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1 General introduction
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Chapter 1

Coronary computed tomography angiography (CCTA) is a widely used non-invasive 
imaging modality in the diagnosis of coronary artery disease (CAD), allowing for both 
quantitative and qualitative plaque assessment (1). It fulfils a very important role in the 
early diagnosis of CAD which still remains one of the leading causes of mortality and 
loss of disability-adjusted life years worldwide (2). In recent years use of serial CCTA has 
emerged in which baseline and follow-up CCTA scans can be compared thus allowing 
for the assessment of changes in plaque burden and plaque morphology (3, 4). Serial 
CCTA has not only demonstrated its value in the assessment of plaque progression 
or regression but also in the assessment of changes in epicardial adipose tissue (EAT) 
in which relatively larger volumes of EAT are associated with rapid and early plaque 
progression (5). However, as mentioned earlier CCTA is primarily capable of quantitative 
and qualitative plaque assessment. Yet, the assessment of ischemic myocardium using 
CT myocardial perfusion (CTP) could allow for functional assessment of CAD, the latter 
is of importance for prognosis assessment and in the decision to revascularize patients 
(6, 7).

CCTA and MRI both of fer advantages in the assessment of lef t ventricular (LV) mass and 
wall thickness but MRI remains the gold standard (8, 9). However, recent technological 
advancements in CCTA such as improved spatial resolution have enabled its application 
beyond coronary assessment allowing for the assessment of LV mass and wall 
thickness (8). This is particularly important as this may of fer a resolution for patient 
with contraindications to MRI, such as those with cardiac implanted devices or severe 
claustrophobia (10).

The introduction of machine learning algorithms may further refine these imaging 
techniques for the assessment of LV dimensions.

This thesis focuses on the development and validation of novel CT-based methods for 
quantifying ischemia, quantifying plaque changes on serial CCTA and quantification 
of LV mass and wall thickness as opposed to the gold standard MRI. By expanding 
the methodological capabilities of CCTA, this research aims to support the broader 
application of this imaging modality in comprehensive cardiac assessment.

Role of serial coronary artery CT in the evaluation of coronary 
artery disease

Serial CCTA allows for a non-invasive assessment of changes in plaque burden (Figure 
1) and plaque morphology as well as changes in EAT (3-5). EAT is associated with CAD 
development as it has been shown to share the same embryologic origin as intra-
abdominal fat which in turn is associated with CAD development (11). Multiple studies 
using serial CCTA have shown that baseline quantitative plaque characteristics, along 
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with measurable changes in plaque volume, are more predictive of plaque progression 
and major adverse cardiac events (MACE) over time than qualitative plaque features (4, 
12-14). This underlies the importance of accurate identification and risk stratification of 
patients at risk for future atherosclerosis progression and MACE.

Several studies have shown that serial CCTA is a viable method for evaluating plaque 
changes (4, 13). Nevertheless, the process of co-registering coronary vessels and analyzing 
plaque changes between baseline and follow-up scans continues to rely on manual 
techniques using anatomical landmarks (15-17). Ideally an automatic co-registration of 
coronary vessels would be used as has recently been developed by Cao et al(18). Yet, cut-
of f values for plaque progression and or regression remain to be identified. A technique 
for objectively evaluating plaque dynamics on CCTA involves the use of patient-specific 
thresholds as is demonstrated in this thesis. These thresholds are derived from calibration 
graphs generated using two-phase scan sets, where dif ferences in negative and positive 
plaque thickness are plotted against the scan quality, measured as the contrast to noise 
ratio (CNR). This allows for the assessment of plaque progression using patient specific 
and vessel specific thresholds based on scan quality.

Figure 1. Example adapted from Weber et al (3). of a patient who has undergone serial CCTA in which 
the baseline scan is shown in panel A and the follow-up scan in panel B. A total of three newly formed 
calcified plaques are seen in the follow-up scan as marked by the blue arrows.

1
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Myocardial cardiac CT perfusion and quantification

As mentioned before, CCTA is a valuable non-invasive imaging modality in CAD 
assessment. However, its main role involves assessment of stenosis severity. Additional 
CTP allows for the evaluation of ischemic myocardium which is important for prognosis 
and plays a key role in determining whether patients should undergo revascularization. 
This decision is influenced by the degree of hypoperfusion (ischemia) in the myocardium 
relative to the mass of myocardial tissue distal to the coronary stenosis (1, 6, 7). However, 
nowadays CTP is still assessed routinely by visual analysis in a semi quantitative manner. 
Full quantification of myocardial ischemia is discussed in this thesis using the Voronoi 
algorithm.

The Voronoi algorithm is a mathematical method used to partition a two-dimensional 
plane or three-dimensional space into regions based on the shortest distance to 
predefined points. Applying this algorithm to myocardial tissue allows for segmentation 
of the myocardium according to the supplied territory of each coronary vessel (19). 
Subsequently, areas of ischemia on CTP can be correlated to the corresponding area 
perfused by each of the coronary arteries. In the case of a severe stenosis this also allows 
for the correlation of the “subtended mass” to the subsequent area of ischemia. In which 
the subtended mass is defined as the mass of myocardial tissue supplied by a coronary 
artery distally from the stenosis (Figure 2).

Figure 2. Example of a patient with a stenosis in the proximal lef t anterior descending artery (LAD) as 
marked by the red arrow in panel A and B. The red area in panel B represents the “subtended mass” 
calculated using the Voronoi algorithm.
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MRI is still considered the gold standard in the assessment of LV mass and wall thickness 
(9). However, the high diagnostic accuracy of CCTA for the detection of CAD have made 
it a widely used imaging modality over the past few years (20). The role of CCTA as a tool 
for LV mass and LV wall thickness is less explored but would be especially beneficial for 
patients with contraindications for MRI (8, 10). LV dimension assessment is especially 
important as both LV hypertrophy and increased LV wall thickness are independent risk 
factors for cardiovascular morbidity and mortality, regardless of the underlying cause 
(21). Nowadays, advancements in artificial intelligence have opened the door for its use 
in LV contour placement, a crucial step of LV dimension quantification. Using AI driven 
algorithms for LV contour placement on both CCTA and MRI – as opposed to manual 
contour placement - has been regarded as a time saver (22, 23). Its applicability in the 
comparison of LV mass and LV wall thickness on CCTA versus MRI is explored in this thesis.

Thesis outline

Part 1 of the thesis describes the role of serial CCTA scanning in the evaluation of coronary 
artery disease and demonstrates a novel method for visualization of plaque dif ferences 
applied to serial CCTA. Chapter 2 presents a comprehensive review of literature on 
how serial CCTA may be used for the assessment of both quantitative and qualitative 
plaque features as predictors of plaque progression and MACE. Chapter 3 describes a 
novel method for the quantification of local plaque thickness dif ferences on CCTA using 
scan-quality-based-vessel-specific thresholds for the assessment of coronary plaque 
progression and or regression. Part 2 focusses on methods that allow for quantification of 
myocardial ischemia using CTP as well as quantification of LV dimensions using artificial 
intelligence (AI) for contour placement. Chapter 4 describes the relationship between 
quantified myocardial ischemia as assessed by CTP and the myocardial area at risk, 
defined as the myocardial area distal from a 50% or 70% coronary stenosis. Chapter 5 
outlines the correlation of the quantified ischemia on CTP and the myocardial area at risk. 
Chapter 6 analyses the assessment of LV mass and wall thickness on CT by comparing LV 
mass and wall thickness measured on CT versus the gold standard of MRI using machine 
learning algorithms for LV contour placement.

1
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Abstract

Objectives: To present an overview of studies using serial coronary computed tomography 
angiography (CCTA) as a tool for finding both quantitative (changes) and qualitative 
plaque characteristics as well as epicardial adipose tissue (EAT) volume changes as 
predictors of plaque progression and/or major adverse cardiac events (MACE) and 
outline the challenges and advantages of using a serial non-invasive imaging approach 
for assessing cardiovascular prognosis.

Methods: A literature search was performed in PubMed, Embase, Web of Science, 
Cochrane Library and Emcare. All observational cohort studies were assessed for quality 
using the Newcastle–Ottawa Scale (NOS). The NOS score was then converted into Agency 
for Healthcare Research and Quality (AHRQ ) standards: good, fair and poor.

Results: A total of 36 articles were analyzed for this review, 3 of which were meta-analyses 
and one was a technical paper. Quantitative baseline plaque features seem to be more 
predictive of MACE and/or plaque progression as compared to qualitative plaque features.

Conclusions: A critical review of the literature focusing on studies utilizing serial CCTA 
revealed that mainly quantitative baseline plaque features and quantitative plaque 
changes are predictive of MACE and/or plaque progression contrary to qualitative 
plaque features. Significant questions regarding the clinical implications of these specific 
quantitative and qualitative plaque features as well as the challenges of using serial CCTA 
have yet to be resolved in studies using this imaging technique.

Abbreviations
%DS:	 Percentage diameter stenosis
ACS:	 Acute coronary syndrome
CAD:	 Coronary artery disease
CCTA:	 Coronary computed tomography 

angiography
CI:	 Confidence interval
CX:	 Circumflex artery
EAT:	 Epicardial adipose tissue
EFV:	 Epicardial fat volume
HR:	 Hazard ratio
HRP:	 High-risk plaque features
HU:	 Hounsfield units
ICA:	 Invasive coronary angiography

IQR:	 Interquartile range
IVOCT:	Intravascular Optical Coherence 

Tomography
IVUS:	 Intravascular Ultrasound
LAD:	 Lef t anterior descending artery
LAPV:	 Low-attenuation plaque volume
LAP:	 Low-attenuation plaque
LM:	 Lef t main
MACE:	Major adverse cardiac events
OR:	 Odds ratio
PAV:	 Percentage atheroma volume
PR:	 Positive remodeling
TPV:	 Total plaque volume
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CCTA for predicting plaque progression and MACE

1. Introduction.

Coronary artery disease (CAD) is still one of the leading causes of death and loss of 
disability-adjusted life years worldwide (1). The clinical course of CAD mainly consists 
of progression of atherosclerosis punctuated by merely unpredictable clinical events 
despite treatment (2). Plaque phenotypes are clinically relevant as vulnerable plaque is 
prone to rupture and may lead to major adverse cardiac events (MACE) (3). Also, it has 
been demonstrated that epicardial adipose tissue (EAT) shares the same embryologic 
origin as intra-abdominal fat, which is associated with CAD(4). This underlies the 
importance of accurate identification and risk stratification of patients at risk for future 
atherosclerosis progression and MACE. Besides invasive techniques such as intravascular 
ultrasound (IVUS), intravascular optical coherence tomography (IVOCT) and invasive 
coronary angiography (ICA), coronary computed tomography angiography (CCTA) is 
a non-invasive imaging approach that allows for both qualitative and quantitative 
assessment of coronary plaque (5). A previous meta-analysis has shown high correlations 
between CCTA features and measures of coronary plaque as compared to IVUS (6). As 
such, CCTA has rapidly emerged as a non-invasive tool for plaque assessment (7). More 
recent studies have demonstrated the ability of serial CCTA to assess changes in plaque 
burden and plaque morphology as well as changes in EAT volume (8-11). Use of serial 
CCTA may be beneficial for both symptomatic and asymptomatic patients as recent 
expert recommendations state that CCTA may be performed as the first-line test for 
evaluating patients with no known CAD who present with stable typical or atypical chest 
pain, or other symptoms which are thought to represent a possible anginal equivalent. 
Subsequently, CCTA may be performed in asymptomatic high-risk individuals, especially 
in those who have a higher likelihood of having a large amount of noncalcified plaque (12).

This review presents an overview of studies using serial CCTA as a tool for finding both 
quantitative (changes) and qualitative plaque characteristics as well as EAT volume 
changes as predictors of plaque progression and/or MACE and outlines the challenges and 
advantages of using a serial non-invasive imaging approach for assessing cardiovascular 
prognosis. Details regarding the search strategies, quality assessment and selection 
criteria can be found in the supplementary material.

2. Image analysis of serial CCTA.

Recent development in plaque quantification sof tware allows for semiautomated 
methods to quantify plaque volume on a single CCTA, drastically increasing the speed 
of assessment (13). Plaque volumes can be automatically sub-classified by composition 
using predefined intensity cutof f values in Hounsfield units (HU). These predefined 
intensity cutof f values in HU currently available have been obtained by comparing CCTA 
with IVUS or by histological examination. However, cutof f values vary (14). Nowadays, 

2
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an algorithm which uses adaptive attenuation thresholds based on the principle that 
plaque attenuation values are influenced by luminal contrast densities may be used. 
These contrast densities in turn are af fected by a variety of factors including cardiac 
output and patient body size. Furthermore, luminal contrast densities decrease along 
the length of vessels and are lower in vessel segments with a severe stenosis. Adaptive 
HU cut-of f values may overcome these problems by depending on regional attenuation 
contrast in the lumen (14, 15). In a recent study by de Knegt et al., fixed HU cutof f values 
were compared to adaptive HU cutof f values. Fixed HU thresholds underestimated 
fibrous and fibrofatty plaque volumes and overestimated necrotic core and dense 
plaque volumes compared to adaptive HU thresholds. Also, volumes of dense calcium 
plaque dif fered with increasing tertiles of luminal contrast density when using fixed HU 
thresholds instead of using adaptive HU thresholds. This highlights the importance of 
using an adaptive HU threshold algorithm when evaluating plaque composition (16). An 
imaging example demonstrating the superiority of adaptive HU thresholds over fixed 
HU values is depicted in Fig. 1. When assessing serial CCTA, analysis of the same coronary 
segments in baseline and follow-up scans is crucial for serial plaque comparison. Several 
studies utilizing serial CCTA facilitate co-registration of coronary segments and lesions by 
using anatomical landmarks like branching vessels and distance from the ostium which 
is done manually by visual analysis (17-19). Figure 2 depicts an example of serial CCTA.

Fig 1. Example of quantitative analysis of the lef t anterior descending coronary artery (LAD) using 
fixed and adaptive HU thresholds. Panel A represents the straightened multiplanar reconstruction 
where S and E are the start and the end of the segment respectively; P and D are the proximal and 
distal borders of the lesion respectively. O represents the point of maximal obstruction. Consequently, 
panel B represent the transverse view of the vessel at this point. The color overlay in both the graph 
(Panel C) and the transverse view represents the dif ferent plaque tissue types. It must be noted that 
from visual assessment of the color overlay it can be seen that the fixed HU method characterized this 
plaque as having more dense calcium and less fibrofatty tissue compared to the adaptive method (16).
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Fig 2. Example of a patient with an interscan period of six years between the baseline (shown on the 
lef t side, panel A) and follow-up scan (shown on the rights side, panel B). The investigated vessel is the 
lef t main (LM) and lef t anterior descending artery (LAD) demonstrating a total of three newly formed 
calcified plaques; one in the LM and two in the proximal segment of the LAD. In this case branching of 
the circumflex artery (CX) can be used as an anatomical landmark for co-registration by visual analysis. 
The orange line marks the outer vessel wall and the yellow line the lumen of the coronary artery (8).

3. Quantitative and qualitative plaque features.

Assessment of CCTA images can be performed on a quantitative or qualitative basis. 
Quantitative analysis focusses on volumetric plaque measurements such as total plaque 
volume (TPV), calcified or noncalcified plaque volume, low-attenuation plaque volume 
(LAPV) and percentage atheroma volume (PAV). The latter is calculated as a percentage 
by dividing the plaque volume by the vessel volume (20). Quantitative analysis on CCTA is 
an adequate predictor of cardiac death and the occurrence of acute coronary syndrome 
(ACS) (21). Qualitative analysis focusses on plaque composition based on the plaque 
density (attenuation). Hence, CCTA can identify dif ferent plaque components. These 
qualitative features include plaque composition (noncalcified or calcified) and high-risk 
plaque features (HRP) (22). HRP features identified by CCTA include positive remodelling 
(PR), low-attenuation plaque (LAP), napkin-ring sign and spotty calcification (21, 23-28). 
PR describes the increase in vessel diameter at the lesion site compared to a reference 
segment (24), of ten defined as a remodelling index of ≥ 1.1 (5, 9, 10, 24, 27, 29). LAP is a 

2
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noncalcified plaque with an attenuation of < 30 HU (9, 11, 25, 27, 28). The napkin-ring sign 
is defined as a combination of a low-attenuation core surrounded by a rim-like area of 
higher attenuation (9, 11, 23, 25). Lastly, spotty calcification is an intra-lesion calcific plaque 
< 3 mm in diameter (9, 10, 24, 27-29). A meta-analysis by Nerlekar et al. assessing the 
relationship between HRP features on prognosis has clearly demonstrated that all HRP 
features were strongly associated with MACE, including napkin-ring sign (HR, 5.06; 95% 
CI, 3.23–7.94; P < 0.001), low-attenuation plaque (HR, 2.95; 95% CI, 2.03–4.29; P < 0.001), 
positive remodelling (HR, 2.58; 95% CI, 1.84–3.61; P < 0.001), and spotty calcification (HR, 
2.25; 95% CI, 1.26–4.04; P = 0.006). The presence of ≥2 HRP features had highest risk of 
MACE (HR, 9.17; 95% CI, 4.10–20.50; P < 0.001) (30). Imaging examples of HRP progression 
are depicted in Figs. 3 and 4.

Fig 3. Example of a patient with LAP progression, a HRP feature. Panel A demonstrates a non-calcified 
plaque at baseline CCTA in the proximal LAD with moderate stenosis which is also visualized by baseline 
ICA in panel D. The colour coded image in panel B demonstrates the presence of LAP components 
labelled in blue. Further visualization of plaque components can be done using a histogram depicted in 
panel C. LAP component volume was 114.76 mm3. At 12 month follow-up significant lesion progression 
with severe stenosis is observed (panel F - H). Note the increase of the LAP component volume to 
164.63 mm3 (9).
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Fig 4. Example of a patient with plaque progression in a plaque with and without HRP features. A 
plaque in the right coronary artery (RCA) without HRP features progressed to an obstructive lesion 
at follow-up. Contrary, a plaque with HRP features in the LAD from the same patient remained 
nonobstructive at follow-up (10).

4. CCTA derived plaque features for predicting plaque 
progression.

Several studies have assessed the relationship between CCTA-derived quantitative 
and qualitative plaque features as predictors for plaque progression. (8-10, 29). In the 
past, serial IVUS has demonstrated the prognostic importance of plaque progression by 
showing an association with clinical outcomes (31). Table 1 lists details of studies utilizing 
serial CCTA to assess the relationship between CCTA-derived quantitative and qualitative 
plaque features as predictors for plaque progression and/or MACE.

