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A B S T R A C T

With the emergence of targeted therapies and immunotherapy, various cellular pathways are utilized to improve 
tumor control and patient survival. In patients receiving these new agents, radiotherapy is commonly applied 
with both radical and palliative intent. Combining radiotherapy with targeted therapies or immunotherapy may 
improve treatment outcomes, but may also lead to increased toxicity. High-quality toxicity data and evidence- 
based guidelines regarding combined therapy are very limited. The present framework, developed by ESMO 
and ESTRO, explores the main biological effects and interaction mechanisms of radiotherapy combined with 
targeted agents or immunotherapy. It addresses general clinical factors to take into consideration when deciding 
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on whether and/or how to combine radiotherapy with these agents. Furthermore, it provides pragmatic, bio
logical mechanism-based, clinical considerations for combining radiotherapy with various targeted agents or 
immunotherapy.

Introduction

Systemic therapy plays a central role in the treatment of cancer, 
together with surgery and radiotherapy. Cytotoxic chemotherapy has 
been and still is the mainstay of systemic therapy for many cancer types 
[1]. Chemotherapy primarily acts through interference with DNA and 
RNA synthesis, production of chemical DNA damage, inhibition of 
mitosis or induction of cell cycle arrest and apoptosis [2]. Additionally, 
endocrine therapy has a well-established role in the treatment of 
hormone-sensitive cancers, such as breast and prostate cancer [3,4].

Over the past decade, the range of systemic treatment options for 
cancer patients has expanded considerably [5–7]. With the emergence of 
targeted therapies, including monoclonal antibodies (mAbs) and tyro
sine kinase inhibitors (TKIs), a new array of cellular pathways is utilized 
to improve tumor control and patient survival [8]. Well-known targeted 
therapies inhibit membrane receptor-dependent pathways including 
epidermal growth factor receptor (EGFR), vascular endothelial growth 
factor (receptor) (VEGF(R)), or B-rapidly accelerated fibrosarcoma 
(BRAF) [7]. Using the immune system to control cancer has been widely 
explored in research, and recently immune checkpoint inhibitors (ICIs), 
primarily including mAbs targeted against Programmed Cell Death 1 
(PD-1), Programmed Death-Ligand 1 (PD-L1), and cytotoxic T lympho
cyte antigen 4 (CTLA-4), have been approved in various tumor settings 
[7]. Targeted agents and ICIs have made a clinical impact by improving 
outcomes for many cancer types and have reshaped the treatment 
landscape. Meanwhile, an increasing number of new agents continues to 
be added to the oncological armamentarium.

Approximately 50 % of cancer patients receive radiotherapy at some 
point during their treatment course, with either curative, radical or 
palliative intent [9–11]. In patients receiving targeted therapies or 
immunotherapy, local radiotherapy is commonly added for palliative 
treatment (e.g., pain control), for ablation of oligometastases or to stop 
oligoprogression [12–16]. Although new combined-modality treatments 
of radiotherapy with targeted therapies or immunotherapy might have 
the potential to improve treatment outcomes, they also pose a risk to 
patients due to potentially increased toxicity. Therefore, this increas
ingly raises the question of whether radiotherapy can be used safely in 
patients receiving these new systemic agents [15].

Toxicity data of these combined-modality treatments are often scarce 
and based on retrospective studies, carrying the risk of bias and 
underreporting [15,17,18]. There is only a limited number of combined- 
modality trials. The required registration clinical trials for approval of 
new systemic anti-cancer agents often do not allow the use of concurrent 
radiotherapy. If radiotherapy is permitted, specific radiotherapy-related 
toxicity is often not evaluated or reported. Moreover, many randomized 
phase III trials lack statistical power for adequate analysis of (uncom
mon) toxicities, as toxicity is usually not the primary endpoint [19–21]. 
Because of this, many of these new systemic anti-cancer agents are 
introduced in clinical practice without solid toxicity data when com
bined with radiotherapy. After clinical introduction, several drugs 
appeared to be safe in combination with radiotherapy, but unexpected 
toxicity has been reported for several treatment combinations, giving 
rise to safety concerns [18,22–29]. This variable outcome may be due to 
different radiation responses in non-neoplastic tissues according to the 
type of systemic therapy, its dose, the irradiated organ and its disease 
state (e.g., vascular disease), the radiotherapy dose, the fractionation 
scheme, and the irradiated volume. Moreover, case series may only 
report on a selected group of patients with severe toxicity, which may 
represent a minority of all treated patients in prospective series [30].

The limited amount of toxicity data poses a challenge to physicians. 

