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General introduction



Coronary computed tomography angiography (CCTA) is a widely used non-invasive
imaging modality in the diagnosis of coronary artery disease (CAD), allowing for both
quantitative and qualitative plaque assessment (1). It fulfils a very important role in the
early diagnosis of CAD which still remains one of the leading causes of mortality and
loss of disability-adjusted life years worldwide (2). In recent years use of serial CCTA has
emerged in which baseline and follow-up CCTA scans can be compared thus allowing
for the assessment of changes in plaque burden and plaque morphology (3, 4). Serial
CCTA has not only demonstrated its value in the assessment of plaque progression
or regression but also in the assessment of changes in epicardial adipose tissue (EAT)
in which relatively larger volumes of EAT are associated with rapid and early plaque
progression (5). However, as mentioned earlier CCTA is primarily capable of quantitative
and qualitative plaque assessment. Yet, the assessment of ischemic myocardium using
CT myocardial perfusion (CTP) could allow for functional assessment of CAD, the latter
is of importance for prognosis assessment and in the decision to revascularize patients
6,7).

CCTA and MRI both offeradvantages in the assessment of left ventricular (LV) mass and
wall thickness but MRI remains the gold standard (8, 9). However, recent technological
advancementsin CCTA such asimproved spatial resolution have enabled its application
beyond coronary assessment allowing for the assessment of LV mass and wall
thickness (8). This is particularly important as this may offer a resolution for patient
with contraindications to MRI, such as those with cardiacimplanted devices or severe
claustrophobia (10).

The introduction of machine learning algorithms may further refine these imaging
techniques for the assessment of LV dimensions.

This thesis focuses on the development and validation of novel CT-based methods for
quantifying ischemia, quantifying plaque changes on serial CCTA and quantification
of LV mass and wall thickness as opposed to the gold standard MRI. By expanding
the methodological capabilities of CCTA, this research aims to support the broader
application of thisimaging modality in comprehensive cardiacassessment.

Role of serial coronary artery CT in the evaluation of coronary
artery disease

Serial CCTA allows for a non-invasive assessment of changes in plaque burden (Figure
1) and plaque morphology as well as changes in EAT (3-5). EAT is associated with CAD
development as it has been shown to share the same embryologic origin as intra-
abdominal fat which in turn is associated with CAD development (11). Multiple studies
using serial CCTA have shown that baseline quantitative plaque characteristics, along



General introduction

with measurable changes in plaque volume, are more predictive of plaque progression
and major adverse cardiac events (MACE) over time than qualitative plaque features (4,
12-14). This underlies the importance of accurate identification and risk stratification of
patients at risk for future atherosclerosis progression and MACE.

Several studies have shown that serial CCTA is a viable method for evaluating plaque
changes (4,13). Nevertheless, the process of co-registering coronary vessels and analyzing
plaque changes between baseline and follow-up scans continues to rely on manual
techniques using anatomical landmarks (15-17). Ideally an automatic co-registration of
coronary vessels would be used as has recently been developed by Cao et al(18). Yet, cut-
offvalues for plaque progression and or regression remain to be identified. A technique
for objectively evaluating plaque dynamics on CCTA involves the use of patient-specific
thresholdsasisdemonstrated in this thesis. These thresholds are derived from calibration
graphs generated using two-phase scan sets, where differences in negative and positive
plaque thickness are plotted against the scan quality, measured as the contrast to noise
ratio (CNR). This allows for the assessment of plaque progression using patient specific
and vessel specific thresholds based on scan quality.

Figure1. Example adapted from Weber et al (3). of a patient who has undergone serial CCTA in which
the baseline scanis shown in panel A and the follow-up scan in panel B. A total of three newly formed
calcified plaques are seen in the follow-up scan as marked by the blue arrows.



Muyocardial cardiac CT perfusion and quantification

As mentioned before, CCTA is a valuable non-invasive imaging modality in CAD
assessment. However, its main role involves assessment of stenosis severity. Additional
CTP allows for the evaluation of ischemic myocardium which is important for prognosis
and plays a key role in determining whether patients should undergo revascularization.
Thisdecisionisinfluenced by the degree of hypoperfusion (ischemia) in the myocardium
relative to the mass of myocardial tissue distal to the coronary stenosis (1, 6, 7). However,
nowadays CTPisstill assessed routinely by visual analysis in a semi quantitative manner.
Full quantification of myocardial ischemia is discussed in this thesis using the Voronoi
algorithm.

The Voronoi algorithm is a mathematical method used to partition a two-dimensional
plane or three-dimensional space into regions based on the shortest distance to
predefined points. Applying this algorithm to myocardial tissue allows for segmentation
of the myocardium according to the supplied territory of each coronary vessel (19).
Subsequently, areas of ischemia on CTP can be correlated to the corresponding area
perfused by each of the coronary arteries. In the case of a severe stenosis this also allows
forthe correlation of the “subtended mass” to the subsequentarea of ischemia. In which
the subtended mass is defined as the mass of myocardial tissue supplied by a coronary
artery distally from the stenosis (Figure 2).

Figure 2. Example of a patient with a stenosis in the proximal left anterior descending artery (LAD) as
marked by the red arrow in panel A and B. The red area in panel B represents the “subtended mass”
calculated using the Voronoi algorithm.
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MRl isstill considered the gold standard in the assessment of LV mass and wall thickness
(9). However, the high diagnostic accuracy of CCTA for the detection of CAD have made
itawidely used imaging modality over the past few years (20). The role of CCTA as a tool
for LV mass and LV wall thickness is less explored but would be especially beneficial for
patients with contraindications for MRI (8, 10). LV dimension assessment is especially
importantas both LV hypertrophy and increased LV wall thickness are independent risk
factors for cardiovascular morbidity and mortality, regardless of the underlying cause
(21). Nowadays, advancements in artificial intelligence have opened the door for its use
in LV contour placement, a crucial step of LV dimension quantification. Using Al driven
algorithms for LV contour placement on both CCTA and MRI—as opposed to manual
contour placement - has been regarded as a time saver (22, 23). Its applicability in the
comparison of LV massand LV wall thickness on CCTA versus MRl is explored in this thesis.

Thesis outline

Part1ofthe thesis describes the role of serial CCTA scanningin the evaluation of coronary
artery disease and demonstrates a novel method for visualization of plaque differences
applied to serial CCTA. Chapter 2 presents a comprehensive review of literature on
how serial CCTA may be used for the assessment of both quantitative and qualitative
plaque features as predictors of plaque progression and MACE. Chapter 3 describes a
novel method for the quantification of local plaque thickness differences on CCTA using
scan-quality-based-vessel-specific thresholds for the assessment of coronary plaque
progressionand or regression. Part2 focusses on methods thatallow for quantification of
myocardial ischemia using CTP as well as quantification of LV dimensions using artificial
intelligence (Al) for contour placement. Chapter 4 describes the relationship between
quantified myocardial ischemia as assessed by CTP and the myocardial area at risk,
defined as the myocardial area distal from a 50% or 70% coronary stenosis. Chapter 5
outlinesthe correlation of the quantified ischemia on CTPand the myocardial area at risk.
Chapter 6 analyses the assessment of LV mass and wall thickness on CT by comparing LV
mass and wall thickness measured on CT versus the gold standard of MRl using machine
learning algorithms for LV contour placement.
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Abstract

Objectives: To presentanoverview of studies using serial coronary computed tomography
angiography (CCTA) as a tool for finding both quantitative (changes) and qualitative
plague characteristics as well as epicardial adipose tissue (EAT) volume changes as
predictors of plaque progression and/or major adverse cardiac events (MACE) and
outline the challenges and advantages of using a serial non-invasive imaging approach
forassessing cardiovascular prognosis.

Methods: A literature search was performed in PubMed, Embase, Web of Science,
CochraneLibraryand Emcare. All observational cohort studies were assessed for quality
using the Newcastle—Ottawa Scale (NOS). The NOS score was then converted into Agency
for Healthcare Research and Quality (AHRQ) standards: good, fairand poor.

Results: A total of 36 articles were analyzed for this review, 3 of which were meta-analyses
and one was a technical paper. Quantitative baseline plaque features seem to be more
predictive of MACE and/or plaque progression as compared to qualitative plaque features.

Conclusions: A critical review of the literature focusing on studies utilizing serial CCTA
revealed that mainly quantitative baseline plaque features and quantitative plaque
changes are predictive of MACE and/or plaque progression contrary to qualitative
plaque features. Significant questions regarding the clinical implications of these specific
quantitative and qualitative plaque features as well as the challenges of using serial CCTA
haveyetto be resolved in studies using thisimaging technique.

Abbreviations

%DS: Percentage diameter stenosis IQR: Interquartilerange

ACS: Acute coronary syndrome IVOCT: Intravascular Optical Coherence

CAD: Coronaryartery disease Tomography

CCTA: Coronary computed tomography IVUS: Intravascular Ultrasound
angiography LAD: Leftanteriordescendingartery

Cl: Confidence interval LAPV: Low-attenuation plaque volume

CX:  Circumflexartery LAP: Low-attenuation plaque

EAT. Epicardial adipose tissue LM:  Leftmain

EFV:  Epicardial fatvolume MACE: Majoradverse cardiac events

HR:  Hazardratio OR:  Oddsratio

HRP: High-risk plaque features PAV: Percentage atheromavolume

HU:  Hounsfield units PR:  Positive remodeling

ICA: Invasive coronary angiography TPV:  Total plaque volume
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1. Introduction.

Coronary artery disease (CAD) is still one of the leading causes of death and loss of
disability-adjusted life years worldwide (1). The clinical course of CAD mainly consists
of progression of atherosclerosis punctuated by merely unpredictable clinical events
despite treatment (2). Plaque phenotypes are clinically relevant as vulnerable plaque is
prone to rupture and may lead to major adverse cardiac events (MACE) (3). Also, it has
been demonstrated that epicardial adipose tissue (EAT) shares the same embryologic
origin as intra-abdominal fat, which is associated with CAD(4). This underlies the
importance of accurate identification and risk stratification of patients at risk for future
atherosclerosis progression and MACE. Besides invasive techniques such asintravascular
ultrasound (IVUS), intravascular optical coherence tomography (IVOCT) and invasive
coronary angiography (ICA), coronary computed tomography angiography (CCTA) is
a non-invasive imaging approach that allows for both qualitative and quantitative
assessmentof coronary plaque (5). A previous meta-analysis has shown high correlations
between CCTA features and measures of coronary plaque as compared to IVUS (6). As
such, CCTA has rapidly emerged as a non-invasive tool for plaque assessment (7). More
recent studies have demonstrated the ability of serial CCTA to assess changes in plaque
burden and plaque morphology as well as changes in EAT volume (8-11). Use of serial
CCTA may be beneficial for both symptomatic and asymptomatic patients as recent
expert recommendations state that CCTA may be performed as the first-line test for
evaluating patients with no known CAD who presentwith stable typical oratypical chest
pain, or other symptoms which are thought to represent a possible anginal equivalent.
Subsequently, CCTA may be performed inasymptomatic high-riskindividuals, especially
inthose who have a higherlikelihood of havinga large amount of noncalcified plaque (12).

This review presents an overview of studies using serial CCTA as a tool for finding both
quantitative (changes) and qualitative plaque characteristics as well as EAT volume
changesaspredictors of plaque progression and/or MACE and outlines the challengesand
advantages of usinga serial non-invasive imaging approach forassessing cardiovascular
prognosis. Details regarding the search strategies, quality assessment and selection
criteria can be found in the supplementary material.

2. Image analysis of serial CCTA.

Recent development in plaque quantification software allows for semiautomated
methods to quantify plaque volume on a single CCTA, drastically increasing the speed
of assessment (13). Plaque volumes can be automatically sub-classified by composition
using predefined intensity cutoff values in Hounsfield units (HU). These predefined
intensity cutoffvaluesin HU currently available have been obtained by comparing CCTA
with IVUS or by histological examination. However, cutoff values vary (14). Nowadays,
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an algorithm which uses adaptive attenuation thresholds based on the principle that
plaque attenuation values are influenced by luminal contrast densities may be used.
These contrast densities in turn are affected by a variety of factors including cardiac
output and patient body size. Furthermore, luminal contrast densities decrease along
the length of vessels and are lower in vessel segments with a severe stenosis. Adaptive
HU cut-off values may overcome these problems by depending on regional attenuation
contrastin the lumen (14, 15). In a recent study by de Knegt et al., fixed HU cutoffvalues
were compared to adaptive HU cutoff values. Fixed HU thresholds underestimated
fibrous and fibrofatty plaque volumes and overestimated necrotic core and dense
plague volumes compared to adaptive HU thresholds. Also, volumes of dense calcium
plaque differed with increasing tertiles of luminal contrast density when using fixed HU
thresholds instead of using adaptive HU thresholds. This highlights the importance of
usingan adaptive HU threshold algorithm when evaluating plaque composition (16). An
imaging example demonstrating the superiority of adaptive HU thresholds over fixed
HU valuesisdepicted in Fig.1. When assessing serial CCTA, analysis of the same coronary
segmentsin baseline and follow-up scans s crucial for serial plaque comparison. Several
studies utilizing serial CCTA facilitate co-registration of coronary segments and lesions by
using anatomical landmarks like branching vessels and distance from the ostium which
is done manually by visual analysis (17-19). Figure 2 depicts an example of serial CCTA.

Fixed HU thresholds Adaptive HU thresholds

0 10 2 50 70 90 100 110 1 140

Fig 1. Example of quantitative analysis of the left anterior descending coronary artery (LAD) using
fixed and adaptive HU thresholds. Panel A represents the straightened multiplanar reconstruction
where S and E are the start and the end of the segment respectively; P and D are the proximal and
distal borders of the lesion respectively. O represents the point of maximal obstruction. Consequently,
panel B represent the transverse view of the vessel at this point. The color overlay in both the graph
(Panel C) and the transverse view represents the different plaque tissue types. It must be noted that
from visual assessment of the color overlay it can be seen that the fixed HU method characterized this
plaque as having more dense calcium and less fibrofatty tissue compared to the adaptive method (16).

20



CCTA for predicting plaque progression and MACE

Fig 2. Example of a patient with an interscan period of six years between the baseline (shown on the
leftside, panel A) and follow-up scan (shown on the rights side, panel B). The investigated vessel is the
left main (LM) and left anterior descending artery (LAD) demonstrating a total of three newly formed
calcified plaques; onein the LM and two in the proximal segment of the LAD. In this case branching of
the circumflex artery (CX) can be used as an anatomical landmark for co-registration by visual analysis.
The orange line marks the outer vessel wall and the yellow line the lumen of the coronary artery (8).

3. Quantitative and qualitative plaque features.

Assessment of CCTA images can be performed on a quantitative or qualitative basis.
Quantitative analysis focusses on volumetric plaque measurements such astotal plaque
volume (TPV), calcified or noncalcified plaque volume, low-attenuation plaque volume
(LAPV) and percentage atheroma volume (PAV). The latter is calculated as a percentage
by dividing the plaque volume by the vessel volume (20). Quantitative analysis on CCTA is
an adequate predictor of cardiac death and the occurrence of acute coronary syndrome
(ACS) (21). Qualitative analysis focusses on plaque composition based on the plaque
density (attenuation). Hence, CCTA can identify different plaque components. These
qualitative features include plaque composition (noncalcified or calcified) and high-risk
plaque features (HRP) (22). HRP features identified by CCTA include positive remodelling
(PR), low-attenuation plaque (LAP), napkin-ring sign and spotty calcification (21, 23-28).
PR describes the increase in vessel diameter at the lesion site compared to a reference
segment (24), often defined as a remodelling index of >1.1 (5, 9,10, 24, 27, 29). LAPis a
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noncalcified plaque with an attenuation of <30 HU (9,11, 25, 27, 28). The napkin-ring sign
is defined as a combination of a low-attenuation core surrounded by a rim-like area of
higherattenuation (9,11,23, 25). Lastly, spotty calcificationis anintra-lesion calcific plaque
<3 mm in diameter (9,10, 24, 27-29). A meta-analysis by Nerlekar et al. assessing the
relationship between HRP features on prognosis has clearly demonstrated that all HRP
features were strongly associated with MACE, including napkin-ring sign (HR, 5.06; 95%
Cl,3.23-7.94; P< 0.001), low-attenuation plaque (HR, 2.95; 95% Cl, 2.03—4.29; P < 0.001),
positive remodelling (HR, 2.58; 95% Cl,1.84—3.61; P< 0.001), and spotty calcification (HR,
2.25;95% Cl, 1.26—4.04; P=0.006). The presence of >2 HRP features had highest risk of
MACE (HR, 9.17;95%Cl, 410—20.50; P<0.001) (30). Imaging examples of HRP progression
aredepictedin Figs.3and 4.

-_
\

.

Fig3.Example of a patient with LAP progression, a HRP feature. Panel A demonstrates a non-calcified
plague at baseline CCTA in the proximal LAD with moderate stenosis which is also visualized by baseline
ICA in panel D. The colour coded image in panel B demonstrates the presence of LAP components
labelled in blue. Furthervisualization of plague components can be done using a histogram depicted in
panel C. LAP componentvolume was 114.76 mm?. At12 month follow-up significant lesion progression
with severe stenosis is observed (panel F - H). Note the increase of the LAP component volume to
164.63 mm?3(9).
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CENTRAL ILLUSTRATION: Progression of Nonobstructive Lesions With and
Without HRP Features From the Same Patient

From a patient with stable coronary artery disease

HRP (+) lesion at LAD HRP (-) lesion at RCA

Baseline

Total Plaque volume: 117mm3  Diameter stenosis: 33%  Total Plaque volume: 1777mm3  Diameter stenosis: 36%

Follow-up

Total Plaque volume: 202mm3 Diameter stenosis: 34%  Total Plaque volume: 3177mm3  Diameter stenosis: 59%

Lee, S.-E. et al. J Am Coll Cardiol Img. 2020;13(6):1409-17.

Fig 4. Example of a patient with plaque progression in a plaque with and without HRP features. A
plaque in the right coronary artery (RCA) without HRP features progressed to an obstructive lesion
at follow-up. Contrary, a plaque with HRP features in the LAD from the same patient remained
nonobstructive at follow-up (10).

4. CCTA derived plaque features for predicting plaque
progression.

Several studies have assessed the relationship between CCTA-derived quantitative
and qualitative plaque features as predictors for plaque progression. (8-10, 29). In the
past, serial IVUS has demonstrated the prognosticimportance of plaque progression by
showinganassociation with clinical outcomes (31). Table1 lists details of studies utilizing
serial CCTA to assess the relationship between CCTA-derived quantitative and qualitative
plaque features as predictors for plaque progression and/or MACE.

