj R? > 0.999 Adj R? > 0.999
004 P<2.2e-16 P <2.2e-16 P<22e-16
Z o Z = 951
<Zz & < 90+ &
O 80 D ’ i
£ g . 2
;-2_., 70 g o 907
. 80 / P
T T T T T ’, T T T 85 1 ’I T T T
60 70 80 90 100 80 20 100 85 20 95 100
D OrthoANI E FastANI F skani
600
400 4 151
o 200+ o 10+ a4
o © O
c c c
o] o o
(6] [$] [$]
@ O 57 @
&, 9 L5
[[0} [}
E E E
© © © Jl
[} [} 13}
c o o
04 04
OrthoANI PyOrthoANI FastANl PyFastANI skani Pyskani

Figure 1. Correlation between ANI values produced by (A) PyOrthoANI, (B) PyFastANI, and (C) Pyskani (Y-axes) with ANI values produced by OrthoANI,
FastANI, and skani, respectively (X-axes) for genomes used in the FastANI validation/benchmarking datasets (black dots; Supplementary Tables S1-S6).
Dashed lines denote the best-fitting linear model for each method pair, with adjusted R? and P-values reported in the upper left corner of each subplot.
Pyskani values were multiplied by 100. Pergenome real (wall clock) time in seconds (Y-axes, log-scale) for (D) OrthoANI/PyOrthoANI, (E)
FastANI/PyFastANI, and (F) skani/Pyskani ((X-axes), using 1, 8, and/or 16 CPUs on the FastANI validation/benchmarking datasets (violin plots;
Supplementary Table S7). For fairness, PyFastANI and Pyskani times include the time it took to load Python modules and parse genomes using
BioPython (performed for every genome/computation). For extended versions of this figure, see Supplementary Figs S1-S7. Raw data used to

construct all plots are available in Supplementary Tables S1-S7.

integrates seamlessly with BioPython [16], making it simple
and convenient to perform ANI computations within Python-
based bioinformatic workflows, software programs, and note-
books (e.g. Jupyter) [17]. By providing a unified Python inter-
face, our suite allows users to easily swap out different ANI
algorithms, making it simple and convenient to test, compare,
and benchmark methods.

Materials and methods

The PyOrthoANI algorithm (https://github.com/althonos/
orthoani) was implemented in the same manner as the original
OrthoANI Java implementation [12]. Briefly, to calculate ANI
values between a query and reference genome, both genomes
are partitioned into 1020-bp-long fragments. Fragments that
are <1020 bp in length and/or contain >80% ambiguous
(N) nucleotides are discarded. Nucleotide BLAST (blastn) [18]
values are then calculated between the set of query and refer-
ence genome fragments using the following blastn parameters
(all other parameters are set to their respective defaults): -task
blastn, -evalue 1e-15, -xdrop_gap 150, -dust no, -penalty -1,
-reward 1, -num_alignments 1, -outfmt 7. The resulting frag-
ments are considered to be orthologous if they produce recip-
rocal best hits, which cover at least 35% of the total length

of the fragment. Final ANI values are calculated by averaging
the nucleotide identity values for all reciprocal blastn hits.

For PyFastANI (https://github.com/althonos/pyfastani), the
original FastANI code (written in C++) [1] was wrapped into
a Python extension module using the Cython language (v3.0)
[19]. While PyFastANI uses the original FastANI code for
hashing and core-genome identity computations, we reim-
plemented the sketching to support passing plain Python
strings as input sequences. In addition, we implemented
serialization/deserialization support to allow querying a ref-
erence database several times. To speed up the querying of
individual sequences, we parallelized the fragment sketching
step using Python thread pools and re-entrant code.

For Pyskani (https:/github.com/althonos/pyskani), the
original skani code (written in Rust) [9] was wrapped into
a Python extension module using the PyO3 library (v0.22.5;
https://pyo3.rs) for bindings generation. To accelerate query-
ing, we implemented a more generic strategy for the storage of
reference markers, allowing to either load the markers from
a file iteratively (as in the original skani) or pre-load them in
memory to reduce 1/O costs for successive querying.