On the one hand, serious toxicity of combined-modality treatment 
should be avoided. On the other hand, temporary drug discontinuation 
or drug dose reduction may lead to lower clinical efficacy or tumor flare 
[31–33], while radiotherapy de-escalation may lead to reduced tumor or 
symptom control. Due to the complexity of these treatment decisions, 
adequate interdisciplinary communication is imperative. Some new 
projects have been initiated in this field [34,35], including a collabo
ration between the European SocieTy for Radiotherapy and Oncology 
(ESTRO) and the European Organisation for Research and Treatment of 
Cancer (EORTC) [35]. However, a clear knowledge gap and a lack of 
consensus on this topic still exist, and in addition to the lack of solid 
data, multidisciplinary consensus protocols are often not available 
[15,36,37]. This demonstrates the urgent, unmet need for multidisci
plinary, evidence-based recommendations regarding the combination of 
these systemic therapies with radiotherapy.

These multidisciplinary recommendations should be based on the 
available clinical evidence and the general biological interaction 
mechanisms. A thorough analysis of the possible biological interaction 
mechanisms of specific drug classes with radiotherapy will assist the 
generation of consensus recommendations for clinical decision making, 
particularly when the amount of high-quality toxicity data is small, 
which is the case for a vast number of recently introduced and upcoming 
targeted therapies and ICIs.

Therefore, the European Society for Medical Oncology (ESMO) and 
the ESTRO decided to provide a series of joint clinical safety statements 
regarding the combination of radiotherapy with targeted cancer thera
pies (excluding antibody-drug conjugates) or immunotherapy (focusing 
on ICIs), covering the clinical toxicity data and the biological interaction 
mechanisms. This series of four papers will contain three papers with 
systematic reviews and detailed, drug-specific and radiotherapy 
scenario-specific consensus statements regarding the safety of combined 
treatment for 10 common drug classes. To complement these statements, 
this first publication provides clinicians with a framework of the most 
important (radio)biological and pharmacological factors, as well as with 
general considerations for clinical practice. This paper offers guidance 
for the numerous new targeted or immunotherapy agents that are not 
included in the three papers, as well as those that are yet to be 
developed.

Biology of radiotherapy and drug-radiotherapy interactions

Radiotherapy causes a plethora of cascades in human cells, from the 
start of radiotherapy until years after radiotherapy (Fig. 1). In order to 
predict the potential interactions between radiotherapy and targeted 
therapies or immunotherapy, it is crucial to understand the most 
important effects of ionizing radiation on cells and tissues and the 
involved biological pathways. Additionally, it is relevant to differentiate 
between early and late effects. In the next sections we discuss the most 
important interactions between the biological effects of radiotherapy 
and targeted agents or immunotherapy.

DNA damage and DNA damage response

While ionizing radiation exerts harmful effects on all cell compo
nents, the main cause of cell death is the formation of double-strand 
DNA breaks (DSBs) [38–40]. On a molecular level, ionizing radiation- 
induced DNA damage is generated directly and indirectly: direct dam
age results from direct interactions between radiation or its secondary 
electrons and DNA, while indirect damage is primarily caused by 
radiation-generated ionizations and free radical formations from water 
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molecules [11,40,41]. Although influenced by various factors, 1 Gray is 
estimated to cause 20–40 DSBs per cell in normoxic conditions [42–46]. 
Other types of radiation-induced DNA damage also contribute to cell 
death, including single-strand DNA breaks (SSBs), base damage and 
DNA backbone sugar damage. Clustering of these types of DNA damage 
around DSBs impairs DSB repair [38,39]. Moreover, SSBs can be con
verted to DSBs when they are still present during DNA replication 
[47,48]. Accumulation of unrepaired SSBs can therefore become detri
mental for cells.

Once DNA damage is recognized, DNA damage repair is initiated, 
while cell cycle checkpoints prevent premature continuation of cell 
growth and division, until these lesions are repaired [49]. DNA- 
dependent protein kinase (DNA-PK), ataxia-telangiectasia mutated 
(ATM), and ATM- and Rad3-related (ATR) are important proteins that 
detect DNA damage and initiate repair and cell cycle pause [50,51]. To 
prevent premature continuation of cell division, CHK1 and CHK2 ki
nases regulate CDC25, WEE1, and p53. These proteins inactivate cyclin- 
dependent kinases (CDKs), thereby inhibiting cell-cycle progression 
until DNA is repaired [52]. Most DSB repair occurs within the first hours 
after irradiation [53–56], via two main DNA damage response (DDR) 
pathways: homologous recombination (HR) and non-homologous end 
joining (NHEJ). The most reliable pathway is HR. It uses the sequence of 
the sister chromatid as template, to correctly repair the DSB, but is only 
active during the S and G2 phase of the cell cycle [11,49,57]. Important 
proteins for HR are for example RAD51, BRCA1 and BRCA2 [57]. 
Conversely, NHEJ is a more error-prone repair method, as DSBs are 
ligated after very limited end processing, which can cause nucleotide 
insertions or deletions [39,57]. NHEJ is available during the whole cell 
cycle [39,57]. Pivotal NHEJ proteins are KU70, KU80, DNA-PK catalytic 
subunit (DNA-PKcs), X-ray repair cross complementing 4 (XRCC4) and 
ligase 4 [57]. In many cancer cells, these cell cycle checkpoints and DNA 
repair pathways are dysregulated [57,58].