In a large study by Han et al., predictors of rapid plaque progression were assessed. Rapid 
plaque progression was defined as an increase of baseline PAV of more than 1% per year 
on follow-up CCTA. A machine learning framework was used to assess several qualitative 
and quantitative CCTA-based plaque features. Quantitative features were the most 
important to predict plaque progression followed by qualitative features and last clinical/
laboratory features. Specifically, the PAV at baseline was the most important predictor 
(information gain value: 0.193, regression coef ficient (β): 0.529; p < 0.01). (29). Lee et al. 
assessed the progression from non-obstructive lesions to obstructive lesions compared 
to the presence of high-risk plaque features. Both total PAV and percentage diameter 
stenosis (%DS) at baseline were significant risk factors for the development of obstructive 
lesions (HR, 1.04 [95%CI, 1.02-1.07], and HR, 1.07 [95%CI, 1.04-1.10], respectively; all p < 

2
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0.05). Interestingly, the presence of high-risk plaque features was not a significant risk 
factor (p = 0.433). In lesions without HRP features, baseline total PAV (HR, 1.035 [95%CI, 
1.002-1.067]; p = 0.031) and baseline %DS (HR, 1.081 [95%CI, 1.049-1.115]; p < 0.001) were 
independent predictors for development of obstructive lesions. However, in lesions with 
HRP features, only baseline total PAV independently predicted progression to obstructive 
lesions (HR: 1.102 [95%CI: 1.035-1.174]; p = 0.003) (10). Weber et al. also demonstrated the 
importance of quantitative plaque features as a significant correlation between baseline 
TPV and TPV progression (spearman’s rho = 0.33; p < 0.01). The progression in TPV was 
mainly determined by a progression of calcified plaque volume (7.6 mm3 [interquartile 
ranges 0.2 and 33.6] vs. 16.6 mm3 [interquartile ranges 1.8 and 62.1]; p < 0.01). Also, 
patients with obstructive CAD at follow-up had a significantly higher TPV at baseline 
(384.9 mm3 [interquartile ranges 182.8 and 538.1] vs. 45.1 mm3 [interquartile ranges 10.3 
and 102.9]; p < 0.01) (8). Yu et al. reported predictors for plaque progression assessed at 
serial CCTA in patients with solely non-culprit intermediate stenoses. LAP at baseline was 
an independent predictor of lesion volume progression at follow-up (OR, 16.74 [95%CI, 
5.02-55.84]; p < 0.001) (9). Lee et al. demonstrated that adding HRP features to a per-
lesion predictive model for developing obstructive lesions containing plaque volume 
and clinical risk factors increased the C-statistic from 0.830 [95% CI: 0.828-0.833] to 0.895 
[95% CI: 0.893-0.897]; p = 0.003. Also, the per lesion HRP feature model was significantly 
better than the per-patient HRP feature model (C-statistic: 0.825 [95% CI, 0.823-0.827] vs. 
0.895 [95% CI, 0.893-0.897], p < 0.001) (32).
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4.1. Epicardial adipose tissue.
Numerous studies investigated the relationship between EAT and coronary artery 
plaque progression (4, 11, 33). EAT is a metabolically active organ that shares the same 
embryologic origin as intra-abdominal fat, which is associated with CAD. Under 
pathological circumstances, EAT has been shown to be a rich source of inflammatory 
adipokines. Given that inflammation is a fundamental component of the atherosclerotic 
process, it is postulated that EAT may influence the development and progression of 
coronary artery disease by contributing to the local inflammatory burden within and 
around atherosclerotic plaque (4). Psaltis et al. assessed the relationship between 
epicardial fat volume (EFV) and coronary artery plaque progression; higher baseline 
EFV was associated with the progression or development of coronary artery plaque (β 
coef ficient 0.014 [95%CI, 0.003–0.026]; p = 0.014). Interestingly, change in EFV over time 
was not (p = 0.860) (4). You et al. also found that baseline indexed epicardial fat volume 
was an independent predictor of rapid increase in lipid-rich plaque volume (OR, 1.029 
[95% CI, 1.005–1.053]; p = 0.016). Nevertheless, annual changes in indexed epicardial 
fat volume were not associated with parallel changes in lipid-rich, fibrous or calcified 
coronary plaque volume (p = 0.286, p = 0.500, p = 0.096; respectively) (33). However, both 
studies contained patients that were overweight at baseline (BMI (kg/m2) ± SD: 29.3 ± 5.8 
for Psaltis et al and 25.1 ± 3.3 for You et al). On the contrary, Nakanishi et al. solely focused 
on non-obese patients and demonstrated that increase of EAT volume (>10 mL) during 
follow-up was associated with an increased prevalence of obstructive plaques (p < 0.001) 
and plaques with high-risk features, such as PR (p < 0.001) and LAP (p = 0.001), in non-
obese patients with CAD (11). Figure 5 depicts an example of EAT analysis.

Fig 5. An example representing the measurement of EAT volume. The yellow arrows in panel A 
represent the pericardium in a cross-sectional slice. Segmentation of the EAT is achieved by tracing 
the pericardium in the axial view represented by the green line (Panel B). Subsequently, the adipose 
tissue can be identified by using threshold attenuation values of 30 to 250 HU which is represented 
by the green area in panel C (11).
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4.2. CCTA derived plaque features for predicting MACE.
High-risk features of plaque such as PR, LAP and spotty calcification are found to be linked 
to plaque rupture and MACE (34). Multiple studies have investigated the relationship 
between CCTA-derived features of plaque and MACE on serial CCTA (9, 11, 34). Yu et al. 
(9) found that patients with MACE showed a statistically significant higher prevalence of 
LAP at baseline compared to patients in the MACE-absent subgroup (40.0% vs. 12.8%; p 
= 0.015). Prevalence of spotty calcification, napkin-ring sign and PR was not statistically 
dif ferent between the MACE and MACE-absent subgroups (13.33% vs. 6.40%, p = 0.291; 
46.67% vs. 28.00%, p = 0.147; 73.33% vs. 60.00%, p = 0.406; respectively). Interestingly, 
also no significant dif ference existed between the two groups with regard to quantitative 
plaque features such as TPV, lesion length and diameter stenosis (44.6 mm3 vs. 46.3 
mm3, p = 0.479; 10.5 mm vs. 13.0 mm, p = 0.166; 55.0% vs. 62.0%, p = 0.077, respectively for 
the MACE and MACE-absent subgroups). Yet, the lesion volume progression subgroup 
showed a higher incidence of MACE compared to the non-lesion progression subgroup 
(56.25% vs. 4.84%; log-rank p < 0.001). Notably, the MACE subgroup was small (15/140) 
(9). Motoyama et al. described that patients with plaque progression had a significantly 
higher incidence of MACE (14.3% vs. 0.3%, log-rank p<0.0001). Also, when classified in 
groups according to the presence of HRP features, the patients with both HRP at baseline 
CCTA and plaque progression at follow-up showed the highest frequency of MACE (27%, 
log-rank p < 0.0001). Conversely, in patients with HRP lesions at baseline which did not 
progress during follow-up, MACE did not occur. Interestingly, non-HRP lesions also led 
to MACE and the ones that progressed over time on a volumetric basis and evolved from 
non-HRP to HRP were more likely to result in MACE (3 out of a total of 9 events (15.4%)) 
(34). Rosendael et al. demonstrated that at 10 years, patients with an increase of >1.0% 
PAV/year had a higher risk of MACE compared to patients with an increase of <1.0% PAV/
year (27.2% vs. 9.5%; log-rank p < 0.001). Patients were further stratified by the median 
baseline PAV. Patients with an increase <1.0% PAV/year and low baseline PAV experienced 
the lowest rates of MACE at 10 years, whilst those above the median baseline PAV and 
>1.0% increase in PAV/year experienced the most events (6.5% vs. 30.2%, p < 0.001) (35). 
Gu et al. identified patients with non-obstructive CAD who underwent a second CCTA. 
Those who developed any plaques coexisting in the lef t anterior descending, the lef t 
circumflex, and the right coronary artery (three-vessel plaque progression) between the 
two scans had an increased chance of MACE (HR, 2.37, p = 0.026). Furthermore, patients 
having a nonobstructive proximal lesion in the lef t anterior descending, lef t circumflex, 
or the right coronary artery, which developed in a ≥ 70% stenosis (severe proximal plaque 
progression) between the two scans, also had an increased chance of MACE (HR, 3.65, p 
= 0.003) (36)
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5. Therapeutic measures to decrease plaque progression.

Several studies utilized serial CCTA to assess the ef fect of dif ferent medical therapies 
-mostly statins- on plaque progression (17, 19, 37, 38). Zeb et al. demonstrated that 
statin use causes a significant decrease of both LAP and noncalcified plaque volumes 
(−12.2 ± 19.2 vs. 5.9 mm3 ± 23.1, p < 0.0001 and −47.7 ± 71.9 vs. 13.8 mm3 ± 76.6, p < 0.001, 
respectively, for statin and non-statin users) and a non-statistically significant increase in 
the amount of calcified plaque volume in statin users compared to non-statin users (37). 
Smit et al. also demonstrated that statin use was associated with a significant reduction 
of noncalcified plaque progression (1.0±16.0 vs. 6.4±13.9 mm3; P=0.049) compared to 
non-statin users. Statin users in turn showed an increase in calcified plaque progression 
(9.0±12.2 vs. 3.3±8.6 mm3; P = 0.001) (19). A study by Lee et al. utilizing the large PARADIGM 
registry also demonstrated that over time statin therapy increased plaque calcification 
and reduced HRP features as lesions in statin-taking patients experienced higher 
annualized progression of calcified PAV (1.27 ± 1.54 mm3 per year vs. 0.98 ± 1.27 mm3 per 
year, respectively; p < 0.001) but slower progression of noncalcified PAV than lesions in 
statin-naive patients (0.49 ± 2.39 mm3 per year vs. 1.06 ± 2.42 mm3 per year, respectively; 
p < 0.001) (17). At baseline CCTA, statin-taking patients exhibited a higher prevalence of 
HRP, PR and spotty calcification (13.7% vs. 10.0%; 56.0% vs. 47.6%; and 10.2% vs. 6.8%, 
respectively; all p < 0.05), with no dif ferences in LAP (8.5% vs. 8.4%, respectively; p = 
0.95). The annualized incidence of HRP, PR, spotty calcification and LAP were lower (0.9% 
per year vs. 1.6% per year; 5.2% per year vs. 7.2% per year; 0.2% per year vs. 0.5% per 
year; and 0.8% per year vs. 1.0% per year, respectively; p < 0.001 for all) for statin- versus 
non-statin-taking patients respectively (17). It must be noted that dif ferences in baseline 
characteristics between the statin- and non-statin-taking groups may have impacted 
results.

Li et al. demonstrated that not solely statin use but also statin dosage plays a key role in 
aiding plaque regression as patients receiving intensive statin therapy demonstrated 
significantly higher annualized regression of LAP volume, TPV and % plaque volume 
compared to patients receiving moderate statin therapy. Interestingly, a higher baseline 
LAP volume was also associated with higher TPV regression (P<0.001). Thus, patients with 
greater baseline LAP volume were more likely to benefit from statin therapy (38). Figure 6 
depicts an imaging example of assessment of therapy ef ficacy on plaque presence using 
serial CCTA.
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Fig 6. CCTA images of lesions at baseline and follow-up among statin-naïve patients and statin-taking 
patients. Statin taking patients expressed slower progression of noncalcified PAV compared to statin-
naïve patients. Noncalcified PAV is the summation of fibrous, fibro-fatty and low attenuation PAV (17).

6. Benefits and challenges of serial CCTA.

A critical challenge in serial CCTA is the wide range of commercially available CT scanners 
and the rapid technological developments. Several studies used dif ferent scanner types 
with dif ferent specifications and performance at baseline and at follow-up (8, 10, 29, 
33, 34). Symons et al. performed a systemic comparison of scanner variability in serial 
CCTA, in which plaque volume was measured with the same or a dif ferent CCTA scanner 
within 30 days. Plaque volume variability was ± 18.4% (coef ficient of variation) when the 
same scanner was used at baseline and follow-up, whilst the plaque volume variability 
was ±29.9% when dif ferent scanners were used (39). This highlights the importance of 
standardized CCTA protocols in future prospective studies.

No professional society guidelines dictate the methods for the routine usage of serial 
CCTA for evaluating progression of CAD. Therefore, it remains unclear which choice of 
endpoint measurement is the most appropriate (40). The usage of dif ferent endpoints 
could impede study comparison. Furthermore, the ideal inter-scan interval remains 
unclear. However, one may conclude that a relatively short inter-scan interval may 
inhibit the detection of newly formed plaques. On the contrary, a relatively long inter-
scan interval may contribute to dif ferent CCTA protocols being used. As is observed from 
numerous studies cited in this review, one may propose that an inter-scan interval of at 
least 1-2 years would seem reasonable.
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Development and implementation of radiation dose reduction tools for coronary CCTA 
have rapidly been expanded as high radiation exposure is known to increase the risk 
of cancer. As noted in the SCCT guidelines on radiation dose and dose-optimization 
strategies in cardiovascular CT, several scanner settings such as tube current and tube 
potential should be kept to a minimum to limit radiation exposure whilst also maintaining 
adequate image quality (41).

Currently, all studies utilizing serial CCTA for plaque progression are using visual analysis 
of anatomical landmarks and vessel branches for alignment between baseline and follow-
up CCTA. Hence, automatic co-registration would be feasible to match corresponding 
points on the coronary tree in the baseline and follow-up scan. This has recently been 
demonstrated by Cao et al. but remains to be tested in a clinical setting (42).

Despite its challenges, serial CCTA has emerged as an important non-invasive imaging 
technique to track the ef fectiveness of medication on coronary plaque progression. In a 
review by Taron et al., the authors showed that serial CCTA could successfully demonstrate 
the ef ficacy of anti-atherosclerotic treatments (40) and Dahal et al. have demonstrated 
the importance of serial CCTA in tracking coronary atheroma progression in studies using 
new pharmacotherapies (43). Furthermore, when combining therapies and cardiovascular 
outcomes, serial CCTA can give an insight in the mechanistic correlations of coronary 
atherogenesis (44). Current benefits and challenges of serial CCTA are reported in Table 2.

Table 2. Benefits and challenges of serial CCTA

Benefits Challenges
Assessment of changes in plaque burden and 
plaque morphology.

Establishing low radiation protocols to prevent 
unnecessary exposure during successive CCTA’s.

Predicting (rapid) plaque progression and/or 
MACE.

Currently no consensus on endpoint 
measurements.

Semiautomated measurements allows 
objective sequential measurements.

Usage of dif ferent CT-scanners at baseline and 
follow-up.

Measuring the ef fect of dif ferent medical 
therapies on plaque progression.

The ideal interscan interval remains unclear.

Giving an insight in mechanistic correlations of 
coronary atherogenesis

Automatic co-registration to match 
corresponding points on the coronary tree in 
the baseline and follow-up scan instead of using 
visual analysis of anatomical landmarks.
Implementation of machine learning for plaque 
analysis.

Table 2. MACE: Major adverse cardiac events. CCTA: Coronary computed tomography angiography. 
CT: Computed tomography.
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7. Conclusions.

Serial CCTA has rapidly emerged as the non-invasive modality to track atherosclerotic 
plaque changes and to assess the impact of dif ferent treatment strategies on CAD. 
Multiple studies utilizing serial CCTA have demonstrated that baseline quantitative 
plaque features as well as quantitative plaque changes -contrary to qualitative plaque 
features- are the most important in predicting plaque progression and MACE over time. 
However, it must be noted that although statistically quantitative plaque features remain 
the most important predictors of cardiovascular prognosis, qualitative features also have 
a substantial contribution. Furthermore, use of serial CCTA has been proven to be useful 
in the assessment of (statin) therapy ef ficacy on plaque progression and has revealed that 
statins slowed the overall progression of coronary atherosclerosis volume with increased 
plaque calcification and reduction of HRP features.

For optimal interpretation of serial CCTA, the following suggestions can be taken into 
consideration. First, the use of standardized acquisition protocols for both baseline and 
follow-up CT scans seems preferable, as well as adaptive HU threshold algorithms for 
the evaluation of plaque composition. Second, to date, no expert consensus has been 
available on the ideal inter-scan interval between baseline and follow-up CT scan. 
However, based on current studies, this interval could potentially be set at 1-2 years. Third, 
it seems favourable to quantify plaque as automated as possible. It should, however, be 
stressed that for now serial CCTA solely remains an important research tool for identifying 
surrogate endpoints predictive of MACE and is unlikely to feature as part of the clinical 
workup of patients. Ultimately, serial CCTA is a promising technique for the evaluation of 
cardiovascular prognosis yet technical details remain to be refined.
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Abstract

Introduction: The use of serial coronary computed tomography angiography (CCTA) 
allows for the early assessment of coronary plaque progression, a crucial factor in 
averting major adverse cardiac events (MACE). Traditionally, serial CCTA is assessed 
using anatomical landmarks to match baseline and follow-up scans. Recently, a tool has 
been developed by Cao et al. that allows for the automatic quantification of local plaque 
thickness dif ferences in serial CCTA utilizing plaque contour delineation.

The aim of this study was to determine thresholds of plaque thickness dif ferences that 
define whether there is plaque progression and/or regression. These thresholds depend 
on the contrast-to-noise ratio (CNR).

Methods: Plaque thickness dif ferences between two scans acquired at the same moment 
in time should always be zero. The negative and positive dif ferences in plaque contour 
delineation in these scans were used along with the CNR in order to create calibration 
graphs on which a linear regression analysis was performed. This analysis was conducted 
on a cohort of 50 patients referred for a CCTA due to chest complaints. A total of 300 
coronary vessels were analyzed. First, plaque contours were semi-automatically 
determined for all major epicardial coronary vessels. Second, manual drawings of seven 
regions of interest (ROI) per scan were used to quantify the scan quality based on the 
CNR for each vessel.

Results: A linear regression analysis was performed on the CNR and negative and 
positive plaque contour delineation dif ferences. Accounting for the standard error of 
the estimate, the linear regression analysis revealed that above 1.009-0.002*CNR there 
is an increase in plaque thickness (progression) and below -1.638+0.012*CNR there is a 
decrease in plaque thickness (regression).

Conclusion: This study demonstrates the feasibility of developing vessel-specific, 
quality-based thresholds for visualizing local plaque thickness dif ferences evaluated 
by serial CCTA. These thresholds have the potential to facilitate the early detection of 
atherosclerosis progression.
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Serial CCTA with vessel-specific thresholds

1. Introduction

Coronary artery disease (CAD) is still the leading cause of mortality worldwide [1]. 
Early detection of CAD is imperative and holds the potential to prevent major adverse 
cardiac events (MACEs) [2]. There are many techniques for diagnosing CAD, one of which 
is coronary computed tomography angiography (CCTA). This non-invasive imaging 
modality allows for both quantitative and qualitative assessments of coronary plaque. 
The use of serial CCTA, in which baseline and follow-up CCTA scans are compared, allows 
for the assessment of coronary plaque progression and/or regression [3]. The feasibility 
of using serial CCTA as a tool for assessing plaque changes has been demonstrated by 
several studies [4–6]. However, the coregistration of coronary vessels and the subsequent 
assessment of plaque changes between baseline and follow-up scans are still conducted 
manually using anatomical landmarks, as depicted in Fig. 1.

In the context of serial CCTA analysis, it is crucial that the assessment is done from a similar 
longitudinal viewing angle. Af terwards, coronary plaque dif ferences are calculated 
based on the two-dimensional (2D) transversal view, and experts visually assess and 
grade the changes. However, the manual selection of viewing angles and landmarks for 
alignment is time consuming and potentially introduces bias [7]. Moreover, determining 
whether the dif ference in the amount of plaque thickness at a certain angle is caused by 
genuine changes or by a dif ferent viewing angle in the multiplanar reconstructions poses 
a challenge. Recently, Cao et al. developed a novel method for the automatic alignment of 
baseline and follow-up scans. This method enables direct visualization of plaque changes 
by calculating plaque thickness dif ferences between baseline and follow-up scans from 
automatically delineated lumen and vessel wall contours. This tool was validated on 
artificial datasets. Thresholds of 0.5 mm for plaque progression and - 0.5 mm for plaque 
regression were found to dif ferentiate between minor deviations and actual plaque 
changes [7].

The accuracy of the automatic delineation of coronary vessel and lumen contours is 
dependent on the scan quality, which, in turn, depends on several factors such as the 
image noise, movement artefacts, and numerous scan parameters [8]. Consequently, 
thresholds are necessary to dif ferentiate actual changes in plaque thickness from changes 
caused by inaccuracies in vessel and lumen wall delineation. The scan quality on CCTA 
can be quantified using the contrast-to-noise ratio (CNR), as this can be indicative of the 
quality (i.e., detectability) of the contrast in the vessel of interest [9, 10]. This study aimed 
to use the CNR to develop vessel specific thresholds which can be used in combination 
with the aforementioned tool for plaque assessment on serial CCTA.
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Fig. 1 Example, adapted from Weber et al. [5], of a patient who has undergone serial coronary computed 
tomography angiography (CCTA); the baseline scan is shown in panel A and the follow-up scan is shown 
in panel B. Plaque delineation is marked by the orange and yellow lines representing the vessel and 
lumen, respectively. A total of three newly formed calcified plaques are seen in the follow-up scan, as 
marked by the blue arrows. In this case, the branching of the circumflex (Cx) artery may be used as an 
anatomical landmark for co-registration by visual analysis. LAD lef t anterior descending artery, LM 
lef t main artery, mm millimeters

2. Materials and Methods

2.1 Patients
Fif ty randomly selected patients from the Leiden University Medical Center, the 
Netherlands, who had chest pain complaints and were referred for a CCTA were 
included in the current study. Two dif ferent phase reconstructions from the same scan 
from each patient were chosen; the two reconstructions were in the range of either 
70–80% or 30–80% for the entire cohort. In principle, this meant that plaque thickness 
dif ferences should have been absent, as both phases were made almost simultaneously. 
The compared reconstructed phases were always within the same RR interval, 
which constitutes the time between two successive R waves of the QRS signal on the 
electrocardiogram (ECG). The compared phase pairs were always within the same gated 
window; either 70–80% or 30–80%, and always constituted a 75% phase and a randomly 
reconstructed other phase. All data were clinically acquired and retrospectively analyzed. 
The institutional review board of the Leiden University Medical Center, the Netherlands, 
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approved this retrospective evaluation of clinically collected data and waived the need 
for written informed consent. This study was performed in accordance with the Helsinki 
Declaration of 1964 and its later amendments.