Validation and benchmarking were carried out on the five
(meta)genomic datasets used to validate and benchmark Fas-
tANI [# = 14 952 total (meta)genomes]: (i) Dataset 1 (D1),
with 1662 closed prokaryotic genomes from NCBI’s RefSeq

920z Arenuga4 ¢| uo Jasn ualesH qooer Aq L8196 1 8/S601ebl/g///e1911ue/qebieu/w oo dno-ojwapeoe//:sdpy wol) papeojumoq

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://github.com/althonos/orthoani
https://github.com/althonos/pyfastani
https://github.com/althonos/pyskani
https://pyo3.rs

database; (ii) Dataset 2 (D2), with 571 draft genomes derived
from Bacillus cereus group isolates; (iii) Dataset 3 (D3), with
4350 draft genomes derived from Escherichia coli isolates; (iv)
Dataset 4 (D4), with 468 draft genomes derived from Bacillus
anthracis isolates; and (v) Dataset 5 (D5), with 7901 MAGs
derived from public metagenomes (Supplementary Text) [1,
20]. Each of the following methods was used to calculate
ANI values between each (meta)genome in Datasets D1-D3§
and its respective query genome (Supplementary Text): (i) Or-
thoANI (OAT_cmd.jar v1.40) [12]; (ii) FastANI v1.33 [1]; (iii)
skani v0.1.4 [9]; (iv) PyOrthoANI v0.6.0 (developed here); (v)
PyFastANI v0.6.0 (developed here); and (vi) Pyskani v0.1.2
(developed here). Five methods (all but Pyskani) were evalu-
ated using 1, 8, and 16 CPUs in triplicate; Pyskani was eval-
uated using 1 CPU in triplicate, as skani, and thus, Pyskani,
does not parallelize when performing a single pairwise dis-
tance computation (per the skani source code and as demon-
strated here, Supplementary Fig. S1 and Supplementary Text;
n = 717 651 total ANI computations). For each computa-
tion, “trace” in Nextflow v24.04.2 [21] was used to log speed
(real/wall clock time) and memory usage [peak resident set
size (RSS); Supplementary Text].

Results and discussion

Using each of the five datasets used to validate and bench-
mark FastANI [z = 14 952 total (meta)genomes] [1], we com-
pared ANI values produced by PyOrthoANI, PyFastANI, and
Pyskani to those produced by OrthoANI, FastANI, and skani,
respectively. We additionally benchmarked the speed of all six
methods on each genome individually using 1, 8, and/or 16
CPUs in triplicate (n = 717 651 total ANI computations; Fig.
1, Supplementary Figs S1-S7, Supplementary Tables S1-S7,
Supplementary Text).

ANI values calculated by PyOrthoANI, PyFastANI,
and Pyskani were virtually identical to those produced
by OrthoANI, FastANI, and skani, respectively (adjusted
R? > 0.999 and P < 2.2e—16 for all methods; Fig. 1A-C).
Compared to OrthoANI, PyOrthoANI was, on average,
3x faster per genome (Fig. 1D). PyFastANI and Pyskani
performed similarly to FastANI and skani, respectively,
even when Python module load times and genome parsing
(via BioPython) were included in the PyFastANI/Pyskani
runtime; however, differences in FastANI/PyFastANI and
skani/Pyskani runtime and memory usage varied by dataset
(Fig. 1E and F, Supplementary Figs S1-S7).

Overall, PyOrthoANI, PyFastANI, and Pyskani enable
users to perform ANI computations within Python-based soft-
ware, workflows, and notebooks. Because each Python li-
brary integrates with BioPython and is easily interchange-
able, we anticipate that our Python suite will be particularly
useful for comparing/benchmarking ANI algorithms, and for
developers/users who frequently encounter highly heteroge-
neous datasets (e.g. genomic datasets varying in size, quality,
and isolate/MAG composition) that require flexibility in ANI
computation algorithms.

Acknowledgements

This research was conducted using the resources of High Per-
formance Computing Center North (HPC2N; Umeé Univer-
sity, Umed, Sweden).