As the generation of DNA damage plays a pivotal role in radiation- 
induced cell death, systemic treatments that interact with DDR path
ways can increase the effect of radiotherapy. Inhibitors of DDR proteins 
are capable of enhancing the DNA-damaging effects of radiotherapy and 
several have been tested clinically [51,59,60]. To illustrate, poly (ADP- 
ribose) polymerase (PARP) inhibitors act by inhibiting PARP molecules 
that play an important role in the repair of SSBs and DSBs. This leads to 
inhibition of the PARP-associated repair processes and to trapping of 

PARP on the DNA [47,61]. DNA replication with unrepaired SSBs due to 
PARP trapping can cause DSBs. Particularly cells with HR deficiencies 
are affected by this [47,61]. BRCA1 and BRCA2 gene mutations are 
striking examples. As these proteins play an essential role in DNA 
damage recognition and HR, BRCA mutation carriers have a higher risk 
of particularly breast and ovarian cancer [49]. On the other hand, the 
reduced number of DSB repair options in BRCA-mutated cancers makes 
these cells particularly vulnerable for PARP inhibitors. The lethality of 
these combined factors, while one factor is not sufficient to cause cell 
death, is called synthetic lethality [47,57,61]. The radiosensitizing 
properties of PARP inhibitors have gained traction with several clinical 
studies that concurrently combine PARP inhibitors with radiotherapy 
[23,24,62–64]. PARP-induced radiosensitization can increase radio
therapy toxicity, even at PARP inhibitor dosages that are considerably 
lower than common monotherapy dosages [23,65,66]. This illustrates 
that common drug monotherapy dosages are not always optimal for 
combined treatment with radiotherapy.

Cell death and cell cycle arrest

If not correctly repaired, the presence of DSBs leads to genomic 
instability and can lead to cell death, either directly (e.g., apoptosis) or 
upon mitosis, with a variable time lag after radiotherapy [11,67,68]. 
Alternatively, cells can undergo senescence, resulting in a permanent 
cell cycle arrest and a senescence-associated secretory phenotype, 
causing the production of cytokines, chemokines, growth factors and 
proteases that regulate endothelial cell activation, propagation of 
senescence and immune cell recruitment to balance tissue repair and 
chronic inflammation [11,58,69–72].

When radiotherapy causes cell death in normal tissues, the loss of 
viable cells can lead to loss of tissue integrity and hence to tissue 
dysfunction. Additionally, irradiated cells release factors that not only 
influence the surrounding tissue or organ, but also the rest of the body, 
leading to bystander effects, including genomic instability [11,73–75]. 
Rapid radiation-induced cell death particularly occurs in fast-dividing 
tissues [11]. For example, radiation-induced denuding of epithelial tis
sues, such as the skin and gastro-intestinal epithelium, can become 
symptomatic within weeks after the start of radiotherapy. The release of 
growth factors causes the remaining stem cells to divide more rapidly to 
compensate for the increased cell loss [76]. However, a high amount of 

Fig. 1. Biological effects of radiotherapy over time. Minutes after radiotherapy, DNA damage leads to DNA damage response and repair signaling. Shortly 
thereafter, cells with too much damage will die and the surrounding tissue starts to repopulate in order to restore tissue integrity. The irradiated area can remain in a 
heightened inflammatory state up to years after radiotherapy. In the later stages following radiotherapy, tissues may become more fibrotic, and vascular damage or 
dysfunction may persist. Green bars: beneficial for normal tissues. Red bars: harmful for normal tissues. Yellow bar: various effects on normal tissues. Abbreviations: 
RT, radiotherapy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(stem) cell loss can cause insufficient tissue repair, leading to acute and 
(consequential) late tissue defects and/or dysfunction [11,77]. 
Depending on the irradiated tissue, radiation dose, irradiated volume, 
fractionation scheme, radiotherapy technique, and patient factors, acute 
adverse events can occur during and after radiotherapy. These may 
include general (fatigue, pain), dermatological (dermatitis), neurolog
ical (headache, seizure), pulmonary (cough), gastro-intestinal 
(dysphagia, nausea, diarrhea), and hematological symptoms (reduced 
blood cell counts) [11,78,79].