2.2 Data acquisition
CCTA was performed using a 320-row volumetric scanner (Aquilion ONE and Aquilion ONE 
Genesis Edition, Canon Medical Systems, Otawara, Japan). Heart rate and blood pressure 
were monitored 1 h before CCTA. Metoprolol (from 25 mg up to 150 mg) was administered 
orally to patients exceeding a heart rate of 60 beats per minute (bpm) provided that no 
contraindications were present. Additional metoprolol was injected intravenously if the 
heart rate remained above 60 bpm. Nitroglycerin (0.4 mg) was administered sublingually 
4 min prior to CCTA. The scan parameters were as follows: a detector collimation of 320 
x 0.5 mm, a 275-ms gantry rotation time, and a temporal resolution of 137 ms for the 
Aquilion ONE Genesis Edition; a detector collimation of 320 x 0.5 mm, a 350-ms gantry 
rotation time, and a temporal resolution of 175 ms for the Aquilion ONE. The peak tube 
voltage was 100–135 kV with a tube current of 140–580 mA for both scanners. 70–80% 
of the RR interval was scanned using prospective ECG triggering. When the heart rate 
was above 65 bpm, 30–80% of the RR interval was scanned. The first 50–90 ml of 
contrast agent (Iomeron 400, Bracco, Milan, Italy) was administered in the antecubital 
vein. Thereaf ter, 20 ml of a 1:1 mixture of contrast and saline and finally 25 ml of saline 
were administered. CCTA was performed at the next beat when the threshold of 300 
Hounsfield units (HU) was reached in the descending aorta. The protocol settings were 
the same for the Aquilion ONE and Aquilion ONE Genesis Edition; a tube voltage of 100 
kV was generally used. A 120-kV tube voltage was used for patients who had a weight 
exceeding 130 kg and/or were bearing an implantable cardioverter-defibrillator (ICD). 
Tube current ranged between 300 and 900 mA depending on patient size. Field of view 
(FOV) was also dependent on patient size and ranged between 200 and 280 mm. Image 
reconstruction was done using iterative reconstruction by means of adaptive iterative 
dose reduction-3D (AIDR-3D) enhanced for the Aquilion ONE Genesis Edition and AIDR-
3D for the Aquilion ONE using the FC03 reconstruction kernel for both scanners. Iterative 
reconstruction strength was set at mild, standard, or strong depending on the image 
noise. Image size was set at 512 x 512. The slice thickness of the reconstruction was 0.25 
mm for all but two of the reconstructed phases, which had a slice thickness of 1.0 mm.

It is important to note that the protocol and image reconstruction settings remained 
consistent for all compared reconstructed phases.

2.3 Data processing
Dicom images were transferred to an of fline workstation for analysis. Dedicated 
sof tware (QAngio CT Research Edition v3.1.5.1, Medis Medical Imaging, Leiden, the 
Netherlands) was employed to conduct automatic tracing of the coronary arteries and 
the semi-automatic detection of the lumen and vessel wall contours. The contours were 
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corrected manually if needed, whilst the reader was blinded to the results of the other 
phase. Coronary artery tree extraction and vessel selection are depicted in Fig. 2.

A sof tware program developed in house by Cao et al. [7] was employed to extract the 
threedimensional (3D) lumen and vessel wall surface models of the three main arteries 
in each of the two scans. The sof tware co-registers both 3D models and encodes the 
local plaque thickness dif ferences between the two scans on the surface of a model. 
Subsequently, ParaView (version 5.9.0) was utilized for the 3D visualization of the 
generated models.

Fig. 2 The complete coronary tree is extracted from the CCTA. In this example, the lef t anterior 
descending artery (LAD) is marked in blue for performing plaque delineation. LM lef t main artery, pLAD 
proximal lef t anterior descending artery, dLAD distal lef t anterior descending artery, pRCA proximal 
right coronary artery, pCX proximal circumflex artery, LCX lef t circumflex artery, D1 first diagonal 
artery, OM1 first obtuse marginal artery, mLAD mid lef t anterior descending artery, CCTA coronary 
computed tomography angiography

2.4 Scan quality
In order to quantify image quality, the CNR was calculated separately for the lef t anterior 
descending artery (LAD), the right coronary artery (RCA), and the circumflex artery (Cx). 
We opted to use CNR as a metric to quantify image quality as this has been proven to 
af fect the accuracy of CCTA. Furthermore, it has been demonstrated that a reduced CNR 
results in a reduced sharpness of vessel visualization. The latter negatively influences 
plaque visualization and thus also sof tware-aided plaque delineation [11, 12]. Contrary 
to the signal-to-noise ratio (SNR), CNR serves as a quantitative metric for low-contrast 
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lesion detection: the higher the CNR between lesion and background, the more likely 
the detection of the lesion [13]. Although the SNR and CNR formulas are similar, SNR 
lacks specificity, as it does not consider the mean intensity of the surrounding epicardial 
tissue [14]. Therefore, CNR presents superior significance in contrast-enhanced scans like 
CCTA, as it is a measure of image quality based on a contrast [15]. A total of seven regions 
of interest (ROIs) per patient were defined for the measurement of the intensity values 
and the subsequent calculation of the CNR. The first ROI was placed in the ascending 
aorta, superior and in close proximity to the origin of the RCA, to define image noise. 
Thereaf ter, three ROIs were placed in the most proximal part of each coronary vessel. The 
final three ROIs were placed in the epicardial tissue surrounding each vessel, adhering 
to the same slice position and in spatial proximity to the ROI in the corresponding vessel. 
ROI placement was performed meticulously to exclude calcifications, plaques, vessel 
walls, and any potential image artifacts. Figure 3 depicts an example of a patient with 
ROIs placed in the aorta, LAD, and surrounding epicardial tissue.

The CNR was subsequently calculated for each vessel using the following formula:

CNR =
μvessel −  μepicardial tissue

σaorta

In which: μvessel  represents the mean HU intensity of the specific coronary vessel, 
μepicardial tissue  represents the mean HU intensity of the epicardial tissue in spatial 
proximity to the specific coronary vessel and σaorta represents the standard deviation 
of the HU intensity in the ascending aorta.

 
Fig. 3 Regions of interest are manually drawn in the aorta (A), proximal LAD (B), and the corresponding 
epicardial tissue surrounding the LAD (C). This means of operation is the same for the Cx and the RCA. 
LAD lef t anterior descending artery, Cx circumflex artery, RCA right coronary artery
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2.5 Negative and positive thresholds
Coronary lumen and vessel wall contours are detected in the multi-planar reformatted 
images of the artery. Based on the detected lumen and vessel wall contours, the plaque 
thickness at a certain location in an artery can be calculated. This is done by calculating the 
distance between the points at which the lumen contour and the vessel contour intersect 
with the line through the lumen center. The change in plaque thickness is determined as 
the dif ference in plaque thickness at the corresponding location between scans [7]. It is 
important to note that the accuracy of contours and thus plaque delineation is dependent 
on the scan quality [16]. Therefore, thresholds are needed to filter out insignificant 
changes in plaque thickness dif ferences resulting from variations in contour quality. 
Figure 4 depicts a clinical example of a case with plaque progression in the LAD that shows 
the importance of using thresholds for plaque thickness change visualization.

In order to establish vessel-specific thresholds, calibration graphs were created between 
the lowest measured CNR of a vessel in both phases and the largest negative and 
largest positive dif ferences in plaque thickness measurements between two-phase 
scans. For each patient, two dif ferent reconstructed phases from the same scan were 
compared. As plaque dif ferences between two reconstructed phases from the same 
scan and from the same patient should always be zero, it is possible to compare both 
phases in a two-way manner. Hence, for each patient, two values of the plaque thickness 
dif ference were obtained, yielding a total of 100 values. Subsequently, any plaque 
thickness delineation dif ferences between two-phase scan sets had to be attributable 
to dif ferent factors such as scan quality. The sof tware tool from Cao et al. [7] was utilized 
for automatically calculating the negative and positive plaque thickness dif ferences. 
Subsequently, the largest negative and largest positive thickness dif ferences were 
plotted against the vessel-specific CNR. Linear regression facilitates the determination 
of the linear relationship between a dependent and independent variable, in this case 
plaque thickness dif ference and CNR, respectively. Formulas were derived through 
linear regression analysis conducted on the aforementioned charts using SPSS sof tware 
(version 25, SPSS IBM Corp., Armonk, New York). The standard error of the estimate 
which is used in linear regression analysis was multiplied by a value of one instead of 
the customary two. This was done pragmatically in order to ensure that the model was 
capable of detecting relatively small plaque changes with regard to the average coronary 
lumen diameter, which is between 3 and 4 mm [17]. A detailed step-by-step flowchart 
depicting the aforementioned process is presented in Fig. 5.
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Fig. 4 A newly formed plaque is observed in the proximal LAD, as marked by the blue arrow (A). No 
other vessels have plaque (changes). Multiple areas are identified as having plaque progression 
using cutof f values of - 0.5 and 0.5 (B). Larger cutof f values of - 0.75 and 0.75 still do not allow plaque 
progression to be discerned in the RCA and the middle part of the LAD, as marked by the red areas 
(C). Finally, cutof f values of - 1.0 and 1.0 seem to correlate well with the visual observations in panel 
A (D). This demonstrates the importance of using cutof f values, yet the adaptive values must still be 
calculated using the CNR as a marker of scan quality. Plaque thickness dif ferences are given in mm. BA 
baseline, FU follow-up, RCA right coronary artery, LAD lef t anterior descending artery, Cx circumflex 
artery, CNR contrast-to-noise ratio
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Fig. 5 Flowchart depicting the process of creating formulas for thresholds of plaque dif ferences using 
scan quality. ROI region of interest, CNR contrast-to-noise ratio, RCA right coronary artery, LAD lef t 
anterior descending artery, Cx circumflex artery

2.6 Inter-observer measurements
A random set of 15 scans were utilized for interobserver measurements, resulting in the 
analysis of 45 coronary vessels. Observer AB (with 13 years of experience in cardiovascular 
image analysis) also drew a total of seven ROIs per patient for CNR measurements. 
Thereaf ter, the calculated CNR values were compared to those obtained by observer FY 
(with 3 years of experience in cardiovascular image analysis). Subsequently, correlations 
were tested using Pearson’s correlation coef ficient.
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3. Results

A total of 300 coronary vessels were used for the current analysis. The average CNR 
value was 13.4 ± 3.6. The average positive and negative dif ferences in measured plaque 
thickness were 0.7 ± 0.3 and - 0.9 ± 0.6 mm, respectively. A more detailed description of 
the values per vessel is depicted in Table 1.

Table 1 Detailed description of the values found per vessel. All values are the mean ± 
standard deviation. CNR contrast-to-noise-ratio, LAD lef t anterior descending artery, 
RCA right coronary artery, Cx circumflex artery, Mm millimeters

Mean CNR Mean positive dif ference Mean negative dif ference
LAD 13.3±3.6 0.6±0.4mm -0.8±0.6mm
RCA 13.7±3.6 0.7±0.4mm -1.0±0.6mm
CX 13.3±3.5 0.5±0.2mm -0.8±0.6mm

A trend was observed for the relationship between the higher and lower CNR values and the 
subsequent positive and negative plaque thickness dif ferences, as depicted in Figs. 6 and 7.

A linear regression analysis was performed for all the positive and negative dif ferences in 
plaque thickness along with the CNR calculated per vessel. Along with the standard errors 
of the estimate—which were 0.349 and - 0.61, respectively, for the positive and negative 
dif ferences—this analysis yielded the following formulas:

Posit ive di f ference = ((0.660 − (0.002*CNR)) + 0.349

Negat ive di f ference = (( − 1.028 + (0.012*CNR)) − 0.61

Positive and negative plaque thickness dif ferences are expressed in mm.

The inter-observer correlation for CNR values was excellent, with a correlation coef ficient 
of 0.872 (p < 0.001). Figure 8 demonstrates the correlation between CNR measurements 
done by observers FY and AB.

The application of the aforementioned formulas along with the corresponding thresholds 
is shown in the two examples depicted in Figs. 9 and 10. It is important to emphasize that 
a distinct threshold was applied for each vessel, which was determined from the lowest 
CNR observed in that vessel across both the baseline and the follow-up scans.

3
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Fig. 6 Positive dif ferences in plaque thickness are plotted against the respective CNR of the specific 
vessel. The dotted line represents the relationship between CNR and positive dif ference including the 
standard error of the estimate. A trend is observed in which higher CNR values (related to higher scan 
quality) and lower CNR values (related to lower scan quality) correspond to lower and higher positive 
dif ferences in plaque thickness, respectively. Positive dif ferences are given in mm. Se standard error 
of the estimate, LAD lef t anterior descending artery, RCA right coronary artery, Cx circumflex artery, 
CNR contrast-to-noise ratio
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Fig. 7 Negative dif ferences in plaque thickness are plotted against the respective CNR of the specific 
vessel. The dotted line represents the relationship between CNR and negative dif ference including the 
standard error of the estimate. A trend is observed in which higher CNR values (related to higher scan 
quality) and lower CNR values (related to lower scan quality) correspond to higher and lower negative 
dif ferences in plaque thickness, respectively. Negative dif ferences are given in mm. Se standard error 
of the estimate, LAD lef t anterior descending artery, RCA right coronary artery, Cx circumflex artery, 
CNR contrast-to-noise ratio

Fig. 8 Correlation between CNR measurements done by observers FY and AB. CNR contrast-to-noise 
ratio

3
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Fig. 9 Patient with a newly formed calcified plaque only in the proximal LAD af ter 7 years follow-up, 
as marked by the blue arrow (A and B). The CNR was calculated separately for the LAD, RCA, and Cx. 
CNR values of 10.7, 9.3, and 9.2 were found for those vessels, respectively (C). Using the aforementioned 
CNR values, thresholds (positive and negative) were calculated for each vessel separately. Subsequent 
visualization of the coronary tree with those thresholds clearly demonstrates the plaque change in the 
proximal LAD, as marked by the red area and blue arrow (D). Plaque thickness dif ferences are given 
in mm. BA baseline, FU follow-up, RCA right coronary artery, LAD lef t anterior descending artery, Cx 
circumflex artery, CNR contrast-to-noise ratio
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Fig. 10 Patient with newly formed plaques in the LAD, Cx, and RCA, as marked by the blue arrows, af ter 
6 years of follow-up (A). The CNR was calculated separately for the LAD, RCA, and Cx. CNR values of 
9.0, 12.8, and 13.6 were found for those vessels, respectively (B). Using the aforementioned CNR values, 
thresholds (positive and negative) were calculated for each vessel separately. Subsequent visualization 
of the coronary tree with those thresholds clearly demonstrates the plaque changes in the LAD, Cx, 
and RCA, as marked by the red areas and blue arrows (C). Note that the newly formed plaque in the 
proximal RCA is not visualized as it is on the opposite side of the vessel. This is also the case with the 
Cx: a major part of the newly formed plaque is on the opposite side of the vessel. Plaque thickness 
dif ferences are given in mm. BA baseline, FU follow-up, RCA right coronary artery, LAD lef t anterior 
descending artery, Cx circumflex artery, CNR contrast-to-noise ratio
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4. Discussion

In this study, we have proposed a method for the objective assessment of plaque 
dynamics using patient-specific thresholds on CCTA. These thresholds were obtained by 
using calibration graphs with two-phase scan sets in which negative and positive plaque 
thickness dif ferences were plotted against the subsequent scan quality calculated as the 
CNR. The results demonstrate that the use of these vessel-specific thresholds allows for 
the direct visualization and quantification of plaque thickness dif ferences, and they show 
good visual agreement with the plaque localization. It is important to stress that although 
there is no gold standard for plaque change validation in the current study, an artificial 
validation of the proposed method was done by Cao et al. Their study demonstrated 
excellent correspondence between calculated plaque dif ferences and artificially created 
plaque changes in coronary arteries [7].

Calibration graphs and a subsequently performed linear regression yielded a very slight 
trend regarding the CNR and negative and positive plaque thickness dif ferences. Further 
analysis of these formulas reveals that changes in CNR only mildly af fect the subsequent 
threshold. Positive and negative plaque thickness thresholds of 0.982 mm and - 1.472 
mm are found, respectively, if we utilize the average CNR value of 13.4. Previous studies 
by Fayad et al. indicate that the average vessel wall thickness ranges from 0.75 ± 0.17 mm 
for healthy segments to an average thickness range of 4.38 ± 0.71 mm for large plaques 
causing stenosis of C 40% [18]. The positive and negative plaque thickness thresholds 
found in our study using the average CNR would be clinically applicable as they fall in 
between the range of values for healthy and atherosclerotic segments found by Fayad 
et al. The inter-observer correlation for CNR values was excellent. Hence, dif ferences in 
ROI placement caused by inter-observer variability will only have a very minor impact on 
the final formulas. Furthermore, Papadopoulou et al. demonstrated that inter-observer 
agreement for the detection of atherosclerotic segments using plaque delineation 
was strong (Cohen’s kappa coef ficient K = 1.0) [19]. This is especially important, as the 
detection of serial plaque changes is dependent on the plaque delineation in subsequent 
baseline and follow-up scans.

A great advantage of the proposed method for the assessment of serial plaque changes, 
as opposed to the current method based on the calculation of the plaque’s volume, is 
that changes can be visualized locally. Furthermore, our method of visualizing plaque 
dif ferences is not af fected by the size of the vessel, which is an advantage compared 
to the current method [20–22]. Visualizing the location(s) of plaque changes in the 
subsequent coronary vessel(s) may be especially beneficial for patients undergoing 
coronary catheterization as this can guide clinicians to the location(s) of interest.
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4.1 Limitations
This study has several limitations which are innate to its novel nature and retrospective 
design. A major limitation is the absence of a gold standard for the assessment of 
plaque changes aside from visual assessment. For the analyzed patient population, no 
intravascular imaging like intravascular ultrasound (IVUS) was available to serve as a 
high-resolution ground truth. As thresholds are used in the output 3D model, there is a 
possibility of ‘‘missing’’ plaque changes that are below the threshold, and unfortunately 
there is no method to objectify this possibility. Contrastingly, there is also a chance of 
‘‘exaggerating’’ plaque changes if the lumen or vessel wall is incorrectly delineated. 
The use of one times the standard error instead of the more conventionally used two 
times its value will statistically also lead to more false-positive plaque changes, as the 
confidence interval is then set at around 68%, in contrast to the ‘‘regular’’ 95%. On the 
other hand, having relatively low negative and high positive thresholds as compared 
to the average coronary lumen size would lead to more false negatives [17]. Ultimately, 
we used one standard error from a pragmatic perspective, as this would ensure the 
detection of relatively small plaque changes. Furthermore, despite not having a gold 
standard for plaque change validation, plaque changes that are potentially wrongfully 
detected may be dismissed, as visual assessment remains a form of ground truth. The 
CNR was calculated at the proximal part of the vessel. However, CNR values can change 
upon moving more distally in the subsequent vessel, as was demonstrated by Yokota at el. 
Fortunately, the dif ferences between proximal and distal locations were found to be small 
[23]. Yet, the possibility that plaque thickness delineation is af fected by the location in the 
vessel cannot be excluded. Also, the CNR itself is very sensitive to the background location 
in the epicardium, which leads to biased inter-observer measurements. The correlation 
coef ficient found for inter-observer correlations regarding CNR measurements was very 
strong. The vast majority of the reconstructed phases had a slice thickness of 0.25 mm, 
yet two phases were reconstructed using a 1.0-mm slice thickness. A study by Alshipli 
and Kabir has demonstrated that the ef fect of slice thickness on image noise is extremely 
minor [24]. Furthermore, it is worth noting that 98% of our cohort utilized a 0.25-mm slice 
thickness; they greatly outnumber the 2% that was reconstructed based on a 1.0-mm slice 
thickness. Hence, a potential bias caused by these slice thickness dif ferences would be 
highly unlikely.