Inalargestudy by Hanetal., predictors of rapid plaque progression were assessed. Rapid
plaque progression was defined as an increase of baseline PAV of more than1% peryear
on follow-up CCTA. A machine learning framework was used to assess several qualitative
and quantitative CCTA-based plaque features. Quantitative features were the most
importantto predict plaque progression followed by qualitative featuresand lastclinical/
laboratory features. Specifically, the PAV at baseline was the most important predictor
(information gain value: 0.193, regression coefficient (8): 0.529; p < 0.01). (29). Lee et al.
assessed the progression from non-obstructive lesions to obstructive lesions compared
to the presence of high-risk plaque features. Both total PAV and percentage diameter
stenosis (%DS) at baseline were significantrisk factors for the development of obstructive
lesions (HR, 1.04 [95%Cl, 1.02-1.07], and HR, 1.07 [95%Cl, 1.04-1.10], respectively; all p <
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0.05). Interestingly, the presence of high-risk plaque features was not a significant risk
factor (p=0.433). In lesions without HRP features, baseline total PAV (HR, 1.035 [95%CI,
1.002-1.067]; p = 0.031) and baseline %DS (HR, 1.081 [95%Cl, 1.049-1.115]; p < 0.001) were
independent predictors fordevelopment of obstructive lesions. However, in lesions with
HRP features, only baseline total PAV independently predicted progression to obstructive
lesions (HR:1.102 [95%Cl: 1.035-1.174]; p = 0.003) (10). Weber et al. also demonstrated the
importance of quantitative plaque features as a significant correlation between baseline
TPV and TPV progression (spearman’s rho = 0.33; p < 0.01). The progression in TPV was
mainly determined by a progression of calcified plaque volume (7.6 mm?3 [interquartile
ranges 0.2 and 33.6] vs. 16.6 mm? [interquartile ranges 1.8 and 62.1]; p < 0.01). Also,
patients with obstructive CAD at follow-up had a significantly higher TPV at baseline
(384.9 mm? [interquartile ranges 182.8 and 538.1] vs. 45.1 mm?3 [interquartile ranges 10.3
and102.9]; p <0.01) (8). Yuetal. reported predictors for plaque progression assessed at
serial CCTAin patientswith solely non-culpritintermediate stenoses. LAP at baseline was
an independent predictor of lesion volume progression at follow-up (OR, 16.74 [95%Cl,
5.02-55.84]; p < 0.001) (9). Lee et al. demonstrated that adding HRP features to a per-
lesion predictive model for developing obstructive lesions containing plaque volume
and clinical risk factors increased the C-statistic from 0.830 [95% Cl: 0.828-0.833] t0 0.895
[95% Cl: 0.893-0.897]; p=0.003. Also, the per lesion HRP feature model was significantly
betterthan the per-patient HRP feature model (C-statistic: 0.825[95% Cl, 0.823-0.827] vs.
0.895 [95% Cl, 0.893-0.897], p <0.001) (32).
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4.1. Epicardial adipose tissue.

Numerous studies investigated the relationship between EAT and coronary artery
plaque progression (4, 11, 33). EAT is a metabolically active organ that shares the same
embryologic origin as intra-abdominal fat, which is associated with CAD. Under
pathological circumstances, EAT has been shown to be a rich source of inflammatory
adipokines. Given thatinflammationis a fundamental component of the atherosclerotic
process, it is postulated that EAT may influence the development and progression of
coronary artery disease by contributing to the local inflammatory burden within and
around atherosclerotic plaque (4). Psaltis et al. assessed the relationship between
epicardial fat volume (EFV) and coronary artery plaque progression; higher baseline
EFV was associated with the progression or development of coronary artery plaque (8
coefficient 0.014 [95%Cl, 0.003—0.026]; p=0.014). Interestingly, change in EFV overtime
was not (p =0.860) (4). You et al. also found that baseline indexed epicardial fat volume
was an independent predictor of rapid increase in lipid-rich plaque volume (OR, 1.029
[95% Cl, 1.005-1.053]; p = 0.016). Nevertheless, annual changes in indexed epicardial
fat volume were not associated with parallel changes in lipid-rich, fibrous or calcified
coronary plagquevolume (p=0.286, p=0.500, p=0.096; respectively) (33). However, both
studies contained patients that were overweight at baseline (BMI (kg/m?) + SD:29.3+5.8
forPsaltisetaland 25.1+3.3 for Youetal). On the contrary, Nakanishi etal. solely focused
on non-obese patients and demonstrated that increase of EAT volume (>10 mL) during
follow-up was associated with anincreased prevalence of obstructive plaques (p <0.001)
and plaques with high-risk features, such as PR (p <0.001) and LAP (p = 0.001), in non-
obese patients with CAD (11). Figure 5 depicts an example of EAT analysis.

(B) (©)

Fig 5. An example representing the measurement of EAT volume. The yellow arrows in panel A
represent the pericardium in a cross-sectional slice. Segmentation of the EAT is achieved by tracing
the pericardium in the axial view represented by the green line (Panel B). Subsequently, the adipose
tissue can be identified by using threshold attenuation values of 30 to 250 HU which is represented
by the green area in panel C (11).
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4.2. CCTA derived plaque features for predicting MACE.

High-risk features of plaque such as PR, LAP and spotty calcification are found to be linked
to plaque rupture and MACE (34). Multiple studies have investigated the relationship
between CCTA-derived features of plaque and MACE on serial CCTA (9,11, 34). Yuetal.
(9) found that patients with MACE showed a statistically significant higher prevalence of
LAP at baseline compared to patients in the MACE-absent subgroup (40.0% vs.12.8%; p
=0.015). Prevalence of spotty calcification, napkin-ring sign and PR was not statistically
different between the MACE and MACE-absent subgroups (13.33% vs. 6.40%, p = 0.297;
46.67% vs. 28.00%, p = 0.147; 73.33% Vs. 60.00%, p = 0.406; respectively). Interestingly,
also nosignificant difference existed between the two groups with regard to quantitative
plaque features such as TPV, lesion length and diameter stenosis (44.6 mm?3vs. 46.3
mm?, p=0.479;10.5 MM YVs.13.0 mm, p=0.166; 55.0% vs. 62.0%, p = 0.077, respectively for
the MACE and MACE-absent subgroups). Yet, the lesion volume progression subgroup
showed a higher incidence of MACE compared to the non-lesion progression subgroup
(56.25% vs. 4.84%; log-rank p < 0.001). Notably, the MACE subgroup was small (15/140)
(9). Motoyama et al. described that patients with plaque progression had a significantly
higher incidence of MACE (14.3% vs. 0.3%, log-rank p<0.0001). Also, when classified in
groupsaccordingto the presence of HRP features, the patients with both HRP at baseline
CCTA and plaque progression at follow-up showed the highest frequency of MACE (27%,
log-rank p < 0.0001). Conversely, in patients with HRP lesions at baseline which did not
progress during follow-up, MACE did not occur. Interestingly, non-HRP lesions also led
to MACE and the ones that progressed over time on a volumetric basis and evolved from
non-HRP to HRP were more likely to result in MACE (3 out of a total of 9 events (15.4%))
(34). Rosendael et al. demonstrated that at 10 years, patients with an increase of >1.0%
PAV/year had a higher risk of MACE compared to patients with an increase of <1.0% PAV/
year (27.2% vs. 9.5%; log-rank p < 0.007). Patients were further stratified by the median
baseline PAV. Patients with anincrease <1.0% PAV/yearand low baseline PAV experienced
the lowest rates of MACE at 10 years, whilst those above the median baseline PAV and
>1.0% increase in PAV/year experienced the most events (6.5% vs. 30.2%, p < 0.001) (35).
Gu et al. identified patients with non-obstructive CAD who underwent a second CCTA.
Those who developed any plaques coexisting in the left anterior descending, the left
circumflex, and the right coronary artery (three-vessel plaque progression) between the
two scans had an increased chance of MACE (HR, 2.37, p=0.026). Furthermore, patients
having a nonobstructive proximal lesion in the leftanterior descending, left circumflex,
ortherightcoronaryartery, which developed ina>70% stenosis (severe proximal plaque
progression) between the two scans, also had an increased chance of MACE (HR, 3.65, p
=0.003) (36)
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5. Therapeutic measures to decrease plaque progression.

Several studies utilized serial CCTA to assess the effect of different medical therapies
-mostly statins- on plaque progression (17, 19, 37, 38). Zeb et al. demonstrated that
statin use causes a significant decrease of both LAP and noncalcified plaque volumes
(-12.2+19.2vs. 5.9 mm?3 + 23.1, p < 0.0001 and —47.7 + 71.9 vs. 13.8 mm? + 76.6, p < 0.001,
respectively, forstatinand non-statin users) and a non-statistically significantincreasein
the amount of calcified plaque volume in statin users compared to non-statin users (37).
Smitetal. also demonstrated that statin use was associated with a significant reduction
of noncalcified plaque progression (1.0+16.0 vs. 6.4+13.9 mm?3; P=0.049) compared to
non-statin users. Statin users in turn showed an increase in calcified plaque progression
(9.0+12.2vs.3.3+8.6 mm3; P=0.001) (19). Astudy by Lee et al. utilizing the large PARADICM
registry also demonstrated that over time statin therapy increased plaque calcification
and reduced HRP features as lesions in statin-taking patients experienced higher
annualized progression of calcified PAV (1.27 +1.54 mm? per year vs. 0.98 +1.27 mm? per
year, respectively; p < 0.001) but slower progression of noncalcified PAV than lesions in
statin-naive patients (0.49 + 2.39 mm? peryearvs. 1.06 + 2.42 mm? per year, respectively;
p <0.001) (17). At baseline CCTA, statin-taking patients exhibited a higher prevalence of
HRP, PR and spotty calcification (13.7% vs. 10.0%; 56.0% vs. 47.6%; and 10.2% vs. 6.8%,
respectively; all p < 0.05), with no differences in LAP (8.5% vs. 8.4%, respectively; p =
0.95). Theannualized incidence of HRP, PR, spotty calcification and LAP were lower (0.9%
peryearvs. 1.6% per year; 5.2% per year vs. 7.2% per year; 0.2% per year vs. 0.5% per
year; and 0.8% per year vs.1.0% per year, respectively; p < 0.001 for all) for statin- versus
non-statin-taking patients respectively (17). lt must be noted that differences in baseline
characteristics between the statin- and non-statin-taking groups may have impacted
results.

Li et al. demonstrated that not solely statin use but also statin dosage plays a key role in
aiding plaque regression as patients receiving intensive statin therapy demonstrated
significantly higher annualized regression of LAP volume, TPV and % plaque volume
compared to patients receiving moderate statin therapy. Interestingly, a higher baseline
LAPvolumewasalso associated with higher TPV regression (P<0.001). Thus, patients with
greater baseline LAP volume were more likely to benefit fromstatin therapy (38). Figure 6
depictsanimaging example of assessment of therapy efficacy on plaque presence using
serial CCTA.

30



Statin-naive patients Statin-taking patients
Baseline Follow-up Baseline Follow-up

O
|

ﬁ

Plaque Dense calcium
composition

Fig6. CCTA images of lesions at baseline and follow-up among statin-naive patients and statin-taking
patients. Statin taking patients expressed slower progression of noncalcified PAV compared to statin-
naive patients. Noncalcified PAV is the summation of fibrous, fibro-fatty and low attenuation PAV (17).

6. Benefits and challenges of serial CCTA.

Acritical challenge in serial CCTA is the wide range of commercially available CT scanners
and therapid technological developments. Several studies used different scannertypes
with different specifications and performance at baseline and at follow-up (8, 10, 29,
33, 34). Symons et al. performed a systemic comparison of scanner variability in serial
CCTA, in which plaque volume was measured with the same or a different CCTA scanner
within3o days. Plaque volume variability was +18.4% (coefficient of variation) when the
same scanner was used at baseline and follow-up, whilst the plaque volume variability
was +29.9% when different scanners were used (39). This highlights the importance of
standardized CCTA protocols in future prospective studies.

No professional society guidelines dictate the methods for the routine usage of serial
CCTA for evaluating progression of CAD. Therefore, it remains unclear which choice of
endpoint measurement is the most appropriate (40). The usage of different endpoints
could impede study comparison. Furthermore, the ideal inter-scan interval remains
unclear. However, one may conclude that a relatively short inter-scan interval may
inhibit the detection of newly formed plaques. On the contrary, a relatively long inter-
scaninterval may contribute to different CCTA protocols being used. Asis observed from
numerous studies cited in this review, one may propose that an inter-scan interval of at
least1-2 years would seem reasonable.
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Development and implementation of radiation dose reduction tools for coronary CCTA
have rapidly been expanded as high radiation exposure is known to increase the risk
of cancer. As noted in the SCCT guidelines on radiation dose and dose-optimization
strategies in cardiovascular CT, several scanner settings such as tube current and tube
potential should be kepttoa minimum to limit radiation exposure whilstalso maintaining
adequate image quality (41).

Currently, all studies utilizing serial CCTA for plaque progression are using visual analysis
ofanatomical landmarksand vessel branches foralignment between baseline and follow-
up CCTA. Hence, automatic co-registration would be feasible to match corresponding
points on the coronary tree in the baseline and follow-up scan. This has recently been
demonstrated by Cao et al. but remains to be tested in a clinical setting (42).

Despite its challenges, serial CCTA has emerged as an important non-invasive imaging
technique to track the effectiveness of medication on coronary plaque progression. Ina
review by Taron etal., theauthors showed thatserial CCTA could successfully demonstrate
the efficacy of anti-atherosclerotic treatments (40) and Dahal et al. have demonstrated
theimportance of serial CCTA in tracking coronary atheroma progression in studies using
new pharmacotherapies (43). Furthermore, when combining therapiesand cardiovascular
outcomes, serial CCTA can give an insight in the mechanistic correlations of coronary
atherogenesis (44). Current benefitsand challenges of serial CCTA are reported in Table 2.

Table 2. Benefits and challenges of serial CCTA

Benefits Challenges

Assessment of changes in plaque burden and Establishing low radiation protocols to prevent
plaque morphology. unnecessary exposure during successive CCTA’s.
Predicting (rapid) plaque progression and/or Currently no consensus on endpoint

MACE. measurements.

Semiautomated measurements allows Usage of different CT-scanners at baseline and
objective sequential measurements. follow-up.

Measuring the effect of different medical Theideal interscan interval remains unclear.

therapies on plaque progression.

Civing an insight in mechanistic correlations of ~ Automatic co-registration to match

coronary atherogenesis corresponding points on the coronary tree in
the baseline and follow-up scan instead of using
visual analysis of anatomical landmarks.

Implementation of machine learning for plaque
analysis.

Table 2. MACE: Major adverse cardiac events. CCTA: Coronary computed tomography angiography.
CT: Computed tomography.
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7. Conclusions.

Serial CCTA has rapidly emerged as the non-invasive modality to track atherosclerotic
plaque changes and to assess the impact of different treatment strategies on CAD.
Multiple studies utilizing serial CCTA have demonstrated that baseline quantitative
plaque features as well as quantitative plaque changes -contrary to qualitative plaque
features-are the mostimportantin predicting plaque progression and MACE over time.
However, it must be noted thatalthough statistically quantitative plaque features remain
the mostimportant predictors of cardiovascular prognosis, qualitative features also have
asubstantial contribution. Furthermore, use of serial CCTA has been proven to be useful
inthe assessment of (statin) therapy efficacy on plaque progression and has revealed that
statins slowed the overall progression of coronary atherosclerosis volume with increased
plaque calcification and reduction of HRP features.

For optimal interpretation of serial CCTA, the following suggestions can be taken into
consideration. First, the use of standardized acquisition protocols for both baseline and
follow-up CT scans seems preferable, as well as adaptive HU threshold algorithms for
the evaluation of plaque composition. Second, to date, no expert consensus has been
available on the ideal inter-scan interval between baseline and follow-up CT scan.
However, based on currentstudies, thisinterval could potentially be setat1-2 years. Third,
itseems favourable to quantify plaque as automated as possible. It should, however, be
stressed that for now serial CCTA solely remains animportant research tool foridentifying
surrogate endpoints predictive of MACE and is unlikely to feature as part of the clinical
workup of patients. Ultimately, serial CCTA isa promising technique for the evaluation of
cardiovascular prognosis yet technical details remain to be refined.
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Abstract

Introduction: The use of serial coronary computed tomography angiography (CCTA)
allows for the early assessment of coronary plaque progression, a crucial factor in
averting major adverse cardiac events (MACE). Traditionally, serial CCTA is assessed
using anatomical landmarks to match baseline and follow-up scans. Recently, a tool has
been developed by Cao etal. thatallows for the automatic quantification of local plaque
thickness differences in serial CCTA utilizing plaque contour delineation.

The aim of this study was to determine thresholds of plaque thickness differences that
definewhetherthereis plaque progression and/or regression. These thresholds depend
on the contrast-to-noise ratio (CNR).

Methods: Plaque thickness differences between two scans acquired at the same moment
in time should always be zero. The negative and positive differences in plaque contour
delineation in these scans were used along with the CNR in order to create calibration
graphsonwhichalinearregression analysis was performed. This analysis was conducted
on a cohort of 50 patients referred for a CCTA due to chest complaints. A total of 300
coronary vessels were analyzed. First, plaque contours were semi-automatically
determined forall majorepicardial coronary vessels. Second, manual drawings of seven
regions of interest (ROI) per scan were used to quantify the scan quality based on the
CNR foreach vessel.

Results: A linear regression analysis was performed on the CNR and negative and
positive plaque contour delineation differences. Accounting for the standard error of
the estimate, the linear regression analysis revealed that above 1.009-0.002*CNR there
isan increase in plaque thickness (progression) and below -1.638+0.012*CNR there is a
decrease in plaque thickness (regression).

Conclusion: This study demonstrates the feasibility of developing vessel-specific,
quality-based thresholds for visualizing local plaque thickness differences evaluated
by serial CCTA. These thresholds have the potential to facilitate the early detection of
atherosclerosis progression.
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1. Introduction

Coronary artery disease (CAD) is still the leading cause of mortality worldwide [1].
Early detection of CAD is imperative and holds the potential to prevent major adverse
cardiacevents (MACEs) [2]. There are many techniques for diagnosing CAD, one of which
is coronary computed tomography angiography (CCTA). This non-invasive imaging
modality allows for both quantitative and qualitative assessments of coronary plaque.
The use of serial CCTA, in which baseline and follow-up CCTA scans are compared, allows
for the assessment of coronary plaque progression and/or regression [3]. The feasibility
of using serial CCTA as a tool for assessing plaque changes has been demonstrated by
several studies [4—6]. However, the coregistration of coronary vessels and the subsequent
assessmentof plaque changes between baseline and follow-up scans are still conducted
manually using anatomical landmarks, as depicted in Fig. 1.

Inthe contextofserial CCTAanalysis, itis crucial that the assessmentis done from asimilar
longitudinal viewing angle. Afterwards, coronary plaque differences are calculated
based on the two-dimensional (2D) transversal view, and experts visually assess and
grade the changes. However, the manual selection of viewing angles and landmarks for
alignmentis time consumingand potentially introduces bias [7]. Moreover, determining
whether the difference in the amount of plaque thickness at a certain angle is caused by
genuine changesor by adifferentviewingangle in the multiplanar reconstructions poses
achallenge. Recently, Cao etal. developed a novel method for the automaticalignment of
baseline and follow-up scans. This method enables direct visualization of plaque changes
by calculating plaque thickness differences between baseline and follow-up scans from
automatically delineated lumen and vessel wall contours. This tool was validated on
artificial datasets. Thresholds of 0.5 mm for plaque progression and - 0.5 mm for plaque
regression were found to differentiate between minor deviations and actual plaque
changes [7].