In slowly regenerating tissues or structurally important cells, rela
tively more cells undergo permanent cell cycle arrest, instead of cell 
death. Together with insufficient cell renewal or repair and a chronic, 
amplified inflammatory state and wound healing process, this can cause 
long-term, often irreversible fibrosis, vascular damage and tissue 
dysfunction [11]. Fibrosis-related symptoms can vary from mild pul
monary symptoms to severe bowel obstruction [80,81]. Radiation- 
induced vascular damage can induce bleeding, but also ischemic 
events in various organs, as described in the section on vascular effects 
[82–84]. Other examples of late adverse events after radiotherapy are 
neurocognitive impairment, neural damage, and gland dysfunction in 
secretory organs like the salivary glands or the pancreas [11].

Tumor cell proliferation often depends on the evasion of cell cycle 
checkpoints and the upregulation of distinct oncogenic pathways [8,85]. 
Upregulated oncogenic pathways may vary across tumor types, indi
vidual tumors and even within a single tumor or between the tumor and 
its metastases [8,86,87]. This upregulation can be caused by alterations 
in genes such as anaplastic lymphoma kinase (ALK), BRAF, EGFR, 
human epidermal growth factor receptor 2 (HER2), Kirsten rat sarcoma 
viral oncogene homolog (KRAS), mammalian target of rapamycine 
(MTOR), and others that play a pivotal role in regulating cell growth and 
division [86,88,89].

Over the last decades, numerous kinase inhibitors and monoclonal 
antibodies have been developed to block these specific oncogenic 
pathways, thereby inhibiting tumor cell proliferation and sometimes 
inducing cell death [8,86,90]. One of the advantages of kinase inhibitors 
is the specific ‘targeting’ of tumor cells carrying these gene alterations, 
while having less impact on normal tissue cells [8]. However, many of 
these pathways have physiological functions in normal tissues [91]. 
Crosstalk between different pathways may also occur [92]. Moreover, 
the molecular specificity of kinase inhibitors is often limited, resulting in 
off-target effects [86,92,93]. Targeted agents can therefore also induce 
tissue dysfunction and damage in normal tissues, leading to various side 
effects [86]. It is apparent that the combination of these agents with 
radiation can lead to increased acute and late normal tissue toxicity. 
Also, cell cycle checkpoint blockade by CDK4/6 inhibitors can possibly 
enhance radiotherapy efficacy and toxicity by preventing cell cycle 
progression and division after radiotherapy [18].

Inflammatory and immunological effects

The immune system plays a crucial role in the observed acute and 
late effects after radiotherapy. Radiotherapy increases the presentation 
of existing cancer cell neoantigens, but it also creates neoantigens by 
generating DNA mutations [94]. Furthermore, radiation-induced cell 
damage and cell death leads to increased major histocompatibility 
complex I (MHC-I) expression on tumor cells and release of damage- 
associated molecular patterns (DAMPs), type I interferons, chemokines 
and pro-inflammatory cytokines [94]. These factors cause inflammation, 
increased T cell infiltration, and immune-mediated cell death. As a 
result, radiotherapy can theoretically convert poorly immunogenic, 
‘cold’ tumors into immunogenic, ‘hot’ tumors, which may increase the 
chance of an effective antitumor immune response [11,94]. There are 
data suggesting that hypofractionated radiotherapy better induces an 
immunogenic tumor environment than conventionally fractionated 
radiotherapy or high-dose single-fraction stereotactic radiotherapy 
[11,94–100].

However, negative inflammatory and immunological effects associ
ated with radiotherapy have been described as well. Radiotherapy can 
cause unfavorable inflammation of normal tissues in the irradiated field, 
including dermatitis, mucositis, and pneumonitis. Inflammation con
tributes to the development of brain radionecrosis as well [101–103]. 
Radiotherapy can also activate various counterbalancing immunosup
pressive signaling pathways, undermining antitumor immuno
surveillance [94,104]. Furthermore, due to the high radiosensitivity of 
lymphocytes (particularly B cells and naïve T cells), irradiation of 
circulating lymphocytes and lymphoid organs can potentially impair 
antitumor immunity by the induction of lymphopenia [11,105]. The 
incidence and severity of lymphopenia are affected by the in-field vol
ume of blood(-containing organs), the radiotherapy dose and fraction
ation. Different models to predict lymphopenia have been proposed, 
including the Effective radiation Dose to the Immune Cells (EDIC) model 
[106,107]. A lower EDIC is correlated with a better overall survival in 
non-small cell lung cancer [108]. There is a potentially lower risk of 
lymphopenia from hypofractionation, compared to conventional frac
tionation schemes, as there is a lower number of radiation doses 
affecting the major blood pool and circulating lymphocytes [107,108]. 
Also, the often smaller irradiated volumes with stereotactic radio
therapy may reduce this risk.