Finally, it must be noted that although the demonstrated method may visualize plaque 
dif ferences locally, it is of ten more ef fective to determine the total plaque burden with 
regard to the management of patients with CAD. This is due to the fact that atherosclerosis 
is a dynamic process that changes constantly. Hence, placing emphasis on the entire 
atherosclerosis process and global imaging of the heart represent a better approach 
than focusing on a single plaque [25]. Also, a recent development has been the use of 
positron emission tomography (PET) using 18F-NaF, which has the ability to detect the 
active microcalcification that is believed to represent unstable plaques. This is contrary to 
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computed tomography (CT) scans, which detect macrocalcifications, as these represent 
stable areas where the atherosclerotic disease is quiescent [26].

As the goal of this study was to develop vessel-specific thresholds for the direct 
visualization of plaque thickness dif ferences, more testing and further investigation 
are needed.

5. Conclusion

The development of patient-specific plaque thickness thresholds seems feasible and 
allows for the direct visualization of plaque thickness dif ferences in serial CTA, as 
demonstrated by these preliminary results. However, currently this study must be 
interpreted as a proof of concept for determining and using threshold values for clinical 
data. In the future this methodology may be used for the assessment of plaque changes 
on serial clinical CCTA scans, preferably combined with serial IVUS acquisition or a 
thorough cardiac phantom study.
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Abstract

Purpose: Combination of coronary computed tomography angiography (CCTA) and 
adenosine stress CT myocardial perfusion (CTP) allows for coronary artery lesion 
assessment as well as myocardial ischemia. However, myocardial ischemia on CTP is 
nowadays assessed semi-quantitatively by visual analysis. The aim of this study was to 
fully quantify myocardial ischemia and the subtended myocardial mass on CTP.

Methods: We included 33 patients referred for a combined CCTA and adenosine stress 
CTP protocol, with good or excellent imaging quality on CTP. The coronary artery tree 
was automatically extracted from the CCTA and the relevant coronary artery lesions 
with a significant stenosis (≥ 50%) were manually defined using dedicated sof tware. 
Secondly, epicardial and endocardial contours along with CT perfusion deficits were 
semi-automatically defined in short-axis reformatted images using MASS sof tware. A 
Voronoi-based segmentation algorithm was used to quantify the subtended myocardial 
mass, distal from each relevant coronary artery lesion. Perfusion defect and subtended 
myocardial mass were spatially registered to the CTA. Finally, the subtended myocardial 
mass per lesion, total subtended myocardial mass and perfusion defect mass (per lesion) 
were measured.

Results: Voronoi-based segmentation was successful in all cases. We assessed a total 
of 64 relevant coronary artery lesions. Average values for lef t ventricular mass, total 
subtended mass and perfusion defect mass were 118, 69 and 7 g respectively. In 19/33 
patients (58%) the total perfusion defect mass could be distributed over the relevant 
coronary artery lesion(s).

Conclusion: Quantification of myocardial ischemia and subtended myocardial mass seem 
feasible at adenosine stress CTP and allows to quantitatively correlate coronary artery 
lesions to corresponding areas of myocardial hypoperfusion at CCTA and adenosine stress 
CTP.
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1. Introduction

In patients with coronary artery disease (CAD) an imaging protocol combining coronary 
computed tomography angiography (CCTA) and adenosine stress CT myocardial 
perfusion (CTP) allows for anatomical and functional assessment of coronary artery 
lesions as well as myocardial ischemia (1) (2). The decision to revascularize patients 
depends both on the lesion severity and location as well as the extent of the relative 
hypoperfused (ischemic) myocardium, relative to the subtended myocardial mass distal 
of the coronary stenosis (1). However, adenosine stress CTP is nowadays assessed semi-
quantitatively by visual analysis on a routine basis in many centres.

The Voronoi algorithm is a mathematical algorithm that enables users to divide a two-
dimensional area or three-dimensional space by predetermined points based on the 
shortest distance to those points. This algorithm can be used to divide tissue supplied 
by dif ferent blood vessels according to which blood vessel is closest to the tissue. By 
using a Voronoi-based segmentation algorithm on myocardial tissue it seems possible 
to quantify the subtended myocardial mass for each lesion in the coronary tree (3). By also 
quantifying the hypoperfused myocardium itself we aim to identify the distribution of 
myocardial ischemia over the coronary artery lesion(s). To the best of our knowledge this 
has never been done in a fully quantitative manner for adenosine stress CTP. Therefore, 
we hypothesize that full quantification of adenosine stress myocardial ischemia and 
subtended myocardial mass using this Voronoi-based segmentation algorithm is feasible 
and may ease detection of hemodynamically significant lesions.

2. Materials and methods

2.1 Patients
33 patients with chest pain complaints, referred for a combined CCTA and adenosine 
stress CTP protocol were included in the current study. As manual drawing of perfusion 
defects is dependent on scan quality of adenosine stress CTP, only patients with good or 
excellent imaging quality of these scans were selected from our CTP database containing 
241 patients. Patients with normal CTP images or fixed perfusion defects were excluded 
because reversible ischemia is or may be absent in these cases, respectively (4). Clinically 
acquired data were retrospectively analysed. The institutional review board of the Leiden 
University Medical Center, The Netherlands, approved this retrospective evaluation of 
clinically collected data and waived the need for written informed consent.

2.2 Data acquisition and analysis
CCTA and static adenosine stress CTP were performed using a 320-row volumetric scanner 
(Aquilion ONE, Canon Medical Systems and Aquilion ONE Genesis Edition, Canon Medical 
Systems, Otawara, Japan). Consumption of caf feine products 24 h before examination 
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was discouraged. One hour before CCTA heart rate and blood pressure were monitored. 
If a patient’s heart rate exceeded 60 beats per minutes (bpm) and no contraindications 
were present metoprolol, 25 mg up until 150 mg, was administrated orally. If the heart 
rate remained above 60 bpm additional metoprolol was injected intravenously.

Prior to CCTA nitroglycerin (0.4 mg) was administered sublingually. Scan parameters for 
CCTA were as follows: peak tube voltage 100-135 kV with a tube current of 140-580mA. 
A detector collimation of 320 x 0.5 mm, a 275 ms gantry rotation time and temporal 
resolution of 137 ms for the Aquilion ONE Genesis Edition and a detector collimation of 320 
x 0.5 mm, 350 ms gantry rotation time and temporal resolution of 175 ms for the Aquilion 
ONE. Prospectively electrocardiogram (ECG) triggering was used to scan 70% to 80% 
of the RR interval. When heart rate was above 65 bpm 30% to 80% of the RR-interval 
was scanned. First 50 to 90 ml of contrast agent (Iomeron 400, Bracco, Milan, Italy) was 
administered in the antecubital vein. Hereaf ter, a 20 mL of a 1:1 mixture of contrast and 
saline and finally 25 mL of saline was administered. CCTA was performed the next beat 
when the threshold of 300 Hounsfield units (HU) was reached in the descending aorta.

In patients with suspicion of significant stenosis (≥ 50%) at CCTA, adenosine stress CTP 
was performed at least 20 min af ter CCTA. Blood pressure and electrocardiogram were 
monitored during 4 min of continuous adenosine infusion (0,14 mg/kg/min) af ter which 
a contrast agent was administered. Af ter reaching a target threshold of 300 HU in the 
descending aorta CTP images were acquired the next heartbeat scanning 80%-99% of 
the RR interval. Contrast agent, injection protocol and tube settings were all similar to 
the CCTA acquisition.

2.3 Data processing
Images were transferred to a workstation and the main branches of the coronary artery 
tree were automatically extracted from the CCTA. Assessment of the CCTA was done by 
trained cardiologists with at least 10 years of experience. A luminal stenosis of ≥ 50% was 
considered significant. Proximal and distal part of the relevant lesion were manually 
defined using dedicated sof tware (QAngio CT Research Edition v3.1.5.1 Medis Medical 
Imaging, Leiden, The Netherlands) (Fig. 1). If one vessel, or its side branches had multiple 
relevant coronary artery lesions we defined only the most proximal one. The most 
proximal part of the lesion was used as the starting point for calculating the subtended 
mass.

Further processing of the images was performed using in-house developed MASS 
sof tware (Leiden University Medical Centre). The CCTA and adenosine stress CTP image 
data were manually reformatted into a short-axis orientation covering the complete lef t 
ventricle with an inter-slice spacing of 4 mm. Subsequently, lef t ventricular epicardial 
and endocardial contours were semi-automatically defined in both the CCTA and the 
adenosine stress CTP images. Using a narrow window width and level setting (W300/
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L150) and a slice thickness of 4 mm, perfusion defects were manually drawn in the short 
axis slices derived from the CTP scan (Fig. 2). Registration was performed to spatially 
align the CCTA and CTP images and results of image segmentation were exported as 
3D objects in VTK format for further analysis and visualization. The sof tware uses the 
epicardial and endocardial contours from the CCTA for automatically calculating the 
lef t ventricular mass.

To assess reproducibility two observers (F.D. and I.H) were blinded to the original contours 
and a sample of ten cases was randomly selected in which lef t ventricular epicardial 
and endocardial contours were again semi-automatically defined and subtended mass 
was recalculated using the Voronoi-based algorithm. Also, perfusion defects were 
manually re-drawn and re-measured in grams. Correlations were subsequently tested 
between new and prior results concerning lef t ventricular mass, total subtended mass 
and perfusion defect mass with Pearson’s correlation coef ficient using SPSS sof tware 
(version 25, SPSS IBM Corp, Armonk, New York).

Fig 1. Resting CCTA is used for automatically extracting the main branches of the coronary artery tree 
(B). A lesion is shown in the proximal lef t anterior descending (LAD) and marked by the yellow star (A). 
Subsequently, we can define the proximal LAD stenosis marked by the yellow star (B).
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Fig 2. Lef t ventricular epicardial and endocardial contours were semi-automatically defined in short-
axis reformatted images in both the resting CCTA (A, B) and the adenosine stress CTP (C, D). A perfusion 
defect is marked by the yellow arrow (C). The perfusion defect is manually drawn in the short axis 
reformatted images from the adenosine stress CTP (D).

2.4 Voronoi-based segmentation
A segmentation algorithm based on the Voronoi method was used on the CCTA in order 
to find the nearest location of the extracted coronary artery tree for every voxel within the 
lef t ventricular myocardium (3). From this data the subtended myocardial mass could be 
computed, i.e. the lef t ventricular mass distal from a relevant coronary artery lesion (Fig. 
3). Also, the perfusion defect was measured and visualised separately (Fig. 3). An example 
of a patient with multivessel disease is depicted in Fig. 4. Executing the algorithm for 
Voronoi based segmentation took approximately 1 min per lesion.

Finally, we quantified the subtended myocardial mass and perfusion defect mass 
per lesion using bullseye plots with MASS sof tware. This process is depicted in Fig 5. 
Figure 5A demonstrates the subtended myocardial mass-pictured in red- for one lesion 
calculated by using our Voronoi-based algorithm. Figure 5B represents the manually 
drawn perfusion defect. Subsequently, Figure. 5C represent the perfusion defect per 
lesion by calculating the intersection of figure A and B. For all measurements we used 
the endo- and epicardial contours from the resting CCTA. Subsequently, we calculated 
the total subtended mass. See formula:
Tota l su bten ded m a ss = Su bten ded m a ss lesion a + su bten ded m a ss lesion b
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Fig 3. Segmented coronary artery tree and identified relevant coronary artery lesion in the proximal 
LAD (A) are used for computing the subtended myocardial mass in red in the short-axis view using 
our Voronoi-based algorithm (B). This can be further visualized in 3D in which the red dot (marked by 
the black arrow) corresponds to the relevant coronary artery lesion and the red area corresponds to 
the subtended myocardium which is calculated by our Voronoi-based segmentation as 43 grams (C). 
The manually drawn perfusion defect (D) is also visualized and quantified (E).
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Fig 4. Coronary artery tree and defined relevant lesions in the proximal LAD and circumflex (Cx) (A) 
are used for computing the subtended myocardial mass in the short-axis view using our Voronoi based 
algorithm with in cyan the LAD lesion and the Cx lesion in red (B). This can be further visualized in 
3D in which the red and cyan dots (marked by the black arrows) correspond to the relevant coronary 
artery lesions and the red and cyan area correspond to the subtended myocardium for that lesion. 
We calculated the subtended mass for the Cx lesion and LAD lesion as 57 and 46 grams respectively 
(C). The manually drawn perfusion defect (D) is also visualised and measured (E).
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Fig 5. The subtended myocardial mass for one lesion pictured in red is measured in grams (A). The 
same is done for the perfusion defect (B). Perfusion defect per lesion is measured by calculating the 
intersection of A and B (C).

3. Results

CCTA and adenosine stress CTP images from 33 patients (20 men, mean age, 67.8 ± 
8.2 years) were used for analysis. Table 1 lists patient characteristics. We were able to 
successfully apply the Voronoi-based segmentation algorithm on all cases to quantify 
the subtended myocardial mass (per lesion) and perfusion defect mass (per lesion). 
Lef t ventricular mass was automatically calculated from the epicardial and endocardial 
contours with an average value of 118 g. We assessed a total of 64 relevant coronary artery 
lesions. Average values for total subtended mass, subtended mass per lesion, perfusion 
defect mass and perfusion defect mass per lesion were 69, 36, 7 and 3 g respectively. 
In 19/33 patients (58%) the total perfusion defect mass could be distributed over the 
relevant coronary artery lesion(s). Results were highly reproducible as demonstrated by 
respectively intra- and inter-observer correlation coef ficients for lef t ventricular mass (r 
= 0,970 and r = 0,866), total subtended mass (r = 0,996 and r = 0.990) and perfusion defect 
mass (r = 0,844 and r = 0,822) (p < 0.01 for all). Details concerning the relevant coronary 
artery lesion(s), lef t ventricular mass, subtended mass (per lesion) and perfusion defect 
(per lesion) are shown in Table 2. The relevant coronary artery lesion(s) define the most 
proximal lesion of the subsequent vessel with a visual diameter stenosis of ≥ 50%. Lef t 
ventricular mass encompasses the mass of the lef t ventricle automatically calculated 
using epicardial and endocardial contours. The subtended mass per lesion is the 
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subtended mass calculated by using our Voronoi-based algorithm for a specific lesion. 
Subsequently total subtended mass can be calculated by adding up the values per lesion. 
Perfusion defect mass is derived from manual drawing of the perfusion defect. Lastly, 
the perfusion defect per lesion encompasses the intersection of the perfusion defect and 
its lesion specific subtended mass. The sum of these lesion specific values encompasses 
the total mass of the perfusion defect which intersects with the subtended mass of those 
lesions. The percentage in the last column represents how much of the total (manually 
drawn) perfusion defect represents the total perfusion defect mass found per lesion.

Patient characteristics
N=33

Male/Female 20 (61%) / 13 (39%)
Age (years) 67.8 ± 8.2
Hypertension 4 (12%)
Hyperlipidaemia 17 (52%)
Diabetes mellitus 7 (21%)
Family history of CAD 16 (48%)
Smoking 11 (9%)
Single-vessel disease1 16 (49%)
Double-vessel disease2 10 (30%)
Triple-vessel disease3 7 (21%)

Table 1. CAD: Coronary artery disease. 1: Defined as luminal diameter stenosis of ≥50% on CCTA in 
one major epicardial coronary vessel. 2: Defined as luminal diameter stenosis of ≥50% on CCTA in two 
major epicardial coronary vessels. 3: Defined as luminal diameter stenosis of ≥50% on CCTA in three 
major epicardial coronary vessels.

 Case Relevant coronary 
artery lesion(s)

Lef t 
ventricular 

mass (grams)

Subtended 
mass per lesion 

(grams)

Perfusion 
defect mass 

(grams)

Perfusion defect 
mass per lesion 

(grams)
﻿1 mLAD≥70%

dRCA≥50%
98 mLAD 22

dRCA 29
Total 51

11 mLAD 10
dRCA 1

Total 11 (100%)
2 mLAD≥70%

D1≥70%
dRCA≥ 50%

118 mLAD 15
D1 20

dRCA 49
Total 84

3 mLAD 2
D1 0

dRCA 1
Total 3 (100%)

3 LM≥50%
dRCA≥50%

162 LM 94
dRCA 63
Total 157

12 LM 8
dRCA 4

Total 12 (100%)
4 pLAD≥50%

Cx≥50%
127 pLAD 46

Cx 57
Total 103

6 pLAD 0
Cx 6

Total 6 (100%)
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 Case Relevant coronary 
artery lesion(s)

Lef t 
ventricular 

mass (grams)

Subtended 
mass per lesion 

(grams)

Perfusion 
defect mass 

(grams)

Perfusion defect 
mass per lesion 

(grams)
5 dRCA≥50%

pLAD≥50%
AL≥50%

136 pLAD 42
dRCA 21

AL 30
Total 93

9 pLAD 5
dRCA 2

AL 2
Total 9 (100%)

6 pLAD≥50% 220 pLAD 105
Total 105

13 pLAD 13
Total 13 (100%)

7 mLAD≥50% 115 mLAD 63
Total 63

5 mLAD 5
Total 5 (100%)

8 pLAD≥50%
Cx≥50%

73 pLAD 38
Cx 17

Total 55

6 pLAD 6
Cx 0

Total 6 (100%)
9 LM≥50% 67 LM 46

Total 46
5 LM 5

Total 5 (100%)
10 pLAD≥50% 90 pLAD 42

Total 42
5 pLAD 5

Total 5 (100%)
11 pLAD≥50%

pRCA≥50%
Cx≥50%

90 pLAD 33
pRCA 29

Cx 27
Total 89

10 pLAD 2
pRCA 8

Cx 0
Total 10 (100%)

12 mLAD≥50% 87 mLAD 35
Total 35

10 mLAD 10
Total 10 (100%)

13 mLAD≥70%
Cx≥50%

255 mLAD 111
Cx 25

Total 136

8 mLAD 8
Cx 0

Total 8 (100%)
14 dLAD≥50%

D1≥70%
MO≥50%
AL≥50%

98 dLAD 7
D1 30
MO 18
AL 10

Total 65

2 dLAD 0
D1 1
MO 0
AL 1

Total 2 (100%)
15 pLAD≥50%

mRCA≥50%
Cx≥50%

64 pLAD 45
mRCA 13

Cx 9
Total 67

3 pLAD 1
mRCA 2

Cx 0
Total 3 (100%)

16 pLAD≥50%
pRCA≥50%
Cx≥50%

101 pLAD 40
pRCA 28

Cx 28
Total 96

4 pLAD 2
pRCA 2

Cx 0
Total 4 (100%)

17 pLAD≥50%
IM≥70%

102 pLAD 46
IM 34

Total 80

3 pLAD 2
IM 1

Total 3 (100%)
18 pLAD≥50%

pRCA≥50%
89 pLAD 62

pRCA 24
Total 86

7 pLAD 4
pRCA 3

Total 7 (100%)
19 pLAD≥50%

dRCA≥50%
Cx≥50%

104 pLAD 39
dRCA 21

Cx 24
Total 84

7 pLAD 4
dRCA 3

Cx 0
Total 7 (100%)
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 Case Relevant coronary 
artery lesion(s)

Lef t 
ventricular 

mass (grams)

Subtended 
mass per lesion 

(grams)

Perfusion 
defect mass 

(grams)

Perfusion defect 
mass per lesion 

(grams)
20 pLAD≥50%

Cx≥50%
106 pLAD 48

Cx 35
Total 83

11 pLAD 10
Cx 0

Total 10 (91%)
21 pLAD≥50% 134 pLAD 45

Total 45
8 pLAD 7

Total 7 (88%)
22 pLAD≥50%

pRCA≥70%
Cx≥50%

94 pLAD 28
pRCA 0

Cx 51
Total 79

7 pLAD 6
pRCA 0

Cx 0
Total 6 (86%)

23 mLAD≥50%
pRCA≥50%
Cx≥50%

124 mLAD 36
pRCA 14

Cx 31
Total 81

7 mLAD 6
pRCA 0

Cx 0
Total 6 (86%)

24 pLAD≥70%
mRCA≥70%
MO≥50%

100 pLAD 38
mRCA 0
MO 25

Total 63

12 pLAD 9
mRCA 0

MO 1
Total 10 (83%)

25 pLAD≥50% 132 pLAD 64
Total 64

8 pLAD 6
Total 6 (75%)

26 mLAD≥50% 139 mLAD 37
Total 37

7 mLAD 5
Total 5 (71%)

27 pLAD≥70% 96 pLAD 43
Total 43

5 pLAD 3
Total 3 (60%)

28 mRCA≥50% 145 mRCA 51
Total 51

5 mRCA 3
Total 3 (60%)

29 mLAD≥50% 110 mLAD 39
Total 39

9 mLAD 5
Total 5 (56%)

30 dLAD≥50%
D2≥50%

163 dLAD 43
D2 25

Total 68

4 dLAD 1
D2 1

Total 2 (50%)
31 dLAD≥70% 130 dLAD 22

Total 22
3 dLAD 1

Total 1 (33%)
32 mLAD≥50%

pRCA≥50%
133 mLAD 47

pRCA 0
Total 47

4 mLAD 1
pRCA 0

Total 1 (25%)
33 pLAD≥50% 77 pLAD 30

Total 30
5 pLAD 1

Total 1 (20%)

Table 2. LM: lef t main artery, pLAD: proximal lef t anterior descending artery, mLAD: mid lef t anterior 
descending artery, D1: First diagonal branch, pRCA: Proximal right coronary artery, dRCA: Distal right 
coronary artery, Cx: Circumflex coronary artery, MO: Margus Obtusus branch. AL: Antero lateral 
branch. IM: Intermediate branch.
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4. Discussion

In this study we propose a method to fully quantify myocardial perfusion defect mass 
and subtended myocardial mass at adenosine stress CTP related to the significant 
coronary artery stenosis at CCTA. Results demonstrate that indeed it seems possible 
to fully quantify perfusion defects and subtended myocardial mass using a Voronoi-
based algorithm allowing for quantitative correlation of coronary artery lesions to 
corresponding areas of myocardial hypoperfusion.

