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Abstract

Purpose: This study aims to investigate the correlation between myocardial area at risk
atcoronary computed tomography angiography (CCTA) and the ischemicburden derived
from myocardial computed tomography perfusion (CTP) by using the 17-segment model.

Methods: Forty-two patients with chest pain complaints who underwent a combined
CCTA and CTP protocol were identified. Patients with reversible ischemia at CTP and at
leastone stenosis of >50% at CCTA were selected. Myocardial area at risk was calculated
using a Voronoi-based segmentation algorithm at CCTA and was defined as the sum of
all territories related to a > 50% stenosis as a percentage of the total left ventricular (LV)
mass. The latter was calculated using LV contours which were automatically drawn using
a machine learning algorithm. Subsequently, the ischemic burden was defined as the
number of segments demonstrating relative hypoperfusion as a percentage of the total
amountof segments (=17). Finally, correlations were tested between the myocardial area
atrisk and the ischemic burden using Pearson’s correlation coefficient.

Results: Atotal of 77 coronary lesions were assessed. Average myocardial areaatriskand
ischemic burden for all lesions was 59% and 23%, respectively. Correlations for > 50%
and >70% stenosis based myocardial area at risk compared to ischemic burden were
moderate (r=0.564; p<0.01) and good (r = 0.708; p < 0.01), respectively.

Conclusion: The relation between myocardial area at risk as calculated by using a
Voronoi-based algorithm at CCTA and ischemic burden as assessed by CTP is dependent
onstenosis severity.

Abbreviations

AUC: Areaunderthecurve

CAD: Coronaryartery disease

CCTA: Coronary computed tomography angiography
CTP: Computed tomography perfusion

CX:  Circumflexartery

ECG: Electrocardiogram

FFR:  Fractional flowreserve

LAD: Leftanteriordescendingartery

LV: Leftventricle

MBF: Myocardial blood flow

MRI:  Magneticresonance imaging

RCA: Rightcoronaryartery

SPECT: Single photon emission computed tomography
VTK: Visualization toolkit
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1. Introduction

Coronary computed tomography angiography (CCTA) iswidely used to diagnose coronary
artery disease (CAD) and determine stenosis severity (1). However, the assessment of
ischemicmyocardiumisalso of prognosticimportance and playsavital role in the decision
to revascularize patients which depends on the extent of the relative hypoperfused
(ischemic) myocardium, relative to the subtended myocardial mass distal of the coronary
stenosis (2). A key advantage of combining CCTA and adenosine stress CT myocardial
perfusion (CTP) is that it allows for both the assessment of coronary artery stenosis
as well as myocardial ischemia (2). Also, CTP has a substantially shorter exam time as
compared to cardiacmagneticresonance (CMR) and myocardial perfusionimaging (MPI).
Furthermore, CTP may be especially beneficial in patients with contraindications for
CMR (3, 4). However, it must be noted that a major disadvantage of CTP is the relatively
high radiation dose exposure. Still, this is gradually improving thanks to technological
advancement (4).

The Voronoi decomposition encompasses a mathematical algorithm thatdivides a three-
dimensional space ortwo-dimensional area between predetermined points based on the
shortestdistance to those points. Thisalgorithm can be used to partition the myocardium
according to which blood vessel is closest (5, 6). By using a Voronoi decomposition
algorithm on myocardial tissue one can take into account the many variations that exist
in coronary anatomy. This is a major advantage of the aforementioned method over the
standard17 segment model in which the segments correspond to a fixed locationand do
not change according to differences in coronary anatomy (7). The importance of usinga
different approach for the assessment of the coronary distribution was demonstrated
inastudy by OrtizPerez etal. in which in patients who underwent CMR 23% of the hyper
enhanced segments were discordant with the empirically assigned coronary distribution
according to the standard 17segment model. A Voronoi based segmentation algorithm
can overcome this problem as its output is dependent on patient specific coronary
anatomy (6, 8).