Immunotherapy has the potential to counteract immunosuppressive 
signaling pathways after radiotherapy [95,104]. The most commonly 
used ICIs inhibit the binding of CTLA-4 to B7, or the binding of PD-1 to 
PD-L1. In the lymph nodes, CTLA-4 plays an important role. Upon T cell 
activation by recognition of an antigen-presenting cell in a lymph node, 
CTLA-4 is expressed on the cell surface of the T cell. Binding of CTLA-4 
to B7 ligands on the antigen-presenting cell inhibits T cell activation. 
CTLA-4 inhibitors (e.g., ipilimumab and tremelimumab) prevent this 
CTLA-4-mediated suppression of T cell activation, thereby enhancing 
the priming of T cells and ultimately the cellular immune response 
[109,110]. In the tumor microenvironment, the interaction between PD- 
1 and PD-L1 suppresses immune cell activation. PD-1 is expressed on the 
cell membrane of activated T cells, B cells and natural killer cells 
[109–111]. After engaging with tumor cells expressing PD-L1 or PD-L2, 
PD-1 binding to these ligands leads to inhibition of T cell activation. PD- 
1 (e.g., nivolumab and pembrolizumab) and PD-L1 inhibitors (e.g., 
avelumab and durvalumab) enhance the immune response by prevent
ing this interaction [109,110]. These effects can theoretically increase 
the efficacy of radiotherapy, particularly when combined with hypo
fractionated radiotherapy schedules and small irradiated volumes 
[11,94,95,97–99,112]. However, there is also a possible risk of 
increased inflammatory toxicity.

Vascular effects

Ionizing radiation influences the microvasculature of tumors and 
normal tissues. Particularly microvascular endothelial cells are radio
sensitive [113]. Although there are many unanswered questions, it 
generally appears that radiotherapy can inhibit the formation of new 
blood vessels, while having limited impact on mature vessels. This 
inhibiting effect might be particularly the case for high doses, while low 
(fraction) doses may promote angiogenesis, also by causing increased 
expression of pro-angiogenic growth factors like VEGF [114]. Further
more, radiotherapy can induce recruitment of bone marrow-derived 
circulating cells that are involved in neovascularization [114,115]. 
Telangiectasia are a visible example of radiation-induced vascular 
endothelial cell injury [116].

The goal of angiogenesis inhibitors is to decrease blood flow and 
tumor oxygenation in order to reduce tumor growth. However, there is 
evidence that a couple of days after introduction of an angiogenesis 
inhibitor, there is a transient blood vessel normalization, temporarily 
leading to increased oxygenation of the tissue [114,117]. When radio
therapy is administered during this time window, the increased tissue 
oxygenation can possibly increase radiosensitivity [117–121]. 
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Furthermore, VEGF(R) inhibition can lead to more endothelial cell 
apoptosis after radiotherapy [122].

Ionizing radiation also causes macrovascular injuries. As shown in 
atomic bomb survivors, even a low radiation dose (above 0.5 Gy) in
creases the risk of cardiovascular diseases [123]. In Hodgkin lymphoma 
and breast cancer patients, the risk of myocardial infarction and acute 
coronary events increases dose-dependently with the radiation dose to 
the heart [124–127]. In head and neck cancer patients, radiotherapy 
increases the risk of ischemic cerebrovascular events and this risk is also 
associated with the radiation dose (10 Gy and higher) to the carotid 
arteries [83]. Before these events occur, early radiation-induced 
vascular changes are observed as well, including a dose-dependent in
crease of the arterial wall intima-media thickness, which is an 
ultrasound-assisted early marker of atherosclerosis [128–133]. Some 
studies indicate that atherosclerotic plaques induced by radiotherapy 
have a lower density and less calcification compared to ‘conventional’ 
atherosclerosis, possibly leading to a higher risk of ischemic vascular 
events [83,128,131,134,135].

Angiogenesis inhibitors can cause hemorrhagic events, probably by 
attenuating the microvasculature of tissues, making them more prone to 
both thrombotic events and bleeding [136,137]. Radiotherapy-induced 
vascular damage could also cause hemorrhagic events, for example 
rectal bleeding in prostate cancer patients or bleeding after stereotactic 
radiotherapy to (ultra)central lung lesions [82,138]. This can occur even 
years after radiotherapy.

