



Universiteit  
Leiden  
The Netherlands

## Future environmental impacts of hydrogen production and its use in container shipping

Wei, S.

### Citation

Wei, S. (2026, February 11). *Future environmental impacts of hydrogen production and its use in container shipping*. Retrieved from <https://hdl.handle.net/1887/4289906>

Version: Publisher's Version

License: [Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden](#)

Downloaded from: <https://hdl.handle.net/1887/4289906>

**Note:** To cite this publication please use the final published version (if applicable).

# Supporting information

## S1 Supporting information for chapter 2

### S1.1 Unit process data of nine H<sub>2</sub> technologies

The unit process data of nine H<sub>2</sub> technologies are shown in below. Inputs, which are supplied from own processes, i.e. processes not already contained in the premise pLCI database, are marked with an asterisk (\*).

Table S1.1. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 30 bar, 99.8% purity) by CG.

| Exchanges                                                    | Amount    | Unit          | Data source |
|--------------------------------------------------------------|-----------|---------------|-------------|
| <b>Economic flows</b>                                        |           |               |             |
| market for chemical factory, organics                        | 7.00E-10  | unit          | 71          |
| market for hard coal                                         | 8.51      | kilogram      | 70          |
| market for lime, packed                                      | 1.68E-01  | kilogram      | 71          |
| market for liquid storage tank, chemicals, organics          | 3.97E-09  | unit          | 71          |
| market group for transport, freight train                    | 1.14      | ton kilometer | 71          |
| market for water, deionised                                  | 11.28     | kilogram      | 70          |
| market group for transport, freight, inland waterways, barge | 4.24E-01  | ton kilometer | 71          |
| market (group) for electricity, low voltage                  | -3.18     | kilowatt hour | 70          |
| treatment of hard coal ash, residual material landfill       | -5.05E-01 | kilogram      | 71          |
| treatment of waste gypsum, inert material landfill           | -2.28E-01 | kilogram      | 71          |
| <b>Environmental flows</b>                                   |           |               |             |
| Ammonia (to air)                                             | 6.93E-03  | kilogram      | 71          |
| Carbon dioxide, fossil (to air)                              | 21.42     | kilogram      | 70          |
| Hydrogen chloride (to air)                                   | 1.04E-02  | kilogram      | 71          |

Table S1.2. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 30 bar, 99.8% purity) by CG CCS.

| Exchanges                                                                                      | Amount    | Unit          | Data source |
|------------------------------------------------------------------------------------------------|-----------|---------------|-------------|
| <b>Economic flows</b>                                                                          |           |               |             |
| CO <sub>2</sub> storage/at H <sub>2</sub> production plant, pre, pipeline 400km, storage 3000m | 20.39     | kilogram      | 73          |
| market for chemical factory, organics                                                          | 7.00E-10  | unit          | 71          |
| market for hard coal                                                                           | 9.7       | kilogram      | 73          |
| market for lime, packed                                                                        | 1.68E-01  | kilogram      | 71          |
| market for liquid storage tank, chemicals, organics                                            | 3.97E-09  | unit          | 71          |
| market group for transport, freight train                                                      | 1.14      | ton kilometer | 71          |
| market for water, deionised                                                                    | 38.08     | kilogram      | 73          |
| market (group) for electricity, high voltage                                                   | 1.36      | kilowatt hour | 73          |
| market group for transport, freight, inland waterways, barge                                   | 4.24E-01  | ton kilometer | 71          |
| treatment of hard coal ash, residual material landfill                                         | -5.05E-01 | kilogram      | 71          |
| treatment of waste gypsum, inert material landfill                                             | -2.28E-01 | kilogram      | 71          |
| Selexol (Dimethylether of polyethylene glycol) <sup>a*</sup>                                   | 1.43E-04  | kilogram      | 37          |
| market for heat pump, heat and power co-generation unit, 160kW electrical <sup>a</sup>         | 2.01E-07  | unit          | 37          |
| market for absorption chiller, 100kW <sup>a</sup>                                              | 4.02E-07  | unit          | 37          |
| market for gas turbine, 10MW electrical <sup>a</sup>                                           | 2.01E-07  | unit          | 37          |
| market for liquid storage tank, chemicals, organics <sup>a</sup>                               | 5.57E-08  | unit          | 37          |

|                                                                                      |           |             |    |
|--------------------------------------------------------------------------------------|-----------|-------------|----|
| market for pump, 40W <sup>a</sup>                                                    | 2.01E-07  | unit        | 37 |
| treatment of spent solvent mixture, hazardous waste incineration <sup>a</sup>        | -1.43E-04 | kilogram    | 37 |
| <b>Environmental flows</b>                                                           |           |             |    |
| Water, cooling, unspecified natural origin (natural resource, in water) <sup>a</sup> | 1.70E+00  | cubic meter | 37 |
| Ammonia (to air)                                                                     | 6.93E-03  | kilogram    | 71 |
| Carbon dioxide, fossil (to air)                                                      | 2.27      | kilogram    | 73 |
| Hydrogen chloride (to air)                                                           | 1.04E-02  | kilogram    | 71 |

a. These processes are used for CO<sub>2</sub> capture. The values are corresponding to capturing 20.39 kg CO<sub>2</sub>.

Table S1.3. Life cycle inventory of Selexol (1 kg).

| Exchanges                                         | Amount | Unit          |
|---------------------------------------------------|--------|---------------|
| <b>Economic flows</b>                             |        |               |
| market for dimethyl sulfate                       | 0.96   | kilogram      |
| market for methanol                               | 0.16   | kilogram      |
| market for transport, freight train               | 0.6    | ton kilometer |
| market for transport, freight, lorry, unspecified | 0.05   | ton kilometer |
| market for triethylene glycol                     | 0.62   | kilogram      |

Source: Volkart, Bauer, and Boulet<sup>37</sup>

Table S1.4. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 25 bar, 99.97% purity) by NG SMR.

| Exchanges                                           | Amount   | Unit          |
|-----------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                               |          |               |
| market for chemical factory, organics               | 5.35E-10 | unit          |
| market for aluminium oxide, metallurgical           | 5.33E-04 | kilogram      |
| market for chromium oxide, flakes                   | 3.60E-05 | kilogram      |
| market for copper oxide                             | 3.62E-04 | kilogram      |
| market for liquid storage tank, chemicals, organics | 2.55E-09 | unit          |
| market for magnesium oxide                          | 2.80E-05 | kilogram      |
| market for molybdenum trioxide                      | 1.67E-05 | kilogram      |
| market for nickel, class 1                          | 2.03E-04 | kilogram      |
| market for portafer                                 | 3.12E-04 | kilogram      |
| market for quicklime, milled, packed                | 4.80E-05 | kilogram      |
| market for silica sand                              | 1.16E-05 | kilogram      |
| market for water, deionised                         | 7.54E+00 | kilogram      |
| market for zeolite, powder                          | 8.83E-04 | kilogram      |
| market for zinc oxide                               | 3.71E-04 | kilogram      |
| market (group) for electricity, high voltage        | -1.23331 | kilowatt hour |
| market for natural gas, high pressure               | 3.919176 | cubic meter   |
| <b>Environmental flows</b>                          |          |               |
| Acetaldehyde (to air)                               | 3.07E-08 | kilogram      |
| Acetic acid (to air)                                | 4.6E-06  | kilogram      |
| Benzene (to air)                                    | 1.23E-05 | kilogram      |
| Benzo(a)pyrene (to air)                             | 3.07E-10 | kilogram      |
| Butane (to air)                                     | 2.15E-05 | kilogram      |
| Carbon dioxide, fossil (to air)                     | 8.922294 | kilogram      |
| Carbon monoxide, fossil (to air)                    | 6.44E-05 | kilogram      |
| Dinitrogen monoxide (to air)                        | 3.07E-06 | kilogram      |
| Formaldehyde (to air)                               | 3.07E-06 | kilogram      |

|                                                                         |          |             |
|-------------------------------------------------------------------------|----------|-------------|
| Mercury (to air)                                                        | 9.2E-10  | kilogram    |
| Methane, fossil (to air)                                                | 6.14E-05 | kilogram    |
| Nitrogen oxides (to air)                                                | 5.49E-04 | kilogram    |
| PAH, polycyclic aromatic hydrocarbons (to air)                          | 3.07E-07 | kilogram    |
| Particulates, < 2.5 um (to air)                                         | 6.14E-06 | kilogram    |
| Pentane (to air)                                                        | 3.68E-05 | kilogram    |
| Propane (to air)                                                        | 6.14E-06 | kilogram    |
| Propionic acid (to air)                                                 | 6.14E-07 | kilogram    |
| Sulfur dioxide (to air)                                                 | 1.69E-05 | kilogram    |
| Toluene (to air)                                                        | 6.14E-06 | kilogram    |
| Water, cooling, unspecified natural origin (natural resource, in water) | 3.80E-01 | cubic meter |

Source: Antonini et al.<sup>38</sup>

Table S1.5. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 25 bar, 99.97% purity) by NG SMR CCS.

| Exchanges                                                                                      | Amount    | Unit          |
|------------------------------------------------------------------------------------------------|-----------|---------------|
| <b>Economic flows</b>                                                                          |           |               |
| CO <sub>2</sub> storage/at H <sub>2</sub> production plant, pre, pipeline 400km, storage 3000m | 5.664958  | kilogram      |
| market for chemical factory, organics                                                          | 5.35E-10  | unit          |
| market for aluminium oxide, metallurgical                                                      | 5.33E-04  | kilogram      |
| market for chromium oxide, flakes                                                              | 3.60E-05  | kilogram      |
| market for copper oxide                                                                        | 3.62E-04  | kilogram      |
| market for diethanolamine                                                                      | 1.93E-04  | kilogram      |
| market for liquid storage tank, chemicals, organics                                            | 2.55E-09  | unit          |
| market for magnesium oxide                                                                     | 2.80E-05  | kilogram      |
| market for molybdenum trioxide                                                                 | 1.67E-05  | kilogram      |
| market for nickel, class 1                                                                     | 2.03E-04  | kilogram      |
| market for portafer                                                                            | 3.12E-04  | kilogram      |
| market for quicklime, milled, packed                                                           | 4.80E-05  | kilogram      |
| market for silica sand                                                                         | 1.16E-05  | kilogram      |
| market for water, deionised                                                                    | 7.54E+00  | kilogram      |
| market for zeolite, powder                                                                     | 8.83E-04  | kilogram      |
| market for zinc oxide                                                                          | 3.71E-04  | kilogram      |
| market (group) for electricity, high voltage                                                   | -2.00E-01 | kilowatt hour |
| market for natural gas, high pressure                                                          | 3.856157  | cubic meter   |
| <b>Environmental flows</b>                                                                     |           |               |
| Acetaldehyde (to air)                                                                          | 2.82E-08  | kilogram      |
| Acetic acid (to air)                                                                           | 4.23E-06  | kilogram      |
| Benzene (to air)                                                                               | 1.13E-05  | kilogram      |
| Benzo(a)pyrene (to air)                                                                        | 2.82E-10  | kilogram      |
| Butane (to air)                                                                                | 1.97E-05  | kilogram      |
| Carbon dioxide, fossil (to air)                                                                | 3.119275  | kilogram      |
| Carbon monoxide, fossil (to air)                                                               | 5.92E-05  | kilogram      |
| Dinitrogen monoxide (to air)                                                                   | 2.82E-06  | kilogram      |
| Formaldehyde (to air)                                                                          | 2.82E-06  | kilogram      |
| Mercury (to air)                                                                               | 8.45E-10  | kilogram      |
| Methane, fossil (to air)                                                                       | 5.63E-05  | kilogram      |
| Nitrogen oxides (to air)                                                                       | 5.04E-04  | kilogram      |
| PAH, polycyclic aromatic hydrocarbons (to air)                                                 | 2.82E-07  | kilogram      |

|                                                                         |          |             |
|-------------------------------------------------------------------------|----------|-------------|
| Particulates, < 2.5 um (to air)                                         | 5.63E-06 | kilogram    |
| Pentane (to air)                                                        | 3.38E-05 | kilogram    |
| Propane (to air)                                                        | 5.63E-06 | kilogram    |
| Propionic acid (to air)                                                 | 5.63E-07 | kilogram    |
| Sulfur dioxide (to air)                                                 | 1.55E-05 | kilogram    |
| Toluene (to air)                                                        | 5.63E-06 | kilogram    |
| Water, cooling, unspecified natural origin (natural resource, in water) | 3.80E-01 | cubic meter |

Source: Antonini et al.<sup>38</sup>

Table S1.6. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 26 bar, 99.97% purity) by BG.

| Exchanges                                            | Amount    | Unit          |
|------------------------------------------------------|-----------|---------------|
| <b>Economic flows</b>                                |           |               |
| market for liquid storage tank, chemicals, organics  | 2.55E-09  | unit          |
| market for water, deionised                          | 15.90552  | kilogram      |
| market for wood chips, wet, measured as dry mass     | 11.6966   | kilogram      |
| market (group) for electricity, low voltage          | 1.368832  | kilowatt hour |
| synthetic gas factory construction                   | 5.35E-10  | unit          |
| treatment of wastewater, average, capacity 1E9l/year | -1.24E-02 | cubic meter   |
| <b>Environmental flows</b>                           |           |               |
| Carbon dioxide, non-fossil (to air)                  | 21.19664  | kilogram      |

Source: Antonini et al.<sup>39</sup>

Table S1.7. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 26 bar, 99.97% purity) by BG CCS.

| Exchanges                                                                                      | Amount    | Unit          | Data source |
|------------------------------------------------------------------------------------------------|-----------|---------------|-------------|
| <b>Economic flows</b>                                                                          |           |               |             |
| CO <sub>2</sub> storage/at H <sub>2</sub> production plant, pre, pipeline 400km, storage 3000m | 18.02775  | kilogram      | 39          |
| market for liquid storage tank, chemicals, organics                                            | 2.55E-09  | unit          | 39          |
| market for water, deionised <sup>a</sup>                                                       | 16.3391   | kilogram      | 39, 85      |
| market for wood chips, wet, measured as dry mass                                               | 11.6966   | kilogram      | 39          |
| market (group) for electricity, low voltage                                                    | 4.756841  | kilowatt hour | 39          |
| market for diethanolamine                                                                      | 1.76E-04  | kilogram      | 85          |
| synthetic gas factory construction                                                             | 5.35E-10  | unit          | 39          |
| treatment of wastewater, average, capacity 1E9l/year <sup>a</sup>                              | -1.29E-02 | cubic meter   | 39, 85      |
| <b>Environmental flows</b>                                                                     |           |               |             |
| Water, cooling, unspecified natural origin (from natural resource) <sup>a</sup>                | 1.496476  | cubic meter   | 85          |
| Carbon dioxide, non-fossil (to air)                                                            | 3.168898  | kilogram      | 39          |

a. The added amounts compared with the BG process are corresponding to capturing 18.02775 CO<sub>2</sub>.

Table S1.8. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 30 bar, 99.99% purity) by AE powered by grid electricity.

| Exchanges                                                               | Amount   | Unit          | Data source |
|-------------------------------------------------------------------------|----------|---------------|-------------|
| <b>Economic flows</b>                                                   |          |               |             |
| electrolyzer, AE, Balance of Plant*                                     | 2.99E-07 | unit          | Calculation |
| electrolyzer, AE, Stack*                                                | 8.97E-07 | unit          | Calculation |
| market for potassium hydroxide                                          | 3.70E-03 | kilogram      | 40          |
| market (group) for electricity, low voltage <sup>a</sup>                | 49.75    | kilowatt hour | Calculation |
| market for water, deionised                                             | 12       | kilogram      | 99          |
| <b>Environmental flows</b>                                              |          |               |             |
| Water, cooling, unspecified natural origin (natural resource, in water) | 0.0881   | cubic meter   | 40          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |          |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|----|
| Oxygen (to air)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 | kilogram | 40 |
| a. In the sensitivity analysis, for solar PV, onshore wind and hydro power, the processes of power generation “electricity production, photovoltaic, 570kWp open ground installation, multi-Si”, “electricity production, wind, 1-3MW turbine, onshore” and “electricity production, hydro, reservoir, tropical region (alpine region)” are used. If the process of hydro power from reservoir is not available in specific region, the process of “electricity production, hydro, run-of-river” is used. |   |          |    |
| <i>Table S1.9. Life cycle inventory of AE's BoP production (1 MW).</i>                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |          |    |

| Exchanges                                                     | Amount  | Unit              | Data source |
|---------------------------------------------------------------|---------|-------------------|-------------|
| <b>Economic flows</b>                                         |         |                   |             |
| market for cast iron                                          | 716.1   | kilogram          | 40          |
| market for concrete, 35MPa                                    | 7.7     | cubic meter       | 40          |
| market for electronics, for control units                     | 100     | kilogram          | 40          |
| market for ethylene glycol                                    | 7       | kilogram          | 40          |
| market for extrusion, plastic pipes                           | 464.6   | kilogram          | 40          |
| market for glass fibre                                        | 464.6   | kilogram          | 40          |
| market for injection moulding                                 | 3       | kilogram          | 40          |
| market for aluminium, wrought alloy                           | 160     | kilogram          | 40          |
| market for copper, cathode                                    | 616.7   | kilogram          | 40          |
| market for polyethylene, low density, granulate               | 467.4   | kilogram          | 40          |
| market for reinforcing steel                                  | 5134.4  | kilogram          | 40          |
| market for sheet rolling, aluminium                           | 100     | kilogram          | 40          |
| market for sheet rolling, chromium steel                      | 6697.8  | kilogram          | 40          |
| market for sheet rolling, steel                               | 10130   | kilogram          | 40          |
| market for steel, chromium steel 18/8, hot rolled             | 6697.8  | kilogram          | 40          |
| market for steel, low-alloyed, hot rolled                     | 6075.6  | kilogram          | 40          |
| market for tube insulation, elastomere                        | 207.9   | kilogram          | 40          |
| market for welding, arc, steel                                | 29      | meter             | 40          |
| market for wire drawing, copper                               | 616.7   | kilogram          | 40          |
| market (group) for electricity, low voltage                   | 37113.5 | kilowatt hour     | 40          |
| <b>Environmental flows</b>                                    |         |                   |             |
| Transformation, from industrial area (natural resource, land) | 135     | square meter      | 97          |
| Transformation, to industrial area (natural resource, land)   | 135     | square meter      | 97          |
| Occupation, industrial area (natural resource, land)          | 2700    | square meter-year | 97          |

Source: Gerloff<sup>40</sup>

*Table S1.10. Life cycle inventory of AE's stack production (1 MW).*

| Exchanges                                         | Amount  | Unit          |
|---------------------------------------------------|---------|---------------|
| <b>Economic flows</b>                             |         |               |
| market for sheet rolling, chromium steel          | 20194.4 | kilogram      |
| market for steel, chromium steel 18/8, hot rolled | 20194.4 | kilogram      |
| market for nickel, class 1                        | 2884.9  | kilogram      |
| market for tetrafluoroethylene                    | 144.2   | kilogram      |
| market for polysulfone                            | 48.8    | kilogram      |
| market for zirconium oxide                        | 73      | kilogram      |
| market (group) for electricity, low voltage       | 95553.3 | kilowatt hour |

Source: Gerloff<sup>40</sup>

*Table S1.11. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 30 bar, 99.99% purity) by PEM powered by grid electricity.*

| Exchanges                                                               | Amount   | Unit          | Data source |
|-------------------------------------------------------------------------|----------|---------------|-------------|
| <b>Economic flows</b>                                                   |          |               |             |
| electrolyzer, PEM, Balance of Plant*                                    | 3.45E-07 | unit          | Calculation |
| electrolyzer, PEM, Stack*                                               | 1.04E-06 | unit          | Calculation |
| market (group) for electricity, low voltage                             | 57.47    | kilowatt hour | Calculation |
| market for water, deionised                                             | 12       | kilogram      | 99          |
| <b>Environmental flows</b>                                              |          |               |             |
| Water, cooling, unspecified natural origin (natural resource, in water) | 0.0881   | cubic meter   | 40          |
| Oxygen                                                                  | 8        | kilogram      | 40          |

Table S1.12. Life cycle inventory of PEM's BoP production (1 MW).

| Exchanges                                                     | Amount | Unit              | Data source |
|---------------------------------------------------------------|--------|-------------------|-------------|
| <b>Economic flows</b>                                         |        |                   |             |
| market for aluminium, wrought alloy                           | 260    | kilogram          | 40          |
| market for cast iron                                          | 600    | kilogram          | 40          |
| market for copper, anode                                      | 345    | kilogram          | 40          |
| market for electronics, for control units                     | 100    | kilogram          | 40          |
| market for ethylene glycol                                    | 7      | kilogram          | 40          |
| market for extrusion, plastic pipes                           | 464.6  | kilogram          | 40          |
| market for injection moulding                                 | 300    | kilogram          | 40          |
| market for lubricating oil                                    | 100    | kilogram          | 40          |
| market for polyethylene, low density, granulate               | 464.6  | kilogram          | 40          |
| market for polypropylene, granulate                           | 300    | kilogram          | 40          |
| market for reinforcing steel                                  | 3312.3 | kilogram          | 40          |
| market for sheet rolling, aluminium                           | 200    | kilogram          | 40          |
| market for sheet rolling, chromium steel                      | 4327   | kilogram          | 40          |
| market for sheet rolling, copper                              | 100    | kilogram          | 40          |
| market for sheet rolling, steel                               | 5382.3 | kilogram          | 40          |
| market for steel, chromium steel 18/8, hot rolled             | 4327   | kilogram          | 40          |
| market for steel, low-alloyed                                 | 3150   | kilogram          | 40          |
| market for tube insulation, elastomere                        | 115    | kilogram          | 40          |
| market for welding, arc, steel                                | 29     | meter             | 40          |
| market for wire drawing, copper                               | 245    | kilogram          | 40          |
| market for zeolite, powder                                    | 100    | kilogram          | 40          |
| market for concrete, 35MPa                                    | 2.3    | cubic meter       | 40          |
| market (group) for electricity, low voltage                   | 50000  | kilowatt hour     | 40          |
| <b>Environmental flows</b>                                    |        |                   |             |
| Transformation, from industrial area (natural resource, land) | 105    | square meter      | 97          |
| Transformation, to industrial area (natural resource, land)   | 105    | square meter      | 97          |
| Occupation, industrial area (natural resource, land)          | 2100   | square meter-year | 97          |

Table S1.13. Life cycle inventory of PEM's stack production (1 MW).

| Exchanges                           | Amount | Unit     | Data source |
|-------------------------------------|--------|----------|-------------|
| <b>Economic flows</b>               |        |          |             |
| market for titanium                 | 528    | kilogram | 41          |
| market for aluminium, wrought alloy | 27     | kilogram | 41          |
| market for sheet rolling, aluminium | 27     | kilogram | 41          |

|                                                   |          |               |        |
|---------------------------------------------------|----------|---------------|--------|
| market for steel, chromium steel 18/8, hot rolled | 100      | kilogram      | 41     |
| market for sheet rolling, chromium steel          | 100      | kilogram      | 41     |
| market for copper, anode                          | 4.5      | kilogram      | 41     |
| market for sheet rolling, copper                  | 4.5      | kilogram      | 41     |
| market for activated carbon, granular             | 9        | kilogram      | 41     |
| market for tetrafluoroethylene                    | 9.184    | kilogram      | 41, 96 |
| market for sulfuric acid                          | 6.816    | kilogram      | 41, 96 |
| market for platinum                               | 0.075    | kilogram      | 41     |
| market for synthetic rubber                       | 4.8      | kilogram      | 40     |
| market for iridium*                               | 0.75     | kilogram      | 41     |
| market (group) for electricity, low voltage       | 103890.8 | kilowatt hour | 40     |

Table S1.14. Life cycle inventory of market for iridium (1 kg).

| Exchanges                                                             | Amount   | Unit              |
|-----------------------------------------------------------------------|----------|-------------------|
| <b>Economic flows</b>                                                 |          |                   |
| market for electricity, low voltage                                   | 54212.21 | kilowatt hour     |
| <b>Environmental flows</b>                                            |          |                   |
| Iridium, in ground (natural resource, in ground)                      | 1        | kilogram          |
| Occupation, arable land, unspecified use (natural resource, land)     | 41.7465  | square meter-year |
| Occupation, forest, unspecified (natural resource, land)              | 41.7465  | square meter-year |
| Occupation, mineral extraction site (natural resource, land)          | 635.274  | square meter-year |
| Transformation, from mineral extraction site (natural resource, land) | 4.882    | square meter      |
| Transformation, to mineral extraction site (natural resource, land)   | 4.882    | square meter      |
| Water, unspecified natural origin (natural resource, in ground)       | 199.7499 | cubic meter       |
| Ethane, 1,1,1-trichloro-, HCFC-140 (to air)                           | 8.02E-10 | kilogram          |
| Ethane, 1,2-dichloro- (to air)                                        | 4.56E-04 | kilogram          |
| Arsenic (to air)                                                      | 3.38E-03 | kilogram          |
| Benzo(a)pyrene (to air)                                               | 3.03E-02 | kilogram          |
| Benzene (to air)                                                      | 3.03E-02 | kilogram          |
| Lead (to air)                                                         | 1.81E-02 | kilogram          |
| Cadmium (to air)                                                      | 1.43E-04 | kilogram          |
| Methane, trichlorofluoro-, CFC-11 (to air)                            | 1.44E-04 | kilogram          |
| Methane, non-fossil (to air)                                          | 7.81E-02 | kilogram          |
| Methane, fossil (to air)                                              | 19.13    | kilogram          |
| Hydrocarbons, chlorinated (to air)                                    | 8.10E-04 | kilogram          |
| Chromium (to air)                                                     | 6.93E-03 | kilogram          |
| Carbon monoxide, fossil (to air)                                      | 7.159    | kilogram          |
| Carbon dioxide, fossil (to air)                                       | 11146.62 | kilogram          |
| Carbon dioxide, non-fossil (to air)                                   | 412.196  | kilogram          |
| Methane, dichloro-, HCC-30 (to air)                                   | 8.76E-08 | kilogram          |
| Dioxins, measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin (to air)     | 5.73E-09 | kilogram          |
| Ethane (to air)                                                       | 5.56E-03 | kilogram          |
| Particulates, > 2.5 um, and < 10um (to air)                           | 36.7     | kilogram          |
| Formaldehyde (to air)                                                 | 4.86E-02 | kilogram          |
| Hydrogen sulfide (to air)                                             | 1.91E-02 | kilogram          |
| Hydrochloric acid (to air)                                            | 4.99E-01 | kilogram          |
| Benzene, hexachloro- (to air)                                         | 4.70E-09 | kilogram          |
| Hydrogen fluoride (to air)                                            | 4.87E-02 | kilogram          |

|                                                                            |          |          |
|----------------------------------------------------------------------------|----------|----------|
| Ethane, 1,1,1,2-tetrafluoro-, HFC-134a (to air)                            | 2.10E-07 | kilogram |
| Copper (to air)                                                            | 2.56E-02 | kilogram |
| Dinitrogen monoxide (to air)                                               | 1.06     | kilogram |
| Ammonia (to air)                                                           | 3.52E-01 | kilogram |
| Nickel (to air)                                                            | 2.69E-02 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air) | 26.859   | kilogram |
| Nitrogen oxides (to air)                                                   | 30.635   | kilogram |
| Polychlorinated biphenyls (to air)                                         | 9.52E-10 | kilogram |
| Phenol, pentachloro- (to air)                                              | 2.46E-06 | kilogram |
| Perfluoropentane (to air)                                                  | 3.43E-06 | kilogram |
| PAH, polycyclic aromatic hydrocarbons (to air)                             | 1.50E-03 | kilogram |
| Mercury (to air)                                                           | 2.62E-04 | kilogram |
| Sulfur hexafluoride (to air)                                               | 4.43E-05 | kilogram |
| Sulfur dioxide (to air)                                                    | 2172.255 | kilogram |
| Methane, tetrachloro-, R-10 (to air)                                       | 1.02E-04 | kilogram |
| Zinc (to air)                                                              | 6.79E-02 | kilogram |
| Arsenic, ion (to water)                                                    | 2.75E-01 | kilogram |
| Lead (to water)                                                            | 2.67E-01 | kilogram |
| Cadmium, ion (to water)                                                    | 2.97E-02 | kilogram |
| Chloride (to water)                                                        | 34.494   | kilogram |
| Chromium, ion (to water)                                                   | 5.73E-02 | kilogram |
| Cyanide (to water)                                                         | 6.65E-01 | kilogram |
| Fluoride (to water)                                                        | 5.93E-01 | kilogram |
| AOX, Adsorbable Organic Halogen as Cl (to water)                           | 4.48E-05 | kilogram |
| Copper, ion (to water)                                                     | 8.41E-01 | kilogram |
| Ammonium, ion (to water)                                                   | 6.54E-02 | kilogram |
| Nickel (to water)                                                          | 4.51     | kilogram |
| Nitrate (to water)                                                         | 6.80E-02 | kilogram |
| Tin, ion (to water)                                                        | 1.50E-05 | kilogram |
| TOC, Total Organic Carbon (to water)                                       | 10.576   | kilogram |
| Phenol (to water)                                                          | 2.00E-03 | kilogram |
| PAH, polycyclic aromatic hydrocarbons (to water)                           | 1.50E-04 | kilogram |
| Mercury (to water)                                                         | 3.53E-03 | kilogram |
| Suspended solids, unspecified (to water)                                   | 6.86E-01 | kilogram |
| Sulfate (to water)                                                         | 272.715  | kilogram |
| Phosphorus (to water)                                                      | 1.73E-01 | kilogram |
| Nitrogen (to water)                                                        | 2.656    | kilogram |
| Zinc, ion (to water)                                                       | 7.043    | kilogram |

Source: ProBas<sup>300</sup>

Table S1.15. Life cycle inventory of gaseous H<sub>2</sub> production (1 kg, 30 bar, 99.9% purity) by SOEC powered by grid electricity.

| Exchanges                                                       | Amount   | Unit          | Data source   |
|-----------------------------------------------------------------|----------|---------------|---------------|
| <b>Economic flows</b>                                           |          |               |               |
| electrolyzer, SOEC, Balance of Plant*                           | 2.57E-07 | unit          | Calculation   |
| electrolyzer, SOEC, Stack*                                      | 2.31E-06 | unit          | Calculation   |
| market (group) for electricity, low voltage                     | 42.73    | kilowatt hour | Calculation   |
| market for heat, district or industrial, other than natural gas | 18.864   | megajoule     | <sup>40</sup> |
| market for water, deionised                                     | 12       | kilogram      | <sup>99</sup> |

| <b>Environmental flows</b>                                              |        |             |    |
|-------------------------------------------------------------------------|--------|-------------|----|
| Water, cooling, unspecified natural origin (natural resource, in water) | 0.6447 | cubic meter | 40 |
| Oxygen (to air)                                                         | 8      | kilogram    | 40 |

Table S1.16. Life cycle inventory of SOEC's BoP production (1 MW).

| Exchanges                                                     | Amount  | Unit              | Data source |
|---------------------------------------------------------------|---------|-------------------|-------------|
| <b>Economic flows</b>                                         |         |                   |             |
| market for cast iron                                          | 3000    | kilogram          | 40          |
| market for acrylonitrile-butadiene-styrene copolymer          | 1.4     | kilogram          | 40          |
| market for concrete, 35MPa                                    | 2.3     | cubic meter       | 40          |
| market for electronics, for control units                     | 100     | kilogram          | 40          |
| market for ethylene glycol                                    | 35      | kilogram          | 40          |
| market for extrusion, plastic pipes                           | 534     | kilogram          | 40          |
| market for injection moulding                                 | 1.4     | kilogram          | 40          |
| market for aluminium, wrought alloy                           | 401     | kilogram          | 40          |
| market for copper, cathode                                    | 428.5   | kilogram          | 40          |
| market for polyethylene, low density, granulate               | 534     | kilogram          | 40          |
| market for reinforcing steel                                  | 13730.6 | kilogram          | 40          |
| market for sheet rolling, aluminium                           | 100     | kilogram          | 40          |
| market for sheet rolling, chromium steel                      | 16621.4 | kilogram          | 40          |
| market for sheet rolling, steel                               | 12081.2 | kilogram          | 40          |
| market for steel, chromium steel 18/8, hot rolled             | 16621.4 | kilogram          | 40          |
| market for steel, low-alloyed, hot rolled                     | 2250    | kilogram          | 40          |
| market for steel, low-alloyed                                 | 1503.6  | kilogram          | 40          |
| market for tube insulation, elastomere                        | 176.6   | kilogram          | 40          |
| market for welding, arc, steel                                | 33.3    | meter             | 40          |
| market for wire drawing, copper                               | 428.5   | kilogram          | 40          |
| market (group) for electricity, low voltage                   | 76420.2 | kilowatt hour     | 40          |
| <b>Environmental flows</b>                                    |         |                   |             |
| Transformation, from industrial area (natural resource, land) | 55      | square meter      | 98          |
| Transformation, to industrial area (natural resource, land)   | 55      | square meter      | 98          |
| Occupation, industrial area (natural resource, land)          | 1100    | square meter-year | 98          |

Table S1.17. Life cycle inventory of SOEC's stack production (1 MW).

| Exchanges                                         | Amount | Unit     |
|---------------------------------------------------|--------|----------|
| <b>Economic flows</b>                             |        |          |
| market for aluminium oxide, metallurgical         | 6.4    | kilogram |
| market for barium oxide                           | 6.4    | kilogram |
| market for boric oxide                            | 6.4    | kilogram |
| Lanthanum strontium manganite (LSM)*              | 2.1    | kilogram |
| market for cerium oxide                           | 91.5   | kilogram |
| market for nickel, class 1                        | 144.1  | kilogram |
| market for praseodymium oxide                     | 9      | kilogram |
| market for samarium-europium-gadolinium oxide     | 37.7   | kilogram |
| market for sheet rolling, chromium steel          | 8976.1 | kilogram |
| market for silicone product                       | 6.4    | kilogram |
| market for steel, chromium steel 18/8, hot rolled | 8976.1 | kilogram |
| market for zirconium oxide                        | 170.7  | kilogram |

|                                             |          |               |
|---------------------------------------------|----------|---------------|
| market (group) for electricity, low voltage | 122224.4 | kilowatt hour |
|---------------------------------------------|----------|---------------|

Source: Gerloff<sup>40</sup>

Table S1.18. Life cycle inventory of LSM production (1 kg).

| Exchanges                                                    | Amount   | Unit          |
|--------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                        |          |               |
| market for lanthanum oxide                                   | 5.04E-01 | kilogram      |
| market for manganese                                         | 8.62E-02 | kilogram      |
| market for strontium carbonate                               | 5.51E-01 | kilogram      |
| market for nitric acid, without water, in 50% solution state | 1.3181   | kilogram      |
| market for chloroacetic acid                                 | 1.667388 | kilogram      |
| market for ammonia, anhydrous, liquid                        | 3.00E-01 | kilogram      |
| market for water, deionised                                  | 8.833922 | kilogram      |
| market group for electricity, low voltage                    | 15.68021 | kilowatt hour |

Source: Staffell et al.<sup>301</sup>

For the delivery purity and pressure of the H<sub>2</sub> from water electrolysis, only the information about PEM (industry grade N5.0-99.999% and 30 bar) can be available from the reference Bareiß et al.<sup>41</sup> that we directly used. We further checked other references to clarify these information about AE and SOEC and made a comparison to ensure the value used in our paper is reasonable. The H<sub>2</sub> produced by AE is delivered at 99.999% purity and 30 bar pressure with the system electrical efficiency of 53-70%, as mentioned in the Table 5-1 in the report of Smolinka et al.<sup>302</sup> This electrical efficiency was cited in the research of Zhang et al.,<sup>303</sup> which is the main source reference of the AE's stack and BoP in the Gerloff.<sup>40</sup> Purity requirements vary significantly from different applications.<sup>304</sup> Although 99.999% purity of H<sub>2</sub> produced by AE and PEM can be achieved based on the electrical efficiency used in this paper, the mid-range value of 99.99% (N4.0) purity from manufacturer (between 99.9%-N3.0 and 99.999%)<sup>305-308</sup> was used as the target purity due to lack of specific users. Gerloff<sup>40</sup> used Häfele et al.<sup>309</sup>'s LCI of SOEC's stack, whose operating pressure is 1 bar, and added H<sub>2</sub> compressors in SOEC's BoP. In other references using the similar SOEC system, the generated H<sub>2</sub> (99.9% purity) is generally compressed from 1 bar to 30 bar, with the system electrical efficiency of SOEC between 75% and 88%.<sup>310-313</sup> The target delivery purity and pressure of the H<sub>2</sub> produced by water electrolysis are shown in Table S1.19.

