
PyOrthoANI, PyFastANI, and Pyskani: a suite of Python libraries for
computation of average nucleotide identity
Larralde, M.; Zeller, G.; Carroll, L.M.

Citation
Larralde, M., Zeller, G., & Carroll, L. M. (2025). PyOrthoANI, PyFastANI, and Pyskani: a suite
of Python libraries for computation of average nucleotide identity. Nar Genomics And
Bioinformatics, 7(3). doi:10.1093/nargab/lqaf095
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4290216
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4290216


NAR Genomics and Bioinformatics , 2025, 7 , lqaf095 
https://doi.org/10.1093/nargab/lqaf095 
Application Notes 

PyOrthoANI, PyFastANI, and Pyskani: a suite of Python 

libr aries f or computation of a v er ag e nucleotide identity 

Mar tin Larr alde 

1 , 2 , * , Georg Zeller 1 , 2 , 3 , Laura M. Carroll 4 , 5 , 6 , 7 , * 

1 Structural and Computational Biology Unit, EMBL, 69117 Heidelberg, Germany 
2 Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333ZA Leiden, Netherlands 
3 Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, 2333ZA Leide, Netherlands 
4 Department of Clinical Microbiology, SciLifeLab, Umeå University, 90187 Umeå, Sweden 
5 Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden 
6 Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden 
7 Integrated Science Lab (IceLab), Umeå University, 90187 Umeå, Sweden 
* To whom correspondence should be addressed. Email: martin.larralde@embl.de 
Correspondence may also be addressed to Laura M. Carroll. Email: laura.carroll@umu.se 

Abstract 

T he a v erage nucleotide identity (ANI) metric has become the gold standard f or prokary otic species delineation in the genomics era. The most 
popular ANI algorithms are a v ailable as command-line tools and / or web applications, making it incon v enient to incorporate them into bioinformatic 
w orkflo ws, which utiliz e the popular Python programming language. Here, w e present PyOrthoANI, PyF astANI, and Py skani, Python libraries f or 
three popular ANI computation methods. ANI values produced b y PyOrthoANI, PyF astANI, and Py skani are virtually identical to those produced 
b y OrthoANI, F astANI, and skani, respectiv ely (adjusted R 

2 > 0.999). Compared to OrthoANI, PyOrthoANI is, on a v erage, 3 × f aster per genome, 
while PyFastANI has multithreading support for single queries. All three libraries integrate seamlessly with BioPython, making it easy and 
con v enient to use, compare, and benchmark popular ANI algorithms within Python-based bioinformatic workflows, software programs, and 
notebooks. Each library is a v ailable as part of the Python Package Index repository under the open-source MIT license, with source code available 
via GitHub (PyOrthoANI, https:// github.com/ althonos/ orthoani ; PyFastANI, https:// github.com/ althonos/ p yf astani ; Py skani, https://github.com/ 
althonos/p y skani ). 

I

T  

i  

s  

t  

c  

m  

4  

p
 

d  

a  

a  

t  

t  

p  

A  

p
g  

o
 

a  

t  

s  

w  

A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
w

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/3/lqaf095/8196481 by Jacob H

eeren user on 13 February 2026
ntroduction 

he average nucleotide identity (ANI) metric of genomic sim-
larity is arguably the most popular method for prokaryotic
pecies delineation in the genomics era [ 1 , 2 ]. The calcula-
ion of ANI values shared between two genomes is a cru-
ial step in many bioinformatic pipelines, including popular
ethods / workflows for prokaryotic species identification [ 3 ,
 ], within-species lineage / strain delineation [ 5 , 6 ], and general
rokaryotic (meta)genomic data analysis [ 7 , 8 ]. 
While numerous ANI algorithm implementations have been

eveloped, nucleotide BLAST-based ANI (ANIb) algorithms
re considered to be the gold standard [ 1 , 9 ]. ANIb algorithms
re accurate in the sense that they share a strong correla-
ion with experimentally determined DNA–DNA hybridiza-
ion values [ 2 , 10–12 ]. However, due to the high time com-
lexity of BLAST and similar alignment-based algorithms,
NIb algorithms are notoriously slow [ 1 ] and thus most ap-
ropriate for users with smaller datasets (e.g. up to ≈10 