Artificial intelligence (Al) is rapidly evolving in the work field of cardiovascularimaging
and can greatly lessen the time needed for image processing, Machine learning which
is a subclass of Al allows for the creation of a model based on historical data. As such,
machine learning has been widely used for automatic left ventricle (LV) segmentation
greatly speeding up the process of LV contour placement (9, 10),

Theaim of this study was to assess whether the subtended myocardial massas calculated
by using the Voronoi-based segmentation method correlated to myocardial ischemia
at CTP. As such, CCTA may not only be used to assess the degree of a coronary stenosis,
butalso for the quantification of the subtended myocardial mass which may predict the
ischemic burden without the need for a stress test.
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2. Materials and Methods

2.1 Patients

248 patients referred foracombined CCTA and CTP protocol due to chest pain complaints
were identified. Patients with normal CTP images or fixed perfusion defects (N =178),
absence of atleast one > 50% coronary stenosis (N =11), inferior CTP scan quality (N =16)
and prior coronary revascularization (N =1) were excluded (11). We selected a total of 42
patients forthe currentanalysis. A detailed flowchart of the patient selection is depicted
in Fig.1. CTP scan quality classified as either “poor” or “ fair” was deemed inferior. All
data were retrospectively analyzed. The local ethics committee of the Leiden University
Medical Center approved this retrospective analysis of clinical data and the need for

informed consent was waived.

Patients who
underwent CTP
N =248

Y

Reversible
myocardial ischemia
on CTP
N =54

Normal CTP or fixed

defects
N=178

Patients with inferior
> CTP scan quality
N=16

Reversible

myocardial ischemia

on CTP and at least

one = 50% coronary
stenosis
N=43

Y

Egilible patients for
the study
N =42

Absence of at least

one = 50% coronary
stenosis
N=11

Previous

revascularization
therapy
N=1

Figure 1. Flowchart depicting the selection proces of patients. CTP scans with “poor” or “fair” scan

quality were deemed inferior.
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2.2 Data acquisition

Using a320-row volumetricscanner (Aquilion ONE, Canon Medical Systemsand Aquilion
ONE Genesis Edition, Canon Medical Systems, Otawara, Japan) CCTA and staticadenosine
stress CTP were acquired on the same day. Patients were advised not to consume caffeine
products 24 h before examination. One hour priorto CCTA blood pressure and heartrate
were monitored. Patients with a heart rate exceeding 60 beats per minutes (bpm) were
given metoprolol, 25 mg up to 150 mg orally, unless contraindications were present.
Additionally, metoprolol could be injected intravenously if the heart rate remained above
60 bpm.

Sublingual administration of nitroglycerin (0.4 mg) was done prior to CCTA. Scanner
settings for CCTA were as follows: A detector collimation of 320 x 0.5 mm, a 275 ms
gantry rotation time and temporal resolution of 137 ms for the Aquilion ONE Genesis
Edition and a detector collimation of 320 x 0.5 mm, 350 ms gantry rotation time and
temporal resolution of 175 ms for the Aquilion ONE. Tube current was 140-580mA and a
peak tube voltage 100-135kV. The antecubital vein was used for administration of 50-90
mL of contrast agent (lomeron 400, Bracco, Milan, Italy) followed by a 1:1 mixture of 20
mL contrast and saline and finally 25 mL of saline. Tube current, peak tube voltage and
the amount of administered contrast agent varied due to variations in patient size (12).
Using prospective electrocardiogram (ECGC) triggering 70%-80% of the RR interval was
scanned. In patients with a heart rate exceeding 65 bpm 30%-80% of the RR-interval was
scanned. When a threshold of 300 Hounsfield units (HU) was reached in the descending
aorta CCTA was performed the next beat.

CTP was only performed if there was suspicion of a significant stenosis (> 50%) at CCTA.
To achieve adequate myocardial contrast wash-out the minimum scan-interval was
20 min between CCTA and CTP. ECG and blood pressure were continuously monitored
following continuous adenosine infusion (0.14mg/kg/min) after which a contrast agent
was administered. CTP images were acquired when a threshold of 300 HU was reached
in the descending aorta scanning 80%-99% of the RR interval. Tube settings, injection
protocol and contrastagent were all similar to the CCTA acquisition.

2.3 Image analysis

Images were transferred to a workstation and analyzed using dedicated post-processing
software (Vitrea FX 7.12; Vital Images, Minnetonka, Minnesota). All CCTAand CTPimages
were analysed by trained cardiologists with at least10 years of experience. Inaccordance
with SCCT guidelines, stenosis severity per segment was semi quantitatively assessed
using visual analysis as: 50%-69% (moderate), 70%-99% (severe), and 100% (occluded)
(13). In case multiple stenoses were observed in the same segment and vessel, the most
proximal stenosis was labelled as the culprit stenosis.
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CTPimages were analysed by reconstructing cardiac phases forevery 2% of the scanned
interval. Subsequently, analysis was performed on the phase with the best scan quality
using short-axis reformatted images and a slice thickness of 4 mm using a narrow
window width and level setting (W300/L150) and utilizing the standard 17 segment
myocardial model forscoring (14). If one or more segments demonstrated signs of relative
hypoperfusion the CTP was considered abnormal (11). The number of segments with
relative hypoperfusion relative to the total of 17 segments was defined as the ischemic
burden and calculated using the following formula:

