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Abstract

Purpose: This study aims to investigate the correlation between myocardial area at risk 
at coronary computed tomography angiography (CCTA) and the ischemic burden derived 
from myocardial computed tomography perfusion (CTP) by using the 17-segment model.

Methods: Forty-two patients with chest pain complaints who underwent a combined 
CCTA and CTP protocol were identified. Patients with reversible ischemia at CTP and at 
least one stenosis of ≥ 50% at CCTA were selected. Myocardial area at risk was calculated 
using a Voronoi-based segmentation algorithm at CCTA and was defined as the sum of 
all territories related to a ≥ 50% stenosis as a percentage of the total lef t ventricular (LV) 
mass. The latter was calculated using LV contours which were automatically drawn using 
a machine learning algorithm. Subsequently, the ischemic burden was defined as the 
number of segments demonstrating relative hypoperfusion as a percentage of the total 
amount of segments (=17). Finally, correlations were tested between the myocardial area 
at risk and the ischemic burden using Pearson’s correlation coef ficient.

Results: A total of 77 coronary lesions were assessed. Average myocardial area at risk and 
ischemic burden for all lesions was 59% and 23%, respectively. Correlations for ≥ 50% 
and ≥ 70% stenosis based myocardial area at risk compared to ischemic burden were 
moderate (r = 0.564; p < 0.01) and good (r = 0.708; p < 0.01), respectively.

Conclusion: The relation between myocardial area at risk as calculated by using a 
Voronoi-based algorithm at CCTA and ischemic burden as assessed by CTP is dependent 
on stenosis severity.

Abbreviations
AUC:	 Area under the curve
CAD:	 Coronary artery disease
CCTA:	 Coronary computed tomography angiography
CTP:	 Computed tomography perfusion
CX:	 Circumflex artery
ECG:	 Electrocardiogram
FFR:	 Fractional flow reserve
LAD:	 Lef t anterior descending artery
LV:	 Lef t ventricle
MBF:	 Myocardial blood flow
MRI:	 Magnetic resonance imaging
RCA:	 Right coronary artery
SPECT:	Single photon emission computed tomography
VTK:	 Visualization toolkit
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1. Introduction

Coronary computed tomography angiography (CCTA) is widely used to diagnose coronary 
artery disease (CAD) and determine stenosis severity (1). However, the assessment of 
ischemic myocardium is also of prognostic importance and plays a vital role in the decision 
to revascularize patients which depends on the extent of the relative hypoperfused 
(ischemic) myocardium, relative to the subtended myocardial mass distal of the coronary 
stenosis (2). A key advantage of combining CCTA and adenosine stress CT myocardial 
perfusion (CTP) is that it allows for both the assessment of coronary artery stenosis 
as well as myocardial ischemia (2). Also, CTP has a substantially shorter exam time as 
compared to cardiac magnetic resonance (CMR) and myocardial perfusion imaging (MPI). 
Furthermore, CTP may be especially beneficial in patients with contraindications for 
CMR (3, 4). However, it must be noted that a major disadvantage of CTP is the relatively 
high radiation dose exposure. Still, this is gradually improving thanks to technological 
advancement (4).

The Voronoi decomposition encompasses a mathematical algorithm that divides a three-
dimensional space or two-dimensional area between predetermined points based on the 
shortest distance to those points. This algorithm can be used to partition the myocardium 
according to which blood vessel is closest (5, 6). By using a Voronoi decomposition 
algorithm on myocardial tissue one can take into account the many variations that exist 
in coronary anatomy. This is a major advantage of the aforementioned method over the 
standard 17 segment model in which the segments correspond to a fixed location and do 
not change according to dif ferences in coronary anatomy (7). The importance of using a 
dif ferent approach for the assessment of the coronary distribution was demonstrated 
in a study by OrtizPerez et al. in which in patients who underwent CMR 23% of the hyper 
enhanced segments were discordant with the empirically assigned coronary distribution 
according to the standard 17segment model. A Voronoi based segmentation algorithm 
can overcome this problem as its output is dependent on patient specific coronary 
anatomy (6, 8).