3 

enomes / 10 

6 pairwise comparisons), who prioritize accuracy
ver speed. 
To overcome the computational limitations of ANIb,

lignment-free ANI algorithms have been developed, most no-
ably FastANI [ 1 ] and skani [ 9 ]. Both FastANI and skani forgo
ome accuracy in favor of speed (i.e. they produce ANI values,
hich correlate with, but are not necessarily equivalent to,
NIb), and as such, they can readily scale to massive genomic
eceived: April 8, 2025. Revised: June 10, 2025. Editorial Decision: June 12, 202
The Author(s) 2025. Published by Oxford University Press on behalf of NAR G

his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
datasets (e.g. ≥10 

4 genomes / 10 

8 pairwise comparisons) [ 1 ,
9 ]. However, identifying the optimal alignment-free ANI al-
gorithm for a given dataset is not always straightforward.
FastANI is ≥50 × faster than ANIb methods and is more ac-
curate than skani on reference-quality genomes [ 1 , 9 ]. skani,
on the other hand, is > 20 × faster than FastANI and is more
accurate on fragmented, incomplete metagenome-assembled
genomes (MAGs) [ 9 ]. Thus, in addition to considering dataset
size and algorithm speed–accuracy trade-off, users may want
to consider dataset composition (e.g. isolate genomes versus
MAGs) and quality when selecting the optimal ANI algorithm
for their dataset. 

Regardless of whether they prioritize accuracy or speed,
the most popular ANI algorithms / methods [e.g. FastANI,
skani, ANI by Orthology (OrthoANI), JSpeciesWS, PyANI]
are available as command-line tools and / or web applica-
tions [ 1 , 9 , 12–14 ]. This makes it inconvenient for bioinfor-
maticians to incorporate ANI algorithms into bioinformatic
workflows, which utilize the popular Python programming
language [ 15 ]. 

Here, we present a suite of Python libraries for popular ANI
algorithms, specifically (i) PyOrthoANI, a Python-based im-
plementation of the OrthoANI algorithm (a highly accurate
ANIb method) [ 12 ]; (ii) PyFastANI, and (iii) Pyskani, Python
bindings for the FastANI and skani algorithms, respectively
(fast, alignment-free methods) [ 1 , 9 ]. Each Python library
5. Accepted: June 21, 2025 
enomics and Bioinformatics. 

ons Attribution License (https: // creativecommons.org / licenses / by / 4.0 / ), 
provided the original work is properly cited. 

https://doi.org/10.1093/nargab/lqaf095
https://orcid.org/0000-0002-3947-4444
https://orcid.org/0000-0003-1429-7485
https://orcid.org/0000-0002-3677-0192
https://github.com/althonos/orthoani;
https://github.com/althonos/pyfastani;
https://github.com/althonos/pyskani


2 Larralde et al. 

Figure 1. Correlation between ANI values produced by ( A ) PyOrthoANI, ( B ) PyFastANI, and ( C ) Pyskani (Y-axes) with ANI values produced by OrthoANI, 
FastANI, and skani, respectively ( X -axes) for genomes used in the FastANI validation / benchmarking datasets (black dots; Supplementary Tables S1 –S6 ). 
Dashed lines denote the best-fitting linear model for each method pair, with adjusted R 

2 and P -values reported in the upper left corner of each subplot. 
Py skani v alues w ere multiplied b y 100. Per-genome real (w all clock) time in seconds (Y-ax es, log-scale) f or ( D ) OrthoANI / PyOrthoANI, ( E ) 
F astANI / PyF astANI, and ( F ) skani / Pyskani ((X-axes), using 1, 8, and / or 16 CPUs on the FastANI validation / benchmarking datasets (violin plots; 
Supplementary Table S7 ). For fairness, PyFastANI and Pyskani times include the time it took to load Python modules and parse genomes using 
BioPython (performed for every genome / computation). For extended versions of this figure, see Supplementary Figs S1 –S7 . Raw data used to 
construct all plots are a v ailable in Supplementary Tables S1 –S7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/3/lqaf095/8196481 by Jacob H

eeren user on 13 February 2026
integrates seamlessly with BioPython [ 16 ], making it simple
and convenient to perform ANI computations within Python-
based bioinformatic workflows, software programs, and note-
books (e.g. Jupyter) [ 17 ]. By providing a unified Python inter-
face, our suite allows users to easily swap out different ANI
algorithms, making it simple and convenient to test, compare,
and benchmark methods. 