Several studies have demonstrated that adding a myocardial perfusion stress test to 
CCTA improves the diagnostic accuracy for finding hemodynamically significant coronary 
artery stenoses as compared to a single modality approach. For instance, Magalhaes et al. 
demonstrated that In a vessel-based analysis, the addition of CTP led to an improvement 
in the diagnostic accuracy of the combined analysis when compared to coronary CCTA 
alone (0.79 [95% CI, 0.77–0.82] vs. 0.73 [95% CI, 0.70–0.76], respectively; P < 0.0001 for 
dif ference). Also, Ko et al. demonstrated that adding CTP to CCTA improved diagnostic 
accuracy over CCTA alone as the area under the receiver operating curve increased 
significantly from 0.798 to 0.893 (p = 0,004) on a per vessel-based analysis (5, 6). Adenosine 
stress CTP has been shown to be at least as accurate or even superior in the detection of 
ischemia as compared to single photon emission computed tomography (SPECT) and 
magnetic resonance imaging (MRI) perfusion. George et al. performed a head to head 
comparison between CTP and SPECT myocardial perfusion for detecting significant 
stenoses of 50% or more. It was demonstrated that in the per-vessel analysis, the area 
under the receiver operating curve of CT perfusion imaging (0.74; 95% CI: 0.71, 0.78) was 
higher than that of SPECT myocardial perfusion (0.69; 95% CI: 0.66, 0.72) for the diagnosis 
of a stenosis of at least 50% when considering all vessels (P = 0.008) Otton et al. used a 
perfusion phantom for a direct comparison of the sensitivity of CTP and MRI perfusion 
in which it was found that the sensitivities of each perfusion modality when directly 
compared were similar. However, no statistical evidence was given to back this claim. (7, 
8). Though nowadays myocardial ischemia on adenosine stress CTP is still assessed semi-
quantitatively by visual analysis, quantification of the perfusion defect mass in relation 
to subtended myocardial mass distal from a significant coronary artery stenosis would 
be desirable which may help identifying the hemodynamically relevant lesion. As such, 
Giordano et al. assessed the use of volume of the hypoperfused region calculated from 
myocardial blood flow at CTP for finding the hemodynamically significant stenosis. They 
specifically calculated the hypoperfused volume in the myocardial area distal from the 
stenosis. It was proven that use of the calculated volume had a slightly better accuracy 
in detecting the hemodynamically significant stenosis as compared to CTP derived 
myocardial blood flow alone (79% versus 75% respectively) (9). The Voronoi-based 
algorithm for calculating subtended mass used on CCTA seems reliable in predicting 
ischemia on SPECT as is demonstrated in a study by Kurata et al. in which there was a 
moderate correlation between the summed stress score of SPECT and CCTA based 
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subtended mass as calculated with a Voronoi-based algorithm (r = 0.531 p = 0.001) (10). 
The same has been done for MRI perfusion by Fukuyama et al. which showed an even 
better correlation between Voronoi-based calculation of subtended mass and areas of 
relative hypoperfusion (r = 0.73 p <0.001) (11). Although we were able to apply a Voronoi-
based segmentation algorithm on all cases and quantify subtended myocardial mass 
(per lesion) and perfusion defect mass (per lesion), results from Table 2 show that there 
was not always agreement between the sum of the myocardial perfusion defect mass 
per lesion and the total measured myocardial perfusion defect mass. This disagreement 
can be due to several factors. First of all, only lesions with a visual diameter stenosis of 
≥ 50% at CCTA were deemed relevant. However, multiple studies have demonstrated 
that not only diameter stenosis but also other plaque features contribute to a lesion 
being hemodynamically significant or not. For instance, Nakazato et al. examined the 
performance of percent aggregate plaque volume, which represents cumulative plaque 
volume as a function of total vessel volume by CCTA for identification of ischemic lesions. 
It was demonstrated that percent aggregate plaque volume provided incremental 
prediction for lesion ischemia over diameter stenosis (AUC 0.88 [95% CI: 0.78 to 0.99] 
vs. 0.68 [95% CI: 0.54 to 0.83], respectively; p = 0.02). Also, Yin et al. demonstrated that 
maximum area stenosis was superior over maximum diameter stenosis in the detection 
of ischemic lesions (AUC 0.77 versus 0.71 respectively) (12, 13). Also, in a study by van 
Rosendael et al. assessing the relationship between lumen area stenosis and myocardial 
ischemia on CTP it was found that 9% of all vessels showed ischemia even though lumen 
area stenosis was below 50% (14). Subsequently, our defined relevant coronary artery 
lesion at CCTA will not always correspond to the hemodynamically significant lesion 
causing the perfusion defect. Secondly, we used only the rest myocardial perfusion scan 
(CCTA) as reference. Therefore, slight discrepancies in contour size, reference points 
and thus perfusion defect localization may happen. This may lead to a slight mismatch 
between total perfusion defect mass and perfusion defect mass per lesion. Finally, for 
manually drawing perfusion defects visual analysis is still needed and may be susceptible 
to interpretation errors (15).

Von Spiczak et al. introduced a 3D fusion model for combining adenosine stress CTP 
and CCTA for correlating the ischemic region to the culprit coronary lesion as defined 
on invasive coronary angiography (ICA). Yet this method remains semi-quantitative and 
thus only allows for visual assessment of morphology and function (16). Our method 
is dif ferent as a fully quantitative approach was used allowing not just for intuitive 
assessment by 3D reconstruction but also for numerical assessment.

Furthermore, a previous study has reported that perfusion territories of coronary arteries 
vary among individuals. In a per-segment analysis done by Ortiz-Perez et al. 23% of the 
hyper enhanced regions on cardiac MRI were discordant with the empirically assigned 
coronary distribution as defined by the standard 17-segment model (17). Use of Voronoi-
based segmentation can overcome this problem as its accuracy has been reported in an 
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animal study using swine hearts in which this method was found to be more accurate 
than the standard 17-segment model in predicting coronary territories (18, 19).

Results from a study by Dadgar et al. assessing the weight of human hearts demonstrated 
that weight of the lef t ventricle varies between 100 and 180 g, which is comparable to 
our results (20). Tanabe et al. demonstrated that subtended myocardial volume in 
combination with subtended CT myocardial blood flow derived from CT myocardial 
perfusion is a better predictor of obstructive CAD than CT myocardial blood flow alone. 
A Voronoi-based segmentation algorithm was also used for calculating subtended 
myocardial volume yielding an average of 42.7 mL for obstructive CAD. Our average 
subtended mass per lesion (36 g) is only slightly lower when taking into account average 
density of myocardial tissue of 1,055 g/mL to convert mass to volume (21, 22). This could be 
due to the fact that contrary to Tanabe no ICA was used for verifying the hemodynamical 
significance of the relevant coronary artery lesion(s).

4.1 Limitations
This study has several limitations which are innate to its retrospective design and novel 
nature. Selecting patients with only good or excellent imaging quality on adenosine stress 
CTP may have introduced selection bias. Consequently, the relatively small number of 
female patients may have introduced further bias as evidence suggests that females 
may experience higher myocardial perfusion flow values compared to males (23).Since 
the goal of this study was to provide insights into a new proof of principle more testing 
and further investigation is needed to implement this concept in a larger patient cohort.

5. Conclusion

Fully quantifying myocardial perfusion defects and subtended myocardial mass allows 
to quantitatively correlate coronary artery lesions to corresponding areas of myocardial 
hypoperfusion at CCTA and adenosine stress CTP. This novel technique may prove 
especially useful for patients with multivessel disease undergoing invasive coronary 
angiography as correlation of the perfusion defect and coronary artery lesions gives more 
insight in myocardial ischemia localization.

4
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Abstract

Purpose: This study aims to investigate the correlation between myocardial area at risk 
at coronary computed tomography angiography (CCTA) and the ischemic burden derived 
from myocardial computed tomography perfusion (CTP) by using the 17-segment model.

Methods: Forty-two patients with chest pain complaints who underwent a combined 
CCTA and CTP protocol were identified. Patients with reversible ischemia at CTP and at 
least one stenosis of ≥ 50% at CCTA were selected. Myocardial area at risk was calculated 
using a Voronoi-based segmentation algorithm at CCTA and was defined as the sum of 
all territories related to a ≥ 50% stenosis as a percentage of the total lef t ventricular (LV) 
mass. The latter was calculated using LV contours which were automatically drawn using 
a machine learning algorithm. Subsequently, the ischemic burden was defined as the 
number of segments demonstrating relative hypoperfusion as a percentage of the total 
amount of segments (=17). Finally, correlations were tested between the myocardial area 
at risk and the ischemic burden using Pearson’s correlation coef ficient.

Results: A total of 77 coronary lesions were assessed. Average myocardial area at risk and 
ischemic burden for all lesions was 59% and 23%, respectively. Correlations for ≥ 50% 
and ≥ 70% stenosis based myocardial area at risk compared to ischemic burden were 
moderate (r = 0.564; p < 0.01) and good (r = 0.708; p < 0.01), respectively.

Conclusion: The relation between myocardial area at risk as calculated by using a 
Voronoi-based algorithm at CCTA and ischemic burden as assessed by CTP is dependent 
on stenosis severity.

Abbreviations
AUC:	 Area under the curve
CAD:	 Coronary artery disease
CCTA:	 Coronary computed tomography angiography
CTP:	 Computed tomography perfusion
CX:	 Circumflex artery
ECG:	 Electrocardiogram
FFR:	 Fractional flow reserve
LAD:	 Lef t anterior descending artery
LV:	 Lef t ventricle
MBF:	 Myocardial blood flow
MRI:	 Magnetic resonance imaging
RCA:	 Right coronary artery
SPECT:	Single photon emission computed tomography
VTK:	 Visualization toolkit
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1. Introduction

Coronary computed tomography angiography (CCTA) is widely used to diagnose coronary 
artery disease (CAD) and determine stenosis severity (1). However, the assessment of 
ischemic myocardium is also of prognostic importance and plays a vital role in the decision 
to revascularize patients which depends on the extent of the relative hypoperfused 
(ischemic) myocardium, relative to the subtended myocardial mass distal of the coronary 
stenosis (2). A key advantage of combining CCTA and adenosine stress CT myocardial 
perfusion (CTP) is that it allows for both the assessment of coronary artery stenosis 
as well as myocardial ischemia (2). Also, CTP has a substantially shorter exam time as 
compared to cardiac magnetic resonance (CMR) and myocardial perfusion imaging (MPI). 
Furthermore, CTP may be especially beneficial in patients with contraindications for 
CMR (3, 4). However, it must be noted that a major disadvantage of CTP is the relatively 
high radiation dose exposure. Still, this is gradually improving thanks to technological 
advancement (4).

The Voronoi decomposition encompasses a mathematical algorithm that divides a three-
dimensional space or two-dimensional area between predetermined points based on the 
shortest distance to those points. This algorithm can be used to partition the myocardium 
according to which blood vessel is closest (5, 6). By using a Voronoi decomposition 
algorithm on myocardial tissue one can take into account the many variations that exist 
in coronary anatomy. This is a major advantage of the aforementioned method over the 
standard 17 segment model in which the segments correspond to a fixed location and do 
not change according to dif ferences in coronary anatomy (7). The importance of using a 
dif ferent approach for the assessment of the coronary distribution was demonstrated 
in a study by OrtizPerez et al. in which in patients who underwent CMR 23% of the hyper 
enhanced segments were discordant with the empirically assigned coronary distribution 
according to the standard 17segment model. A Voronoi based segmentation algorithm 
can overcome this problem as its output is dependent on patient specific coronary 
anatomy (6, 8).

Artificial intelligence (AI) is rapidly evolving in the work field of cardiovascular imaging 
and can greatly lessen the time needed for image processing, Machine learning which 
is a subclass of AI allows for the creation of a model based on historical data. As such, 
machine learning has been widely used for automatic lef t ventricle (LV) segmentation 
greatly speeding up the process of LV contour placement (9, 10),

The aim of this study was to assess whether the subtended myocardial mass as calculated 
by using the Voronoi-based segmentation method correlated to myocardial ischemia 
at CTP. As such, CCTA may not only be used to assess the degree of a coronary stenosis, 
but also for the quantification of the subtended myocardial mass which may predict the 
ischemic burden without the need for a stress test.

5
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2. Materials and Methods

2.1 Patients
248 patients referred for a combined CCTA and CTP protocol due to chest pain complaints 
were identified. Patients with normal CTP images or fixed perfusion defects (N = 178), 
absence of at least one ≥ 50% coronary stenosis (N = 11), inferior CTP scan quality (N = 16) 
and prior coronary revascularization (N = 1) were excluded (11). We selected a total of 42 
patients for the current analysis. A detailed flowchart of the patient selection is depicted 
in Fig. 1. CTP scan quality classified as either “poor” or “ fair” was deemed inferior. All 
data were retrospectively analyzed. The local ethics committee of the Leiden University 
Medical Center approved this retrospective analysis of clinical data and the need for 
informed consent was waived.

Figure 1. Flowchart depicting the selection proces of patients. CTP scans with “poor” or “fair” scan 
quality were deemed inferior.
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2.2 Data acquisition
Using a 320-row volumetric scanner (Aquilion ONE, Canon Medical Systems and Aquilion 
ONE Genesis Edition, Canon Medical Systems, Otawara, Japan) CCTA and static adenosine 
stress CTP were acquired on the same day. Patients were advised not to consume caf feine 
products 24 h before examination. One hour prior to CCTA blood pressure and heart rate 
were monitored. Patients with a heart rate exceeding 60 beats per minutes (bpm) were 
given metoprolol, 25 mg up to 150 mg orally, unless contraindications were present. 
Additionally, metoprolol could be injected intravenously if the heart rate remained above 
60 bpm.

Sublingual administration of nitroglycerin (0.4 mg) was done prior to CCTA. Scanner 
settings for CCTA were as follows: A detector collimation of 320 x 0.5 mm, a 275 ms 
gantry rotation time and temporal resolution of 137 ms for the Aquilion ONE Genesis 
Edition and a detector collimation of 320 x 0.5 mm, 350 ms gantry rotation time and 
temporal resolution of 175 ms for the Aquilion ONE. Tube current was 140-580mA and a 
peak tube voltage 100-135kV. The antecubital vein was used for administration of 50-90 
mL of contrast agent (Iomeron 400, Bracco, Milan, Italy) followed by a 1:1 mixture of 20 
mL contrast and saline and finally 25 mL of saline. Tube current, peak tube voltage and 
the amount of administered contrast agent varied due to variations in patient size (12). 
Using prospective electrocardiogram (ECG) triggering 70%-80% of the RR interval was 
scanned. In patients with a heart rate exceeding 65 bpm 30%-80% of the RR-interval was 
scanned. When a threshold of 300 Hounsfield units (HU) was reached in the descending 
aorta CCTA was performed the next beat.

CTP was only performed if there was suspicion of a significant stenosis (≥ 50%) at CCTA. 
To achieve adequate myocardial contrast wash-out the minimum scan-interval was 
20 min between CCTA and CTP. ECG and blood pressure were continuously monitored 
following continuous adenosine infusion (0.14mg/kg/min) af ter which a contrast agent 
was administered. CTP images were acquired when a threshold of 300 HU was reached 
in the descending aorta scanning 80%-99% of the RR interval. Tube settings, injection 
protocol and contrast agent were all similar to the CCTA acquisition.

2.3 Image analysis
Images were transferred to a workstation and analyzed using dedicated post-processing 
sof tware (Vitrea FX 7.12; Vital Images, Minnetonka, Minnesota). All CCTA and CTP images 
were analysed by trained cardiologists with at least 10 years of experience. In accordance 
with SCCT guidelines, stenosis severity per segment was semi quantitatively assessed 
using visual analysis as: 50%-69% (moderate), 70%-99% (severe), and 100% (occluded) 
(13). In case multiple stenoses were observed in the same segment and vessel, the most 
proximal stenosis was labelled as the culprit stenosis.

5
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CTP images were analysed by reconstructing cardiac phases for every 2% of the scanned 
interval. Subsequently, analysis was performed on the phase with the best scan quality 
using short-axis reformatted images and a slice thickness of 4 mm using a narrow 
window width and level setting (W300/L150) and utilizing the standard 17 segment 
myocardial model for scoring (14). If one or more segments demonstrated signs of relative 
hypoperfusion the CTP was considered abnormal (11). The number of segments with 
relative hypoperfusion relative to the total of 17 segments was defined as the ischemic 
burden and calculated using the following formula:

Isch emic bur den =
nu m ber of segm ents with rela t ive hypoper f u sion

17
*100

2.4 Image processing
Before executing the Voronoi-based segmentation algorithm the complete coronary 
artery tree was automatically extracted from the CCTA (Fig. 2A) and the relevant lesions 
were manually defined using dedicated sof tware (Fig. 2B) (QAngio CT Research Edition 
v3.1.5.1 Medis Medical Imaging, Leiden, The Netherlands). Hereaf ter, the CCTA images 
were automatically reformatted into a short-axis orientation covering the complete lef t 
ventricle with an inter-slice spacing of 4 mm. Subsequently, lef t ventricular epicardial and 
endocardial contours were automatically drawn in the CCTA (Fig. 3). Both tasks were done 
semi automatically using in house developed MASS sof tware (Leiden University Medical 
Center) by using a machine learning model, manual corrections were made if needed. 
This model was trained using a dif ferent dataset of 50 randomly selected CCTA’s in which 
reformatting of the short axis and drawing of the LV epicardial and endocardial contours 
was done manually. Subsequently we used dedicated open-source sof tware (TensorFlow 
v2.6 sof tware available from www.tensorflow.org) to train a neural network. Executing 
the machine learning model took approximately 1 min and 20 s per CCTA.

To assess the feasibility of the machine learning model as compared to manual 
measurements one observer (F.Y. with 3 years of experience in cardiovascular imaging 
analysis) randomly selected a sample of 10 cases in which manual reformatting of 
the short axis and manual drawing of the lef t ventricular epicardial and endocardial 
contours was performed. Correlations were subsequently tested between manual and 
automatic measurements concerning the lef t ventricular mass which is derived from the 
epicardial and endocardial contours. Statistical analysis of these correlations was done 
using Pearson’s correlation coef ficient using SPSS sof tware (version 25, SPSS IBM Corp, 
Armonk, New York).
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Figure 2. The complete coronary tree was automatically extracted from the CCTA (Panel A.). The 
proximal part of the lesion in the proximal LAD as marked by the red arrow (Panel B) is used as the 
starting point for calculating the subtended mass.

Figure 3. Epicardial contours (green line) and endocardial contours (red line) were automatically drawn 
using a machine learning model.

