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Chapter 2

Abstract

Researchers frequently come across sample size calculations in the scientific literature they read, in projects
undertaken by their peers, and likely within their own work. However, despite its ubiquity, calculating a
sample size is often perceived as a hurdle and not fully understood. This paper provides a brief overview of
sample size estimation to guide readers, researchers, and reviewers through its fundamentals.

Significance

Sample size estimation not only plays a key role in the design of confirmatory studies, but also in the
interpretation of their results. This brief guide aims to help clinical researchers understand the basics and
avoid common pitfalls.
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The power of sample size calculations

Introduction

Sample size estimation is an essential component of the design of any medical study, it is required for ethics
approval and should be reported in the publication.’* However, its relevance and the implications of
inadequately calculated sample sizes are not always understood. What is more, the multitude of options to
choose methods, parameters, programs or web applications for sample size calculations is huge and
sometimes confusing. In this paper we provide readers with a basic introduction into sample size
calculations. With a focus on experimental research (clinical trials), we discuss the relevance of the sample
size calculations with brief illustrations. Thereafter, we discuss several pitfalls, as well as the role of sample
size calculations in observational research.

Why calculate a sample size?

A sample size calculation informs how many participants should be included to detect a particular treatment
effect (or harmful effect, in case of a risk factor), should it exist. Including too many participants in
experimental research has clear drawbacks: it would unnecessarily increase costs and patient efforts, and
could unnecessarily expose them to unwanted adverse effects, as well as to a less effective treatment option
should the experimental treatment turn out inferior to the standard of care.* However, including too few
participants could lead to failure to detect an effect, even if it exists.” If, nevertheless, an effect is detected
with (too) few participants, the effect is likely inflated.> After all, for an effect to exceed the threshold of
statistical significance in an underpowered study, the effect must be very large or (at least partly) be the
result of chance. A study too small may thus yield inconclusive or even misleading results. An optimal
sample size is crucial to contribute meaningfully to scientific literature and prevent research waste. This
particularly holds for confirmatory studies, which aim to confirm or refute a hypothesised effect. If — upfront
— researchers lack clarity on the potential effect’s direction and magnitude, it will be difficult to design a
study with an appropriate sample size, and this will limit the subsequent interpretation of the results. In
contrast, exploratory studies are typically aimed at generating new hypotheses rather than confirming or
refuting them, and therefore often require different considerations regarding sample size and interpretation
of study results (see penultimate section).®

How to calculate a sample size?

The first step when calculating a sample size concerns determining the research objective (e.g., superiority
or non-inferiority) and (primary) endpoint of interest.” This should ideally be translated into an ‘estimand’,
which is a precise, formal description of the treatment effect to be estimated in the study.®® A conventional
sample size calculation (i.e., superiority two-arm parallel trial with 1:1 treatment allocation) requires four
main ingredients:

1. Target difference

The target difference is the smallest difference between the effects of two treatments, that should be reliably
detectable, if it indeed exists in the population of interest (or an effect more extreme). The target difference
is the main driver of the required sample size; if it is reduced by half, the sample size will quadruple.”
Obviously, estimating this difference is the primary objective of the study and therefore by default unknown;
hence its magnitude is based on assumptions. It is important that it represents a difference that is considered
clinically relevant to one or more stakeholder groups (such as patients and clinicians), and that it is realistic
(based on existing evidence, or expert opinion).'” There are multiple strategies to inform the target difference.
For some endpoints and disease areas, previous research and/or guidelines have helped define minimal
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clinically important differences, such as change in HbAlc or change in body weight for type 2 diabetes."!
Other strategies may for example include seeking expert opinion (e.g., patient representatives and clinicians),

review of literature, and results of pilot studies.'*!?

2. Variability in the population

The variability, or variance, indicates how much variation is observed in the endpoint. For continuous
endpoints, such as HbAlc, this variation can be captured by the standard deviation. Existing literature or
pilot studies can be useful to inform this parameter for sample size calculations. If these are unavailable or
of low quality, researchers could opt for a planned interim analysis to re-estimate the required sample size
based on the variation observed in the first data of the trial (note, in such interim analysis no treatment
effect is estimated, nor is a formal statistical test of the treatment effect performed).

3. Type I error (alpha)

The type I error probability, or alpha, is the probability of incorrectly rejecting the null hypothesis when it
is true (i.e., false-positive result). It corresponds with the significance level of a hypothesis test and should
thus reflect the intended significance level of the statistical analysis plan. Traditionally, (two-sided) alpha is
set at 5%, but other values, such as 2.5%, could also be considered.