The accuracy of the automatic delineation of coronary vessel and lumen contours is
dependent on the scan quality, which, in turn, depends on several factors such as the
image noise, movement artefacts, and numerous scan parameters [8]. Consequently,
thresholdsare necessary to differentiate actual changesin plaque thickness from changes
caused by inaccuracies in vessel and lumen wall delineation. The scan quality on CCTA
can be quantified using the contrast-to-noise ratio (CNR), as this can be indicative of the
quality (i.e., detectability) of the contrastin the vessel of interest [9,10]. This study aimed
to use the CNR to develop vessel specific thresholds which can be used in combination
with the aforementioned tool for plaque assessment on serial CCTA.
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Fig.1 Example, adapted from Weberetal. [5], of a patient who has undergone serial coronary computed
tomography angiography (CCTA); the baseline scanis shown in panel A and the follow-up scan is shown
in panel B. Plaque delineation is marked by the orange and yellow lines representing the vessel and
lumen, respectively. A total of three newly formed calcified plaques are seen in the follow-up scan, as
marked by the blue arrows. In this case, the branching of the circumflex (Cx) artery may be used as an
anatomical landmark for co-registration by visual analysis. LAD left anterior descending artery, LM
left main artery, mm millimeters

2. Materials and Methods

2.1 Patients

Fifty randomly selected patients from the Leiden University Medical Center, the
Netherlands, who had chest pain complaints and were referred for a CCTA were
included in the current study. Two different phase reconstructions from the same scan
from each patient were chosen; the two reconstructions were in the range of either
70—80% or 30—80% for the entire cohort. In principle, this meant that plaque thickness
differencesshould have been absent, as both phases were made almost simultaneously.
The compared reconstructed phases were always within the same RR interval,
which constitutes the time between two successive R waves of the QRS signal on the
electrocardiogram (ECG). The compared phase pairs were always within the same gated
window; either 70-80% or30—80%, and always constituted a 75% phase and arandomly
reconstructed other phase. All data were clinically acquired and retrospectively analyzed.
Theinstitutional review board of the Leiden University Medical Center, the Netherlands,
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approved this retrospective evaluation of clinically collected data and waived the need
forwritteninformed consent. This study was performed in accordance with the Helsinki
Declaration of 1964 and its later amendments.

2.2 Data acquisition

CCTAwas performed using a320-rowvolumetricscanner (Aquilion ONEand Aquilion ONE
Genesis Edition, Canon Medical Systems, Otawara, Japan). Heartrate and blood pressure
were monitored 1h before CCTA. Metoprolol (from 25 mg up to 150 mg) was administered
orally to patients exceeding a heart rate of 60 beats per minute (bpm) provided that no
contraindications were present. Additional metoprolol was injected intravenously if the
heartrate remained above 60 bpm. Nitroglycerin (0.4 mg) was administered sublingually
4 min prior to CCTA. The scan parameters were as follows: a detector collimation of 320
X 0.5 mm, a 275-ms gantry rotation time, and a temporal resolution of 137 ms for the
Aquilion ONE Genesis Edition; a detector collimation of 320 x 0.5 mm, a 350-ms gantry
rotation time, and a temporal resolution of 175 ms for the Aquilion ONE. The peak tube
voltage was 100—135 kV with a tube current of 140—580 mA for both scanners. 70—80%
of the RR interval was scanned using prospective ECG triggering. When the heart rate
was above 65 bpm, 30—80% of the RR interval was scanned. The first 50—90 ml of
contrastagent (lomeron 400, Bracco, Milan, Italy) was administered in the antecubital
vein. Thereafter, 20 ml of a 1:1 mixture of contrast and saline and finally 25 ml of saline
were administered. CCTA was performed at the next beat when the threshold of 300
Hounsfield units (HU) was reached in the descending aorta. The protocol settings were
the same for the Aquilion ONE and Aquilion ONE Genesis Edition; a tube voltage of 100
kV was generally used. A 120-kV tube voltage was used for patients who had a weight
exceeding 130 kg and/or were bearing an implantable cardioverter-defibrillator (ICD).
Tube current ranged between 300 and 900 mA depending on patient size. Field of view
(FOV) was also dependent on patient size and ranged between 200 and 280 mm. Image
reconstruction was done using iterative reconstruction by means of adaptive iterative
dose reduction-3D (AIDR-3D) enhanced for the Aquilion ONE Genesis Edition and AIDR-
3Dforthe Aquilion ONE using the FCo3 reconstruction kernel for both scanners. Iterative
reconstruction strength was set at mild, standard, or strong depending on the image
noise. Image size was set at 512 x 512. The slice thickness of the reconstruction was 0.25
mm for all but two of the reconstructed phases, which had a slice thickness of 1.0 mm.

Itisimportant to note that the protocol and image reconstruction settings remained
consistent for all compared reconstructed phases.

2.3 Data processing

Dicom images were transferred to an offline workstation for analysis. Dedicated
software (QAngio CT Research Edition v3.1.5.1, Medis Medical Imaging, Leiden, the
Netherlands) was employed to conduct automatic tracing of the coronary arteries and
the semi-automaticdetection of the lumen and vessel wall contours. The contours were
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corrected manually if needed, whilst the reader was blinded to the results of the other
phase. Coronary artery tree extraction and vessel selection are depicted in Fig. 2.

A software program developed in house by Cao et al. [7] was employed to extract the
threedimensional (3D) lumen and vessel wall surface models of the three main arteries
in each of the two scans. The software co-registers both 3D models and encodes the
local plaque thickness differences between the two scans on the surface of a model.
Subsequently, ParaView (version 5.9.0) was utilized for the 3D visualization of the
generated models.

Fig. 2 The complete coronary tree is extracted from the CCTA. In this example, the left anterior
descending artery (LAD) is marked in blue for performing plaque delineation. LM left main artery, pLAD
proximal left anterior descending artery, dLAD distal left anterior descending artery, pRCA proximal
right coronary artery, pCX proximal circumflex artery, LCX left circumflex artery, D1 first diagonal
artery, OM1 first obtuse marginal artery, mLAD mid left anterior descending artery, CCTA coronary
computed tomography angiography

2.4 Scan quality

Inorderto quantifyimage quality, the CNR was calculated separately for the left anterior
descendingartery (LAD), the right coronary artery (RCA), and the circumflex artery (Cx).
We opted to use CNR as a metric to quantify image quality as this has been proven to
affectthe accuracy of CCTA. Furthermore, ithas been demonstrated thatareduced CNR
results in a reduced sharpness of vessel visualization. The latter negatively influences
plaque visualization and thus also software-aided plaque delineation [11,12]. Contrary
to the signal-to-noise ratio (SNR), CNR serves as a quantitative metric for low-contrast
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lesion detection: the higher the CNR between lesion and background, the more likely
the detection of the lesion [13]. Although the SNR and CNR formulas are similar, SNR
lacks specificity, as it does not consider the mean intensity of the surrounding epicardial
tissue [14]. Therefore, CNR presents superior significance in contrast-enhanced scans like
CCTA, asitisameasure ofimage quality based ona contrast [15]. A total of seven regions
of interest (ROIs) per patient were defined for the measurement of the intensity values
and the subsequent calculation of the CNR. The first ROl was placed in the ascending
aorta, superior and in close proximity to the origin of the RCA, to define image noise.
Thereafter, three ROIs were placed in the most proximal part of each coronary vessel. The
final three ROIs were placed in the epicardial tissue surrounding each vessel, adhering
tothesameslice positionand in spatial proximity to the ROl in the corresponding vessel.
ROI placement was performed meticulously to exclude calcifications, plaques, vessel
walls, and any potential image artifacts. Figure 3 depicts an example of a patient with
ROIs placed inthe aorta, LAD, and surrounding epicardial tissue.

The CNR was subsequently calculated for each vessel using the following formula:

Hyessel — /“Lepicardial tissue

CNR =

O-aorta

In which: Hvessel represents the mean HU intensity of the specific coronary vessel,
Hepicardial tissue represents the mean HU intensity of the epicardial tissue in spatial
proximity to the specific coronary vessel and Caorta represents the standard deviation
of the HU intensity in the ascending aorta.

W/L: 1000/0

Fig.3 Regions of interestare manually drawn in the aorta (A), proximal LAD (B), and the corresponding
epicardial tissue surrounding the LAD (C). This means of operation is the same for the Cx and the RCA.
LAD left anterior descending artery, Cx circumflex artery, RCA right coronary artery
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2.5 Negative and positive thresholds

Coronary lumen and vessel wall contours are detected in the multi-planar reformatted
images of the artery. Based on the detected lumen and vessel wall contours, the plaque
thicknessata certain locationinanartery can be calculated. Thisis done by calculating the
distance between the points at which the lumen contourand the vessel contourintersect
with the line through the lumen center. The change in plaque thickness is determined as
the difference in plaque thickness at the corresponding location between scans [7]. Itis
importantto note thatthe accuracy of contoursand thus plaque delineationis dependent
on the scan quality [16]. Therefore, thresholds are needed to filter out insignificant
changes in plaque thickness differences resulting from variations in contour quality.
Figure 4 depictsaclinical example of a case with plaque progressionin the LAD thatshows
the importance of using thresholds for plaque thickness change visualization.

Inordertoestablish vessel-specificthresholds, calibration graphs were created between
the lowest measured CNR of a vessel in both phases and the largest negative and
largest positive differences in plaque thickness measurements between two-phase
scans. For each patient, two different reconstructed phases from the same scan were
compared. As plaque differences between two reconstructed phases from the same
scan and from the same patient should always be zero, it is possible to compare both
phasesinatwo-way manner. Hence, foreach patient, two values of the plaque thickness
difference were obtained, yielding a total of 100 values. Subsequently, any plaque
thickness delineation differences between two-phase scan sets had to be attributable
todifferentfactorssuchasscan quality. The software tool from Cao etal. [7] was utilized
for automatically calculating the negative and positive plaque thickness differences.
Subsequently, the largest negative and largest positive thickness differences were
plotted against the vessel-specific CNR. Linear regression facilitates the determination
of the linear relationship between a dependent and independent variable, in this case
plaque thickness difference and CNR, respectively. Formulas were derived through
linear regression analysis conducted on the aforementioned charts using SPSS software
(version 25, SPSS IBM Corp., Armonk, New York). The standard error of the estimate
which is used in linear regression analysis was multiplied by a value of one instead of
the customary two. This was done pragmatically in order to ensure that the model was
capable of detectingrelatively small plaque changes with regard to the average coronary
lumen diameter, which is between 3 and 4 mm [17]. A detailed step-by-step flowchart
depicting the aforementioned process is presented in Fig. 5.
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Serial CCTA with vessel-specific thresholds
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Fig. 4 A newly formed plaque is observed in the proximal LAD, as marked by the blue arrow (A). No
other vessels have plaque (changes). Multiple areas are identified as having plaque progression
using cutoffvalues of - 0.5 and 0.5 (B). Larger cutoff values of - 0.75 and 0.75 still do not allow plaque
progression to be discerned in the RCA and the middle part of the LAD, as marked by the red areas
(C). Finally, cutoff values of - 1.0 and 1.0 seem to correlate well with the visual observations in panel
A (D). This demonstrates the importance of using cutoff values, yet the adaptive values must still be
calculated using the CNR as a marker of scan quality. Plaque thickness differences are given in mm. BA
baseline, FU follow-up, RCA right coronary artery, LAD left anterior descending artery, Cx circumflex
artery, CNR contrast-to-noise ratio

PlaqueThickness_Difference
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Coronary tree extraction

ROI placement in RCA, LAD, Cx,
corresponding epicardial tissue and Semi-automatic delineation of vessel
aorta for subsequent CNR and lumen contours
calculation

Automatic calculation of maximal and
minimal differences between vessel and
lumen contours in 2 scan phases made
in the same timeframe

Applying linear regression analysis to
minimal and maximum differences and
CNR

Fig. 5 Flowchart depicting the process of creating formulas for thresholds of plaque differences using
scan quality. ROI region of interest, CNR contrast-to-noise ratio, RCA right coronary artery, LAD left
anterior descending artery, Cx circumflex artery

2.6 Inter-observer measurements

Arandom set of 15 scans were utilized for interobserver measurements, resulting in the
analysis of 45 coronary vessels. Observer AB (with 13 years of experience in cardiovascular
image analysis) also drew a total of seven ROlIs per patient for CNR measurements.
Thereafter, the calculated CNR values were compared to those obtained by observer FY
(with 3years of experience in cardiovascularimage analysis). Subsequently, correlations
were tested using Pearson’s correlation coefficient.
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3. Results

A total of 300 coronary vessels were used for the current analysis. The average CNR
value was 13.4 + 3.6. The average positive and negative differences in measured plaque
thickness were 0.7+ 0.3 and - 0.9 + 0.6 mm, respectively. A more detailed description of
the values pervessel is depicted in Table1.

Table 1 Detailed description of the values found per vessel. All values are the mean +
standard deviation. CNR contrast-to-noise-ratio, LAD left anterior descending artery,
RCA right coronary artery, Cx circumflex artery, Mm millimeters

Mean CNR Mean positive difference Mean negative difference
LAD 13.343.6 0.6+0.4mm -0.8+0.6mm
RCA 13.743.6 0.7+0.4mm -1.0+0.6mm
CX 13.343.5 0.5+0.2mm -0.8+0.6mm

Atrend was observed for the relationship between the higherand lower CNR values and the
subsequent positive and negative plaque thickness differences, asdepictedin Figs. 6 and 7.

Alinearregression analysis was performed forall the positive and negative differencesin
plaque thickness along with the CNR calculated pervessel. Along with the standard errors
of the estimate—which were 0.349 and - 0.61, respectively, for the positive and negative
differences—this analysis yielded the following formulas:

Positive difference = ((0.660 — (0.002*CNR)) + 0.349
Negativedifference = ((—1.028 4+ (0.012*CNR)) — 0.61

Positive and negative plaque thickness differences are expressed in mm.
Theinter-observer correlation for CNR values was excellent, with a correlation coefficient
of 0.872 (p <0.001). Figure 8 demonstrates the correlation between CNR measurements
done by observers FY and AB.
Theapplication of the aforementioned formulas along with the corresponding thresholds
isshown in the two examples depicted in Figs. 9and 10. Itisimportant to emphasize that

adistinct threshold was applied for each vessel, which was determined from the lowest
CNR observed in that vessel across both the baseline and the follow-up scans.
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Fig.7 Negative differences in plaque thickness are plotted against the respective CNR of the specific
vessel. The dotted line represents the relationship between CNR and negative difference including the
standard error of the estimate. A trend is observed in which higher CNR values (related to higher scan
quality) and lower CNR values (related to lower scan quality) correspond to higher and lower negative
differences in plaque thickness, respectively. Negative differences are given in mm. Se standard error
of the estimate, LAD left anterior descending artery, RCA right coronary artery, Cx circumflex artery,

CNR contrast-to-noise ratio
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Fig. 9 Patient with a newly formed calcified plaque only in the proximal LAD after 7 years follow-up,
as marked by the blue arrow (A and B). The CNR was calculated separately for the LAD, RCA, and Cx.
CNRvalues of10.7,9.3, and 9.2 were found for those vessels, respectively (C). Using the aforementioned
CNRvalues, thresholds (positive and negative) were calculated for each vessel separately. Subsequent
visualization of the coronary tree with those thresholds clearly demonstrates the plaque change in the
proximal LAD, as marked by the red area and blue arrow (D). Plaque thickness differences are given
in mm. BA baseline, FU follow-up, RCA right coronary artery, LAD left anterior descending artery, Cx
circumflex artery, CNR contrast-to-noise ratio
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Fig.10 Patient with newly formed plaquesin the LAD, Cx, and RCA, as marked by the blue arrows, after
6 years of follow-up (A). The CNR was calculated separately for the LAD, RCA, and Cx. CNR values of
9.0,12.8,and 13.6 were found for those vessels, respectively (B). Using the aforementioned CNR values,
thresholds (positive and negative) were calculated for each vessel separately. Subsequent visualization
of the coronary tree with those thresholds clearly demonstrates the plaque changes in the LAD, Cx,
and RCA, as marked by the red areas and blue arrows (C). Note that the newly formed plaque in the
proximal RCA is not visualized as it is on the opposite side of the vessel. This is also the case with the
Cx: a major part of the newly formed plaque is on the opposite side of the vessel. Plaque thickness
differences are given in mm. BA baseline, FU follow-up, RCA right coronary artery, LAD left anterior
descending artery, Cx circumflex artery, CNR contrast-to-noise ratio
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4. Discussion

In this study, we have proposed a method for the objective assessment of plaque
dynamics using patient-specificthresholds on CCTA. These thresholds were obtained by
using calibration graphs with two-phase scan setsin which negative and positive plaque
thickness differences were plotted against the subsequentscan quality calculated asthe
CNR. The results demonstrate that the use of these vessel-specific thresholds allows for
thedirectvisualization and quantification of plaque thickness differences, and they show
goodvisualagreementwith the plaque localization. Itisimportant tostress thatalthough
there is no gold standard for plaque change validation in the current study, an artificial
validation of the proposed method was done by Cao et al. Their study demonstrated
excellentcorrespondence between calculated plaque differences and artificially created
plaque changesin coronary arteries [7].

Calibration graphs and a subsequently performed linear regression yielded a very slight
trend regarding the CNR and negative and positive plaque thickness differences. Further
analysis of these formulas reveals that changesin CNR only mildly affect the subsequent
threshold. Positive and negative plaque thickness thresholds of 0.982 mm and -1.472
mm are found, respectively, if we utilize the average CNR value of 13.4. Previous studies
by Fayad etal. indicate that the average vessel wall thickness ranges from 0.75+ 017 mm
for healthy segments to an average thickness range of 4.38 + 0.71 mm for large plaques
causing stenosis of C 40% [18]. The positive and negative plaque thickness thresholds
found in our study using the average CNR would be clinically applicable as they fall in
between the range of values for healthy and atherosclerotic segments found by Fayad
etal. The inter-observer correlation for CNR values was excellent. Hence, differences in
ROl placement caused by inter-observervariability will only have a very minorimpacton
the final formulas. Furthermore, Papadopoulou et al. demonstrated that inter-observer
agreement for the detection of atherosclerotic segments using plaque delineation
was strong (Cohen’s kappa coefficient K=1.0) [19]. This is especially important, as the
detection of serial plaque changesis dependent on the plaque delineation in subsequent
baseline and follow-up scans.

A greatadvantage of the proposed method for the assessment of serial plaque changes,
as opposed to the current method based on the calculation of the plaque’s volume, is
that changes can be visualized locally. Furthermore, our method of visualizing plaque
differences is not affected by the size of the vessel, which is an advantage compared
to the current method [20—22]. Visualizing the location(s) of plaque changes in the
subsequent coronary vessel(s) may be especially beneficial for patients undergoing
coronary catheterization as this can guide clinicians to the location(s) of interest.
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4.1 Limitations

This study has several limitations which are innate to its novel nature and retrospective
design. A major limitation is the absence of a gold standard for the assessment of
plaque changes aside from visual assessment. For the analyzed patient population, no
intravascular imaging like intravascular ultrasound (IVUS) was available to serve as a
high-resolution ground truth. As thresholds are used in the output 3D model, there is a
possibility of “missing” plaque changes that are below the threshold, and unfortunately
there is no method to objectify this possibility. Contrastingly, there is also a chance of
“exaggerating” plaque changes if the lumen or vessel wall is incorrectly delineated.
The use of one times the standard error instead of the more conventionally used two
times its value will statistically also lead to more false-positive plaque changes, as the
confidence interval is then set at around 68%, in contrast to the “regular” 95%. On the
other hand, having relatively low negative and high positive thresholds as compared
to the average coronary lumen size would lead to more false negatives [17]. Ultimately,
we used one standard error from a pragmatic perspective, as this would ensure the
detection of relatively small plaque changes. Furthermore, despite not having a gold
standard for plaque change validation, plaque changes that are potentially wrongfully
detected may be dismissed, as visual assessment remains a form of ground truth. The
CNR was calculated at the proximal part of the vessel. However, CNR values can change
upon moving more distally in the subsequentvessel, as was demonstrated by Yokota atel.
Fortunately, the differences between proximaland distal locations were found to be small
[23]. Yet, the possibility that plaque thickness delineation is affected by the location in the
vessel cannot be excluded. Also, the CNRiitselfis very sensitive to the background location
in the epicardium, which leads to biased inter-observer measurements. The correlation
coefficientfound forinter-observer correlations regarding CNR measurements was very
strong. The vast majority of the reconstructed phases had a slice thickness of 0.25 mm,
yet two phases were reconstructed using a 1.0-mm slice thickness. A study by Alshipli
and Kabir has demonstrated that the effect of slice thickness onimage noise is extremely
minor [24]. Furthermore, itis worth noting that 98% of our cohort utilized a 0.25-mmsslice
thickness; they greatly outnumber the 2% that was reconstructed based ona1.0-mmslice
thickness. Hence, a potential bias caused by these slice thickness differences would be
highly unlikely.