5
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2.4 Voronoi-based segmentation
In order to calculate the subtended mass a Voronoi-based segmentation algorithm 
was used on the CCTA by using in-house developed MASS sof tware (Leiden University 
Medical Center). By using this algorithm it is possible to find the nearest location of the 
extracted coronary artery tree for every voxel within the lef t ventricular myocardium (5, 
6). Subsequently, results of the image segmentation were exported as 3D objects in the 
visualization toolkit (VTK) format for further analysis and visualization (Fig. 4). Executing 
the Voronoi-based segmentation algorithm took approximately 1 min per lesion.

Finally, the subtended mass was calculated for both ≥ 50% and ≥ 70% stenosis as a 
percentage of the total LV mass and defined as the myocardial area at risk using the 
following formula:

myocar dia l area at r i sk =
Su bten ded m a ss

LV m a ss
*100

Figure 4. Using the previously defined lesion in the proximal LAD (Panel A) and executing the Voronoi-
based algorithm the subtended mass can be computed and visualized in 3D (Panel B).

2.5 Statistical analysis
Correlations between the ischemic burden and myocardial area at risk as well as 
correlations between manual and machine learning based LV contours were calculated 
using Pearson’s correlation coef ficient. All analysis were performed using SPSS sof tware 
(version 25, SPSS IBM Corp, Armonk, New York).
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3. Results

CCTA and CTP images from forty-two patients (25 men, mean age, 68.2 ± 7.7) were used 
for the current analysis. Patient characteristics are listed in Table 1. Voronoi-based 
segmentation and semi-automatic drawing of the LV epi- and endocardial contours 
using a machine learning algorithm was successful in all cases. A total of 77 coronary 
lesions with a luminal stenosis of ≥ 50% were assessed. Average myocardial area at risk 
for stenosis ≥ 50% and ≥ 70% were 59% and 37%, respectively. Average ischemic burden 
for stenosis ≥50% and ≥70% were 23% and 24%, respectively. There was a moderate 
correlation of the ischemic burden versus myocardial area at risk for stenosis of ≥ 50% 
(r = 0.564; p < 0.01) (Fig. 5). A good correlation was found for the ischemic burden versus 
the area at risk for stenosis of ≥ 70% (r = 0.708; p <0.01) (Fig. 6). A complete example is 
depicted in figure 7.

Comparison of the LV mass as calculated from manually drawn contours versus contours 
drawn with the machine learning model demonstrated a very good correlation (r = 0.870; 
p < 0.01).

Figure 5. “Area at risk 50” represents the percentage of myocardial area at risk of the total LV as 
calculated by using the Voronoi-based segmentation algorithm for every ≥50% stenosis. “Ischemic 
burden” represents the percentage of segments with relative hypoperfusion of the total amount of 
segments (=17)

5
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Figure 6. “Area at risk 70” represents the percentage of myocardial area at risk of the total LV as 
calculated by using the Voronoi-based segmentation algorithm for every ≥70% stenosis. “Ischemic 
burden” represents the percentage of segments with relative hypoperfusion of the total number of 
segments (=17)
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Figure 7. Example of a 58-year-old male with single vessel disease. A significant stenosis is present in the 
proximal LAD with contrast opacification distally (Panel A). Perfusion defects assessed by CTP can be 
seen in panel B. The ischemic burden can consequently be calculated as 8/17 *100 ≈ 47 %. The complete 
coronary tree with the relevant stenosis is shown in panel C. Using the previously mentioned stenosis 
the subtended mass is calculated by using the Voronoi-based segmentation algorithm. Subsequently, 
the myocardial area at risk is calculated as 53/100 * 100 = 53%.

5
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Patient characteristics
﻿ N=42
Male/Female 25 (60%) / 17 (40%)
Age (years) 68.2 ± 7.7
Hypertension 23 (55%)
Hyperlipidaemia 22 (52%)
Diabetes mellitus 9 (21%)
Family history of CAD 22 (52%)
Smoking 3 (7%)
Single-vessel disease1 24 (57%)
Double-vessel disease2 10 (24%)
Triple-vessel disease3 8 (19%)

 Table 1. CAD: Coronary artery disease. 1: Defined as luminal diameter stenosis of ≥ 50% on CCTA in 
one major epicardial coronary vessel. 2: Defined as luminal diameter stenosis of ≥ 50% on CCTA in two 
major epicardial coronary vessels. 3: Defined as luminal diameter stenosis of ≥ 50% on CCTA in three 
major epicardial coronary vessels.

4. Discussion

This study assessed the relationship between myocardial area at risk at CCTA and 
ischemic burden as assessed at CTP. Our results demonstrate that calculating subtended 
mass using a Voronoi-based segmentation algorithm in combination with a machine 
learning algorithm for semi-automatically drawing LV epi- and endocardial contours at 
CCTA is feasible and its correlation to the ischemic burden as measured using a standard 
17-segment model at CTP increases with increasing stenosis severity. Consequently, 
coronary CTA can be used not only to assess the degree of a coronary stenosis, but also for 
quantification of the subtended myocardial mass which may predict the ischemic burden 
without the need for a stress test. It should however be noted that the use of integrated 
diagnostics of CCTA and CTP is still better than CCTA alone as the first allows for both 
assessment of coronary stenosis as well as the presence of (reversible) ischemia. This is 
of great importance as not every coronary stenosis is hemodynamically significant (15).

Multiple studies have demonstrated that adding CTP to regular CCTA improves the 
detection of hemodynamically significant coronary lesions (16, 17). For instance, Pontone 
et al. demonstrated that addition of CTP to CCTA improved the detection of functional 
significant coronary lesions. In a vessel-based model addition of CTP to CCTA yielded an 
improvement of specificity (94%; p < 0.001), positive predictive value (86%; p < 0.001), 
and accuracy (93%; p = 0.002). Similarly, in a patient-based model, improvements in 
specificity (83%; p < 0.001), positive predictive value (86%; p = 0.02), and accuracy (91%; 
p = 0.004) were also observed when stress CTP was combined with CCTA (16).
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Aside from the degree of coronary stenosis there have been several studies assessing the 
relationship between the anatomical location of a coronary stenosis and the presence of 
myocardial ischemia. For instance, in a study by Tanabe et al. the combined diagnostic 
performance of coronary artery stenosis-subtended myocardial volume and myocardial 
blood flow (MBF) on CTP for detecting obstructive coronary artery disease was assessed. 
It was found that the AUC of the combined use of the subtended CTP myocardial blood 
flow and subtended mass was significantly higher than that of myocardial blood flow 
alone in the detection of hemodynamically significant stenoses (0.89 vs. 0.75, 0.77; p<0.05) 
(18).

Ide et al. demonstrated the feasibility and validity of Voronoi-based tissue segmentation. 
It was found that CCTA based subtended myocardial mass calculated using a Voronoi-
based segmentation algorithm closely corresponded to actual subtended mass measured 
on ex-vivo-sine hearts (r = 0.92, p = 0.02 for the lef t anterior descending artery (LAD); r 
= 0.96, p = 0.009 for the circumflex artery (CX); r = 0.96, p = 0.009 for the right coronary 
artery (RCA)) (19).

Semi-automatic segmentation of the LV using a machine learning model for defining epi- 
and endocardial contours has been validated extensively. Several studies have reported 
high comparability to a manual segmentation of the LV versus a machine learning 
approach (20-23). It must also be noted that manually drawing epi- and endocardial 
contours is a time-intensive process of usually around 20-30 min(20). Semi-Automatic 
LV segmentation can speed up this process significantly as we have noted an execution 
time of approximately 1 min and 20 s.

Kurata et al. also assessed the relationship between calculated subtended mass at CCTA 
using a Voronoi-based segmentation algorithm and ischemic burden as assessed by single 
photon emission computed tomography (SPECT). A moderate correlation was found 
between the calculated subtended mass and ischemic burden (r=0.531; p=0.001) which is 
only slightly lower compared to our results (r = 0.564; p < 0.01) (24). Also, Fukuyama et al. 
performed a similar study by assessing the relationship between calculated subtended 
mass at CCTA using a Voronoi-based segmentation algorithm and ischemic burden as 
assessed by magnetic resonance imaging (MRI). A slightly better correlation was found 
when correlating subtended mass to ischemic burden (r = 0.73; p < 0.001) (25). This 
dif ference in correlation may be partially explained by the fact that cardiac MRI perfusion 
is still superior to cardiac CTP in the detection of (reversible) ischemia (26).

Interestingly, in our study lesions with a diameter stenosis of 70% or more demonstrated 
a better correlation between the myocardial area at risk and ischemic burden compared 
to lesions with a diameter stenosis of 50% (r=0.708 and r=0.564 respectively). A similar 
observation was found by Fukuyama et al. (25). This dif ference in correlation may be 
attributed to the fact that lesions with a greater diameter stenosis may cause more 
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(reversible) ischemia and hereby enlarge the ischemic burden. Van Rosendael et al. clearly 
demonstrated the relationship between quantitative CCTA lesion measurements and 
myocardial ischemia at CTP. It was confirmed that increasing stenosis percentage by 
quantitative CCTA is positively correlated to myocardial ischemia (15). Furthermore, a 
recent study by Bax et al. demonstrated that lesions in lef t sided coronary arteries with 
a larger diameter stenosis were of ten localized more distally in the subsequent vessel. 
Thus, explaining the better correlation for lesions with a diameter stenosis of 70% or more 
as these accompany for a lower subtended mass (27).

4.1 Limitations
This study has several limitations which are inherent to its retrospective design. Firstly, 
the amount of analyzed patients is small which may have influenced the strength of 
the statistical analysis. Hence, future studies with a larger number of patients will be 
required to clarify the significance of these findings in clinical practice. Selection bias 
may have been introduced as we only selected patients with reversible ischemia as 
diagnosed on CTP. Secondly, the subtended mass was calculated using the anatomical 
location of the relevant coronary lesion. This was independent of whether the lesion 
was hemodynamically significant or not. In case of multivessel disease the correlation 
between subtended mass and ischemic burden may have been biased as we solely 
selected the most proximal lesions for calculating the subtended mass. Of course, the 
most proximal lesions also encompass the largest subtended mass. Also, there was 
no validation of the ischemic burden to the corresponding anatomical territory that 
corresponds to the relevant coronary artery lesion used for calculating the myocardial 
area at risk (28). Thirdly, the Voronoi-based segmentation algorithm does not take into 
account the curved surface of the myocardium but derives the distance the between 
the coronary vessels and every myocardial voxel by using a straight line. As distances 
are relatively small we feel the impact of not using the myocardial curvature on the 
final output will be very minimal. Lastly, we must acknowledge that no inter- or intra-
observer measurements were done on the CCTA or CTP analysis. However, prior studies 
have reported excellent and moderate inter- and intra-observer agreements for both 
imaging modalities. (6, 29).

5. Conclusions

Quantification of the myocardial area at risk calculated by using a Voronoi-based 
algorithm in combination with a machine learning based algorithm for LV segmentation 
at CCTA significantly correlates with the ischemic burden as assessed by the standard 
17-segment model at CTP. This correlation improves with increasing stenosis degree. 
This relationship may be beneficial in risk assessment of patients with CAD and may aid 
in clinical-decision making.
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Abstract

Introduction: Cardiac magnetic resonance imaging (MRI) is the gold standard in the 
assessment of lef t ventricle (LV) mass and wall thickness. In recent years, cardiac 
computed tomography angiography (CCTA) has gained widespread usage as an imaging 
modality. Despite this, limited previous investigations have specifically addressed the 
potential of CCTA as an alternative modality for quantitative LV assessment.

The aim of this study was to compare CCTA derived LV mass and wall thickness with 
cardiac MRI utilizing machine learning algorithms.

Methods: Fif ty-seven participants who underwent both CCTA and cardiac MRI were 
identified. LV mass and wall thickness was calculated using LV contours which were 
automatically placed using in-house developed machine learning models. Pearson’s 
correlation coef ficients were calculated along with Bland-Altman plots to assess the 
agreement between the LV mass and wall thickness per region on CCTA and cardiac MRI. 
Inter-observer correlations were tested using Pearson’s correlation coef ficient.

Results: Average LV mass and wall thickness for CCTA and cardiac MRI were 127 g ,128 
g, 7 and 8mm respectively. Bland-Altman plots demonstrated mean dif ferences and 
corresponding 95% limits of agreement of -1.26 (25.06;-27.58) and -0.57 (1.78;-2.92), for LV 
mass and average LV wall thickness, respectively. Mean dif ferences and corresponding 
95% limits of agreement for wall thickness per region were -0.75 (1.34;-2.83), -0.58 (2.14;-
3.30) and -0.29 (3.21;-3.79) for the basal, mid, and apical regions, respectively. Inter-
observer correlations were excellent.

Conclusion: Quantitative assessment of LV mass and wall thickness on CCTA using 
machine learning algorithms seems feasible and shows good agreement with cardiac 
MRI.

Abbreviations
AI:	 Artificial Intelligence
CCTA:	 Cardiac computed tomography angiography
DICOM:	 Digital Imaging and Communications in Medicine
ECG:	 Electrocardiogram
FOV:	 Field of view
HU:	 Hounsfield units
LV:	 Lef t ventricle
MRI:	 Magnetic resonance imaging
RV:	 Right ventricle
TE:	 Echo time
TR:	 Repetition time
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1. Introduction

Increased lef t ventricle (LV) mass and wall thickness causing LV hypertrophy are both 
independent risk factors for cardiovascular mortality and morbidity irrespective of the 
aetiology (1). Cardiac magnetic resonance imaging (MRI) is still considered to be the gold 
standard for LV mass and wall thickness measurements (2). However, over the years 
cardiac computed tomography angiography (CCTA) has become a widely used imaging 
modality for the assessment of coronary arteries and its diagnostic accuracy has greatly 
increased in the last decade (3). Still, only a few prior studies have been performed about 
the use of CCTA for LV mass and wall thickness measurements and only a minor number 
have compared the measurements to MRI (4-10). Nasser Alnasser et al. have written 
an extensive review about the use of artificial intelligence (AI) in (cardiac) structure 
segmentation (11) however, to the best of our knowledge no prior study has incorporated 
the use of machine-learning-based LV segmentation into the comparison of CCTA and 
MRI derived LV mass and wall thickness measurements. Use of CCTA for LV mass and wall 
thickness measurements may be especially useful for patients with contraindications for 
cardiac MRI such as pacemakers, claustrophobia, or clinical conditions that prohibit long 
MRI examinations (9). Furthermore, CCTA has been proven to be more readily available, 
cheaper and faster as compared to MRI (12, 13)

Quantification of LV mass and wall thickness requires the definition of LV endo- and 
epicardial contours in multiple slices covering the complete LV. Manual segmentation of 
the LV myocardium is time consuming both for CCTA and cardiac MRI (14, 15). Recently, 
machine learning algorithms have been developed for both CCTA and cardiac MRI and 
allow for automatic LV segmentation substantially decreasing the time needed for LV 
quantification (14, 16, 17). The aim of this study was to compare LV mass and LV wall 
thickness derived from CCTA and cardiac MRI whilst using machine learning based LV 
segmentation.

2. Materials and methods

2.1 Patients
For this study 130 participants who underwent both CCTA and cardiac MRI between 
October 2009 and November 2021 were identified. Participants with a maximum period 
of more than 6 months between CCTA and cardiac MRI (n = 59), no short-axis cine magnetic 
resonance (MR) image stack (n = 9), severe motion artifacts on MRI (n = 1), CCTA without 
contrast (n = 3) and corrupt CCTA digital imaging and communications in medicine 
(DICOM) files (n = 1) were excluded. A total of 57 participants were selected for the current 
analysis. Among them, thirteen exhibited LV hypertrophy. Patient characteristics and 
indications for CCTA and cardiac MRI are described in Table 1. Figure 1 depicts a detailed 
flowchart of the patient selection. All data were analysed retrospectively. The local ethics 
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committee of the Leiden University Medical Centre approved this retrospective analysis 
of clinical data and waived the need for informed consent.

Table 1. Patient characteristics. CCTA: Cardiac computed tomography angiography. VT: Ventricular 
tachycardia. LV: Lef t ventricle

Patient characteristics N = 57
Male / Female 43 (75%) / 14 (25%)
Age (years) 60 ± 12.2
Hypertension 24 (42%)
Hyperlipidaemia 12 (21%)
Diabetes mellitus 3 (5%)
Smoking 2 (4%)
LV hypertrophy* 13 (23%)
CCTA indication

Chest pain 33 (58%)
Coronary anatomy for workup to VT ablation 22 (39%)
Aortic aneurysm 1 (2%)
Bicuspid aortic valve 1 (2%)

Cardiac MRI indication
Cardiomyopathy 43 (75%)
Myocarditis 4 (7%)
Cardiac ischemia 3 (5%)
Sarcoidosis with cardiac involvement 3 (5%)
Aortic aneurysm 2 (4%)
Amyloidosis 1 (2%)
Bicuspid aortic valve 1 (2%)

*An end-diastolic LV wall thickness of more than 15mm as measured with 2D echocardiography or 
cardiac MRI anywhere in the lef t ventricle (32).
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Figure 1. Flowchart demonstrating patient selection. Scans with an inter-scan interval of more than 6 
months between MRI and CCTA were excluded. CCTA, cardiac computed tomography angiography. 
DICOM, digital imaging and communications in medicine. MRI, magnetic resonance imaging.

2.2 CCTA Data acquisition
CCTA was performed using a 320-row volumetric scanner (Aquilion ONE , Canon Medical 
Systems, Aquilion ONE PRISM Edition, Canon Medical Systems and Aquilion ONE Genesis 
Edition, Canon Medical Systems, Otawara, Japan). A peak tube voltage of 100-135 kV with 
a tube current of 140-580mA was used. Detector collimation, gantry rotation time and 
temporal resolution were 320 x 0.5mm, 275ms and 137ms, for the Aquilon ONE Genesis 
Edition and 320 x 0.5mm, 350ms and 175ms, for the Aquilon ONE (PRISM Edition) 
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respectively. The antecubital vein was used for administration of 50–90 mL of contrast 
agent (Iomeron 400, Bracco, Milan, Italy) followed by a 1:1 mixture of 20 mL contrast 
and saline and finally 25 mL of saline. Peak tube voltage, tube current and amount of 
contrast agent varied based on patient size (18). Af ter contrast administration CCTA was 
performed the next heartbeat when a threshold of 300 Hounsfield units was reached 
in the descending aorta. Subsequently, 70-80% of the RR interval was scanned using 
prospective electrocardiogram (ECG) triggering.

2.3 MRI Data acquisition
Cardiac MRI was performed using a 1.5-T Gyroscan ACS-NT/Intera MR system (Philips 
Medical Systems, Best, The Netherlands) or a 3.0-T Ingenia MR system (Philips Medical 
Systems, Best, The Netherlands) using retrospective ECG gating. Imaging parameters 
were as follows for the 1.5-T Gyroscan ACS-NT/Intera MR system: field of view (FOV) 400 
× 320 mm2; matrix, 256 × 206 pixels; slice thickness, 10 mm with no slice gap; flip angle 
(α), 35°; echo time (TE), 1.67 ms; and repetition time (TR), 3.3 ms. For the 3.0-T Ingenia 
MR system typical parameters were: FOV 400 × 350 mm; matrix, 232 × 192 pixels; slice 
thickness, 8 mm with no slice gap; α, 45°; TE, 1.5 ms and TR, 3.0 ms. The heart was imaged 
in 1 or 2 breath-holds with short-axis slices at various levels dependent on the heart size.

2.4 Image processing
Images were transferred to a workstation for quantitative analysis. In-house developed 
MASS sof tware (Leiden University Medical Centre) was used for short-axis reformatting 
in the CCTA scans and for LV contour placement in the CCTA and MRI scans. The sof tware 
has been validated and supported for clinical purposes. A study by Kawel provides robust 
evidence of its ef ficacy and reliability (19).