Materials and methods 

The PyOrthoANI algorithm ( https:// github.com/ althonos/
orthoani ) was implemented in the same manner as the original
OrthoANI Java implementation [ 12 ]. Briefly, to calculate ANI
values between a query and reference genome, both genomes
are partitioned into 1020-bp-long fragments. Fragments that
are < 1020 bp in length and / or contain > 80% ambiguous
( N ) nucleotides are discarded. Nucleotide BLAST (blastn) [ 18 ]
values are then calculated between the set of query and refer-
ence genome fragments using the following blastn parameters
(all other parameters are set to their respective defaults): -task
blastn, -evalue 1e-15, -xdrop_gap 150, -dust no, -penalty -1,
-reward 1, -num_alignments 1, -outfmt 7. The resulting frag-
ments are considered to be orthologous if they produce recip-
rocal best hits, which cover at least 35% of the total length
of the fragment. Final ANI values are calculated by averaging 
the nucleotide identity values for all reciprocal blastn hits. 

For PyFastANI ( https:// github.com/ althonos/ pyfastani ), the 
original FastANI code (written in C++) [ 1 ] was wrapped into 

a Python extension module using the Cython language (v3.0) 
[ 19 ]. While PyFastANI uses the original FastANI code for 
hashing and core-genome identity computations, we reim- 
plemented the sketching to support passing plain Python 

strings as input sequences. In addition, we implemented 

serialization / deserialization support to allow querying a ref- 
erence database several times. To speed up the querying of 
individual sequences, we parallelized the fragment sketching 
step using Python thread pools and re-entrant code. 

For Pyskani ( https:// github.com/ althonos/ pyskani ), the 
original skani code (written in Rust) [ 9 ] was wrapped into 

a Python extension module using the PyO3 library (v0.22.5; 
https://pyo3.rs ) for bindings generation. To accelerate query- 
ing, we implemented a more generic strategy for the storage of 
reference markers, allowing to either load the markers from 

a file iteratively (as in the original skani) or pre-load them in 

memory to reduce I / O costs for successive querying. 
Validation and benchmarking were carried out on the five 

(meta)genomic datasets used to validate and benchmark Fas- 
tANI [ n = 14 952 total (meta)genomes]: (i) Dataset 1 (D1),
with 1662 closed prokaryotic genomes from NCBI’s RefSeq 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://github.com/althonos/orthoani
https://github.com/althonos/pyfastani
https://github.com/althonos/pyskani
https://pyo3.rs


A suite of Python libraries for computation of ANI 3 

d  

f  

4  

D  

a  

d  

2  

A  

a  

t  

s  

P  

(  

a  

u  

d  

t  

s  

n  

t  

(  

s

R

U  

m  

p  

P  

r  

m  

C  

1  

S
 

a  

b  

R  

C  

3  

p  

e  

(  

r  

s  

(
 

u  

w  

b  

a  

u  

d  

n  

a  

c

A

T  

f  

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/3/lqaf095/8196481 by Jacob H

eeren user on 13 February 2026
atabase; (ii) Dataset 2 (D2), with 571 draft genomes derived
rom Bacillus cereus group isolates; (iii) Dataset 3 (D3), with
350 draft genomes derived from Esc heric hia coli isolates; (iv)
ataset 4 (D4), with 468 draft genomes derived from Bacillus