Table S1.19. The system electrical efficiency of the target H<sub>2</sub> product of the water electrolysis.

| Parameters                                                      | AE    | PEM   | SOEC  |
|-----------------------------------------------------------------|-------|-------|-------|
| Electrical efficiency used in this paper (%)                    | 67    | 58    | 78    |
| Delivery pressure of H <sub>2</sub> (bar)                       | 30    | 30    | 30    |
| Delivery purity of H <sub>2</sub> (%)                           | 99.99 | 99.99 | 99.9  |
| Electrical efficiency for the target H <sub>2</sub> product (%) | 53-70 | 50-70 | 75-88 |

Table S1.20. LCI of 1 MW PEM stack production in the Middle East and the USA in 2030 and 2050 broken down into technology improvements (likely material reductions), regional variations (where the regional electricity mix is used), and other inputs that do not change over time and region.

| Economic flows                 | Unit | Location | Amount in 2030 | Amount in 2050 |
|--------------------------------|------|----------|----------------|----------------|
| <b>Technology improvements</b> |      |          |                |                |

|                                                   |     |         |          |          |
|---------------------------------------------------|-----|---------|----------|----------|
| market for titanium                               | kg  | GLO     | 213.69   | 35       |
| market for steel, chromium steel 18/8, hot rolled | kg  | GLO     | 73.68    | 40       |
| market for sheet rolling, chromium steel          | kg  | GLO     | 73.68    | 40       |
| market for activated carbon, granular             | kg  | GLO     | 7.14     | 4.5      |
| market for tetrafluoroethylene (Nafion)           | kg  | GLO     | 4.59     | 1.148    |
| market for sulfuric acid (Nafion)                 | kg  | RoW     | 3.41     | 0.852    |
| market for platinum                               | kg  | GLO     | 0.05     | 0.02     |
| market for iridium                                | kg  | GLO     | 0.26     | 0.03     |
| <b>Regional variations</b>                        |     |         |          |          |
| market for electricity, low voltage               | kWh | MEA/USA | 103890.8 | 103890.8 |
| <b>Others</b>                                     |     |         |          |          |
| market for aluminium, wrought alloy               | kg  | GLO     | 27       | 27       |
| market for sheet rolling, aluminium               | Kg  | GLO     | 27       | 27       |
| market for copper, anode                          | kg  | GLO     | 4.5      | 4.5      |
| market for sheet rolling, copper                  | kg  | GLO     | 4.5      | 4.5      |
| market for synthetic rubber                       | kg  | GLO     | 4.8      | 4.8      |

## S1.2 Global H<sub>2</sub> markets across regions

### Current H<sub>2</sub> production across regions (2020)

For the IEA's regions where no data of H<sub>2</sub> production by CG and NG SMR in 2020 was available, the following assumptions were made:

Coal is used as the feedstock of H<sub>2</sub> production in limited regions including China, India, Japan, Southeast Asia, Africa and Rest of Asia Pacific.<sup>314</sup> For Southeast Asia, Africa and Rest of Asia Pacific, where there is no data of H<sub>2</sub> production amount of CG, their values are generated by multiplying the remaining global total H<sub>2</sub> production amount by CG excluding the known amount of China, India and Japan, by the ratios of their respective coal supply amount in 2020.<sup>67</sup>

Australia's hydrogen production was around 0.65 Mt and virtually all of this H<sub>2</sub> is made using NG SMR.<sup>315</sup> For the 1.8 Mt H<sub>2</sub> produced and used in Korea in 2020, 40% was produced from NG SMR, with the remaining 60% obtained as by-product from various sources.<sup>61</sup> The NG SMR proportion in the H<sub>2</sub> market of Rest of Asia Pacific was set as the same as the weighted average value for Australia and Korea, which are dominated by H<sub>2</sub> producing countries in this region. Russia has no official statistics of its H<sub>2</sub> market,<sup>316</sup> but what can be confirmed is that there is practically no government or industry program for producing H<sub>2</sub> from coal.<sup>317</sup> Thus, the H<sub>2</sub> market of Russia is assumed to consist of only NG SMR technology excluding the by-product H<sub>2</sub>. The Rest of Eurasia has a similar situation. So the global remaining H<sub>2</sub> production amount of NG SMR excluding other 13 regions were proportionally assigned to Russia and the Rest of Eurasia according their respective total H<sub>2</sub> production amount.

### Future H<sub>2</sub> production across regions (until 2050)

The future regional dedicated H<sub>2</sub> production volumes in the IEA's STEPS, APS and NZE scenarios were derived via the following steps. For the H<sub>2</sub> production volumes from 2020 to 2050 in the STEPS and APS, the IEA provides global total H<sub>2</sub> production volumes and specific values of CG CCS, NG SMR CCS, water electrolysis and bioenergy (lacking CG and NG SMR), as well as the total production volumes including by-product H<sub>2</sub> of 15 regions.<sup>67</sup> At first, the fraction of the global H<sub>2</sub> production volumes of CG and NG SMR in 2020 was used to distinguish between CG and NG SMR in the residual production volumes (excluding by-product H<sub>2</sub>, which was considered unchanged in the future). After getting the production volumes of different H<sub>2</sub> technologies at the global level, we can then assign these values to 15 regions.

Our further assumption is that the regional fractions in CG and NG SMR after 2020 will change with the same trend of their total H<sub>2</sub> production volumes<sup>67</sup> (The regional fractions are shown in Table S20-S23). Thus, the production volume of CG and NG SMR after 2020 in each region can be obtained by multiplying the global total production volume of CG and NG SMR with regional fractions. Above fractions were also used for assigning the production volume of CG CCS and NG SMR CCS. For bioenergy-based H<sub>2</sub> technology, the regional fraction of the total H<sub>2</sub> production volume was used to assign it due to lack of starting values in 2020 and reference basis. At last, the production volume of water electrolysis in each region over time can be obtained by subtracting the above known amount and by-product H<sub>2</sub> from the regional total H<sub>2</sub> production volume. Water electrolysis includes AE, PEM and SOEC. If there is no clear classification for one region in 2020, the global average proportion, 61%, 31% and 8% for AE, PEM and SOEC would be adopted as the alternative.<sup>61</sup> PEM is currently one of the two commercially available electrolyzer technologies together with AE.<sup>318</sup> On the one hand, the share of AE in the total installed capacity of announced projects remains at around 60% for the next five years, but decreases afterwards, so that by 2030 the total capacity could be equally split between AE and PEM electrolyzers.<sup>104</sup> On the other hand, Schmidt et al.<sup>101</sup> found that experts believed PEM would be the dominant electrolysis technology by as early as 2030. Moreover, PEM has a simpler balance of plant and produces H<sub>2</sub> at a higher pressure than AE, which means lower energy requirements for compression.<sup>97</sup> Studies also show that PEM might be more future-proof than AE; for example, PEM electrolyzers exhibit a higher power-density per footprint ratio compared to AE electrolyzers, making the overall system footprint less space-consuming,<sup>23</sup> and PEM is shown to exhibit higher flexibility and can be installed with variable power (solar photovoltaic and wind) without impacting the electrolyzer performance.<sup>16</sup> Thus, a conservative market share of 60% for PEM in water electrolysis in 2050 is assumed. The SOEC is simply assumed to increase 1% every 5 years from 2020 to 2050. At the same time, the remaining proportion is AE's market share.

For the NZE scenario, only the global H<sub>2</sub> production volume by fossil fuel, CCS, bioenergy, water electrolysis and by-product is available and there is no regional data.<sup>59</sup> Thus, the source of coal and natural gas in fossil fuel and CCS were distinguished by the fractions

used in the APS scenario. At the same time, the regional fractions of the global H<sub>2</sub> production from 2020 to 2050 of the APS scenario were used to get the regional total production volumes in the NZE scenario. Other steps were also consistent with the APS scenario. BG CCS was only adopted in the NZE scenario from 2040 with a fraction of 1% in bioenergy-based H<sub>2</sub> production volume and can achieve no more than 5% by 2050.<sup>67</sup> The annual H<sub>2</sub> production volumes by various technologies in 15 regions between 2020 and 2050 under three scenarios are shown in Figure S1.1.

*Table S1.21. The regional fraction of CG and CG CCS between 2020 and 2050 in the STEPS scenario.*

| Regions              | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|----------------------|-------|-------|-------|-------|-------|-------|-------|
| Africa               | 1.7%  | 1.9%  | 2.0%  | 2.2%  | 2.4%  | 2.5%  | 2.7%  |
| China                | 84.7% | 84.3% | 83.9% | 82.6% | 81.3% | 80.1% | 79.1% |
| India                | 7.2%  | 7.5%  | 7.8%  | 8.6%  | 9.4%  | 10.1% | 10.7% |
| Japan                | 0.5%  | 0.5%  | 0.5%  | 0.5%  | 0.5%  | 0.6%  | 0.6%  |
| Southeast Asia       | 2.9%  | 3.0%  | 3.0%  | 3.2%  | 3.4%  | 3.5%  | 3.7%  |
| Rest of Asia Pacific | 3.0%  | 2.9%  | 2.7%  | 2.9%  | 3.0%  | 3.2%  | 3.3%  |

*Table S1.22. The regional fraction of CG and CG CCS between 2020 and 2050 in the APS and NZE scenario.*

|                      | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|----------------------|-------|-------|-------|-------|-------|-------|-------|
| Africa               | 1.7%  | 1.8%  | 1.9%  | 2.1%  | 2.3%  | 2.4%  | 2.5%  |
| China                | 84.7% | 84.6% | 84.4% | 81.7% | 79.9% | 78.6% | 77.7% |
| India                | 7.2%  | 7.2%  | 7.1%  | 8.1%  | 8.8%  | 9.2%  | 9.5%  |
| Japan                | 0.5%  | 0.6%  | 0.6%  | 0.8%  | 0.9%  | 0.9%  | 1.0%  |
| Southeast Asia       | 2.9%  | 2.9%  | 2.9%  | 3.2%  | 3.4%  | 3.5%  | 3.6%  |
| Rest of Asia Pacific | 3.0%  | 3.0%  | 3.0%  | 4.1%  | 4.8%  | 5.3%  | 5.7%  |

*Table S1.23. The regional fraction of NG SMR and NG SMR CCS between 2020 and 2050 in the STEPS scenario.*

|                                   | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|
| United States                     | 17.9% | 17.4% | 16.9% | 16.7% | 16.5% | 16.4% | 16.2% |
| Rest of North America             | 4.7%  | 4.4%  | 4.2%  | 4.1%  | 4.0%  | 3.9%  | 3.9%  |
| Brazil                            | 0.3%  | 0.5%  | 0.6%  | 0.7%  | 0.8%  | 0.9%  | 1.0%  |
| Rest of Central and South America | 4.2%  | 4.3%  | 4.4%  | 4.8%  | 5.1%  | 5.3%  | 5.6%  |
| European Union                    | 8.8%  | 7.7%  | 6.9%  | 6.4%  | 6.0%  | 5.7%  | 5.4%  |
| Rest of Europe                    | 2.4%  | 2.4%  | 2.3%  | 2.3%  | 2.3%  | 2.3%  | 2.3%  |
| Africa                            | 4.7%  | 5.1%  | 5.5%  | 5.8%  | 6.1%  | 6.4%  | 6.6%  |
| Middle East                       | 18.3% | 20.0% | 21.3% | 20.9% | 20.6% | 20.3% | 20.0% |
| Russia                            | 5.2%  | 4.5%  | 4.0%  | 3.8%  | 3.6%  | 3.5%  | 3.3%  |
| Rest of Eurasia                   | 0.4%  | 0.4%  | 0.4%  | 0.4%  | 0.3%  | 0.3%  | 0.3%  |
| China                             | 11.4% | 11.3% | 11.2% | 10.6% | 10.2% | 9.8%  | 9.4%  |
| India                             | 11.5% | 12.1% | 12.4% | 13.3% | 14.1% | 14.7% | 15.3% |
| Japan                             | 1.7%  | 1.6%  | 1.5%  | 1.5%  | 1.6%  | 1.6%  | 1.6%  |
| Southeast Asia                    | 4.0%  | 4.1%  | 4.2%  | 4.3%  | 4.4%  | 4.5%  | 4.5%  |
| Rest of Asia Pacific              | 4.7%  | 4.4%  | 4.2%  | 4.3%  | 4.4%  | 4.5%  | 4.5%  |

*Table S1.24. The regional fraction of NG SMR and NG SMR CCS between 2020 and 2050 in the APS and NZE scenario.*

|                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|
| United States         | 17.9% | 19.4% | 20.4% | 21.6% | 22.3% | 22.8% | 23.2% |
| Rest of North America | 4.7%  | 4.3%  | 4.0%  | 3.5%  | 3.2%  | 3.0%  | 2.8%  |
| Brazil                | 0.3%  | 0.6%  | 0.8%  | 1.1%  | 1.3%  | 1.4%  | 1.5%  |

|                                   |       |       |       |       |       |       |       |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Rest of Central and South America | 4.2%  | 4.6%  | 4.9%  | 4.9%  | 5.0%  | 5.0%  | 5.0%  |
| European Union                    | 8.8%  | 9.2%  | 9.6%  | 9.3%  | 9.1%  | 9.0%  | 8.9%  |
| Rest of Europe                    | 2.4%  | 2.9%  | 3.2%  | 3.3%  | 3.3%  | 3.3%  | 3.4%  |
| Africa                            | 4.7%  | 4.8%  | 4.8%  | 5.1%  | 5.4%  | 5.5%  | 5.6%  |
| Middle East                       | 18.3% | 18.4% | 18.4% | 15.8% | 14.3% | 13.2% | 12.5% |
| Russia                            | 5.2%  | 3.9%  | 3.1%  | 2.4%  | 1.9%  | 1.7%  | 1.4%  |
| Rest of Eurasia                   | 0.4%  | 0.4%  | 0.3%  | 0.3%  | 0.2%  | 0.2%  | 0.2%  |
| China                             | 11.4% | 10.8% | 10.3% | 9.6%  | 9.1%  | 8.8%  | 8.6%  |
| India                             | 11.5% | 10.9% | 10.5% | 11.5% | 12.0% | 12.4% | 12.7% |
| Japan                             | 1.7%  | 1.8%  | 1.9%  | 2.2%  | 2.4%  | 2.5%  | 2.6%  |
| Southeast Asia                    | 4.0%  | 3.8%  | 3.6%  | 3.8%  | 4.0%  | 4.1%  | 4.1%  |
| Rest of Asia Pacific              | 4.7%  | 4.4%  | 4.3%  | 5.6%  | 6.4%  | 7.0%  | 7.3%  |

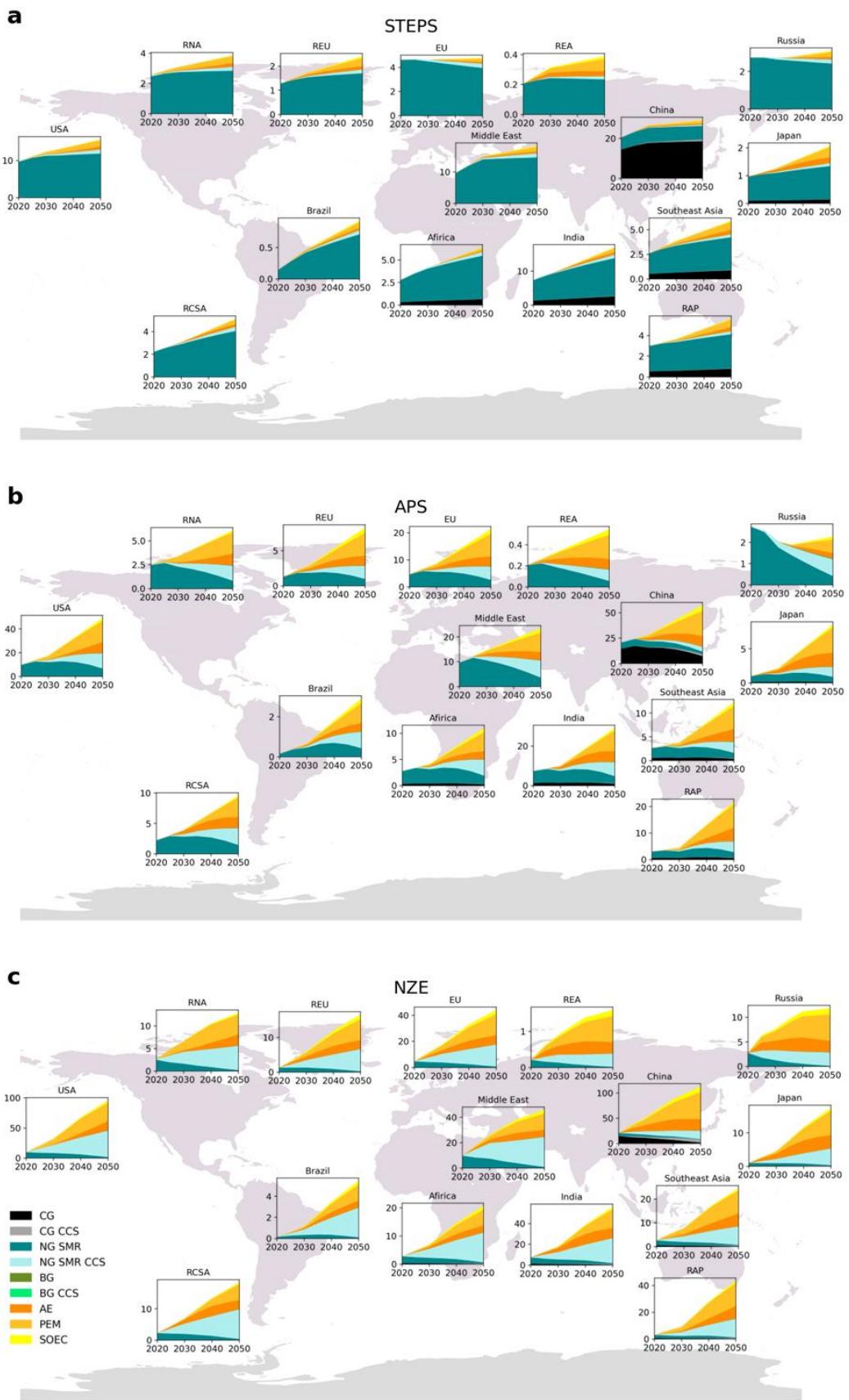



Figure S1.1.  $H_2$  production volumes in 15 regions from 2020 to 2050 in the STEPS, APS and NZE scenarios. In the figure, RNA= Rest of North America, REU= Rest of Europe, REA= Rest of Eurasia, RCSA= Rest of Central and South America and RAP= Rest of Asia Pacific. The unit of the stacked area charts is Mt per year.

### S1.3 Regional scope

Table S1.25. The region matching between IEA and REMIND models.

| No. | IEA regions                       | REMIND regions |
|-----|-----------------------------------|----------------|
| 1   | Brazil                            | LAM            |
| 2   | Rest of Central and South America | LAM            |
| 3   | Southeast Asia                    | OAS            |
| 4   | Rest of Asia Pacific              | OAS            |
| 5   | Africa                            | SSA            |
| 6   | European Union (EU)               | EUR            |
| 7   | Rest of Europe                    | NEU            |
| 8   | Middle East                       | MEA            |
| 9   | Russia                            | REF            |
| 10  | Rest of Eurasia                   | REF            |
| 11  | Rest of North America             | CAZ            |
| 12  | China                             | CHA            |
| 13  | India                             | IND            |
| 14  | Japan                             | JPN            |
| 15  | USA                               | USA            |

Table S1.26. IEA regions and countries (ISO alpha-3 code).

| No | IEA Regions                       | ISO code of countries belonging to this region                                                                                                                                                                                                                                                      |
|----|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Brazil                            | BRA                                                                                                                                                                                                                                                                                                 |
| 2  | Rest of Central and South America | ABW, AIA, ARG, ATG, BES, BHS, BLM, BLZ, BMU, BOL, BRB, BVT, CHL, COL, CRI, CUB, CUW, CYM, DMA, DOM, ECU, FLK, GLP, GRD, GTM, GUF, GUY, HND, HTI, JAM, KNA, LCA, MAF, MSR, MTQ, NIC, PAN, PER, PRI, PRY, SGS, SLV, SUR, SXM, TCA, TTO, URY, VCT, VEN, VGB and VIR                                    |
| 3  | Southeast Asia                    | BRN, IDN, KHM, LAO, MMR, MYS, PHL, SGP, THA and VNM                                                                                                                                                                                                                                                 |
| 4  | Rest of Asia Pacific              | AFG, ASM, ATF, AUS, BGD, BTN, CCK, COK, CXR, FJI, FSM, GUM, HMD, IOT, KIR, KOR, LKA, MDV, MHL, MNG, MNP, NCL, NFK, NIU, NPL, NRU, NZL, PAK, PCN, PLW, PNG, PRK, PYF, SLB, TKL, TLS, TON, TUV, TWN, UMI, VUT, WLF, WSM and MAC                                                                       |
| 5  | Africa                            | AGO, BDI, BEN, BFA, BWA, CAF, CIV, CMR, COD, COG, COM, CPV, DJI, DZA, EGY, ERI, ESH, ETH, GAB, GHA, GIN, GMB, GNB, GNQ, KEN, LBR, LBY, LSO, MAR, MDG, MLI, MOZ, MRT, MUS, MWI, MYT, NAM, NER, NGA, REU, RWA, SDN, SEN, SHN, SLE, SOM, SSD, STP, SWZ, SYC, TCD, TGO, TUN, TZA, UGA, ZAF, ZMB and ZWE |
| 6  | EU                                | AUT, BEL, BGR, CYP, CZE, DEU, DNK, ESP, EST, FIN, FRA, GRC, HRV, HUN, IRL, ITA, LTU, LUX, LVA, MLT, NLD, POL, PRT, ROU, SVK, SVN and SWE                                                                                                                                                            |
| 7  | Rest of Europe                    | ALA, ALB, AND, BIH, BLR, CHE, FRO, GBR, GGY, GIB, GRL, IMN, ISL, LIE, JEY, MCO, MDA, MKD, MNE, NOR, SJM, SMR, SRB, TUR, UKR, VAT, ISR and PSE                                                                                                                                                       |
| 8  | Middle East                       | ARE, BHR, IRN, IRQ, JOR, KWT, LBN, OMN, QAT, SAU, SYR and YEM                                                                                                                                                                                                                                       |
| 9  | Russia                            | RUS                                                                                                                                                                                                                                                                                                 |
| 10 | Rest of Eurasia                   | ARM, AZE, GEO, KAZ, KGZ, TJK, TKM and UZB                                                                                                                                                                                                                                                           |
| 11 | Rest of North America             | CAN, SPM and MEX                                                                                                                                                                                                                                                                                    |
| 12 | China                             | CHN and HKG                                                                                                                                                                                                                                                                                         |
| 13 | India                             | IND                                                                                                                                                                                                                                                                                                 |
| 14 | Japan                             | JPN                                                                                                                                                                                                                                                                                                 |
| 15 | USA                               | USA                                                                                                                                                                                                                                                                                                 |

Source: IEA<sup>103</sup>

Table S1.27. REMIND regions and countries (ISO alpha-3 code).

| No. | REMIND regions | ISO code of countries belonging to this region                                                                                                             |
|-----|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | LAM            | ABW, AIA, ARG, ATA, ATG, BES, BHS, BLM, BLZ, BMU, BOL, BRA, BRB, BVT, CHL, COL, CRI, CUB, CUW, CYM, DMA, DOM, ECU, FLK, GLP, GRD, GTM, GUF, GUY, HND, HTI, |

|    |     |                                                                                                                                                                                                                                                                   |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | OAS | JAM, KNA, LCA, MAF, MEX, MSR, MTQ, NIC, PAN, PER, PRI, PRY, SGS, SLV, SUR, SXM, TCA, TTO, URY, VCT, VEN, VGB, and VIR                                                                                                                                             |
| 2  | OAS | AFG, ASM, ATF, BGD, BRN, BTN, CCK, COK, CXR, FJI, FSM, GUM, IDN, IOT, KHM, KIR, KOR, LAO, LKA, MDV, MHL, MMR, MNG, MNP, MYS, NCL, NFK, NIU, NPL, NRU, PAK, PCN, PHL, PLW, PNG, PRK, PYF, SGP, SLB, THA, TKL, TLS, TON, TUV, UMI, VNM, VUT, WLF, and WSM           |
| 3  | SSA | AGO, BDI, BEN, BFA, BWA, CAF, CIV, CMR, COD, COG, COM, CPV, DJI, ERI, ETH, GAB, GHA, GIN, GMB, GNB, GNQ, KEN, LBR, LSO, MDG, MLI, MOZ, MRT, MUS, MWI, MYT, NAM, NER, NGA, REU, RWA, SEN, SHN, SLE, SOM, SSD, STP, SWZ, SYC, TCD, TGO, TZU, UGA, ZAF, ZMB, and ZWE |
| 4  | EUR | ALA, AUT, BEL, BGR, CYP, CZE, DEU, DNK, ESP, EST, FIN, FRA, FRO, GBR, GGY, GIB, GRC, HRV, HUN, IMN, IRL, ITA, JEY, LTU, LUX, LVA, MLT, NLD, POL, PRT, ROU, SVK, SVN, and SWE                                                                                      |
| 5  | NEU | ALB, AND, BIH, CHE, GRL, ISL, LIE, MCO, MKD, MNE, NOR, SJM, SMR, SRB, TUR, and VAT                                                                                                                                                                                |
| 6  | MEA | ARE, BHR, DZA, EGY, ESH, IRN, IRQ, ISR, JOR, KWT, LBN, LBY, MAR, OMN, PSE, QAT, SAU, SDN, SYR, TUN, and YEM                                                                                                                                                       |
| 7  | REF | ARM, AZE, BLR, GEO, KAZ, KGZ, MDA, RUS, TJK, TKM, UKR, and UZB                                                                                                                                                                                                    |
| 8  | CAZ | AUS, CAN, HMD, NZL, and SPM                                                                                                                                                                                                                                       |
| 9  | CHA | CHN, HKG, MAC, and TWN                                                                                                                                                                                                                                            |
| 10 | IND | IND                                                                                                                                                                                                                                                               |
| 11 | JPN | JPN                                                                                                                                                                                                                                                               |
| 12 | USA | USA                                                                                                                                                                                                                                                               |

Source: Baumstark et al.<sup>56</sup>

## S1.4 Supplementary results

### Prospective environmental impacts of H<sub>2</sub> production

Table S1.28. The contribution of various drivers to GHG emissions reduction from 2020 to 2050 of per kg H<sub>2</sub> produced by grid-powered water electrolysis.

| Scenario | Region | Technology | Electricity decarbonization (%) | Efficiency improvement (%) | Material demand decrease (%) | Lifespan extension (%) |
|----------|--------|------------|---------------------------------|----------------------------|------------------------------|------------------------|
| STEPS    | China  | AE-Grid    | 99.57                           | 0.27                       | 0.08                         | 0.09                   |
|          |        | PEM-Grid   | 99.45                           | 0.48                       | 0.05                         | 0.02                   |
|          |        | SOEC-Grid  | 99.62                           | 0.13                       | 0.10                         | 0.14                   |
|          | USA    | AE-Grid    | 99.42                           | 0.27                       | 0.14                         | 0.16                   |
|          |        | PEM-Grid   | 99.36                           | 0.52                       | 0.09                         | 0.03                   |
|          |        | SOEC-Grid  | 99.45                           | 0.09                       | 0.19                         | 0.26                   |
|          | EU     | AE-Grid    | 98.69                           | 0.87                       | 0.21                         | 0.24                   |
|          |        | PEM-Grid   | 98.26                           | 1.56                       | 0.13                         | 0.05                   |
|          |        | SOEC-Grid  | 98.87                           | 0.46                       | 0.27                         | 0.40                   |
| APS      | China  | AE-Grid    | 99.60                           | 0.24                       | 0.07                         | 0.09                   |
|          |        | PEM-Grid   | 99.50                           | 0.44                       | 0.05                         | 0.02                   |
|          |        | SOEC-Grid  | 99.65                           | 0.12                       | 0.10                         | 0.14                   |
|          | USA    | AE-Grid    | 99.40                           | 0.30                       | 0.14                         | 0.16                   |
|          |        | PEM-Grid   | 99.32                           | 0.56                       | 0.09                         | 0.03                   |
|          |        | SOEC-Grid  | 99.44                           | 0.11                       | 0.19                         | 0.26                   |
|          | EU     | AE-Grid    | 98.73                           | 0.84                       | 0.20                         | 0.23                   |
|          |        | PEM-Grid   | 98.32                           | 1.50                       | 0.13                         | 0.05                   |
|          |        | SOEC-Grid  | 98.91                           | 0.44                       | 0.27                         | 0.39                   |

|     |       |           |        |       |      |      |
|-----|-------|-----------|--------|-------|------|------|
| NZE | China | AE-Grid   | 99.62  | 0.21  | 0.08 | 0.09 |
|     |       | PEM-Grid  | 99.54  | 0.39  | 0.05 | 0.02 |
|     |       | SOEC-Grid | 99.66  | 0.10  | 0.10 | 0.14 |
| USA |       | AE-Grid   | 99.92  | -0.23 | 0.14 | 0.16 |
|     |       | PEM-Grid  | 100.22 | -0.34 | 0.09 | 0.03 |
|     |       | SOEC-Grid | 99.81  | -0.23 | 0.19 | 0.24 |
| EU  |       | AE-Grid   | 99.22  | 0.35  | 0.20 | 0.23 |
|     |       | PEM-Grid  | 99.16  | 0.67  | 0.12 | 0.05 |
|     |       | SOEC-Grid | 99.26  | 0.11  | 0.26 | 0.36 |

Table S1.29. Environmental impacts of per kg H<sub>2</sub> in the global H<sub>2</sub> market in three scenarios.

| Environmental impact categories (unit)                                         | STEPS |       |       | APS   |       | NZE   |       |
|--------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                                | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq ×10 <sup>-2</sup> )                                   | 1.3   | 1.6   | 1.6   | 2.3   | 1.4   | 2.8   | 1.3   |
| Ecotoxicity: freshwater (CTUe)                                                 | 171.9 | 187.2 | 177.2 | 208.2 | 135.4 | 196.6 | 123.7 |
| Resource use: energy carriers (MJ, net calorific value)                        | 157.4 | 163.7 | 148.4 | 170.5 | 86.7  | 171.2 | 90.4  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq ×10 <sup>-3</sup> ) | 1.0   | 1.3   | 1.2   | 2.0   | 0.8   | 1.9   | 0.7   |
| Eutrophication: aquatic marine (kg N-eq ×10 <sup>-3</sup> )                    | 1.7   | 2.3   | 2.2   | 3.5   | 1.9   | 4.1   | 1.9   |
| Eutrophication: terrestrial (mol N-eq ×10 <sup>-2</sup> )                      | 3.8   | 4.3   | 3.9   | 5.0   | 2.3   | 4.9   | 2.2   |
| Human toxicity: cancer effects (CTUh ×10 <sup>-9</sup> )                       | 1.5   | 1.8   | 2.2   | 2.9   | 4.7   | 4.1   | 4.6   |
| Human toxicity: non- cancer effects (CTUh ×10 <sup>-9</sup> )                  | 3.2   | 4.3   | 5.1   | 7.3   | 9.6   | 9.8   | 9.2   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                    | 0.4   | 0.5   | 0.6   | 1.2   | 1.6   | 2.2   | 1.8   |
| Land use (dimensionless)                                                       | 11.8  | 15.4  | 26.6  | 28.8  | 84.6  | 44.2  | 81.8  |
| Resource use: minerals and metals (kg Sb-eq ×10 <sup>-5</sup> )                | 2.2   | 2.8   | 4.6   | 5.7   | 14.4  | 9.7   | 13.8  |
| Ozone depletion (kg CFC-11-eq ×10 <sup>-7</sup> )                              | 6.9   | 6.7   | 6.1   | 6.9   | 4.2   | 7.1   | 4.5   |
| Particulate matter (disease incidence ×10 <sup>-7</sup> )                      | 3.7   | 4.0   | 3.5   | 4.0   | 1.8   | 3.1   | 1.5   |
| Photochemical ozone formation (kg NMVOC-eq ×10 <sup>-2</sup> )                 | 1.3   | 1.5   | 1.3   | 1.7   | 0.9   | 1.9   | 0.9   |
| Water use (m <sup>3</sup> world eq. deprived)                                  | 0.2   | 0.6   | 1.0   | 1.9   | 2.9   | 3.2   | 3.2   |
| Climate change (kg CO <sub>2</sub> -eq)                                        | 13.6  | 13.8  | 12.0  | 12.9  | 3.7   | 9.4   | 2.3   |

Table S1.30. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of China in three scenarios.

| Environmental impact categories (unit)                                         | STEPS |       |       | APS   |       | NZE   |       |
|--------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                                | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq ×10 <sup>-2</sup> )                                   | 2.5   | 2.9   | 1.9   | 3.2   | 1.9   | 3.7   | 1.7   |
| Ecotoxicity: freshwater (CTUe)                                                 | 394.5 | 427.7 | 212.9 | 437.9 | 212.9 | 370.0 | 175.2 |
| Resource use: energy carriers (MJ, net calorific value)                        | 156.0 | 168.1 | 101.8 | 173.6 | 101.8 | 166.9 | 91.6  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq ×10 <sup>-3</sup> ) | 2.4   | 2.7   | 1.3   | 2.8   | 1.3   | 2.9   | 1.1   |
| Eutrophication: aquatic marine (kg N-eq ×10 <sup>-3</sup> )                    | 2.4   | 3.3   | 2.4   | 4.2   | 2.4   | 5.4   | 2.1   |
| Eutrophication: terrestrial (mol N-eq ×10 <sup>-2</sup> )                      | 8.3   | 9.0   | 3.6   | 9.0   | 3.6   | 7.6   | 2.7   |
| Human toxicity: cancer effects (CTUh ×10 <sup>-9</sup> )                       | 1.5   | 1.9   | 5.5   | 3.1   | 5.5   | 5.6   | 5.8   |
| Human toxicity: non- cancer effects (CTUh ×10 <sup>-7</sup> )                  | 0.4   | 0.6   | 1.2   | 1.0   | 1.2   | 1.5   | 1.3   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                    | -0.07 | 0.03  | 2.7   | 0.6   | 2.7   | 1.7   | 2.9   |
| Land use (dimensionless)                                                       | 27.6  | 30.9  | 121.5 | 48.1  | 121.5 | 86.0  | 125.2 |
| Resource use: minerals and metals (kg Sb-eq ×10 <sup>-4</sup> )                | 0.2   | 0.2   | 1.8   | 0.6   | 1.8   | 1.4   | 1.9   |
| Ozone depletion (kg CFC-11-eq ×10 <sup>-7</sup> )                              | 2.5   | 2.6   | 2.5   | 2.8   | 2.5   | 3.8   | 2.6   |

|                                                               |      |      |     |      |     |      |     |
|---------------------------------------------------------------|------|------|-----|------|-----|------|-----|
| Particulate matter (disease incidence $\times 10^{-6}$ )      | 1.1  | 1.2  | 0.4 | 1.2  | 0.4 | 0.8  | 0.3 |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-2}$ ) | 0.7  | 1.0  | 0.7 | 1.2  | 0.7 | 1.6  | 0.7 |
| Water use (m <sup>3</sup> world eq. deprived)                 | 0.6  | 0.8  | 1.4 | 1.1  | 1.4 | 1.6  | 1.5 |
| Climage change (kg CO <sub>2</sub> -eq)                       | 19.1 | 20.0 | 5.2 | 19.1 | 5.2 | 13.5 | 2.4 |

Table S1.31. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of USA in three scenarios.