CCTA and MRI data were analysed independently and no visual reference to the other 
could be made at any time. Also, the observer was blinded to the results of LV mass and 
LV wall thickness of each scan. Quantitative analysis of both modalities as well as short-
axis reformatting in the CCTA was done automatically by using machine learning models. 
Contours were manually corrected if needed. The AI model used for MRI and CCTA based 
LV segmentation used a deep learning-based approach. Specifically, a convolutional 
neural network architecture, known as the U-Net, was employed for this purpose. The AI 
model was trained on a large dataset of cardiac MRI and CCTA scans, where both the raw 
images and manually annotated LV contours are provided as input. During the training 
process, the model learns to map the input images to the corresponding LV contours, 
optimizing its parameters to minimize the dif ference between the predicted and ground 
truth segmentations. Finally, the performance of the AI model was evaluated on an 
independent testing dataset, which consists of additional cardiac MRI and CCTA scans. 
The model’s predictions on the testing set were compared against manual ground truth 
annotations to assess its performance in real-world scenarios. Training and use of the 
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machine learning models is discussed in more detail for both CCTA and cardiac MRI in 
two separate papers (16, 17).

First, CCTA images were automatically reformatted into a short-axis orientation covering 
the complete LV with a slice thickness of 4 mm. Cardiac MRI images with a slice thickness 
of 8 or 10 mm were already available in short axis hence, no further reformatting was 
needed. Once short-axis slice stacks were created a reference point was placed in a mid-
slice at the site of the inferior attachment of the right ventricle (RV) to LV, both for CCTA 
and cardiac MRI. The segment numbering within a specific level depends on the location 
of the reference point. Hence, this allows for anatomical alignment of CCTA and cardiac 
MRI. Finally, LV epicardial and endocardial contours were automatically detected first in 
the CCTA and hereaf ter in the cardiac MRI for each patient. The 75% phase was chosen 
for LV segmentation on both the CCTA and cardiac MRI as this phase is most ideal for LV 
mass and wall thickness calculation (20). Figure 2 depicts the results of LV segmentation 
for both CCTA and cardiac MRI.

We have opted not to include LV volume as the basis for its calculation (as is with LV mass) 
is based on endo- and epicardial LV contours using MASS sof tware. As the main goal 
of this study was to evaluate the matter of agreement between CCTA and MRI derived 
LV contours we chose LV mass as a derivative of these contours. Therefore, including 
a comparison of LV volume between imaging modalities will not provide additional 
meaningful insights beyond what is already captured in the LV mass calculation process.

Figure 2. Example of LV segmentation of a middle region slice of the same patient for both cardiac 
MRI (lef t panel) and CCTA (right panel). The red lines represent the endocardial contours. The green 
lines represent the epicardial contours. The reference point is marked by the small blue cross. Middle 
region wall thickness for this patient was 8 mm on MRI and 6 mm on CCTA.
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2.5 LV mass and wall thickness calculation
Using the LV contours, LV mass and wall thickness were calculated automatically using the 
aforementioned sof tware. Average LV wall thickness as well as segmental wall thickness, 
using the standard 16-segment model were derived (21). Furthermore, segments were 
combined to provide wall thickness per LV region consisting of the basal, mid and apical 
regions (21) which is depicted in Figure 3. LV wall thickness for the entire LV and per region 
were calculated using the following formulas.

LV wall th ick ness =
segment 1 + segment 2 + … + segment16

16

LV wall th ick ness ba sa l =
segment 1 + segment 2 + segment 3 + segment 4 + segment 5 + segment 6

6

LV wall th ick ness mid =
segment 7 + segment 8 + segment 9 + segment 10 + segment 11 + segment 12

6

LV wall th ick ness apica l =
segment 13 + segment 14 + segment 15 + segment 16

4

 
To assess inter-observer reproducibility a second independent observer performed 
quantitative analysis in a randomly selected cohort of twenty subjects. Since manual 
adjustments to the automatically detected contours was occasionally required, the 
results between observers may vary. Correlations of LV mass and LV wall thickness for 
both CCTA and cardiac MRI between both observers were subsequently tested using 
Pearson’s correlation coef ficient.

Figure 3. Standard 16-segment model depicting how dif ferent segments make up 3 dif ferent major 
regions; basal, mid and apical.
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2.6 Statistical analysis
The agreement between LV mass and wall thickness derived from CCTA and cardiac 
MRI was assessed using Bland-Altman plots and Pearson’s correlation coef ficient. Inter-
observer correlations were tested using Pearson’s correlation coef ficient. SPSS sof tware 
version 25, SPSS IBM Corp, Armonk, New York) was used for all statistical analysis.

3. Theory

Performing a comparison of CCTA and LV mass and wall thickness using machine learning 
algorithms serves both a practical and time-saving purpose. For instance, patients with 
contraindications for cardiac MRI, such as those with pacemakers, claustrophobia, or 
conditions prohibiting prolonged MRI examinations could potentially benefit from 
CCTA as prior mentioned factors play no role in CCTA acquisition (9). Furthermore, the 
increased availability, cost-ef fectiveness and speed of CCTA compared to cardiac MRI 
make it an attractive alternative for routine clinical use (12, 13). Lastly, LV segmentation is 
time consuming and machine learning algorithms for automatic LV segmentation have 
already been proved to speed up this process (14, 16, 17). An important consideration is 
whether use of these algorithms does not compromise the accuracy of LV segmentation 
as compared to the gold standard of cardiac MRI.

4. Results

CCTA -and cardiac MRI images from 57 participants were used in the current analysis 
hence a total of a 114 scans were analysed. Table 1 lists a detailed description of patient 
characteristics. Mean LV mass derived from CCTA and cardiac MRI including the standard 
deviation were 127 ± 31.6 and 128 ± 31.0 g, respectively. Mean wall thickness derived from 
CCTA and cardiac MRI including the standard deviation were 7 ± 1.5 mm and 8 ± 1.3 mm, 
respectively. Correlation between CCTA and cardiac MRI derived LV mass was very 
strong (r = 0.908, p < 0.001). Furthermore, corresponding mean dif ferences and 95% 
limits of agreement for LV mass as demonstrated by the Bland-Altman plot were -1.26 
(25.06;-27.58). LV wall thickness correlation between CCTA and cardiac MRI was strong 
(r = 0.644, p < 0.001) for average wall thickness and (r = 0.662, p < 0.001), (r = 0.668, p < 
0.001) for the basal and mid regions, respectively. Average wall thickness in the apical 
regions demonstrated a moderate correlation (r = 0.524, P < 0.001). Corresponding mean 
dif ferences and 95% limits of agreement were -0.57 (1.78;-2.92), -0.75 (1.34;-2.83), -0.58 
(2.14;-3.30) and -0.29 (3.21;-3.79) for average wall thickness, basal, mid and apical regions, 
respectively. The average value for the thickest segments on MRI and CCTA including 
the standard deviation were 11 ± 1.8 and 10 ± 2.5 mm respectively and demonstrated a 
strong correlation (r=0.687 p<0.001). Corresponding mean dif ferences and 95% limits 
of agreement were -1.06 (2.47;-4.60). Relevant charts for LV mass and wall thickness 
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correlations between CCTA and MRI as well as limits of agreement including mean 
dif ference are depicted in figure 4, figure 5, figure 6 and figure 7. All results are listed 
numerically in Table 2 as well as LV mass and LV wall thickness values according to clinical 
diagnosis in Table 3.

Mean dif ferences per segment were assessed using the standard 16-segment model. 
Results are depicted in figure 8.

Interobserver correlations and intraclass correlation coef ficients for CCTA derived LV 
mass, MRI derived LV mass, CCTA derived average wall thickness and MRI derived average 
wall thickness were excellent yielding Pearson’s correlations coef ficients of (r = 0.994, 
p < 0.001), (r = 0.970, p < 0.001), (r = 0.971, p < 0.001), (r = 0.956, p < 0.001), (r = 0.965, p < 0.001) 
(r = 0.877, p < 0.001), (r = 0.825, p < 0.001) and (r = 0.820, p < 0.001) respectively.

Figure 4. Correlations and mean dif ferences with corresponding 95% limits of agreement for mean LV 
mass in grams. CCTA: Cardiac computed tomography angiography. MRI: Magnetic resonance imaging. 
LV: Lef t ventricle.
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Figure 5. Correlations and mean dif ferences with corresponding 95% limits of agreement for mean 
LV wall thickness in millimeters. CCTA: Cardiac computed tomography angiography. MRI: Magnetic 
resonance imaging. LV: Lef t ventricle.

6
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Figure 6. Correlations and mean dif ferences with corresponding 95% limits of agreement for mean LV 
wall thickness in millimeters according to regions. CCTA: Cardiac computed tomography angiography. 
MRI: Magnetic resonance imaging. LV: Lef t ventricle.
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Figure 7. Correlations and mean dif ferences with corresponding 95% limits of agreement for LV wall 
thickness dif ferences corresponding to the thickest segments in millimeters. CCTA: Cardiac computed 
tomography angiography. MRI: Magnetic resonance imaging.

Figure 8. Mean dif ferences in millimeters between CCTA and MRI wall thickness per segment are 
represented by the red numbers.

6
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Table 2

Pearson’s correlation 
coef ficient R

Mean dif ferences and 95% 
limits of agreement

LV mass 0.908 (p<0.001) -1.26 (25.06;-27.58)
LV wall thickness entire LV 0.644 (p<0.001) -0.57 (1.78;-2.92)
LV wall thickness basal region 0.662 (p<0.001) -0.75 (1.34;-2.83)
LV wall thickness mid region 0.668 (p<0.001) -0.58 (2.14;-3.30)
LV wall thickness apical region 0.524 (p<0.001) -0.29 (3.21;-3.79)
Maximum LV wall thickness 0.687 (p<0.001) -1.06 (2.47;-4.60).

Correlations and limits of agreement between CCTA and MRI. LV: Lef t ventricle.

Table 3

Diagnosis Average 
CCTA LV mass

Average 
MRI LV mass

Average CCTA LV 
wall thickness

Average MRI LV 
wall thickness

Diabetes mellitus (N=3) 130 grams 123 grams 9 mm 8 mm
Hypertension (N=24) 135 grams 137 grams 8 mm 9 mm
Hyperlipidaemia (N=12) 142 grams 140 grams 9 mm 9mm

Average LV mass and wall thickness on CCTA and MRI according to comorbidity. CCTA: Cardiac 
computed tomography angiography. LV: Lef t ventricle. MRI: Magnetic resonance imaging.

5. Discussion

This study assessed the comparison of LV mass and LV wall thickness between CCTA 
and cardiac MRI calculated from LV epi- and endocardial contours whilst using machine 
learning algorithms for automatic placement of these contours. Results demonstrate 
that CCTA shows good correlation with MRI with regard to LV mass and LV wall thickness. 
Also, Bland-Altman plots show narrow limits of agreement and minimal bias. As a result, 
(CCTA) can serve not only in the evaluation of coronary stenoses but also in the assessment 
of LV mass and wall thickness. This capability positions CCTA as a viable alternative to 
cardiac MRI.

Koo et al. performed an analysis in which they evaluated the accuracy of a deep learning-
based algorithm for the segmentation of the LV on CCTA. However, instead of comparing 
this to MRI the results were compared to manual segmentations. It was demonstrated 
that deep learning-based segmentation results were comparable to those provided by 
manual segmentation with a high Dice index. They also concluded that based on visual 
analysis, automated LV segmentation using deep learning is superior to semi-automatic 
segmentation performed by an expert reader. Unfortunately, no statistical evidence was 
given to back up this last claim (14).
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In a comprehensive review by Kawel et al. reference values of LV mass were given for 
cardiac MRI. An average LV mass of 121 grams was found for men and 83 grams for women. 
As the goal of our study was to assess the agreement of LV mass and LV wall thickness 
between CCTA and MRI men and women were not assessed separately. Still, our average 
LV mass value on cardiac MRI of 128 g closely matches the value found by Kawel et al. Given 
the predominant representation of men in our study (75 vs. 25% women), it is noteworthy 
that this gender distribution imbalance could contribute to an elevated average LV mass 
value, given the generally higher LV mass observed in men compared to women (22). It 
is also important to realize that due to the retrospective nature of this study the cohort 
consists of clinical participants, hence we cannot exclude the possibility of this cohort 
having a higher than average LV mass as compared to a sample of the general population 
which was used by Kawel et al. Furthermore, in another study by Kawel et al. the normal 
values for LV wall thickness on cardiac MRI were assessed per segment according to the 
standard 16-segment model. An average of 6 and 7 mm were found respectively for 
women and men when combining all regions. This closely matches our result of 8 mm 
for average LV wall thickness. Again, the result in our study could be slightly higher due 
to the fact that we have included vastly more men than women (19, 21) and that due to the 
retrospective nature of this study the cohort consists of clinical participants which may 
have a higher average LV mass as compared to the general population.

A study by Kara et al. also compared myocardial LV mass between CCTA and MRI using 
manual LV contour tracing for both modalities. It was also found that LV mass derived 
from CCTA correlated strongly with cardiac MRI using Pearson’s correlation coef ficient (r 
= 0.884, p < 0.001), which is comparable to our study. Furthermore, Bland-Altman plots by 
Kara et al. demonstrated a mean dif ference of 19.50 g with corresponding 95% upper and 
lower limits of agreement of 66.05 and -27.05 g, respectively (9). The dif ference between 
the upper limit and the lower limit in our study for LV mass as well as the mean dif ference 
is much lower as compared to Kara et al. This could be attributed to the fact that Kara et 
al. used a 64 slice computed tomography (CT) scanner whereas in our study this was a 320 
slice CT scanner greatly increasing image quality (23). Also, no machine learning model 
was used for LV segmentation in the study by Kara et al.

Wang et al. similarly used automatic sof tware for LV wall thickness comparison between 
CCTA and cardiac MRI. The methodology of our study is comparable to the study by Wang 
et al. as the borders of the endocardium and epicardium were automatically segmented. 
However, MRI contours were segmented manually. A Pearson’s correlation coef ficient for 
average LV wall thickness between CCTA and cardiac MRI of r = 0.698 (p < 0.01) was found 
by Wang et al. This is slightly higher compared to ours r = 0.644 (p < 0.01). However, Bland-
Altman plots obtained by Wang et al. revealed a mean dif ference of 0.6 mm with 95% 
upper and lower limits of agreement of 4.0 mm and -2.7 mm, respectively (8). Although 
the mean dif ference is equivalent to our study, their observed dif ference between the 
upper and lower limits is considerably more than in our study. Again, this could be partly 
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explained due to the use of dif ferent scanner settings. Unfortunately, the slice capacity 
of the scanner used was not provided by Wang et al.

Given the Bland-Altman plots for mass dif ferences between CCTA and MRI in our study 
it is important to note how these upper and lower limits would af fect the diagnosis of 
LV hypertrophy. For instance, Levy et al. investigated the cut-of f values for LV mass that 
define LV hypertrophy. It was found that a LV mass of 294 g or more for men and 198 g 
or more for women would implicate LV hypertrophy. Our study found mean LV mass 
of 127 and 128 g for CCTA and cardiac MRI respectively and 95% limits of agreement for 
dif ferences between CCTA and cardiac MRI of 25.06;-27.58 implicate that diagnosing LV 
hypertrophy would still be possible as potential dif ferences between CCTA and cardiac 
MRI measurements are well below that of LV hypertrophy (24).

Interestingly, when observing the mean dif ferences between CCTA and cardiac 
MRI derived wall thickness per segment in Figure 8 it can be observed that the mean 
dif ferences are greater in septal regions compared to other regions. This could be due to 
the fact that on cardiac MRI it is easier to dif ferentiate between the septum wall and the 
RV as compared to CCTA as with the latter there is less contrast in the RV as compared to 
the LV (25). Furthermore, it is observed that correlation coef ficient and limits of agreement 
considering wall thickness on CCTA and cardiac MRI are less strong for the apical region 
compared to other regions. This is mainly due to the fact that smaller contours which are 
more present apically are more prone to bias as was also described by Mitchell et al (26).

5.1 Limitations
This study has several limitations, which are innate to its retrospective design and novel 
nature. Firstly, it was conducted at a single centre, which may limit the generalizability 
of our findings to broader patient populations and clinical settings. Consequently the 
sample size in our study was limited, which may af fect the statistical power and precision 
of our results. Secondly, the absence of clinical endpoints in our study restricts our ability 
to directly assess the impact of CCTA compared to cardiac MRI on patient outcomes. 
Thirdly, it was not possible to use similar cardiac gating parameters for the CCTA and 
cardiac MRI. Hence, dif ferences in LV mass and LV wall thickness between CCTA and 
cardiac MRI may be attributed due to dif ferences in the cardiac timing of the image 
acquisition. Still for both imaging modalities the phase on 75% of the RR interval was used 
for contour placement and subsequent LV mass and wall thickness comparison. However, 
dif ferences in heartbeat may still have negatively impacted equal cardiac timing of CCTA 
and cardiac MRI. It is worth noting that dif ferent scanners with dif ferent tesla strengths 
(1.5 and 3.0 T) were used for MRI image acquisition in our study. Although using a 3.0 
T scanner can substantially decrease scanning time compared to a 1.5 T scanner it has 
been demonstrated that there is no dif ference regarding LV mass and wall thickness 
measurements. Therefore use of dif ferent MRI scanners in this study is unlikely to have 
influenced the LV contour placement accuracy (27). Fourthly, images derived from CCTA 
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and MRI have a dif ferent slice thickness. We cannot entirely exclude the possibility that 
this has influenced the accuracy of LV contour placement. However, multiple studies have 
demonstrated that the accuracy of LV segmentation is not af fected by slice thickness 
both for CCTA and MRI (28, 29). Lastly, In our study, we deliberately chose not to include 
papillary muscles and trabeculae in the LV mass assessment as our primary objective was 
to conduct a uniform comparison between cardiac MRI and CCTA for LV mass and wall 
thickness quantification. Furthermore, including papillary muscles and trabeculae in the 
assessment is time consuming and may introduce variability, potentially confounding 
the comparison between the two imaging modalities (30). Still, not including papillary 
muscles and trabeculae may have introduced bias as this can lead to lower LV volumes 
as compared to the reference values, especially in patients with LV hypertrophy (30).

