% Universiteit
4 Leiden
The Netherlands

ESMO-ESTRO framework for assessing the interactions and safety of
combining radiotherapy with targeted cancer therapies or

immunotherapy

Aken, E.S.M. van; Devnani, B.; Castelo-Branco, L.; Ruysscher, D. de; Martins-Branco, D.;
Marijnen, C.A.M.; ... ; Jong, M.C. de

Citation

Aken, E. S. M. van, Devnani, B., Castelo-Branco, L., Ruysscher, D. de, Martins-Branco, D.,
Marijnen, C. A. M,, ... Jong, M. C. de. (2025). ESMO-ESTRO framework for assessing the
interactions and safety of combining radiotherapy with targeted cancer therapies or
immunotherapy. Radiotherapy &Amp; Oncology, 208. doi:10.1016/j.radonc.2025.110910

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4290206

Note: To cite this publication please use the final published version (if applicable).


https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4290206

Radiotherapy and Oncology 208 (2025) 110910

Contents lists available at ScienceDirect

Radiotherapy
&Oncology

Radiotherapy and Oncology

ELSEVIER journal homepage: www.thegreenjournal.com

Original Article ' :.)
ESMO-ESTRO framework for assessing the interactions and safety of

combining radiotherapy with targeted cancer therapies or immunotherapy

Evert S.M. van Aken ™", Bharti Devnani “', Luis Castelo-Branco *', Dirk De Ruysscher *',
Diogo Martins-Branco ¢, Corrie A.M. Marijnen ™", Barbara Muoio ", Claus Belka ',

Florian Lordick’, Stephanie Kroeze “, George Pentheroudakis ¢, Dario Trapani"”,

Umberto Ricardi”, Ajeet Kumar Gandhi ®*, Arsela Prelaj”*, Sean M. O’Cathail ",
Monique C. de Jong -

& Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands

Y Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands

¢ Radiation Oncology Department, AIIMS — All India Institute of Medical Sciences, Jodhpur, India

d Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona, Switzerland

¢ Radiation Oncology Department, Maastro Clinic, Maastricht, the Netherlands

f Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands

8 Scientific and Medical Division, ESMO — European Society for Medical Oncology, Lugano, Switzerland

" Division of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
! Department of Radiation Oncology, University of Munich LMU, Munich, Germany

J Department of Medicine II, University of Leipzig Medical Center, Cancer Center Central Germany (CCCG), Leipzig, Germany

k Radiation Oncology Center Mittelland, Cantonal Hospital Aarau, Aarau, Switzerland

! Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
™ Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy

™ Department of Oncology, University of Turin, Turin, Italy

° Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India

P Oncologia Medica Toracica Dept., Fondazione IRCCS - Istituto Nazionale Dei Tumori, Milan, Italy

9 School of Cancer Sciences, University of Glasgow, UK

" CUH/UCC Cancer Centre, Cork University Hospital, Cork, Ireland

ARTICLE INFO ABSTRACT
Keywords: With the emergence of targeted therapies and immunotherapy, various cellular pathways are utilized to improve
Radiotherapy tumor control and patient survival. In patients receiving these new agents, radiotherapy is commonly applied

Tyrosine kinase inhibitors
Immune checkpoint blockade
Combined modality therapy

with both radical and palliative intent. Combining radiotherapy with targeted therapies or immunotherapy may
improve treatment outcomes, but may also lead to increased toxicity. High-quality toxicity data and evidence-
based guidelines regarding combined therapy are very limited. The present framework, developed by ESMO

Toxicity
Radiobiology and ESTRO, explores the main biological effects and interaction mechanisms of radiotherapy combined with
Interaction targeted agents or immunotherapy. It addresses general clinical factors to take into consideration when deciding

Abbreviations: ALK, anaplastic lymphoma kinase; ATM, ataxia-telangiectasia mutated; ATR, Rad3-related; BRAF, B-rapidly accelerated fibrosarcoma; CDK, cyclin-
dependent kinase; CTLA-4, cytotoxic T lymphocyte antigen 4; DAMPs, damage-associated molecular patterns; DDR, DNA damage response; DNA-PK, DNA-dependent
protein kinase; DNA-PKcs, DNA-PK catalytic subunit; DSB, double-strand DNA break; EDIC, Effective radiation Dose to the Immune Cells; EGFR, epidermal growth
factor receptor; EORTC, European Organisation for Research and Treatment of Cancer; ESMO, European Society for Medical Oncology; ESTRO, European SocieTy for
Radiotherapy and Oncology; HER2, human epidermal growth factor receptor 2; HR, homologous recombination; ICI, immune checkpoint inhibitor; KRAS, Kirsten rat
sarcoma viral oncogene homolog; mAb, monoclonal antibody; MHC-I, major histocompatibility complex I; MTOR, mammalian target of rapamycine; NHEJ, non-
homologous end joining; PARP, poly (ADP-ribose) polymerase; PD-1, Programmed Cell Death 1; PD-L1, Programmed Death-Ligand 1; SSB, single-strand DNA break;
TKI, tyrosine kinase inhibitor; VEGF(R), vascular endothelial growth factor (receptor); XRCC4, X-ray repair cross complementing 4.

* Corresponding author at: The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.

E-mail address: interaction@nki.nl (E.S.M. van Aken).