nthracis isolates; and (v) Dataset 5 (D5), with 7901 MAGs
erived from public metagenomes ( Supplementary Text ) [ 1 ,
0 ]. Each of the following methods was used to calculate
NI values between each (meta)genome in Datasets D1–D5
nd its respective query genome ( Supplementary Text ): (i) Or-
hoANI (OAT_cmd.jar v1.40) [ 12 ]; (ii) FastANI v1.33 [ 1 ]; (iii)
kani v0.1.4 [ 9 ]; (iv) PyOrthoANI v0.6.0 (developed here); (v)
yFastANI v0.6.0 (developed here); and (vi) Pyskani v0.1.2
developed here). Five methods (all but Pyskani) were evalu-
ted using 1, 8, and 16 CPUs in triplicate; Pyskani was eval-
ated using 1 CPU in triplicate, as skani, and thus, Pyskani,
oes not parallelize when performing a single pairwise dis-
ance computation (per the skani source code and as demon-
trated here, Supplementary Fig. S1 and Supplementary Text ;
 = 717 651 total ANI computations). For each computa-
ion, “trace” in Nextflow v24.04.2 [ 21 ] was used to log speed
real / wall clock time) and memory usage [peak resident set
ize (RSS); Supplementary Text ]. 

esults and discussion 

sing each of the five datasets used to validate and bench-
ark FastANI [ n = 14 952 total (meta)genomes] [ 1 ], we com-
ared ANI values produced by PyOrthoANI, PyFastANI, and
yskani to those produced by OrthoANI, FastANI, and skani,
espectively. We additionally benchmarked the speed of all six
ethods on each genome individually using 1, 8, and / or 16
PUs in triplicate ( n = 717 651 total ANI computations; Fig.
 , Supplementary Figs S1 –S7 , Supplementary Tables S1 –S7 ,
upplementary Text ). 

ANI values calculated by PyOrthoANI, PyFastANI,
nd Pyskani were virtually identical to those produced
y OrthoANI, FastANI, and skani, respectively (adjusted
 

2 > 0.999 and P < 2.2e −16 for all methods; Fig. 1 A–C).
ompared to OrthoANI, PyOrthoANI was, on average,
 × faster per genome (Fig. 1 D). PyFastANI and Pyskani
erformed similarly to FastANI and skani, respectively,
ven when Python module load times and genome parsing
via BioPython) were included in the PyFastANI / Pyskani
untime; however, differences in FastANI / PyFastANI and
kani / Pyskani runtime and memory usage varied by dataset
Fig. 1 E and F, Supplementary Figs S1 –S7 ). 

Overall, PyOrthoANI, PyFastANI, and Pyskani enable
sers to perform ANI computations within Python-based soft-
are, workflows, and notebooks. Because each Python li-
rary integrates with BioPython and is easily interchange-
ble, we anticipate that our Python suite will be particularly
seful for comparing / benchmarking ANI algorithms, and for
evelopers / users who frequently encounter highly heteroge-
eous datasets (e.g. genomic datasets varying in size, quality,
nd isolate / MAG composition) that require flexibility in ANI
omputation algorithms. 

 c kno wledg ements 

his research was conducted using the resources of High Per-
ormance Computing Center North (HPC2N; Umeå Univer-
ity, Umeå, Sweden). 
Author contributions: Martin Larralde (Conceptualiza-
tion [equal], Formal analysis [equal], Investigation [equal],
Methodology [equal], Software [lead], Writing—original draft
[equal], Writing—review & editing [equal]), Georg Zeller
(Conceptualization [equal], Funding acquisition [equal],
Project administration [equal], Supervision [equal], Writing—
review & editing [equal]), and Laura Carroll (Conceptu-
alization [equal], Formal analysis [equal], Funding acqui-
sition [equal], Investigation [equal], Methodology [equal],
Project administration [equal], Supervision [equal], Validation
[equal], Visualization [equal], Writing—original draft [equal],
and Writing—review & editing [equal]). 

Supplementary data 

Supplementary data is available at NAR Genomics & Bioin-
formatics online. 

Conflict of interest 

None declared. 

Funding 

This work was supported by the SciLifeLab and Wallen-
berg Data Driven Life Science Program [grant number KAW
2020.0239 to L.M.C.], the Swedish Research Council [grant
number 2023-05212 to L.M.C.], the European Molecular Bi-
ology Laboratory (EMBL); the SFB 1371 of the German Re-
search Foundation (Deutsche Forschungsgemeinschaft, DFG)
[395357507 to G.Z.], and a Leiden University Medical Center
(LUMC) Fellowship [to G.Z.]. 