numberofsegmentswithrelative hypoperfusion
17

*100

Ischemic burden =

2.4 Image processing

Before executing the Voronoi-based segmentation algorithm the complete coronary
artery tree was automatically extracted from the CCTA (Fig. 2A) and the relevant lesions
were manually defined using dedicated software (Fig. 2B) (QAngio CT Research Edition
v3.1.5.1 Medis Medical Imaging, Leiden, The Netherlands). Hereafter, the CCTA images
were automatically reformatted into a short-axis orientation covering the complete left
ventriclewith aninter-slice spacing of 4 mm. Subsequently, left ventricularepicardial and
endocardial contours were automatically drawn in the CCTA (Fig. 3). Both tasks were done
semiautomatically usingin house developed MASS software (Leiden University Medical
Center) by using a machine learning model, manual corrections were made if needed.
Thismodel was trained using a different dataset of 5o randomly selected CCTA'sin which
reformatting of the shortaxis and drawing of the LV epicardial and endocardial contours
was done manually. Subsequently we used dedicated open-source software (TensorFlow
v2.6 software available from www.tensorflow.org) to train a neural network. Executing
the machine learning model took approximately 1 minand 20 s per CCTA.

To assess the feasibility of the machine learning model as compared to manual
measurements one observer (FY. with 3 years of experience in cardiovascular imaging
analysis) randomly selected a sample of 10 cases in which manual reformatting of
the short axis and manual drawing of the left ventricular epicardial and endocardial
contours was performed. Correlations were subsequently tested between manual and
automatic measurements concerning the leftventricular mass whichis derived from the
epicardial and endocardial contours. Statistical analysis of these correlations was done
using Pearson’s correlation coefficient using SPSS software (version 25, SPSS IBM Corp,
Armonk, New York).
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.
Figure 2. The complete coronary tree was automatically extracted from the CCTA (Panel A.). The
proximal part of the lesion in the proximal LAD as marked by the red arrow (Panel B) is used as the
starting point for calculating the subtended mass.

Figure 3. Epicardial contours (green line) and endocardial contours (red line) were automatically drawn
using a machine learning model.
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2.4 Voronoi-based segmentation

In order to calculate the subtended mass a Voronoi-based segmentation algorithm
was used on the CCTA by using in-house developed MASS software (Leiden University
Medical Center). By using this algorithm it is possible to find the nearest location of the
extracted coronary artery tree for every voxel within the left ventricular myocardium (s,
6). Subsequently, results of the image segmentation were exported as 3D objects in the
visualization toolkit (VTK) format for furtheranalysis and visualization (Fig. 4). Executing
the Voronoi-based segmentation algorithm took approximately 1 min per lesion.

Finally, the subtended mass was calculated for both > 50% and > 70% stenosis as a
percentage of the total LV mass and defined as the myocardial area at risk using the

following formula:
Subtended
myocardial area atrisk = uortended mass 100
LVmass

Figure 4. Using the previously defined lesion in the proximal LAD (Panel A) and executing the Voronoi-
based algorithm the subtended mass can be computed and visualized in 3D (Panel B).

2.5 Statistical analysis

Correlations between the ischemic burden and myocardial area at risk as well as
correlations between manual and machine learning based LV contours were calculated
using Pearson’s correlation coefficient. All analysis were performed using SPSS software
(version 25, SPSS IBM Corp, Armonk, New York).
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3. Results

CCTA and CTP images from forty-two patients (25 men, mean age, 68.2 + 7.7) were used
for the current analysis. Patient characteristics are listed in Table 1. Voronoi-based
segmentation and semi-automatic drawing of the LV epi- and endocardial contours
using a machine learning algorithm was successful in all cases. A total of 77 coronary
lesions with a luminal stenosis of > 50% were assessed. Average myocardial area at risk
for stenosis > 50% and >70% were 59% and 37%, respectively. Average ischemic burden
for stenosis >50% and >70% were 23% and 24%, respectively. There was a moderate
correlation of the ischemic burden versus myocardial area at risk for stenosis of > 50%
(r=0.564; p<0.01) (Fig. 5). A good correlation was found for the ischemic burden versus
the area at risk for stenosis of > 70% (r = 0.708; p <0.01) (Fig. 6). A complete example is
depictedin figure7.