! Bharti Devnani and Luis Castelo-Branco are shared second authors.
2 Ajeet Kumar Gandhi and Arsela Prelaj are shared penultimate authors.
3 Sean M. O’Cathail and Monique C. de Jong are shared last authors.

https://doi.org/10.1016/j.radonc.2025.110910

Received 16 April 2025; Accepted 17 April 2025

Available online 30 April 2025

0167-8140/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:interaction@nki.nl
www.sciencedirect.com/science/journal/01678140
https://www.thegreenjournal.com
https://doi.org/10.1016/j.radonc.2025.110910
https://doi.org/10.1016/j.radonc.2025.110910
http://crossmark.crossref.org/dialog/?doi=10.1016/j.radonc.2025.110910&domain=pdf
http://creativecommons.org/licenses/by/4.0/

E.S.M. van Aken et al.

Radiotherapy and Oncology 208 (2025) 110910

on whether and/or how to combine radiotherapy with these agents. Furthermore, it provides pragmatic, bio-
logical mechanism-based, clinical considerations for combining radiotherapy with various targeted agents or

immunotherapy.

Introduction

Systemic therapy plays a central role in the treatment of cancer,
together with surgery and radiotherapy. Cytotoxic chemotherapy has
been and still is the mainstay of systemic therapy for many cancer types
[1]. Chemotherapy primarily acts through interference with DNA and
RNA synthesis, production of chemical DNA damage, inhibition of
mitosis or induction of cell cycle arrest and apoptosis [2]. Additionally,
endocrine therapy has a well-established role in the treatment of
hormone-sensitive cancers, such as breast and prostate cancer [3,4].

Over the past decade, the range of systemic treatment options for
cancer patients has expanded considerably [5-7]. With the emergence of
targeted therapies, including monoclonal antibodies (mAbs) and tyro-
sine kinase inhibitors (TKIs), a new array of cellular pathways is utilized
to improve tumor control and patient survival [8]. Well-known targeted
therapies inhibit membrane receptor-dependent pathways including
epidermal growth factor receptor (EGFR), vascular endothelial growth
factor (receptor) (VEGF(R)), or B-rapidly accelerated fibrosarcoma
(BRAF) [7]. Using the immune system to control cancer has been widely
explored in research, and recently immune checkpoint inhibitors (ICIs),
primarily including mAbs targeted against Programmed Cell Death 1
(PD-1), Programmed Death-Ligand 1 (PD-L1), and cytotoxic T lympho-
cyte antigen 4 (CTLA-4), have been approved in various tumor settings
[7]. Targeted agents and ICIs have made a clinical impact by improving
outcomes for many cancer types and have reshaped the treatment
landscape. Meanwhile, an increasing number of new agents continues to
be added to the oncological armamentarium.

Approximately 50 % of cancer patients receive radiotherapy at some
point during their treatment course, with either curative, radical or
palliative intent [9-11]. In patients receiving targeted therapies or
immunotherapy, local radiotherapy is commonly added for palliative
treatment (e.g., pain control), for ablation of oligometastases or to stop
oligoprogression [12-16]. Although new combined-modality treatments
of radiotherapy with targeted therapies or immunotherapy might have
the potential to improve treatment outcomes, they also pose a risk to
patients due to potentially increased toxicity. Therefore, this increas-
ingly raises the question of whether radiotherapy can be used safely in
patients receiving these new systemic agents [15].

Toxicity data of these combined-modality treatments are often scarce
and based on retrospective studies, carrying the risk of bias and
underreporting [15,17,18]. There is only a limited number of combined-
modality trials. The required registration clinical trials for approval of
new systemic anti-cancer agents often do not allow the use of concurrent
radiotherapy. If radiotherapy is permitted, specific radiotherapy-related
toxicity is often not evaluated or reported. Moreover, many randomized
phase III trials lack statistical power for adequate analysis of (uncom-
mon) toxicities, as toxicity is usually not the primary endpoint [19-21].
Because of this, many of these new systemic anti-cancer agents are
introduced in clinical practice without solid toxicity data when com-
bined with radiotherapy. After clinical introduction, several drugs
appeared to be safe in combination with radiotherapy, but unexpected
toxicity has been reported for several treatment combinations, giving
rise to safety concerns [18,22-29]. This variable outcome may be due to
different radiation responses in non-neoplastic tissues according to the
type of systemic therapy, its dose, the irradiated organ and its disease
state (e.g., vascular disease), the radiotherapy dose, the fractionation
scheme, and the irradiated volume. Moreover, case series may only
report on a selected group of patients with severe toxicity, which may
represent a minority of all treated patients in prospective series [30].

The limited amount of toxicity data poses a challenge to physicians.

On the one hand, serious toxicity of combined-modality treatment
should be avoided. On the other hand, temporary drug discontinuation
or drug dose reduction may lead to lower clinical efficacy or tumor flare
[31-33], while radiotherapy de-escalation may lead to reduced tumor or
symptom control. Due to the complexity of these treatment decisions,
adequate interdisciplinary communication is imperative. Some new
projects have been initiated in this field [34,35], including a collabo-
ration between the European SocieTy for Radiotherapy and Oncology
(ESTRO) and the European Organisation for Research and Treatment of
Cancer (EORTC) [35]. However, a clear knowledge gap and a lack of
consensus on this topic still exist, and in addition to the lack of solid
data, multidisciplinary consensus protocols are often not available
[15,36,37]. This demonstrates the urgent, unmet need for multidisci-
plinary, evidence-based recommendations regarding the combination of
these systemic therapies with radiotherapy.