Several studies indicate that combining radiotherapy with angio
genesis inhibitors increases the hemorrhage risk [139–142]. In addition 
to an increased bleeding risk, several (mainly small) reports show that 
the combination of radiotherapy and angiogenesis inhibitors may also 
lead to ulcers, fistulae and perforations [143–150]. Also, non-concurrent 
treatment of radiotherapy and angiogenesis inhibitors can increase this 
risk, as shown in patients receiving angiogenesis inhibitors with a his
tory of radiotherapy, but without concurrent treatment [143,151–153]. 
This risk appears to be particularly elevated when mucosa is irradiated 
with a high radiotherapy dose. One of the most common angiogenesis 
inhibitors is bevacizumab, a mAb against VEGF, but several other VEGF 
(R) inhibitors are on the market, including the TKIs sunitinib, pazopanib 
and sorafenib [154,155]. These TKIs not only inhibit the VEGFR, but 
they inhibit other receptor tyrosine kinases as well [154].

Biology of hypofractionated radiotherapy

Hypofractionated radiotherapy (officially > 2 Gy per fraction) is 
commonly used for palliative treatments of larger target volumes (e.g., 
1 x 8 Gy) and for high-precision radical (stereotactic) radiotherapy of 
small target volumes [12,14,156]. Hypofractionated radiotherapy is 
also increasingly used as local standard treatment for non-metastatic 
breast and prostate cancer [156]. The use of higher fraction doses is 
less favorable for slowly regenerating tissues, leading to a higher risk of 
late normal tissue toxicities compared to normofractionated radio
therapy [156,157]. Although hypofractionation has less impact on acute 
toxicity, the reduced number of fractions often leads to a reduced overall 
treatment time, allowing for less repair of fast-dividing tissues during 
treatment [156].

Current stereotactic radiotherapy techniques can precisely deliver 
high radiation doses to small target volumes, while minimizing the 
volume of irradiated normal tissues, which radically reduces normal 
tissue toxicity [11,100,156]. This is a major advantage of stereotactic 
radiotherapy, when compared to conventional high-dose radiotherapy. 
However, with high-dose stereotactic radiotherapy close to critical 
normal tissues, the normal tissue tolerance thresholds can be reached. 
Because of these factors, concomitant use of radiosensitizing agents may 
theoretically lead to exponentially increased toxicity, particularly in 
serially organized organs (e.g., spinal cord) [158].

Clinical approach: Considerations for decision making

When patients on targeted therapies or immunotherapy have an 
indication for radiotherapy, there are several aspects to consider before 
deciding whether the two treatments can be combined and if any 
treatment adaptations are required. The aim of this section is to assist 
clinicians by providing a decision-making roadmap that takes account of 
the key factors that may predict the toxicity and feasibility of a partic
ular drug-radiotherapy combination. These considerations are summa
rized in Fig. 2.

As a first step, we suggest searching for available clinical toxicity 
data regarding the combination of this targeted drug or ICI with radio
therapy, preferably arising in the irradiated region. Additionally, it is 
relevant to retrieve the available clinical toxicity data on the combina
tion of the drug class with radiotherapy. As the radiosensitizing mech
anism of other drugs with the same target is probably similar, this 
approach often offers additional relevant toxicity data. The toxicity of 
combining this drug class with radiotherapy to other tissues can also offer 
relevant information. Furthermore, it can be relevant to look for 
evidence-based clinical protocols on how to combine radiotherapy with 
targeted agents or immunotherapy. Unfortunately, these are often 
lacking, but some initiatives have started [34,35], including this joint 
ESMO-ESTRO initiative which will provide clinical consensus state
ments on the safety of combining ten common cancer drug classes with 
radiotherapy.

If the amount of clinical toxicity data is insufficient, estimating the 
expected toxicity can be performed by searching for preclinical data on 
the drug mechanism, possible off-target effects and the potential to 
enhance radiosensitivity, radiation-induced toxicity, and/or drug 
sensitivity. Additionally, if drug monotherapy toxicities have overlap 
with the expected toxicity of the intended radiotherapy treatment, at 
least additive toxicity can be expected. It is also relevant to analyze the 
drug distribution through the body. Particularly, the blood–brain barrier 
penetration can vary considerably among different targeted agents 
[159]. The blood–brain barrier penetration might also be higher at the 
location of a tumor and after radiotherapy [160,161]. Additionally, the 
expression of the drug target in the irradiated normal tissues should be 
considered, as a low target expression might lead to weaker drug effects 
in that tissue. Drug target expressions can be found via the online 
Human Protein Atlas portal (https://www.proteinatlas.org) [162,163]. 
Unfortunately, there are often no data available on target upregulation 
in irradiated tissues.