A suite of Python libraries for computation of ANl 3

Author contributions: Martin Larralde (Conceptualiza-
tion [equal], Formal analysis [equal], Investigation [equal],
Methodology [equal], Software [lead], Writing—original draft
[equal], Writing—review & editing [equal]), Georg Zeller
(Conceptualization [equal], Funding acquisition [equal],
Project administration [equal], Supervision [equal], Writing—
review & editing [equal]), and Laura Carroll (Conceptu-
alization [equal], Formal analysis [equal], Funding acqui-
sition [equal], Investigation [equal], Methodology [equal],
Project administration [equal], Supervision [equal], Validation
[equal], Visualization [equal], Writing—original draft [equal],
and Writing—review & editing [equal]).

Supplementary data

Supplementary data is available at NAR Genomics & Bioin-
formatics online.

Conflict of interest

None declared.

Funding

This work was supported by the SciLifeLab and Wallen-
berg Data Driven Life Science Program [grant number KAW
2020.0239 to L.M.C.], the Swedish Research Council [grant
number 2023-05212 to L.M.C.], the European Molecular Bi-
ology Laboratory (EMBL); the SFB 1371 of the German Re-
search Foundation (Deutsche Forschungsgemeinschaft, DFG)
[395357507 to G.Z.], and a Leiden University Medical Center
(LUMC) Fellowship [to G.Z.].

Data availability

PyOrthoANI, PyFastANI, and Pyskani are available (i)
as part of the Python Package Index repository un-
der the open-source MIT license at https:/pypi.org/
project/orthoani/, https://pypi.org/project/pyfastani/, and
https://pypi.org/project/pyskani/, respectively; (ii) via GitHub
(source code) at https://github.com/althonos/orthoani,
https://github.com/althonos/pyfastani, and https://github.
com/althonos/pyskani, respectively; and (iii) as Sin-
gularity containers (used for benchmarking) at https:
/lcloud.sylabs.io/library/Imc297/pyorthoani/pyorthoani,
https://cloud.sylabs.io/library/lmc297/pyfastani/pyfastani,
and https://cloud.sylabs.io/library/Imc297/pyskani/pyskani,
respectively. Source code is additionally available as Supple-
mentary data.

References

1. Jain C, Rodriguez-R LM, Phillippy AM et al. High throughput
ANT analysis of 90K prokaryotic genomes reveals clear species
boundaries. Nat Commun 2018;9:5114.
https://doi.org/10.1038/s41467-018-07641-9

2. Richter M, Rossell6-Mora R. Shifting the genomic gold standard
for the prokaryotic species definition. Proc Natl Acad Sci USA
2009;106:19126-31. https://doi.org/10.1073/pnas.0906412106

3. Parks DH, Chuvochina M, Waite DW et al. A standardized
bacterial taxonomy based on genome phylogeny substantially
revises the tree of life. Nat Biotechnol 2018;36:996-1004.
https://doi.org/10.1038/nbt.4229

920z Arenuga4 ¢| uo Jasn ualesH qooer Aq L8196 1 8/S601ebl/g///e1911ue/qebieu/w oo dno-ojwapeoe//:sdpy wol) papeojumoq

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://pypi.org/project/orthoani/
https://pypi.org/project/pyfastani/
https://pypi.org/project/pyskani/
https://github.com/althonos/orthoani
https://github.com/althonos/pyfastani
https://github.com/althonos/pyskani
https://cloud.sylabs.io/library/lmc297/pyorthoani/pyorthoani
https://cloud.sylabs.io/library/lmc297/pyfastani/pyfastani
https://cloud.sylabs.io/library/lmc297/pyskani/pyskani
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1073/pnas.0906412106
https://doi.org/10.1038/nbt.4229

4

10.

11.

12.

Larralde et al.

. Chaumeil P-A, Mussig AJ, Hugenholtz P ef al. GTDB-Tk: a toolkit

to classify genomes with the Genome Taxonomy Database.
Bioinformatics 2020;36:1925-7.
https://doi.org/10.1093/bioinformatics/btz848

. Rodriguez-R LM, Conrad RE, Viver T et al. An ANI gap within

bacterial species that advances the definitions of intra-species units.
mBio 2024;15:¢0269623. https://doi.org/10.1128/mbio.02696-23

. Raghuram V, Petit RA 3rd, Karol Z et al. Average nucleotide

identity-based strain grouping allows identification of
strain-specific genes in the pangenome. mSystems
2024;9:¢0014324. https://doi.org/10.1128/msystems.00143-24

. Olm MR, Brown CT, Brooks B et al. dRep: a tool for fast and

accurate genomic comparisons that enables improved genome
recovery from metagenomes through de-replication. ISME |
2017;11:2864-8. https://doi.org/10.1038/ismej.2017.126

. Petit RA 3rd, Read TD. Bactopia: a flexible pipeline for complete

analysis of bacterial genomes. mSystems 2020;5:¢00190-20.