These multidisciplinary recommendations should be based on the
available clinical evidence and the general biological interaction
mechanisms. A thorough analysis of the possible biological interaction
mechanisms of specific drug classes with radiotherapy will assist the
generation of consensus recommendations for clinical decision making,
particularly when the amount of high-quality toxicity data is small,
which is the case for a vast number of recently introduced and upcoming
targeted therapies and ICIs.

Therefore, the European Society for Medical Oncology (ESMO) and
the ESTRO decided to provide a series of joint clinical safety statements
regarding the combination of radiotherapy with targeted cancer thera-
pies (excluding antibody-drug conjugates) or immunotherapy (focusing
on ICIs), covering the clinical toxicity data and the biological interaction
mechanisms. This series of four papers will contain three papers with
systematic reviews and detailed, drug-specific and radiotherapy
scenario-specific consensus statements regarding the safety of combined
treatment for 10 common drug classes. To complement these statements,
this first publication provides clinicians with a framework of the most
important (radio)biological and pharmacological factors, as well as with
general considerations for clinical practice. This paper offers guidance
for the numerous new targeted or immunotherapy agents that are not
included in the three papers, as well as those that are yet to be
developed.

Biology of radiotherapy and drug-radiotherapy interactions

Radiotherapy causes a plethora of cascades in human cells, from the
start of radiotherapy until years after radiotherapy (Fig. 1). In order to
predict the potential interactions between radiotherapy and targeted
therapies or immunotherapy, it is crucial to understand the most
important effects of ionizing radiation on cells and tissues and the
involved biological pathways. Additionally, it is relevant to differentiate
between early and late effects. In the next sections we discuss the most
important interactions between the biological effects of radiotherapy
and targeted agents or immunotherapy.

DNA damage and DNA damage response

While ionizing radiation exerts harmful effects on all cell compo-
nents, the main cause of cell death is the formation of double-strand
DNA breaks (DSBs) [38-40]. On a molecular level, ionizing radiation-
induced DNA damage is generated directly and indirectly: direct dam-
age results from direct interactions between radiation or its secondary
electrons and DNA, while indirect damage is primarily caused by
radiation-generated ionizations and free radical formations from water
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molecules [11,40,41]. Although influenced by various factors, 1 Gray is
estimated to cause 20-40 DSBs per cell in normoxic conditions [42-46].
Other types of radiation-induced DNA damage also contribute to cell
death, including single-strand DNA breaks (SSBs), base damage and
DNA backbone sugar damage. Clustering of these types of DNA damage
around DSBs impairs DSB repair [38,39]. Moreover, SSBs can be con-
verted to DSBs when they are still present during DNA replication
[47,48]. Accumulation of unrepaired SSBs can therefore become detri-
mental for cells.

Once DNA damage is recognized, DNA damage repair is initiated,
while cell cycle checkpoints prevent premature continuation of cell
growth and division, until these lesions are repaired [49]. DNA-
dependent protein kinase (DNA-PK), ataxia-telangiectasia mutated
(ATM), and ATM- and Rad3-related (ATR) are important proteins that
detect DNA damage and initiate repair and cell cycle pause [50,51]. To
prevent premature continuation of cell division, CHK1 and CHK2 ki-
nases regulate CDC25, WEE1, and p53. These proteins inactivate cyclin-
dependent kinases (CDKs), thereby inhibiting cell-cycle progression
until DNA is repaired [52]. Most DSB repair occurs within the first hours
after irradiation [53-56], via two main DNA damage response (DDR)
pathways: homologous recombination (HR) and non-homologous end
joining (NHEJ). The most reliable pathway is HR. It uses the sequence of
the sister chromatid as template, to correctly repair the DSB, but is only
active during the S and G2 phase of the cell cycle [11,49,57]. Important
proteins for HR are for example RAD51, BRCA1 and BRCA2 [57].
Conversely, NHEJ is a more error-prone repair method, as DSBs are
ligated after very limited end processing, which can cause nucleotide
insertions or deletions [39,57]. NHEJ is available during the whole cell
cycle [39,57]. Pivotal NHEJ proteins are KU70, KU80, DNA-PK catalytic
subunit (DNA-PKcs), X-ray repair cross complementing 4 (XRCC4) and
ligase 4 [57]. In many cancer cells, these cell cycle checkpoints and DNA
repair pathways are dysregulated [57,58].

As the generation of DNA damage plays a pivotal role in radiation-
induced cell death, systemic treatments that interact with DDR path-
ways can increase the effect of radiotherapy. Inhibitors of DDR proteins
are capable of enhancing the DNA-damaging effects of radiotherapy and
several have been tested clinically [51,59,60]. To illustrate, poly (ADP-
ribose) polymerase (PARP) inhibitors act by inhibiting PARP molecules
that play an important role in the repair of SSBs and DSBs. This leads to
inhibition of the PARP-associated repair processes and to trapping of
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PARP on the DNA [47,61]. DNA replication with unrepaired SSBs due to
PARP trapping can cause DSBs. Particularly cells with HR deficiencies
are affected by this [47,61]. BRCA1 and BRCA2 gene mutations are
striking examples. As these proteins play an essential role in DNA
damage recognition and HR, BRCA mutation carriers have a higher risk
of particularly breast and ovarian cancer [49]. On the other hand, the
reduced number of DSB repair options in BRCA-mutated cancers makes
these cells particularly vulnerable for PARP inhibitors. The lethality of
these combined factors, while one factor is not sufficient to cause cell
death, is called synthetic lethality [47,57,61]. The radiosensitizing
properties of PARP inhibitors have gained traction with several clinical
studies that concurrently combine PARP inhibitors with radiotherapy
[23,24,62-64]. PARP-induced radiosensitization can increase radio-
therapy toxicity, even at PARP inhibitor dosages that are considerably
lower than common monotherapy dosages [23,65,66]. This illustrates
that common drug monotherapy dosages are not always optimal for
combined treatment with radiotherapy.