Comparison ofthe LV massas calculated from manually drawn contours versus contours
drawnwith the machine learning model demonstrated a very good correlation (r=0.870;

p <0.01).

R? Linear =0,318

Area at risk 50

0 10 20 30 40 50

Ischemic Burden

Figure 5. “Area at risk 50” represents the percentage of myocardial area at risk of the total LV as
calculated by using the Voronoi-based segmentation algorithm for every >50% stenosis. “Ischemic
burden” represents the percentage of segments with relative hypoperfusion of the total amount of
segments (=17)
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Chapter 5

R? Linear = 0,501

60

Area at risk 70

0 10 20 30 40 50
Ischemic burden
Figure 6. “Area at risk 70” represents the percentage of myocardial area at risk of the total LV as

calculated by using the Voronoi-based segmentation algorithm for every >70% stenosis. “Ischemic

burden” represents the percentage of segments with relative hypoperfusion of the total number of
segments (=17)
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Figure 7. Example of a 58-year-old male with single vessel disease. A significant stenosis is presentin the
proximal LAD with contrast opacification distally (Panel A). Perfusion defects assessed by CTP can be
seen in panel B. The ischemic burden can consequently be calculated as 8/17 “100 = 47 %. The complete
coronary tree with the relevant stenosis is shown in panel C. Using the previously mentioned stenosis
the subtended mass is calculated by using the Voronoi-based segmentation algorithm. Subsequently,
the myocardial area at risk is calculated as 53/100 *100 = 53%.
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Patient characteristics

N=42
Male/Female 25 (60%) /17 (40%)
Age (years) 68.2+77
Hypertension 23 (55%)
Hyperlipidaemia 22 (52%)
Diabetes mellitus 9 (21%)
Family history of CAD 22 (52%)
Smoking 3 (7%)
Single-vessel disease’ 24 (57%)
Double-vessel disease? 10 (24%)
Triple-vessel disease? 8 (19%)

Table 1. CAD: Coronary artery disease. 1: Defined as luminal diameter stenosis of > 50% on CCTA in
one majorepicardial coronary vessel. 2: Defined as luminal diameter stenosis of > 50% on CCTA in two
major epicardial coronary vessels. 3: Defined as luminal diameter stenosis of > 50% on CCTA in three
major epicardial coronary vessels.

4. Discussion

This study assessed the relationship between myocardial area at risk at CCTA and
ischemicburdenasassessed at CTP. Ourresults demonstrate that calculating subtended
mass using a Voronoi-based segmentation algorithm in combination with a machine
learning algorithm for semi-automatically drawing LV epi- and endocardial contours at
CCTAisfeasibleand its correlation tothe ischemicburden as measured usingastandard
17-segment model at CTP increases with increasing stenosis severity. Consequently,
coronary CTA can be used notonly toassess the degree of a coronary stenosis, butalso for
quantification of the subtended myocardial mass which may predict theischemicburden
without the need for a stress test. It should however be noted that the use of integrated
diagnostics of CCTA and CTP is still better than CCTA alone as the first allows for both
assessment of coronary stenosis as well as the presence of (reversible) ischemia. This is
of greatimportance as not every coronary stenosis is hemodynamically significant (15).

Multiple studies have demonstrated that adding CTP to regular CCTA improves the
detection of hemodynamically significant coronary lesions (16,17). Forinstance, Pontone
etal. demonstrated that addition of CTP to CCTA improved the detection of functional
significant coronary lesions. In a vessel-based model addition of CTP to CCTA yielded an
improvement of specificity (94%; p < 0.001), positive predictive value (86%; p < 0.001),
and accuracy (93%; p = 0.002). Similarly, in a patient-based model, improvements in
specificity (83%; p < 0.001), positive predictive value (86%; p = 0.02), and accuracy (91%;
p =0.004) were also observed when stress CTP was combined with CCTA (16).
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Aside from the degree of coronary stenosis there have been several studies assessing the
relationship between the anatomical location of a coronary stenosis and the presence of
myocardial ischemia. For instance, in a study by Tanabe et al. the combined diagnostic
performance of coronary artery stenosis-subtended myocardial volume and myocardial
blood flow (MBF) on CTP for detecting obstructive coronary artery disease was assessed.
It was found that the AUC of the combined use of the subtended CTP myocardial blood
flow and subtended mass was significantly higher than that of myocardial blood flow
aloneinthe detection of hemodynamically significant stenoses (0.89 vs. 0.75, 0.77; p<0.05)
(18).