The drug elimination time is a key factor to consider, as short drug 
half-lives allow for relatively short drug interruptions before radio
therapy in order to reduce the risk of synergistic toxicity. To prevent a 
drug-radiotherapy interaction in case of a high expected risk of syner
gistic toxicity, interrupting the drug approximately 5 elimination half- 
lives before radiotherapy could be considered, as it takes approxi
mately 5 drug elimination half-lives to reach steady-state drug plasma 
concentrations or to eliminate 97 % of the drug after interruption 
[34,164–167]. Drug plasma concentrations are frequently used as sur
rogate for the drug concentrations in tissues [168]. However, it is 
important to exercise caution when using this arbitrary threshold of 5 
elimination half-lives to determine the time interval between drug 
interruption and radiotherapy. This recommendation is intended pri
marily as a directional aid rather than a strict rule, and only in cases 
where any drug-radiotherapy interaction should be avoided for safety 
reasons. In case of long drug elimination half-lives (particularly for 
monoclonal antibodies [169]), interrupting the drug long enough before 
radiotherapy is often not feasible. In some cases, the drug treatment 
schedules contain drug pauses [170]. These time windows could be used 
for radiotherapy, although still an extended drug pause can be neces
sary. The expected decrease of synergistic toxicity by a drug interruption 
should always be balanced against the risk of tumor progression or 
tumor flare [31–33].

In all patients, the radiotherapy indication and available alternative 
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treatment options should be considered. It is also important to consider 
more subtle treatment adaptations, such as drug dosage reduction, a 
reduced radiotherapy dose (per fraction), or the use of more conformal 
radiotherapy techniques [15]. However, drug dosage or radiotherapy 
dose reductions may result in decreased treatment efficacy. It is 
furthermore relevant to account for patient factors, including their 
estimated survival, comorbidities and previous radiotherapy. Even 
though the available clinical toxicity data may be limited, it is important 
to discuss the potentially increased toxicity of combining radiotherapy 
with targeted agents or immunotherapy and to consider the preferences 
of the patient [171].

Clinical approach: Drug class-specific considerations

Most targeted or immunotherapy agents can interfere with at least 
one of the four previously described biological effects after radio
therapy. Even in case of insufficient clinical toxicity data on combining 
these agents with radiotherapy, defining the drug mechanism and un
derstanding the radiobiological effects it interacts with, can help esti
mate the expected toxicity. In this section, the expected toxicities are 
described for combining various drug classes with radiotherapy. These 
are summarized in Fig. 3. A list with drug examples for common drug 
classes is provided in the Supplementary Data.

Fig. 2. Considerations for clinical decision making regarding the combination of radiotherapy with various types of targeted therapy or immuno
therapy agents.
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Agents interfering with DNA repair

The main mechanism of action of radiotherapy is inducing DNA 
damage, which is counteracted by several DNA repair pathways. As 
previously described, agents that interfere with DNA damage repair can 
enhance the DNA-damaging effects of radiotherapy. As most DNA 
damage repair occurs within the first hours after radiation [53–56], the 
strongest drug-radiotherapy interaction is expected during this period. If 
these drugs are interrupted before radiotherapy, they can possibly be 
restarted within two days after radiotherapy to limit the risk of syner
gistic toxicity, thereby allowing for most DNA damage repair (at least 5 
DNA damage repair half-lives) before reintroducing the drug [156,172]. 
Alternatively, a radiotherapy dose reduction or normal tissue sparing by 
a different radiotherapy technique can be considered.

Proliferation inhibitors

Proliferation inhibitors, including ALK, BRAF, CDK4/6, EGFR, HER2, 
KRAS and mTOR inhibitors, can cause cell cycle arrest and/or cell death. 
Particularly in fast-dividing tissues, combining these drugs with radio
therapy can inhibit the normal tissue repair and stem cell division, 
leading to increased acute toxicity and/or a longer duration of acute 
toxicity. Recovery of fast-dividing normal tissues after radiotherapy 
usually takes days to weeks. If proliferation inhibitors are interrupted 
during radiotherapy, they should ideally be withheld for more than one 
week after radiotherapy, as fast-dividing tissues need several weeks to 
repopulate and to recover [11]. However, this is often not clinically 
feasible or necessary. When the expected cell damage or toxicity is low, 
and the need to restart the drug high, it can pragmatically be restarted 
within a week after radiotherapy. In case of high radiotherapy doses to 
normal tissues and in case of ongoing symptomatic radiotherapy 
toxicity, interrupting the drug until recovery from this toxicity can be 
considered. Alternatively, a radiotherapy dose reduction or normal tis
sue sparing by a different radiotherapy technique can be considered. 
Based on the mechanism of proliferation inhibitors, the effect on slowly 
regenerating tissues may be less pronounced.