Cell death and cell cycle arrest

If not correctly repaired, the presence of DSBs leads to genomic
instability and can lead to cell death, either directly (e.g., apoptosis) or
upon mitosis, with a variable time lag after radiotherapy [11,67,68].
Alternatively, cells can undergo senescence, resulting in a permanent
cell cycle arrest and a senescence-associated secretory phenotype,
causing the production of cytokines, chemokines, growth factors and
proteases that regulate endothelial cell activation, propagation of
senescence and immune cell recruitment to balance tissue repair and
chronic inflammation [11,58,69-72].

When radiotherapy causes cell death in normal tissues, the loss of
viable cells can lead to loss of tissue integrity and hence to tissue
dysfunction. Additionally, irradiated cells release factors that not only
influence the surrounding tissue or organ, but also the rest of the body,
leading to bystander effects, including genomic instability [11,73-75].
Rapid radiation-induced cell death particularly occurs in fast-dividing
tissues [11]. For example, radiation-induced denuding of epithelial tis-
sues, such as the skin and gastro-intestinal epithelium, can become
symptomatic within weeks after the start of radiotherapy. The release of
growth factors causes the remaining stem cells to divide more rapidly to
compensate for the increased cell loss [76]. However, a high amount of

Time after RT

Minutes Days

Cell damage
DNA damage

DNA damage response

Pro-survival signalling

Biological effects of RT

Pro-apoptotic signalling

Weeks Months

Vascular damage/dysfunction

Fibrosis and tissue dysfunction

Fig. 1. Biological effects of radiotherapy over time. Minutes after radiotherapy, DNA damage leads to DNA damage response and repair signaling. Shortly
thereafter, cells with too much damage will die and the surrounding tissue starts to repopulate in order to restore tissue integrity. The irradiated area can remain in a
heightened inflammatory state up to years after radiotherapy. In the later stages following radiotherapy, tissues may become more fibrotic, and vascular damage or
dysfunction may persist. Green bars: beneficial for normal tissues. Red bars: harmful for normal tissues. Yellow bar: various effects on normal tissues. Abbreviations:
RT, radiotherapy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(stem) cell loss can cause insufficient tissue repair, leading to acute and
(consequential) late tissue defects and/or dysfunction [11,77].
Depending on the irradiated tissue, radiation dose, irradiated volume,
fractionation scheme, radiotherapy technique, and patient factors, acute
adverse events can occur during and after radiotherapy. These may
include general (fatigue, pain), dermatological (dermatitis), neurolog-
ical (headache, seizure), pulmonary (cough), gastro-intestinal
(dysphagia, nausea, diarrhea), and hematological symptoms (reduced
blood cell counts) [11,78,79].

In slowly regenerating tissues or structurally important cells, rela-
tively more cells undergo permanent cell cycle arrest, instead of cell
death. Together with insufficient cell renewal or repair and a chronic,
amplified inflammatory state and wound healing process, this can cause
long-term, often irreversible fibrosis, vascular damage and tissue
dysfunction [11]. Fibrosis-related symptoms can vary from mild pul-
monary symptoms to severe bowel obstruction [80,81]. Radiation-
induced vascular damage can induce bleeding, but also ischemic
events in various organs, as described in the section on vascular effects
[82-84]. Other examples of late adverse events after radiotherapy are
neurocognitive impairment, neural damage, and gland dysfunction in
secretory organs like the salivary glands or the pancreas [11].

Tumor cell proliferation often depends on the evasion of cell cycle
checkpoints and the upregulation of distinct oncogenic pathways [8,85].
Upregulated oncogenic pathways may vary across tumor types, indi-
vidual tumors and even within a single tumor or between the tumor and
its metastases [8,86,87]. This upregulation can be caused by alterations
in genes such as anaplastic lymphoma kinase (ALK), BRAF, EGFR,
human epidermal growth factor receptor 2 (HER2), Kirsten rat sarcoma
viral oncogene homolog (KRAS), mammalian target of rapamycine
(MTOR), and others that play a pivotal role in regulating cell growth and
division [86,88,89].

Over the last decades, numerous kinase inhibitors and monoclonal
antibodies have been developed to block these specific oncogenic
pathways, thereby inhibiting tumor cell proliferation and sometimes
inducing cell death [8,86,90]. One of the advantages of kinase inhibitors
is the specific ‘targeting’ of tumor cells carrying these gene alterations,
while having less impact on normal tissue cells [8]. However, many of
these pathways have physiological functions in normal tissues [91].
Crosstalk between different pathways may also occur [92]. Moreover,
the molecular specificity of kinase inhibitors is often limited, resulting in
off-target effects [86,92,93]. Targeted agents can therefore also induce
tissue dysfunction and damage in normal tissues, leading to various side
effects [86]. It is apparent that the combination of these agents with
radiation can lead to increased acute and late normal tissue toxicity.
Also, cell cycle checkpoint blockade by CDK4/6 inhibitors can possibly
enhance radiotherapy efficacy and toxicity by preventing cell cycle
progression and division after radiotherapy [18].