Artificial intelligence (AI) is rapidly evolving in the work field of cardiovascular imaging 
and can greatly lessen the time needed for image processing, Machine learning which 
is a subclass of AI allows for the creation of a model based on historical data. As such, 
machine learning has been widely used for automatic lef t ventricle (LV) segmentation 
greatly speeding up the process of LV contour placement (9, 10),

The aim of this study was to assess whether the subtended myocardial mass as calculated 
by using the Voronoi-based segmentation method correlated to myocardial ischemia 
at CTP. As such, CCTA may not only be used to assess the degree of a coronary stenosis, 
but also for the quantification of the subtended myocardial mass which may predict the 
ischemic burden without the need for a stress test.
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2. Materials and Methods

2.1 Patients
248 patients referred for a combined CCTA and CTP protocol due to chest pain complaints 
were identified. Patients with normal CTP images or fixed perfusion defects (N = 178), 
absence of at least one ≥ 50% coronary stenosis (N = 11), inferior CTP scan quality (N = 16) 
and prior coronary revascularization (N = 1) were excluded (11). We selected a total of 42 
patients for the current analysis. A detailed flowchart of the patient selection is depicted 
in Fig. 1. CTP scan quality classified as either “poor” or “ fair” was deemed inferior. All 
data were retrospectively analyzed. The local ethics committee of the Leiden University 
Medical Center approved this retrospective analysis of clinical data and the need for 
informed consent was waived.

Figure 1. Flowchart depicting the selection proces of patients. CTP scans with “poor” or “fair” scan 
quality were deemed inferior.
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2.2 Data acquisition
Using a 320-row volumetric scanner (Aquilion ONE, Canon Medical Systems and Aquilion 
ONE Genesis Edition, Canon Medical Systems, Otawara, Japan) CCTA and static adenosine 
stress CTP were acquired on the same day. Patients were advised not to consume caf feine 
products 24 h before examination. One hour prior to CCTA blood pressure and heart rate 
were monitored. Patients with a heart rate exceeding 60 beats per minutes (bpm) were 
given metoprolol, 25 mg up to 150 mg orally, unless contraindications were present. 
Additionally, metoprolol could be injected intravenously if the heart rate remained above 
60 bpm.

Sublingual administration of nitroglycerin (0.4 mg) was done prior to CCTA. Scanner 
settings for CCTA were as follows: A detector collimation of 320 x 0.5 mm, a 275 ms 
gantry rotation time and temporal resolution of 137 ms for the Aquilion ONE Genesis 
Edition and a detector collimation of 320 x 0.5 mm, 350 ms gantry rotation time and 
temporal resolution of 175 ms for the Aquilion ONE. Tube current was 140-580mA and a 
peak tube voltage 100-135kV. The antecubital vein was used for administration of 50-90 
mL of contrast agent (Iomeron 400, Bracco, Milan, Italy) followed by a 1:1 mixture of 20 
mL contrast and saline and finally 25 mL of saline. Tube current, peak tube voltage and 
the amount of administered contrast agent varied due to variations in patient size (12). 
Using prospective electrocardiogram (ECG) triggering 70%-80% of the RR interval was 
scanned. In patients with a heart rate exceeding 65 bpm 30%-80% of the RR-interval was 
scanned. When a threshold of 300 Hounsfield units (HU) was reached in the descending 
aorta CCTA was performed the next beat.

CTP was only performed if there was suspicion of a significant stenosis (≥ 50%) at CCTA. 
To achieve adequate myocardial contrast wash-out the minimum scan-interval was 
20 min between CCTA and CTP. ECG and blood pressure were continuously monitored 
following continuous adenosine infusion (0.14mg/kg/min) af ter which a contrast agent 
was administered. CTP images were acquired when a threshold of 300 HU was reached 
in the descending aorta scanning 80%-99% of the RR interval. Tube settings, injection 
protocol and contrast agent were all similar to the CCTA acquisition.

2.3 Image analysis
Images were transferred to a workstation and analyzed using dedicated post-processing 
sof tware (Vitrea FX 7.12; Vital Images, Minnetonka, Minnesota). All CCTA and CTP images 
were analysed by trained cardiologists with at least 10 years of experience. In accordance 
with SCCT guidelines, stenosis severity per segment was semi quantitatively assessed 
using visual analysis as: 50%-69% (moderate), 70%-99% (severe), and 100% (occluded) 
(13). In case multiple stenoses were observed in the same segment and vessel, the most 
proximal stenosis was labelled as the culprit stenosis.
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CTP images were analysed by reconstructing cardiac phases for every 2% of the scanned 
interval. Subsequently, analysis was performed on the phase with the best scan quality 
using short-axis reformatted images and a slice thickness of 4 mm using a narrow 
window width and level setting (W300/L150) and utilizing the standard 17 segment 
myocardial model for scoring (14). If one or more segments demonstrated signs of relative 
hypoperfusion the CTP was considered abnormal (11). The number of segments with 
relative hypoperfusion relative to the total of 17 segments was defined as the ischemic 
burden and calculated using the following formula:

Isch emic bur den =
nu m ber of segm ents with rela t ive hypoper f u sion

17
*100

2.4 Image processing
Before executing the Voronoi-based segmentation algorithm the complete coronary 
artery tree was automatically extracted from the CCTA (Fig. 2A) and the relevant lesions 
were manually defined using dedicated sof tware (Fig. 2B) (QAngio CT Research Edition 
v3.1.5.1 Medis Medical Imaging, Leiden, The Netherlands). Hereaf ter, the CCTA images 
were automatically reformatted into a short-axis orientation covering the complete lef t 
ventricle with an inter-slice spacing of 4 mm. Subsequently, lef t ventricular epicardial and 
endocardial contours were automatically drawn in the CCTA (Fig. 3). Both tasks were done 
semi automatically using in house developed MASS sof tware (Leiden University Medical 
Center) by using a machine learning model, manual corrections were made if needed. 
This model was trained using a dif ferent dataset of 50 randomly selected CCTA’s in which 
reformatting of the short axis and drawing of the LV epicardial and endocardial contours 
was done manually. Subsequently we used dedicated open-source sof tware (TensorFlow 
v2.6 sof tware available from www.tensorflow.org) to train a neural network. Executing 
the machine learning model took approximately 1 min and 20 s per CCTA.

To assess the feasibility of the machine learning model as compared to manual 
measurements one observer (F.Y. with 3 years of experience in cardiovascular imaging 
analysis) randomly selected a sample of 10 cases in which manual reformatting of 
the short axis and manual drawing of the lef t ventricular epicardial and endocardial 
contours was performed. Correlations were subsequently tested between manual and 
automatic measurements concerning the lef t ventricular mass which is derived from the 
epicardial and endocardial contours. Statistical analysis of these correlations was done 
using Pearson’s correlation coef ficient using SPSS sof tware (version 25, SPSS IBM Corp, 
Armonk, New York).
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Figure 2. The complete coronary tree was automatically extracted from the CCTA (Panel A.). The 
proximal part of the lesion in the proximal LAD as marked by the red arrow (Panel B) is used as the 
starting point for calculating the subtended mass.

Figure 3. Epicardial contours (green line) and endocardial contours (red line) were automatically drawn 
using a machine learning model.

5
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2.4 Voronoi-based segmentation
In order to calculate the subtended mass a Voronoi-based segmentation algorithm 
was used on the CCTA by using in-house developed MASS sof tware (Leiden University 
Medical Center). By using this algorithm it is possible to find the nearest location of the 
extracted coronary artery tree for every voxel within the lef t ventricular myocardium (5, 
6). Subsequently, results of the image segmentation were exported as 3D objects in the 
visualization toolkit (VTK) format for further analysis and visualization (Fig. 4). Executing 
the Voronoi-based segmentation algorithm took approximately 1 min per lesion.

Finally, the subtended mass was calculated for both ≥ 50% and ≥ 70% stenosis as a 
percentage of the total LV mass and defined as the myocardial area at risk using the 
following formula:

myocar dia l area at r i sk =
Su bten ded m a ss

LV m a ss
*100

Figure 4. Using the previously defined lesion in the proximal LAD (Panel A) and executing the Voronoi-
based algorithm the subtended mass can be computed and visualized in 3D (Panel B).

2.5 Statistical analysis
Correlations between the ischemic burden and myocardial area at risk as well as 
correlations between manual and machine learning based LV contours were calculated 
using Pearson’s correlation coef ficient. All analysis were performed using SPSS sof tware 
(version 25, SPSS IBM Corp, Armonk, New York).
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3. Results

CCTA and CTP images from forty-two patients (25 men, mean age, 68.2 ± 7.7) were used 
for the current analysis. Patient characteristics are listed in Table 1. Voronoi-based 
segmentation and semi-automatic drawing of the LV epi- and endocardial contours 
using a machine learning algorithm was successful in all cases. A total of 77 coronary 
lesions with a luminal stenosis of ≥ 50% were assessed. Average myocardial area at risk 
for stenosis ≥ 50% and ≥ 70% were 59% and 37%, respectively. Average ischemic burden 
for stenosis ≥50% and ≥70% were 23% and 24%, respectively. There was a moderate 
correlation of the ischemic burden versus myocardial area at risk for stenosis of ≥ 50% 
(r = 0.564; p < 0.01) (Fig. 5). A good correlation was found for the ischemic burden versus 
the area at risk for stenosis of ≥ 70% (r = 0.708; p <0.01) (Fig. 6). A complete example is 
depicted in figure 7.