. Shaw J, Yu YW. Fast and robust metagenomic sequence

comparison through sparse chaining with skani. Nat Methods
2023;20:1661-5. https://doi.org/10.1038/s41592-023-02018-3
Konstantinidis KT, Tiedje JM. Genomic insights that advance the
species definition for prokaryotes. Proc Natl Acad Sci USA
2005;102:2567-72. https://doi.org/10.1073/pnas.0409727102
Goris J, Konstantinidis KT, Klappenbach JA et al. DNA-DNA
hybridization values and their relationship to whole-genome
sequence similarities. Int | Syst Evol Microbiol 2007;57:81-91.
https://doi.org/10.1099/ijs.0.64483-0

Lee I, Ouk Kim Y, Park S-C et al. OrthoANI: an improved
algorithm and software for calculating average nucleotide identity.
Int | Syst Evol Microbiol 2016;66:1100-3.
https://doi.org/10.1099/ijsem.0.000760

13.

14.

15.

16.

17.

18.

19.

20.

21.

Richter M, Rossell6-Mora R, Oliver Glockner F et al. JSpeciesWS:
a web server for prokaryotic species circumscription based on
pairwise genome comparison. Bioinformatics 2016;32:929-31.
https://doi.org/10.1093/bioinformatics/btv681

Pritchard L, Glover RH, Humpbhris S et al. Genomics and
taxonomy in diagnostics for food security: soft-rotting
enterobacterial plant pathogens. Anal Methods 2015;8:12-24.
https://doi.org/10.1039/C5AY02550H

Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

Cock PJA, Antao T, Chang JT et al. Biopython: freely available
Python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009;25:1422-3.
https://doi.org/10.1093/bioinformatics/btp163

Kluyver T, Ragan-Kelley B, Granger B et al. Jupyter Notebooks—a
publishing format for reproducible computational workflows. In:
Positioning and Power in Academic Publishing: Players, Agents
and Agendas. Amsterdam, Netherlands: 10S Press, 2016, 87-90.
Camacho C, Coulouris G, Avagyan V et al. BLAST+: architecture
and applications. BMC Bioinformatics 2009;10:421.
https://doi.org/10.1186/1471-2105-10-421

Behnel S, Bradshaw R, Citro C et al. Cython: the best of both
worlds. Comput Sci Eng 2011;13:31-9.

Parks DH, Rinke C, Chuvochina M et al. Recovery of nearly 8,000
metagenome-assembled genomes substantially expands the tree of
life. Nat Microbiol 2017;2:1533-42.
https://doi.org/10.1038/s41564-017-0012-7

Di Tommaso P, Chatzou M, Floden EW et al. Nextflow enables
reproducible computational workflows. Nat Biotechnol
2017;35:316-9. https://doi.org/10.1038/nbt.3820

Received: April 8,2025. Revised: June 10, 2025. Editorial Decision: June 12, 2025. Accepted: June 21,2025

© The Author(s) 2025. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

920z Arenuga4 ¢| uo Jasn ualesH qooer Aq L8196 1 8/S601ebl/g///e1911ue/qebieu/w oo dno-ojwapeoe//:sdpy wol) papeojumoq

https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1128/mbio.02696-23
https://doi.org/10.1128/msystems.00143-24
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1099/ijs.0.64483-0
https://doi.org/10.1099/ijsem.0.000760
https://doi.org/10.1093/bioinformatics/btv681
https://doi.org/10.1039/C5AY02550H
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1038/s41564-017-0012-7
https://doi.org/10.1038/nbt.3820

	Introduction
	Materials and methods
	Results and discussion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References