Inflammatory and immunological effects

The immune system plays a crucial role in the observed acute and
late effects after radiotherapy. Radiotherapy increases the presentation
of existing cancer cell neoantigens, but it also creates neoantigens by
generating DNA mutations [94]. Furthermore, radiation-induced cell
damage and cell death leads to increased major histocompatibility
complex I (MHC-I) expression on tumor cells and release of damage-
associated molecular patterns (DAMPs), type I interferons, chemokines
and pro-inflammatory cytokines [94]. These factors cause inflammation,
increased T cell infiltration, and immune-mediated cell death. As a
result, radiotherapy can theoretically convert poorly immunogenic,
‘cold’ tumors into immunogenic, ‘hot” tumors, which may increase the
chance of an effective antitumor immune response [11,94]. There are
data suggesting that hypofractionated radiotherapy better induces an
immunogenic tumor environment than conventionally fractionated
radiotherapy or high-dose single-fraction stereotactic radiotherapy
[11,94-100].
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However, negative inflammatory and immunological effects associ-
ated with radiotherapy have been described as well. Radiotherapy can
cause unfavorable inflammation of normal tissues in the irradiated field,
including dermatitis, mucositis, and pneumonitis. Inflammation con-
tributes to the development of brain radionecrosis as well [101-103].
Radiotherapy can also activate various counterbalancing immunosup-
pressive signaling pathways, undermining antitumor immuno-
surveillance [94,104]. Furthermore, due to the high radiosensitivity of
lymphocytes (particularly B cells and naive T cells), irradiation of
circulating lymphocytes and lymphoid organs can potentially impair
antitumor immunity by the induction of lymphopenia [11,105]. The
incidence and severity of lymphopenia are affected by the in-field vol-
ume of blood(-containing organs), the radiotherapy dose and fraction-
ation. Different models to predict lymphopenia have been proposed,
including the Effective radiation Dose to the Immune Cells (EDIC) model
[106,107]. A lower EDIC is correlated with a better overall survival in
non-small cell lung cancer [108]. There is a potentially lower risk of
lymphopenia from hypofractionation, compared to conventional frac-
tionation schemes, as there is a lower number of radiation doses
affecting the major blood pool and circulating lymphocytes [107,108].
Also, the often smaller irradiated volumes with stereotactic radio-
therapy may reduce this risk.

Immunotherapy has the potential to counteract immunosuppressive
signaling pathways after radiotherapy [95,104]. The most commonly
used ICIs inhibit the binding of CTLA-4 to B7, or the binding of PD-1 to
PD-L1. In the lymph nodes, CTLA-4 plays an important role. Upon T cell
activation by recognition of an antigen-presenting cell in a lymph node,
CTLA-4 is expressed on the cell surface of the T cell. Binding of CTLA-4
to B7 ligands on the antigen-presenting cell inhibits T cell activation.
CTLA-4 inhibitors (e.g., ipilimumab and tremelimumab) prevent this
CTLA-4-mediated suppression of T cell activation, thereby enhancing
the priming of T cells and ultimately the cellular immune response
[109,110]. In the tumor microenvironment, the interaction between PD-
1 and PD-L1 suppresses immune cell activation. PD-1 is expressed on the
cell membrane of activated T cells, B cells and natural Kkiller cells
[109-111]. After engaging with tumor cells expressing PD-L1 or PD-L2,
PD-1 binding to these ligands leads to inhibition of T cell activation. PD-
1 (e.g., nivolumab and pembrolizumab) and PD-L1 inhibitors (e.g.,
avelumab and durvalumab) enhance the immune response by prevent-
ing this interaction [109,110]. These effects can theoretically increase
the efficacy of radiotherapy, particularly when combined with hypo-
fractionated radiotherapy schedules and small irradiated volumes
[11,94,95,97-99,112]. However, there is also a possible risk of
increased inflammatory toxicity.

Vascular effects

Ionizing radiation influences the microvasculature of tumors and
normal tissues. Particularly microvascular endothelial cells are radio-
sensitive [113]. Although there are many unanswered questions, it
generally appears that radiotherapy can inhibit the formation of new
blood vessels, while having limited impact on mature vessels. This
inhibiting effect might be particularly the case for high doses, while low
(fraction) doses may promote angiogenesis, also by causing increased
expression of pro-angiogenic growth factors like VEGF [114]. Further-
more, radiotherapy can induce recruitment of bone marrow-derived
circulating cells that are involved in neovascularization [114,115].
Telangiectasia are a visible example of radiation-induced vascular
endothelial cell injury [116].

The goal of angiogenesis inhibitors is to decrease blood flow and
tumor oxygenation in order to reduce tumor growth. However, there is
evidence that a couple of days after introduction of an angiogenesis
inhibitor, there is a transient blood vessel normalization, temporarily
leading to increased oxygenation of the tissue [114,117]. When radio-
therapy is administered during this time window, the increased tissue
oxygenation can possibly increase radiosensitivity [117-121].
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Furthermore, VEGF(R) inhibition can lead to more endothelial cell
apoptosis after radiotherapy [122].

Ionizing radiation also causes macrovascular injuries. As shown in
atomic bomb survivors, even a low radiation dose (above 0.5 Gy) in-
creases the risk of cardiovascular diseases [123]. In Hodgkin lymphoma
and breast cancer patients, the risk of myocardial infarction and acute
coronary events increases dose-dependently with the radiation dose to
the heart [124-127]. In head and neck cancer patients, radiotherapy
increases the risk of ischemic cerebrovascular events and this risk is also
associated with the radiation dose (10 Gy and higher) to the carotid
arteries [83]. Before these events occur, early radiation-induced
vascular changes are observed as well, including a dose-dependent in-
crease of the arterial wall intima-media thickness, which is an
ultrasound-assisted early marker of atherosclerosis [128-133]. Some
studies indicate that atherosclerotic plaques induced by radiotherapy
have a lower density and less calcification compared to ‘conventional’
atherosclerosis, possibly leading to a higher risk of ischemic vascular
events [83,128,131,134,135].