| Environmental impact categories (unit)                                        | STEPS |       |       | APS   |       | NZE   |       |
|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                               | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq $\times 10^{-2}$ )                                   | 1.3   | 1.4   | 1.3   | 1.9   | 1.3   | 1.6   | 1.4   |
| Ecotoxicity: freshwater (CTUe)                                                | 114.4 | 114.3 | 117.8 | 139.8 | 117.8 | 133.7 | 119.8 |
| Resource use: energy carriers (MJ, net calorific value)                       | 147.1 | 150.4 | 69.6  | 162.8 | 69.6  | 156.3 | 84.3  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq $\times 10^{-3}$ ) | -0.1  | 0.2   | 0.5   | 1.9   | 0.5   | 0.4   | 0.5   |
| Eutrophication: aquatic marine (kg N-eq $\times 10^{-3}$ )                    | 1.8   | 2.0   | 1.6   | 3.0   | 1.6   | 2.4   | 1.7   |
| Eutrophication: terrestrial (mol N-eq $\times 10^{-2}$ )                      | 2.1   | 2.1   | 1.7   | 2.9   | 1.7   | 2.6   | 1.9   |
| Human toxicity: cancer effects (CTUh $\times 10^{-9}$ )                       | 2.4   | 2.7   | 4.5   | 3.5   | 4.5   | 3.8   | 4.3   |
| Human toxicity: non- cancer effects (CTUh $\times 10^{-8}$ )                  | 2.4   | 3.1   | 8.0   | 5.6   | 8.0   | 5.7   | 7.2   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                   | 0.8   | 1.2   | 0.7   | 1.9   | 0.7   | 2.6   | 1.0   |
| Land use (dimensionless)                                                      | 3.3   | 7.5   | 75.5  | 20.5  | 75.5  | 29.3  | 69.3  |
| Resource use: minerals and metals (kg Sb-eq $\times 10^{-4}$ )                | 0.3   | 0.3   | 1.2   | 0.6   | 1.2   | 0.8   | 1.1   |
| Ozone depletion (kg CFC-11-eq $\times 10^{-7}$ )                              | 5.8   | 5.8   | 3.4   | 5.6   | 3.4   | 5.4   | 3.8   |
| Particulate matter (disease incidence $\times 10^{-7}$ )                      | 0.9   | 1.0   | 1.1   | 1.3   | 1.1   | 1.2   | 1.1   |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-2}$ )                 | 1.8   | 1.9   | 1.0   | 2.0   | 1.0   | 1.8   | 1.2   |
| Water use (m <sup>3</sup> world eq. deprived)                                 | 0.2   | 0.3   | 0.8   | 0.8   | 0.8   | 1.1   | 1.0   |
| Climage change (kg CO <sub>2</sub> -eq)                                       | 10.4  | 10.4  | 3.4   | 10.1  | 3.4   | 6.6   | 2.4   |

Table S1.32. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of EU in three scenarios.

| Environmental impact categories (unit)                                        | STEPS |       |       | APS   |       | NZE   |       |
|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                               | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq $\times 10^{-2}$ )                                   | 0.7   | 0.6   | 1.2   | 1.1   | 1.2   | 1.3   | 1.2   |
| Ecotoxicity: freshwater (CTUe)                                                | 59.0  | 57.0  | 106.8 | 93.4  | 106.8 | 110.4 | 106.0 |
| Resource use: energy carriers (MJ, net calorific value)                       | 170.7 | 168.6 | 75.1  | 169.9 | 75.1  | 161.3 | 81.4  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq $\times 10^{-4}$ ) | 3.3   | 1.7   | 5.8   | 3.6   | 5.8   | 4.6   | 5.4   |
| Eutrophication: aquatic marine (kg N-eq $\times 10^{-3}$ )                    | 2.0   | 1.9   | 2.1   | 2.8   | 2.1   | 3.1   | 2.2   |
| Eutrophication: terrestrial (mol N-eq $\times 10^{-2}$ )                      | 2.2   | 2.1   | 2.3   | 3.1   | 2.3   | 3.4   | 2.5   |
| Human toxicity: cancer effects (CTUh $\times 10^{-9}$ )                       | 1.7   | 1.7   | 5.1   | 3.3   | 5.1   | 4.1   | 4.9   |
| Human toxicity: non- cancer effects (CTUh $\times 10^{-8}$ )                  | 2.5   | 2.3   | 9.2   | 5.6   | 9.2   | 7.4   | 8.7   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                   | 1.1   | 1.1   | 0.8   | 2.7   | 0.8   | 3.5   | 0.9   |
| Land use (dimensionless)                                                      | 3.4   | 3.9   | 50.4  | 22.8  | 50.4  | 34.4  | 54.0  |
| Resource use: minerals and metals (kg Sb-eq $\times 10^{-4}$ )                | 0.3   | 0.3   | 1.4   | 0.7   | 1.4   | 1.0   | 1.3   |
| Ozone depletion (kg CFC-11-eq $\times 10^{-6}$ )                              | 1.9   | 1.9   | 0.8   | 1.6   | 0.8   | 1.3   | 0.9   |
| Particulate matter (disease incidence $\times 10^{-7}$ )                      | 0.5   | 0.5   | 1.1   | 1.0   | 1.1   | 1.2   | 1.1   |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-2}$ )                 | 1.6   | 1.6   | 1.0   | 1.6   | 1.0   | 1.5   | 1.1   |
| Water use (m <sup>3</sup> world eq. deprived)                                 | 0.3   | 0.3   | 1.4   | 1.4   | 1.4   | 1.9   | 1.6   |
| Climage change (kg CO <sub>2</sub> -eq)                                       | 11.4  | 11.2  | 3.6   | 8.8   | 3.6   | 5.5   | 2.7   |

Table S1.33. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Brazil in three scenarios.

| Environmental impact categories (unit)                                        | STEPS |       |      | APS   |      | NZE   |      |
|-------------------------------------------------------------------------------|-------|-------|------|-------|------|-------|------|
|                                                                               | 2020  | 2030  | 2050 | 2030  | 2050 | 2030  | 2050 |
| Acidification (mol H+-eq $\times 10^{-2}$ )                                   | 0.4   | 0.6   | 1.0  | 0.9   | 1.0  | 1.0   | 1.0  |
| Ecotoxicity: freshwater (CTUe)                                                | 35.8  | 45.0  | 88.9 | 61.1  | 88.9 | 66.9  | 79.4 |
| Resource use: energy carriers (MJ, net calorific value)                       | 161.9 | 155.6 | 78.9 | 138.0 | 78.9 | 129.8 | 92.8 |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq $\times 10^{-4}$ ) | 0.1   | 1.6   | 4.9  | 2.5   | 4.9  | 3.5   | 4.1  |
| Eutrophication: aquatic marine (kg N-eq $\times 10^{-3}$ )                    | 1.3   | 1.5   | 1.6  | 1.8   | 1.6  | 1.9   | 1.6  |
| Eutrophication: terrestrial (mol N-eq $\times 10^{-2}$ )                      | 1.4   | 1.7   | 1.7  | 2.0   | 1.7  | 2.1   | 1.9  |
| Human toxicity: cancer effects (CTUh $\times 10^{-9}$ )                       | 0.9   | 1.3   | 3.8  | 2.1   | 3.8  | 2.4   | 3.3  |
| Human toxicity: non- cancer effects (CTUh $\times 10^{-8}$ )                  | 1.8   | 2.6   | 7.7  | 4.1   | 7.7  | 4.6   | 6.5  |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                   | 0.03  | 0.1   | 0.2  | 0.2   | 0.2  | 0.3   | 0.2  |
| Land use (dimensionless)                                                      | 4.3   | 11.6  | 87.3 | 28.7  | 87.3 | 29.8  | 76.3 |
| Resource use: minerals and metals (kg Sb-eq $\times 10^{-4}$ )                | 0.2   | 0.3   | 1.2  | 0.6   | 1.2  | 0.7   | 1.0  |
| Ozone depletion (kg CFC-11-eq $\times 10^{-6}$ )                              | 2.0   | 1.9   | 1.0  | 1.6   | 1.0  | 1.5   | 1.1  |
| Particulate matter (disease incidence $\times 10^{-8}$ )                      | 1.6   | 3.6   | 9.5  | 6.3   | 9.5  | 7.2   | 8.9  |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-3}$ )                 | 6.3   | 7.0   | 6.2  | 7.5   | 6.2  | 7.6   | 6.5  |
| Water use (m <sup>3</sup> world eq. deprived)                                 | -0.8  | 1.6   | 7.1  | 6.1   | 7.1  | 8.2   | 8.5  |
| Climage change (kg CO <sub>2</sub> -eq)                                       | 10.1  | 9.5   | 3.6  | 7.9   | 3.6  | 5.3   | 2.5  |

Table S1.34. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Rest of Central and South America in three scenarios.

| Environmental impact categories (unit)                                        | STEPS |       |      | APS   |      | NZE   |      |
|-------------------------------------------------------------------------------|-------|-------|------|-------|------|-------|------|
|                                                                               | 2020  | 2030  | 2050 | 2030  | 2050 | 2030  | 2050 |
| Acidification (mol H+-eq $\times 10^{-3}$ )                                   | 4.1   | 5.5   | 9.7  | 8.1   | 9.7  | 9.4   | 9.2  |
| Ecotoxicity: freshwater (CTUe)                                                | 36.2  | 40.1  | 85.6 | 57.1  | 85.6 | 65.4  | 77.4 |
| Resource use: energy carriers (MJ, net calorific value)                       | 161.9 | 160.6 | 79.6 | 141.7 | 79.6 | 130.8 | 92.2 |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq $\times 10^{-4}$ ) | 0.2   | 1.2   | 4.7  | 2.3   | 4.7  | 3.3   | 3.9  |
| Eutrophication: aquatic marine (kg N-eq $\times 10^{-3}$ )                    | 1.3   | 1.5   | 1.5  | 1.7   | 1.5  | 1.8   | 1.5  |
| Eutrophication: terrestrial (mol N-eq $\times 10^{-2}$ )                      | 1.4   | 1.6   | 1.6  | 1.9   | 1.6  | 2.0   | 1.8  |
| Human toxicity: cancer effects (CTUh $\times 10^{-9}$ )                       | 0.9   | 1.0   | 3.8  | 2.0   | 3.8  | 2.4   | 3.3  |
| Human toxicity: non- cancer effects (CTUh $\times 10^{-8}$ )                  | 1.9   | 2.2   | 7.5  | 3.8   | 7.5  | 4.5   | 6.5  |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                   | 0.03  | 0.06  | 0.2  | 0.2   | 0.2  | 0.3   | 0.2  |
| Land use (dimensionless)                                                      | 4.3   | 6.3   | 86.5 | 25.1  | 86.5 | 28.9  | 76.4 |
| Resource use: minerals and metals (kg Sb-eq $\times 10^{-4}$ )                | 0.2   | 0.3   | 1.2  | 0.5   | 1.2  | 0.7   | 1.0  |
| Ozone depletion (kg CFC-11-eq $\times 10^{-6}$ )                              | 2.0   | 1.9   | 1.0  | 1.7   | 1.0  | 1.6   | 1.1  |
| Particulate matter (disease incidence $\times 10^{-8}$ )                      | 1.7   | 2.7   | 8.0  | 5.3   | 8.0  | 6.4   | 7.8  |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-3}$ )                 | 6.4   | 6.8   | 6.0  | 7.3   | 6.0  | 7.5   | 6.3  |
| Water use (m <sup>3</sup> world eq. deprived)                                 | -0.7  | 0.3   | 7.0  | 5.2   | 7.0  | 8.0   | 8.6  |
| Climage change (kg CO <sub>2</sub> -eq)                                       | 10.1  | 9.8   | 3.5  | 8.1   | 3.5  | 5.3   | 2.4  |

Table S1.35. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Rest of North America in three scenarios.

| Environmental impact categories (unit)                  | STEPS |       |      | APS   |      | NZE   |      |
|---------------------------------------------------------|-------|-------|------|-------|------|-------|------|
|                                                         | 2020  | 2030  | 2050 | 2030  | 2050 | 2030  | 2050 |
| Acidification (mol H+-eq $\times 10^{-2}$ )             | 1.8   | 1.8   | 1.2  | 1.7   | 1.2  | 1.6   | 1.3  |
| Ecotoxicity: freshwater (CTUe)                          | 31.2  | 38.5  | 61.0 | 50.4  | 61.0 | 62.6  | 60.7 |
| Resource use: energy carriers (MJ, net calorific value) | 139.2 | 136.5 | 67.2 | 130.1 | 67.2 | 119.6 | 76.9 |

|                                                                                 |      |     |      |     |      |      |      |
|---------------------------------------------------------------------------------|------|-----|------|-----|------|------|------|
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq × 10 <sup>-4</sup> ) | -3.7 | 1.5 | 2.6  | 1.6 | 2.6  | 3.2  | 2.2  |
| Eutrophication: aquatic marine (kg N-eq × 10 <sup>-3</sup> )                    | 2.3  | 2.5 | 1.7  | 2.4 | 1.7  | 2.3  | 1.7  |
| Eutrophication: terrestrial (mol N-eq × 10 <sup>-2</sup> )                      | 2.6  | 2.7 | 1.8  | 2.6 | 1.8  | 2.4  | 1.9  |
| Human toxicity: cancer effects (CTUh × 10 <sup>-9</sup> )                       | 1.9  | 2.0 | 3.0  | 2.3 | 3.0  | 2.5  | 2.7  |
| Human toxicity: non- cancer effects (CTUh × 10 <sup>-8</sup> )                  | 1.7  | 2.2 | 4.0  | 2.7 | 4.0  | 3.1  | 3.5  |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                     | -0.1 | 0.4 | 0.6  | 1.1 | 0.6  | 2.1  | 1.0  |
| Land use (dimensionless)                                                        | 6.5  | 9.2 | 36.2 | 8.1 | 36.2 | 5.6  | 32.7 |
| Resource use: minerals and metals (kg Sb-eq × 10 <sup>-5</sup> )                | 2.2  | 2.6 | 5.5  | 3.2 | 5.5  | 3.8  | 4.6  |
| Ozone depletion (kg CFC-11-eq × 10 <sup>-6</sup> )                              | 1.4  | 1.3 | 0.7  | 1.1 | 0.7  | 1.0  | 0.7  |
| Particulate matter (disease incidence × 10 <sup>-7</sup> )                      | 1.0  | 1.0 | 0.9  | 1.0 | 0.9  | 1.0  | 0.9  |
| Photochemical ozone formation (kg NMVOC-eq × 10 <sup>-2</sup> )                 | 1.0  | 1.0 | 0.7  | 1.0 | 0.7  | 0.9  | 0.7  |
| Water use (m <sup>3</sup> world eq. deprived)                                   | -0.5 | 2.1 | 10.5 | 6.5 | 10.5 | 12.0 | 14.9 |
| Climage change (kg CO <sub>2</sub> -eq)                                         | 9.3  | 8.9 | 2.9  | 7.5 | 2.9  | 4.3  | 2.1  |

Table S1.36. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Rest of Europe in three scenarios.

| Environmental impact categories (unit)                                          | STEPS |       |      | APS   |      | NZE   |      |
|---------------------------------------------------------------------------------|-------|-------|------|-------|------|-------|------|
|                                                                                 | 2020  | 2030  | 2050 | 2030  | 2050 | 2030  | 2050 |
| Acidification (mol H+-eq × 10 <sup>-2</sup> )                                   | 0.6   | 1.2   | 0.9  | 0.7   | 0.9  | 4.3   | 0.9  |
| Ecotoxicity: freshwater (CTUe)                                                  | 26.8  | 35.9  | 92.9 | 64.7  | 92.9 | 81.2  | 84.2 |
| Resource use: energy carriers (MJ, net calorific value)                         | 161.0 | 152.9 | 60.3 | 122.0 | 60.3 | 134.5 | 69.6 |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq × 10 <sup>-3</sup> ) | 0.3   | 1.0   | 0.5  | 0.3   | 0.5  | 4.6   | 0.5  |
| Eutrophication: aquatic marine (kg N-eq × 10 <sup>-3</sup> )                    | 1.2   | 1.5   | 1.2  | 1.3   | 1.2  | 3.0   | 1.2  |
| Eutrophication: terrestrial (mol N-eq × 10 <sup>-2</sup> )                      | 1.3   | 1.4   | 1.3  | 1.4   | 1.3  | 2.3   | 1.3  |
| Human toxicity: cancer effects (CTUh × 10 <sup>-9</sup> )                       | 1.0   | 1.5   | 3.8  | 2.4   | 3.8  | 3.4   | 3.6  |
| Human toxicity: non- cancer effects (CTUh × 10 <sup>-8</sup> )                  | 1.8   | 3.0   | 8.5  | 4.7   | 8.5  | 8.1   | 7.8  |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                     | 0.9   | 0.9   | 0.4  | 0.9   | 0.4  | 1.2   | 0.5  |
| Land use (dimensionless)                                                        | 1.9   | 2.6   | 8.3  | 3.6   | 8.3  | 3.8   | 9.0  |
| Resource use: minerals and metals (kg Sb-eq × 10 <sup>-4</sup> )                | 0.2   | 0.4   | 1.4  | 0.7   | 1.4  | 0.9   | 1.3  |
| Ozone depletion (kg CFC-11-eq × 10 <sup>-6</sup> )                              | 1.2   | 1.1   | 0.5  | 1.0   | 0.5  | 0.9   | 0.6  |
| Particulate matter (disease incidence × 10 <sup>-8</sup> )                      | 2.5   | 3.6   | 6.1  | 4.5   | 6.1  | 9.0   | 5.8  |
| Photochemical ozone formation (kg NMVOC-eq × 10 <sup>-3</sup> )                 | 4.0   | 4.7   | 4.2  | 4.3   | 4.2  | 8.9   | 4.2  |
| Water use (m <sup>3</sup> world eq. deprived)                                   | 0.3   | 3.0   | 11.6 | 10.5  | 11.6 | 13.3  | 11.4 |
| Climage change (kg CO <sub>2</sub> -eq)                                         | 9.8   | 9.2   | 2.6  | 6.8   | 2.6  | 6.0   | 2.0  |

Table S1.37. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Africa in three scenarios.

| Environmental impact categories (unit)                                          | STEPS |       |       | APS   |       | NZE   |       |
|---------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                                 | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq × 10 <sup>-2</sup> )                                   | 1.1   | 1.0   | 1.3   | 2.8   | 1.3   | 1.4   | 1.2   |
| Ecotoxicity: freshwater (CTUe)                                                  | 116.9 | 115.6 | 120.7 | 172.6 | 120.7 | 122.6 | 109.8 |
| Resource use: energy carriers (MJ, net calorific value)                         | 152.6 | 151.6 | 73.9  | 159.1 | 73.9  | 135.5 | 85.3  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq × 10 <sup>-3</sup> ) | 1.3   | 1.3   | 0.9   | 2.4   | 0.9   | 0.9   | 0.6   |
| Eutrophication: aquatic marine (kg N-eq × 10 <sup>-3</sup> )                    | 1.6   | 1.6   | 1.6   | 3.0   | 1.6   | 1.9   | 1.5   |
| Eutrophication: terrestrial (mol N-eq × 10 <sup>-2</sup> )                      | 2.5   | 2.4   | 1.9   | 3.7   | 1.9   | 2.3   | 1.8   |
| Human toxicity: cancer effects (CTUh × 10 <sup>-9</sup> )                       | 1.0   | 1.0   | 4.7   | 2.4   | 4.7   | 2.4   | 4.0   |
| Human toxicity: non- cancer effects (CTUh × 10 <sup>-8</sup> )                  | 3.3   | 3.3   | 9.2   | 8.4   | 9.2   | 6.0   | 8.1   |

|                                                                  |      |      |      |      |      |      |      |
|------------------------------------------------------------------|------|------|------|------|------|------|------|
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)      | 0.09 | 0.08 | 0.08 | 0.2  | 0.09 | 0.2  | 0.1  |
| Land use (dimensionless)                                         | 7.7  | 8.5  | 92.8 | 21.2 | 92.8 | 24.8 | 77.1 |
| Resource use: minerals and metals (kg Sb-eq × 10 <sup>-4</sup> ) | 0.2  | 0.2  | 1.3  | 0.5  | 1.3  | 0.7  | 1.1  |
| Ozone depletion (kg CFC-11-eq × 10 <sup>-7</sup> )               | 6.7  | 6.7  | 4.2  | 6.5  | 4.2  | 6.7  | 4.7  |
| Particulate matter (disease incidence × 10 <sup>-7</sup> )       | 0.6  | 0.5  | 1.2  | 1.0  | 1.2  | 0.9  | 1.0  |
| Photochemical ozone formation (kg NMVOC-eq × 10 <sup>-2</sup> )  | 0.7  | 0.7  | 0.7  | 1.1  | 0.7  | 0.9  | 0.7  |
| Water use (m <sup>3</sup> world eq. deprived)                    | 0.1  | 0.1  | 3.3  | 3.3  | 3.3  | 5.3  | 3.8  |
| Climate change (kg CO <sub>2</sub> -eq)                          | 11.4 | 11.1 | 3.9  | 11.2 | 3.9  | 7.0  | 2.8  |

Table S1.38. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of India in three scenarios.

| Environmental impact categories (unit)                                          | STEPS |       |       | APS   |       | NZE   |       |
|---------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                                 | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq × 10 <sup>-2</sup> )                                   | -0.2  | 1.4   | 1.5   | 4.9   | 1.5   | 6.1   | 1.3   |
| Ecotoxicity: freshwater (CTUe)                                                  | 103.9 | 150.3 | 143.7 | 249.4 | 143.7 | 268.1 | 129.2 |
| Resource use: energy carriers (MJ, net calorific value)                         | 135.9 | 152.4 | 130.0 | 187.3 | 130.0 | 201.8 | 130.1 |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq × 10 <sup>-3</sup> ) | 0.6   | 1.5   | 1.0   | 3.3   | 1.0   | 3.6   | 0.7   |
| Eutrophication: aquatic marine (kg N-eq × 10 <sup>-3</sup> )                    | -0.2  | 1.9   | 2.1   | 6.3   | 2.1   | 7.8   | 1.8   |
| Eutrophication: terrestrial (mol N-eq × 10 <sup>-2</sup> )                      | 1.2   | 3.3   | 2.2   | 7.7   | 2.2   | 8.7   | 1.9   |
| Human toxicity: cancer effects (CTUh × 10 <sup>-9</sup> )                       | 0.8   | 1.3   | 4.4   | 2.9   | 4.4   | 4.0   | 4.1   |
| Human toxicity: non- cancer effects (CTUh × 10 <sup>-7</sup> )                  | 0.2   | 0.5   | 1.1   | 1.1   | 1.1   | 1.4   | 1.0   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                     | -0.03 | 0.08  | 5.3   | 1.3   | 5.3   | 3.1   | 5.0   |
| Land use (dimensionless)                                                        | 6.7   | 10.3  | 21.4  | 17.8  | 21.4  | 18.2  | 19.5  |
| Resource use: minerals and metals (kg Sb-eq × 10 <sup>-4</sup> )                | 0.2   | 0.3   | 1.6   | 0.6   | 1.6   | 0.9   | 1.4   |
| Ozone depletion (kg CFC-11-eq × 10 <sup>-7</sup> )                              | 6.2   | 6.2   | 4.3   | 6.1   | 4.3   | 6.3   | 4.5   |
| Particulate matter (disease incidence × 10 <sup>-7</sup> )                      | 0.4   | 0.7   | 1.3   | 1.4   | 1.3   | 1.7   | 1.1   |
| Photochemical ozone formation (kg NMVOC-eq × 10 <sup>-2</sup> )                 | 0.2   | 0.8   | 0.7   | 2.0   | 0.7   | 2.5   | 0.7   |
| Water use (m <sup>3</sup> world eq. deprived)                                   | -0.2  | 0.1   | 6.7   | 2.2   | 6.7   | 5.0   | 6.7   |
| Climate change (kg CO <sub>2</sub> -eq)                                         | 10.8  | 11.8  | 3.8   | 12.9  | 3.8   | 10.0  | 2.6   |

Table S1.39. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Japan in three scenarios.

| Environmental impact categories (unit)                                          | STEPS |       |       | APS   |       | NZE   |       |
|---------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                                 | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq × 10 <sup>-2</sup> )                                   | 2.4   | 2.7   | 1.9   | 3.9   | 1.9   | 3.2   | 1.8   |
| Ecotoxicity: freshwater (CTUe)                                                  | 137.9 | 150.1 | 132.3 | 191.9 | 132.3 | 178.5 | 131.9 |
| Resource use: energy carriers (MJ, net calorific value)                         | 177.1 | 184.2 | 90.4  | 210.6 | 90.4  | 211.8 | 91.4  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq × 10 <sup>-3</sup> ) | 1.1   | 1.3   | 0.8   | 2.4   | 0.8   | 1.3   | 0.6   |
| Eutrophication: aquatic marine (kg N-eq × 10 <sup>-3</sup> )                    | 3.8   | 4.5   | 3.2   | 6.6   | 3.2   | 5.6   | 3.0   |
| Eutrophication: terrestrial (mol N-eq × 10 <sup>-2</sup> )                      | 4.8   | 5.4   | 3.9   | 7.6   | 3.9   | 6.2   | 3.9   |
| Human toxicity: cancer effects (CTUh × 10 <sup>-9</sup> )                       | 2.5   | 3.0   | 5.6   | 4.4   | 5.6   | 5.0   | 5.4   |
| Human toxicity: non- cancer effects (CTUh × 10 <sup>-7</sup> )                  | 0.6   | 0.7   | 1.0   | 1.1   | 1.0   | 1.1   | 1.0   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                     | 0.1   | 1.1   | 2.6   | 3.3   | 2.6   | 5.6   | 2.7   |
| Land use (dimensionless)                                                        | 17.8  | 27.3  | 79.0  | 50.3  | 79.0  | 39.1  | 82.6  |
| Resource use: minerals and metals (kg Sb-eq × 10 <sup>-4</sup> )                | 0.3   | 0.5   | 1.5   | 0.9   | 1.5   | 1.2   | 1.4   |
| Ozone depletion (kg CFC-11-eq × 10 <sup>-7</sup> )                              | 1.8   | 2.1   | 2.1   | 3.1   | 2.1   | 3.6   | 2.0   |
| Particulate matter (disease incidence × 10 <sup>-7</sup> )                      | 1.1   | 1.3   | 1.6   | 1.9   | 1.6   | 1.9   | 1.6   |

|                                                               |      |      |     |      |     |     |      |
|---------------------------------------------------------------|------|------|-----|------|-----|-----|------|
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-2}$ ) | 1.6  | 1.7  | 1.1 | 2.2  | 1.1 | 1.9 | 1.0  |
| Water use (m <sup>3</sup> world eq. deprived)                 | 0.3  | 0.7  | 1.9 | 1.7  | 1.9 | 2.4 | 2.1  |
| Climage change (kg CO <sub>2</sub> -eq)                       | 13.1 | 12.4 | 0.9 | 11.4 | 0.9 | 7.3 | -1.0 |

Table S1.40. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Southeast Asia in three scenarios.

| Environmental impact categories (unit)                                        | STEPS |       |       | APS   |       | NZE   |       |
|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                               | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq $\times 10^{-2}$ )                                   | 1.2   | 1.6   | 1.3   | 2.2   | 1.3   | 2.3   | 1.2   |
| Ecotoxicity: freshwater (CTUe)                                                | 91.8  | 111.8 | 119.3 | 138.0 | 119.3 | 156.7 | 114.8 |
| Resource use: energy carriers (MJ, net calorific value)                       | 153.5 | 159.6 | 65.9  | 167.5 | 65.9  | 167.3 | 70.0  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq $\times 10^{-3}$ ) | 1.9   | 3.1   | 0.9   | 4.7   | 0.9   | 4.1   | 0.7   |
| Eutrophication: aquatic marine (kg N-eq $\times 10^{-3}$ )                    | 1.6   | 2.6   | 1.6   | 3.8   | 1.6   | 4.1   | 1.5   |
| Eutrophication: terrestrial (mol N-eq $\times 10^{-2}$ )                      | 3.0   | 3.6   | 1.9   | 4.4   | 1.9   | 4.2   | 1.6   |
| Human toxicity: cancer effects (CTUh $\times 10^{-9}$ )                       | 1.0   | 1.7   | 4.6   | 2.6   | 4.6   | 3.7   | 4.4   |
| Human toxicity: non- cancer effects (CTUh $\times 10^{-7}$ )                  | 0.4   | 0.6   | 1.0   | 0.8   | 1.0   | 1.0   | 0.9   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                   | 0.1   | 0.3   | 0.5   | 0.7   | 0.5   | 1.5   | 0.8   |
| Land use (dimensionless)                                                      | 11.6  | 23.4  | 121.4 | 39.4  | 121.4 | 63.1  | 113.7 |
| Resource use: minerals and metals (kg Sb-eq $\times 10^{-4}$ )                | 0.2   | 0.4   | 1.5   | 0.6   | 1.5   | 1.0   | 1.4   |
| Ozone depletion (kg CFC-11-eq $\times 10^{-7}$ )                              | 6.1   | 6.1   | 3.6   | 6.1   | 3.6   | 6.4   | 3.7   |
| Particulate matter (disease incidence $\times 10^{-7}$ )                      | 0.7   | 1.1   | 1.1   | 1.6   | 1.1   | 1.8   | 1.0   |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-2}$ )                 | 0.7   | 0.9   | 0.6   | 1.1   | 0.6   | 1.3   | 0.6   |
| Water use (m <sup>3</sup> world eq. deprived)                                 | 0.2   | 1.2   | 2.7   | 2.5   | 2.7   | 4.9   | 3.2   |
| Climage change (kg CO <sub>2</sub> -eq)                                       | 12.4  | 12.4  | 3.4   | 12.3  | 3.4   | 9.0   | 2.1   |

Table S1.41. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Rest of Asia Pacific in three scenarios.

| Environmental impact categories (unit)                                        | STEPS |       |       | APS   |       | NZE   |       |
|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                               | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq $\times 10^{-2}$ )                                   | 1.1   | 1.4   | 1.3   | 2.2   | 1.3   | 2.4   | 1.2   |
| Ecotoxicity: freshwater (CTUe)                                                | 90.3  | 101.3 | 117.3 | 138.0 | 117.3 | 156.8 | 114.7 |
| Resource use: energy carriers (MJ, net calorific value)                       | 152.9 | 156.0 | 65.1  | 167.6 | 65.1  | 167.4 | 69.7  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq $\times 10^{-3}$ ) | 1.7   | 2.4   | 0.9   | 4.6   | 0.9   | 4.1   | 0.7   |
| Eutrophication: aquatic marine (kg N-eq $\times 10^{-3}$ )                    | 1.6   | 2.1   | 1.6   | 3.8   | 1.6   | 4.1   | 1.4   |
| Eutrophication: terrestrial (mol N-eq $\times 10^{-2}$ )                      | 2.9   | 3.2   | 1.9   | 4.4   | 1.9   | 4.1   | 1.6   |
| Human toxicity: cancer effects (CTUh $\times 10^{-9}$ )                       | 1.0   | 1.4   | 4.6   | 2.6   | 4.6   | 3.7   | 4.5   |
| Human toxicity: non- cancer effects (CTUh $\times 10^{-7}$ )                  | 0.4   | 0.5   | 1.0   | 0.8   | 1.0   | 1.0   | 0.9   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                   | 0.1   | 0.2   | 0.5   | 0.7   | 0.5   | 1.6   | 0.8   |
| Land use (dimensionless)                                                      | 11.0  | 18.3  | 122.3 | 39.6  | 122.3 | 63.5  | 113.9 |
| Resource use: minerals and metals (kg Sb-eq $\times 10^{-4}$ )                | 0.2   | 0.3   | 1.5   | 0.5   | 1.5   | 1.0   | 1.4   |
| Ozone depletion (kg CFC-11-eq $\times 10^{-7}$ )                              | 6.2   | 6.2   | 3.7   | 6.2   | 3.7   | 6.4   | 3.7   |
| Particulate matter (disease incidence $\times 10^{-7}$ )                      | 0.6   | 0.9   | 1.0   | 1.6   | 1.0   | 1.8   | 1.0   |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-2}$ )                 | 0.7   | 0.8   | 0.6   | 1.1   | 0.6   | 1.3   | 0.6   |
| Water use (m <sup>3</sup> world eq. deprived)                                 | 0.2   | 0.8   | 2.7   | 2.6   | 2.7   | 5.0   | 3.2   |
| Climage change (kg CO <sub>2</sub> -eq)                                       | 12.2  | 12.1  | 3.3   | 12.2  | 3.3   | 9.0   | 2.1   |

Table S1.42. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Middle East in three scenarios.

| Environmental impact categories (unit)                                        | STEPS |       |       | APS   |       | NZE   |       |
|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                               | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq $\times 10^{-2}$ )                                   | 0.5   | 0.6   | 1.0   | 0.9   | 1.0   | 1.2   | 1.0   |
| Ecotoxicity: freshwater (CTUe)                                                | 39.7  | 44.4  | 89.4  | 64.4  | 89.4  | 74.1  | 80.9  |
| Resource use: energy carriers (MJ, net calorific value)                       | 177.1 | 178.7 | 90.1  | 184.0 | 90.1  | 177.3 | 99.7  |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq $\times 10^{-4}$ ) | 1.9   | 2.1   | 5.4   | 2.4   | 5.4   | 3.5   | 4.7   |
| Eutrophication: aquatic marine (kg N-eq $\times 10^{-3}$ )                    | 1.4   | 1.5   | 1.6   | 2.0   | 1.6   | 2.3   | 1.6   |
| Eutrophication: terrestrial (mol N-eq $\times 10^{-2}$ )                      | 1.5   | 1.6   | 1.7   | 2.2   | 1.7   | 2.5   | 1.9   |
| Human toxicity: cancer effects (CTUh $\times 10^{-9}$ )                       | 1.3   | 1.5   | 3.9   | 2.1   | 3.9   | 2.5   | 3.7   |
| Human toxicity: non- cancer effects (CTUh $\times 10^{-8}$ )                  | 2.7   | 3.1   | 8.5   | 4.6   | 8.5   | 5.5   | 7.5   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                   | 1.1   | 1.1   | 0.7   | 1.1   | 0.7   | 1.0   | 0.7   |
| Land use (dimensionless)                                                      | 2.6   | 5.8   | 110.7 | 19.4  | 110.7 | 31.1  | 102.9 |
| Resource use: minerals and metals (kg Sb-eq $\times 10^{-4}$ )                | 0.2   | 0.3   | 1.3   | 0.5   | 1.3   | 0.7   | 1.1   |
| Ozone depletion (kg CFC-11-eq $\times 10^{-7}$ )                              | 4.7   | 5.0   | 3.2   | 6.2   | 3.2   | 6.5   | 3.3   |
| Particulate matter (disease incidence $\times 10^{-7}$ )                      | 0.7   | 0.7   | 1.1   | 0.9   | 1.1   | 1.0   | 1.1   |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-2}$ )                 | 3.2   | 3.2   | 1.8   | 3.0   | 1.8   | 2.9   | 2.0   |
| Water use (m <sup>3</sup> world eq. deprived)                                 | 0.2   | 0.3   | 0.7   | 0.6   | 0.7   | 0.8   | 0.7   |
| Climage change (kg CO <sub>2</sub> -eq)                                       | 12.3  | 12.2  | 4.6   | 11.9  | 4.6   | 9.3   | 3.1   |

Table S1.43. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Russia in three scenarios.