Ide etal. demonstrated the feasibility and validity of Voronoi-based tissue segmentation.
It was found that CCTA based subtended myocardial mass calculated using a Voronoi-
based segmentationalgorithm closely corresponded toactual subtended mass measured
on ex-vivo-sine hearts (r=0.92, p=0.02 for the left anterior descending artery (LAD); r
=0.96, p =0.009 for the circumflex artery (CX); r=0.96, p = 0.009 for the right coronary
artery (RCA)) (19).

Semi-automaticsegmentation of the LV usinga machine learning model for defining epi-
and endocardial contours has been validated extensively. Several studies have reported
high comparability to a manual segmentation of the LV versus a machine learning
approach (20-23). It must also be noted that manually drawing epi- and endocardial
contours is a time-intensive process of usually around 20-30 min(20). Semi-Automatic
LV segmentation can speed up this process significantly as we have noted an execution
time of approximately 1 minand 20s.

Kurataetal. alsoassessed the relationship between calculated subtended mass at CCTA
usingaVoronoi-based segmentationalgorithmandischemicburdenasassessed by single
photon emission computed tomography (SPECT). A moderate correlation was found
between the calculated subtended mass andischemicburden (r=0.531; p=0.001) whichis
only slightly lower compared to our results (r= 0.564; p <0.01) (24). Also, Fukuyama et al.
performed a similar study by assessing the relationship between calculated subtended
mass at CCTA using a Voronoi-based segmentation algorithm and ischemic burden as
assessed by magnetic resonance imaging (MRI). Aslightly better correlation was found
when correlating subtended mass to ischemic burden (r = 0.73; p < 0.001) (25). This
differencein correlation may be partially explained by the fact that cardiac MRI perfusion
is still superior to cardiac CTP in the detection of (reversible) ischemia (26).

Interestingly, inour study lesions with a diameter stenosis of 70% or more demonstrated
abettercorrelation between the myocardial area at riskand ischemic burden compared
to lesions with a diameter stenosis of 50% (r=0.708 and r=0.564 respectively). A similar
observation was found by Fukuyama et al. (25). This difference in correlation may be
attributed to the fact that lesions with a greater diameter stenosis may cause more
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(reversible) ischemia and hereby enlarge the ischemicburden. Van Rosendael etal. clearly
demonstrated the relationship between quantitative CCTA lesion measurements and
myocardial ischemia at CTP. It was confirmed that increasing stenosis percentage by
quantitative CCTA is positively correlated to myocardial ischemia (15). Furthermore, a
recent study by Bax et al. demonstrated that lesions in left sided coronary arteries with
a larger diameter stenosis were often localized more distally in the subsequent vessel.
Thus, explaining the better correlation for lesions with a diameter stenosis of 70% or more
as these accompany fora lower subtended mass (27).

4.1 Limitations

This study has several limitations which are inherent to its retrospective design. Firstly,
the amount of analyzed patients is small which may have influenced the strength of
the statistical analysis. Hence, future studies with a larger number of patients will be
required to clarify the significance of these findings in clinical practice. Selection bias
may have been introduced as we only selected patients with reversible ischemia as
diagnosed on CTP. Secondly, the subtended mass was calculated using the anatomical
location of the relevant coronary lesion. This was independent of whether the lesion
was hemodynamically significant or not. In case of multivessel disease the correlation
between subtended mass and ischemic burden may have been biased as we solely
selected the most proximal lesions for calculating the subtended mass. Of course, the
most proximal lesions also encompass the largest subtended mass. Also, there was
no validation of the ischemic burden to the corresponding anatomical territory that
corresponds to the relevant coronary artery lesion used for calculating the myocardial
area at risk (28). Thirdly, the Voronoi-based segmentation algorithm does not take into
account the curved surface of the myocardium but derives the distance the between
the coronary vessels and every myocardial voxel by using a straight line. As distances
are relatively small we feel the impact of not using the myocardial curvature on the
final output will be very minimal. Lastly, we must acknowledge that no inter- or intra-
observer measurements were done on the CCTA or CTP analysis. However, prior studies
have reported excellent and moderate inter- and intra-observer agreements for both
imaging modalities. (6, 29).

5. Conclusions

Quantification of the myocardial area at risk calculated by using a Voronoi-based
algorithmin combination with a machine learning based algorithm for LV segmentation
at CCTA significantly correlates with the ischemic burden as assessed by the standard
17-segment model at CTP. This correlation improves with increasing stenosis degree.
This relationship may be beneficial in risk assessment of patients with CAD and may aid
in clinical-decision making.
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