Angiogenesis inhibitors can cause hemorrhagic events, probably by
attenuating the microvasculature of tissues, making them more prone to
both thrombotic events and bleeding [136,137]. Radiotherapy-induced
vascular damage could also cause hemorrhagic events, for example
rectal bleeding in prostate cancer patients or bleeding after stereotactic
radiotherapy to (ultra)central lung lesions [82,138]. This can occur even
years after radiotherapy.

Several studies indicate that combining radiotherapy with angio-
genesis inhibitors increases the hemorrhage risk [139-142]. In addition
to an increased bleeding risk, several (mainly small) reports show that
the combination of radiotherapy and angiogenesis inhibitors may also
lead to ulcers, fistulae and perforations [143-150]. Also, non-concurrent
treatment of radiotherapy and angiogenesis inhibitors can increase this
risk, as shown in patients receiving angiogenesis inhibitors with a his-
tory of radiotherapy, but without concurrent treatment [143,151-153].
This risk appears to be particularly elevated when mucosa is irradiated
with a high radiotherapy dose. One of the most common angiogenesis
inhibitors is bevacizumab, a mAb against VEGF, but several other VEGF
(R) inhibitors are on the market, including the TKIs sunitinib, pazopanib
and sorafenib [154,155]. These TKIs not only inhibit the VEGFR, but
they inhibit other receptor tyrosine kinases as well [154].

Biology of hypofractionated radiotherapy

Hypofractionated radiotherapy (officially > 2 Gy per fraction) is
commonly used for palliative treatments of larger target volumes (e.g.,
1 x 8 Gy) and for high-precision radical (stereotactic) radiotherapy of
small target volumes [12,14,156]. Hypofractionated radiotherapy is
also increasingly used as local standard treatment for non-metastatic
breast and prostate cancer [156]. The use of higher fraction doses is
less favorable for slowly regenerating tissues, leading to a higher risk of
late normal tissue toxicities compared to normofractionated radio-
therapy [156,157]. Although hypofractionation has less impact on acute
toxicity, the reduced number of fractions often leads to a reduced overall
treatment time, allowing for less repair of fast-dividing tissues during
treatment [156].

Current stereotactic radiotherapy techniques can precisely deliver
high radiation doses to small target volumes, while minimizing the
volume of irradiated normal tissues, which radically reduces normal
tissue toxicity [11,100,156]. This is a major advantage of stereotactic
radiotherapy, when compared to conventional high-dose radiotherapy.
However, with high-dose stereotactic radiotherapy close to critical
normal tissues, the normal tissue tolerance thresholds can be reached.
Because of these factors, concomitant use of radiosensitizing agents may
theoretically lead to exponentially increased toxicity, particularly in
serially organized organs (e.g., spinal cord) [158].

Radiotherapy and Oncology 208 (2025) 110910
Clinical approach: Considerations for decision making

When patients on targeted therapies or immunotherapy have an
indication for radiotherapy, there are several aspects to consider before
deciding whether the two treatments can be combined and if any
treatment adaptations are required. The aim of this section is to assist
clinicians by providing a decision-making roadmap that takes account of
the key factors that may predict the toxicity and feasibility of a partic-
ular drug-radiotherapy combination. These considerations are summa-
rized in Fig. 2.

As a first step, we suggest searching for available clinical toxicity
data regarding the combination of this targeted drug or ICI with radio-
therapy, preferably arising in the irradiated region. Additionally, it is
relevant to retrieve the available clinical toxicity data on the combina-
tion of the drug class with radiotherapy. As the radiosensitizing mech-
anism of other drugs with the same target is probably similar, this
approach often offers additional relevant toxicity data. The toxicity of
combining this drug class with radiotherapy to other tissues can also offer
relevant information. Furthermore, it can be relevant to look for
evidence-based clinical protocols on how to combine radiotherapy with
targeted agents or immunotherapy. Unfortunately, these are often
lacking, but some initiatives have started [34,35], including this joint
ESMO-ESTRO initiative which will provide clinical consensus state-
ments on the safety of combining ten common cancer drug classes with
radiotherapy.

If the amount of clinical toxicity data is insufficient, estimating the
expected toxicity can be performed by searching for preclinical data on
the drug mechanism, possible off-target effects and the potential to
enhance radiosensitivity, radiation-induced toxicity, and/or drug
sensitivity. Additionally, if drug monotherapy toxicities have overlap
with the expected toxicity of the intended radiotherapy treatment, at
least additive toxicity can be expected. It is also relevant to analyze the
drug distribution through the body. Particularly, the blood-brain barrier
penetration can vary considerably among different targeted agents
[159]. The blood-brain barrier penetration might also be higher at the
location of a tumor and after radiotherapy [160,161]. Additionally, the
expression of the drug target in the irradiated normal tissues should be
considered, as a low target expression might lead to weaker drug effects
in that tissue. Drug target expressions can be found via the online
Human Protein Atlas portal (https://www.proteinatlas.org) [162,163].
Unfortunately, there are often no data available on target upregulation
in irradiated tissues.