6. Conclusions

Utilizing CCTA for assessment of LV mass and wall thickness whilst using a machine 
learning model for LV segmentation shows good agreement with cardiac MRI. 
Consequently, CCTA may of fer a reliable alternative for individuals with contraindications 
to cardiac MRI in the context of LV mass and wall thickness assessment. Notably, CCTA 
of fers advantages in terms of greater accessibility, cost-ef fectiveness, and faster 
imaging acquisition compared to MRI (12, 13), albeit with the caveat of increased radiation 
exposure (31). Despite being conducted at a single center and without clinical endpoints, 
our findings of fer important preliminary evidence that warrants further investigation 
and validation in larger, multicenter studies with clinical outcomes.
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Summary

Chapter 1 includes the general introduction and thesis outline. CCTA in combination with 
CTP allows for quantitative, qualitative and functional assessment of CAD. Furthermore, 
quantification of myocardial ischemia on CTP and using a Voronoi algorithm for 
myocardial segmentation allows for quantitative correlation of myocardial ischemia 
to the corresponding coronary stenosis which is vital for revascularization. Following 
the widespread use of CCTA use of serial CCTA has emerged in recent years allowing for 
the assessment of changes in plaque burden and plaque morphology. Technological 
advancements have enabled the use of automatic alignment in the comparison of 
baseline and follow-up scans whilst also allowing for quantitative assessment of plaque 
changes. Specific advancements in CCTA image quality have enabled CCTA to be used 
for LV dimension assessment, a task still mainly performed by cardiac MRI. Chapter 
2 consists of a review article exploring the use of serial CCTA for predicting plaque 
progression and MACE. The following topics are described. Quantitative baseline plaque 
features as well as quantitative plaque changes seem to be more predictive of MACE 
and/or plaque progression as compared to qualitative plaque features. Furthermore, 
higher epicardial fat volume (EFV) at baseline was associated with the progression or 
development of coronary artery plaque. Serial CCTA has also been proven useful in the 
assessment of statin therapy ef ficacy on plaque progression as it has been revealed that 
statins slowed the overall progression of coronary atherosclerosis volume and induced 
an increase in plaque calcification and reduction of high risk plaque features. Certain 
challenges remain with regard to the clinical use of serial CCTA. For instance, dif ferent 
scanners may be used at baseline and follow-up scans leading to a variability in plaque 
volume assessment. This highlights the importance of using standardized acquisition 
protocols for both baseline and follow-up CT scans. Furthermore, no expert consensus 
is available on the ideal inter-scan interval between baseline and follow-up CT scans 
but based on recent studies this interval could potentially be set at 1-2 years. Chapter 
3 describes the development of patient specific thresholds for determining plaque 
progression and/or regression on serial CCTA. Delineation of coronary vessel and lumen 
contours is necessary for plaque quantification which is vital for CAD assessment on both 
CCTA and serial CCTA. This delineation process is dependent on scan quality which can be 
quantified using the contrast to noise ratio (CNR). Consequently, thresholds are necessary 
to dif ferentiate actual changes in plaque thickness from changes caused by inaccuracies 
in vessel and lumen wall delineation. A cohort of 50 patients with available CCTA was 
used in which two dif ferent phases from each scan were used for the delineation of 
300 coronary vessels and CNR calculation for each vessel. The average CNR value was 
13.4 ± 3.6. The average positive and negative dif ferences in measured plaque thickness 
were 0.7 ± 0.3 and − 0.9 ± 0.6 mm, respectively. The inter-observer correlation for CNR 
values was excellent, with a correlation coef ficient of 0.872 (p < 0.001). Found plaque 
dif ferences among these two phase scan sets may be attributed to inaccuracies in 
plaque delineation as plaque dif ferences between two reconstructed phases from the 
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same scan from the same patient should always be zero. Subsequently, largest positive 
and negative plaque dif ferences were plotted against the vessel-specific CNR. Plots 
revealed a small trend in which larger plaque dif ferences corresponded with a lower CNR. 
By using linear regression analysis vessel specific and patient specific thresholds could 
be obtained based on the vessel-specific CNR. Chapter 4 demonstrates the possibility 
of full quantification of myocardial perfusion defects as assessed by CTP. Nowadays 
assessment of CTP is done semi quantitatively by visual analysis. Full quantification of 
myocardial perfusion defects and subtended myocardial mass seems feasible as it allows 
for identifying the distribution of myocardial ischemia over the coronary artery lesion(s). 
Thirty-three patients with a combined CCTA and CTP protocol with good or excellent 
imaging quality on CTP were analyzed using the Voronoi algorithm. This algorithm 
allows for dividing tissue in dif ferent segments according to which blood vessel is closest 
to the segment. A total of 64 relevant coronary artery lesions were assessed. Average 
values for total subtended mass, subtended mass per lesion, perfusion defect mass 
and perfusion defect mass per lesion were 69, 36, 7 and 3 grams respectively. In 19/33 
patients (58%) the total perfusion defect mass could be distributed over the relevant 
coronary artery lesion(s). Chapter 5 explores the correlation between the quantified 
myocardial area at risk and quantified areas of myocardial ischemia. Forty-two patients 
with a combined CCTA and CTP protocol and at least one stenosis of ≥ 50% on CCTA were 
selected for analysis. The myocardial area at risk was calculated using a Voronoi-based 
segmentation algorithm on CCTA and was defined as the sum of all territories related to a 
≥ 50% stenosis as a percentage of the total LV mass. The ischemic burden was calculated 
as the quantified area of myocardial ischemia as a percentage of the total LV mass. LV 
contours were automatically placed using a machine learning algorithm. A total of 77 
coronary lesions with a luminal stenosis of ≥ 50% were assessed. Analysis was done 
separately for stenosis of ≥ 50% and ≥ 70%. Average myocardial area at risk for stenosis 
≥ 50% and ≥ 70% were 59% and 37%, respectively. Average ischemic burden for stenosis 
≥ 50% and ≥ 70% were 23% and 24%, respectively. There was a moderate correlation 
of the ischemic burden versus myocardial area at risk for stenosis of ≥ 50% (r = 0.564; 
p < 0.01). A good correlation was found for the ischemic burden versus the area at risk for 
stenosis of ≥ 70% (r = 0.708; p < 0.01). Chapter 6 assesses the use of CCTA for LV mass and 
wall thickness assessment as compared to the gold standard of cardiac MRI. Fif ty-seven 
patients with available CCTA and MRI with an interscan interval of 6 months maximum 
were analyzed. Average LV mass and wall thickness for CCTA and cardiac MRI were 127 
grams, 128 grams, 7mm and 8 mm, respectively. Bland–Altman plots demonstrated mean 
dif ferences and corresponding 95% limits of agreement of −1.26 (25.06; −27.58) and −0.57 
(1.78; −2.92), for LV mass and average LV wall thickness, respectively. Mean dif ferences and 
corresponding 95% limits of agreement for wall thickness per region were −0.75 (1.34; 
−2.83), −0.58 (2.14; −3.30), and −0.29 (3.21; −3.79) for the basal, mid, and apical regions, 
respectively. Ultimately, use of CCTA for LV dimension assessment is feasible and shows 
good agreement with cardiac MRI.
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General discussion

This thesis explores the evolving role of CCTA in cardiovascular imaging. Hereby focusing 
on the utilization of serial CCTA on plaque progression and/or regression, quantifying 
myocardial ischemia on CTP and subsequently correlating this to the myocardial area at 
risk and lastly using CCTA as an imaging tool for LV morphology evaluation.

Across five original studies, the results support the increasing clinical value of CCTA as a 
multipurpose imaging tool for both anatomical and functional assessment, especially 
when aided by advanced computational methods.

A proposed method for the objective assessment of plaque dynamics using patient-
specific thresholds on CCTA allows for the direct visualization and quantification of plaque 
thickness dif ferences, and shows good visual agreement with the plaque localization. 
Absence of a gold standard may be regarded as a severe limitation however Cao et al 
demonstrated excellent correspondence using artificially created plaque changes (1).

Adequate detection of plaque changes is highly important as multiple studies have 
demonstrated that especially quantitative plaque features (contrary to qualitative 
features) are predictive of plaque progression and MACE (2-5). Furthermore, the capability 
of subclinical atherosclerosis progression and/or regression detection may be especially 
beneficial for timely treatment in order to prevent atherosclerosis progression (6).

In two additional studies the utility of CCTA was expanded to the functional domain in 
terms of ischemia detection using CTP. Primarily it was demonstrated that ischemia may 
be quantified and subsequently correlated with the subtended mass as is determined 
by the coronary stenosis. These studies hereby confirmed that CCTA combined with 
adenosine stress protocols such as CTP can provide insight into myocardial ischemia 
and its relation to relevant CAD localization. This reinforces the emerging notion that 
CCTA aided by a adenosine stress protocol could perhaps replace or complement other 
myocardial perfusion techniques such as PET or SPECT in specific patient cohorts (7).

Lastly, an evaluation was made using CCTA for quantifying lef t ventricular mass and 
wall thickness and compared with the gold standard of cardiac MRI using AI-driven 
segmentation showing excellent agreement. An alternative to MRI is especially 
important as patient may have insurmountable contraindications such as cardiac devices 
or claustrophobia (8). This further supports the idea of CCTA as a single modality capable 
of assessing coronary arteries, myocardial perfusion - by means of adding an adenosine 
stress protocol - and cardiac morphology.
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What strengthens this thesis is the focus on automation -for example by leveraging AI 
algorithms- and consistent use of advanced image analysis techniques such as applying 
a Voronoi algorithm for myocardial segmentation.

However, there are also limitations. All studies were retrospective in nature and based 
om relatively small single-center cohorts, limiting generalizability. Although the review 
article on the utilization of serial CCTA for the assessment of plaque progression and/
or regression included clinical endpoints none of the other studies include this feature. 
This prevents definitive conclusions about the prognostic implications of the derived 
metrics. However we do feel this is inherent to research focusing on the development 
of new technological methods for (aided) image analysis as is the case in this thesis. 
Furthermore, while AI tools improve ef ficiency, they can lack transparency, raising 
questions about model robustness across diverse datasets (9).

Conclusion and future perspectives

CCTA has become a widely used imaging modality for the detection of coronary artery 
stenosis with a high degree of diagnostic accuracy (10). As such, serial CCTA has become 
available in the assessment of plaque progression and or regression. Furthermore, it 
allows for studying the relationship of both quantitative and qualitative plaque features 
with regard to the prediction of plaque progression and MACE over time (11, 12). Following, 
the results of a review paper included in chapter 2 of this thesis is has been shown that not 
primarily qualitative plaque features but quantitative plaque features have the biggest 
impact on plaque progression and MACE. This underlies the potential importance for 
serial CCTA which is yet to be introduced in regular risk stratification of patients. With 
regard to further implementation of serial CCTA chapter 3 of this thesis describes the 
use of automatic co-registration of baseline and follow-up scans as well as development 
of patient specific cut-of f values for determining plaque progression or regression for 
optimal usage of serial CCTA (1).

Addition of CTP to CCTA is beneficial as it allows for functional assessment of coronary 
artery stenosis which is crucial in the decision to revascularize patients (13). Nowadays, 
assessment of CTP is still done semi-quantitatively by visual analysis. In chapter 4 and 
5 of this thesis it has been demonstrated that fully quantifying perfusion defects is 
possible and allows for quantitative correlation of hemodynamically significant lesions 
to areas of myocardial hypoperfusion. Furthermore, this allows for correlation of the 
“subtended mass” – the myocardial mass distal to a stenosis – with the area of myocardial 
hypoperfusion, demonstrating a good relationship with increasing stenosis degree.

The use of CCTA has been primarily focussed on coronary artery stenosis assessment 
yet with regard to its increasing spatial resolution other potential uses arise such as LV 
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Chapter 7

dimension assessment (14). To this day cardiac MRI remains the gold standard when it 
comes to LV dimension assessment (15). Assessment of LV dimensions is crucial as both LV 
hypertrophy and LV wall thickness are independent risk factors of cardiac death (16). This 
thesis has demonstrated that CCTA has proven to be a reliable alternative for LV mass and 
LV wall thickness assessment as compared to MRI. This process may be further optimized 
by use of machine learning for LV contour placement on both CCTA and MRI allowing for 
substantial time gain as is pointed out before in several other studies (17, 18).

With the coming age of quantum computing and artificial intelligence it is interesting to 
see how these processes may be automated further in the (near) future (19).

Recently, use of photon counting CT has emerged and is capable of very high resolution 
imaging due to its increased spatial and temporal resolution which is essential for the 
assessment of small structures such as coronary plaques (20). Phantom studies have 
also demonstrated the feasibility of photon counting CT for the accurate quantification 
of iodine concentrations across various levels and body sizes, this is especially vital for 
the potential use of photon counting CT in the assessment of myocardial ischemia 
(21). Current assessment of iodine maps using standard multidetector CT scanners is 
of ten hindered due to beam hardening and other artefacts. As such photon counting 
CT may prove especially useful by reducing these artefacts along its increased spatial 
and temporal resolution (22). Furthermore, the ability to count photon numbers and 
energy enables the reconstruction of multienergy spectral images allowing for material 
decomposition analysis and thus better characterization of plaques. As such photon 
counting CT of fers numerous potential advantages as compared to current standard 
multidetector CT scanners and is highly likely to be routinely used in CCTA assessment 
in the future (23). In this thesis photon counting CT was highlighted due to its direct 
relevance to CCTA and CTP for atherosclerosis and ischemia assessment as well as use of 
CCTA for LV morphology analysis, which are central to the studies presented. However, 
photon counting CT represents just one of several highly anticipated innovations in 
cardiac imaging. For example, fluripiridaz PET/CT is another notable advancement and 
has demonstrated superior image quality, higher diagnostic accuracy and lower radiation 
exposure as compared to traditional SPECT imaging. As such, fluripiridaz PET/CT is 
particularly advantageous in myocardial perfusion imaging, hereby of fering improved 
detection of coronary artery disease (24).

Henceforth, a combination of easy-to-use tools aided by artificial intelligence and 
increased image quality will pave the route for new frontiers in cardiovascular imaging.
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Hoofdstuk 1 bevat de algemene introductie en scriptieopzet. Coronary computed 
tomography angiography (CCTA) gecombineerd met computed tomography perfusion 
(CTP) maakt het mogelijk om een kwantitatieve, kwalitatieve en functionele beoordeling 
uit te voeren van coronary artery disease (CAD). Myocardiale segmentatie door middel 
van een Voronoi algoritme in combinatie met de kwantificatie van myocardiale 
ischemie bij CTP maakt het mogelijk om deze laatste kwantitatief te correleren aan 
de corresponderende locatie van de coronairstenose, hetgeen van essentieel belang 
is voor een eventuele revascularisatie. Naar aanleiding van het wijdverspreide gebruik 
van CCTA is het gebruik van seriële CCTA de laatste jaren in opkomst voor de beoordeling 
van veranderingen in plaque hoeveelheid en morfologie. Technologische vooruitgang 
maakt automatische registratie van baseline en follow-up coronair scans mogelijk 
waarbij ook een kwantitatieve analyse van plaque veranderingen kan worden verricht. 
Specifieke vooruitgang bij de beeldkwaliteit van CCTA heef t ertoe geleid dat CCTA ook 
gebruikt kan worden voor de beoordeling van lef t ventricle (LV) dimensies, een taak 
welke tot op heden vooral wordt uitgevoerd door magnetic resonance imaging (MRI). 
Hoofdstuk 2 bevat een review artikel welke ingaat op het gebruik van seriële CCTA 
voor de voorspelling van plaque progressie en major adverse cardiac events (MACE). De 
volgende onderwerpen worden beschreven; Kwantitatieve baseline plaque kenmerken 
alsmede kwantitatieve plaque veranderingen zijn meer voorspellend voor MACE en/
of plaque progressie vergeleken met kwalitatieve plaque kenmerken. Daarnaast werd 
een hoger epicardial fat volume (EFV) bij baseline geassocieerd met de progressie of 
ontwikkeling van coronair plaque. Seriële CCTA is ook bewezen ef fectief gebleken bij 
de beoordeling van de ef fectiviteit van statine therapie op plaque progressie. Hierbij 
is het bewezen dat statines de algehele progressie van het atherosclerose volume 
vertraagde en een toename induceerde van gecalcificeerde plaque met een afname 
van high risk plaque features. Toch kent seriële CCTA nog uitdagingen waaronder het 
gebruik van verschillende scanners bij baseline en follow-up scans hetgeen zal leiden 
tot een variabiliteit in gemeten plaque volumes. Dit onderstreept het belang van 
gestandaardiseerde acquisitie protocollen voor zowel baseline als follow-up CT scans. 
Tevens is er tot op heden geen expert consensus beschikbaar wat betref t het ideale inter-
scan interval tussen baseline en follow-up CT scans, alhoewel recente studies hebben 
aangetoond dat mogelijk een interval van 1-2 jaar kan worden gebruikt. Hoofdstuk 3 
beschrijf t het gebruik van patiënt specifieke afkapwaarden voor het bepalen van plaque 
progressie en/of regressie op seriële CCTA. Contouring van de coronaire vaatwand en het 
lumen is nodig voor plaque kwantificatie, hetgeen essentieel is voor de beoordeling van 
CAD bij zowel CCTA als seriële CCTA. Accuraatheid van de contour plaatsing is afhankelijk 
van de scankwaliteit welke gekwantificeerd kan worden met behulp van de contrast-to-
noise ratio (CNR). Zodoende zijn er afkapwaarden nodig om te kunnen dif ferentiëren 
tussen reële veranderingen in plaque dikte en veranderingen veroorzaakt door 
inacuraatheid van de contouren. Een cohort van vijf tig patiënten welke CCTA hebben 
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ondergaan en elk beschikt over 2 scanfasen werd gebruikt voor contourplaatsing van in 
totaal 300 coronairen, hierbij werd tevens voor elk vat de CNR berekend. De gemiddelde 
CNR was 13.4 ± 3.6. De gemiddelde positieve en negatieve verschillen in gemeten plaque 
dikte waren 0.7 ± 0.3 en -0.9 ± 0.6mm respectievelijk. De inter-observer correlatie voor 
de CNR waarden was uitstekend met een correlatiecoëf ficiënt van 0.872 (p<0.001). 
Gevonden plaque verschillen tussen deze twee scan fasen kunnen worden veroorzaakt 
door inacuraatheden in de contour plaatsing, aangezien plaque verschillen tussen twee 
scanfasen van dezelfde patient op dezelfde tijd altijd nul moeten zijn. Vervolgens werden 
de grootste positieve en negatieve plaque verschillen uitgezet tegen de vaat specifieke 
CNR. De gecreëerde grafieken toonde een lichte trend waarbij grotere plaque verschillen 
overeen kwamen met een lagere CNR. Een lineaire regressie analyse werd toegepast op 
deze grafieken zodat vaat specifieke en patiënt specifieke afkapwaarden kunnen worden 
verkregen, gebaseerd op de vaat specifieke CNR. Hoofdstuk 4 toont de mogelijkheid 
voor volledige kwantificatie van myocardiale perfusiedefecten zoals vastgesteld met 
CTP. Tegenwoordig wordt CTP nog steeds beoordeeld op een semi-kwantitatieve 
manier met behulp van visuele analyse. Echter, volledige kwantificatie van myocardiale 
perfusie defecten en bijhorende myocardiale massa distaal van de stenose lijkt wenselijk 
aangezien het dan mogelijk is om de distributie van myocardiale ischemie te koppelen 
aan de coronair stenose(n). Drieëndertig patiënten met een gecombineerd CCTA en CTP 
protocol met beelden van goede of uitstekende scankwaliteit werden geanalyseerd 
middels het Voronoi algoritme. Dit algoritme maakt het mogelijk om weefsel te verdelen 
in segmenten op basis van welk bloedvat het dichtst in de buurt ligt. In totaal werden 
64 coronair stenosen geanalyseerd. Gemiddelde waarden voor de totale massa distaal 
van de coronair stenose(n), massa per stenose, perfusiedefect massa en perfusiedefect 
massa per stenose waren 69, 36, 7 en respectievelijk 3 gram. Bij 19/33 patiënten (58%) kon 
de totale perfusiedefect massa worden verdeeld over de relevante coronair stenose(n). 
Hoofdstuk 5 onderzoekt de relatie tussen het gekwantificeerde myocardiale gebied 
“at risk” door een stenose en het gekwantificeerde gebied van myocardiale ischemie. 
Tweeënveertig patiënten met een gecombineerd CCTA en CTP protocol en op zijn minst 
een stenose van ≥ 50% op CCTA werden geselecteerd voor analyse. Het myocardiale 
gebied “at risk” werd berekend met behulp van een Voronoi segmentatie algoritme en 
werd gedefinieerd als de som van alle myocardiale gebieden gerelateerd aan een ≥ 50% 
stenose als percentage van de totale LV massa. De ischemische “burden” werd berekend 
als het gekwantificeerde gebied van myocardiale ischemie als percentage van de totale 
LV massa. LV contouren werden automatisch geplaatst met behulp van een machine 
learning algoritme. In totaal werden 77 coronaire lesies beoordeeld met een luminale 
stenose van ≥ 50%. Er werd een separate analyse uitgevoerd voor stenosen van ≥ 50%  en 
≥ 70%. Het gemiddelde myocardiale gebied “at risk” voor stenosen van ≥ 50% en ≥ 70% 
was respectievelijk 59% en 37%. Gemiddelde ischemische “burden” voor stenosen van 
≥ 50% en ≥ 70% was respectievelijk 23% en 24%. Er was een matige correlatie tussen 
de ischemische “burden” en het myocardiale gebied “at risk” bij een stenose van ≥ 50% 
(r = 0.564; p < 0.01). Een goede correlatie werd gevonden voor stenosen van ≥ 70% (r = 
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0.708; p < 0.01). Hoofdstuk 6  beschrijf t het gebruik van CCTA voor LV massa en wanddikte 
bepaling, vergeleken met de gouden standaard, MRI. Zevenenvijf tig patiënten met 
zowel een beschikbare CCTA en MRI met een interscan interval van maximaal 6 maanden 
werden geanalyseerd. Gemiddelde LV massa en wanddikte voor CCTA en cardiale MRI 
waren respectievelijk 127 gram, 128 gram, 7mm en 8mm. Bland-Altman grafieken 
toonde gemiddelde verschillen en een 95% betrouwbaarheidsinterval voor de mate 
van overeenstemming van −1.26 (25.06; −27.58) en −0.57 (1.78; −2.92), respectievelijk voor 
LV massa en gemiddelde LV wanddikte. Gemiddelde verschillen en corresponderende 
95% betrouwbaarheidsintervallen voor wanddikte per regio waren respectievelijk −0.75 
(1.34;−2.83), −0.58 (2.14; −3.30), en −0.29 (3.21; −3.79) voor basale, middelste en apicale 
regio’s. Gebruik van CCTA voor de beoordeling van LV dimensies is mogelijk en toont een 
goede overeenstemming met cardiale MRI.
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