Comparison of the LV mass as calculated from manually drawn contours versus contours 
drawn with the machine learning model demonstrated a very good correlation (r = 0.870; 
p < 0.01).

Figure 5. “Area at risk 50” represents the percentage of myocardial area at risk of the total LV as 
calculated by using the Voronoi-based segmentation algorithm for every ≥50% stenosis. “Ischemic 
burden” represents the percentage of segments with relative hypoperfusion of the total amount of 
segments (=17)
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Figure 6. “Area at risk 70” represents the percentage of myocardial area at risk of the total LV as 
calculated by using the Voronoi-based segmentation algorithm for every ≥70% stenosis. “Ischemic 
burden” represents the percentage of segments with relative hypoperfusion of the total number of 
segments (=17)
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Figure 7. Example of a 58-year-old male with single vessel disease. A significant stenosis is present in the 
proximal LAD with contrast opacification distally (Panel A). Perfusion defects assessed by CTP can be 
seen in panel B. The ischemic burden can consequently be calculated as 8/17 *100 ≈ 47 %. The complete 
coronary tree with the relevant stenosis is shown in panel C. Using the previously mentioned stenosis 
the subtended mass is calculated by using the Voronoi-based segmentation algorithm. Subsequently, 
the myocardial area at risk is calculated as 53/100 * 100 = 53%.
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Patient characteristics
﻿ N=42
Male/Female 25 (60%) / 17 (40%)
Age (years) 68.2 ± 7.7
Hypertension 23 (55%)
Hyperlipidaemia 22 (52%)
Diabetes mellitus 9 (21%)
Family history of CAD 22 (52%)
Smoking 3 (7%)
Single-vessel disease1 24 (57%)
Double-vessel disease2 10 (24%)
Triple-vessel disease3 8 (19%)

 Table 1. CAD: Coronary artery disease. 1: Defined as luminal diameter stenosis of ≥ 50% on CCTA in 
one major epicardial coronary vessel. 2: Defined as luminal diameter stenosis of ≥ 50% on CCTA in two 
major epicardial coronary vessels. 3: Defined as luminal diameter stenosis of ≥ 50% on CCTA in three 
major epicardial coronary vessels.

4. Discussion

This study assessed the relationship between myocardial area at risk at CCTA and 
ischemic burden as assessed at CTP. Our results demonstrate that calculating subtended 
mass using a Voronoi-based segmentation algorithm in combination with a machine 
learning algorithm for semi-automatically drawing LV epi- and endocardial contours at 
CCTA is feasible and its correlation to the ischemic burden as measured using a standard 
17-segment model at CTP increases with increasing stenosis severity. Consequently, 
coronary CTA can be used not only to assess the degree of a coronary stenosis, but also for 
quantification of the subtended myocardial mass which may predict the ischemic burden 
without the need for a stress test. It should however be noted that the use of integrated 
diagnostics of CCTA and CTP is still better than CCTA alone as the first allows for both 
assessment of coronary stenosis as well as the presence of (reversible) ischemia. This is 
of great importance as not every coronary stenosis is hemodynamically significant (15).

Multiple studies have demonstrated that adding CTP to regular CCTA improves the 
detection of hemodynamically significant coronary lesions (16, 17). For instance, Pontone 
et al. demonstrated that addition of CTP to CCTA improved the detection of functional 
significant coronary lesions. In a vessel-based model addition of CTP to CCTA yielded an 
improvement of specificity (94%; p < 0.001), positive predictive value (86%; p < 0.001), 
and accuracy (93%; p = 0.002). Similarly, in a patient-based model, improvements in 
specificity (83%; p < 0.001), positive predictive value (86%; p = 0.02), and accuracy (91%; 
p = 0.004) were also observed when stress CTP was combined with CCTA (16).
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Aside from the degree of coronary stenosis there have been several studies assessing the 
relationship between the anatomical location of a coronary stenosis and the presence of 
myocardial ischemia. For instance, in a study by Tanabe et al. the combined diagnostic 
performance of coronary artery stenosis-subtended myocardial volume and myocardial 
blood flow (MBF) on CTP for detecting obstructive coronary artery disease was assessed. 
It was found that the AUC of the combined use of the subtended CTP myocardial blood 
flow and subtended mass was significantly higher than that of myocardial blood flow 
alone in the detection of hemodynamically significant stenoses (0.89 vs. 0.75, 0.77; p<0.05) 
(18).