Data availability 

PyOrthoANI, PyFastANI, and Pyskani are available (i)
as part of the Python Package Index repository un-
der the open-source MIT license at https://pypi.org/
project/ orthoani/ , https:// pypi.org/ project/ pyfastani/ , and
https:// pypi.org/ project/ pyskani/ , respectively; (ii) via GitHub
(source code) at https:// github.com/ althonos/ orthoani ,
https:// github.com/ althonos/ pyfastani , and https:// github.
com/ althonos/ pyskani , respectively; and (iii) as Sin-
gularity containers (used for benchmarking) at https:
// cloud.sylabs.io/ library/ lmc297/ pyorthoani/ pyorthoani , 
https:// cloud.sylabs.io/ library/ lmc297/ pyfastani/ pyfastani , 
and https:// cloud.sylabs.io/ library/ lmc297/ pyskani/ pyskani ,
respectively. Source code is additionally available as Supple-
mentary data. 

References 

1. Jain C, Rodriguez-R LM, Phillippy AM et al. High throughput 
ANI analysis of 90K prokaryotic genomes reveals clear species 
boundaries. Nat Commun 2018; 9 :5114. 
https:// doi.org/ 10.1038/ s41467- 018- 07641- 9 

2. Richter M, Rosselló-Móra R. Shifting the genomic gold standard 
for the prokaryotic species definition. Proc Natl Acad Sci USA 

2009; 106 :19126–31. https:// doi.org/ 10.1073/ pnas.0906412106 
3. Parks DH, Chuvochina M, Waite DW et al. A standardized 

bacterial taxonomy based on genome phylogeny substantially 
revises the tree of life. Nat Biotechnol 2018; 36 :996–1004. 
https:// doi.org/ 10.1038/ nbt.4229 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf095#supplementary-data
https://pypi.org/project/orthoani/
https://pypi.org/project/pyfastani/
https://pypi.org/project/pyskani/
https://github.com/althonos/orthoani
https://github.com/althonos/pyfastani
https://github.com/althonos/pyskani
https://cloud.sylabs.io/library/lmc297/pyorthoani/pyorthoani
https://cloud.sylabs.io/library/lmc297/pyfastani/pyfastani
https://cloud.sylabs.io/library/lmc297/pyskani/pyskani
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1073/pnas.0906412106
https://doi.org/10.1038/nbt.4229


4 Larralde et al. 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/
4. Chaumeil P-A, Mussig AJ, Hugenholtz P et al. GTDB-Tk: a toolkit
to classify genomes with the Genome Taxonomy Database. 
Bioinformatics 2020; 36 :1925–7. 
https:// doi.org/ 10.1093/ bioinformatics/ btz848 

5. Rodriguez-R LM, Conrad RE, Viver T et al. An ANI gap within 
bacterial species that advances the definitions of intra-species units.
mBio 2024; 15 :e0269623. https:// doi.org/ 10.1128/ mbio.02696-23

6. Raghuram V, Petit RA 3rd, Karol Z et al. Average nucleotide 
identity-based strain grouping allows identification of 
strain-specific genes in the pangenome. mSystems 
2024; 9 :e0014324. https:// doi.org/ 10.1128/ msystems.00143-24 

7. Olm MR, Brown CT, Brooks B et al. dRep: a tool for fast and 
accurate genomic comparisons that enables improved genome 
recovery from metagenomes through de-replication. ISME J 
2017; 11 :2864–8. https:// doi.org/ 10.1038/ ismej.2017.126 

8. Petit RA 3rd, Read TD. Bactopia: a flexible pipeline for complete 
analysis of bacterial genomes. mSystems 2020; 5 :e00190-20.