Finally, it must be noted that although the demonstrated method may visualize plaque
differences locally, it is often more effective to determine the total plaque burden with
regard tothe managementof patientswith CAD. Thisisdue to the factthatatherosclerosis
is a dynamic process that changes constantly. Hence, placing emphasis on the entire
atherosclerosis process and global imaging of the heart represent a better approach
than focusing on a single plaque [25]. Also, a recent development has been the use of
positron emission tomography (PET) using 18F-NaF, which has the ability to detect the
active microcalcification thatis believed to represent unstable plaques. Thisis contrary to
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computed tomography (CT) scans, which detect macrocalcifications, as these represent
stable areas where the atherosclerotic disease is quiescent [26].

As the goal of this study was to develop vessel-specific thresholds for the direct
visualization of plaque thickness differences, more testing and further investigation
are needed.

5. Conclusion

The development of patient-specific plaque thickness thresholds seems feasible and
allows for the direct visualization of plaque thickness differences in serial CTA, as
demonstrated by these preliminary results. However, currently this study must be
interpreted as a proof of concept for determining and using threshold values for clinical
data. In the future this methodology may be used for the assessment of plaque changes
on serial clinical CCTA scans, preferably combined with serial IVUS acquisition or a
thorough cardiac phantom study.
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Abstract

Purpose: Combination of coronary computed tomography angiography (CCTA) and
adenosine stress CT myocardial perfusion (CTP) allows for coronary artery lesion
assessment as well as myocardial ischemia. However, myocardial ischemia on CTP is
nowadays assessed semi-quantitatively by visual analysis. The aim of this study was to
fully quantify myocardial ischemia and the subtended myocardial mass on CTP.

Methods: We included 33 patients referred for a combined CCTA and adenosine stress
CTP protocol, with good or excellent imaging quality on CTP. The coronary artery tree
was automatically extracted from the CCTA and the relevant coronary artery lesions
with a significant stenosis (> 50%) were manually defined using dedicated software.
Secondly, epicardial and endocardial contours along with CT perfusion deficits were
semi-automatically defined in short-axis reformatted images using MASS software. A
Voronoi-based segmentation algorithm was used to quantify the subtended myocardial
mass, distal from each relevant coronary artery lesion. Perfusion defect and subtended
myocardial mass were spatially registered to the CTA. Finally, the subtended myocardial
mass per lesion, total subtended myocardial mass and perfusion defect mass (per lesion)
were measured.

Results: Voronoi-based segmentation was successful in all cases. We assessed a total
of 64 relevant coronary artery lesions. Average values for left ventricular mass, total
subtended mass and perfusion defect mass were 118, 69 and 7 g respectively. In19/33
patients (58%) the total perfusion defect mass could be distributed over the relevant
coronary artery lesion(s).

Conclusion: Quantification of myocardial ischemiaand subtended myocardial mass seem
feasible at adenosine stress CTP and allows to quantitatively correlate coronary artery
lesions to corresponding areas of myocardial hypoperfusionat CCTAand adenosine stress
CTP.
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1. Introduction

In patients with coronary artery disease (CAD) an imaging protocol combining coronary
computed tomography angiography (CCTA) and adenosine stress CT myocardial
perfusion (CTP) allows for anatomical and functional assessment of coronary artery
lesions as well as myocardial ischemia (1) (2). The decision to revascularize patients
depends both on the lesion severity and location as well as the extent of the relative
hypoperfused (ischemic) myocardium, relative to the subtended myocardial mass distal
of the coronary stenosis (1). However, adenosine stress CTP is nowadays assessed semi-
quantitatively by visual analysis on a routine basis in many centres.

The Voronoi algorithm is a mathematical algorithm that enables users to divide a two-
dimensional area or three-dimensional space by predetermined points based on the
shortest distance to those points. This algorithm can be used to divide tissue supplied
by different blood vessels according to which blood vessel is closest to the tissue. By
using a Voronoi-based segmentation algorithm on myocardial tissue it seems possible
toquantify the subtended myocardial mass foreach lesionin the coronary tree (3). By also
quantifying the hypoperfused myocardium itself we aim to identify the distribution of
myocardial ischemia overthe coronary artery lesion(s). To the best of our knowledge this
has never been done in a fully quantitative manner for adenosine stress CTP. Therefore,
we hypothesize that full quantification of adenosine stress myocardial ischemia and
subtended myocardial mass using this Voronoi-based segmentation algorithm is feasible
and may ease detection of hemodynamically significant lesions.

2. Materials and methods

2.1 Patients

33 patients with chest pain complaints, referred for a combined CCTA and adenosine
stress CTP protocol were included in the current study. As manual drawing of perfusion
defectsis dependent onscan quality of adenosine stress CTP, only patients with good or
excellentimaging quality of these scans were selected from our CTP database containing
241 patients. Patients with normal CTP images or fixed perfusion defects were excluded
becausereversible ischemiais ormay be absentin these cases, respectively (4). Clinically
acquired datawere retrospectively analysed. Theinstitutional review board of the Leiden
University Medical Center, The Netherlands, approved this retrospective evaluation of
clinically collected data and waived the need for written informed consent.

2.2 Data acquisition and analysis

CCTA andstaticadenosine stress CTP were performed using a320-row volumetricscanner
(Aquilion ONE, Canon Medical Systems and Aquilion ONE Genesis Edition, Canon Medical
Systems, Otawara, Japan). Consumption of caffeine products 24 h before examination
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was discouraged. One hour before CCTA heartrate and blood pressure were monitored.
If a patient’s heart rate exceeded 60 beats per minutes (bpm) and no contraindications
were present metoprolol, 25 mg up until 150 mg, was administrated orally. If the heart
rate remained above 60 bpm additional metoprolol was injected intravenously.

Prior to CCTA nitroglycerin (0.4 mg) was administered sublingually. Scan parameters for
CCTA were as follows: peak tube voltage 100-135 kV with a tube current of 140-580mA.
A detector collimation of 320 x 0.5 mm, a 275 ms gantry rotation time and temporal
resolution of137 ms forthe Aquilion ONE Genesis Edition and a detector collimation of 320
X 0.5mm, 350 ms gantry rotation time and temporal resolution of 175 ms for the Aquilion
ONE. Prospectively electrocardiogram (ECC) triggering was used to scan 70% to 80%
of the RR interval. When heart rate was above 65 bpm 30% to 80% of the RR-interval
was scanned. First 50 to 90 ml of contrast agent (lomeron 400, Bracco, Milan, Italy) was
administered in the antecubital vein. Hereafter, a 20 mL of a 11 mixture of contrast and
saline and finally 25 mL of saline was administered. CCTA was performed the next beat
when the threshold of 300 Hounsfield units (HU) was reached in the descending aorta.

In patients with suspicion of significant stenosis (> 50%) at CCTA, adenosine stress CTP
was performed at least 20 min after CCTA. Blood pressure and electrocardiogram were
monitored during 4 min of continuous adenosine infusion (0,14 mg/kg/min) after which
a contrast agent was administered. After reaching a target threshold of 300 HU in the
descending aorta CTP images were acquired the next heartbeat scanning 80%-99% of
the RRinterval. Contrast agent, injection protocol and tube settings were all similar to
the CCTA acquisition.

2.3 Data processing

Images were transferred to a workstation and the main branches of the coronary artery
tree were automatically extracted from the CCTA. Assessment of the CCTA was done by
trained cardiologists with atleast10years of experience. A luminal stenosis of > 50% was
considered significant. Proximal and distal part of the relevant lesion were manually
defined using dedicated software (QAngio CT Research Edition v3.1.5.1 Medis Medical
Imaging, Leiden, The Netherlands) (Fig.1). f one vessel, oritsside branches had multiple
relevant coronary artery lesions we defined only the most proximal one. The most
proximal part of the lesion was used as the starting point for calculating the subtended
mass.

Further processing of the images was performed using in-house developed MASS
software (Leiden University Medical Centre). The CCTA and adenosine stress CTP image
datawere manually reformatted into a short-axis orientation covering the complete left
ventricle with an inter-slice spacing of 4 mm. Subsequently, left ventricular epicardial
and endocardial contours were semi-automatically defined in both the CCTA and the
adenosine stress CTP images. Using a narrow window width and level setting (W300/
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L150) and a slice thickness of 4 mm, perfusion defects were manually drawn in the short
axis slices derived from the CTP scan (Fig. 2). Registration was performed to spatially
align the CCTA and CTP images and results of image segmentation were exported as
3D objects in VTK format for further analysis and visualization. The software uses the
epicardial and endocardial contours from the CCTA for automatically calculating the
leftventricular mass.

Toassess reproducibility two observers (F.D. and |.H) were blinded to the original contours
and a sample of ten cases was randomly selected in which left ventricular epicardial
and endocardial contours were again semi-automatically defined and subtended mass
was recalculated using the Voronoi-based algorithm. Also, perfusion defects were
manually re-drawn and re-measured in grams. Correlations were subsequently tested
between new and prior results concerning left ventricular mass, total subtended mass
and perfusion defect mass with Pearson’s correlation coefficient using SPSS software
(version 25, SPSS IBM Corp, Armonk, New York).

Fig1. Resting CCTA is used for automatically extracting the main branches of the coronary artery tree
(B). Alesion is shown in the proximal left anterior descending (LAD) and marked by the yellow star (A).
Subsequently, we can define the proximal LAD stenosis marked by the yellow star (B).
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Stress

Fig 2. Left ventricular epicardial and endocardial contours were semi-automatically defined in short-
axis reformatted images in both the resting CCTA (A, B) and the adenosine stress CTP (C, D). A perfusion
defect is marked by the yellow arrow (C). The perfusion defect is manually drawn in the short axis
reformatted images from the adenosine stress CTP (D).

2.4 VVoronoi-based segmentation

Asegmentation algorithm based on the Voronoi method was used on the CCTA in order
tofind the nearestlocation of the extracted coronary artery tree for every voxel within the
leftventricular myocardium (3). From this data the subtended myocardial mass could be
computed, i.e. the leftventricular mass distal fromarelevantcoronaryartery lesion (Fig.
3). Also, the perfusion defect was measured and visualised separately (Fig.3). Anexample
of a patient with multivessel disease is depicted in Fig. 4. Executing the algorithm for
Voronoi based segmentation took approximately 1 min per lesion.

Finally, we quantified the subtended myocardial mass and perfusion defect mass
per lesion using bullseye plots with MASS software. This process is depicted in Fig 5.
Figure 5A demonstrates the subtended myocardial mass-pictured in red- for one lesion
calculated by using our Voronoi-based algorithm. Figure 5B represents the manually
drawn perfusion defect. Subsequently, Figure. 5C represent the perfusion defect per
lesion by calculating the intersection of figure A and B. For all measurements we used
the endo- and epicardial contours from the resting CCTA. Subsequently, we calculated
the total subtended mass. See formula:

Total subtended mass = Subtendedmasslesiona + subtendedmass lesion b
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Anterior

1

|

Inferior

Fig 3. Segmented coronary artery tree and identified relevant coronary artery lesion in the proximal
LAD (A) are used for computing the subtended myocardial mass in red in the short-axis view using
ourVoronoi-based algorithm (B). This can be further visualized in 3D in which the red dot (marked by
the black arrow) corresponds to the relevant coronary artery lesion and the red area corresponds to
the subtended myocardium which is calculated by our Voronoi-based segmentation as 43 grams (C).
The manually drawn perfusion defect (D) is also visualized and quantified (E).
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Anterior

Fig 4. Coronary artery tree and defined relevant lesions in the proximal LAD and circumflex (Cx) (A)
are used for computing the subtended myocardial mass in the short-axis view using our Voronoi based
algorithm with in cyan the LAD lesion and the Cx lesion in red (B). This can be further visualized in
3D in which the red and cyan dots (marked by the black arrows) correspond to the relevant coronary
artery lesions and the red and cyan area correspond to the subtended myocardium for that lesion.
We calculated the subtended mass for the Cx lesion and LAD lesion as 57 and 46 grams respectively
(C). The manually drawn perfusion defect (D) is also visualised and measured (E).
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Subtended mass LAD = 43 grams
(A)

dn

Perfusion defect LAD = 3 grams

Perfusion defect mass = 5 grams

(B)

Fig 5. The subtended myocardial mass for one lesion pictured in red is measured in grams (A). The
same is done for the perfusion defect (B). Perfusion defect per lesion is measured by calculating the
intersection of Aand B (C).

3. Results

CCTA and adenosine stress CTP images from 33 patients (20 men, mean age, 67.8 +
8.2 years) were used for analysis. Table 1 lists patient characteristics. We were able to
successfully apply the Voronoi-based segmentation algorithm on all cases to quantify
the subtended myocardial mass (per lesion) and perfusion defect mass (per lesion).
Leftventricular mass was automatically calculated from the epicardial and endocardial
contours with an average value of118 g. We assessed a total of 64 relevant coronary artery
lesions. Average values for total subtended mass, subtended mass per lesion, perfusion
defect mass and perfusion defect mass per lesion were 69, 36, 7 and 3 g respectively.
In 19/33 patients (58%) the total perfusion defect mass could be distributed over the
relevantcoronary artery lesion(s). Results were highly reproducible as demonstrated by
respectively intra- and inter-observer correlation coefficients for left ventricular mass (r
=0,970and r=0,866), total subtended mass (r=0,996 and r=0.990) and perfusion defect
mass (r=0,844 and r=0,822) (p < 0.01 for all). Details concerning the relevant coronary
artery lesion(s), left ventricular mass, subtended mass (per lesion) and perfusion defect
(per lesion) are shown in Table 2. The relevant coronary artery lesion(s) define the most
proximal lesion of the subsequent vessel with a visual diameter stenosis of > 50%. Left
ventricular mass encompasses the mass of the left ventricle automatically calculated
using epicardial and endocardial contours. The subtended mass per lesion is the
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subtended mass calculated by using our Voronoi-based algorithm for a specific lesion.
Subsequently total subtended mass can be calculated by adding up the values per lesion.
Perfusion defect mass is derived from manual drawing of the perfusion defect. Lastly,
the perfusiondefect perlesionencompasses the intersection of the perfusion defectand
its lesion specific subtended mass. The sum of these lesion specific values encompasses
the total mass of the perfusion defect which intersects with the subtended mass of those
lesions. The percentage in the last column represents how much of the total (manually
drawn) perfusion defect represents the total perfusion defect mass found per lesion.

Patient characteristics

N=33

Male/Female 20 (61%) /13 (39%)
Age (years) 67.8+8.2
Hypertension 4 (12%)
Hyperlipidaemia 17 (52%)
Diabetes mellitus 7 (21%)
Family history of CAD 16 (48%)
Smoking 11 (9%)
Single-vessel disease’ 16 (49%)
Double-vessel disease? 10 (30%)
Triple-vessel disease? 7 (21%)

Table 1. CAD: Coronary artery disease. 1: Defined as luminal diameter stenosis of >50% on CCTA in
one major epicardial coronary vessel. 2: Defined as luminal diameter stenosis of >50% on CCTA in two
major epicardial coronary vessels. 3: Defined as luminal diameter stenosis of >50% on CCTA in three
major epicardial coronary vessels.

Case Relevantcoronary Left Subtended Perfusion Perfusion defect
artery lesion(s) ventricular mass perlesion defect mass mass per lesion
mass (grams) (grams) (grams) (grams)
1 mLAD>70% 98 mLAD 22 11 mLAD 10
dRCA>50% dRCA 29 dRCA1
Total 51 Total 11 (100%)
2 mLAD>70% 118 mLAD 15 3 mLAD 2
D1>70% D120 D10
dRCA>50% dRCA 49 dRCA1
Total 84 Total 3 (100%)
3 LM>50% 162 LM 94 12 LM 8
dRCA>50% dRCA 63 dRCA 4
Total 157 Total 12 (100%)
4 pLAD>50% 127 pLAD 46 6 pLADO
Cx>50% Cx 57 Cx6
Total 103 Total 6 (100%)
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Feasibility of ischemia quantification using CTP

Case Relevantcoronary Left Subtended Perfusion Perfusion defect
artery lesion(s) ventricular  mass perlesion defect mass mass per lesion

mass (grams) (grams) (grams) (grams)

5 dRCA>50% 136 pLAD 42 9 pLAD 5
pLAD>50% dRCA 21 dRCA2
AL>50% AL30 AL2

Total 93 Total 9 (100%)

6 pLAD>50% 220 pLAD 105 13 pLAD 13

Total 105 Total 13 (100%)
7 mLAD>50% 115 mLAD 63 5 mLAD 5
Total 63 Total 5 (100%)
8 pLAD>50% 73 pLAD 38 6 pLAD 6
Cx>50% Cx17 Cx0
Total 55 Total 6 (100%)
9 LM>50% 67 LM 46 5 LM5
Total 46 Total 5 (100%)
10  plAD=50% 90 pLAD 42 5 pLAD 5
Total 42 Total 5 (100%)

1 pLAD>50% 90 pLAD 33 10 pLAD 2
PRCA>50% pRCA 29 pRCA 8
Cx>50% Cx 27 Cx0

Total 89 Total 10 (100%)

12 mLAD>50% 87 mLAD 35 10 mLAD 10

Total 35 Total 10 (100%)

13 mLAD>70% 255 mLAD 111 8 mLAD 8

Cx>50% Cx 25 Cx0
Total 136 Total 8 (100%)

14 dLAD>50% 98 dLAD7 2 dLADO
D1>70% D130 D11
MO=>50% MO 18 MO0
AL>50% AL10 AL1

Total 65 Total 2 (100%)

15 pLAD=50% 64 pLAD 45 3 pLAD1
mRCA>50% mRCA 13 mRCA 2
Cx>50% Cx9 Cx0

Total 67 Total 3 (100%)

16  pLAD>50% 101 pLAD 40 4 pLAD 2
pRCA>50% pRCA 28 pRCA2
Cx>50% Cx 28 Cx0

Total 96 Total 4 (100%)

17 plLAD>50% 102 pLAD 46 3 pLAD 2

IM>70% IM 34 IM1
Total 80 Total 3 (100%)

18 pLAD>50% 89 pLAD 62 7 pLAD 4

pRCA>50% pRCA 24 pRCA3
Total 86 Total 7 (100%)

19  plLAD>50% 104 pLAD 39 7 pLAD 4
dRCA>50% dRCA 21 dRCA3
Cx>50% Cx 24 Cx0

Total 84 Total 7 (100%)
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Case Relevantcoronary Left Subtended Perfusion Perfusion defect
artery lesion(s) ventricular  mass perlesion defect mass mass per lesion
mass (grams) (grams) (grams) (grams)
20  plLAD>50% 106 pLAD 48 1 pLAD 10
Cx>50% Cx 35 Cx0
Total 83 Total 10 (91%)
21 plLAD>50% 134 pLAD 45 8 pLAD 7
Total 45 Total 7 (88%)
22 pLAD>50% 94 pLAD 28 7 pLAD 6
PRCA>70% PRCAO PRCAO
Cx>50% Cx 51 Cx0
Total 79 Total 6 (86%)
23 mLAD>50% 124 mLAD 36 7 mLAD 6
pRCA>50% pRCA14 pRCAO
Cx>50% Cx31 Cx0
Total 81 Total 6 (86%)
24 plAD>70% 100 pLAD 38 12 pLAD 9
mRCA>70% mRCA O mRCA 0
MO>50% MO 25 MO 1
Total 63 Total 10 (83%)
25  plLAD>50% 132 pLAD 64 8 pLAD 6
Total 64 Total 6 (75%)
26 mLAD>50% 139 mLAD 37 7 mLAD 5
Total 37 Total 5 (71%)
27  plLAD>70% 9% pLAD 43 5 pLAD 3
Total 43 Total 3 (60%)
28 mRCA>50% 145 mRCA 51 5 mRCA 3
Total 51 Total 3 (60%)
29  mLAD>50% 110 mLAD 39 9 mLAD 5
Total 39 Total 5 (56%)
30 dLAD>50% 163 dLAD 43 4 dLAD1
D2>50% D225 D21
Total 68 Total 2 (50%)
31 dLAD>70% 130 dLAD 22 3 dLAD T
Total 22 Total 1 (33%)
32 mLAD>50% 133 mLAD 47 4 mLAD 1
pRCA>50% pRCAO pRCAO
Total 47 Total 1 (25%)
33 pLAD>50% 77 pLAD 30 5 pLAD1
Total 30 Total 1 (20%)

Table 2. LM: left main artery, pLAD: proximal left anterior descending artery, mLAD: mid left anterior
descendingartery, D1: Firstdiagonal branch, pRCA: Proximal right coronary artery, dRCA: Distal right
coronary artery, Cx: Circumflex coronary artery, MO: Margus Obtusus branch. AL: Antero lateral

branch. IM: Intermediate branch.
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4. Discussion

In this study we propose a method to fully quantify myocardial perfusion defect mass
and subtended myocardial mass at adenosine stress CTP related to the significant
coronary artery stenosis at CCTA. Results demonstrate that indeed it seems possible
to fully quantify perfusion defects and subtended myocardial mass using a Voronoi-
based algorithm allowing for quantitative correlation of coronary artery lesions to
corresponding areas of myocardial hypoperfusion.