Immune checkpoint inhibitors

The inflammatory toxicity of combining immune checkpoint in
hibitors with radiotherapy appears mild, particularly for PD-(L)1 in
hibitors. For CTLA-4 inhibitors (+/- PD-(L)1 inhibitors), the level of 
evidence is lower and the toxicity might be slightly higher. This can 
potentially lead to increased early or late inflammation after radio
therapy that may vary in different tissues (e.g., lung). Given that most 
ICIs are monoclonal antibodies with long drug half-lives and prolonged 
immunologic effects after drug discontinuation [169,173], it is ques
tionable whether a short drug interruption or treatment delay is effec
tive as a strategy for reducing the risk of inflammatory toxicity. 
Alternatively, a radiotherapy dose reduction or normal tissue sparing by 
a different radiotherapy technique can be considered.

Angiogenesis inhibitors

As shown previously, combining angiogenesis inhibitors (including 
VEGFR-targeting multitargeted TKIs) with radiotherapy can increase the 
risk of tissue damage with bleeding, ulcers, fistulae and perforations. 
Increased toxicity has also been reported for non-concurrent combina
tions of radiotherapy with VEGF(R) inhibitors. For tissues less prone to 
these toxicities, such as musculoskeletal tissues and the skin, the in
crease in toxicity is probably limited, although there may be a higher 
chance of skin toxicity [174–176].

Conclusions

The rapid, continuing introduction of targeted cancer therapies and 
immunotherapy across various cancer types presents a dilemma for 
medical and radiation oncologists, compelling them to assess the safety 
of combining these new drugs with radiotherapy. Due to the very limited 
high-quality clinical toxicity data of combining these treatments with 
radiotherapy, the aim of this paper is to elucidate the general biological 
mechanisms behind various possible drug-radiotherapy interactions and 
to assist with the decision-making process in these patients. These 

Fig. 3. Expected toxicity and general considerations regarding the combination of radiotherapy with various classes of targeted or immunotherapy 
agents. Abbreviations: GI, gastrointestinal; GU, genitourinary; ICIs, immune checkpoint inhibitors; PD-(L)1, Programmed (Cell) Death(-Ligand) 1; RT, radiotherapy.
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pragmatic considerations are intended for real-world drug-radiotherapy 
combinations and they are not designed as guidance or substitute for 
clinical trials or high-quality registries evaluating the synergy of tar
geted agents or immunotherapy with radiotherapy.

This publication is part of a series of joint ESMO-ESTRO consensus 
statements. Further papers contain drug class-specific and irradiated 
tissue-specific systematic reviews and Delphi consensus statements on 
the safety of combining radiotherapy with various common targeted 
cancer agents (excluding antibody-drug conjugates, due to their 
different mechanism of action) and immunotherapy (focusing on ICIs). 
These evidence-based, multidisciplinary consensus statements, devel
oped by ESMO and ESTRO, have been developed to provide clinically 
applicable suggestions for a large variety of drug-radiotherapy 
scenarios.

For (new) drug-radiotherapy combinations that are not covered in 
the other papers, the current publication aims to provide generic guid
ance. The statements in this publication should be used with clinical 
interpretation of individual treatment contexts. The intention of this 
paper is not to offer strict guidelines, but rather to provide a biological 
mechanism-based framework for decision making.

The clinical dilemmas that arise from the rapid introduction of tar
geted and immunotherapy agents without first acquiring toxicity data 
regarding their interactions with radiotherapy, highlight the urgency of 
developing clinical trials, high-quality registries, prospective cohort 
studies and real-world studies that combine these agents with radio
therapy [15]. These studies should be properly designed to measure 
synergistic acute and late toxicities. Several roadmaps and solutions 
have been proposed to accelerate the development of these drug- 
radiotherapy combinations [19,20], but their application, and hence 
their impact, is currently insufficient. Intensive collaborative and 
interdisciplinary efforts, as for example the ESTRO Focus Group on 
combining radiotherapy with systemic therapies, are therefore contin
uously needed to expand the amount of essential clinical toxicity data of 
combined therapy.

Disclaimer

ESMO and ESTRO do neither guarantee nor assume any re
sponsibility for the relevancy, accuracy, completeness, reliability or 
quality of the information, statements or opinions provided in this 
publication. Any statements are based on information available at the 
time the writing panel conducted its research and discussions on the 
topic. This publication should neither be deemed inclusive of all proper 
methods of care or of all factors influencing the decision making, nor is it 
intended to be exclusive of other methods reasonably directed to 
obtaining the same results. There may be new developments since 
publication that are not reflected herein and that may, over time, be a 
basis for ESMO and ESTRO to revisit and update the publication.

The publications are not intended or implied as a substitute for 
professional advice from a physician or qualified healthcare provider, 
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publication, nor the references or links made to any third-party’s web
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