The drug elimination time is a key factor to consider, as short drug
half-lives allow for relatively short drug interruptions before radio-
therapy in order to reduce the risk of synergistic toxicity. To prevent a
drug-radiotherapy interaction in case of a high expected risk of syner-
gistic toxicity, interrupting the drug approximately 5 elimination half-
lives before radiotherapy could be considered, as it takes approxi-
mately 5 drug elimination half-lives to reach steady-state drug plasma
concentrations or to eliminate 97 % of the drug after interruption
[34,164-167]. Drug plasma concentrations are frequently used as sur-
rogate for the drug concentrations in tissues [168]. However, it is
important to exercise caution when using this arbitrary threshold of 5
elimination half-lives to determine the time interval between drug
interruption and radiotherapy. This recommendation is intended pri-
marily as a directional aid rather than a strict rule, and only in cases
where any drug-radiotherapy interaction should be avoided for safety
reasons. In case of long drug elimination half-lives (particularly for
monoclonal antibodies [169]), interrupting the drug long enough before
radiotherapy is often not feasible. In some cases, the drug treatment
schedules contain drug pauses [170]. These time windows could be used
for radiotherapy, although still an extended drug pause can be neces-
sary. The expected decrease of synergistic toxicity by a drug interruption
should always be balanced against the risk of tumor progression or
tumor flare [31-33].

In all patients, the radiotherapy indication and available alternative
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STEP 1

Clinical toxicity data and/or evidence-based protocols on
combining this drug with radiotherapy to this tissue.

Search

!

STEP 2

Clinical toxicity data on combining this drug class
with radiotherapy to all tissues.

Search

v

Preclinical data on the drug mechanism and potential
to enhance radiosensitivity and/or drug sensitivity.

The overlap between the toxicities of drug monotherapy
and radiotherapy monotherapy.

Drug distribution and expression of the drug target
in the irradiated normal tissues

Drug half-life, estimated plasma and tissue
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Analyze
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. Patient factors
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. Radiotherapy indication (palliative, curative, radical)
. Radiotherapy dose and technique

. Drug or radiotherapy treatment adaptations

. Risk of tumor progression during drug interruption

. Alternatives to radiotherapy or to this drug (class)

. Patient preferences

Fig. 2. Considerations for clinical decision making regarding the combination of radiotherapy with various types of targeted therapy or immuno-

therapy agents.

treatment options should be considered. It is also important to consider
more subtle treatment adaptations, such as drug dosage reduction, a
reduced radiotherapy dose (per fraction), or the use of more conformal
radiotherapy techniques [15]. However, drug dosage or radiotherapy
dose reductions may result in decreased treatment efficacy. It is
furthermore relevant to account for patient factors, including their
estimated survival, comorbidities and previous radiotherapy. Even
though the available clinical toxicity data may be limited, it is important
to discuss the potentially increased toxicity of combining radiotherapy
with targeted agents or immunotherapy and to consider the preferences
of the patient [171].

Clinical approach: Drug class-specific considerations

Most targeted or immunotherapy agents can interfere with at least
one of the four previously described biological effects after radio-
therapy. Even in case of insufficient clinical toxicity data on combining
these agents with radiotherapy, defining the drug mechanism and un-
derstanding the radiobiological effects it interacts with, can help esti-
mate the expected toxicity. In this section, the expected toxicities are
described for combining various drug classes with radiotherapy. These
are summarized in Fig. 3. A list with drug examples for common drug
classes is provided in the Supplementary Data.
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Fig. 3. Expected toxicity and general considerations regarding the combination of radiotherapy with various classes of targeted or immunotherapy
agents. Abbreviations: GI, gastrointestinal; GU, genitourinary; ICIs, immune checkpoint inhibitors; PD-(L)1, Programmed (Cell) Death(-Ligand) 1; RT, radiotherapy.

Agents interfering with DNA repair

The main mechanism of action of radiotherapy is inducing DNA
damage, which is counteracted by several DNA repair pathways. As
previously described, agents that interfere with DNA damage repair can
enhance the DNA-damaging effects of radiotherapy. As most DNA
damage repair occurs within the first hours after radiation [53-56], the
strongest drug-radiotherapy interaction is expected during this period. If
these drugs are interrupted before radiotherapy, they can possibly be
restarted within two days after radiotherapy to limit the risk of syner-
gistic toxicity, thereby allowing for most DNA damage repair (at least 5
DNA damage repair half-lives) before reintroducing the drug [156,172].
Alternatively, a radiotherapy dose reduction or normal tissue sparing by
a different radiotherapy technique can be considered.

Proliferation inhibitors

Proliferation inhibitors, including ALK, BRAF, CDK4/6, EGFR, HER2,
KRAS and mTOR inhibitors, can cause cell cycle arrest and/or cell death.
Particularly in fast-dividing tissues, combining these drugs with radio-
therapy can inhibit the normal tissue repair and stem cell division,
leading to increased acute toxicity and/or a longer duration of acute
toxicity. Recovery of fast-dividing normal tissues after radiotherapy
usually takes days to weeks. If proliferation inhibitors are interrupted
during radiotherapy, they should ideally be withheld for more than one
week after radiotherapy, as fast-dividing tissues need several weeks to
repopulate and to recover [11]. However, this is often not clinically
feasible or necessary. When the expected cell damage or toxicity is low,
and the need to restart the drug high, it can pragmatically be restarted
within a week after radiotherapy. In case of high radiotherapy doses to
normal tissues and in case of ongoing symptomatic radiotherapy
toxicity, interrupting the drug until recovery from this toxicity can be
considered. Alternatively, a radiotherapy dose reduction or normal tis-
sue sparing by a different radiotherapy technique can be considered.
Based on the mechanism of proliferation inhibitors, the effect on slowly
regenerating tissues may be less pronounced.