Ide et al. demonstrated the feasibility and validity of Voronoi-based tissue segmentation. 
It was found that CCTA based subtended myocardial mass calculated using a Voronoi-
based segmentation algorithm closely corresponded to actual subtended mass measured 
on ex-vivo-sine hearts (r = 0.92, p = 0.02 for the lef t anterior descending artery (LAD); r 
= 0.96, p = 0.009 for the circumflex artery (CX); r = 0.96, p = 0.009 for the right coronary 
artery (RCA)) (19).

Semi-automatic segmentation of the LV using a machine learning model for defining epi- 
and endocardial contours has been validated extensively. Several studies have reported 
high comparability to a manual segmentation of the LV versus a machine learning 
approach (20-23). It must also be noted that manually drawing epi- and endocardial 
contours is a time-intensive process of usually around 20-30 min(20). Semi-Automatic 
LV segmentation can speed up this process significantly as we have noted an execution 
time of approximately 1 min and 20 s.

Kurata et al. also assessed the relationship between calculated subtended mass at CCTA 
using a Voronoi-based segmentation algorithm and ischemic burden as assessed by single 
photon emission computed tomography (SPECT). A moderate correlation was found 
between the calculated subtended mass and ischemic burden (r=0.531; p=0.001) which is 
only slightly lower compared to our results (r = 0.564; p < 0.01) (24). Also, Fukuyama et al. 
performed a similar study by assessing the relationship between calculated subtended 
mass at CCTA using a Voronoi-based segmentation algorithm and ischemic burden as 
assessed by magnetic resonance imaging (MRI). A slightly better correlation was found 
when correlating subtended mass to ischemic burden (r = 0.73; p < 0.001) (25). This 
dif ference in correlation may be partially explained by the fact that cardiac MRI perfusion 
is still superior to cardiac CTP in the detection of (reversible) ischemia (26).

Interestingly, in our study lesions with a diameter stenosis of 70% or more demonstrated 
a better correlation between the myocardial area at risk and ischemic burden compared 
to lesions with a diameter stenosis of 50% (r=0.708 and r=0.564 respectively). A similar 
observation was found by Fukuyama et al. (25). This dif ference in correlation may be 
attributed to the fact that lesions with a greater diameter stenosis may cause more 
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(reversible) ischemia and hereby enlarge the ischemic burden. Van Rosendael et al. clearly 
demonstrated the relationship between quantitative CCTA lesion measurements and 
myocardial ischemia at CTP. It was confirmed that increasing stenosis percentage by 
quantitative CCTA is positively correlated to myocardial ischemia (15). Furthermore, a 
recent study by Bax et al. demonstrated that lesions in lef t sided coronary arteries with 
a larger diameter stenosis were of ten localized more distally in the subsequent vessel. 
Thus, explaining the better correlation for lesions with a diameter stenosis of 70% or more 
as these accompany for a lower subtended mass (27).

4.1 Limitations
This study has several limitations which are inherent to its retrospective design. Firstly, 
the amount of analyzed patients is small which may have influenced the strength of 
the statistical analysis. Hence, future studies with a larger number of patients will be 
required to clarify the significance of these findings in clinical practice. Selection bias 
may have been introduced as we only selected patients with reversible ischemia as 
diagnosed on CTP. Secondly, the subtended mass was calculated using the anatomical 
location of the relevant coronary lesion. This was independent of whether the lesion 
was hemodynamically significant or not. In case of multivessel disease the correlation 
between subtended mass and ischemic burden may have been biased as we solely 
selected the most proximal lesions for calculating the subtended mass. Of course, the 
most proximal lesions also encompass the largest subtended mass. Also, there was 
no validation of the ischemic burden to the corresponding anatomical territory that 
corresponds to the relevant coronary artery lesion used for calculating the myocardial 
area at risk (28). Thirdly, the Voronoi-based segmentation algorithm does not take into 
account the curved surface of the myocardium but derives the distance the between 
the coronary vessels and every myocardial voxel by using a straight line. As distances 
are relatively small we feel the impact of not using the myocardial curvature on the 
final output will be very minimal. Lastly, we must acknowledge that no inter- or intra-
observer measurements were done on the CCTA or CTP analysis. However, prior studies 
have reported excellent and moderate inter- and intra-observer agreements for both 
imaging modalities. (6, 29).

5. Conclusions

Quantification of the myocardial area at risk calculated by using a Voronoi-based 
algorithm in combination with a machine learning based algorithm for LV segmentation 
at CCTA significantly correlates with the ischemic burden as assessed by the standard 
17-segment model at CTP. This correlation improves with increasing stenosis degree. 
This relationship may be beneficial in risk assessment of patients with CAD and may aid 
in clinical-decision making.
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