9. Shaw J, Yu YW. Fast and robust metagenomic sequence 
comparison through sparse chaining with skani. Nat Methods 
2023; 20 :1661–5. https:// doi.org/ 10.1038/ s41592- 023- 02018- 3 

10. Konstantinidis KT, Tiedje JM. Genomic insights that advance the 
species definition for prokaryotes. Proc Natl Acad Sci USA 

2005; 102 :2567–72. https:// doi.org/ 10.1073/ pnas.0409727102 
11. Goris J, Konstantinidis KT, Klappenbach JA et al. DNA–DNA 

hybridization values and their relationship to whole-genome 
sequence similarities. Int J Syst Evol Microbiol 2007; 57 :81–91. 
https:// doi.org/ 10.1099/ ijs.0.64483-0 

12. Lee I, Ouk Kim Y, Park S-C et al. OrthoANI: an improved 
algorithm and software for calculating average nucleotide identity.
Int J Syst Evol Microbiol 2016; 66 :1100–3. 
https:// doi.org/ 10.1099/ ijsem.0.000760 
Received: April 8, 2025. Revised: June 10, 2025. Editorial Decision: June 12, 2025. Accepted: June 21
© The Author(s) 2025. Published by Oxford University Press on behalf of NAR Genomics and Bioinf
This is an Open Access article distributed under the terms of the Creative Commons Attribution Lice
distribution, and reproduction in any medium, provided the original work is properly cited. 
13. Richter M, Rosselló-Móra R, Oliver Glöckner F et al. JSpeciesWS: 
a web server for prokaryotic species circumscription based on 
pairwise genome comparison. Bioinformatics 2016; 32 :929–31. 
https:// doi.org/ 10.1093/ bioinformatics/ btv681 

14. Pritchard L, Glover RH, Humphris S et al. Genomics and 
taxonomy in diagnostics for food security: soft-rotting 
enterobacterial plant pathogens. Anal Methods 2015; 8 :12–24. 
https:// doi.org/ 10.1039/ C5AY02550H 

15. Van Rossum G, Drake FL. Python 3 Reference Manual . Scotts 
Valley, CA: CreateSpace, 2009.

16. Cock PJA, Antao T, Chang JT et al. Biopython: freely available 
Python tools for computational molecular biology and 
bioinformatics. Bioinformatics 2009; 25 :1422–3. 
https:// doi.org/ 10.1093/ bioinformatics/ btp163 

17. Kluyver T, Ragan-Kelley B, Granger B et al. Jupyter Notebooks—a 
publishing format for reproducible computational workflows. In: 
Positioning and Power in Academic Publishing: Players, Agents 
and Agendas . Amsterdam, Netherlands: IOS Press, 2016, 87–90.

18. Camacho C, Coulouris G, Avagyan V et al. BLAST+: architecture 
and applications. BMC Bioinformatics 2009; 10 :421. 
https:// doi.org/ 10.1186/ 1471- 2105- 10- 421 

19. Behnel S, Bradshaw R, Citro C et al. Cython: the best of both 
worlds. Comput Sci Eng 2011; 13 :31–9.

20. Parks DH, Rinke C, Chuvochina M et al. Recovery of nearly 8,000 
metagenome-assembled genomes substantially expands the tree of 
life. Nat Microbiol 2017; 2 :1533–42. 
https:// doi.org/ 10.1038/ s41564- 017- 0012- 7 

21. Di Tommaso P, Chatzou M, Floden EW et al. Nextflow enables 
reproducible computational workflows. Nat Biotechnol 
2017; 35 :316–9. https:// doi.org/ 10.1038/ nbt.3820 
, 2025 
ormatics. 
nse (https: // creativecommons.org / licenses / by / 4.0 / ), which permits unrestricted reuse, 

article/7/3/lqaf095/8196481 by Jacob H
eeren user on 13 February 2026

https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1128/mbio.02696-23
https://doi.org/10.1128/msystems.00143-24
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1099/ijs.0.64483-0
https://doi.org/10.1099/ijsem.0.000760
https://doi.org/10.1093/bioinformatics/btv681
https://doi.org/10.1039/C5AY02550H
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1038/s41564-017-0012-7
https://doi.org/10.1038/nbt.3820

	Introduction
	Materials and methods
	Results and discussion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References