| Environmental impact categories (unit)                                        | STEPS |       |       | APS   |       | NZE   |       |
|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                               | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq $\times 10^{-2}$ )                                   | 0.9   | 0.8   | 1.3   | 0.8   | 1.3   | 7.1   | 1.8   |
| Ecotoxicity: freshwater (CTUe)                                                | 110.2 | 108.7 | 133.9 | 108.4 | 133.9 | 247.4 | 154.4 |
| Resource use: energy carriers (MJ, net calorific value)                       | 185.2 | 183.7 | 132.2 | 183.1 | 132.2 | 315.8 | 106.7 |
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq $\times 10^{-4}$ ) | 3.2   | 2.3   | 5.5   | 2.3   | 5.5   | 3.6   | 7.    |
| Eutrophication: aquatic marine (kg N-eq $\times 10^{-3}$ )                    | 2.3   | 2.2   | 2.7   | 2.2   | 2.7   | 8.1   | 3.4   |
| Eutrophication: terrestrial (mol N-eq $\times 10^{-2}$ )                      | 2.    | 2.4   | 2.8   | 2.4   | 2.8   | 8.0   | 3.9   |
| Human toxicity: cancer effects (CTUh $\times 10^{-9}$ )                       | 2.6   | 2.6   | 4.8   | 2.6   | 4.8   | 6.4   | 6.5   |
| Human toxicity: non- cancer effects (CTUh $\times 10^{-7}$ )                  | 0.3   | 0.3   | 0.9   | 0.3   | 0.9   | 1.4   | 1.2   |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                   | 1.3   | 1.2   | 2.0   | 1.2   | 2.0   | 6.7   | 3.5   |
| Land use (dimensionless)                                                      | 5.2   | 6.8   | 23.2  | 9.1   | 23.2  | 15.5  | 80.9  |
| Resource use: minerals and metals (kg Sb-eq $\times 10^{-4}$ )                | 0.3   | 0.3   | 1.2   | 0.3   | 1.2   | 1.3   | 1.8   |
| Ozone depletion (kg CFC-11-eq $\times 10^{-6}$ )                              | 1.4   | 1.4   | 0.9   | 1.4   | 0.9   | 1.6   | 0.5   |
| Particulate matter (disease incidence $\times 10^{-7}$ )                      | 0.8   | 0.8   | 1.6   | 0.8   | 1.6   | 3.2   | 2.6   |
| Photochemical ozone formation (kg NMVOC-eq $\times 10^{-2}$ )                 | 2.7   | 2.7   | 2.0   | 2.7   | 2.0   | 4.4   | 1.5   |
| Water use (m <sup>3</sup> world eq. deprived)                                 | 0.4   | 0.3   | 1.6   | 0.3   | 1.6   | 4.0   | 2.9   |
| Climage change (kg CO <sub>2</sub> -eq)                                       | 12.6  | 12.3  | 5.9   | 11.7  | 5.9   | 15.7  | -0.1  |

Table S1.44. Environmental impacts of per kg H<sub>2</sub> in the H<sub>2</sub> market of Rest of Eurasia in three scenarios.

| Environmental impact categories (unit)                  | STEPS |       |       | APS   |       | NZE   |       |
|---------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                                                         | 2020  | 2030  | 2050  | 2030  | 2050  | 2030  | 2050  |
| Acidification (mol H+-eq $\times 10^{-2}$ )             | 0.9   | 5.2   | 1.5   | 7.8   | 1.5   | 7.5   | 1.8   |
| Ecotoxicity: freshwater (CTUe)                          | 110.2 | 175.5 | 148.5 | 213.1 | 148.5 | 255.8 | 154.3 |
| Resource use: energy carriers (MJ, net calorific value) | 185.2 | 233.3 | 108.4 | 259.0 | 108.4 | 323.8 | 106.8 |

|                                                                                 |      |      |      |      |      |      |      |
|---------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Eutrophication: aquatic freshwater (kg PO <sub>4</sub> -eq × 10 <sup>-3</sup> ) | 0.3  | 2.7  | 0.7  | 4.3  | 0.7  | 3.8  | 0.8  |
| Eutrophication: aquatic marine (kg N-eq × 10 <sup>-3</sup> )                    | 2.3  | 5.3  | 2.9  | 7.0  | 2.9  | 8.5  | 3.4  |
| Eutrophication: terrestrial (mol N-eq × 10 <sup>-2</sup> )                      | 2.5  | 5.3  | 3.0  | 6.8  | 3.0  | 8.4  | 3.9  |
| Human toxicity: cancer effects (CTUh × 10 <sup>-9</sup> )                       | 2.6  | 4.0  | 6.0  | 4.8  | 6.0  | 6.6  | 6.5  |
| Human toxicity: non- cancer effects (CTUh × 10 <sup>-7</sup> )                  | 0.3  | 0.8  | 1.2  | 1.1  | 1.2  | 1.4  | 1.2  |
| Ionising radiation: human health (kBq U <sup>235</sup> -eq)                     | 1.3  | 2.7  | 2.4  | 3.7  | 2.4  | 7.0  | 3.5  |
| Land use (dimensionless)                                                        | 5.2  | 10.7 | 23.3 | 14.8 | 23.3 | 16.0 | 80.8 |
| Resource use: minerals and metals (kg Sb-eq × 10 <sup>-4</sup> )                | 0.3  | 0.6  | 1.7  | 0.8  | 1.7  | 1.3  | 1.8  |
| Ozone depletion (kg CFC-11-eq × 10 <sup>-6</sup> )                              | 1.4  | 1.5  | 0.7  | 1.4  | 0.7  | 1.6  | 0.5  |
| Particulate matter (disease incidence × 10 <sup>-7</sup> )                      | 0.8  | 2.0  | 2.1  | 2.5  | 2.1  | 3.3  | 2.6  |
| Photochemical ozone formation (kg NMVOC-eq × 10 <sup>-2</sup> )                 | 2.7  | 3.5  | 1.6  | 3.9  | 1.6  | 4.5  | 1.5  |
| Water use (m <sup>3</sup> world eq. deprived)                                   | 0.4  | 1.7  | 2.2  | 2.5  | 2.2  | 4.2  | 2.8  |
| Climate change (kg CO <sub>2</sub> -eq)                                         | 12.6 | 15.4 | 4.6  | 16.6 | 4.6  | 16.1 | -0.1 |

### Cumulative GHG emissions of H<sub>2</sub> production

As shown in Figure S1.2, in the STESP, APS and NZE scenarios, China emits 16 Gt CO<sub>2</sub>-eq, 14 Gt CO<sub>2</sub>-eq, and 15 Gt CO<sub>2</sub>-eq GHG emissions from 2020 to 2050. Although China will produce four times more H<sub>2</sub> in 2050 in the NZE scenario compared to the STEPS scenario, the cumulative GHG emissions between 2020 and 2050 in the NZE can be lower than that in the STEPS due to the large-scale use of water electrolysis. In the USA, these cumulative emissions in these scenarios will be 3.9 Gt CO<sub>2</sub>-eq, 5.2 Gt CO<sub>2</sub>-eq, and 6.1 Gt CO<sub>2</sub>-eq. The H<sub>2</sub> demand in the USA in 2050 in the NZE scenario is close to that in China. However, since the US has a lower emission intensity of electricity, the cumulative GHG emissions are lower than China.

Contrary to the decreasing trend of H<sub>2</sub> production in the STEPS scenario, the EU is expected to produce more H<sub>2</sub> in the APS and NZE scenarios. In the EU, the cumulative GHG emissions of H<sub>2</sub> production will be 1.6 Gt CO<sub>2</sub>-eq, 2.4 Gt CO<sub>2</sub>-eq, and 3.1 Gt CO<sub>2</sub>-eq in three scenarios. The high increase of H<sub>2</sub> production in the APS and NZE scenarios makes the cumulative GHG emissions in these scenarios higher than those in the STEPS scenario. The overall H<sub>2</sub> production related GHG emissions of China, the USA and the EU in the NZE scenario could use 2.5-8.6%, 1.0-3.4% and 0.5-1.7% of the residual carbon budget between 2020 and 2050 to limit global warming to 1.5°C with 67% certainty.<sup>142</sup> Overall, in the NZE scenario, the cumulative GHG emissions of H<sub>2</sub> production in most regions will always be higher than in the STEPS scenario. Their H<sub>2</sub> production mixes in the NZE scenario need a more significant and faster transition to reverse this trend.

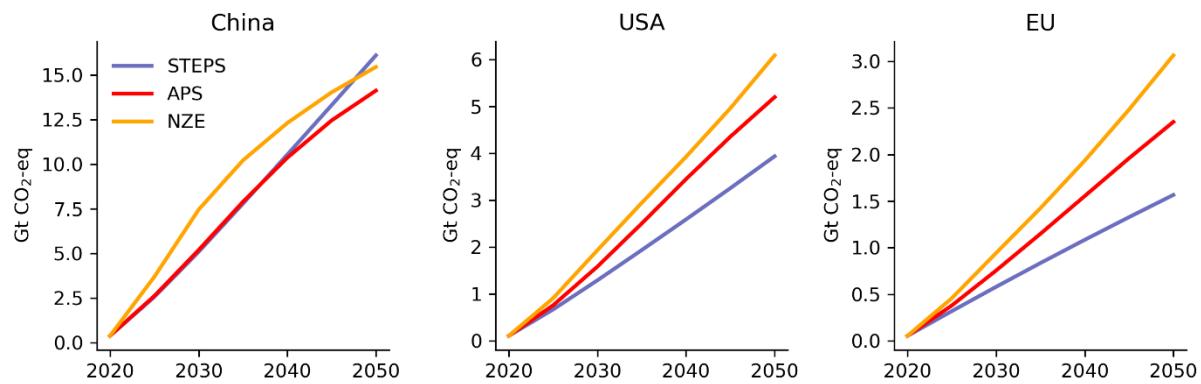



Figure S1.2. The cumulative GHG emissions of H<sub>2</sub> production in China, USA and EU in three scenarios.

### Sensitivity analysis

This sensitivity analysis assumes the use of dedicated renewable electricity generation from solar photovoltaic (PV), on-shore wind, and hydropower, as currently planned and listed in IEA's H<sub>2</sub> production projects database.<sup>69</sup> We modeled these as the electricity source for water electrolysis. The proportion of H<sub>2</sub> production amount of water electrolysis powered by renewable electricity in water electrolysis is further assumed as 100% to quantify their impacts on the global and regional cumulative GHG emissions of H<sub>2</sub> production by 2050. In addition, NG SMR CCS is further assumed to be replaced by water electrolysis powered by 100% renewables to quantify the GHG emissions reduction potential of radically transitioning H<sub>2</sub> production to green H<sub>2</sub> technologies.

As shown in Figure S1.3, the 100% renewable electricity-powered water electrolysis and its substitution for NG SMR CCS have a limited impact on cumulative GHG emissions of H<sub>2</sub> production at regional and global levels in the STEPS scenario (declining 3.5% at the most). STEPS assumes a limited amount of H<sub>2</sub> production from water electrolysis and NG CCS. As water electrolysis plays a more critical role in the APS and NZE scenarios, the impact of the electricity source of water electrolysis on cumulative GHG emissions by 2050 becomes more significant. In the APS scenario, the global cumulative GHG emissions of H<sub>2</sub> production by 2050 can decrease by 5.4-10.9%, if 100% of electricity from renewable sources are used in water electrolysis. Using water electrolysis powered 100% renewables to further replace NG SMR CCS, the cumulative GHG emissions of H<sub>2</sub> production can be reduced by 10.8%-18.0%. In the NZE scenario, the global cumulative GHG emissions of H<sub>2</sub> production by 2050 can decrease by 9.8-21.9% and 30.7-49.8% corresponding to these two assumptions. Unlike in China and the USA, the scale-up of water electrolysis using dedicated electricity from solar PV will not cause a significant decrease in cumulative GHG emissions of H<sub>2</sub> production by 2050 in the EU. The EU will decarbonize its electricity production quicker than China and the USA. In the EU, only on-shore wind and hydropower can help water electrolysis to decarbonize further as its grid electricity will move relatively quickly to low carbon emissions. In the USA, the dedicated renewable has a very limited potential to help water electrolysis to decarbonize further due to the adoption of BECCS in its grid electricity.

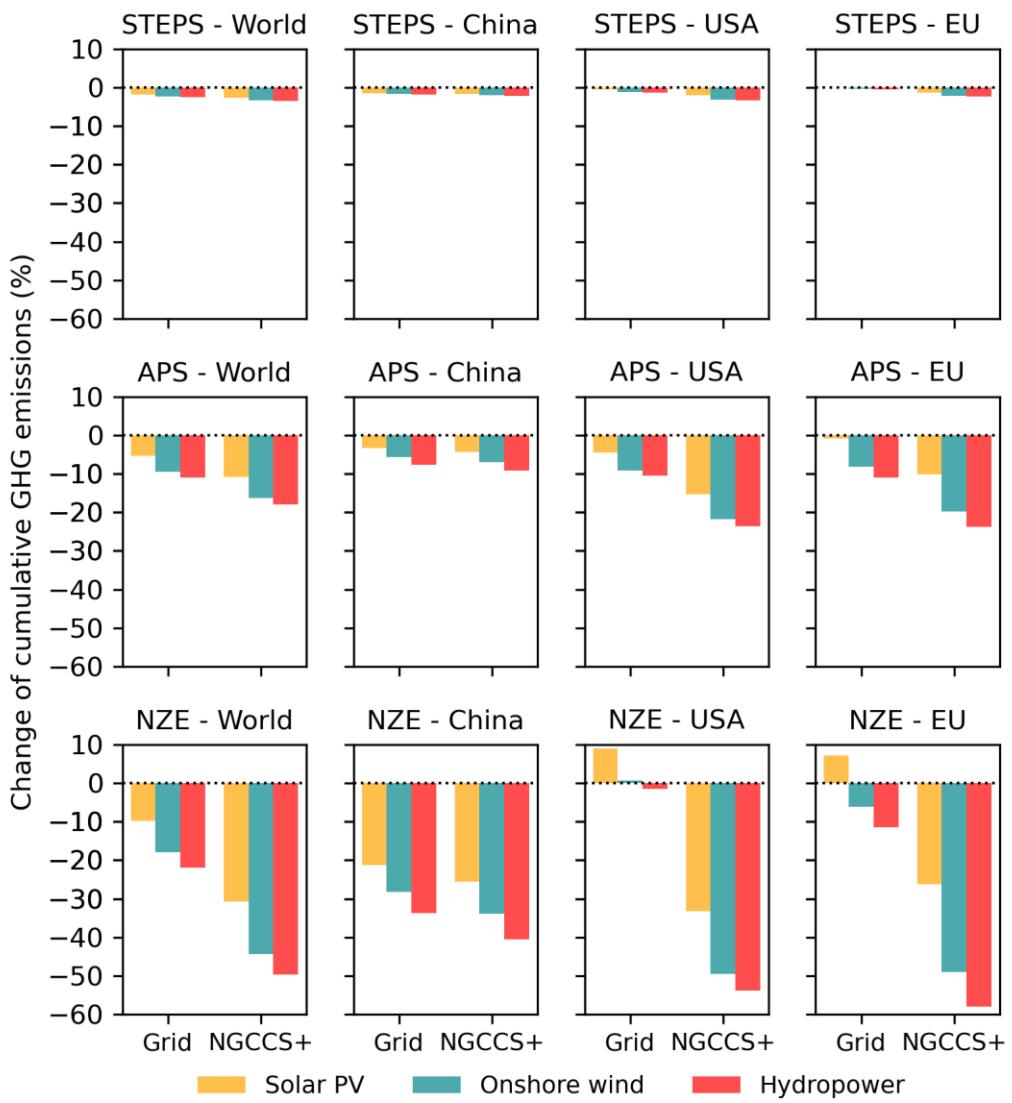



Figure S1.3. Sensitivity analysis. This figure shows the relative change of global and regional cumulative GHG emissions of H<sub>2</sub> production by 2050 caused by 100% renewable electricity-powered water electrolysis and its further substitution for NG SMR CCS. The “NGCCS+” refers to the grid-connected water electrolysis and NG SMR CCS.

## S2 Supporting information for chapter 3

### S2.1 Propulsion systems

#### Ship information

Table S2.1. Main information of the case ship Colombo Express.

| Specification            | Value                                  |
|--------------------------|----------------------------------------|
| Overall Length           | 335 m                                  |
| Beam                     | 43 m                                   |
| Deadweight tonnage (DWT) | 103,800 t                              |
| Payload utilization rate | 62%                                    |
| Main Engine Power        | 2 stroke 68.64 MW                      |
| Propellers               | 1x Fixed pitch propeller               |
| Boilers                  | 1x Auxiliary boiler, composite         |
| Generators               | 2*4.267 MW<br>1*2.454 MW<br>1*1.867 MW |
| Cargo gear               | Gearless                               |
| Fuel Capacity            | 12,000 m <sup>3</sup>                  |
| Maximum Speed            | 25.2 knots                             |
| Average Speed (SOA)      | 20 knots                               |
| Built year               | 2005                                   |

#### Propulsion system configuration

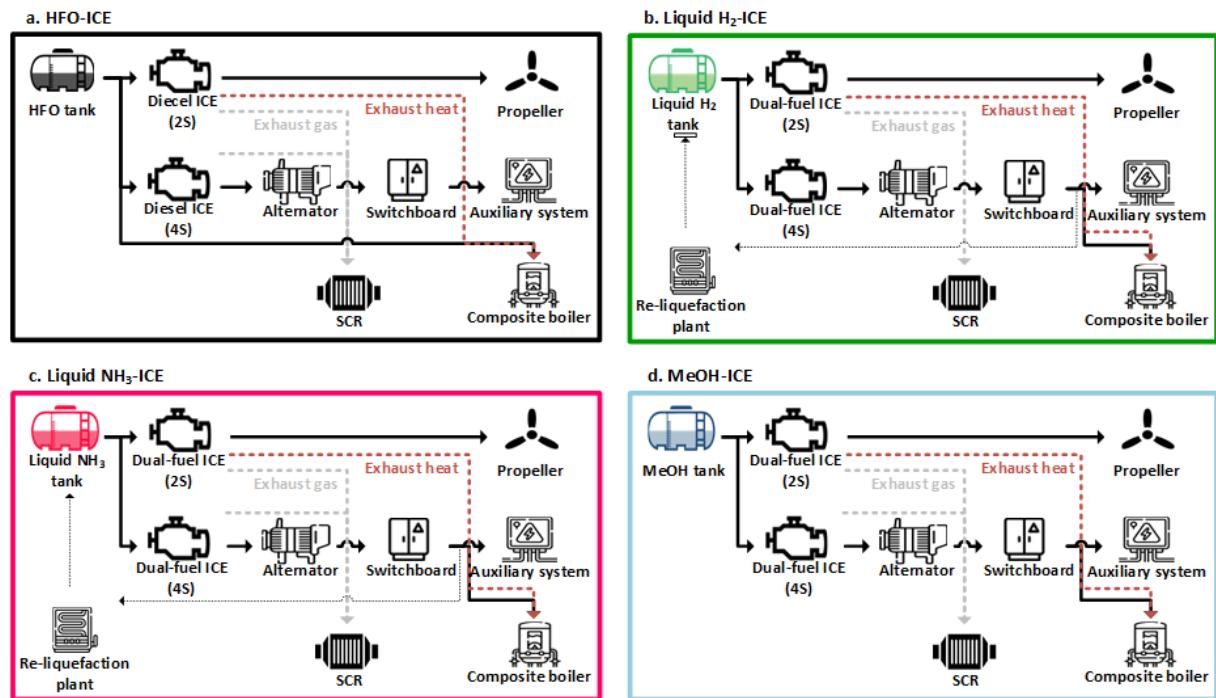



Figure S2.1. The component configuration of different propulsion systems.<sup>h</sup>

<sup>h</sup> The switchboard is created by Andreis Kirma from Noun Project. Ammonia cracker is designed by Eucalyp from Noun Project. Battery is designed by Adrien Coquet from Noun Project. The image of inverter is designed by Maurizio Fusillo from Noun Project. The SCR is designed by Thanga Vignesh from Noun Project. The image of fuel tank is from [https://www.pikpng.com/pngvi/bRTiRiw\\_fuel-tank-storage-tank-gasoline-clip-art-oil-tank-icon-transparent](https://www.pikpng.com/pngvi/bRTiRiw_fuel-tank-storage-tank-gasoline-clip-art-oil-tank-icon-transparent). Other images are from Flacton.com.

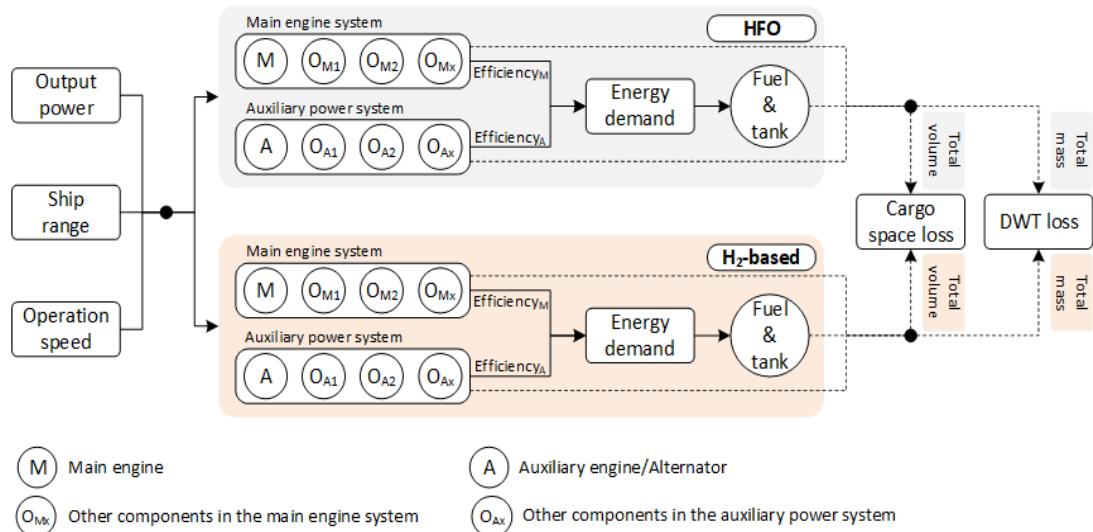



Figure S2.2. The schematic diagram of calculating the cargo space and weight loss of  $H_2$ -based fuel ship compared to the HFO ship.

## Key parameters

Table S2.2. The key technical parameters of components in propulsion systems and their data sources. In this table, the mass and volume factors are multiplied by the component sizes to calculate the mass and volume of the respective propulsion systems.

| Component                             | Efficiency (%) | Lifespan (years) | Mass factor (t/MW) | Volume factor ( $m^3/MW$ ) | Parameters source | LCI source |
|---------------------------------------|----------------|------------------|--------------------|----------------------------|-------------------|------------|
| Diesel ICE (Main)                     | 50             | 25               | 29.2               | 27.5                       | 26, 207           | 25, 26     |
| Dual-fuel ICE $H_2$ /MeOH (Main)      | 48             | 25               | 29.2               | 27.5                       | 42, 207           | 26         |
| Dual-fuel ICE $NH_3$ (Main)           | 46             | 25               | 29.2               | 27.5                       | 42, 207           | 26         |
| Diesel ICE (Auxiliary)                | 48             | 25               | 29.2               | 27.5                       | 26, 207           | 26         |
| Dual-fuel ICE $H_2$ /MeOH (Auxiliary) | 46             | 25               | 29.2               | 27.5                       | 42, 207           | 26         |
| Dual-fuel ICE $NH_3$ (Auxiliary)      | 44             | 25               | 29.2               | 27.5                       | 42, 207           | 26         |
| Alternator                            | 96             | 25               | 2.5                | 5.0                        | 26, 207           | 109        |
| Shafting                              | 99             | 25               | -                  | -                          | 208, 209          | 168        |
| Switchboard                           | 99.8           | 11               | 0.7                | 1.4                        | 226-228           | 109, 168   |
| SCR <sup>a</sup>                      | -              | 25               | 0.9                | 5.0                        | 210, 211          | 25         |

a. The SCR is equipped to reduce nitrogen oxide emissions to meet the IMO Tier III regulations. For the HFO,  $H_2$  and MeOH engines, urea is used as the reducing agent to convert nitrogen oxides to diatomic nitrogen and water. For the  $NH_3$  engine, the unburned  $NH_3$  acts as the reducing agent.<sup>25</sup>

Table S2.3. The key technical parameters and data source of fuels and their storage. In this table, the gravimetric and volumetric energy density, including tank, can be multiplied by the energy demand in different scenarios to determine the total mass and volume of the fuel and tank.

| Fuel          | Lower heating value (MWh/t) | Gravimetric energy density including tank (MWh/t) | Volumetric energy density including tank (MWh/m <sup>3</sup> ) | Data source | LCI fuels    | of LCI of tanks |
|---------------|-----------------------------|---------------------------------------------------|----------------------------------------------------------------|-------------|--------------|-----------------|
| HFO           | 11.2                        | 9.7                                               | 11.1                                                           | 233         | 109          | 234             |
| MGO           | 11.9                        | 10.1                                              | 10.1                                                           | 233, 277    | 109          | 234             |
| Liquid $H_2$  | 33.3                        | 5.6                                               | 1.3                                                            | 233         | 53, 175, 176 | 235             |
| Liquid $NH_3$ | 5.2                         | 4.2                                               | 2.9                                                            | 233, 236    | 53, 54       | 237, 238, 319   |
| MeOH          | 5.6                         | 4.6                                               | 4.4                                                            | 233         | 53, 177, 178 | 109, 234, 278   |

Table S2.4. Emissions of different propulsion systems.

| Propulsion systems | HFO-ICE <sup>42, 239-241</sup> | $H_2$ -ICE <sup>25, 42, 239-241</sup> | $NH_3$ -ICE <sup>25, 42, 239-241</sup> | MeOH-ICE <sup>42, 239-241, 279</sup> |
|--------------------|--------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|
|--------------------|--------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|

| ICE type                          | Diecel ICE |       | Dual-fuel ICE |        | Dual-fuel ICE |        | Dual-fuel ICE |        |
|-----------------------------------|------------|-------|---------------|--------|---------------|--------|---------------|--------|
| Engine                            | Main       | Aux   | Main          | Aux    | Main          | Aux    | Main          | Aux    |
| Specific fuel consumption (g/kWh) | 178.6      | 186.0 | 59.4          | 62.0   | 397.2         | 415.2  | 353.4         | 368.8  |
| Pilot fuel (g/kWh)                | -          | -     | 8.8           | 9.1    | 9.1           | 9.5    | 8.8           | 9.1    |
| Urea/NH <sub>3</sub> (g/kWh)      | 14.4       | 9.6   | 14.4          | -      | 8.2           | 6.6    | 14.4          | 3.7    |
| CH <sub>4</sub> (g/kWh)           | 0.009      | 0.009 | 0.0004        | 0.0004 | 0.0004        | 0.0004 | 0.0004        | 0.0004 |
| CO (g/kWh)                        | 0.9        | 1.0   | 0.2           | 0.2    | 0.2           | 0.2    | 4.1           | 4.3    |
| CO <sub>2</sub> (g/kWh)           | 585        | 605   | 38            | 29     | 29            | 30     | 536           | 551    |
| NO <sub>x</sub> (g/kWh)           | 3.4        | 2.6   | 3.4           | 0.7    | 3.4           | 2.6    | 3.4           | 2.6    |
| N <sub>2</sub> O (g/kWh)          | 0.029      | 0.030 | 0.001         | 0.002  | 0.013         | 0.014  | 0.001         | 0.002  |
| NH <sub>3</sub> (g/kWh)           | 0.026      | 0.026 | 0.024         | 0.0001 | 0.037         | 0.038  | 0.024         | 0.024  |
| NMVOC (g/kWh)                     | 0.424      | 0.441 | 0.024         | 0.025  | 0.025         | 0.026  | 0.021         | 0.022  |
| PM <sub>10</sub> (g/kWh)          | 0.051      | 0.053 | 0.003         | 0.003  | 0.003         | 0.003  | 0.011         | 0.011  |
| PM <sub>2.5</sub>                 | 0.581      | 0.605 | 0.029         | 0.031  | 0.031         | 0.032  | 0.123         | 0.128  |
| SO <sub>2</sub> (g/kWh)           | 1.795      | 1.869 | 0.086         | 0.090  | 0.090         | 0.094  | 0.086         | 0.090  |
| Formaldehyde (g/kWh)              | -          | -     | -             | -      | -             | -      | 0.192         | 0.200  |

## S2.2 Unit process data

The unit process data used in this study are shown below. For process data not directly available from the premise pLCA database, corresponding life cycle inventories were developed and are marked with an asterisk (\*).

### Ship operation

Table S2.5. Life cycle inventory of transport, container ship, HFO-ICE, scenario R-A-N (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE*                                                                           | 4.96E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 8.77E-06 | kilogram |
| market for maintenance, container ship                                                                        | 1.20E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 5.79E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.10E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.78E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.02E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.89E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.05E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 9.28E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.40E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.37E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.63E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 5.80E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.88E-05 | kilogram |

Table S2.6. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, scenario R-A-N (1 t-nm).

| Exchanges                                                | amount   | unit     |
|----------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                    |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE* | 5.77E-12 | unit     |
| fuel tank, heavy fuel oil*                               | 4.93E-07 | kilogram |

|                                                                                                              |          |          |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| fuel tank, cryogenic, liquid hydrogen*                                                                       | 9.62E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                                                                       | 3.14E-09 | unit     |
| market for maintenance, container ship                                                                       | 1.39E-11 | unit     |
| liquid hydrogen production*                                                                                  | 2.29E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                            | 3.39E-04 | kilogram |
| urea solution, 40 wt%*                                                                                       | 1.14E-03 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 1.59E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 6.23E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 1.40E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 1.12E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 5.63E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 7.61E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 9.24E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 9.83E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 3.32E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 1.13E-06 | kilogram |

Table S2.7. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, scenario R-A-N (1 t-nm).

| Exchanges                                                                                                    | amount   | unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE*                                                    | 6.64E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                   | 5.79E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                        | 3.50E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                                                                       | 2.41E-09 | unit     |
| market for maintenance, container ship                                                                       | 1.60E-11 | unit     |
| ammonia production, liquid*                                                                                  | 1.73E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                            | 3.97E-04 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 1.86E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 7.30E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 1.25E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 1.41E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 5.80E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 1.59E-06 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.08E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 1.15E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 3.89E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 1.32E-06 | kilogram |

Table S2.8. Life cycle inventory of transport, container ship, MeOH-DFICE, scenario R-A-N (1 t-nm).

| Exchanges                              | amount   | unit     |
|----------------------------------------|----------|----------|
| <b>Economic flows</b>                  |          |          |
| container ship production, MeOH-DFICE* | 6.14E-12 | unit     |
| fuel tank, heavy fuel oil*             | 5.13E-07 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| fuel tank, methanol*                                                                                          | 2.41E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.48E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                                                                | 1.42E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 3.51E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.27E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.65E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.66E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.14E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.30E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.83E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 9.58E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 8.53E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 4.28E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.44E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 7.69E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 4.93E-06 | kilogram |

Table S2.9. Life cycle inventory of transport, container ship, HFO-ICE, scenario R-L-N (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE*                                                                           | 6.20E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.10E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.50E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 4.42E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 8.05E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.13E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.31E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.44E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 7.81E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.09E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.40E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.05E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.25E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.43E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.44E-05 | kilogram |

Table S2.10. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, scenario R-L-N (1 t-nm).

| Exchanges                                                | amount   | unit     |
|----------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                    |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE* | 6.90E-12 | unit     |
| fuel tank, heavy fuel oil*                               | 4.53E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                   | 8.85E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                   | 2.87E-09 | unit     |
| market for maintenance, container ship                   | 1.67E-11 | unit     |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| liquid hydrogen production*                                                                                   | 1.69E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.50E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 7.30E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.17E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.59E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.00E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 7.44E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.15E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 4.89E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.81E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 7.24E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.45E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 8.33E-07 | kilogram |

Table S2.11. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, scenario R-L-N (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE*                                                     | 7.63E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 5.09E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                         | 3.08E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                                                                        | 2.12E-09 | unit     |
| market for maintenance, container ship                                                                        | 1.84E-11 | unit     |
| ammonia production, liquid*                                                                                   | 1.22E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.79E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.31E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 5.13E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 8.79E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 9.62E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.08E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.12E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.60E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 8.09E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.73E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 9.31E-07 | kilogram |

Table S2.12. Life cycle inventory of transport, container ship, MeOH-DFICE, scenario R-L-N (1 t-nm).

| Exchanges                                      | amount   | unit     |
|------------------------------------------------|----------|----------|
| <b>Economic flows</b>                          |          |          |
| container ship production, MeOH-DFICE*         | 7.21E-12 | unit     |
| fuel tank, heavy fuel oil*                     | 4.60E-07 | kilogram |
| fuel tank, methanol*                           | 2.16E-05 | kilogram |
| market for maintenance, container ship         | 1.74E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC* | 1.02E-02 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| marine gas oil, very low-sulphur*                                                                             | 2.52E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 8.30E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.18E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.19E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.53E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 9.09E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.19E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.86E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.12E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 3.08E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.47E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 5.52E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 3.54E-06 | kilogram |

Table S2.13. Life cycle inventory of transport, container ship, HFO-ICE, scenario S-A-N (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE*                                                                           | 4.96E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 8.77E-06 | kilogram |
| market for maintenance, container ship                                                                        | 1.20E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 6.02E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.14E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.90E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.14E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.97E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.10E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 9.66E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.75E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.42E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.70E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 6.04E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.95E-05 | kilogram |

Table S2.14. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, scenario S-A-N (1 t-nm).

| Exchanges                                                | amount   | unit     |
|----------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                    |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE* | 5.26E-12 | unit     |
| fuel tank, heavy fuel oil*                               | 2.31E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                   | 4.52E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                   | 1.49E-09 | unit     |
| market for maintenance, container ship                   | 1.27E-11 | unit     |
| liquid hydrogen production*                              | 2.15E-03 | kilogram |
| marine gas oil, very low-sulphur*                        | 3.18E-04 | kilogram |
| urea solution, 40 wt%*                                   | 1.09E-03 | kilogram |

| <b>Environmental flows</b>                                                                                    |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.49E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 5.84E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.32E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.07E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.28E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 7.28E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 8.66E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 9.21E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.11E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.06E-06 | kilogram |

Table S2.15. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, scenario S-A-N (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE*                                                     | 5.63E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 2.55E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                         | 1.54E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                                                                        | 1.06E-09 | unit     |
| market for maintenance, container ship                                                                        | 1.36E-11 | unit     |
| ammonia production, liquid*                                                                                   | 1.53E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 3.50E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.64E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 6.43E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.10E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.24E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.11E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.40E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 9.54E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.01E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.43E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.17E-06 | kilogram |

Table S2.16. Life cycle inventory of transport, container ship, MeOH-DFICE, scenario S-A-N (1 t-nm).

| Exchanges                                      | amount   | unit     |
|------------------------------------------------|----------|----------|
| <b>Economic flows</b>                          |          |          |
| container ship production, MeOH-DFICE*         | 5.43E-12 | unit     |
| fuel tank, heavy fuel oil*                     | 2.36E-07 | kilogram |
| fuel tank, methanol*                           | 1.11E-05 | kilogram |
| market for maintenance, container ship         | 1.31E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC* | 1.31E-02 | kilogram |
| marine gas oil, very low-sulphur*              | 3.24E-04 | kilogram |
| urea solution, 40 wt%*                         | 1.17E-03 | kilogram |
| <b>Environmental flows</b>                     |          |          |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.51E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.53E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.97E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.20E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.37E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.83E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.85E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 3.94E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.17E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 7.08E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 4.54E-06 | kilogram |

Table S2.17. Life cycle inventory of transport, container ship, HFO-ICE, scenario S-L-N (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE*                                                                           | 6.20E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.10E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.50E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 4.42E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 8.05E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.13E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.31E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.44E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 7.81E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.09E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.40E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.05E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.25E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.43E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.44E-05 | kilogram |

Table S2.18. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, scenario S-L-N (1 t-nm).

| Exchanges                                                           | amount   | unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE*            | 6.43E-12 | unit     |
| fuel tank, heavy fuel oil*                                          | 2.08E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                              | 4.06E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                              | 1.34E-09 | unit     |
| market for maintenance, container ship                              | 1.55E-11 | unit     |
| liquid hydrogen production*                                         | 1.55E-03 | kilogram |
| marine gas oil, very low-sulphur*                                   | 2.29E-04 | kilogram |
| urea solution, 40 wt%*                                              | 6.79E-04 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 1.07E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 4.20E-06 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 9.20E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 6.90E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.80E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 4.56E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.23E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 6.63E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.24E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 7.63E-07 | kilogram |

Table S2.19. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, scenario S-L-N (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE*                                                     | 6.74E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 2.25E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                         | 1.36E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                                                                        | 9.37E-10 | unit     |
| market for maintenance, container ship                                                                        | 1.63E-11 | unit     |
| ammonia production, liquid*                                                                                   | 1.07E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.46E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.15E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.53E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 7.76E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 8.49E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.60E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 9.85E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.71E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 7.14E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.41E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 8.21E-07 | kilogram |