Several studies have demonstrated that adding a myocardial perfusion stress test to
CCTAimproves the diagnosticaccuracy for finding hemodynamically significant coronary
artery stenoses as compared toasingle modality approach. Forinstance, Magalhaesetal.
demonstrated thatInavessel-based analysis, the addition of CTP led toanimprovement
in the diagnostic accuracy of the combined analysis when compared to coronary CCTA
alone (0.79 [95% Cl, 0.77—0.82] vs. 0.73 [95% Cl, 0.70—0.76], respectively; P < 0.0001 for
difference). Also, Ko et al. demonstrated that adding CTP to CCTA improved diagnostic
accuracy over CCTA alone as the area under the receiver operating curve increased
significantly from 0.798 t0 0.893 (p=0,004) on a per vessel-based analysis (5, 6). Adenosine
stress CTP has been shown to be at least as accurate or even superior in the detection of
ischemia as compared to single photon emission computed tomography (SPECT) and
magnetic resonance imaging (MRI) perfusion. George et al. performed a head to head
comparison between CTP and SPECT myocardial perfusion for detecting significant
stenoses of 50% or more. It was demonstrated that in the per-vessel analysis, the area
under the receiver operating curve of CT perfusion imaging (0.74; 95% Cl: 0.71, 0.78) was
higherthanthat of SPECT myocardial perfusion (0.69;95% Cl: 0.66, 0.72) for the diagnosis
of a stenosis of at least 50% when considering all vessels (P=0.008) Otton et al. used a
perfusion phantom for a direct comparison of the sensitivity of CTP and MRI perfusion
in which it was found that the sensitivities of each perfusion modality when directly
compared were similar. However, no statistical evidence was given to back this claim. (7,
8). Though nowadays myocardial ischemia onadenosine stress CTP is still assessed semi-
quantitatively by visual analysis, quantification of the perfusion defect mass in relation
to subtended myocardial mass distal from a significant coronary artery stenosis would
be desirable which may help identifying the hemodynamically relevant lesion. As such,
Giordano et al. assessed the use of volume of the hypoperfused region calculated from
myocardial blood flow at CTP for finding the hemodynamically significant stenosis. They
specifically calculated the hypoperfused volume in the myocardial area distal from the
stenosis. It was proven that use of the calculated volume had a slightly better accuracy
in detecting the hemodynamically significant stenosis as compared to CTP derived
myocardial blood flow alone (79% versus 75% respectively) (9). The Voronoi-based
algorithm for calculating subtended mass used on CCTA seems reliable in predicting
ischemia on SPECT as is demonstrated in a study by Kurata et al. in which there was a
moderate correlation between the summed stress score of SPECT and CCTA based
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subtended mass as calculated with a Voronoi-based algorithm (r=0.531 p = 0.007) (10).
The same has been done for MRI perfusion by Fukuyama et al. which showed an even
better correlation between Voronoi-based calculation of subtended mass and areas of
relative hypoperfusion (r=0.73 p <0.001) (11). Although we were able to apply a Voronoi-
based segmentation algorithm on all cases and quantify subtended myocardial mass
(per lesion) and perfusion defect mass (per lesion), results from Table 2 show that there
was not always agreement between the sum of the myocardial perfusion defect mass
perlesion and the total measured myocardial perfusion defect mass. This disagreement
can be due to several factors. First of all, only lesions with a visual diameter stenosis of
>50% at CCTA were deemed relevant. However, multiple studies have demonstrated
that not only diameter stenosis but also other plaque features contribute to a lesion
being hemodynamically significant or not. For instance, Nakazato et al. examined the
performance of percentaggregate plaque volume, which represents cumulative plaque
volumeasafunction of total vessel volume by CCTA foridentification ofischemiclesions.
It was demonstrated that percent aggregate plaque volume provided incremental
prediction for lesion ischemia over diameter stenosis (AUC 0.88 [95% Cl: 0.78 t0 0.99]
vs. 0.68 [95% Cl: 0.54 to 0.83], respectively; p=0.02). Also, Yin et al. demonstrated that
maximum area stenosis was superior over maximum diameter stenosis in the detection
of ischemic lesions (AUC 0.77 versus 0.71 respectively) (12, 13). Also, in a study by van
Rosendael etal. assessingthe relationship between lumen area stenosis and myocardial
ischemiaon CTPitwas found that 9% of all vessels showed ischemia even though lumen
area stenosis was below 50% (14). Subsequently, our defined relevant coronary artery
lesion at CCTA will not always correspond to the hemodynamically significant lesion
causingthe perfusion defect. Secondly, we used only the rest myocardial perfusion scan
(CCTA) as reference. Therefore, slight discrepancies in contour size, reference points
and thus perfusion defect localization may happen. This may lead to a slight mismatch
between total perfusion defect mass and perfusion defect mass per lesion. Finally, for
manually drawing perfusion defects visual analysisis still needed and may be susceptible
to interpretation errors (15).

Von Spiczak et al. introduced a 3D fusion model for combining adenosine stress CTP
and CCTA for correlating the ischemic region to the culprit coronary lesion as defined
oninvasive coronary angiography (ICA). Yet this method remains semi-quantitative and
thus only allows for visual assessment of morphology and function (16). Our method
is different as a fully quantitative approach was used allowing not just for intuitive
assessment by 3D reconstruction but also for numerical assessment.

Furthermore, a previousstudy has reported that perfusion territories of coronary arteries
vary among individuals. In a per-segment analysis done by Ortiz-Perez et al. 23% of the
hyper enhanced regions on cardiac MRl were discordant with the empirically assigned
coronary distribution as defined by the standard 17-segment model (17). Use of Voronoi-
based segmentation can overcome this problem as its accuracy has been reported inan
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animal study using swine hearts in which this method was found to be more accurate
than the standard 17-segment model in predicting coronary territories (18, 19).

Results from astudy by Dadgaretal. assessing the weight of human hearts demonstrated
that weight of the left ventricle varies between 100 and 180 g, which is comparable to
our results (20). Tanabe et al. demonstrated that subtended myocardial volume in
combination with subtended CT myocardial blood flow derived from CT myocardial
perfusion is a better predictor of obstructive CAD than CT myocardial blood flow alone.
A Voronoi-based segmentation algorithm was also used for calculating subtended
myocardial volume yielding an average of 42.7 mL for obstructive CAD. Our average
subtended mass per lesion (36 g) is only slightly lower when taking into account average
density of myocardial tissue of1,055 g/mLto convert mass to volume (21, 22). This could be
duetothefactthatcontrarytoTanabe no ICAwas used forverifying the hemodynamical
significance of the relevant coronary artery lesion(s).

4.1 Limitations

This study has several limitations which are innate to its retrospective design and novel
nature. Selecting patients with only good orexcellentimaging quality on adenosine stress
CTP may have introduced selection bias. Consequently, the relatively small number of
female patients may have introduced further bias as evidence suggests that females
may experience higher myocardial perfusion flow values compared to males (23).Since
the goal of this study was to provide insights into a new proof of principle more testing
and furtherinvestigation is needed to implement this conceptin alarger patient cohort.

5. Conclusion

Fully quantifying myocardial perfusion defects and subtended myocardial mass allows
to quantitatively correlate coronary artery lesions to corresponding areas of myocardial
hypoperfusion at CCTA and adenosine stress CTP. This novel technique may prove
especially useful for patients with multivessel disease undergoing invasive coronary
angiography as correlation of the perfusion defectand coronary artery lesions gives more
insight in myocardial ischemia localization.
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Abstract

Purpose: This study aims to investigate the correlation between myocardial area at risk
atcoronary computed tomography angiography (CCTA) and the ischemicburden derived
from myocardial computed tomography perfusion (CTP) by using the 17-segment model.

Methods: Forty-two patients with chest pain complaints who underwent a combined
CCTA and CTP protocol were identified. Patients with reversible ischemia at CTP and at
leastone stenosis of >50% at CCTA were selected. Myocardial area at risk was calculated
using a Voronoi-based segmentation algorithm at CCTA and was defined as the sum of
all territories related to a > 50% stenosis as a percentage of the total left ventricular (LV)
mass. The latter was calculated using LV contours which were automatically drawn using
a machine learning algorithm. Subsequently, the ischemic burden was defined as the
number of segments demonstrating relative hypoperfusion as a percentage of the total
amountof segments (=17). Finally, correlations were tested between the myocardial area
atrisk and the ischemic burden using Pearson’s correlation coefficient.

Results: Atotal of 77 coronary lesions were assessed. Average myocardial areaatriskand
ischemic burden for all lesions was 59% and 23%, respectively. Correlations for > 50%
and >70% stenosis based myocardial area at risk compared to ischemic burden were
moderate (r=0.564; p<0.01) and good (r = 0.708; p < 0.01), respectively.

Conclusion: The relation between myocardial area at risk as calculated by using a
Voronoi-based algorithm at CCTA and ischemic burden as assessed by CTP is dependent
onstenosis severity.

Abbreviations

AUC: Areaunderthecurve

CAD: Coronaryartery disease

CCTA: Coronary computed tomography angiography
CTP: Computed tomography perfusion

CX:  Circumflexartery

ECG: Electrocardiogram

FFR:  Fractional flowreserve

LAD: Leftanteriordescendingartery

LV: Leftventricle

MBF: Myocardial blood flow

MRI:  Magneticresonance imaging

RCA: Rightcoronaryartery

SPECT: Single photon emission computed tomography
VTK: Visualization toolkit
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1. Introduction

Coronary computed tomography angiography (CCTA) iswidely used to diagnose coronary
artery disease (CAD) and determine stenosis severity (1). However, the assessment of
ischemicmyocardiumisalso of prognosticimportance and playsavital role in the decision
to revascularize patients which depends on the extent of the relative hypoperfused
(ischemic) myocardium, relative to the subtended myocardial mass distal of the coronary
stenosis (2). A key advantage of combining CCTA and adenosine stress CT myocardial
perfusion (CTP) is that it allows for both the assessment of coronary artery stenosis
as well as myocardial ischemia (2). Also, CTP has a substantially shorter exam time as
compared to cardiacmagneticresonance (CMR) and myocardial perfusionimaging (MPI).
Furthermore, CTP may be especially beneficial in patients with contraindications for
CMR (3, 4). However, it must be noted that a major disadvantage of CTP is the relatively
high radiation dose exposure. Still, this is gradually improving thanks to technological
advancement (4).

The Voronoi decomposition encompasses a mathematical algorithm thatdivides a three-
dimensional space ortwo-dimensional area between predetermined points based on the
shortestdistance to those points. Thisalgorithm can be used to partition the myocardium
according to which blood vessel is closest (5, 6). By using a Voronoi decomposition
algorithm on myocardial tissue one can take into account the many variations that exist
in coronary anatomy. This is a major advantage of the aforementioned method over the
standard17 segment model in which the segments correspond to a fixed locationand do
not change according to differences in coronary anatomy (7). The importance of usinga
different approach for the assessment of the coronary distribution was demonstrated
inastudy by OrtizPerez etal. in which in patients who underwent CMR 23% of the hyper
enhanced segments were discordant with the empirically assigned coronary distribution
according to the standard 17segment model. A Voronoi based segmentation algorithm
can overcome this problem as its output is dependent on patient specific coronary
anatomy (6, 8).

Artificial intelligence (Al) is rapidly evolving in the work field of cardiovascularimaging
and can greatly lessen the time needed for image processing, Machine learning which
is a subclass of Al allows for the creation of a model based on historical data. As such,
machine learning has been widely used for automatic left ventricle (LV) segmentation
greatly speeding up the process of LV contour placement (9, 10),

Theaim of this study was to assess whether the subtended myocardial massas calculated
by using the Voronoi-based segmentation method correlated to myocardial ischemia
at CTP. As such, CCTA may not only be used to assess the degree of a coronary stenosis,
butalso for the quantification of the subtended myocardial mass which may predict the
ischemic burden without the need for a stress test.
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2. Materials and Methods

2.1 Patients

248 patients referred foracombined CCTA and CTP protocol due to chest pain complaints
were identified. Patients with normal CTP images or fixed perfusion defects (N =178),
absence of atleast one > 50% coronary stenosis (N =11), inferior CTP scan quality (N =16)
and prior coronary revascularization (N =1) were excluded (11). We selected a total of 42
patients forthe currentanalysis. A detailed flowchart of the patient selection is depicted
in Fig.1. CTP scan quality classified as either “poor” or “ fair” was deemed inferior. All
data were retrospectively analyzed. The local ethics committee of the Leiden University
Medical Center approved this retrospective analysis of clinical data and the need for

informed consent was waived.

Patients who
underwent CTP
N =248

Y

Reversible
myocardial ischemia
on CTP
N =54

Normal CTP or fixed

defects
N=178

Patients with inferior
> CTP scan quality
N=16

Reversible

myocardial ischemia

on CTP and at least

one = 50% coronary
stenosis
N=43

Y

Egilible patients for
the study
N =42

Absence of at least

one = 50% coronary
stenosis
N=11

Previous

revascularization
therapy
N=1

Figure 1. Flowchart depicting the selection proces of patients. CTP scans with “poor” or “fair” scan

quality were deemed inferior.
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2.2 Data acquisition

Using a320-row volumetricscanner (Aquilion ONE, Canon Medical Systemsand Aquilion
ONE Genesis Edition, Canon Medical Systems, Otawara, Japan) CCTA and staticadenosine
stress CTP were acquired on the same day. Patients were advised not to consume caffeine
products 24 h before examination. One hour priorto CCTA blood pressure and heartrate
were monitored. Patients with a heart rate exceeding 60 beats per minutes (bpm) were
given metoprolol, 25 mg up to 150 mg orally, unless contraindications were present.
Additionally, metoprolol could be injected intravenously if the heart rate remained above
60 bpm.

Sublingual administration of nitroglycerin (0.4 mg) was done prior to CCTA. Scanner
settings for CCTA were as follows: A detector collimation of 320 x 0.5 mm, a 275 ms
gantry rotation time and temporal resolution of 137 ms for the Aquilion ONE Genesis
Edition and a detector collimation of 320 x 0.5 mm, 350 ms gantry rotation time and
temporal resolution of 175 ms for the Aquilion ONE. Tube current was 140-580mA and a
peak tube voltage 100-135kV. The antecubital vein was used for administration of 50-90
mL of contrast agent (lomeron 400, Bracco, Milan, Italy) followed by a 1:1 mixture of 20
mL contrast and saline and finally 25 mL of saline. Tube current, peak tube voltage and
the amount of administered contrast agent varied due to variations in patient size (12).
Using prospective electrocardiogram (ECGC) triggering 70%-80% of the RR interval was
scanned. In patients with a heart rate exceeding 65 bpm 30%-80% of the RR-interval was
scanned. When a threshold of 300 Hounsfield units (HU) was reached in the descending
aorta CCTA was performed the next beat.

CTP was only performed if there was suspicion of a significant stenosis (> 50%) at CCTA.
To achieve adequate myocardial contrast wash-out the minimum scan-interval was
20 min between CCTA and CTP. ECG and blood pressure were continuously monitored
following continuous adenosine infusion (0.14mg/kg/min) after which a contrast agent
was administered. CTP images were acquired when a threshold of 300 HU was reached
in the descending aorta scanning 80%-99% of the RR interval. Tube settings, injection
protocol and contrastagent were all similar to the CCTA acquisition.

2.3 Image analysis

Images were transferred to a workstation and analyzed using dedicated post-processing
software (Vitrea FX 7.12; Vital Images, Minnetonka, Minnesota). All CCTAand CTPimages
were analysed by trained cardiologists with at least10 years of experience. Inaccordance
with SCCT guidelines, stenosis severity per segment was semi quantitatively assessed
using visual analysis as: 50%-69% (moderate), 70%-99% (severe), and 100% (occluded)
(13). In case multiple stenoses were observed in the same segment and vessel, the most
proximal stenosis was labelled as the culprit stenosis.
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CTPimages were analysed by reconstructing cardiac phases forevery 2% of the scanned
interval. Subsequently, analysis was performed on the phase with the best scan quality
using short-axis reformatted images and a slice thickness of 4 mm using a narrow
window width and level setting (W300/L150) and utilizing the standard 17 segment
myocardial model forscoring (14). If one or more segments demonstrated signs of relative
hypoperfusion the CTP was considered abnormal (11). The number of segments with
relative hypoperfusion relative to the total of 17 segments was defined as the ischemic
burden and calculated using the following formula:

numberofsegmentswithrelative hypoperfusion
17

*100

Ischemic burden =

2.4 Image processing

Before executing the Voronoi-based segmentation algorithm the complete coronary
artery tree was automatically extracted from the CCTA (Fig. 2A) and the relevant lesions
were manually defined using dedicated software (Fig. 2B) (QAngio CT Research Edition
v3.1.5.1 Medis Medical Imaging, Leiden, The Netherlands). Hereafter, the CCTA images
were automatically reformatted into a short-axis orientation covering the complete left
ventriclewith aninter-slice spacing of 4 mm. Subsequently, left ventricularepicardial and
endocardial contours were automatically drawn in the CCTA (Fig. 3). Both tasks were done
semiautomatically usingin house developed MASS software (Leiden University Medical
Center) by using a machine learning model, manual corrections were made if needed.
Thismodel was trained using a different dataset of 5o randomly selected CCTA'sin which
reformatting of the shortaxis and drawing of the LV epicardial and endocardial contours
was done manually. Subsequently we used dedicated open-source software (TensorFlow
v2.6 software available from www.tensorflow.org) to train a neural network. Executing
the machine learning model took approximately 1 minand 20 s per CCTA.

