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Abstract

The average nucleotide identity (ANI) metric has become the gold standard for prokaryotic species delineation in the genomics era. The most
popular ANl algorithms are available as command-line tools and/or web applications, making it inconvenient to incorporate them into bioinformatic
workflows, which utilize the popular Python programming language. Here, we present PyOrthoANI, PyFastANI, and Pyskani, Python libraries for
three popular ANI computation methods. ANI values produced by PyOrthoANI, PyFastANI, and Pyskani are virtually identical to those produced
by OrthoANI, FastANI, and skani, respectively (adjusted R > 0.999). Compared to OrthoANI, PyOrthoANI is, on average, 3x faster per genome,
while PyFastANI has multithreading support for single queries. All three libraries integrate seamlessly with BioPython, making it easy and
convenient to use, compare, and benchmark popular ANI algorithms within Python-based bioinformatic workflows, software programs, and
notebooks. Each library is available as part of the Python Package Index repository under the open-source MIT license, with source code available
via GitHub (PyOrthoANI, https://github.com/althonos/orthoani; PyFastANI, https://github.com/althonos/pyfastani; Pyskani, https://github.com/

althonos/pyskani).

Introduction

The average nucleotide identity (ANI) metric of genomic sim-
ilarity is arguably the most popular method for prokaryotic
species delineation in the genomics era [1, 2]. The calcula-
tion of ANI values shared between two genomes is a cru-
cial step in many bioinformatic pipelines, including popular
methods/workflows for prokaryotic species identification [3,
4], within-species lineage/strain delineation [5, 6], and general
prokaryotic (meta)genomic data analysis [7, 8].

While numerous ANTI algorithm implementations have been
developed, nucleotide BLAST-based ANI (ANIb) algorithms
are considered to be the gold standard [1, 9]. ANIb algorithms
are accurate in the sense that they share a strong correla-
tion with experimentally determined DNA-DNA hybridiza-
tion values [2, 10-12]. However, due to the high time com-
plexity of BLAST and similar alignment-based algorithms,
ANIb algorithms are notoriously slow [1] and thus most ap-
propriate for users with smaller datasets (e.g. up to ~10°
genomes/10° pairwise comparisons), who prioritize accuracy
over speed.

To overcome the computational limitations of ANIb,
alignment-free ANI algorithms have been developed, most no-
tably FastANI [1] and skani [9]. Both FastANI and skani forgo
some accuracy in favor of speed (i.e. they produce ANI values,
which correlate with, but are not necessarily equivalent to,
ANIDb), and as such, they can readily scale to massive genomic

datasets (e.g. >10* genomes/10% pairwise comparisons) [1,
9]. However, identifying the optimal alignment-free ANI al-
gorithm for a given dataset is not always straightforward.
FastANI is >50x faster than ANIb methods and is more ac-
curate than skani on reference-quality genomes [1, 9]. skani,
on the other hand, is >20x faster than FastANI and is more
accurate on fragmented, incomplete metagenome-assembled
genomes (MAGs) [9]. Thus, in addition to considering dataset
size and algorithm speed-accuracy trade-off, users may want
to consider dataset composition (e.g. isolate genomes versus
MAGs) and quality when selecting the optimal ANI algorithm
for their dataset.

Regardless of whether they prioritize accuracy or speed,
the most popular ANI algorithms/methods [e.g. FastANI,
skani, ANI by Orthology (OrthoANI), JSpeciesWS, PyANI]
are available as command-line tools and/or web applica-
tions [1, 9, 12-14]. This makes it inconvenient for bioinfor-
maticians to incorporate ANI algorithms into bioinformatic
workflows, which utilize the popular Python programming
language [15].

Here, we present a suite of Python libraries for popular ANI
algorithms, specifically (i) PyOrthoANI, a Python-based im-
plementation of the OrthoANI algorithm (a highly accurate
ANIb method) [12]; (ii) PyFastANI, and (iii) Pyskani, Python
bindings for the FastANI and skani algorithms, respectively
(fast, alignment-free methods) [1, 9]. Each Python library
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Figure 1. Correlation between ANI values produced by (A) PyOrthoANI, (B) PyFastANI, and (C) Pyskani (Y-axes) with ANI values produced by OrthoANI,
FastANI, and skani, respectively (X-axes) for genomes used in the FastANI validation/benchmarking datasets (black dots; Supplementary Tables S1-S6).
Dashed lines denote the best-fitting linear model for each method pair, with adjusted R? and P-values reported in the upper left corner of each subplot.
Pyskani values were multiplied by 100. Pergenome real (wall clock) time in seconds (Y-axes, log-scale) for (D) OrthoANI/PyOrthoANI, (E)
FastANI/PyFastANI, and (F) skani/Pyskani ((X-axes), using 1, 8, and/or 16 CPUs on the FastANI validation/benchmarking datasets (violin plots;
Supplementary Table S7). For fairness, PyFastANI and Pyskani times include the time it took to load Python modules and parse genomes using
BioPython (performed for every genome/computation). For extended versions of this figure, see Supplementary Figs S1-S7. Raw data used to

construct all plots are available in Supplementary Tables S1-S7.

integrates seamlessly with BioPython [16], making it simple
and convenient to perform ANI computations within Python-
based bioinformatic workflows, software programs, and note-
books (e.g. Jupyter) [17]. By providing a unified Python inter-
face, our suite allows users to easily swap out different ANI
algorithms, making it simple and convenient to test, compare,
and benchmark methods.