Table S2.20. Life cycle inventory of transport, container ship, MeOH-DFICE, scenario S-L-N (1 t-nm).

| Exchanges                                                           | amount   | unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, MeOH-DFICE*                              | 6.57E-12 | unit     |
| fuel tank, heavy fuel oil*                                          | 2.10E-07 | kilogram |
| fuel tank, methanol*                                                | 9.85E-06 | kilogram |
| market for maintenance, container ship                              | 1.59E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                      | 9.28E-03 | kilogram |
| marine gas oil, very low-sulphur*                                   | 2.30E-04 | kilogram |
| urea solution, 40 wt%*                                              | 7.56E-04 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 1.08E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 1.09E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)  | 1.40E-02 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 8.28E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.82E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.25E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 5.58E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 2.80E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.25E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 5.03E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 3.22E-06 | kilogram |

Table S2.21. Life cycle inventory of transport, container ship, HFO-ICE, scenario S-A-I (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE*                                                                           | 4.96E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 8.77E-06 | kilogram |
| market for maintenance, container ship                                                                        | 1.20E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 6.02E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.14E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.90E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.14E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.97E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.10E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 9.66E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.75E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.42E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.70E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 6.04E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.95E-05 | kilogram |

Table S2.22. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, scenario S-A-I (1 t-nm).

| Exchanges                                                           | amount   | unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE*            | 5.03E-12 | unit     |
| fuel tank, heavy fuel oil*                                          | 1.10E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                              | 2.15E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                              | 7.13E-10 | unit     |
| market for maintenance, container ship                              | 1.22E-11 | unit     |
| liquid hydrogen production*                                         | 2.04E-03 | kilogram |
| marine gas oil, very low-sulphur*                                   | 3.02E-04 | kilogram |
| urea solution, 40 wt%*                                              | 1.04E-03 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 1.41E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 5.55E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)  | 1.26E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)         | 1.02E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)     | 5.01E-08 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.96E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 8.23E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 8.75E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.96E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.01E-06 | kilogram |

Table S2.23. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, scenario S-A-I (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE*                                                     | 5.20E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.18E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                         | 7.13E-06 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                                                                        | 4.92E-10 | unit     |
| market for maintenance, container ship                                                                        | 1.25E-11 | unit     |
| ammonia production, liquid*                                                                                   | 1.41E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 3.23E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.51E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 5.94E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.02E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.15E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.72E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.29E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 8.81E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 9.37E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.16E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.08E-06 | kilogram |

Table S2.24. Life cycle inventory of transport, container ship, MeOH-DFICE, scenario S-A-I (1 t-nm).

| Exchanges                                                           | amount   | unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, MeOH-DFICE*                              | 5.11E-12 | unit     |
| fuel tank, heavy fuel oil*                                          | 1.11E-07 | kilogram |
| fuel tank, methanol*                                                | 5.22E-06 | kilogram |
| market for maintenance, container ship                              | 1.23E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                      | 1.23E-02 | kilogram |
| marine gas oil, very low-sulphur*                                   | 3.05E-04 | kilogram |
| urea solution, 40 wt%*                                              | 1.10E-03 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 1.43E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 1.44E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)  | 1.85E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)         | 1.13E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)     | 5.05E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                 | 8.31E-07 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.39E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 3.71E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.98E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 6.66E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 4.27E-06 | kilogram |

Table S2.25. Life cycle inventory of transport, container ship, HFO-ICE, scenario S-L-I (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE*                                                                           | 6.20E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.10E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.50E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 4.42E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 8.05E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.13E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.31E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.44E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 7.81E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.09E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.40E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.05E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.25E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.43E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.44E-05 | kilogram |

Table S2.26. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, scenario S-L-I (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE*                                                      | 6.22E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.00E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                                                                        | 1.95E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                                                                        | 6.47E-10 | unit     |
| market for maintenance, container ship                                                                        | 1.50E-11 | unit     |
| liquid hydrogen production*                                                                                   | 1.48E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.20E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 6.58E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.03E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.04E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 8.85E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 6.66E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.65E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 4.41E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 5.98E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 6.36E-08 | kilogram |

|                                                                    |          |          |
|--------------------------------------------------------------------|----------|----------|
| Sulfur dioxide (to air, non-urban air or from high stacks)         | 2.15E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)           | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks) | 7.32E-07 | kilogram |

Table S2.27. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, scenario S-L-I (1 t-nm).

| Exchanges                                                                                                    | amount   | unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE*                                                    | 6.37E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                   | 1.06E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                        | 6.42E-06 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                                                                       | 4.43E-10 | unit     |
| market for maintenance, container ship                                                                       | 1.54E-11 | unit     |
| ammonia production, liquid*                                                                                  | 1.02E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                            | 2.33E-04 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 1.09E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 4.28E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 7.33E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 8.02E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 3.40E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 9.30E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.34E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 6.75E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 2.28E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 7.76E-07 | kilogram |

Table S2.28. Life cycle inventory of transport, container ship, MeOH-DFICE, scenario S-L-I (1 t-nm).

| Exchanges                                                                                                    | amount   | unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, MeOH-DFICE*                                                                       | 6.29E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                   | 1.00E-07 | kilogram |
| fuel tank, methanol*                                                                                         | 4.72E-06 | kilogram |
| market for maintenance, container ship                                                                       | 1.52E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                                                               | 8.89E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                            | 2.20E-04 | kilogram |
| urea solution, 40 wt%*                                                                                       | 7.24E-04 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 1.03E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 1.04E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 1.34E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 7.93E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 3.66E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 5.98E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 5.34E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 2.68E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 2.16E-06 | kilogram |

|                                                                    |          |          |
|--------------------------------------------------------------------|----------|----------|
| Formaldehyde (to air, non-urban air or from high stacks)           | 4.82E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks) | 3.09E-06 | kilogram |

## Ship production

Table S2.29. Life cycle inventory of container ship production, HFO-ICE (1 unit).

| Exchanges                                        | amount | unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1      | unit |
| propulsion system, HFO-ICE*                      | 1      | unit |

Table S2.30. Life cycle inventory of hull production, container ship, for DWT 103800 (1 unit).

| Exchanges                                                             | amount    | unit          | source   |
|-----------------------------------------------------------------------|-----------|---------------|----------|
| <b>Economic flows</b>                                                 |           |               |          |
| market for reinforcing steel                                          | 4.49E+07  | kilogram      | 167      |
| market for copper, cathode                                            | 7.12E+04  | kilogram      | 167      |
| market for bronze                                                     | 6.67E+04  | kilogram      | 167      |
| market for zinc                                                       | 3.11E+05  | kilogram      | 167      |
| market for aluminium, wrought alloy                                   | 2.22E+04  | kilogram      | 167      |
| market for cast iron                                                  | 1.74E+06  | kilogram      | 167      |
| market for electronic component machinery, unspecified                | 2.22E+02  | unit          | 167      |
| market for glass wool mat                                             | 3.78E+05  | kilogram      | 167, 168 |
| market for asbestos, crysotile type                                   | 3.78E+05  | kilogram      | 167, 168 |
| market for sanitary ceramics                                          | 3.78E+05  | kilogram      | 167, 168 |
| market for polypropylene, granulate                                   | 1.07E+05  | kilogram      | 167, 168 |
| market for polyethylene, high density, granulate                      | 1.07E+05  | kilogram      | 167, 168 |
| market for polystyrene, expandable                                    | 1.07E+05  | kilogram      | 167, 168 |
| market for polyvinylidenechloride, granulate                          | 1.07E+05  | kilogram      | 167, 168 |
| market for polyurethane, flexible foam                                | 1.07E+05  | kilogram      | 167, 168 |
| market for glued laminated timber, average glue mix                   | 9.25E+02  | cubic meter   | 167, 168 |
| market for alkyd paint, white, without solvent, in 60% solution state | 2.22E+05  | kilogram      | 167      |
| market for welding, arc, steel                                        | 2.79E+07  | meter         | 168      |
| market for welding, gas, steel                                        | 1.77E+08  | meter         | 168      |
| market group for electricity, medium voltage                          | 1.48E+07  | kilowatt hour | 168      |
| market group for heat, district or industrial, other than natural gas | 1.70E+07  | megajoule     | 168      |
| market for inert waste, for final disposal                            | -3.78E+05 | kilogram      | 168      |
| market for scrap aluminium                                            | -2.22E+04 | kilogram      | 168      |
| market for scrap copper                                               | -7.12E+04 | kilogram      | 168      |
| market for scrap steel                                                | -4.49E+07 | kilogram      | 168      |
| market for waste electric and electronic equipment                    | -5.56E+05 | kilogram      | 168      |
| market for waste emulsion paint                                       | -2.14E+05 | kilogram      | 168      |
| market for waste mineral wool                                         | -7.56E+05 | kilogram      | 168      |
| market for waste plastic, mixture                                     | -5.34E+05 | kilogram      | 168      |
| bronze scrap, post-consumer, Recycled Content cut-off                 | -6.67E+04 | kilogram      | 168      |
| iron scrap, unsorted, Recycled Content cut-off                        | -1.74E+06 | kilogram      | 168      |
| zinc scrap, post-consumer, Recycled Content cut-off                   | -3.11E+05 | kilogram      | 168      |
| <b>Environmental flows</b>                                            |           |               |          |
| NMVOOC, non-methane volatile organic compounds,                       | 1.82E+05  | kilogram      | 168      |

|                                      |          |          |     |
|--------------------------------------|----------|----------|-----|
| unspecified origin (to air)          |          |          |     |
| Hydrocarbons, unspecified (to water) | 4.00E+03 | kilogram | 168 |
| Hydrocarbons, unspecified (to soil)  | 4.00E+03 | kilogram | 168 |

Table S2.31. Life cycle inventory of propulsion system, HFO-ICE (1 unit).

| Exchanges                                                                       | amount  | unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 68.64   | MW   |
| market for generator, 200kW electrical                                          | 64.3    | unit |
| marine engine, CI, ICE*                                                         | 12.86   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 231.375 | unit |
| SCR*                                                                            | 81.5    | MW   |
| market for oil boiler, 100kW                                                    | 6.2     | unit |

Table S2.32. Life cycle inventory of marine engine, CI, ICE (1 MW).

| Exchanges                                                             | amount   | unit          |
|-----------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                 |          |               |
| market for steel, chromium steel 18/8                                 | 11674.07 | kilogram      |
| market for cast iron                                                  | 13425.19 | kilogram      |
| market for aluminium, primary, ingot                                  | 2334.81  | kilogram      |
| market for zinc                                                       | 58.37    | kilogram      |
| market for wire drawing, copper                                       | 29.19    | kilogram      |
| market for lead                                                       | 29.19    | kilogram      |
| market for nylon 6                                                    | 262.67   | kilogram      |
| market for silicone product                                           | 262.67   | kilogram      |
| market for alkyd paint, white, without solvent, in 60% solution state | 262.67   | kilogram      |
| market for lubricating oil                                            | 875.56   | kilogram      |
| market group for electricity, medium voltage                          | 10800    | kilowatt hour |

Source: Kanchiralla et al.<sup>25</sup>

Table S2.33. Life cycle inventory of SCR (1 MW).

| Exchanges                             | amount | unit     |
|---------------------------------------|--------|----------|
| <b>Economic flows</b>                 |        |          |
| market for steel, chromium steel 18/8 | 942.08 | kilogram |
| market for titanium dioxide           | 4.72   | kilogram |

Source: Kanchiralla et al.<sup>25</sup>

Table S2.34. Life cycle inventory of fuel tank, heavy fuel oil (1 kg).

| Exchanges                                 | amount | unit          |
|-------------------------------------------|--------|---------------|
| <b>Economic flows</b>                     |        |               |
| market for steel, unalloyed               | 1.16   | kilogram      |
| market for sheet rolling, steel           | 1.16   | kilogram      |
| market for scrap steel                    | -0.278 | kilogram      |
| market for epoxy resin, liquid            | 0.118  | kilogram      |
| market group for electricity, low voltage | 0.47   | kilowatt hour |

Source: Dlamini et al.<sup>234</sup>

Table S2.35. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE (1 unit).

| Exchanges | amount | unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                             |   |      |
|---------------------------------------------------|---|------|
| hull production, container ship, for DWT 103800*  | 1 | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE * | 1 | unit |

Table S2.36. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE (1 unit).

| Exchanges                                                                       | amount  | unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 68.64   | MW   |
| market for generator, 200kW electrical                                          | 64.3    | unit |
| marine engine, CI, ICE*                                                         | 12.86   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 231.375 | unit |
| SCR*                                                                            | 68.64   | MW   |
| electric boiler, 100kW*                                                         | 6.2     | unit |

Table S2.37. Life cycle inventory of electric boiler, 100kW (1 unit).

| Exchanges                                                              | amount  | unit          |
|------------------------------------------------------------------------|---------|---------------|
| <b>Economic flows</b>                                                  |         |               |
| market group for electricity, medium voltage                           | 749.59  | kilowatt hour |
| market for heat, district or industrial, other than natural gas        | 1264.04 | megajoule     |
| market for glass fibre                                                 | 3.15    | kilogram      |
| market for stone wool                                                  | 1.92    | kilogram      |
| market for sanitary ceramics                                           | 4.79    | kilogram      |
| market for expanded vermiculite                                        | 11.64   | kilogram      |
| market for brass                                                       | 15.89   | kilogram      |
| market for cast iron                                                   | 53.97   | kilogram      |
| market for steel, low-alloyed, hot rolled                              | 93.62   | kilogram      |
| market for zinc coat, coils                                            | 69.59   | square meter  |
| market for steel, chromium steel 18/8                                  | 62.33   | kilogram      |
| market for steel, low-alloyed                                          | 87.67   | kilogram      |
| market for steel, unalloyed                                            | 62.60   | kilogram      |
| market for cable, unspecified                                          | 44.52   | kilogram      |
| market for electric connector, wire clamp                              | 4.25    | kilogram      |
| market for electronics, for control units                              | 3.29    | kilogram      |
| market for printed wiring board, surface mounted, unspecified, Pb free | 6.30    | kilogram      |
| market for resistor, wirewound, through-hole mounting                  | 10.14   | kilogram      |
| market for nylon 6-6                                                   | 0.92    | kilogram      |
| market for polyvinylchloride, bulk polymerised                         | 0.33    | kilogram      |
| market for polyethylene, low density, granulate                        | 0.66    | kilogram      |
| market for silicone product                                            | 0.49    | kilogram      |
| market for alkyd paint, white, without solvent, in 60% solution state  | 3.42    | kilogram      |
| market for coating powder                                              | 0.89    | kilogram      |
| market for inert waste, for final disposal                             | -44.20  | kilogram      |
| iron scrap, unsorted, Recycled Content cut-off                         | -185.07 | kilogram      |
| market for scrap steel                                                 | -185.07 | kilogram      |
| market for electronics scrap from control units                        | -0.76   | kilogram      |
| market for used cable                                                  | -30.27  | kilogram      |
| market for waste electric wiring                                       | -0.34   | kilogram      |
| market for waste polyethylene                                          | 0.00    | kilogram      |

|                                    |       |          |
|------------------------------------|-------|----------|
| market for waste polyvinylchloride | -0.25 | kilogram |
| market for waste plastic, mixture  | -1.41 | kilogram |
| market for waste paint on metal    | -4.32 | kilogram |

Source: Abbas<sup>232</sup>

Table S2.38. Life cycle inventory of fuel tank, cryogenic, liquid hydrogen (1 kg).

| Exchanges                                 | amount   | unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for compressed air, 1000 kPa gauge | 3.76E-04 | cubic meter   |
| market group for electricity, low voltage | 5.98E-01 | kilowatt hour |
| market for steel, chromium steel 18/8     | 9.74E-01 | kilogram      |
| market for aluminium alloy, AlMg3         | 2.59E-02 | kilogram      |

Source: Abbas<sup>235</sup>

Table S2.39. Life cycle inventory of reliquefaction plant, 1 kg/h capacity (1 unit).

| Exchanges                                    | Amount | Unit          |
|----------------------------------------------|--------|---------------|
| <b>Economic flows</b>                        |        |               |
| market for steel, chromium steel 18/8        | 16.5   | kilogram      |
| market for cast iron                         | 6      | kilogram      |
| market for steel, unalloyed                  | 5.4    | kilogram      |
| market for aluminium, primary, ingot         | 2.1    | kilogram      |
| market for casting, steel, lost-wax          | 21.9   | kilogram      |
| market for casting, aluminium, lost-wax      | 2.1    | kilogram      |
| market group for electricity, medium voltage | 11.34  | kilowatt hour |
| market for scrap steel                       | -21.90 | kilogram      |
| market for scrap aluminium                   | -2.10  | kilogram      |
| market for iron scrap, unsorted              | -6.00  | kilogram      |
| market for natural gas, liquefied            | 0.01   | cubic meter   |
| market for nitrogen, liquid                  | 4.18   | kilogram      |

Source: Park et al.<sup>275</sup>

Table S2.40. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE (1 unit).

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800  | 1      | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE | 1      | unit |

Table S2.41. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE (1 unit).

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 68.64   | MW   |
| market for generator, 200kW electrical                                          | 64.3    | unit |
| marine engine, CI, ICE*                                                         | 12.86   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 231.375 | unit |
| SCR*                                                                            | 81.5    | MW   |
| electric boiler, 100kW*                                                         | 6.2     | unit |

Table S2.42. Life cycle inventory of fuel tank, cryogenic, liquid ammonia (1 kg).

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>           |       |          |
|---------------------------------|-------|----------|
| market for steel, low-alloyed   | 0.55  | kilogram |
| market for steel, unalloyed     | 0.56  | kilogram |
| market for sheet rolling, steel | 1.11  | kilogram |
| market for scrap steel          | -0.11 | kilogram |

Source: Ryste<sup>237</sup> and Cryocan<sup>238</sup>

Table S2.43. Life cycle inventory of container ship production, MeOH-DFICE (1 unit).

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1      | unit |
| propulsion system, MeOH-DFICE*                   | 1      | unit |

Table S2.44. Life cycle inventory of propulsion system, MeOH-DFICE (1 unit).

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 68.64   | MW   |
| market for generator, 200kW electrical                                          | 64.3    | unit |
| marine engine, CI, ICE*                                                         | 12.86   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 231.375 | unit |
| SCR*                                                                            | 81.5    | MW   |
| electric boiler, 100kW*                                                         | 6.2     | unit |

Table S2.45. Life cycle inventory of fuel tank, methanol (1 kg).

| Exchanges                                 | Amount | Unit          |
|-------------------------------------------|--------|---------------|
| <b>Economic flows</b>                     |        |               |
| market for steel, unalloyed               | 1.16   | kilogram      |
| market for sheet rolling, steel           | 1.16   | kilogram      |
| market for scrap steel                    | -0.28  | kilogram      |
| market for epoxy resin, liquid            | 0.12   | kilogram      |
| market group for electricity, low voltage | 0.47   | kilowatt hour |

Source: Dlamini et al.<sup>234</sup> and CGH<sup>278</sup>

## Fuel supply

In the production processes of H<sub>2</sub>-based fuels, the input of “market for hydrogen, gaseous, 25-30 bar” is from the databases established by.<sup>53</sup>

Table S2.46. Life cycle inventory of heavy fuel oil, very low-sulphur (1 kg).

| Exchanges                                 | Amount   | Unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for heavy fuel oil                 | 1.00     | kilogram      |
| market group for electricity, low voltage | 5.46E-03 | kilowatt hour |
| market for petroleum coke                 | 9.20E-05 | kilogram      |
| market for hydrogen, gaseous              | 8.92E-03 | kilogram      |
| <b>Environmental flows</b>                |          |               |
| Hydrogen sulfide (to air)                 | 5.63E-03 | kilogram      |

Source: Silva<sup>174</sup>

Table S2. 47. Life cycle inventory of marine gas oil, very low-sulphur (1 kg).

| Exchanges                                 | Amount   | Unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market group for diesel, low-sulfur       | 1.00     | kilogram      |
| market group for electricity, low voltage | 5.46E-03 | kilowatt hour |
| market for petroleum coke                 | 9.20E-05 | kilogram      |
| market for hydrogen, gaseous              | 8.92E-03 | kilogram      |
| <b>Environmental flows</b>                |          |               |
| Hydrogen sulfide (to air)                 | 5.63E-03 | kilogram      |

Source: Silva<sup>174</sup>

Table S2.48. Life cycle inventory of liquid hydrogen production (1 kg).

| Exchanges                                 | amount   | unit          | source |
|-------------------------------------------|----------|---------------|--------|
| <b>Economic flows</b>                     |          |               |        |
| market for hydrogen, gaseous, 25-30 bar*  | 1.0162   | kilogram      | 175    |
| hydrogen liquefaction plant construction* | 3.43E-09 | unit          | 175    |
| market group for electricity, low voltage | 10.5     | kilowatt hour | 176    |
| <b>Environmental flows</b>                |          |               |        |
| Hydrogen (to air)                         | 1.62E-02 | kilogram      | 175    |

Table S2.49. Life cycle inventory of hydrogen liquefaction plant construction (1 unit).

| Exchanges                             | amount   | unit        |
|---------------------------------------|----------|-------------|
| <b>Economic flows</b>                 |          |             |
| market for steel, chromium steel 18/8 | 5.95E+05 | kilogram    |
| market for reinforcing steel          | 3.80E+05 | kilogram    |
| market group for concrete, normal     | 2.03E+04 | cubic meter |
| market for copper, cathode            | 1.50E+05 | kilogram    |
| market for aluminium alloy, AlMg3     | 1.40E+05 | kilogram    |

Source: Wulf and Zapp<sup>175</sup>

Table S2.50. Life cycle inventory of ammonia production, liquid (1 kg).

| Exchanges                                                            | amount    | unit          |
|----------------------------------------------------------------------|-----------|---------------|
| <b>Economic flows</b>                                                |           |               |
| market for hydrogen, gaseous, 25-30 bar*                             | 0.176     | kilogram      |
| nitrogen, gaseous, from cryogenic distillation, without compression* | 0.815     | kilogram      |
| ammonia synthesis catalyst*                                          | 5.15E-05  | kilogram      |
| market for chemical factory, organics                                | 3.29E-10  | unit          |
| market group for electricity, low voltage                            | 1.440     | kilowatt hour |
| treatment of inert waste, inert material landfill                    | -5.15E-05 | kilogram      |
| <b>Environmental flows</b>                                           |           |               |
| Water, cooling, unspecified natural origin (from natural resource)   | 0.149     | cubic meter   |
| Hydrogen (to air)                                                    | 7.67E-04  | kilogram      |
| Ammonia (to air)                                                     | 1.63E-03  | kilogram      |
| Nitrogen oxides (to air)                                             | 1.00E-03  | kilogram      |
| Water (to air)                                                       | 4.76E-02  | cubic meter   |
| Water (to water)                                                     | 1.01E-01  | cubic meter   |

Source: D'Angelo et al.<sup>54</sup>

Table S2.51. Life cycle inventory of nitrogen, gaseous, from cryogenic distillation, without compression (1 kg).

| Exchanges | amount | unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                                              |           |             |
|--------------------------------------------------------------------|-----------|-------------|
| market for air separation facility                                 | 4.43E-10  | unit        |
| <b>Environmental flows</b>                                         |           |             |
| Water, cooling, unspecified natural origin (from natural resource) | 4.00 E-03 | cubic meter |
| Water (to water)                                                   | 2.45E-03  | cubic meter |

Source: D'Angelo et al.<sup>54</sup>

Table S2.52. Life cycle inventory of ammonia synthesis catalyst (1 kg).

| Exchanges                                 | amount   | unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for magnetite                      | 0.917    | kilogram      |
| market for lime                           | 3.00E-02 | kilogram      |
| market for zeolite, powder                | 5.25E-02 | kilogram      |
| market group for electricity, low voltage | 1.78     | kilowatt hour |

Source: D'Angelo et al.<sup>54</sup>

Table S2.53. Life cycle inventory of methanol production, CO<sub>2</sub> from DAC (1 kg).

| Exchanges                                         | amount    | unit          |
|---------------------------------------------------|-----------|---------------|
| <b>Economic flows</b>                             |           |               |
| CO <sub>2</sub> from DAC*                         | 1.51      | kilogram      |
| market for hydrogen, gaseous, 25-30 bar*          | 0.208     | kilogram      |
| market group for electricity, high voltage        | 0.272     | kilowatt hour |
| market for steel, chromium steel 18/8             | 1.53E-04  | kilogram      |
| market for aluminium oxide, non-metallurgical     | 1.20E-05  | kilogram      |
| market for copper oxide                           | 6.20E-05  | kilogram      |
| market for zinc oxide                             | 2.90E-05  | kilogram      |
| market for heat, from steam, in chemical industry | -0.4397   | megajoule     |
| market for wastewater, average                    | -5.71E-04 | cubic meter   |
| <b>Environmental flows</b>                        |           |               |
| Carbon dioxide, fossil (to air)                   | 0.077     | kilogram      |
| Methanol (to air)                                 | 0.01      | kilogram      |
| Nitrogen oxides (to air)                          | 1.78E-06  | kilogram      |

Source: González-Garay et al.<sup>177</sup>

Table S2.54. Life cycle inventory of CO<sub>2</sub> from DAC (1 kg)

| Exchanges                                      | amount | unit          |
|------------------------------------------------|--------|---------------|
| <b>Economic flows</b>                          |        |               |
| market group for electricity, high voltage     | 0.366  | kilowatt hour |
| market group for tap water                     | 3.105  | kilogram      |
| market group for natural gas, high pressure    | 0.1895 | cubic meter   |
| market for calcium carbonate, precipitated     | 0.02   | kilogram      |
| <b>Environmental flows</b>                     |        |               |
| Carbon dioxide, in air (from natural resource) | 1      | kilogram      |

Source: Keith et al.<sup>178</sup>

## Others

Table S2.55. Life cycle inventory of urea solution, 40 wt% (kg).

| Exchanges             | Amount | Unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                             |     |          |
|-----------------------------|-----|----------|
| market for urea             | 0.4 | kilogram |
| market for water, deionised | 0.6 | kilogram |

Source: Brynolf et al.<sup>262</sup>

## S2.3 Supplementary results

### Prospective GHG emissions

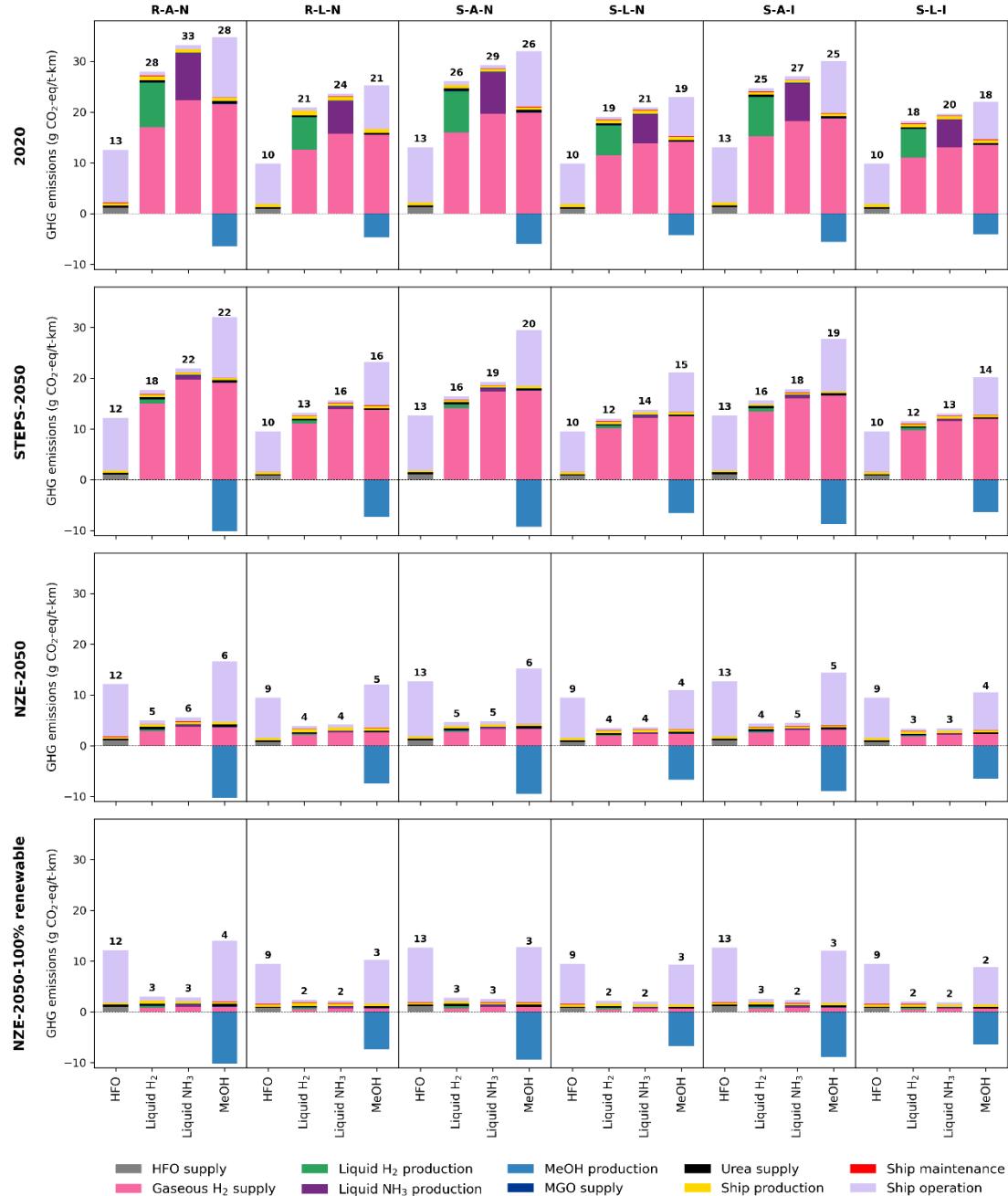



Figure S2.3. The process contribution to the GHG emissions (per t-km) of different ships in different scenarios. For the liquid H<sub>2</sub> production, liquid NH<sub>3</sub> production and MeOH production, the gaseous H<sub>2</sub> supply is a part of them and presented separately. In this figure, R-A-N=22000 nm-20 knots-Nonstop, R-L-N=22000 nm-16 knots-Nonstop, S-A-N=11000 nm-20 knots-Nonstop, S-L-N=11000 nm-16 knots-Nonstop, S-A-I=5500 nm-20 knots-1 refueling stop, and S-L-I=5500 nm-16 knots-1 refueling stop. For the MeOH-ICE case, the negative value is caused by the direct air capture.

### GHG emissions from BOG treatment methods

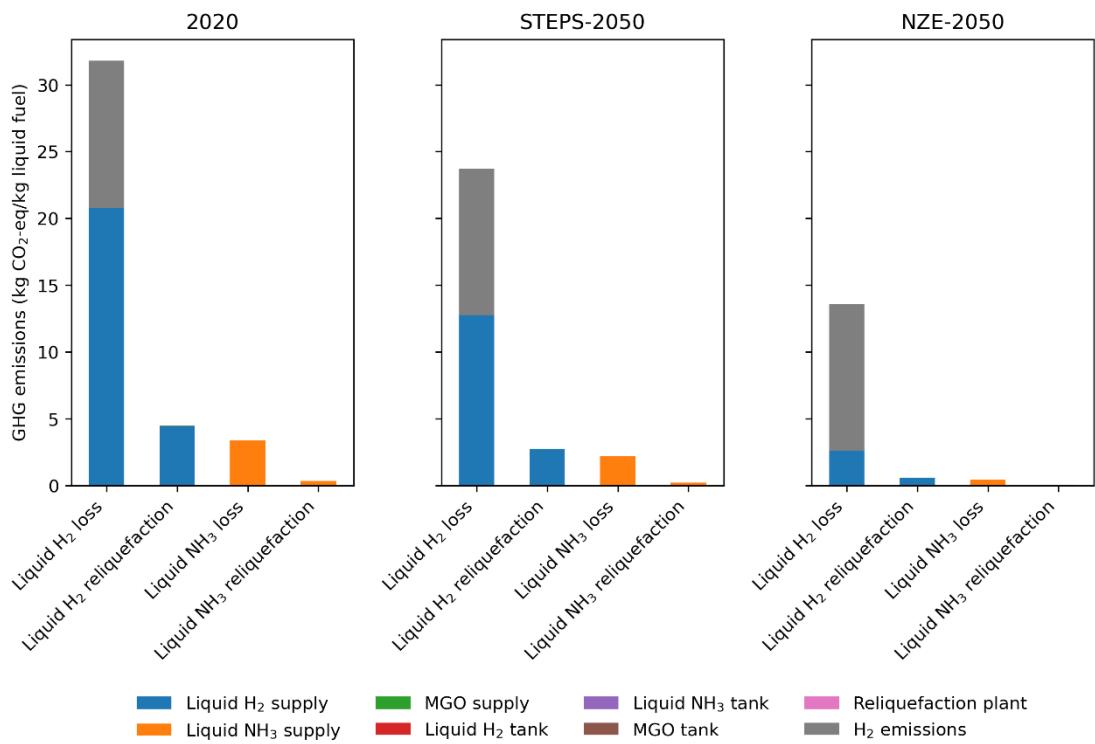



Figure S2.4. GHG emissions from different treatment methods of boil-off gas from liquid H<sub>2</sub> and NH<sub>3</sub> storage under the S-A-N (11000 nm-20 knots-Nonstop) scenario. In this figure, the MGO supply, the liquid NH<sub>3</sub> tank, the reliquefaction plant, the liquid H<sub>2</sub> tank, the MGO tank are related to liquid fuel reliquefaction, but their GHG emissions are negligible.

## S3 Supporting information for chapter 4

### S3.1 Unit process data

The unit process data used in this study are shown below. For process data not directly available from the Ecoinvent database, we created the corresponding life cycle inventories and marked them with an asterisk (\*).