To assess the feasibility of the machine learning model as compared to manual
measurements one observer (FY. with 3 years of experience in cardiovascular imaging
analysis) randomly selected a sample of 10 cases in which manual reformatting of
the short axis and manual drawing of the left ventricular epicardial and endocardial
contours was performed. Correlations were subsequently tested between manual and
automatic measurements concerning the leftventricular mass whichis derived from the
epicardial and endocardial contours. Statistical analysis of these correlations was done
using Pearson’s correlation coefficient using SPSS software (version 25, SPSS IBM Corp,
Armonk, New York).
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.
Figure 2. The complete coronary tree was automatically extracted from the CCTA (Panel A.). The
proximal part of the lesion in the proximal LAD as marked by the red arrow (Panel B) is used as the
starting point for calculating the subtended mass.

Figure 3. Epicardial contours (green line) and endocardial contours (red line) were automatically drawn
using a machine learning model.
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2.4 Voronoi-based segmentation

In order to calculate the subtended mass a Voronoi-based segmentation algorithm
was used on the CCTA by using in-house developed MASS software (Leiden University
Medical Center). By using this algorithm it is possible to find the nearest location of the
extracted coronary artery tree for every voxel within the left ventricular myocardium (s,
6). Subsequently, results of the image segmentation were exported as 3D objects in the
visualization toolkit (VTK) format for furtheranalysis and visualization (Fig. 4). Executing
the Voronoi-based segmentation algorithm took approximately 1 min per lesion.

Finally, the subtended mass was calculated for both > 50% and > 70% stenosis as a
percentage of the total LV mass and defined as the myocardial area at risk using the

following formula:
Subtended
myocardial area atrisk = uortended mass 100
LVmass

Figure 4. Using the previously defined lesion in the proximal LAD (Panel A) and executing the Voronoi-
based algorithm the subtended mass can be computed and visualized in 3D (Panel B).

2.5 Statistical analysis

Correlations between the ischemic burden and myocardial area at risk as well as
correlations between manual and machine learning based LV contours were calculated
using Pearson’s correlation coefficient. All analysis were performed using SPSS software
(version 25, SPSS IBM Corp, Armonk, New York).

88



3. Results

CCTA and CTP images from forty-two patients (25 men, mean age, 68.2 + 7.7) were used
for the current analysis. Patient characteristics are listed in Table 1. Voronoi-based
segmentation and semi-automatic drawing of the LV epi- and endocardial contours
using a machine learning algorithm was successful in all cases. A total of 77 coronary
lesions with a luminal stenosis of > 50% were assessed. Average myocardial area at risk
for stenosis > 50% and >70% were 59% and 37%, respectively. Average ischemic burden
for stenosis >50% and >70% were 23% and 24%, respectively. There was a moderate
correlation of the ischemic burden versus myocardial area at risk for stenosis of > 50%
(r=0.564; p<0.01) (Fig. 5). A good correlation was found for the ischemic burden versus
the area at risk for stenosis of > 70% (r = 0.708; p <0.01) (Fig. 6). A complete example is
depictedin figure7.

Comparison ofthe LV massas calculated from manually drawn contours versus contours
drawnwith the machine learning model demonstrated a very good correlation (r=0.870;

p <0.01).

R? Linear =0,318

Area at risk 50

0 10 20 30 40 50

Ischemic Burden

Figure 5. “Area at risk 50” represents the percentage of myocardial area at risk of the total LV as
calculated by using the Voronoi-based segmentation algorithm for every >50% stenosis. “Ischemic
burden” represents the percentage of segments with relative hypoperfusion of the total amount of
segments (=17)
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R? Linear = 0,501

60

Area at risk 70

0 10 20 30 40 50
Ischemic burden
Figure 6. “Area at risk 70” represents the percentage of myocardial area at risk of the total LV as

calculated by using the Voronoi-based segmentation algorithm for every >70% stenosis. “Ischemic

burden” represents the percentage of segments with relative hypoperfusion of the total number of
segments (=17)
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Figure 7. Example of a 58-year-old male with single vessel disease. A significant stenosis is presentin the
proximal LAD with contrast opacification distally (Panel A). Perfusion defects assessed by CTP can be
seen in panel B. The ischemic burden can consequently be calculated as 8/17 “100 = 47 %. The complete
coronary tree with the relevant stenosis is shown in panel C. Using the previously mentioned stenosis
the subtended mass is calculated by using the Voronoi-based segmentation algorithm. Subsequently,
the myocardial area at risk is calculated as 53/100 *100 = 53%.
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Patient characteristics

N=42
Male/Female 25 (60%) /17 (40%)
Age (years) 68.2+77
Hypertension 23 (55%)
Hyperlipidaemia 22 (52%)
Diabetes mellitus 9 (21%)
Family history of CAD 22 (52%)
Smoking 3 (7%)
Single-vessel disease’ 24 (57%)
Double-vessel disease? 10 (24%)
Triple-vessel disease? 8 (19%)

Table 1. CAD: Coronary artery disease. 1: Defined as luminal diameter stenosis of > 50% on CCTA in
one majorepicardial coronary vessel. 2: Defined as luminal diameter stenosis of > 50% on CCTA in two
major epicardial coronary vessels. 3: Defined as luminal diameter stenosis of > 50% on CCTA in three
major epicardial coronary vessels.

4. Discussion

This study assessed the relationship between myocardial area at risk at CCTA and
ischemicburdenasassessed at CTP. Ourresults demonstrate that calculating subtended
mass using a Voronoi-based segmentation algorithm in combination with a machine
learning algorithm for semi-automatically drawing LV epi- and endocardial contours at
CCTAisfeasibleand its correlation tothe ischemicburden as measured usingastandard
17-segment model at CTP increases with increasing stenosis severity. Consequently,
coronary CTA can be used notonly toassess the degree of a coronary stenosis, butalso for
quantification of the subtended myocardial mass which may predict theischemicburden
without the need for a stress test. It should however be noted that the use of integrated
diagnostics of CCTA and CTP is still better than CCTA alone as the first allows for both
assessment of coronary stenosis as well as the presence of (reversible) ischemia. This is
of greatimportance as not every coronary stenosis is hemodynamically significant (15).

Multiple studies have demonstrated that adding CTP to regular CCTA improves the
detection of hemodynamically significant coronary lesions (16,17). Forinstance, Pontone
etal. demonstrated that addition of CTP to CCTA improved the detection of functional
significant coronary lesions. In a vessel-based model addition of CTP to CCTA yielded an
improvement of specificity (94%; p < 0.001), positive predictive value (86%; p < 0.001),
and accuracy (93%; p = 0.002). Similarly, in a patient-based model, improvements in
specificity (83%; p < 0.001), positive predictive value (86%; p = 0.02), and accuracy (91%;
p =0.004) were also observed when stress CTP was combined with CCTA (16).
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Aside from the degree of coronary stenosis there have been several studies assessing the
relationship between the anatomical location of a coronary stenosis and the presence of
myocardial ischemia. For instance, in a study by Tanabe et al. the combined diagnostic
performance of coronary artery stenosis-subtended myocardial volume and myocardial
blood flow (MBF) on CTP for detecting obstructive coronary artery disease was assessed.
It was found that the AUC of the combined use of the subtended CTP myocardial blood
flow and subtended mass was significantly higher than that of myocardial blood flow
aloneinthe detection of hemodynamically significant stenoses (0.89 vs. 0.75, 0.77; p<0.05)
(18).

Ide etal. demonstrated the feasibility and validity of Voronoi-based tissue segmentation.
It was found that CCTA based subtended myocardial mass calculated using a Voronoi-
based segmentationalgorithm closely corresponded toactual subtended mass measured
on ex-vivo-sine hearts (r=0.92, p=0.02 for the left anterior descending artery (LAD); r
=0.96, p =0.009 for the circumflex artery (CX); r=0.96, p = 0.009 for the right coronary
artery (RCA)) (19).

Semi-automaticsegmentation of the LV usinga machine learning model for defining epi-
and endocardial contours has been validated extensively. Several studies have reported
high comparability to a manual segmentation of the LV versus a machine learning
approach (20-23). It must also be noted that manually drawing epi- and endocardial
contours is a time-intensive process of usually around 20-30 min(20). Semi-Automatic
LV segmentation can speed up this process significantly as we have noted an execution
time of approximately 1 minand 20s.

Kurataetal. alsoassessed the relationship between calculated subtended mass at CCTA
usingaVoronoi-based segmentationalgorithmandischemicburdenasassessed by single
photon emission computed tomography (SPECT). A moderate correlation was found
between the calculated subtended mass andischemicburden (r=0.531; p=0.001) whichis
only slightly lower compared to our results (r= 0.564; p <0.01) (24). Also, Fukuyama et al.
performed a similar study by assessing the relationship between calculated subtended
mass at CCTA using a Voronoi-based segmentation algorithm and ischemic burden as
assessed by magnetic resonance imaging (MRI). Aslightly better correlation was found
when correlating subtended mass to ischemic burden (r = 0.73; p < 0.001) (25). This
differencein correlation may be partially explained by the fact that cardiac MRI perfusion
is still superior to cardiac CTP in the detection of (reversible) ischemia (26).

Interestingly, inour study lesions with a diameter stenosis of 70% or more demonstrated
abettercorrelation between the myocardial area at riskand ischemic burden compared
to lesions with a diameter stenosis of 50% (r=0.708 and r=0.564 respectively). A similar
observation was found by Fukuyama et al. (25). This difference in correlation may be
attributed to the fact that lesions with a greater diameter stenosis may cause more
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(reversible) ischemia and hereby enlarge the ischemicburden. Van Rosendael etal. clearly
demonstrated the relationship between quantitative CCTA lesion measurements and
myocardial ischemia at CTP. It was confirmed that increasing stenosis percentage by
quantitative CCTA is positively correlated to myocardial ischemia (15). Furthermore, a
recent study by Bax et al. demonstrated that lesions in left sided coronary arteries with
a larger diameter stenosis were often localized more distally in the subsequent vessel.
Thus, explaining the better correlation for lesions with a diameter stenosis of 70% or more
as these accompany fora lower subtended mass (27).

4.1 Limitations

This study has several limitations which are inherent to its retrospective design. Firstly,
the amount of analyzed patients is small which may have influenced the strength of
the statistical analysis. Hence, future studies with a larger number of patients will be
required to clarify the significance of these findings in clinical practice. Selection bias
may have been introduced as we only selected patients with reversible ischemia as
diagnosed on CTP. Secondly, the subtended mass was calculated using the anatomical
location of the relevant coronary lesion. This was independent of whether the lesion
was hemodynamically significant or not. In case of multivessel disease the correlation
between subtended mass and ischemic burden may have been biased as we solely
selected the most proximal lesions for calculating the subtended mass. Of course, the
most proximal lesions also encompass the largest subtended mass. Also, there was
no validation of the ischemic burden to the corresponding anatomical territory that
corresponds to the relevant coronary artery lesion used for calculating the myocardial
area at risk (28). Thirdly, the Voronoi-based segmentation algorithm does not take into
account the curved surface of the myocardium but derives the distance the between
the coronary vessels and every myocardial voxel by using a straight line. As distances
are relatively small we feel the impact of not using the myocardial curvature on the
final output will be very minimal. Lastly, we must acknowledge that no inter- or intra-
observer measurements were done on the CCTA or CTP analysis. However, prior studies
have reported excellent and moderate inter- and intra-observer agreements for both
imaging modalities. (6, 29).

5. Conclusions

Quantification of the myocardial area at risk calculated by using a Voronoi-based
algorithmin combination with a machine learning based algorithm for LV segmentation
at CCTA significantly correlates with the ischemic burden as assessed by the standard
17-segment model at CTP. This correlation improves with increasing stenosis degree.
This relationship may be beneficial in risk assessment of patients with CAD and may aid
in clinical-decision making.
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Abstract

Introduction: Cardiac magnetic resonance imaging (MRI) is the gold standard in the
assessment of left ventricle (LV) mass and wall thickness. In recent years, cardiac
computed tomography angiography (CCTA) has gained widespread usage asanimaging
modality. Despite this, limited previous investigations have specifically addressed the
potential of CCTA as an alternative modality for quantitative LV assessment.

The aim of this study was to compare CCTA derived LV mass and wall thickness with
cardiac MRI utilizing machine learning algorithms.

Methods: Fifty-seven participants who underwent both CCTA and cardiac MRI were
identified. LV mass and wall thickness was calculated using LV contours which were
automatically placed using in-house developed machine learning models. Pearson’s
correlation coefficients were calculated along with Bland-Altman plots to assess the
agreementbetween the LV mass and wall thickness perregion on CCTAand cardiac MRI.
Inter-observer correlations were tested using Pearson’s correlation coefficient.

Results: Average LV mass and wall thickness for CCTA and cardiac MRl were 127 g 128
g,7and 8mm respectively. Bland-Altman plots demonstrated mean differences and
corresponding 95% limits of agreement of -1.26 (25.06;-27.58) and -0.57 (1.78;-2.92), for LV
mass and average LV wall thickness, respectively. Mean differences and corresponding
95% limits of agreement for wall thickness per region were -0.75 (1.34;-2.83), -0.58 (2.14;-
3.30) and -0.29 (3.21;-3.79) for the basal, mid, and apical regions, respectively. Inter-
observer correlations were excellent.

Conclusion: Quantitative assessment of LV mass and wall thickness on CCTA using
machine learning algorithms seems feasible and shows good agreement with cardiac
MRI.

Abbreviations

Al: Artificial Intelligence

CCTA: Cardiaccomputed tomography angiography
DICOM: Digital Imagingand Communications in Medicine
ECC: Electrocardiogram

FOV: Field of view

HU:  Hounsfield units

LV: Leftventricle

MRI:  Magneticresonanceimaging

RV:  Rightventricle

TE: Echotime

TR: Repetition time
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1. Introduction

Increased left ventricle (LV) mass and wall thickness causing LV hypertrophy are both
independent risk factors for cardiovascular mortality and morbidity irrespective of the
aetiology (1). Cardiac magnetic resonance imaging (MRI) is still considered to be the gold
standard for LV mass and wall thickness measurements (2). However, over the years
cardiac computed tomography angiography (CCTA) has become a widely used imaging
modality for the assessment of coronary arteries and its diagnosticaccuracy has greatly
increased inthe lastdecade (3). Still, only a few prior studies have been performed about
the use of CCTA for LV mass and wall thickness measurements and only a minor number
have compared the measurements to MRI (4-10). Nasser Alnasser et al. have written
an extensive review about the use of artificial intelligence (Al) in (cardiac) structure
segmentation (11) however, to the best of our knowledge no priorstudy hasincorporated
the use of machine-learning-based LV segmentation into the comparison of CCTA and
MRIderived LV massand wall thickness measurements. Use of CCTA for LV mass and wall
thickness measurements may be especially useful for patients with contraindications for
cardiac MRIsuch as pacemakers, claustrophobia, or clinical conditions that prohibit long
MRI examinations (9). Furthermore, CCTA has been proven to be more readily available,
cheaperand fasteras compared to MRI (12, 13)

Quantification of LV mass and wall thickness requires the definition of LV endo- and
epicardial contours in multiple slices covering the complete LV. Manual segmentation of
the LV myocardium is time consuming both for CCTA and cardiac MRI (14, 15). Recently,
machine learning algorithms have been developed for both CCTA and cardiac MRI and
allow for automatic LV segmentation substantially decreasing the time needed for LV
quantification (14, 16, 17). The aim of this study was to compare LV mass and LV wall
thickness derived from CCTA and cardiac MRI whilst using machine learning based LV
segmentation.

2. Materials and methods

2.1 Patients

For this study 130 participants who underwent both CCTA and cardiac MRI between
October2009 and November 2021 were identified. Participants with a maximum period
of more than 6 months between CCTAand cardiac MRI (n=59), no short-axis cine magnetic
resonance (MR) image stack (n=9), severe motion artifacts on MRI (n =1), CCTA without
contrast (n =3) and corrupt CCTA digital imaging and communications in medicine
(DICOM) files (n=1) were excluded. Atotal of 57 participants were selected for the current
analysis. Among them, thirteen exhibited LV hypertrophy. Patient characteristics and
indications for CCTA and cardiac MRl are described in Table 1. Figure 1 depicts a detailed
flowchartofthe patientselection. All data were analysed retrospectively. The local ethics
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Chapter 6

committee of the Leiden University Medical Centre approved this retrospective analysis
of clinical data and waived the need for informed consent.

Table 1. Patient characteristics. CCTA: Cardiac computed tomography angiography. VT: Ventricular
tachycardia. LV: Left ventricle

Patient characteristics N=57
Male / Female 43 (75%) [ 14 (25%)
Age (years) 60+12.2
Hypertension 24 (42%)
Hyperlipidaemia 12 (21%)
Diabetes mellitus 3 (5%)
Smoking 2 (4%)
LV hypertrophy* 13 (23%)
CCTA indication
Chest pain 33 (58%)
Coronary anatomy for workup to VT ablation 22 (39%)
Aorticaneurysm 1(2%)
Bicuspid aortic valve 1 (2%)
Cardiac MRl indication
Cardiomyopathy 43 (75%)
Myocarditis 4 (7%)
Cardiacischemia 3 (5%)
Sarcoidosis with cardiacinvolvement 3 (5%)
Aorticaneurysm 2 (4%)
Amyloidosis 1(2%)
Bicuspid aortic valve 1 (2%)

*An end-diastolic LV wall thickness of more than 15mm as measured with 2D echocardiography or
cardiac MRl anywhere in the left ventricle (32).
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CCTA vs cardiac MRI: LV mass and wall thickness analysis
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Figure 1. Flowchart demonstrating patient selection. Scans with an inter-scan interval of more than 6
months between MRI and CCTA were excluded. CCTA, cardiac computed tomography angiography.
DICOM, digital imaging and communications in medicine. MRI, magnetic resonance imaging.

2.2 CCTA Data acquisition

CCTAwas performed usinga320-row volumetricscanner (Aquilion ONE, Canon Medical
Systems, Aquilion ONE PRISM Edition, Canon Medical Systems and Aquilion ONE Genesis
Edition, Canon Medical Systems, Otawara, Japan). A peak tube voltage of100-135 kV with
a tube current of 140-580mA was used. Detector collimation, gantry rotation time and
temporal resolution were 320 x 0.5mm, 275ms and 137ms, for the Aquilon ONE Genesis
Edition and 320 x 0.5mm, 350ms and 175ms, for the Aquilon ONE (PRISM Edition)
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respectively. The antecubital vein was used for administration of 50—90 mL of contrast
agent (lomeron 400, Bracco, Milan, Italy) followed by a 1:1 mixture of 20 mL contrast
and saline and finally 25 mL of saline. Peak tube voltage, tube current and amount of
contrastagentvaried based on patientsize (18). After contrast administration CCTAwas
performed the next heartbeat when a threshold of 300 Hounsfield units was reached
in the descending aorta. Subsequently, 70-80% of the RR interval was scanned using
prospective electrocardiogram (ECGC) triggering.

2.3 MRI Data acquisition

Cardiac MRI was performed using a 1.5-T Gyroscan ACS-NT/Intera MR system (Philips
Medical Systems, Best, The Netherlands) or a 3.0-T Ingenia MR system (Philips Medical
Systems, Best, The Netherlands) using retrospective ECC gating. Imaging parameters
were as follows for the 1.5-T Gyroscan ACS-NT/Intera MR system: field of view (FOV) 400
x 320 mm?; matrix, 256 x 206 pixels; slice thickness, 10 mm with no slice gap; flip angle
(a), 35% echo time (TE), 1.67 ms; and repetition time (TR), 3.3 ms. For the 3.0-T Ingenia
MR system typical parameters were: FOV 400 x 350 mm; matrix, 232 x 192 pixels; slice
thickness, 8 mmwith noslice gap; a, 45% TE,1.5msand TR, 3.0 ms. The heart was imaged
in1or2breath-holds with short-axis slices at various levels dependent on the heart size.