4. Type II error (beta)

The type II error probability, or beta, is the probability of failing to reject the null hypothesis when the
alternative hypothesis is true (i.e., false-negative result). A related concept, ‘power’, represents the
probability of detecting a true effect, should it exist, and is calculated as 1 — beta. Type II errors are often
considered less critical than type I errors; beta is typically set at 10 or 20%.

In Box 1 and Box 2, examples are given of how to calculate the required sample size for a continuous and
a binary endpoint by hand. Most statistical software programs, such as SPSS, STATA, and R include
options to calculate sample sizes. PASS is reliable software entirely dedicated to sample size and power
calculations. For simple sample size calculations, certain web applications can also offer reliable, easy-to-use
alternatives.'>!* It is advisable to have sample size calculations reviewed by others, as errors in the initial
calculation are not easily corrected once the study is underway (or worse, impossible once finished).
Additionally, consulting a statistician should be considered, particularly in case of more complex designs.
For further reading on sample size estimation, including calculations for other endpoints (e.g., time-to-
event), objectives (e.g., equivalence, non-inferiority) and allocation ratios, a plethora of resources are

available.”!>1¢

What if the required sample size is too large?

After having calculated the required sample size, the resulting number of participants might be higher than
considered feasible. There are different ways to proceed. First, a reasonable option could be to simply
conclude that the current research objective is infeasible, and that research resources are better spent
elsewhere. Second, researchers may explore whether options exist to increase recruitment (for example, by
including more study sites or relaxing eligibility criteria). Alternatively, some may be tempted to ‘tweak’ the
parameters used for the sample size calculation so that the required number of participants is reduced. We
generally advise against doing this. Increasing the target difference (or reducing the expected variation)
results in the issues outlined before; clinically important effects are
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Box 1. Example of a sample size calculation for a continuous endpoint

Suppose we are interested in comparing the effect of two antidiabetic medications on Hb1Ac
in patients with type 2 diabetes. The primary outcome of interest is percentage change of
Hb1Ac at 40 weeks of treatment (a continuous endpoint). On the basis of existing literature,
we consider a difference of 0.5 percentage point between drug A and B in Hb1Ac reduction
to be realistic and clinically relevant. Prior studies have further shown that the percentage
change of Hb1Ac after treatment with drug A and B are normally distributed with a standard
deviation of approximately 1.0 percentage point. We accept a conventional type I error
probability of 5% (for a two-sided hypothesis) and a type II error probability of 20% (which
corresponds with 80% power). We can then calculate the required sample size using Formula
1:

2(0.84 + 1.96)21.02
~ 63

0.52 ’

which is the number of participants per treatment arm. Accounting for potential dropouts in
the study, can be done by dividing the sample size by 1 — attrition probability (assuming non-
informative censoring). For an expected attrition of 10%, this implies 63/0.9 = 70 participants
per arm, or 140 participants in total.

Formula 1
2(Zy-p +Z1_q2)?0?
n= 42
n = sample size per treatment arm
d = target effect size (difference)
o = (pooled) standard deviation
o = type I error probability (significance level)
B = type Il error probability (power = 1 — )
Z1-p = corresponding Z-value for 1 — f of the normal cumulative distribution
function
Zi_qj2 = corresponding Z-value for 1 — a/2 of the normal cumulative distribution
function

more likely to go undetected, while significant effects (or even close to significance) are likely to be severely
exaggerated.”” Tweaking the sample size increases the probability of imprecise, difficult-to-interpret study
results (e.g., is there truly no relevant effect or did we miss it?). If there are compelling arguments to conduct
a confirmatory study with a (too) small sample size, we urge researchers to be transparent about this and
opt for a compromise in power (i.e., increasing beta), instead of choosing an unrealistically large (overly
optimistic) target difference to mask sample size problems and mislead readers.
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Box 2. Example of a sample size calculation for a binary endpoint

Suppose we are interested in comparing the effects of two antidiabetic medications on the
percentage of type 2 diabetic patients that achieve Hb1Ac of <6.5% at 40 weeks (a binary
endpoint). Based on previous studies we expect that the proportion of patients that will achieve
the outcome under standard of care is 50%. A difference of 10 percentage points was
considered to be clinically relevant and realistic by experts. Therefore, we hypothesize that in
the experimental arm, the proportion of patients with the outcome will be 60%. We accept a
conventional type I error probability of 5% (for a two-sided hypothesis) and a type II error
probability of 20%. Using Formula 2, this yields the required sample size:

(0.84 + 1.96)2(0.5(1 — 0.5) + 0.6(1 — 0.6))

(05— 0.6)2 ~ 385

In this scenario, we would require 385 participants per arm, or 770 participants in total.