#### Ship operation

Table S3.1. Life cycle inventory of transport, container ship, HFO-ICE, scenario R-A-N (1 t-nm).

| Exchanges                                                                                                    | amount   | unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, HFO-ICE*                                                                          | 4.96E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                   | 8.77E-06 | kilogram |
| market for maintenance, container ship                                                                       | 1.20E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                            | 6.02E-03 | kilogram |
| urea solution, 40 wt%*                                                                                       | 1.14E-03 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 2.90E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 3.14E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 1.97E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 1.10E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 9.66E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 8.75E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.42E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 1.70E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 6.04E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 1.95E-05 | kilogram |

Table S3.2. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, scenario R-A-N (1 t-nm).

| Exchanges                                                | amount   | unit          |
|----------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                    |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC* | 5.54E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                   | 9.37E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                   | 3.06E-09 | unit          |
| market for maintenance, container ship                   | 1.34E-11 | unit          |
| liquid hydrogen production*                              | 2.23E-03 | kilogram      |
| market group for electricity, low voltage                | 2.38E-06 | kilowatt hour |

Table S3.3. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, scenario R-A-N (1 t-nm).

| Exchanges                                                | amount   | unit     |
|----------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                    |          |          |
| container ship production, liquid NH <sub>3</sub> -SOFC* | 6.43E-12 | unit     |
| fuel tank, cryogenic, liquid ammonia*                    | 3.06E-05 | kilogram |
| Reliquefaction plant, 1 kg/h capacity*                   | 2.11E-09 | unit     |
| market for maintenance, container ship                   | 1.55E-11 | unit     |
| ammonia production, liquid*                              | 1.51E-02 | kilogram |

|                                                             |          |               |
|-------------------------------------------------------------|----------|---------------|
| market group for electricity, low voltage                   | 8.25E-06 | kilowatt hour |
| <b>Environmental flows</b>                                  |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks) | 1.45E-07 | kilogram      |

Table S3.4. Life cycle inventory of transport, container ship, HFO-ICE, scenario R-L-N (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE*                                                                           | 6.20E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.10E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.50E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 4.42E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 8.05E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.13E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.31E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.44E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 7.81E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.09E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.40E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.05E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.25E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.43E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.44E-05 | kilogram |

Table S3.5. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, scenario R-L-N (1 t-nm).

| Exchanges                                                | amount   | unit          |
|----------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                    |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC* | 6.62E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                   | 8.26E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                   | 2.69E-09 | unit          |
| market for maintenance, container ship                   | 1.60E-11 | unit          |
| liquid hydrogen production*                              | 1.58E-03 | kilogram      |
| market group for electricity, low voltage                | 2.27E-06 | kilowatt hour |

Table S3.6. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, scenario R-L-N (1 t-nm).

| Exchanges                                                   | amount   | unit          |
|-------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                       |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC*    | 7.21E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                       | 2.26E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                      | 1.55E-09 | unit          |
| market for maintenance, container ship                      | 1.74E-11 | unit          |
| ammonia production, liquid*                                 | 8.92E-03 | kilogram      |
| market group for electricity, low voltage                   | 7.41E-06 | kilowatt hour |
| <b>Environmental flows</b>                                  |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks) | 8.59E-08 | kilogram      |

Table S3.7. Life cycle inventory of transport, container ship, HFO-ICE, scenario S-A-N (1 t-nm).

| Exchanges                                                                                                      | amount   | unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, HFO-ICE*                                                                            | 4.96E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 8.77E-06 | kilogram |
| market for maintenance, container ship                                                                         | 1.20E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                              | 6.02E-03 | kilogram |
| urea solution, 40 wt%*                                                                                         | 1.14E-03 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 2.90E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 3.14E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 1.97E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 1.10E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 9.66E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 8.75E-07 | kilogram |
| NM VOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.42E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 1.70E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 6.04E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 1.95E-05 | kilogram |

Table S3.8. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, scenario S-A-N (1 t-nm).

| Exchanges                                                | amount   | unit          |
|----------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                    |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC* | 5.09E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                   | 4.26E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                   | 1.41E-09 | unit          |
| market for maintenance, container ship                   | 1.23E-11 | unit          |
| liquid hydrogen production*                              | 2.02E-03 | kilogram      |
| market group for electricity, low voltage                | 4.36E-06 | kilowatt hour |

Table S3.9. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, scenario S-A-N (1 t-nm).

| Exchanges                                                   | amount   | unit          |
|-------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                       |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC*    | 5.62E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                       | 1.33E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                      | 9.20E-10 | unit          |
| market for maintenance, container ship                      | 1.36E-11 | unit          |
| ammonia production, liquid*                                 | 1.32E-02 | kilogram      |
| market group for electricity, low voltage                   | 1.44E-05 | kilowatt hour |
| <b>Environmental flows</b>                                  |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks) | 1.27E-07 | kilogram      |

Table S3.10. Life cycle inventory of transport, container ship, HFO-ICE, scenario S-L-N (1 t-nm).

| Exchanges                              | amount   | unit     |
|----------------------------------------|----------|----------|
| <b>Economic flows</b>                  |          |          |
| container ship production, HFO-ICE*    | 6.20E-12 | unit     |
| fuel tank, heavy fuel oil*             | 1.10E-05 | kilogram |
| market for maintenance, container ship | 1.50E-11 | unit     |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| heavy fuel oil, very low-sulphur*                                                                             | 4.42E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 8.05E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.13E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.31E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.44E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 7.81E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.09E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.40E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.05E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.25E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.43E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.44E-05 | kilogram |

Table S3.11. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, scenario S-L-N (1 t-nm).

| Exchanges                                                | amount   | unit          |
|----------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                    |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC* | 6.23E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                   | 3.84E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                   | 1.26E-09 | unit          |
| market for maintenance, container ship                   | 1.50E-11 | unit          |
| liquid hydrogen production*                              | 1.46E-03 | kilogram      |
| market group for electricity, low voltage                | 4.27E-06 | kilowatt hour |

Table S3.12. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, scenario S-L-N (1 t-nm).

| Exchanges                                                   | amount   | unit          |
|-------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                       |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC*    | 6.69E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                       | 1.05E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                      | 7.21E-10 | unit          |
| market for maintenance, container ship                      | 1.61E-11 | unit          |
| ammonia production, liquid*                                 | 8.27E-03 | kilogram      |
| market group for electricity, low voltage                   | 1.37E-05 | kilowatt hour |
| <b>Environmental flows</b>                                  |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks) | 7.96E-08 | kilogram      |

Table S3.13. Life cycle inventory of transport, container ship, HFO-ICE, scenario S-A-I (1 t-nm).

| Exchanges                                                           | amount   | unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, HFO-ICE*                                 | 4.96E-12 | unit     |
| fuel tank, heavy fuel oil*                                          | 8.77E-06 | kilogram |
| market for maintenance, container ship                              | 1.20E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                   | 6.02E-03 | kilogram |
| urea solution, 40 wt%*                                              | 1.14E-03 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 2.90E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 3.14E-05 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.97E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.10E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 9.66E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.75E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.42E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.70E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 6.04E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.95E-05 | kilogram |

Table S3.14. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, scenario S-A-I (1 t-nm).

| Exchanges                                                | amount   | unit          |
|----------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                    |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC* | 4.89E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                   | 2.04E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                   | 6.76E-10 | unit          |
| market for maintenance, container ship                   | 1.18E-11 | unit          |
| liquid hydrogen production*                              | 1.94E-03 | kilogram      |
| market group for electricity, low voltage                | 8.39E-06 | kilowatt hour |

Table S3.15. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, scenario S-A-I (1 t-nm).

| Exchanges                                                   | amount   | unit          |
|-------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                       |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC*    | 5.28E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                       | 6.28E-06 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                      | 4.33E-10 | unit          |
| market for maintenance, container ship                      | 1.28E-11 | unit          |
| ammonia production, liquid*                                 | 1.24E-02 | kilogram      |
| market group for electricity, low voltage                   | 2.71E-05 | kilowatt hour |
| <b>Environmental flows</b>                                  |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks) | 1.19E-07 | kilogram      |

Table S3.16. Life cycle inventory of transport, container ship, HFO-ICE, scenario S-L-I (1 t-nm).

| Exchanges                                                                                                     | amount   | unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE*                                                                           | 6.20E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.10E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.50E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 4.42E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 8.05E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.13E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.31E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.44E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 7.81E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.09E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.40E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.05E-05 | kilogram |

|                                                                                |          |          |
|--------------------------------------------------------------------------------|----------|----------|
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks) | 1.25E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                     | 4.43E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)             | 1.44E-05 | kilogram |

Table S3.17. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, scenario S-L-I (1 t-nm).

| Exchanges                                                | amount   | unit          |
|----------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                    |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC* | 6.05E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                   | 1.85E-05 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                   | 6.14E-10 | unit          |
| market for maintenance, container ship                   | 1.46E-11 | unit          |
| liquid hydrogen production*                              | 1.41E-03 | kilogram      |
| market group for electricity, low voltage                | 8.31E-06 | kilowatt hour |

Table S3.18. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, scenario S-L-I (1 t-nm).

| Exchanges                                                   | amount   | unit          |
|-------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                       |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC*    | 6.45E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                       | 5.04E-06 | kilogram      |
| Reliquefaction plant, 1 kg/h capacity*                      | 3.48E-10 | unit          |
| market for maintenance, container ship                      | 1.56E-11 | unit          |
| ammonia production, liquid*                                 | 7.98E-03 | kilogram      |
| market group for electricity, low voltage                   | 2.65E-05 | kilowatt hour |
| <b>Environmental flows</b>                                  |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks) | 7.68E-08 | kilogram      |

## Ship production

Table S3.19. Life cycle inventory of container ship production, HFO-ICE (1 unit).

| Exchanges                                        | amount | unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1      | unit |
| propulsion system, HFO-ICE*                      | 1      | unit |

Table S3.20. Life cycle inventory of hull production, container ship, for DWT 103800 (1 unit).

| Exchanges                                              | amount   | unit     | source   |
|--------------------------------------------------------|----------|----------|----------|
| <b>Economic flows</b>                                  |          |          |          |
| market for reinforcing steel                           | 4.49E+07 | kilogram | 167      |
| market for copper, cathode                             | 7.12E+04 | kilogram | 167      |
| market for bronze                                      | 6.67E+04 | kilogram | 167      |
| market for zinc                                        | 3.11E+05 | kilogram | 167      |
| market for aluminium, wrought alloy                    | 2.22E+04 | kilogram | 167      |
| market for cast iron                                   | 1.74E+06 | kilogram | 167      |
| market for electronic component machinery, unspecified | 2.22E+02 | unit     | 167      |
| market for glass wool mat                              | 3.78E+05 | kilogram | 167, 168 |
| market for asbestos, crysotile type                    | 3.78E+05 | kilogram | 167, 168 |
| market for sanitary ceramics                           | 3.78E+05 | kilogram | 167, 168 |
| market for polypropylene, granulate                    | 1.07E+05 | kilogram | 167, 168 |
| market for polyethylene, high density, granulate       | 1.07E+05 | kilogram | 167, 168 |

|                                                                            |           |               |          |
|----------------------------------------------------------------------------|-----------|---------------|----------|
| market for polystyrene, expandable                                         | 1.07E+05  | kilogram      | 167, 168 |
| market for polyvinylidenechloride, granulate                               | 1.07E+05  | kilogram      | 167, 168 |
| market for polyurethane, flexible foam                                     | 1.07E+05  | kilogram      | 167, 168 |
| market for glued laminated timber, average glue mix                        | 9.25E+02  | cubic meter   | 167, 168 |
| market for alkyd paint, white, without solvent, in 60% solution state      | 2.22E+05  | kilogram      | 167      |
| market for welding, arc, steel                                             | 2.79E+07  | meter         | 168      |
| market for welding, gas, steel                                             | 1.77E+08  | meter         | 168      |
| market group for electricity, medium voltage                               | 1.48E+07  | kilowatt hour | 168      |
| market group for heat, district or industrial, other than natural gas      | 1.70E+07  | megajoule     | 168      |
| market for inert waste, for final disposal                                 | -3.78E+05 | kilogram      | 168      |
| market for scrap aluminium                                                 | -2.22E+04 | kilogram      | 168      |
| market for scrap copper                                                    | -7.12E+04 | kilogram      | 168      |
| market for scrap steel                                                     | -4.49E+07 | kilogram      | 168      |
| market for waste electric and electronic equipment                         | -5.56E+05 | kilogram      | 168      |
| market for waste emulsion paint                                            | -2.14E+05 | kilogram      | 168      |
| market for waste mineral wool                                              | -7.56E+05 | kilogram      | 168      |
| market for waste plastic, mixture                                          | -5.34E+05 | kilogram      | 168      |
| bronze scrap, post-consumer, Recycled Content cut-off                      | -6.67E+04 | kilogram      | 168      |
| iron scrap, unsorted, Recycled Content cut-off                             | -1.74E+06 | kilogram      | 168      |
| zinc scrap, post-consumer, Recycled Content cut-off                        | -3.11E+05 | kilogram      | 168      |
| <b>Environmental flows</b>                                                 |           |               |          |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air) | 1.82E+05  | kilogram      | 168      |
| Hydrocarbons, unspecified (to water)                                       | 4.00E+03  | kilogram      | 168      |
| Hydrocarbons, unspecified (to soil)                                        | 4.00E+03  | kilogram      | 168      |

Table S3.21. Life cycle inventory of propulsion system, HFO-ICE (1 unit).

| Exchanges                                                                       | amount  | unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 68.64   | MW   |
| market for generator, 200kW electrical                                          | 64.3    | unit |
| marine engine, CI, ICE*                                                         | 12.86   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 231.375 | unit |
| SCR*                                                                            | 81.5    | MW   |
| market for oil boiler, 100kW                                                    | 6.2     | unit |

Table S3.22. Life cycle inventory of marine engine, CI, ICE (1 MW).

| Exchanges                             | amount   | unit     |
|---------------------------------------|----------|----------|
| <b>Economic flows</b>                 |          |          |
| market for steel, chromium steel 18/8 | 11674.07 | kilogram |
| market for cast iron                  | 13425.19 | kilogram |
| market for aluminium, primary, ingot  | 2334.81  | kilogram |
| market for zinc                       | 58.37    | kilogram |
| market for wire drawing, copper       | 29.19    | kilogram |
| market for lead                       | 29.19    | kilogram |
| market for nylon 6                    | 262.67   | kilogram |
| market for silicone product           | 262.67   | kilogram |

|                                                                       |        |               |
|-----------------------------------------------------------------------|--------|---------------|
| market for alkyd paint, white, without solvent, in 60% solution state | 262.67 | kilogram      |
| market for lubricating oil                                            | 875.56 | kilogram      |
| market group for electricity, medium voltage                          | 10800  | kilowatt hour |

Source: Kanchiralla et al.<sup>25</sup>

Table S3.23. Life cycle inventory of SCR (1 MW).

| Exchanges                             | amount | unit     |
|---------------------------------------|--------|----------|
| <b>Economic flows</b>                 |        |          |
| market for steel, chromium steel 18/8 | 942.08 | kilogram |
| market for titanium dioxide           | 4.72   | kilogram |

Source: Kanchiralla et al.<sup>25</sup>

Table S3.24. Life cycle inventory of fuel tank, heavy fuel oil (1 kg).

| Exchanges                                 | amount | unit          |
|-------------------------------------------|--------|---------------|
| <b>Economic flows</b>                     |        |               |
| market for steel, unalloyed               | 1.16   | kilogram      |
| market for sheet rolling, steel           | 1.16   | kilogram      |
| market for scrap steel                    | -0.278 | kilogram      |
| market for epoxy resin, liquid            | 0.118  | kilogram      |
| market group for electricity, low voltage | 0.47   | kilowatt hour |

Source: Dlamini et al.<sup>234</sup>

Table S3.25. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC (1 unit).

| Exchanges                                        | amount | unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1      | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC* | 1      | unit |

Table S3.26. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC (1 unit).

| Exchanges                                                            | amount   | unit     |
|----------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                |          |          |
| PEMFC*                                                               | 432.95   | MW       |
| market for converter, for electric passenger car                     | 4099.95  | kilogram |
| market for inverter, 500kW                                           | 132.1    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic          | 577.02   | kilogram |
| motor drive*                                                         | 71.48    | MW       |
| market for marine electric motor                                     | 187.218  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW | 1591.125 | unit     |
| electrical                                                           |          |          |
| electric boiler, 100kW*                                              | 6.2      | unit     |

Table S3.27. Life cycle inventory of PEMFC (1 MW).

| Exchanges                                   | amount     | unit     |
|---------------------------------------------|------------|----------|
| <b>Economic flows</b>                       |            |          |
| market for pump, 40W                        | 3000       | unit     |
| market for acrylonitrile                    | 0.20787    | kilogram |
| market for air filter, in exhaust air valve | 13         | unit     |
| market for aluminium, cast alloy            | 268.25     | kilogram |
| market for cable, three-conductor cable     | 16000      | meter    |
| market for carbon black                     | 0.19171075 | kilogram |

|                                                                    |             |               |
|--------------------------------------------------------------------|-------------|---------------|
| market for steel, chromium steel 18/8                              | 40          | kilogram      |
| market for cobalt oxide                                            | 0.0219      | kilogram      |
| market for wire drawing, copper                                    | 6           | kilogram      |
| market for electronics, for control units                          | 34          | kilogram      |
| market for epoxy resin, liquid                                     | 70.2        | kilogram      |
| market for ethylene glycol                                         | 10          | kilogram      |
| market for extrusion of plastic sheets and thermoforming, inline   | 12.13       | kilogram      |
| market for formaldehyde                                            | 0.0111      | kilogram      |
| market for glass fibre                                             | 20          | kilogram      |
| market for polyethylene, high density, granulate                   | 10.00952738 | kilogram      |
| market for hydrochloric acid, without water, in 30% solution state | 0.0812      | kilogram      |
| market for steel, low-alloyed                                      | 83          | kilogram      |
| market for methanol                                                | 0.634       | kilogram      |
| market for methyl acrylate                                         | 0.0109265   | kilogram      |
| market for nitric acid, without water, in 50% solution state       | 0.187       | kilogram      |
| market for nylon 6                                                 | 30          | kilogram      |
| market for permanent magnet, for electric motor                    | 10          | kilogram      |
| market for extrusion, plastic pipes                                | 30          | kilogram      |
| market for platinum                                                | 0.0181      | kilogram      |
| market for polyphenylene sulfide                                   | 10          | kilogram      |
| market for polypropylene, granulate                                | 50          | kilogram      |
| market for polyurethane, rigid foam                                | 19          | kilogram      |
| treatment of automobile catalyst                                   | 0.0543      | kilogram      |
| market for silicone product                                        | 30          | kilogram      |
| market for sodium hydroxide, without water, in 50% solution state  | 0.0148      | kilogram      |
| market for sodium nitrate                                          | 0.189       | kilogram      |
| market for spent solvent mixture                                   | 0.404       | kilogram      |
| market for sulfur trioxide                                         | 1.286       | kilogram      |
| market for tetrafluoroethylene                                     | 13.184      | kilogram      |
| market for titanium                                                | 240         | kilogram      |
| market for water, deionised                                        | 0.674       | kilogram      |
| market for heat, district or industrial, natural gas               | 765.3669    | megajoule     |
| market group for electricity, medium voltage                       | 706.3249    | kilowatt hour |

Source: Usai et al.<sup>213</sup>

Table S3.28. Life cycle inventory of motor drive (1 MW).

| Exchanges                                          | amount | unit     | source         |
|----------------------------------------------------|--------|----------|----------------|
| <b>Economic flows</b>                              |        |          |                |
| market for aluminium, primary, ingot               | 36.2   | kilogram | <sup>182</sup> |
| market for copper, cathode                         | 174.7  | kilogram | <sup>182</sup> |
| market for kraft paper                             | 0.3    | kilogram | <sup>182</sup> |
| market for polyester-complexed starch biopolymer   | 73.45  | kilogram | <sup>182</sup> |
| market for steel, low-alloyed                      | 315.45 | kilogram | <sup>182</sup> |
| market for brass                                   | 9.95   | kilogram | <sup>182</sup> |
| market for sanitary ceramics                       | 3.35   | kilogram | <sup>182</sup> |
| market for chromium                                | 0.05   | kilogram | <sup>182</sup> |
| market for epoxy resin insulator, SiO <sub>2</sub> | 3.8    | kilogram | <sup>182</sup> |
| market for molybdenum                              | 1.6    | kilogram | <sup>182</sup> |

|                                                                         |      |               |     |
|-------------------------------------------------------------------------|------|---------------|-----|
| market for nickel, class 1                                              | 0.1  | kilogram      | 182 |
| market for glass fibre reinforced plastic, polyester resin, hand lay-up | 2.85 | kilogram      | 182 |
| market for glass fibre                                                  | 0.1  | kilogram      | 182 |
| market for vegetable oil, refined                                       | 12.1 | kilogram      | 182 |
| market for pig iron                                                     | 5.4  | kilogram      | 182 |
| market for silicone product                                             | 0.2  | kilogram      | 182 |
| market for silver                                                       | 0.05 | kilogram      | 182 |
| market for solder, bar, Sn63Pb37, for electronics industry              | 0.85 | kilogram      | 182 |
| market for zinc                                                         | 1.5  | kilogram      | 182 |
| market group for electricity, medium voltage                            | 40   | kilowatt hour | 183 |

Table S3.29. Life cycle inventory of electric boiler, 100kW (1 unit).

| Exchanges                                                              | amount  | unit          |
|------------------------------------------------------------------------|---------|---------------|
| <b>Economic flows</b>                                                  |         |               |
| market group for electricity, medium voltage                           | 749.59  | kilowatt hour |
| market for heat, district or industrial, other than natural gas        | 1264.04 | megajoule     |
| market for glass fibre                                                 | 3.15    | kilogram      |
| market for stone wool                                                  | 1.92    | kilogram      |
| market for sanitary ceramics                                           | 4.79    | kilogram      |
| market for expanded vermiculite                                        | 11.64   | kilogram      |
| market for brass                                                       | 15.89   | kilogram      |
| market for cast iron                                                   | 53.97   | kilogram      |
| market for steel, low-alloyed, hot rolled                              | 93.62   | kilogram      |
| market for zinc coat, coils                                            | 69.59   | square meter  |
| market for steel, chromium steel 18/8                                  | 62.33   | kilogram      |
| market for steel, low-alloyed                                          | 87.67   | kilogram      |
| market for steel, unalloyed                                            | 62.60   | kilogram      |
| market for cable, unspecified                                          | 44.52   | kilogram      |
| market for electric connector, wire clamp                              | 4.25    | kilogram      |
| market for electronics, for control units                              | 3.29    | kilogram      |
| market for printed wiring board, surface mounted, unspecified, Pb free | 6.30    | kilogram      |
| market for resistor, wirewound, through-hole mounting                  | 10.14   | kilogram      |
| market for nylon 6-6                                                   | 0.92    | kilogram      |
| market for polyvinylchloride, bulk polymerised                         | 0.33    | kilogram      |
| market for polyethylene, low density, granulate                        | 0.66    | kilogram      |
| market for silicone product                                            | 0.49    | kilogram      |
| market for alkyd paint, white, without solvent, in 60% solution state  | 3.42    | kilogram      |
| market for coating powder                                              | 0.89    | kilogram      |
| market for inert waste, for final disposal                             | -44.20  | kilogram      |
| iron scrap, unsorted, Recycled Content cut-off                         | -185.07 | kilogram      |
| market for scrap steel                                                 | -185.07 | kilogram      |
| market for electronics scrap from control units                        | -0.76   | kilogram      |
| market for used cable                                                  | -30.27  | kilogram      |
| market for waste electric wiring                                       | -0.34   | kilogram      |
| market for waste polyethylene                                          | 0.00    | kilogram      |
| market for waste polyvinylchloride                                     | -0.25   | kilogram      |
| market for waste plastic, mixture                                      | -1.41   | kilogram      |
| market for waste paint on metal                                        | -4.32   | kilogram      |

Source: Abbas.<sup>232</sup>

Table S3.30. Life cycle inventory of fuel tank, cryogenic, liquid hydrogen (1 kg).

| Exchanges                                 | amount   | unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for compressed air, 1000 kPa gauge | 3.76E-04 | cubic meter   |
| market group for electricity, low voltage | 5.98E-01 | kilowatt hour |
| market for steel, chromium steel 18/8     | 9.74E-01 | kilogram      |
| market for aluminium alloy, AlMg3         | 2.59E-02 | kilogram      |

Source: Abbas<sup>235</sup>

Table S3.31. Life cycle inventory of reliquefaction plant, 1 kg/h capacity (1 unit).

| Exchanges                                    | Amount | Unit          |
|----------------------------------------------|--------|---------------|
| <b>Economic flows</b>                        |        |               |
| market for steel, chromium steel 18/8        | 16.5   | kilogram      |
| market for cast iron                         | 6      | kilogram      |
| market for steel, unalloyed                  | 5.4    | kilogram      |
| market for aluminium, primary, ingot         | 2.1    | kilogram      |
| market for casting, steel, lost-wax          | 21.9   | kilogram      |
| market for casting, aluminium, lost-wax      | 2.1    | kilogram      |
| market group for electricity, medium voltage | 11.34  | kilowatt hour |
| market for scrap steel                       | -21.90 | kilogram      |
| market for scrap aluminium                   | -2.10  | kilogram      |
| market for iron scrap, unsorted              | -6.00  | kilogram      |
| market for natural gas, liquefied            | 0.01   | cubic meter   |
| market for nitrogen, liquid                  | 4.18   | kilogram      |

Source: Park et al.<sup>275</sup>

Table S3.32. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC (1 unit).

| Exchanges                                        | amount | unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1      | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC* | 1      | unit |

Table S3.33. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC (1 unit).

| Exchanges                                                            | amount   | unit     |
|----------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                |          |          |
| SOFC*                                                                | 432.95   | MW       |
| market for converter, for electric passenger car                     | 4505.4   | kilogram |
| market for inverter, 500kW                                           | 132.1    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic          | 1727.23  | kilogram |
| motor drive*                                                         | 71.48    | MW       |
| market for marine electric motor                                     | 187.218  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW | 1591.125 | unit     |
| electrical                                                           |          |          |
| electric boiler, 100kW*                                              | 6.2      | unit     |

Table S3.34. Life cycle inventory of SOFC (1 MW).

| Exchanges             | amount | unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                                              |             |               |
|----------------------------------------------|-------------|---------------|
| market for butyldiglycol acetate             | 50.52       | kilogram      |
| market for aluminium, primary, ingot         | 4000        | kilogram      |
| market for methyl methacrylate               | 135.1       | kilogram      |
| market for carbon black                      | 87.6        | kilogram      |
| market for cobalt oxide                      | 45.77007038 | kilogram      |
| market for wire drawing, copper              | 4000        | kilogram      |
| market for lanthanum oxide                   | 45.18537089 | kilogram      |
| market for carboxymethyl cellulose, powder   | 89.04       | kilogram      |
| market for butyl acetate                     | 404.95      | kilogram      |
| market for nickel, class 1                   | 1136        | kilogram      |
| market for ethylene glycol                   | 132         | kilogram      |
| market for strontium carbonate               | 7.044558724 | kilogram      |
| market for steel, chromium steel 18/8        | 31000       | kilogram      |
| market for yttrium oxide                     | 53.43       | kilogram      |
| market for zirconium oxide                   | 357.57      | kilogram      |
| market group for electricity, medium voltage | 7577.777778 | kilowatt hour |
| <b>Environmental flows</b>                   |             |               |
| Carbon dioxide, fossil (to air)              | 432         | kilogram      |

Source: Kanchiralla et al.<sup>26</sup>

Table S3.35. Life cycle inventory of fuel tank, pressurized, liquid ammonia (1 kg).

| Exchanges                       | Amount | Unit     |
|---------------------------------|--------|----------|
| <b>Economic flows</b>           |        |          |
| market for steel, low-alloyed   | 0.55   | kilogram |
| market for steel, unalloyed     | 0.56   | kilogram |
| market for sheet rolling, steel | 1.11   | kilogram |
| market for scrap steel          | -0.11  | kilogram |

Source: Ryste<sup>237</sup> and Cryocan<sup>238</sup>

## Fuel supply

In the following processes, the input of “market for hydrogen, gaseous, 25-30 bar” is from the databases established by Wei et al.<sup>53</sup>

Table S3.36. Life cycle inventory of heavy fuel oil, very low-sulphur (1 kg).

| Exchanges                                 | Amount   | Unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for heavy fuel oil                 | 1.00     | kilogram      |
| market group for electricity, low voltage | 5.46E-03 | kilowatt hour |
| market for petroleum coke                 | 9.20E-05 | kilogram      |
| market for hydrogen, gaseous              | 8.92E-03 | kilogram      |
| <b>Environmental flows</b>                |          |               |
| Hydrogen sulfide (to air)                 | 5.63E-03 | kilogram      |

Source: Silva<sup>174</sup>

Table S3.37. Life cycle inventory of liquid hydrogen production (1 kg).

| Exchanges                                 | amount   | unit     | source |
|-------------------------------------------|----------|----------|--------|
| <b>Economic flows</b>                     |          |          |        |
| market for hydrogen, gaseous, 25-30 bar*  | 1.0162   | kilogram | 175    |
| hydrogen liquefaction plant construction* | 3.43E-09 | unit     | 175    |

|                                           |          |               |     |
|-------------------------------------------|----------|---------------|-----|
| market group for electricity, low voltage | 10.5     | kilowatt hour | 176 |
| <b>Environmental flows</b>                |          |               |     |
| Hydrogen (to air)                         | 1.62E-02 | kilogram      | 175 |

Table S3.38. Life cycle inventory of hydrogen liquefaction plant construction (1 unit).

| Exchanges                             | amount   | unit        |
|---------------------------------------|----------|-------------|
| <b>Economic flows</b>                 |          |             |
| market for steel, chromium steel 18/8 | 5.95E+05 | kilogram    |
| market for reinforcing steel          | 3.80E+05 | kilogram    |
| market group for concrete, normal     | 2.03E+04 | cubic meter |
| market for copper, cathode            | 1.50E+05 | kilogram    |
| market for aluminium alloy, AlMg3     | 1.40E+05 | kilogram    |

Source: Wulf and Zapp<sup>175</sup>

Table S3.39. Life cycle inventory of ammonia production, liquid (1 kg).

| Exchanges                                                            | amount    | unit          |
|----------------------------------------------------------------------|-----------|---------------|
| <b>Economic flows</b>                                                |           |               |
| market for hydrogen, gaseous, 25-30 bar*                             | 0.176     | kilogram      |
| nitrogen, gaseous, from cryogenic distillation, without compression* | 0.815     | kilogram      |
| ammonia synthesis catalyst*                                          | 5.15E-05  | kilogram      |
| market for chemical factory, organics                                | 3.29E-10  | unit          |
| market group for electricity, low voltage                            | 1.440     | kilowatt hour |
| treatment of inert waste, inert material landfill                    | -5.15E-05 | kilogram      |
| <b>Environmental flows</b>                                           |           |               |
| Water, cooling, unspecified natural origin (from natural resource)   | 0.149     | cubic meter   |
| Hydrogen (to air)                                                    | 7.67E-04  | kilogram      |
| Ammonia (to air)                                                     | 1.63E-03  | kilogram      |
| Nitrogen oxides (to air)                                             | 1.00E-03  | kilogram      |
| Water (to air)                                                       | 4.76E-02  | cubic meter   |
| Water (to water)                                                     | 1.01E-01  | cubic meter   |

Source: D'Angelo<sup>54</sup>

Table S3.40. Life cycle inventory of nitrogen, gaseous, from cryogenic distillation, without compression (1 kg).

| Exchanges                                                          | amount    | unit        |
|--------------------------------------------------------------------|-----------|-------------|
| <b>Economic flows</b>                                              |           |             |
| market for air separation facility                                 | 4.43E-10  | unit        |
| <b>Environmental flows</b>                                         |           |             |
| Water, cooling, unspecified natural origin (from natural resource) | 4.00 E-03 | cubic meter |
| Water (to water)                                                   | 2.45E-03  | cubic meter |

Source: D'Angelo<sup>54</sup>

Table S3.41. Life cycle inventory of ammonia synthesis catalyst (1 kg).

| Exchanges                                 | amount   | unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for magnetite                      | 0.917    | kilogram      |
| market for lime                           | 3.00E-02 | kilogram      |
| market for zeolite, powder                | 5.25E-02 | kilogram      |
| market group for electricity, low voltage | 1.78     | kilowatt hour |

Source: D'Angelo<sup>54</sup>

## Others

Table S3.42. Life cycle inventory of urea solution, 40 wt% (kg).

| Exchanges                   | Amount | Unit     |
|-----------------------------|--------|----------|
| <b>Economic flows</b>       |        |          |
| market for urea             | 0.4    | kilogram |
| market for water, deionised | 0.6    | kilogram |

Source: Brynolf et al.<sup>262</sup>

## S3.2 Supplementary results

### Prospective GHG emissions

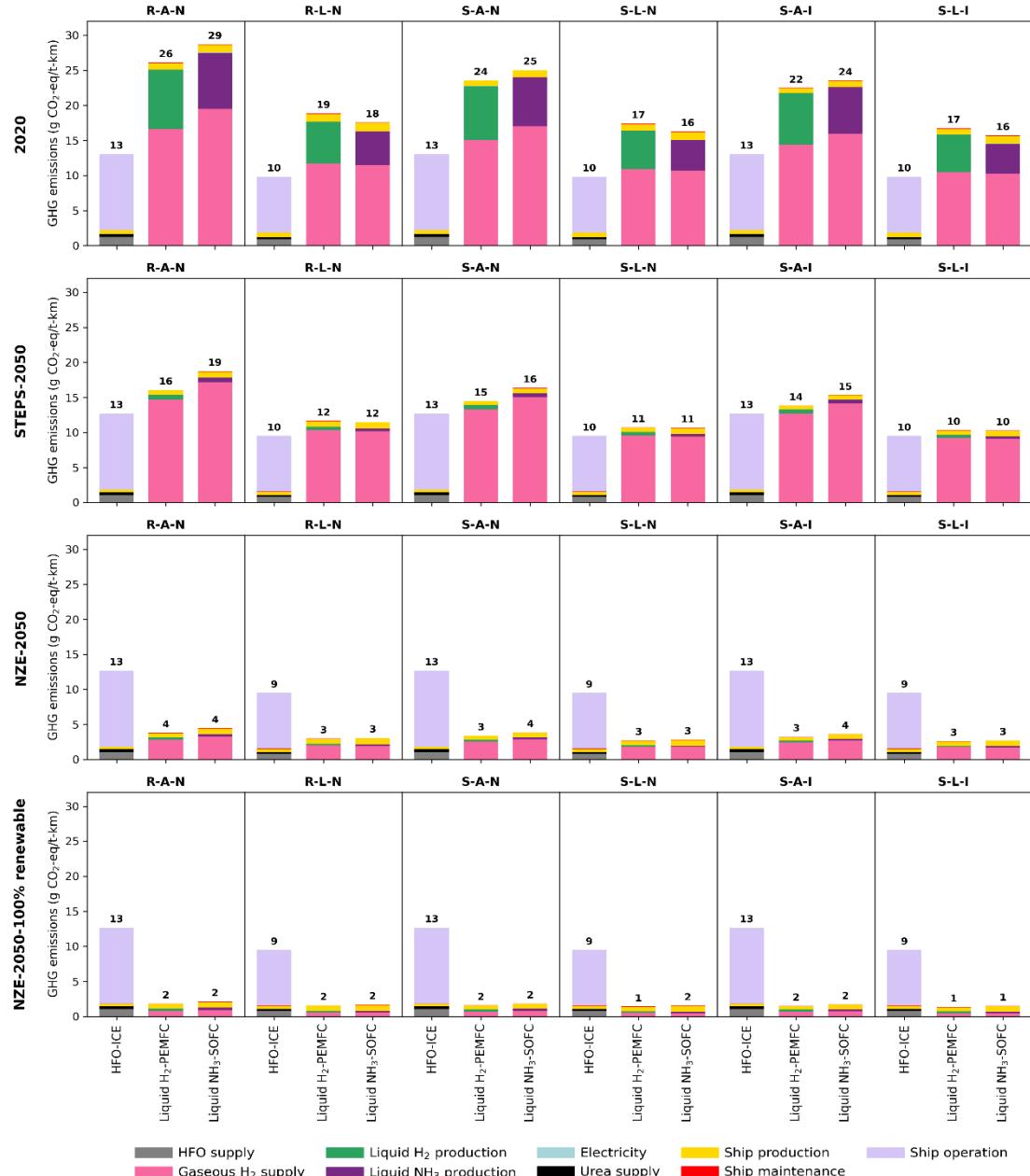



Figure S3.1. The process contribution to the GHG emissions (per t-km) of different ships in different scenarios. For the liquid H<sub>2</sub> production, and liquid NH<sub>3</sub> production, the gaseous H<sub>2</sub> supply is a part of them and presented separately. In this figure, R-A-N=22000 nm-20 knots-Nonstop, R-L-N=22000 nm-16 knots-Nonstop, S-A-N=11000 nm-20 knots-Nonstop, S-L-N=11000 nm-16 knots-Nonstop, S-A-I=5500 nm-20 knots-1 refueling stop, and S-L-I=5500 nm-16 knots-1 refueling stop.