2.4 Image processing

Images were transferred to a workstation for quantitative analysis. In-house developed
MASS software (Leiden University Medical Centre) was used for short-axis reformatting
inthe CCTAscansand for LV contour placementinthe CCTAand MRl scans. The software
hasbeenvalidated and supported for clinical purposes. A study by Kawel provides robust
evidence of its efficacy and reliability (19).

CCTA and MRI data were analysed independently and no visual reference to the other
could be made at any time. Also, the observer was blinded to the results of LV mass and
LV wall thickness of each scan. Quantitative analysis of both modalities as well as short-
axis reformattinginthe CCTAwas done automatically by using machine learning models.
Contourswere manually corrected if needed. The Al model used for MRl and CCTA based
LV segmentation used a deep learning-based approach. Specifically, a convolutional
neural networkarchitecture, known asthe U-Net, was employed for this purpose. The Al
modelwastrained onalarge dataset of cardiac MRl and CCTA scans, where both the raw
images and manually annotated LV contours are provided as input. During the training
process, the model learns to map the input images to the corresponding LV contours,
optimizingits parameters to minimize the difference between the predicted and ground
truth segmentations. Finally, the performance of the Al model was evaluated on an
independent testing dataset, which consists of additional cardiac MRl and CCTA scans.
The model’s predictions on the testing set were compared against manual ground truth
annotations to assess its performance in real-world scenarios. Training and use of the
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machine learning models is discussed in more detail for both CCTA and cardiac MRl in
two separate papers (16, 17).

First, CCTAimages were automatically reformatted into a short-axis orientation covering
the complete LV with a slice thickness of 4 mm. Cardiac MRl images with aslice thickness
of 8 or10 mm were already available in short axis hence, no further reformatting was
needed. Once short-axis slice stacks were created a reference point was placed in a mid-
slice at the site of the inferior attachment of the right ventricle (RV) to LV, both for CCTA
and cardiac MRI. The segment numbering withinaspecificlevel depends onthelocation
of the reference point. Hence, this allows for anatomical alignment of CCTA and cardiac
MRI. Finally, LV epicardial and endocardial contours were automatically detected firstin
the CCTA and hereafter in the cardiac MRI for each patient. The 75% phase was chosen
for LV segmentation on both the CCTA and cardiac MRl as this phase is most ideal for LV
mass and wall thickness calculation (20). Figure 2 depicts the results of LV segmentation
for both CCTA and cardiac MRI.

We have opted nottoinclude LV volume as the basis forits calculation (asis with LV mass)
is based on endo- and epicardial LV contours using MASS software. As the main goal
of this study was to evaluate the matter of agreement between CCTA and MRI derived
LV contours we chose LV mass as a derivative of these contours. Therefore, including
a comparison of LV volume between imaging modalities will not provide additional
meaningful insights beyond whatis already captured in the LV mass calculation process.

Figure 2. Example of LV segmentation of a middle region slice of the same patient for both cardiac
MRI (left panel) and CCTA (right panel). The red lines represent the endocardial contours. The green
lines represent the epicardial contours. The reference pointis marked by the small blue cross. Middle
region wall thickness for this patient was 8 mm on MRl and 6 mm on CCTA.
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2.5 LV mass and wall thickness calculation

Using the LV contours, LV mass and wall thickness were calculated automatically using the
aforementioned software. Average LV wall thickness as well as segmental wall thickness,
using the standard 16-segment model were derived (21). Furthermore, segments were
combined to provide wall thickness per LV region consisting of the basal, mid and apical
regions (21) whichis depicted in Figure 3. LV wall thickness for the entire LV and per region
were calculated using the following formulas.

segment 1 + segment 2 + ... + segment16
16

LVwallthickness =

segment 1 + segment 2 + segment 3 + segment 4 + segment 5 4+ segment 6
6

LVwallthicknessbasal =

segment 7 + segment 8 + segment 9 + segment 10 + segment 11 + segment 12
6

LVwallthickness mid =

segment 13 4+ segment 14 4+ segment 15 + segment 16

LVwallthickness apical = 1

To assess inter-observer reproducibility a second independent observer performed
quantitative analysis in a randomly selected cohort of twenty subjects. Since manual
adjustments to the automatically detected contours was occasionally required, the
results between observers may vary. Correlations of LV mass and LV wall thickness for
both CCTA and cardiac MRI between both observers were subsequently tested using
Pearson’s correlation coefficient.

Basal
Mid
Apical

Figure 3. Standard 16-segment model depicting how different segments make up 3 different major
regions; basal, mid and apical.
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2.6 Statistical analysis

The agreement between LV mass and wall thickness derived from CCTA and cardiac
MRIwas assessed using Bland-Altman plots and Pearson’s correlation coefficient. Inter-
observer correlations were tested using Pearson’s correlation coefficient. SPSS software
version 25, SPSS IBM Corp, Armonk, New York) was used for all statistical analysis.

3. Theory

Performingacomparison of CCTAand LV mass and wall thickness using machine learning
algorithms serves both a practical and time-saving purpose. For instance, patients with
contraindications for cardiac MRI, such as those with pacemakers, claustrophobia, or
conditions prohibiting prolonged MRI examinations could potentially benefit from
CCTA as prior mentioned factors play no role in CCTA acquisition (9). Furthermore, the
increased availability, cost-effectiveness and speed of CCTA compared to cardiac MRI
make itanattractive alternative for routine clinical use (12,13). Lastly, LV segmentation is
time consuming and machine learning algorithms for automatic LV segmentation have
already been proved to speed up this process (14, 16,17). An important consideration is
whether use of these algorithms does not compromise the accuracy of LV segmentation
as compared to the gold standard of cardiac MRI.

4. Results

CCTA -and cardiac MRI images from 57 participants were used in the current analysis
hence a total of a 114 scans were analysed. Table 1 lists a detailed description of patient
characteristics. Mean LV mass derived from CCTA and cardiac MRl including the standard
deviation were127+31.6 and 128 +31.0 g, respectively. Mean wall thickness derived from
CCTA and cardiac MRl including the standard deviation were 7 +1.5 mm and 8 +1.3 mm,
respectively. Correlation between CCTA and cardiac MRI derived LV mass was very
strong (r=0.908, p < 0.001). Furthermore, corresponding mean differences and 95%
limits of agreement for LV mass as demonstrated by the Bland-Altman plot were -1.26
(25.06;-27.58). LV wall thickness correlation between CCTA and cardiac MRl was strong
(r=0.644, p <0.001) for average wall thickness and (r=0.662, p < 0.001), (r=0.668, p <
0.001) for the basal and mid regions, respectively. Average wall thickness in the apical
regions demonstrated a moderate correlation (r=0.524, P<0.001). Corresponding mean
differences and 95% limits of agreement were -0.57 (1.78;-2.92), -0.75 (1.34;-2.83), -0.58
(2.14;-3.30) and -0.29 (3.21;-3.79) foraverage wall thickness, basal, mid and apical regions,
respectively. The average value for the thickest segments on MRl and CCTA including
the standard deviation were 11 +1.8 and 10 + 2.5 mm respectively and demonstrated a
strong correlation (r=0.687 p<0.001). Corresponding mean differences and 95% limits
of agreement were -1.06 (2.47;-4.60). Relevant charts for LV mass and wall thickness
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Chapter 6

correlations between CCTA and MRI as well as limits of agreement including mean
difference are depicted in figure 4, figure 5, figure 6 and figure 7. All results are listed
numericallyin Tablezaswellas LV mass and LV wall thickness values according to clinical
diagnosisin Table 3.

Mean differences per segment were assessed using the standard 16-segment model.
Results are depicted in figure 8.

Interobserver correlations and intraclass correlation coefficients for CCTA derived LV
mass, MRl derived LV mass, CCTA derived average wall thickness and MRl derived average
wall thickness were excellent yielding Pearson’s correlations coefficients of (r=0.994,
p<0.001), (r=0.970,p<0.001), (r=0.971, p<0.001), (r=0.956, p<0.001), (r=0.965, p< 0.001)
(r=0.877,p<0.007), (r=0.825, p< 0.001) and (r=0.820, p < 0.001) respectively.
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CCTA vs cardiac MRI: LV mass and wall thickness analysis
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Chapter 6

Table 2
Pearson’s correlation Mean differences and 95%
coefficientR limits of agreement

LV mass 0.908 (p<0.001) -1.26 (25.06;-27.58)

LV wall thickness entire LV 0.644 (p<0.001) -0.57 (1.78;-2.92)

LV wall thickness basal region 0.662 (p<0.001) -0.75 (1.34;-2.83)

LV wall thickness mid region 0.668 (p<0.001) -0.58 (2.14;-3.30)

LV wall thickness apical region 0.524 (p<0.001) -0.29 (3.21;-3.79)
Maximum LV wall thickness 0.687 (p<0.001) -1.06 (2.47;-4.60).

Correlations and limits of agreement between CCTA and MRI. LV: Left ventricle.

Table 3
Diagnosis Average Average Average CCTALV Average MRI LV
CCTA LV mass MRI LV mass wall thickness  wall thickness
Diabetes mellitus (N=3) 130 grams 123 grams 9mm 8 mm
Hypertension (N=24) 135 grams 137 grams 8 mm 9mm
Hyperlipidaemia (N=12) 142 grams 140 grams 9mm 9mm

Average LV mass and wall thickness on CCTA and MRI according to comorbidity. CCTA: Cardiac
computed tomography angiography. LV: Left ventricle. MRI: Magnetic resonance imaging.

5. Discussion

This study assessed the comparison of LV mass and LV wall thickness between CCTA
and cardiac MRI calculated from LV epi- and endocardial contours whilst using machine
learning algorithms for automatic placement of these contours. Results demonstrate
that CCTA shows good correlation with MRIwith regard to LV mass and LV wall thickness.
Also, Bland-Altman plots show narrow limits of agreement and minimal bias. Asa result,
(CCTA) canserve notonlyin theevaluation of coronary stenoses butalsoin the assessment
of LV mass and wall thickness. This capability positions CCTA as a viable alternative to
cardiac MRI.

Kooetal. performed ananalysisinwhich they evaluated the accuracy of adeep learning-
based algorithm for the segmentation of the LV on CCTA. However, instead of comparing
this to MRI the results were compared to manual segmentations. It was demonstrated
that deep learning-based segmentation results were comparable to those provided by
manual segmentation with a high Dice index. They also concluded that based on visual
analysis, automated LV segmentation using deep learning is superior to semi-automatic
segmentation performed by an expertreader. Unfortunately, no statistical evidence was
given to back up this last claim (14).
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In a comprehensive review by Kawel et al. reference values of LV mass were given for
cardiacMRI. Anaverage LV mass of 121 grams was found for men and 83 grams forwomen.
As the goal of our study was to assess the agreement of LV mass and LV wall thickness
between CCTAand MRI men and women were notassessed separately. Still, our average
LV massvalue on cardiac MRI of128 g closely matches the value found by Kawel et al. Given
the predominantrepresentation of meninourstudy (75 vs. 25% women), itis noteworthy
thatthis genderdistribution imbalance could contribute to an elevated average LV mass
value, given the generally higher LV mass observed in men compared to women (22). It
is also important to realize that due to the retrospective nature of this study the cohort
consists of clinical participants, hence we cannot exclude the possibility of this cohort
havinga higherthan average LV mass as compared toasample of the general population
which was used by Kawel et al. Furthermore, in another study by Kawel et al. the normal
values for LV wall thickness on cardiac MRl were assessed per segment according to the
standard 16-segment model. An average of 6 and 7 mm were found respectively for
women and men when combining all regions. This closely matches our result of 8 mm
foraverage LV wall thickness. Again, the result in our study could be slightly higher due
tothe factthatwe have included vastly more men than women (19, 21) and that due to the
retrospective nature of this study the cohort consists of clinical participants which may
have a higher average LV mass as compared to the general population.

A study by Kara et al. also compared myocardial LV mass between CCTA and MRI using
manual LV contour tracing for both modalities. It was also found that LV mass derived
from CCTA correlated strongly with cardiac MRl using Pearson’s correlation coefficient (r
=0.884, p<0.001), which is comparable to ourstudy. Furthermore, Bland-Altman plots by
Karaetal. demonstrated a mean difference of19.50 gwith corresponding 95% upperand
lower limits of agreement of 66.05and 27.05 g, respectively (9). The difference between
the upperlimitand the lowerlimitinourstudy for LV mass as well asthe mean difference
is much lower as compared to Kara et al. This could be attributed to the fact that Kara et
al. used a 64 slice computed tomography (CT) scannerwhereasin our study thiswas a 320
slice CT scanner greatly increasing image quality (23). Also, no machine learning model
was used for LV segmentation in the study by Karaetal.

Wangetal. similarly used automaticsoftware for LV wall thickness comparison between
CCTA and cardiac MRI. The methodology of our study is comparable to the study by Wang
etal.asthe bordersofthe endocardium and epicardium were automatically segmented.
However, MRI contours were segmented manually. A Pearson’s correlation coefficient for
average LV wall thickness between CCTA and cardiac MRl of r=0.698 (p <0.01) was found
by Wangetal. Thisis slightly higher compared to ours r=0.644 (p <0.01). However, Bland-
Altman plots obtained by Wang et al. revealed a mean difference of 0.6 mm with 95%
upper and lower limits of agreement of 4.0 mm and -2.7 mm, respectively (8). Although
the mean difference is equivalent to our study, their observed difference between the
upperand lower limits is considerably more thanin our study. Again, this could be partly
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explained due to the use of different scanner settings. Unfortunately, the slice capacity
of the scanner used was not provided by Wang et al.

Given the Bland-Altman plots for mass differences between CCTA and MRl in our study
itisimportant to note how these upper and lower limits would affect the diagnosis of
LV hypertrophy. For instance, Levy et al. investigated the cut-off values for LV mass that
define LV hypertrophy. It was found that a LV mass of 294 g or more for men and 198 g
or more for women would implicate LV hypertrophy. Our study found mean LV mass
of 127 and 128 g for CCTA and cardiac MRl respectively and 95% limits of agreement for
differences between CCTA and cardiac MRI of 25.06;-27.58 implicate that diagnosing LV
hypertrophy would still be possible as potential differences between CCTA and cardiac
MRI measurements are well below that of LV hypertrophy (24).

Interestingly, when observing the mean differences between CCTA and cardiac
MRI derived wall thickness per segment in Figure 8 it can be observed that the mean
differences are greaterin septal regions compared to other regions. This could be due to
thefactthatoncardiac MRl itis easier to differentiate between the septum wall and the
RV as compared to CCTA as with the latter thereiis less contrastin the RV as compared to
theLV (25). Furthermore, itisobserved that correlation coefficientand limits of agreement
considering wall thickness on CCTA and cardiac MRl are less strong for the apical region
compared to otherregions. Thisis mainly due to the fact that smaller contours which are
more presentapically are more prone to bias as was also described by Mitchell et al (26).

5.1 Limitations

This study has several limitations, which are innate to its retrospective design and novel
nature. Firstly, it was conducted at a single centre, which may limit the generalizability
of our findings to broader patient populations and clinical settings. Consequently the
samplesizeinourstudy was limited, which may affect the statistical power and precision
of ourresults. Secondly, the absence of clinical endpointsin our study restricts our ability
to directly assess the impact of CCTA compared to cardiac MRI on patient outcomes.
Thirdly, it was not possible to use similar cardiac gating parameters for the CCTA and
cardiac MRI. Hence, differences in LV mass and LV wall thickness between CCTA and
cardiac MRI may be attributed due to differences in the cardiac timing of the image
acquisition. Still for both imaging modalities the phase on 75% of the RR interval was used
for contour placementand subsequent LV massand wall thickness comparison. However,
differencesin heartbeat maystill have negatively impacted equal cardiactiming of CCTA
and cardiac MRI. Itis worth noting that different scanners with different tesla strengths
(1.5and 3.0 T) were used for MRl image acquisition in our study. Although using a 3.0
T scanner can substantially decrease scanning time compared to a1.5 T scanner it has
been demonstrated that there is no difference regarding LV mass and wall thickness
measurements. Therefore use of different MRI scanners in this study is unlikely to have
influenced the LV contour placementaccuracy (27). Fourthly, images derived from CCTA
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and MRI have a different slice thickness. We cannot entirely exclude the possibility that
this hasinfluenced the accuracy of LV contour placement. However, multiple studies have
demonstrated that the accuracy of LV segmentation is not affected by slice thickness
both for CCTA and MRI (28, 29). Lastly, In our study, we deliberately chose not to include
papillary muscles and trabeculae in the LV massassessmentas our primary objective was
to conduct a uniform comparison between cardiac MRl and CCTA for LV mass and wall
thickness quantification. Furthermore, including papillary muscles and trabeculae inthe
assessment is time consuming and may introduce variability, potentially confounding
the comparison between the two imaging modalities (30). Still, not including papillary
muscles and trabeculae may have introduced bias as this can lead to lower LV volumes
as compared to the reference values, especially in patients with LV hypertrophy (30).