Materials and methods

The PyOrthoANI algorithm (https://github.com/althonos/
orthoani) was implemented in the same manner as the original
OrthoANI Java implementation [12]. Briefly, to calculate ANI
values between a query and reference genome, both genomes
are partitioned into 1020-bp-long fragments. Fragments that
are <1020 bp in length and/or contain >80% ambiguous
(N) nucleotides are discarded. Nucleotide BLAST (blastn) [18]
values are then calculated between the set of query and refer-
ence genome fragments using the following blastn parameters
(all other parameters are set to their respective defaults): -task
blastn, -evalue 1e-15, -xdrop_gap 150, -dust no, -penalty -1,
-reward 1, -num_alignments 1, -outfmt 7. The resulting frag-
ments are considered to be orthologous if they produce recip-
rocal best hits, which cover at least 35% of the total length

of the fragment. Final ANI values are calculated by averaging
the nucleotide identity values for all reciprocal blastn hits.

For PyFastANI (https://github.com/althonos/pyfastani), the
original FastANI code (written in C++) [1] was wrapped into
a Python extension module using the Cython language (v3.0)
[19]. While PyFastANI uses the original FastANI code for
hashing and core-genome identity computations, we reim-
plemented the sketching to support passing plain Python
strings as input sequences. In addition, we implemented
serialization/deserialization support to allow querying a ref-
erence database several times. To speed up the querying of
individual sequences, we parallelized the fragment sketching
step using Python thread pools and re-entrant code.

For Pyskani (https:/github.com/althonos/pyskani), the
original skani code (written in Rust) [9] was wrapped into
a Python extension module using the PyO3 library (v0.22.5;
https://pyo3.rs) for bindings generation. To accelerate query-
ing, we implemented a more generic strategy for the storage of
reference markers, allowing to either load the markers from
a file iteratively (as in the original skani) or pre-load them in
memory to reduce 1/O costs for successive querying.

Validation and benchmarking were carried out on the five
(meta)genomic datasets used to validate and benchmark Fas-
tANI [# = 14 952 total (meta)genomes]: (i) Dataset 1 (D1),
with 1662 closed prokaryotic genomes from NCBI’s RefSeq
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database; (ii) Dataset 2 (D2), with 571 draft genomes derived
from Bacillus cereus group isolates; (iii) Dataset 3 (D3), with
4350 draft genomes derived from Escherichia coli isolates; (iv)
Dataset 4 (D4), with 468 draft genomes derived from Bacillus
anthracis isolates; and (v) Dataset 5 (D5), with 7901 MAGs
derived from public metagenomes (Supplementary Text) [1,
20]. Each of the following methods was used to calculate
ANI values between each (meta)genome in Datasets D1-D3§
and its respective query genome (Supplementary Text): (i) Or-
thoANI (OAT_cmd.jar v1.40) [12]; (ii) FastANI v1.33 [1]; (iii)
skani v0.1.4 [9]; (iv) PyOrthoANI v0.6.0 (developed here); (v)
PyFastANI v0.6.0 (developed here); and (vi) Pyskani v0.1.2
(developed here). Five methods (all but Pyskani) were evalu-
ated using 1, 8, and 16 CPUs in triplicate; Pyskani was eval-
uated using 1 CPU in triplicate, as skani, and thus, Pyskani,
does not parallelize when performing a single pairwise dis-
tance computation (per the skani source code and as demon-
strated here, Supplementary Fig. S1 and Supplementary Text;
n = 717 651 total ANI computations). For each computa-
tion, “trace” in Nextflow v24.04.2 [21] was used to log speed
(real/wall clock time) and memory usage [peak resident set
size (RSS); Supplementary Text].

Results and discussion

Using each of the five datasets used to validate and bench-
mark FastANI [z = 14 952 total (meta)genomes] [1], we com-
pared ANI values produced by PyOrthoANI, PyFastANI, and
Pyskani to those produced by OrthoANI, FastANI, and skani,
respectively. We additionally benchmarked the speed of all six
methods on each genome individually using 1, 8, and/or 16
CPUs in triplicate (n = 717 651 total ANI computations; Fig.
1, Supplementary Figs S1-S7, Supplementary Tables S1-S7,
Supplementary Text).

ANI values calculated by PyOrthoANI, PyFastANI,
and Pyskani were virtually identical to those produced
by OrthoANI, FastANI, and skani, respectively (adjusted
R? > 0.999 and P < 2.2e—16 for all methods; Fig. 1A-C).
Compared to OrthoANI, PyOrthoANI was, on average,
3x faster per genome (Fig. 1D). PyFastANI and Pyskani
performed similarly to FastANI and skani, respectively,
even when Python module load times and genome parsing
(via BioPython) were included in the PyFastANI/Pyskani
runtime; however, differences in FastANI/PyFastANI and
skani/Pyskani runtime and memory usage varied by dataset
(Fig. 1E and F, Supplementary Figs S1-S7).

Overall, PyOrthoANI, PyFastANI, and Pyskani enable
users to perform ANI computations within Python-based soft-
ware, workflows, and notebooks. Because each Python li-
brary integrates with BioPython and is easily interchange-
able, we anticipate that our Python suite will be particularly
useful for comparing/benchmarking ANI algorithms, and for
developers/users who frequently encounter highly heteroge-
neous datasets (e.g. genomic datasets varying in size, quality,
and isolate/MAG composition) that require flexibility in ANI
computation algorithms.
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