Table S3.43. Comparison of fuel cell well-to-wake emissions under the NZE scenarios with IMO Net-Zero Framework targets (unit: g CO<sub>2</sub>-eq/MJ). In this table, blue and red text indicate that fuel cell emissions meet the base and direct compliance targets, respectively.

|                                                                          | 2030 | 2031 | 2032 | 2033 | 2034 | 2035 | 2040 |
|--------------------------------------------------------------------------|------|------|------|------|------|------|------|
| <b>Well-to-wake emissions of fuel cells</b>                              |      |      |      |      |      |      |      |
| Liquid H <sub>2</sub> -PEMFC-market                                      | 97   | 88   | 78   | 69   | 59   | 50   | 32   |
| Liquid NH <sub>3</sub> -SOFC-market                                      | 105  | 95   | 85   | 75   | 65   | 54   | 35   |
| Liquid H <sub>2</sub> -PEMFC-100% renewable                              | 9    | 9    | 8    | 8    | 8    | 8    | 8    |
| Liquid NH <sub>3</sub> -SOFC-100% renewable                              | 10   | 9    | 9    | 9    | 9    | 9    | 8    |
| <b>Well-to-wake emissions regulated under the IMO Net-Zero Framework</b> |      |      |      |      |      |      |      |
| Tier 2: Base target                                                      | 86   | 82   | 78   | 74   | 69   | 65   | 33   |
| Tier 1: Direct compliance target                                         | 74   | 70   | 65   | 61   | 57   | 53   | -    |

Table S3.44. Comparison of fuel cell well-to-wake emissions across different refueling regions under the NZE scenario with FuelEU Maritime requirements (unit: g CO<sub>2</sub>-eq/MJ). In this table, blue text indicates that fuel cell emissions meet the FuelEU Maritime requirements. CG=coal gasification, NG SMR=steam methane reforming of natural, BG=biomass gasification, CCS=carbon capture and storage, AE=alkaline electrolyzer, PEM=proton exchange membrane electrolyzer and SOEC=solid oxide electrolysis cell.

|                                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-----------------------------------------------------|------|------|------|------|------|------|------|
| <b>Well-to-wake emissions of fuel cells</b>         |      |      |      |      |      |      |      |
| Liquid H <sub>2</sub> -PEMFC-China-market           | 244  | 254  | 136  | 61   | 41   | 28   | 22   |
| Liquid H <sub>2</sub> -PEMFC-China-CG               | 280  | 263  | 235  | 223  | 221  | 220  | 220  |
| Liquid H <sub>2</sub> -PEMFC-China-CG CCS           | 165  | 137  | 90   | 70   | 67   | 65   | 65   |
| Liquid H <sub>2</sub> -PEMFC-China-NG SMR           | 158  | 138  | 104  | 90   | 88   | 87   | 87   |
| Liquid H <sub>2</sub> -PEMFC-China-NG SMR CCS       | 118  | 95   | 57   | 41   | 39   | 38   | 38   |
| Liquid H <sub>2</sub> -PEMFC-China-BG               | 98   | 72   | 29   | 11   | 8    | 7    | 6    |
| Liquid H <sub>2</sub> -PEMFC-China-BG CCS           | -23  | -53  | -108 | -127 | -126 | -126 | -122 |
| Liquid H <sub>2</sub> -PEMFC-China-AE               | 477  | 345  | 124  | 30   | 16   | 10   | 10   |
| Liquid H <sub>2</sub> -PEMFC-China-PEM              | 537  | 367  | 126  | 30   | 16   | 10   | 10   |
| Liquid H <sub>2</sub> -PEMFC-China-SOEC             | 441  | 320  | 125  | 44   | 32   | 27   | 26   |
| Liquid H <sub>2</sub> -PEMFC-Middle East-market     | 156  | 141  | 99   | 65   | 36   | 26   | 24   |
| Liquid H <sub>2</sub> -PEMFC-Middle East-CG         | 263  | 250  | 229  | 216  | 207  | 205  | 205  |
| Liquid H <sub>2</sub> -PEMFC-Middle East-CG CCS     | 115  | 100  | 75   | 60   | 50   | 47   | 47   |
| Liquid H <sub>2</sub> -PEMFC-Middle East-NG SMR     | 156  | 144  | 124  | 112  | 103  | 101  | 101  |
| Liquid H <sub>2</sub> -PEMFC-Middle East-NG SMR CCS | 107  | 95   | 75   | 62   | 54   | 52   | 52   |
| Liquid H <sub>2</sub> -PEMFC-Middle East-BG         | 64   | 51   | 28   | 14   | 4    | 2    | 2    |
| Liquid H <sub>2</sub> -PEMFC-Middle East-BG CCS     | -69  | -82  | -109 | -123 | -131 | -132 | -128 |
| Liquid H <sub>2</sub> -PEMFC-Middle East-AE         | 302  | 235  | 117  | 46   | 0    | -11  | -11  |
| Liquid H <sub>2</sub> -PEMFC-Middle East-PEM        | 339  | 249  | 120  | 48   | -1   | -13  | -12  |
| Liquid H <sub>2</sub> -PEMFC-Middle East-SOEC       | 286  | 223  | 120  | 59   | 17   | 7    | 7    |
| Liquid H <sub>2</sub> -PEMFC-EU-market              | 129  | 92   | 51   | 34   | 29   | 26   | 24   |
| Liquid H <sub>2</sub> -PEMFC-EU-CG                  | 239  | 222  | 209  | 205  | 205  | 204  | 204  |
| Liquid H <sub>2</sub> -PEMFC-EU-CG CCS              | 87   | 67   | 52   | 48   | 47   | 47   | 46   |
| Liquid H <sub>2</sub> -PEMFC-EU-NG SMR              | 129  | 113  | 100  | 97   | 97   | 97   | 97   |
| Liquid H <sub>2</sub> -PEMFC-EU-NG SMR CCS          | 80   | 63   | 51   | 48   | 48   | 48   | 48   |
| Liquid H <sub>2</sub> -PEMFC-EU-BG                  | 40   | 22   | 9    | 5    | 5    | 5    | 5    |
| Liquid H <sub>2</sub> -PEMFC-EU-BG CCS              | -100 | -119 | -135 | -134 | -130 | -128 | -124 |
| Liquid H <sub>2</sub> -PEMFC-EU-AE                  | 185  | 94   | 25   | 9    | 8    | 7    | 7    |
| Liquid H <sub>2</sub> -PEMFC-EU-PEM                 | 208  | 100  | 25   | 9    | 7    | 7    | 7    |

|                                                                   |       |       |       |       |      |       |       |
|-------------------------------------------------------------------|-------|-------|-------|-------|------|-------|-------|
| Liquid H <sub>2</sub> -PEMFC-EU-SOEC                              | 175   | 93    | 32    | 19    | 17   | 17    | 17    |
| Liquid NH <sub>3</sub> -SOFC-China-market                         | 256   | 273   | 149   | 68    | 46   | 33    | 25    |
| Liquid NH <sub>3</sub> -SOFC-China-CG                             | 296   | 282   | 259   | 249   | 248  | 247   | 247   |
| Liquid NH <sub>3</sub> -SOFC-China-CG CCS                         | 168   | 141   | 97    | 78    | 75   | 74    | 74    |
| Liquid NH <sub>3</sub> -SOFC-China-NG SMR                         | 161   | 143   | 113   | 101   | 99   | 98    | 98    |
| Liquid NH <sub>3</sub> -SOFC-China-NG SMR CCS                     | 116   | 95    | 61    | 46    | 44   | 43    | 43    |
| Liquid NH <sub>3</sub> -SOFC-China-BG                             | 93    | 69    | 29    | 12    | 9    | 8     | 8     |
| Liquid NH <sub>3</sub> -SOFC-China-BG CCS                         | -42   | -71   | -124  | -142  | -140 | -140  | -135  |
| Liquid NH <sub>3</sub> -SOFC-China-AE                             | 516   | 374   | 135   | 34    | 19   | 13    | 12    |
| Liquid NH <sub>3</sub> -SOFC-China-PEM                            | 584   | 399   | 138   | 34    | 19   | 12    | 12    |
| Liquid NH <sub>3</sub> -SOFC-China-SOEC                           | 477   | 346   | 136   | 49    | 36   | 31    | 30    |
| Liquid NH <sub>3</sub> -SOFC-Middle East-market                   | 165   | 150   | 108   | 72    | 42   | 32    | 29    |
| Liquid NH <sub>3</sub> -SOFC-Middle East-CG                       | 284   | 272   | 253   | 241   | 233  | 231   | 231   |
| Liquid NH <sub>3</sub> -SOFC-Middle East-CG CCS                   | 119   | 104   | 81    | 67    | 57   | 55    | 55    |
| Liquid NH <sub>3</sub> -SOFC-Middle East-NG SMR                   | 165   | 154   | 135   | 124   | 117  | 115   | 115   |
| Liquid NH <sub>3</sub> -SOFC-Middle East-NG SMR CCS               | 110   | 99    | 80    | 69    | 62   | 60    | 60    |
| Liquid NH <sub>3</sub> -SOFC-Middle East-BG                       | 62    | 49    | 28    | 15    | 6    | 4     | 4     |
| Liquid NH <sub>3</sub> -SOFC-Middle East-BG CCS                   | -87   | -99   | -125  | -138  | -145 | -145  | -141  |
| Liquid NH <sub>3</sub> -SOFC-Middle East-AE                       | 328   | 255   | 128   | 51    | 2    | -11   | -10   |
| Liquid NH <sub>3</sub> -SOFC-Middle East-PEM                      | 370   | 271   | 131   | 53    | 1    | -12   | -11   |
| Liquid NH <sub>3</sub> -SOFC-Middle East-SOEC                     | 310   | 242   | 131   | 65    | 21   | 10    | 10    |
| Liquid NH <sub>3</sub> -SOFC-EU-market                            | 139   | 102   | 58    | 40    | 33   | 30    | 28    |
| Liquid NH <sub>3</sub> -SOFC-EU-CG                                | 262   | 246   | 234   | 230   | 230  | 230   | 229   |
| Liquid NH <sub>3</sub> -SOFC-EU-CG CCS                            | 93    | 74    | 58    | 54    | 53   | 53    | 53    |
| Liquid NH <sub>3</sub> -SOFC-EU-NG SMR                            | 139   | 124   | 113   | 110   | 110  | 110   | 110   |
| Liquid NH <sub>3</sub> -SOFC-EU-NG SMR CCS                        | 84    | 69    | 58    | 55    | 54   | 54    | 54    |
| Liquid NH <sub>3</sub> -SOFC-EU-BG                                | 40    | 23    | 10    | 7     | 7    | 6     | 6     |
| Liquid NH <sub>3</sub> -SOFC-EU-BG CCS                            | -117  | -135  | -150  | -148  | -144 | -142  | -137  |
| Liquid NH <sub>3</sub> -SOFC-EU-AE                                | 202   | 104   | 28    | 11    | 10   | 9     | 9     |
| Liquid NH <sub>3</sub> -SOFC-EU-PEM                               | 227   | 110   | 28    | 11    | 9    | 9     | 8     |
| Liquid NH <sub>3</sub> -SOFC-EU-SOEC                              | 191   | 103   | 37    | 22    | 21   | 20    | 20    |
| <b>Well-to-wake emissions regulated under the FuelEU Maritime</b> |       |       |       |       |      |       |       |
| GHG intensity limit                                               | 91.16 | 89.34 | 85.69 | 77.94 | 62.9 | 34.64 | 18.23 |

### Prospective regional environmental impacts




Figure S3.2. Contribution analysis of the main environmental trade-offs of using fuel cells compared to HFO from 2020 to 2050 under the S-A-N (11000 nm-20 knots-Nonstop) scenario.

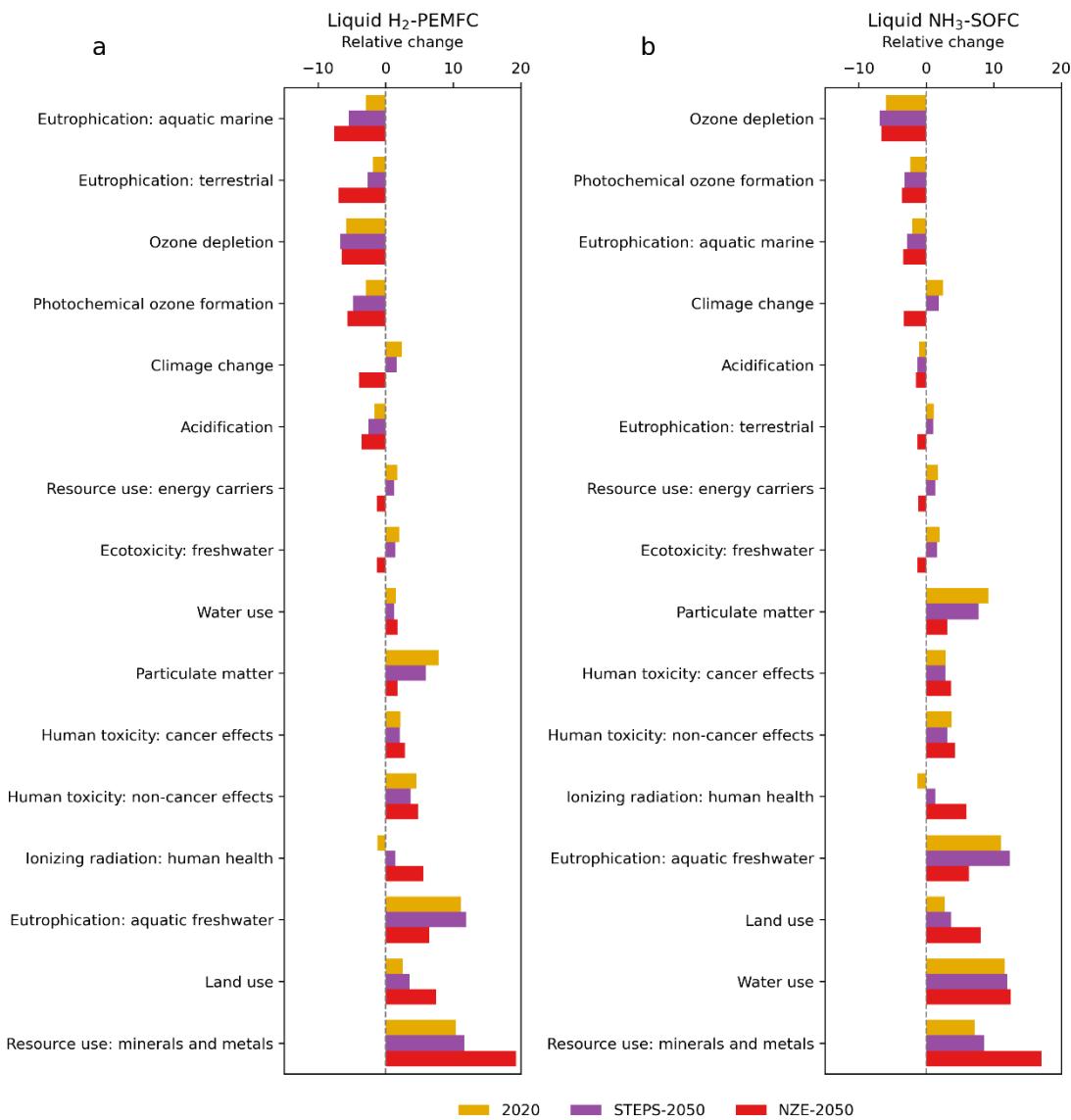



Figure S3.3. The relative environmental impacts of fuel cell systems compared to traditional ones from 2020 to 2050 under the S-A-I (5500 nm-20 knots-1 refueling stop) scenario in China. (a) Liquid H<sub>2</sub>-PEMFC ship compared under the 2020, STEPS-2050, and NZE-2050 scenarios. (b) Liquid NH<sub>3</sub>-SOFC ship compared with the HFO ship under the 2020, STEPS-2050, and NZE-2050 scenarios. The values indicate the factors of change in the environmental impact of fuel cell ships compared to HFO-powered ships.

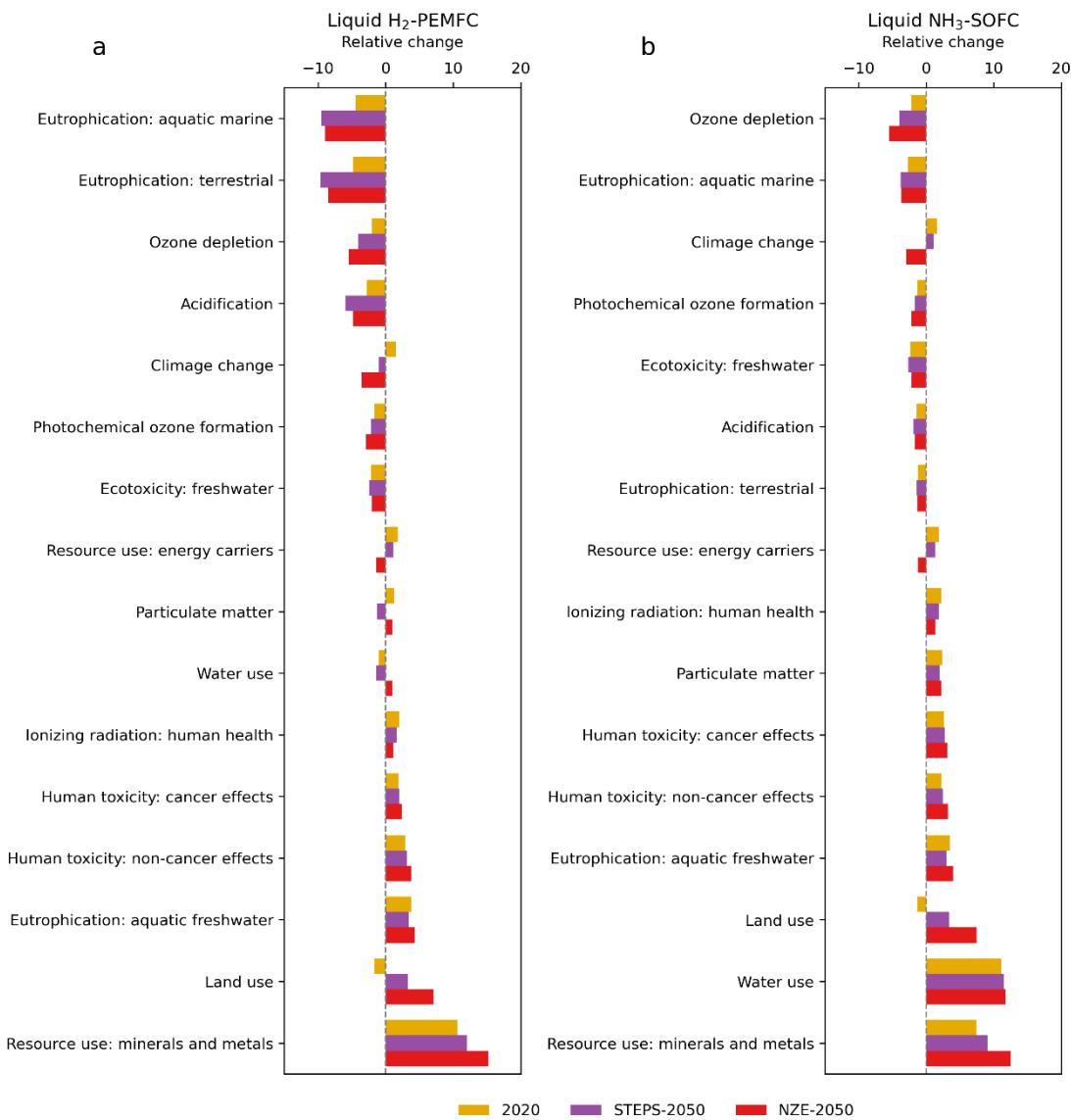



Figure S3.4. The relative environmental impacts of fuel cell systems compared to traditional ones from 2020 to 2050 under the S-A-I (5500 nm-20 knots-1 refueling stop) scenario in the Middle East. (a) Liquid H<sub>2</sub>-PEMFC ship compared under the 2020, STEPS-2050, and NZE-2050 scenarios. (b) Liquid NH<sub>3</sub>-SOFC ship compared with the HFO ship under the 2020, STEPS-2050, and NZE-2050 scenarios. The values indicate the factors of change in the environmental impact of fuel cell ships compared to HFO-powered ships.

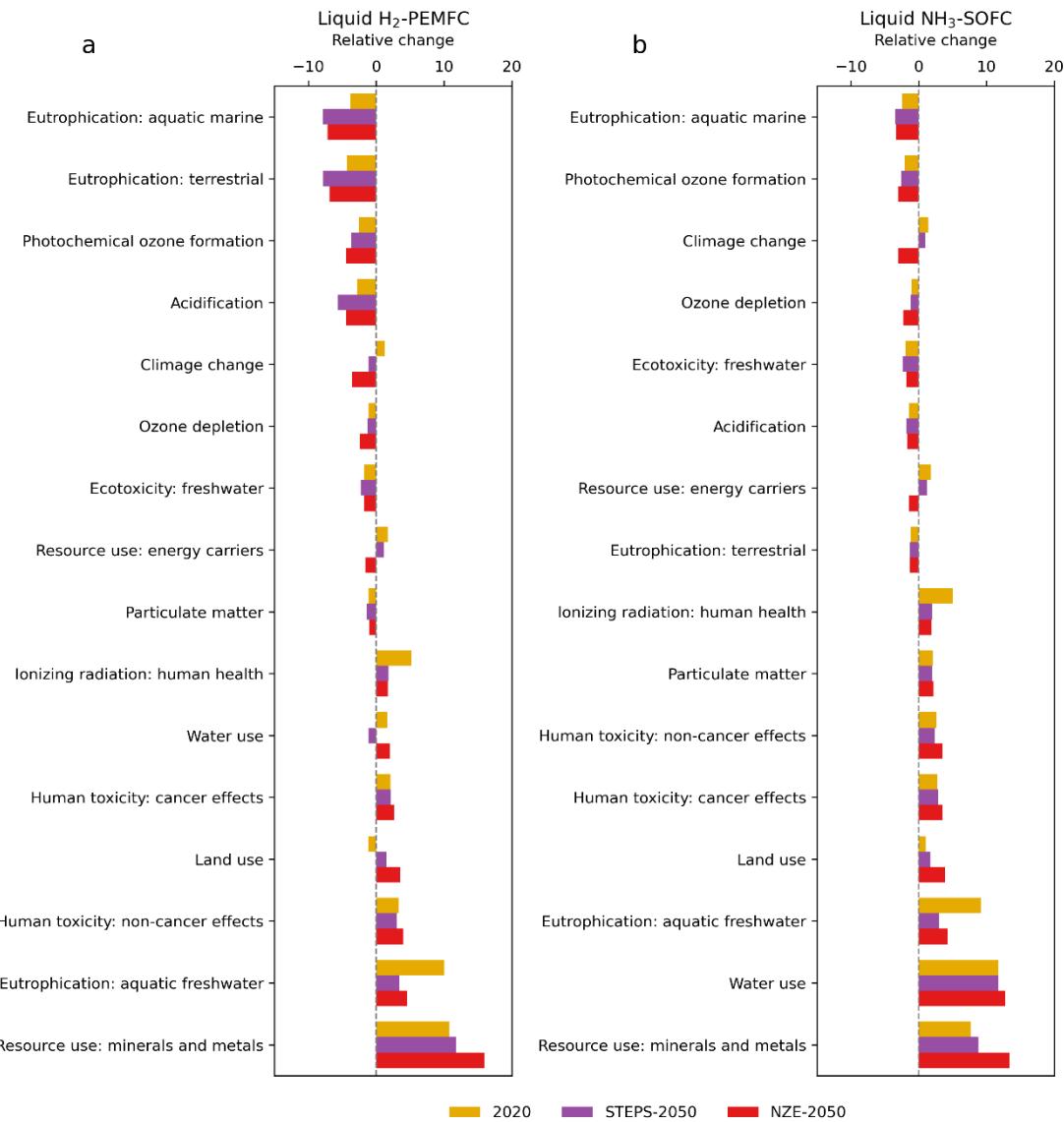



Figure S3.5. The relative environmental impacts of fuel cell systems compared to traditional ones from 2020 to 2050 under the S-A-I (5500 nm-20 knots-1 refueling stop) scenario in the European Union. (a) Liquid H<sub>2</sub>-PEMFC ship compared under the 2020, STEPS-2050, and NZE-2050 scenarios. (b) Liquid NH<sub>3</sub>-SOFC ship compared with the HFO ship under the 2020, STEPS-2050, and NZE-2050 scenarios. The values indicate the factors of change in the environmental impact of fuel cell ships compared to HFO-powered ships.

## Sensitivity analysis

In this section, we conduct a sensitivity analysis to examine how changes in key parameter assumptions for fuel cell ships, potentially resulting from technological advancements, affect their environmental impacts. The efficiencies of PEMFC and SOFC, the lifespans of PEMFC and SOFC, and the lifespan of the battery are assumed to increase by 10%, while the BOG rates of liquid H<sub>2</sub> and liquid NH<sub>3</sub> are assumed to decrease by 10%. It should be noted that the replacement frequencies of fuel cells and the battery are not directly adjusted according to the percentage increase in lifespan. We first change the lifespans from the current assumptions to longer achievable values, for example from 5 to 10 years for PEMFC<sup>320</sup>, from 6 to 11 years for SOFC<sup>321</sup>, and from 11 to 15 years for the battery<sup>322</sup>. This means that the replacement frequencies of PEMFC, SOFC, and the

battery decrease from 5, 5, and 3 times to 3, 3, and 2 times, respectively, over a ship's 25-year lifespan. The resulting changes in environmental impacts are then allocated to the 10% lifespan increase. Therefore, the environmental impact changes related to the lifespans of the fuel cells and the battery should be interpreted as averaged values rather than the direct outcomes of a strict 10% increase in lifespan. In the decarbonization of water electrolysis, the decarbonization of electricity is the decisive factor, whereas improvements in electrolyzer efficiency make only a marginal contribution. As shown in our previous study, efficiency improvement contributes only about 0.5% to the decarbonization of electrolytic H<sub>2</sub> from 2020 to 2050<sup>53</sup>. Therefore, we will not conduct further sensitivity analysis for this factor in this study.

As shown in Figure S3.6, among these main factors, fuel cell efficiency has the most significant influence on all environmental impacts because it directly affects fuel consumption. As the H<sub>2</sub>-based fuel supply decarbonizes, these environmental impacts either increase or decrease, and their sensitivity to efficiency improvements changes accordingly. For instance, for climate change, the percentage decrease becomes smaller as the H<sub>2</sub>-based fuel supply decarbonizes. In contrast, the percentage decreases for impacts such as ionizing radiation, land use, water use, human toxicity with cancer effects, and minerals and metals use become larger. At the same time, the sensitivity of certain environmental impacts to fuel cell efficiency differs between the two fuel cell propulsion systems. For example, human toxicity with non-cancer effects, and minerals and metals use decrease by around 6% and 5% when fuel cell efficiency increases by 10% for the liquid H<sub>2</sub>-PEMFC ship, whereas these two impacts both decrease by around 9% for the liquid NH<sub>3</sub>-SOFC ship. This is because PEMFC production is also an important contributor to these impacts for the liquid H<sub>2</sub>-PEMFC ship, in addition to the fuel supply, as discussed in Section 3.4 of the main text. Furthermore, extending the lifespan of the PEMFC has a greater impact on human toxicity with non-cancer effects and minerals and metals use than on other environmental impacts, resulting in approximately a 2% decrease. Extending the lifespan of the SOFC induces a 1.5% decrease in human toxicity with cancer effects for the liquid NH<sub>3</sub>-SOFC ship, while having negligible effects on the other environmental indicators. Changes in battery lifespan and in the BOG rates of liquid H<sub>2</sub> and liquid NH<sub>3</sub> have negligible effects on the results.

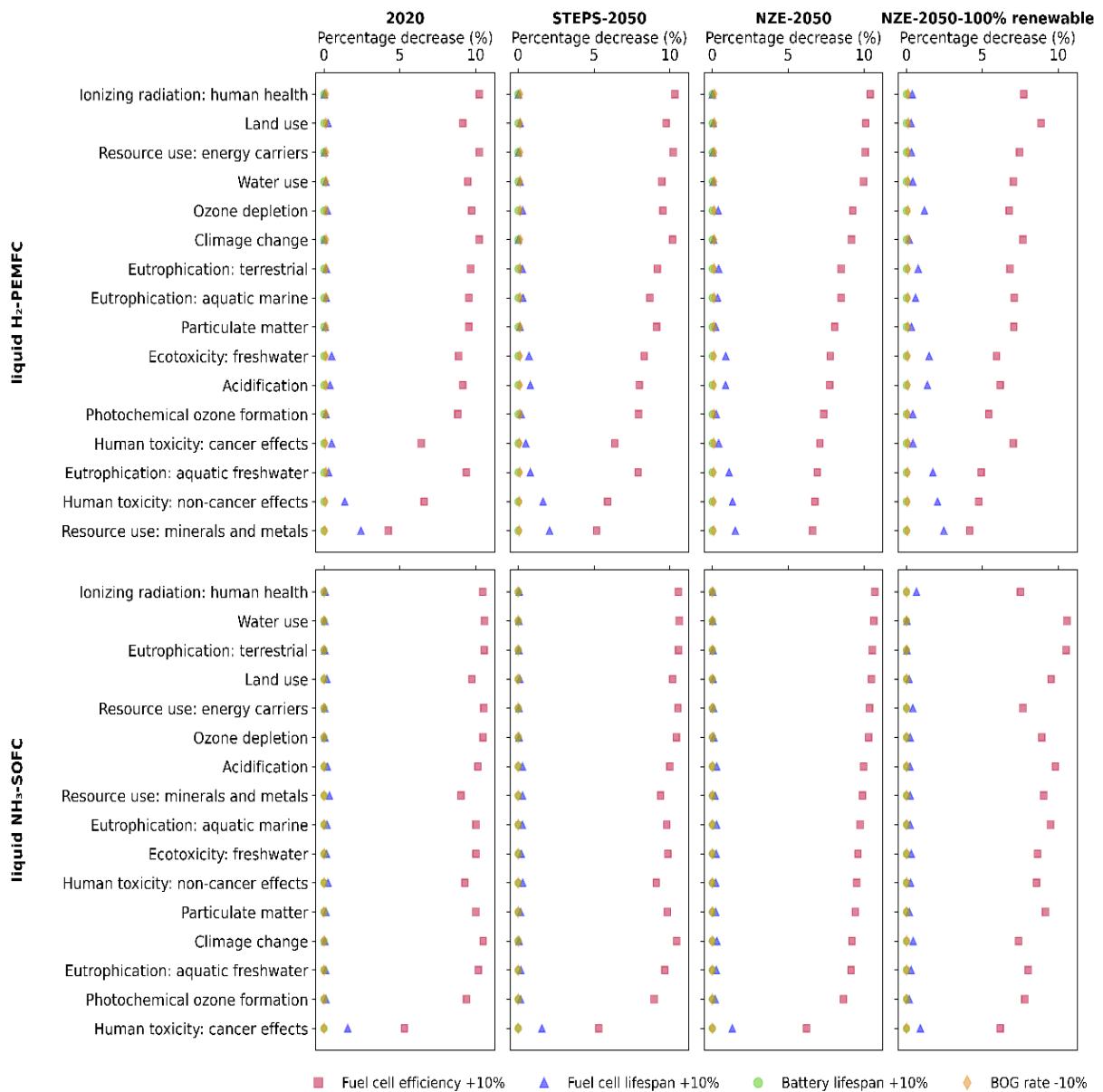



Figure S3.6. Sensitivity analysis of key parameter changes on environmental impacts of fuel cell ships under the S-A-N (11000 nm-20 knots-Nonstop) scenario. In this figure, Fuel cell efficiency +10% = a 10% improvement in fuel cell efficiency; Fuel cell lifespan +10% = a 10% extension in fuel cell lifespan; Battery lifespan +10% = a 10% extension in battery lifespan; BOG rate -10% = a 10% reduction in the boil-off gas (BOG) rate for onboard liquid hydrogen and ammonia storage.

## S4 Supporting information for chapter 5

### S4.1 Lifecycle inventory analysis

#### Representative ships

Table S4.1. The main information of representative ships for different ship sizes.<sup>7, 258, 259</sup>

| Parameters                            | 0-999        | 1,000-1,999 | 2,000-2,999 | 3,000-4,999               | 5,000-7,999    | 8,000-11,999 | 12,000-14,499  | 14,500-19,999 | 20,000+  |
|---------------------------------------|--------------|-------------|-------------|---------------------------|----------------|--------------|----------------|---------------|----------|
| Code                                  | Ship 1       | Ship 2      | Ship 3      | Ship 4                    | Ship 5         | Ship 6       | Ship 7         | Ship 8        | Ship 9   |
| Representative ship                   | CANDELARIA B | Calisto     | Evridiki G  | CMA CGM EVER AFRICA THREE | SEASPAN STEADY | ONE ZAMBEZI  | MSC NEW MILLAU | EVER YORK     | GOLDEN   |
| Ship capacity (TEU)                   | 822          | 1574        | 2556        | 3718                      | 7024           | 10100        | 13870          | 16652         | 20338    |
| Ship DWT (t)                          | 8627         | 20614       | 34654       | 51604                     | 78664          | 115096       | 147443         | 186765        | 199692   |
| Payload utilization rate (%)          | 66           | 63          | 59          | 61                        | 62             | 62           | 65             | 66            | 65       |
| Range (nm)                            | 800          | 2500        | 5000        | 6500                      | 7500           | 13000        | 14000          | 15500         | 17000    |
| Installed main engine power (MW)      | 7.95         | 16.52       | 21.56       | 31.64                     | 54.90          | 58.10        | 59.78          | 59.78         | 59.30    |
| Installed auxiliary engine power (MW) | 1            | 3.544       | 6.72        | 8.4                       | 11.6           | 14.6         | 14.6           | 18            | 19.2     |
| Installed auxiliary boiler power (MW) | 0.25         | 0.34        | 0.46        | 0.48                      | 0.59           | 0.62         | 0.63           | 0.63          | 0.7      |
| HFO tank (m <sup>3</sup> )            | 778          | 2412        | 3918        | 6948.99                   | 9434.9         | 10584        | 10276.61       | 13067         | 15143.27 |
| Average speed (kn)                    | 13.2         | 12.5        | 13.7        | 14.3                      | 15.8           | 15.1         | 14.2           | 15.5          | 15.8     |
| Max speed (kn)                        | 18.2         | 18.7        | 19.2        | 20.3                      | 22.1           | 21.4         | 20.9           | 21.4          | 22.4     |
| Average draught (m)                   | 6.7          | 9.5         | 9           | 11.4                      | 10.8           | 11.45        | 12.1           | 12.55         | 13.5     |
| Max draught (m)                       | 7.466        | 10.2        | 11.5        | 12.45                     | 14.2           | 15.52        | 15.5           | 16.02         | 16       |
| Weather correction factor             | 0.909        | 0.867       | 0.867       | 0.867                     | 0.867          | 0.867        | 0.867          | 0.867         | 0.867    |
| Fouling correction factor             | 0.917        | 0.917       | 0.917       | 0.917                     | 0.917          | 0.917        | 0.917          | 0.917         | 0.917    |

#### Propulsion systems

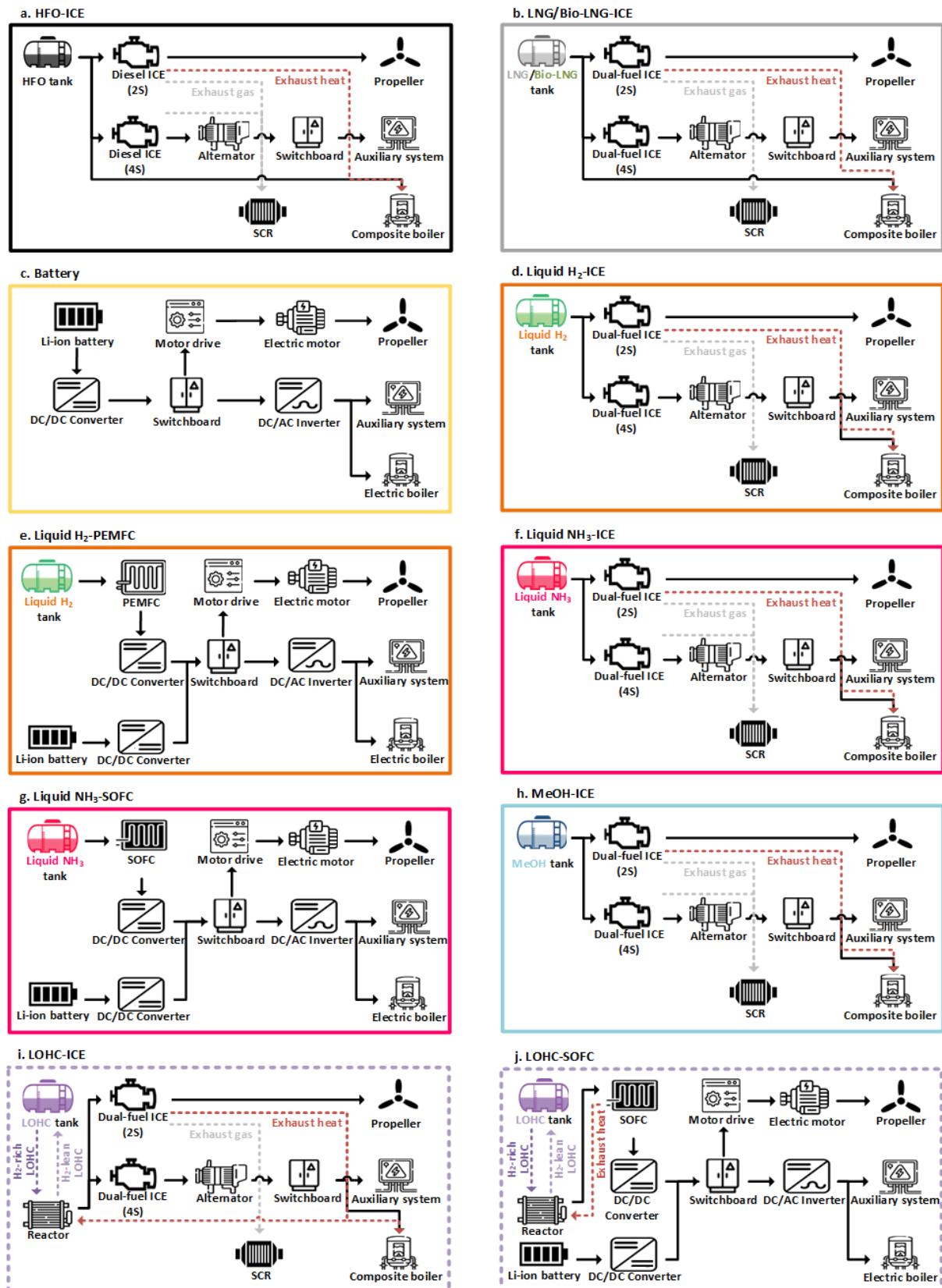



Figure S4.1. Components and workflow for different propulsion systems. For LNG/Bio-LNG-ICE, liquid H<sub>2</sub>-ICE, liquid H<sub>2</sub>-PEMFC, liquid NH<sub>3</sub>-ICE, liquid NH<sub>3</sub>-SOFC, the re-liquefaction plant is needed to deal with boil-off gas and consumes electricity. The liquid organic H<sub>2</sub> carrier (LOHC) systems are included for comparison with the liquid NH<sub>3</sub> systems.