Immune checkpoint inhibitors

The inflammatory toxicity of combining immune checkpoint in-
hibitors with radiotherapy appears mild, particularly for PD-(L)1 in-
hibitors. For CTLA-4 inhibitors (+/- PD-(L)1 inhibitors), the level of
evidence is lower and the toxicity might be slightly higher. This can
potentially lead to increased early or late inflammation after radio-
therapy that may vary in different tissues (e.g., lung). Given that most
ICIs are monoclonal antibodies with long drug half-lives and prolonged
immunologic effects after drug discontinuation [169,173], it is ques-
tionable whether a short drug interruption or treatment delay is effec-
tive as a strategy for reducing the risk of inflammatory toxicity.
Alternatively, a radiotherapy dose reduction or normal tissue sparing by
a different radiotherapy technique can be considered.

Angiogenesis inhibitors

As shown previously, combining angiogenesis inhibitors (including
VEGFR-targeting multitargeted TKIs) with radiotherapy can increase the
risk of tissue damage with bleeding, ulcers, fistulae and perforations.
Increased toxicity has also been reported for non-concurrent combina-
tions of radiotherapy with VEGF(R) inhibitors. For tissues less prone to
these toxicities, such as musculoskeletal tissues and the skin, the in-
crease in toxicity is probably limited, although there may be a higher
chance of skin toxicity [174-176].

Conclusions

The rapid, continuing introduction of targeted cancer therapies and
immunotherapy across various cancer types presents a dilemma for
medical and radiation oncologists, compelling them to assess the safety
of combining these new drugs with radiotherapy. Due to the very limited
high-quality clinical toxicity data of combining these treatments with
radiotherapy, the aim of this paper is to elucidate the general biological
mechanisms behind various possible drug-radiotherapy interactions and
to assist with the decision-making process in these patients. These
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pragmatic considerations are intended for real-world drug-radiotherapy
combinations and they are not designed as guidance or substitute for
clinical trials or high-quality registries evaluating the synergy of tar-
geted agents or immunotherapy with radiotherapy.

This publication is part of a series of joint ESMO-ESTRO consensus
statements. Further papers contain drug class-specific and irradiated
tissue-specific systematic reviews and Delphi consensus statements on
the safety of combining radiotherapy with various common targeted
cancer agents (excluding antibody-drug conjugates, due to their
different mechanism of action) and immunotherapy (focusing on ICIs).
These evidence-based, multidisciplinary consensus statements, devel-
oped by ESMO and ESTRO, have been developed to provide clinically
applicable suggestions for a large variety of drug-radiotherapy
scenarios.

For (new) drug-radiotherapy combinations that are not covered in
the other papers, the current publication aims to provide generic guid-
ance. The statements in this publication should be used with clinical
interpretation of individual treatment contexts. The intention of this
paper is not to offer strict guidelines, but rather to provide a biological
mechanism-based framework for decision making.

The clinical dilemmas that arise from the rapid introduction of tar-
geted and immunotherapy agents without first acquiring toxicity data
regarding their interactions with radiotherapy, highlight the urgency of
developing clinical trials, high-quality registries, prospective cohort
studies and real-world studies that combine these agents with radio-
therapy [15]. These studies should be properly designed to measure
synergistic acute and late toxicities. Several roadmaps and solutions
have been proposed to accelerate the development of these drug-
radiotherapy combinations [19,20], but their application, and hence
their impact, is currently insufficient. Intensive collaborative and
interdisciplinary efforts, as for example the ESTRO Focus Group on
combining radiotherapy with systemic therapies, are therefore contin-
uously needed to expand the amount of essential clinical toxicity data of
combined therapy.

Disclaimer

ESMO and ESTRO do neither guarantee nor assume any re-
sponsibility for the relevancy, accuracy, completeness, reliability or
quality of the information, statements or opinions provided in this
publication. Any statements are based on information available at the
time the writing panel conducted its research and discussions on the
topic. This publication should neither be deemed inclusive of all proper
methods of care or of all factors influencing the decision making, nor is it
intended to be exclusive of other methods reasonably directed to
obtaining the same results. There may be new developments since
publication that are not reflected herein and that may, over time, be a
basis for ESMO and ESTRO to revisit and update the publication.

The publications are not intended or implied as a substitute for
professional advice from a physician or qualified healthcare provider,
nor as a substitute for medical care, diagnosis, or treatment. The advice
of a medical professional should always be sought prior to commencing
any form of medical treatment. The ESMO and ESTRO publication
provides scientific and medical opinions for educational and informa-
tional purposes only. Commercial use of any content in the publication
without the prior written consent of ESMO and ESTRO is strictly
prohibited.

In no event shall ESMO or ESTRO, their officers, directors, em-
ployees, members, or agents be held liable for any direct or indirect
damage arising from or in connection with the content of the publication
or any action taken by third parties based on and in reliance of the
content. Furthermore, ESMO and ESTRO do not endorse, recommend, or
sponsor any third-party material, product or services mentioned in the
publication, nor the references or links made to any third-party’s web-
sites or information channels. ESMO and ESTRO do not make any rep-
resentations and are not responsible nor liable with regards to any third-
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