6. Conclusions

Utilizing CCTA for assessment of LV mass and wall thickness whilst using a machine
learning model for LV segmentation shows good agreement with cardiac MRI.
Consequently, CCTA may offera reliable alternative forindividuals with contraindications
to cardiac MRI in the context of LV mass and wall thickness assessment. Notably, CCTA
offers advantages in terms of greater accessibility, cost-effectiveness, and faster
imaging acquisition compared to MRI (12,13), albeit with the caveat of increased radiation
exposure (31). Despite being conducted ata single centerand without clinical endpoints,
our findings offer important preliminary evidence that warrants further investigation
andvalidation in larger, multicenter studies with clinical outcomes.
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Summary

Chapter1includes the general introduction and thesis outline. CCTAin combination with
CTPallows forquantitative, qualitative and functional assessment of CAD. Furthermore,
quantification of myocardial ischemia on CTP and using a Voronoi algorithm for
myocardial segmentation allows for quantitative correlation of myocardial ischemia
to the corresponding coronary stenosis which is vital for revascularization. Following
the widespread use of CCTA use of serial CCTA has emerged in recent years allowing for
the assessment of changes in plaque burden and plaque morphology. Technological
advancements have enabled the use of automatic alignment in the comparison of
baseline and follow-up scans whilst also allowing for quantitative assessment of plaque
changes. Specificadvancements in CCTA image quality have enabled CCTA to be used
for LV dimension assessment, a task still mainly performed by cardiac MRI. Chapter
2 consists of a review article exploring the use of serial CCTA for predicting plaque
progressionand MACE. The following topics are described. Quantitative baseline plaque
features as well as quantitative plaque changes seem to be more predictive of MACE
and/or plaque progression as compared to qualitative plaque features. Furthermore,
higher epicardial fat volume (EFV) at baseline was associated with the progression or
development of coronary artery plaque. Serial CCTA has also been proven useful in the
assessmentof statin therapy efficacy on plaque progression asit has been revealed that
statins slowed the overall progression of coronary atherosclerosis volume and induced
anincrease in plaque calcification and reduction of high risk plaque features. Certain
challenges remain with regard to the clinical use of serial CCTA. For instance, different
scanners may be used at baseline and follow-up scans leading to a variability in plaque
volume assessment. This highlights the importance of using standardized acquisition
protocols for both baseline and follow-up CT scans. Furthermore, no expert consensus
is available on the ideal inter-scan interval between baseline and follow-up CT scans
but based on recent studies this interval could potentially be set at 1-2 years. Chapter
3 describes the development of patient specific thresholds for determining plaque
progression and/or regression on serial CCTA. Delineation of coronary vessel and lumen
contoursis necessary for plaque quantification whichis vital for CAD assessmenton both
CCTAandserial CCTA. This delineation process is dependenton scan quality which can be
quantified using the contrast to noise ratio (CNR). Consequently, thresholds are necessary
todifferentiateactual changesin plaque thickness from changes caused by inaccuracies
in vessel and lumen wall delineation. A cohort of 50 patients with available CCTA was
used in which two different phases from each scan were used for the delineation of
300 coronary vessels and CNR calculation for each vessel. The average CNR value was
13.4+3.6. The average positive and negative differences in measured plaque thickness
were 0.7+0.3and — 0.9+ 0.6 mm, respectively. The inter-observer correlation for CNR
values was excellent, with a correlation coefficient of 0.872 (p<0.001). Found plaque
differences among these two phase scan sets may be attributed to inaccuracies in
plaque delineation as plaque differences between two reconstructed phases from the
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same scan from the same patient should always be zero. Subsequently, largest positive
and negative plaque differences were plotted against the vessel-specific CNR. Plots
revealed asmalltrendinwhich larger plaque differences corresponded with alower CNR.
By using linear regression analysis vessel specific and patient specific thresholds could
be obtained based on the vessel-specific CNR. Chapter 4 demonstrates the possibility
of full quantification of myocardial perfusion defects as assessed by CTP. Nowadays
assessment of CTP is done semi quantitatively by visual analysis. Full quantification of
myocardial perfusion defectsand subtended myocardial mass seems feasible asitallows
foridentifyingthe distribution of myocardial ischemia over the coronary artery lesion(s).
Thirty-three patients with a combined CCTA and CTP protocol with good or excellent
imaging quality on CTP were analyzed using the Voronoi algorithm. This algorithm
allows fordividing tissue in differentsegments according towhich blood vessel is closest
to the segment. A total of 64 relevant coronary artery lesions were assessed. Average
values for total subtended mass, subtended mass per lesion, perfusion defect mass
and perfusion defect mass per lesion were 69, 36, 7 and 3 grams respectively. In 19/33
patients (58%) the total perfusion defect mass could be distributed over the relevant
coronary artery lesion(s). Chapter 5 explores the correlation between the quantified
myocardial area at risk and quantified areas of myocardial ischemia. Forty-two patients
with acombined CCTAand CTP protocol and atleast one stenosis of > 50% on CCTA were
selected for analysis. The myocardial area at risk was calculated using a Voronoi-based
segmentation algorithm on CCTAand was defined as the sum of all territories related toa
>50% stenosis as a percentage of the total LV mass. The ischemic burden was calculated
as the quantified area of myocardial ischemia as a percentage of the total LV mass. LV
contours were automatically placed using a machine learning algorithm. A total of 77
coronary lesions with a luminal stenosis of >50% were assessed. Analysis was done
separately for stenosis of >50% and >70%. Average myocardial area at risk for stenosis
>50% and >70% were 59% and 37%, respectively. Average ischemic burden for stenosis
>50% and >70% were 23% and 24%, respectively. There was a moderate correlation
of the ischemic burden versus myocardial area at risk for stenosis of >50% (r = 0.564;
p<0.01). Agood correlation was found for the ischemic burden versus the area at risk for
stenosis of >70% (r=0.708; p<0.01). Chapter 6 assesses the use of CCTA for LV mass and
wall thickness assessmentas compared to the gold standard of cardiac MRI. Fifty-seven
patients with available CCTA and MRI with an interscan interval of 6 months maximum
were analyzed. Average LV mass and wall thickness for CCTA and cardiac MRI were 127
grams,128 grams,7mmand 8 mm, respectively. Bland—Altman plots demonstrated mean
differencesand corresponding 95% limits of agreement of -1.26 (25.06; —27.58) and —0.57
(1.78;-2.92), for LV mass and average LV wall thickness, respectively. Mean differences and
corresponding 95% limits of agreement for wall thickness per region were -0.75 (1.34;
-2.83), —0.58 (2.14; -3.30), and —0.29 (3.21; —3.79) for the basal, mid, and apical regions,
respectively. Ultimately, use of CCTA for LV dimension assessment is feasible and shows
good agreement with cardiac MRI.
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General discussion

This thesis exploresthe evolving role of CCTA in cardiovascularimaging. Hereby focusing
on the utilization of serial CCTA on plaque progression and/or regression, quantifying
myocardial ischemia on CTP and subsequently correlating this to the myocardial area at
riskand lastly using CCTA as an imaging tool for LV morphology evaluation.

Across five original studies, the results support the increasing clinical value of CCTAas a
multipurpose imaging tool for both anatomical and functional assessment, especially
when aided by advanced computational methods.

A proposed method for the objective assessment of plaque dynamics using patient-
specificthresholds on CCTA allows forthe directvisualization and quantification of plaque
thickness differences, and shows good visual agreement with the plaque localization.
Absence of a gold standard may be regarded as a severe limitation however Cao et al
demonstrated excellent correspondence using artificially created plaque changes (1).

Adequate detection of plaque changes is highly important as multiple studies have
demonstrated that especially quantitative plaque features (contrary to qualitative
features) are predictive of plaque progressionand MACE (2-5). Furthermore, the capability
of subclinical atherosclerosis progression and/or regression detection may be especially
beneficial for timely treatmentin order to prevent atherosclerosis progression (6).

In two additional studies the utility of CCTA was expanded to the functional domain in
terms of ischemia detection using CTP. Primarily it was demonstrated thatischemia may
be quantified and subsequently correlated with the subtended mass as is determined
by the coronary stenosis. These studies hereby confirmed that CCTA combined with
adenosine stress protocols such as CTP can provide insight into myocardial ischemia
and its relation to relevant CAD localization. This reinforces the emerging notion that
CCTA aided by a adenosine stress protocol could perhaps replace or complement other
myocardial perfusion techniques such as PET or SPECT in specific patient cohorts (7).

Lastly, an evaluation was made using CCTA for quantifying left ventricular mass and
wall thickness and compared with the gold standard of cardiac MRI using Al-driven
segmentation showing excellent agreement. An alternative to MRI is especially
importantas patient may have insurmountable contraindications such as cardiacdevices
or claustrophobia (8). This furthersupports theidea of CCTAas asingle modality capable
of assessing coronary arteries, myocardial perfusion - by means of adding an adenosine
stress protocol - and cardiac morphology.
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What strengthens this thesis is the focus on automation -for example by leveraging Al
algorithms- and consistent use of advanced image analysis techniques such as applying
a Voronoi algorithm for myocardial segmentation.

However, there are also limitations. All studies were retrospective in nature and based
om relatively small single-center cohorts, limiting generalizability. Although the review
article on the utilization of serial CCTA for the assessment of plaque progression and/
or regression included clinical endpoints none of the other studies include this feature.
This prevents definitive conclusions about the prognostic implications of the derived
metrics. However we do feel this is inherent to research focusing on the development
of new technological methods for (aided) image analysis as is the case in this thesis.
Furthermore, while Al tools improve efficiency, they can lack transparency, raising
questions about model robustness across diverse datasets (9).

Conclusion and future perspectives

CCTA has become a widely used imaging modality for the detection of coronary artery
stenosis with a high degree of diagnostic accuracy (10). As such, serial CCTA has become
available in the assessment of plaque progression and or regression. Furthermore, it
allows forstudying the relationship of both quantitative and qualitative plaque features
with regard tothe prediction of plaque progressionand MACE over time (11,12). Following,
theresultsofareview paperincludedin chapter2 of this thesis is has been shown that not
primarily qualitative plaque features but quantitative plaque features have the biggest
impact on plaque progression and MACE. This underlies the potential importance for
serial CCTA which is yet to be introduced in regular risk stratification of patients. With
regard to further implementation of serial CCTA chapter 3 of this thesis describes the
use of automatic co-registration of baseline and follow-up scans as well as development
of patient specific cut-off values for determining plaque progression or regression for
optimal usage of serial CCTA (1).

Addition of CTP to CCTA is beneficial as it allows for functional assessment of coronary
artery stenosis which is crucial in the decision to revascularize patients (13). Nowadays,
assessment of CTP is still done semi-quantitatively by visual analysis. In chapter 4 and
5 of this thesis it has been demonstrated that fully quantifying perfusion defects is
possible and allows for quantitative correlation of hemodynamically significant lesions
to areas of myocardial hypoperfusion. Furthermore, this allows for correlation of the
“subtended mass”—the myocardial mass distal to a stenosis—with the area of myocardial
hypoperfusion, demonstrating a good relationship with increasing stenosis degree.

The use of CCTA has been primarily focussed on coronary artery stenosis assessment
yet with regard to its increasing spatial resolution other potential uses arise such as LV
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dimension assessment (14). To this day cardiac MRI remains the gold standard when it
comesto LV dimension assessment (15). Assessment of LV dimensions is crucial as both LV
hypertrophy and LV wall thickness are independent risk factors of cardiac death (16). This
thesis hasdemonstrated that CCTA has proven to be areliable alternative for LV massand
LVwall thickness assessmentas compared to MRI. This process may be further optimized
by use of machine learning for LV contour placement on both CCTA and MRl allowing for
substantial time gain asis pointed out before in several other studies (17,18).

With the coming age of quantum computing and artificial intelligence itis interesting to
see how these processes may be automated furtherin the (near) future (19).

Recently, use of photon counting CT has emerged and is capable of very high resolution
imaging due to its increased spatial and temporal resolution which is essential for the
assessment of small structures such as coronary plaques (20). Phantom studies have
also demonstrated the feasibility of photon counting CT for the accurate quantification
of iodine concentrations across various levels and body sizes, this is especially vital for
the potential use of photon counting CT in the assessment of myocardial ischemia
(21). Current assessment of iodine maps using standard multidetector CT scanners is
often hindered due to beam hardening and other artefacts. As such photon counting
CT may prove especially useful by reducing these artefacts along its increased spatial
and temporal resolution (22). Furthermore, the ability to count photon numbers and
energy enables the reconstruction of multienergy spectral images allowing for material
decomposition analysis and thus better characterization of plaques. As such photon
counting CT offers numerous potential advantages as compared to current standard
multidetector CT scanners and is highly likely to be routinely used in CCTA assessment
in the future (23). In this thesis photon counting CT was highlighted due to its direct
relevance to CCTA and CTP foratherosclerosis and ischemia assessmentas well as use of
CCTA for LV morphology analysis, which are central to the studies presented. However,
photon counting CT represents just one of several highly anticipated innovations in
cardiacimaging. For example, fluripiridaz PET/CT is another notable advancement and
hasdemonstrated superiorimage quality, higherdiagnosticaccuracy and lower radiation
exposure as compared to traditional SPECT imaging. As such, fluripiridaz PET/CT is
particularly advantageous in myocardial perfusion imaging, hereby offering improved
detection of coronary artery disease (24).

Henceforth, a combination of easy-to-use tools aided by artificial intelligence and
increased image quality will pave the route for new frontiers in cardiovascularimaging.
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Dutch summary

Hoofdstuk 1 bevat de algemene introductie en scriptieopzet. Coronary computed
tomography angiography (CCTA) gecombineerd met computed tomography perfusion
(CTP) maakt het mogelijkom een kwantitatieve, kwalitatieve en functionele beoordeling
uit te voeren van coronary artery disease (CAD). Myocardiale segmentatie door middel
van een Voronoi algoritme in combinatie met de kwantificatie van myocardiale
ischemie bij CTP maakt het mogelijk om deze laatste kwantitatief te correleren aan
de corresponderende locatie van de coronairstenose, hetgeen van essentieel belang
is voor een eventuele revascularisatie. Naar aanleiding van het wijdverspreide gebruik
van CCTAis hetgebruikvanseriéle CCTA de laatstejarenin opkomstvoorde beoordeling
van veranderingen in plaque hoeveelheid en morfologie. Technologische vooruitgang
maakt automatische registratie van baseline en follow-up coronair scans mogelijk
waarbij ook een kwantitatieve analyse van plaque veranderingen kan worden verricht.
Specifieke vooruitgang bij de beeldkwaliteit van CCTA heeft ertoe geleid dat CCTA ook
gebruikt kan worden voor de beoordeling van left ventricle (LV) dimensies, een taak
welke tot op heden vooral wordt uitgevoerd door magnetic resonance imaging (MRI).
Hoofdstuk 2 bevat een review artikel welke ingaat op het gebruik van seriéle CCTA
voor de voorspelling van plaque progressie en major adverse cardiac events (MACE). De
volgende onderwerpen worden beschreven; Kwantitatieve baseline plaque kenmerken
alsmede kwantitatieve plaque veranderingen zijn meer voorspellend voor MACE en/
of plaque progressie vergeleken met kwalitatieve plaque kenmerken. Daarnaast werd
een hoger epicardial fat volume (EFV) bij baseline geassocieerd met de progressie of
ontwikkeling van coronair plaque. Seriéle CCTA is ook bewezen effectief gebleken bij
de beoordeling van de effectiviteit van statine therapie op plaque progressie. Hierbij
is het bewezen dat statines de algehele progressie van het atherosclerose volume
vertraagde en een toename induceerde van gecalcificeerde plaque met een afname
van high risk plaque features. Toch kent seriéle CCTA nog uitdagingen waaronder het
gebruik van verschillende scanners bij baseline en follow-up scans hetgeen zal leiden
tot een variabiliteit in gemeten plaque volumes. Dit onderstreept het belang van
gestandaardiseerde acquisitie protocollen voor zowel baseline als follow-up CT scans.
Tevensisertotop heden geen expertconsensus beschikbaarwat betreft hetideale inter-
scan interval tussen baseline en follow-up CT scans, alhoewel recente studies hebben
aangetoond dat mogelijk een interval van 1-2 jaar kan worden gebruikt. Hoofdstuk 3
beschrijfthet gebruik van patiéntspecifieke afkapwaarden voor het bepalenvan plaque
progressie en/of regressie op seriéle CCTA. Contouringvan de coronaire vaatwand en het
lumen is nodig voor plaque kwantificatie, hetgeen essentieel is voor de beoordeling van
CAD bij zowel CCTA als seriéle CCTA. Accuraatheid van de contour plaatsing is afhankelijk
van de scankwaliteit welke gekwantificeerd kan worden met behulp van de contrast-to-
noise ratio (CNR). Zodoende zijn er afkapwaarden nodig om te kunnen differentiéren
tussen reéle veranderingen in plaque dikte en veranderingen veroorzaakt door
inacuraatheid van de contouren. Een cohort van vijftig patiénten welke CCTA hebben
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ondergaan en elk beschikt over 2 scanfasen werd gebruikt voor contourplaatsing vanin
totaal 300 coronairen, hierbijwerd tevens voorelk vat de CNR berekend. De gemiddelde
CNRwas13.4+3.6. De gemiddelde positieve en negatieve verschillenin gemeten plaque
dikte waren 0.7 + 0.3 en-0.9 + 0.6mm respectievelijk. De inter-observer correlatie voor
de CNR waarden was uitstekend met een correlatiecoéfficiént van 0.872 (p<0.001).
Gevonden plaque verschillen tussen deze twee scan fasen kunnen worden veroorzaakt
doorinacuraatheden in de contour plaatsing, aangezien plaque verschillen tussen twee
scanfasenvan dezelfde patient op dezelfde tijd altijd nul moeten zijn. Vervolgens werden
de grootste positieve en negatieve plaque verschillen uitgezet tegen de vaat specifieke
CNR. De gecreéerde grafiekentoonde een lichte trend waarbij grotere plaque verschillen
overeen kwamen meteen lagere CNR. Een lineaire regressie analyse werd toegepast op
deze grafieken zodatvaat specifieke en patiént specifieke afkapwaarden kunnen worden
verkregen, gebaseerd op de vaat specifieke CNR. Hoofdstuk 4 toont de mogelijkheid
voor volledige kwantificatie van myocardiale perfusiedefecten zoals vastgesteld met
CTP. Tegenwoordig wordt CTP nog steeds beoordeeld op een semi-kwantitatieve
manier met behulp van visuele analyse. Echter, volledige kwantificatie van myocardiale
perfusie defecten en bijhorende myocardiale massa distaal van de stenose lijkt wenselijk
aangezien het dan mogelijk is om de distributie van myocardiale ischemie te koppelen
aan de coronairstenose(n). Drieéndertig patiénten meteen gecombineerd CCTAen CTP
protocol met beelden van goede of uitstekende scankwaliteit werden geanalyseerd
middels het Voronoi algoritme. Ditalgoritme maakt het mogelijk om weefsel te verdelen
in segmenten op basis van welk bloedvat het dichtst in de buurt ligt. In totaal werden
64 coronair stenosen geanalyseerd. Gemiddelde waarden voor de totale massa distaal
van de coronair stenose(n), massa per stenose, perfusiedefect massa en perfusiedefect
massa perstenose waren 69, 36,7en respectievelijk3 gram. Bij19/33 patiénten (58%) kon
de totale perfusiedefect massa worden verdeeld over de relevante coronair stenose(n).
Hoofdstuk 5 onderzoekt de relatie tussen het gekwantificeerde myocardiale gebied
“at risk” door een stenose en het gekwantificeerde gebied van myocardiale ischemie.
Tweeénveertig patiénten met een gecombineerd CCTA en CTP protocol en op zijn minst
een stenose van > 50% op CCTA werden geselecteerd voor analyse. Het myocardiale
gebied “at risk” werd berekend met behulp van een Voronoi segmentatie algoritme en
werd gedefinieerd als de somvan alle myocardiale gebieden gerelateerd aan een >50%
stenose als percentage van de totale LV massa. De ischemische “burden” werd berekend
als het gekwantificeerde gebied van myocardiale ischemie als percentage van de totale
LV massa. LV contouren werden automatisch geplaatst met behulp van een machine
learning algoritme. In totaal werden 77 coronaire lesies beoordeeld met een luminale
stenosevan>50%. Erwerd een separate analyse uitgevoerd voorstenosen van>50% en
>70%. Het gemiddelde myocardiale gebied “at risk” voor stenosen van > 50% en >70%
was respectievelijk 59% en 37%. Gemiddelde ischemische “burden” voor stenosen van
>50% en >70% was respectievelijk 23% en 24%. Er was een matige correlatie tussen
de ischemische “burden” en het myocardiale gebied “at risk” bij een stenose van > 50%
(r=0.564; p<0.01). Een goede correlatie werd gevonden voor stenosen van >70% (r =
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0.708; p<0.01). Hoofdstuk 6 beschrijfthet gebruikvan CCTAvoorLV massaenwanddikte
bepaling, vergeleken met de gouden standaard, MRI. Zevenenvijftig patiénten met
zowel een beschikbare CCTA en MRI meteeninterscaninterval van maximaal 6 maanden
werden geanalyseerd. Gemiddelde LV massa en wanddikte voor CCTA en cardiale MRI
waren respectievelijk 127 gram, 128 gram, 7mm en 8mm. Bland-Altman grafieken
toonde gemiddelde verschillen en een 95% betrouwbaarheidsinterval voor de mate
van overeenstemming van -1.26 (25.06; —27.58) en —0.57 (1.78; —2.92), respectievelijk voor
LV massa en gemiddelde LV wanddikte. Gemiddelde verschillen en corresponderende
95% betrouwbaarheidsintervallen voorwanddikte per regio waren respectievelijk—0.75
(1.34;-2.83), —0.58 (2.14; —3.30), en —0.29 (3.21; =3.79) voor basale, middelste en apicale
regio’s. Gebruik van CCTAvoor de beoordelingvan LV dimensies is mogelijk en toonteen
goede overeenstemming met cardiale MRI.
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