Formula 2
"= (Zi—p + Z1—a2)*(ma(1 — my) + mp (1 — mp))
(ma — mp)?
n = sample size per treatment arm
Ty = proportion of participants with the outcome in experimental arm
g = proportion of participants with the outcome in control arm
o = type [ error probability (significance level)
B = type Il error probability (power = 1 — f8)
Z1-p = corresponding Z-value for 1 — f of the normal cumulative distribution
function
Zi_qj2 = corresponding Z-value for 1 — a/2 of the normal cumulative distribution
function

Early termination: now what?

Early termination of studies occurs frequently; about one in four trials discontinues prematurely.'® While
sometimes this is part of the design (e.g., a pre-specified decision based upon a planned interim-analysis),
most studies stop early due to recruitment failure or lack of funding. In such scenario, stopping before
reaching the target sample size is problematic. It leads to imprecise estimates and an increased risk of both
missing important effects as well as inflated effect sizes. Ideally, researchers should prevent stopping early,
for example with a pilot study testing feasibility. By no means should researchers look at the data before the
study is completed and stop early because the results look convincing (except for a formal interim analysis).
Regardless, sometimes early termination may be inevitable. In that case, we caution against standard
interpretation of the results and drawing conclusions about the magnitude of the effect of interest. Second,
we encourage researchers to nevertheless disseminate their results, since these can contribute to meta-
analyses, and experiences regarding recruitment and feasibility may be valuable to future researchers.
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Post-hoc power calculations

Sometimes, after finishing the study, researchers report how much power their study had to detect a
specified effect given the achieved sample size. These ‘post-hoc power calculations’ may also sometimes be
requested by peer reviewers and editors. However, post-hoc power calculations are meaningless and lead to
flawed interpretations.” It is irrelevant to calculate the probability of an event after the event has already
been observed (i.e., what is the point of calculating the chance of getting heads or tails, after the coin has
landed on tails?). A post-hoc power calculation does not provide an answer to whether the observed effect
is indeed ‘real’ or close to the truth. It also doesn’t add anything on top of the magnitude of the effect size
and the width of the confidence interval which captures the statistical uncertainty of the effect (in fact,
‘post-hoc power’ is a direct function of the observed p-value).'”? Post-hoc power calculations have no
practical value; they do not change the study results or their interpretation and are not an alternative or
justification for not doing a proper sample size calculation a priori.

Role of sample size calculations in observational studies

Formal sample size calculations are less frequently performed in observational research, and their role is
context dependent, where a distinction should be made between exploratory and confirmatory objectives.
For exploratory objectives, sample sizes are typically determined by pragmatic considerations and
convenience. The aim is to generate hypotheses about potential effects, with further research needed for
confirmation (or rejection).® For confirmatory objectives, such as estimating causal effects to inform clinical
practice, it is relevant to consider whether data need to be collected or are already available. If the data need
to be collected, sample size calculations are useful in providing the number of subjects that should be
included to detect a meaningful effect (after which we can decide on the study’s feasibility). Note that
sample size calculations for observational research require additional assumptions regarding confounders
(and potentially other issues such as missing data and measurement error), which results in more uncertainty
in the required sample size.?! If the data have already been collected, a power calculation could still be
considered to determine whether a specified target difference can be reliably detected with the available
sample size. Additionally, it is possible to calculate the detectable differences given the sample size and a set
power level. This information is valuable for assessing whether the dataset is suitable to address the research
question(s) of interest and for determining whether pursuing additional datasets may be necessary, if
possible. Although a formal power calculation might seem redundant when data are already available,
determining beforehand which differences are clinically meaningful, will help to prevent twisting the
interpretation of the results (i.e., what is relevant) afterward, particularly in the context of enormous datasets
(‘big data’) for which small non-relevant differences likely become significant.

Final remarks

Calculating a sample size is essential for the design of confirmatory studies. Chosen parameters and their
rationale should be clearly reported in the protocol and publication. In particular, the target difference is
the main driver of the sample size, which should be considered clinically relevant and realistic (plausible).'
Common pitfalls, such as tweaking of sample size parameters to reduce participant numbers as well as post-
hoc power calculations, should be avoided. While we did not discuss sample size calculations for particular
designs (e.g., equivalence or non-inferiority objectives, cluster RCTs, case-control studies, prediction
models), the basic principles and pitfalls discussed apply to these situations as well.!>>24
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