## Volumetric and gravimetric changes

Table S4.2. Total volume and weight of the fuel tank and propulsion system for different propulsion options, and the resulting cargo weight loss.

| Ship   | Propulsion System       | Total Volume (m3) | Total Mass (t) | Cargo weight change (t) | Final cargo capacity (t) |
|--------|-------------------------|-------------------|----------------|-------------------------|--------------------------|
| Ship 1 | HFO-ICE                 | 1950              | 439            | 0                       | 5694                     |
| Ship 1 | LH <sub>2</sub> -PEMFC  | 716               | 206            | 233                     | 5927                     |
| Ship 1 | LNH <sub>3</sub> -SOFC  | 2220              | 633            | -194                    | 5500                     |
| Ship 1 | Battery                 | 2877              | 2506           | -2067                   | 3626                     |
| Ship 1 | LH <sub>2</sub> -DFICE  | 1611              | 377            | 62                      | 5756                     |
| Ship 1 | LNH <sub>3</sub> -DFICE | 1377              | 418            | 21                      | 5715                     |
| Ship 1 | MeOH-DFICE              | 1303              | 398            | 41                      | 5735                     |
| Ship 1 | LNG-DFICE               | 1352              | 341            | 98                      | 5792                     |
| Ship 1 | LOHC-SOFC               | 2995              | 914            | -475                    | 5219                     |
| Ship 1 | LOHC-DFICE              | 2327              | 753            | -314                    | 5380                     |
| Ship 2 | HFO-ICE                 | 4903              | 1305           | 0                       | 13076                    |
| Ship 2 | LH <sub>2</sub> -PEMFC  | 3473              | 889            | 416                     | 13492                    |
| Ship 2 | LNH <sub>3</sub> -SOFC  | 5531              | 1836           | -531                    | 12545                    |
| Ship 2 | LH <sub>2</sub> -DFICE  | 5394              | 1300           | 5                       | 13081                    |
| Ship 2 | LNH <sub>3</sub> -DFICE | 3833              | 1562           | -257                    | 12819                    |
| Ship 2 | MeOH-DFICE              | 3346              | 1430           | -125                    | 12951                    |
| Ship 2 | LNG-DFICE               | 3688              | 1061           | 244                     | 13320                    |
| Ship 2 | LOHC-SOFC               | 7494              | 3081           | -1775                   | 11301                    |
| Ship 2 | LOHC-DFICE              | 6361              | 3131           | -1825                   | 11251                    |
| Ship 3 | HFO-ICE                 | 7250              | 2382           | 0                       | 20542                    |
| Ship 3 | LH <sub>2</sub> -PEMFC  | 8820              | 2156           | 226                     | 20769                    |
| Ship 3 | LNH <sub>3</sub> -SOFC  | 9441              | 3751           | -1369                   | 19174                    |
| Ship 3 | LH <sub>2</sub> -DFICE  | 11473             | 2791           | -409                    | 20134                    |
| Ship 3 | LNH <sub>3</sub> -DFICE | 7077              | 3511           | -1129                   | 19413                    |
| Ship 3 | MeOH-DFICE              | 5716              | 3143           | -761                    | 19782                    |
| Ship 3 | LNG-DFICE               | 6689              | 2118           | 264                     | 20807                    |
| Ship 3 | LOHC-SOFC               | 13854             | 7328           | -4946                   | 15597                    |
| Ship 3 | LOHC-DFICE              | 12100             | 7541           | -5159                   | 15383                    |
| Ship 4 | HFO-ICE                 | 11781             | 3966           | 0                       | 31451                    |
| Ship 4 | LH <sub>2</sub> -PEMFC  | 15772             | 3807           | 159                     | 31610                    |
| Ship 4 | LNH <sub>3</sub> -SOFC  | 14135             | 5859           | -1893                   | 29558                    |
| Ship 4 | Battery                 | 88161             | 78526          | -74560                  | -43109                   |
| Ship 4 | LH <sub>2</sub> -DFICE  | 19825             | 4762           | -796                    | 30655                    |
| Ship 4 | LNH <sub>3</sub> -DFICE | 11707             | 6075           | -2109                   | 29342                    |
| Ship 4 | MeOH-DFICE              | 9208              | 5398           | -1432                   | 30019                    |
| Ship 4 | LNG-DFICE               | 11018             | 3522           | 444                     | 31895                    |
| Ship 4 | LOHC-SOFC               | 20853             | 11735          | -7769                   | 23682                    |
| Ship 4 | LOHC-DFICE              | 20054             | 13325          | -9360                   | 22091                    |
| Ship 5 | HFO-ICE                 | 17702             | 6191           | 0                       | 48558                    |
| Ship 5 | LH <sub>2</sub> -PEMFC  | 25470             | 6156           | 35                      | 48593                    |
| Ship 5 | LNH <sub>3</sub> -SOFC  | 24036             | 10130          | -3939                   | 44619                    |
| Ship 5 | LH <sub>2</sub> -DFICE  | 32511             | 7746           | -1554                   | 47004                    |
| Ship 5 | LNH <sub>3</sub> -DFICE | 19375             | 9863           | -3671                   | 44887                    |
| Ship 5 | MeOH-DFICE              | 15337             | 8769           | -2578                   | 45980                    |
| Ship 5 | LNG-DFICE               | 18273             | 5740           | 452                     | 49010                    |

|        |                         |       |       |        |        |
|--------|-------------------------|-------|-------|--------|--------|
| Ship 5 | LOHC-SOFC               | 35742 | 20515 | -14323 | 34235  |
| Ship 5 | LOHC-DFICE              | 32621 | 21536 | -15345 | 33213  |
| Ship 6 | HFO-ICE                 | 19424 | 9082  | 0      | 71291  |
| Ship 6 | LH <sub>2</sub> -PEMFC  | 47311 | 11208 | -2126  | 69165  |
| Ship 6 | LNH <sub>3</sub> -SOFC  | 33820 | 16365 | -7283  | 64008  |
| Ship 6 | LH <sub>2</sub> -DFICE  | 55663 | 13252 | -4170  | 67120  |
| Ship 6 | LNH <sub>3</sub> -DFICE | 30116 | 17218 | -8136  | 63155  |
| Ship 6 | MeOH-DFICE              | 22376 | 15118 | -6036  | 65255  |
| Ship 6 | LNG-DFICE               | 28078 | 9342  | -260   | 71031  |
| Ship 6 | LOHC-SOFC               | 52338 | 35673 | -26591 | 44700  |
| Ship 6 | LOHC-DFICE              | 50659 | 38745 | -29663 | 41628  |
| Ship 7 | HFO-ICE                 | 19355 | 9649  | 0      | 95487  |
| Ship 7 | LH <sub>2</sub> -PEMFC  | 52292 | 12361 | -2712  | 92775  |
| Ship 7 | LNH <sub>3</sub> -SOFC  | 35220 | 17175 | -7525  | 87962  |
| Ship 7 | LH <sub>2</sub> -DFICE  | 61022 | 14507 | -4858  | 90629  |
| Ship 7 | LNH <sub>3</sub> -DFICE | 32621 | 18864 | -9215  | 86272  |
| Ship 7 | MeOH-DFICE              | 24054 | 16538 | -6889  | 88598  |
| Ship 7 | LNG-DFICE               | 30387 | 10155 | -506   | 94981  |
| Ship 7 | LOHC-SOFC               | 54152 | 37492 | -27843 | 67644  |
| Ship 7 | LOHC-DFICE              | 54518 | 42538 | -32889 | 62598  |
| Ship 8 | HFO-ICE                 | 22277 | 11559 | 0      | 123760 |
| Ship 8 | LH <sub>2</sub> -PEMFC  | 64015 | 15072 | -3513  | 120247 |
| Ship 8 | LNH <sub>3</sub> -SOFC  | 40897 | 20823 | -9265  | 114495 |
| Ship 8 | LH <sub>2</sub> -DFICE  | 73481 | 17520 | -5961  | 117799 |
| Ship 8 | LNH <sub>3</sub> -DFICE | 38331 | 22905 | -11346 | 112414 |
| Ship 8 | MeOH-DFICE              | 27735 | 20027 | -8469  | 115291 |
| Ship 8 | LNG-DFICE               | 35570 | 12133 | -574   | 123186 |
| Ship 8 | LOHC-SOFC               | 64809 | 46560 | -35001 | 88759  |
| Ship 8 | LOHC-DFICE              | 65316 | 52170 | -40612 | 83148  |
| Ship 9 | HFO-ICE                 | 24333 | 12375 | 0      | 128915 |
| Ship 9 | LH <sub>2</sub> -PEMFC  | 68276 | 16055 | -3681  | 125234 |
| Ship 9 | LNH <sub>3</sub> -SOFC  | 41534 | 21196 | -8821  | 120094 |
| Ship 9 | LH <sub>2</sub> -DFICE  | 77874 | 18583 | -6209  | 122706 |
| Ship 9 | LNH <sub>3</sub> -DFICE | 40266 | 24308 | -11933 | 116982 |
| Ship 9 | MeOH-DFICE              | 28956 | 21235 | -8860  | 120055 |
| Ship 9 | LNG-DFICE               | 37329 | 12816 | -441   | 128474 |
| Ship 9 | LOHC-SOFC               | 65515 | 47379 | -35004 | 93911  |
| Ship 9 | LOHC-DFICE              | 68529 | 55443 | -43068 | 85847  |

### Unit process data

The unit process data used in this study are shown in below. Inputs, which are supplied from own processes, i.e. processes not already contained in the premise pLCI database, are marked with an asterisk (\*).

Table S4.3. Life cycle inventory of transport, container ship, HFO-ICE, size1 (t-nm)

| Exchanges                                  | Amount   | Unit |
|--------------------------------------------|----------|------|
| <b>Economic flows</b>                      |          |      |
| container ship production, HFO-ICE, size1* | 1.13E-10 | unit |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| fuel tank, heavy fuel oil*                                                                                    | 1.30E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.27E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 9.31E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.78E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 4.48E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.85E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 3.04E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.70E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 1.49E-06 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.35E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 2.20E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 2.63E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 9.33E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 3.02E-05 | kilogram |

Table S4.4. Life cycle inventory of container ship production, HFO-ICE, size1 (unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 8.31E-02 | unit |
| propulsion system, HFO-ICE, size1*               | 1        | unit |

Table S4.5. Life cycle inventory of hull production, container ship, for DWT 103,800 (unit)

| Exchanges                                                             | Amount   | Unit          |
|-----------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                 |          |               |
| market for reinforcing steel                                          | 4.49E+07 | kilogram      |
| market for copper, cathode                                            | 7.12E+04 | kilogram      |
| market for bronze                                                     | 6.67E+04 | kilogram      |
| market for zinc                                                       | 3.11E+05 | kilogram      |
| market for aluminium, wrought alloy                                   | 2.22E+04 | kilogram      |
| market for cast iron                                                  | 1.74E+06 | kilogram      |
| market for electronic component machinery, unspecified                | 2.22E+02 | unit          |
| market for glass wool mat                                             | 3.78E+05 | kilogram      |
| market for asbestos, crysotile type                                   | 3.78E+05 | kilogram      |
| market for sanitary ceramics                                          | 3.78E+05 | kilogram      |
| market for polypropylene, granulate                                   | 1.07E+05 | kilogram      |
| market for polyethylene, high density, granulate                      | 1.07E+05 | kilogram      |
| market for polystyrene, expandable                                    | 1.07E+05 | kilogram      |
| market for polyvinylidenechloride, granulate                          | 1.07E+05 | kilogram      |
| market for polyurethane, flexible foam                                | 1.07E+05 | kilogram      |
| market for glued laminated timber, average glue mix                   | 9.25E+02 | cubic meter   |
| market for alkyd paint, white, without solvent, in 60% solution state | 2.22E+05 | kilogram      |
| market for welding, arc, steel                                        | 2.79E+07 | meter         |
| market for welding, gas, steel                                        | 1.77E+08 | meter         |
| market group for electricity, medium voltage                          | 1.48E+07 | kilowatt hour |
| market group for heat, district or industrial, other than natural gas | 1.70E+07 | megajoule     |
| market for inert waste, for final disposal                            | 3.78E+05 | kilogram      |

|                                                                             |          |          |
|-----------------------------------------------------------------------------|----------|----------|
| market for scrap aluminium                                                  | 2.22E+04 | kilogram |
| market for scrap copper                                                     | 7.12E+04 | kilogram |
| market for scrap steel                                                      | 4.49E+07 | kilogram |
| market for waste electric and electronic equipment                          | 5.56E+05 | kilogram |
| market for waste emulsion paint                                             | 2.14E+05 | kilogram |
| market for waste mineral wool                                               | 7.56E+05 | kilogram |
| market for waste plastic, mixture                                           | 5.34E+05 | kilogram |
| bronze scrap, post-consumer, Recycled Content cut-off                       | 6.67E+04 | kilogram |
| iron scrap, unsorted, Recycled Content cut-off                              | 1.74E+06 | kilogram |
| zinc scrap, post-consumer, Recycled Content cut-off                         | 3.11E+05 | kilogram |
| <b>Environmental flows</b>                                                  |          |          |
| NM VOC, non-methane volatile organic compounds, unspecified origin (to air) | 1.82E+05 | kilogram |
| Hydrocarbons, unspecified (to water)                                        | 4.00E+03 | kilogram |
| Hydrocarbons, unspecified (to soil)                                         | 4.00E+03 | kilogram |

Data source: Jain et al.<sup>167</sup> and Notten et al.<sup>168</sup>

Table S4.6. Life cycle inventory of propulsion system, HFO-ICE, size1 (unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 7.95   | MW   |
| market for generator, 200kW electrical                                          | 5      | unit |
| marine engine, CI, ICE*                                                         | 1      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 18     | unit |
| SCR*                                                                            | 8.95   | MW   |
| market for oil boiler, 100kW                                                    | 2.5    | unit |

Table S4.7. Life cycle inventory of marine engine, CI, ICE (MW)

| Exchanges                                                             | Amount   | Unit          |
|-----------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                 |          |               |
| market for steel, chromium steel 18/8                                 | 1.17E+04 | kilogram      |
| market for cast iron                                                  | 1.34E+04 | kilogram      |
| market for aluminium, primary, ingot                                  | 2.33E+03 | kilogram      |
| market for zinc                                                       | 5.84E+01 | kilogram      |
| market for wire drawing, copper                                       | 2.92E+01 | kilogram      |
| market for lead                                                       | 2.92E+01 | kilogram      |
| market for nylon 6                                                    | 2.63E+02 | kilogram      |
| market for silicone product                                           | 2.63E+02 | kilogram      |
| market for alkyd paint, white, without solvent, in 60% solution state | 2.63E+02 | kilogram      |
| market for lubricating oil                                            | 8.76E+02 | kilogram      |
| market group for electricity, medium voltage                          | 1.08E+04 | kilowatt hour |

Data source: Kanchiralla et al.<sup>26</sup>

Table S4.8. Life cycle inventory of SCR (MW)

| Exchanges                             | Amount | Unit     |
|---------------------------------------|--------|----------|
| <b>Economic flows</b>                 |        |          |
| market for steel, chromium steel 18/8 | 942.08 | kilogram |
| market for titanium dioxide           | 4.72   | kilogram |

Data source: Kanchiralla et al.<sup>25</sup>

Table S4.9. Life cycle inventory of fuel tank, heavy fuel oil (kg)

| Exchanges                                                             | Amount    | Unit          |
|-----------------------------------------------------------------------|-----------|---------------|
| <b>Economic flows</b>                                                 |           |               |
| market for steel, unalloyed                                           | 1.16      | kilogram      |
| market for sheet rolling, steel                                       | 1.16      | kilogram      |
| market for scrap steel                                                | -2.78E-01 | kilogram      |
| market for alkyd paint, white, without solvent, in 60% solution state | 1.18E-01  | kilogram      |
| market group for electricity, low voltage                             | 4.70E-01  | kilowatt hour |

Data source: Dlamini et al.<sup>234</sup>

Table S4.10. Life cycle inventory of marine gas oil, very low-sulphur (kg)

| Exchanges                                 | Amount   | Unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market group for diesel, low-sulfur       | 1.00     | kilogram      |
| market group for electricity, low voltage | 5.46E-03 | kilowatt hour |
| market for petroleum coke                 | 9.20E-05 | kilogram      |
| market for hydrogen, gaseous              | 8.92E-03 | kilogram      |
| <b>Environmental flows</b>                |          |               |
| Hydrogen sulfide (to air)                 | 5.63E-03 | kilogram      |

Data source: Silva<sup>174</sup>

Table S4.11. Life cycle inventory of heavy fuel oil, very low-sulphur (kg)

| Exchanges                                 | Amount   | Unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for heavy fuel oil                 | 1.00     | kilogram      |
| market group for electricity, low voltage | 5.46E-03 | kilowatt hour |
| market for petroleum coke                 | 9.20E-05 | kilogram      |
| market for hydrogen, gaseous              | 8.92E-03 | kilogram      |
| <b>Environmental flows</b>                |          |               |
| Hydrogen sulfide (to air)                 | 5.63E-03 | kilogram      |

Data source: Silva<sup>174</sup>

Table S4.12. Life cycle inventory of urea solution, 40 wt% (kg)

| Exchanges                   | Amount | Unit     |
|-----------------------------|--------|----------|
| <b>Economic flows</b>       |        |          |
| market for urea             | 0.4    | kilogram |
| market for water, deionised | 0.6    | kilogram |

Data source: Brynolf et al.<sup>262</sup>

Table S4.13. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size1 (t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC, size1* | 1.09E-10 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 9.43E-06 | kilogram      |
| market for maintenance, container ship                          | 2.18E-11 | unit          |
| liquid hydrogen production*                                     | 3.05E-03 | kilogram      |
| market group for electricity, low voltage                       | 7.14E-05 | kilowatt hour |

Table S4.14. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size1 (unit)

| Exchanges             | Amount | Unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                                                         |       |      |
|---------------------------------------------------------|-------|------|
| hull production, container ship, for DWT 103800*        | 0.083 | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size1* | 1     | unit |

Table S4.15. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size1 (unit)

| Exchanges                                                                       | Amount | Unit     |
|---------------------------------------------------------------------------------|--------|----------|
| <b>Economic flows</b>                                                           |        |          |
| PEMFC*                                                                          | 48.65  | MW       |
| market for converter, for electric passenger car                                | 460.80 | kilogram |
| market for inverter, 500kW                                                      | 12.40  | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 65.11  | kilogram |
| motor drive*                                                                    | 8.28   | MW       |
| market for marine electric motor                                                | 21.68  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 178.88 | unit     |
| electric boiler, 100kW*                                                         | 2.50   | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 2.89   | unit     |

Table S4.16. Life cycle inventory of PEMFC (MW)

| Exchanges                                                          | Amount | Unit     |
|--------------------------------------------------------------------|--------|----------|
| <b>Economic flows</b>                                              |        |          |
| market for pump, 40W                                               | 3000   | unit     |
| market for acrylonitrile                                           | 0.21   | kilogram |
| market for air filter, in exhaust air valve                        | 13.00  | unit     |
| market for aluminium, cast alloy                                   | 268.25 | kilogram |
| market for cable, three-conductor cable                            | 16000  | meter    |
| market for carbon black                                            | 0.19   | kilogram |
| market for steel, chromium steel 18/8                              | 40     | kilogram |
| market for cobalt oxide                                            | 0.02   | kilogram |
| market for wire drawing, copper                                    | 6      | kilogram |
| market for electronics, for control units                          | 34     | kilogram |
| market for epoxy resin, liquid                                     | 70.20  | kilogram |
| market for ethylene glycol                                         | 10     | kilogram |
| market for extrusion of plastic sheets and thermoforming, inline   | 12.13  | kilogram |
| market for formaldehyde                                            | 0.01   | kilogram |
| market for glass fibre                                             | 20     | kilogram |
| market for polyethylene, high density, granulate                   | 10.01  | kilogram |
| market for hydrochloric acid, without water, in 30% solution state | 0.08   | kilogram |
| market for steel, low-alloyed                                      | 83     | kilogram |
| market for methanol                                                | 0.63   | kilogram |
| market for methyl acrylate                                         | 0.01   | kilogram |
| market for nitric acid, without water, in 50% solution state       | 0.19   | kilogram |
| market for nylon 6                                                 | 30     | kilogram |
| market for permanent magnet, for electric motor                    | 10     | kilogram |
| market for extrusion, plastic pipes                                | 30     | kilogram |
| market for platinum                                                | 0.02   | kilogram |
| market for polyphenylene sulfide                                   | 10     | kilogram |
| market for polypropylene, granulate                                | 50     | kilogram |
| market for polyurethane, rigid foam                                | 19     | kilogram |
| treatment of automobile catalyst                                   | 0.05   | kilogram |

|                                                                   |        |               |
|-------------------------------------------------------------------|--------|---------------|
| market for silicone product                                       | 30     | kilogram      |
| market for sodium hydroxide, without water, in 50% solution state | 0.01   | kilogram      |
| market for sodium nitrate                                         | 0.19   | kilogram      |
| market for spent solvent mixture                                  | 0.40   | kilogram      |
| market for sulfur trioxide                                        | 1.29   | kilogram      |
| market for tetrafluoroethylene                                    | 13.18  | kilogram      |
| market for titanium                                               | 240    | kilogram      |
| market for water, deionised                                       | 0.67   | kilogram      |
| market for heat, district or industrial, natural gas              | 765.37 | megajoule     |
| market group for electricity, medium voltage                      | 706.32 | kilowatt hour |

Data source: Usai et al.<sup>213</sup>

Table S4.17. Life cycle inventory of motor drive (MW)

| Exchanges                                                               | Amount | Unit          |
|-------------------------------------------------------------------------|--------|---------------|
| <b>Economic flows</b>                                                   |        |               |
| market for aluminium, primary, ingot                                    | 36.2   | kilogram      |
| market for copper, cathode                                              | 174.7  | kilogram      |
| market for kraft paper                                                  | 0.3    | kilogram      |
| market for polyester-complexed starch biopolymer                        | 73.45  | kilogram      |
| market for steel, low-alloyed                                           | 315.45 | kilogram      |
| market for brass                                                        | 9.95   | kilogram      |
| market for sanitary ceramics                                            | 3.35   | kilogram      |
| market for chromium                                                     | 0.05   | kilogram      |
| market for epoxy resin insulator, SiO <sub>2</sub>                      | 3.8    | kilogram      |
| market for molybdenum                                                   | 1.6    | kilogram      |
| market for nickel, class 1                                              | 0.1    | kilogram      |
| market for glass fibre reinforced plastic, polyester resin, hand lay-up | 2.85   | kilogram      |
| market for glass fibre                                                  | 0.1    | kilogram      |
| market for vegetable oil, refined                                       | 12.1   | kilogram      |
| market for pig iron                                                     | 5.4    | kilogram      |
| market for silicone product                                             | 0.2    | kilogram      |
| market for silver                                                       | 0.05   | kilogram      |
| market for solder, bar, Sn63Pb37, for electronics industry              | 0.85   | kilogram      |
| market for zinc                                                         | 1.5    | kilogram      |
| market group for electricity, medium voltage                            | 40     | kilowatt hour |

Data source: Westberg<sup>265</sup> and ABB<sup>183</sup>

Table S4.18. Life cycle inventory of electric boiler, 100kW (unit)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| market group for electricity, medium voltage                    | 7.50E+02 | kilowatt hour |
| market for heat, district or industrial, other than natural gas | 1.26E+03 | megajoule     |
| market for glass fibre                                          | 3.15     | kilogram      |
| market for stone wool                                           | 1.92     | kilogram      |
| market for sanitary ceramics                                    | 4.79     | kilogram      |
| market for expanded vermiculite                                 | 1.16E+01 | kilogram      |
| market for brass                                                | 1.59E+01 | kilogram      |
| market for cast iron                                            | 5.40E+01 | kilogram      |
| market for steel, low-alloyed, hot rolled                       | 9.36E+01 | kilogram      |

|                                                                        |          |              |
|------------------------------------------------------------------------|----------|--------------|
| market for zinc coat, coils                                            | 6.96E+01 | square meter |
| market for steel, chromium steel 18/8                                  | 6.23E+01 | kilogram     |
| market for steel, low-alloyed                                          | 8.77E+01 | kilogram     |
| market for steel, unalloyed                                            | 6.26E+01 | kilogram     |
| market for cable, unspecified                                          | 4.45E+01 | kilogram     |
| market for electric connector, wire clamp                              | 4.25     | kilogram     |
| market for electronics, for control units                              | 3.29     | kilogram     |
| market for printed wiring board, surface mounted, unspecified, Pb free | 6.30     | kilogram     |
| market for resistor, wirewound, through-hole mounting                  | 1.01E+01 | kilogram     |
| market for nylon 6-6                                                   | 9.18E-01 | kilogram     |
| market for polyvinylchloride, bulk polymerised                         | 3.29E-01 | kilogram     |
| market for polyethylene, low density, granulate                        | 6.58E-01 | kilogram     |
| market for silicone product                                            | 4.93E-01 | kilogram     |
| market for alkyd paint, white, without solvent, in 60% solution state  | 3.42     | kilogram     |
| market for coating powder                                              | 8.90E-01 | kilogram     |
| market for inert waste, for final disposal                             | 4.42E+01 | kilogram     |
| iron scrap, unsorted, Recycled Content cut-off                         | 1.85E+02 | kilogram     |
| market for scrap steel                                                 | 1.85E+02 | kilogram     |
| market for electronics scrap from control units                        | 7.56E-01 | kilogram     |
| market for used cable                                                  | 3.03E+01 | kilogram     |
| market for waste electric wiring                                       | 3.40E-01 | kilogram     |
| market for waste polyethylene                                          | 1.32E-03 | kilogram     |
| market for waste polyvinylchloride                                     | 2.50E-01 | kilogram     |
| market for waste plastic, mixture                                      | 1.41     | kilogram     |
| market for waste paint on metal                                        | 4.32     | kilogram     |

Data source: Abbas<sup>232</sup>

Table S4.19. Life cycle inventory of reliquefaction plant, 1 kg/h capacity (unit)

| Exchanges                                    | Amount | Unit          |
|----------------------------------------------|--------|---------------|
| <b>Economic flows</b>                        |        |               |
| market for steel, chromium steel 18/8        | 16.5   | kilogram      |
| market for cast iron                         | 6      | kilogram      |
| market for steel, unalloyed                  | 5.4    | kilogram      |
| market for aluminium, primary, ingot         | 2.1    | kilogram      |
| market for casting, steel, lost-wax          | 21.9   | kilogram      |
| market for casting, aluminium, lost-wax      | 2.1    | kilogram      |
| market group for electricity, medium voltage | 11.34  | kilowatt hour |
| market for scrap steel                       | -21.90 | kilogram      |
| market for scrap aluminium                   | -2.10  | kilogram      |
| market for iron scrap, unsorted              | -6.00  | kilogram      |
| market for natural gas, liquefied            | 0.01   | cubic meter   |
| market for nitrogen, liquid                  | 4.18   | kilogram      |

Data source: Park et al.<sup>276</sup>

Table S4.20. Life cycle inventory of fuel tank, cryogenic, liquid hydrogen (kg)

| Exchanges                                 | Amount   | Unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for compressed air, 1000 kPa gauge | 3.76E-04 | cubic meter   |
| market group for electricity, low voltage | 5.98E-01 | kilowatt hour |

|                                       |          |          |
|---------------------------------------|----------|----------|
| market for steel, chromium steel 18/8 | 9.74E-01 | kilogram |
| market for aluminium alloy, AlMg3     | 2.59E-02 | kilogram |

Data source: Abbas<sup>235</sup>

Table S4.21. Life cycle inventory of liquid hydrogen production (kg)

| Exchanges                                 | Amount   | Unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for hydrogen, gaseous, 25-30 bar   | 1.0162   | kilogram      |
| hydrogen liquefaction plant construction* | 3.43E-09 | unit          |
| market group for electricity, low voltage | 10.5     | kilowatt hour |
| <b>Environmental flows</b>                |          |               |
| Hydrogen (to air)                         | 0.0162   | kilogram      |

Data source: Al Ghafri et al.<sup>176</sup> and Wulf and Zapp<sup>175</sup>

Table S4.22. Life cycle inventory of hydrogen liquefaction plant construction (unit)

| Exchanges                             | Amount   | Unit        |
|---------------------------------------|----------|-------------|
| <b>Economic flows</b>                 |          |             |
| market for steel, chromium steel 18/8 | 5.95E+05 | kilogram    |
| market for reinforcing steel          | 3.80E+05 | kilogram    |
| market group for concrete, normal     | 2.03E+04 | cubic meter |
| market for copper, cathode            | 1.50E+05 | kilogram    |
| market for aluminium alloy, AlMg3     | 1.40E+05 | kilogram    |

Data source: Al Ghafri et al.<sup>176</sup>

Table S4.23. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size1 (t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size1* | 1.17E-10 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 2.57E-06 | kilogram      |
| market for maintenance, container ship                          | 2.35E-11 | unit          |
| ammonia production, liquid*                                     | 1.73E-02 | kilogram      |
| market group for electricity, low voltage                       | 2.30E-04 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks)     | 1.66E-07 | kilogram      |

Table S4.24. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size1 (unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 0.083  | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size1* | 1      | unit |

Table S4.25. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size1 (unit)

| Exchanges                                                   | Amount | Unit     |
|-------------------------------------------------------------|--------|----------|
| <b>Economic flows</b>                                       |        |          |
| SOFC*                                                       | 48.65  | MW       |
| market for converter, for electric passenger car            | 506.25 | kilogram |
| market for inverter, 500kW                                  | 12.40  | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic | 194.04 | kilogram |
| motor drive*                                                | 8.28   | MW       |
| market for marine electric motor                            | 21.68  | unit     |

|                                                                                 |        |      |
|---------------------------------------------------------------------------------|--------|------|
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 178.88 | unit |
| electric boiler, 100kW*                                                         | 2.50   | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 1.51   | unit |

Table S4.26. Life cycle inventory of SOFC (MW)

| Exchanges                                                          | Amount  | Unit          |
|--------------------------------------------------------------------|---------|---------------|
| <b>Economic flows</b>                                              |         |               |
| market for butyldiglycol acetate                                   | 50.52   | kilogram      |
| market for aluminium, primary, ingot                               | 4000    | kilogram      |
| market for methyl methacrylate                                     | 135.10  | kilogram      |
| market for carbon black                                            | 87.60   | kilogram      |
| market for cobalt oxide                                            | 45.77   | kilogram      |
| market for wire drawing, copper                                    | 4000    | kilogram      |
| market for lanthanum oxide                                         | 45.19   | kilogram      |
| market for carboxymethyl cellulose, powder                         | 89.04   | kilogram      |
| market for butyl acetate                                           | 404.95  | kilogram      |
| market for nickel, class 1                                         | 1136    | kilogram      |
| market for ethylene glycol                                         | 132     | kilogram      |
| market for strontium carbonate                                     | 7.04    | kilogram      |
| market for steel, chromium steel 18/8                              | 31000   | kilogram      |
| market for yttrium oxide                                           | 53.43   | kilogram      |
| market for zirconium oxide                                         | 357.57  | kilogram      |
| market group for electricity, medium voltage                       | 7577.78 | kilowatt hour |
| <b>Environmental flows</b>                                         |         |               |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks) | 432     | kilogram      |

Data source: Kanchiralla et al.<sup>26</sup>

Table S4.27. Life cycle inventory of fuel tank, cryogenic, liquid ammonia (kg)

| Exchanges                       | Amount | Unit     |
|---------------------------------|--------|----------|
| <b>Economic flows</b>           |        |          |
| market for steel, low-alloyed   | 0.55   | kilogram |
| market for steel, unalloyed     | 0.56   | kilogram |
| market for sheet rolling, steel | 1.11   | kilogram |
| market for scrap steel          | -0.11  | kilogram |

Data source: Ryste<sup>237</sup> and Cryocan<sup>238</sup>

Table S4.28. Life cycle inventory of ammonia production, liquid (kg)

| Exchanges                                                            | Amount   | Unit          |
|----------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                |          |               |
| market for hydrogen, gaseous, 25-30 bar                              | 1.76E-01 | kilogram      |
| nitrogen, gaseous, from cryogenic distillation, without compression* | 8.15E-01 | kilogram      |
| ammonia synthesis catalyst*                                          | 5.15E-05 | kilogram      |
| market for chemical factory, organics                                | 3.29E-10 | unit          |
| market group for electricity, low voltage                            | 1.44     | kilowatt hour |
| treatment of inert waste, inert material landfill                    | 5.15E-05 | kilogram      |
| <b>Environmental flows</b>                                           |          |               |
| Water, cooling, unspecified natural origin (from natural resource)   | 1.49E-01 | cubic meter   |
| Hydrogen (to air)                                                    | 7.67E-04 | kilogram      |
| Ammonia (to air)                                                     | 1.63E-03 | kilogram      |

|                          |          |             |
|--------------------------|----------|-------------|
| Nitrogen oxides (to air) | 1.00E-03 | kilogram    |
| Water (to air)           | 4.76E-02 | cubic meter |
| Water (to water)         | 1.01E-01 | cubic meter |

Data source: D'Angelo et al.<sup>54</sup>

Table S4.29. Life cycle inventory of nitrogen, gaseous, from cryogenic distillation, without compression (kg)

| Exchanges                                                          | Amount   | Unit        |
|--------------------------------------------------------------------|----------|-------------|
| <b>Economic flows</b>                                              |          |             |
| market for air separation facility                                 | 4.43E-10 | unit        |
| <b>Environmental flows</b>                                         |          |             |
| Water, cooling, unspecified natural origin (from natural resource) | 4.00E-03 | cubic meter |
| Water (to water)                                                   | 2.45E-03 | cubic meter |

Data source: D'Angelo et al.<sup>54</sup>

Table S4.30. Life cycle inventory of ammonia synthesis catalyst (kg)

| Exchanges                                 | Amount   | Unit          |
|-------------------------------------------|----------|---------------|
| <b>Economic flows</b>                     |          |               |
| market for magnetite                      | 9.17E-01 | kilogram      |
| market for lime                           | 3.00E-02 | kilogram      |
| market for zeolite, powder                | 5.25E-02 | kilogram      |
| market group for electricity, low voltage | 1.78     | kilowatt hour |

Data source: D'Angelo et al.<sup>54</sup>

Table S4.31. Life cycle inventory of transport, container ship, battery, size1 (t-nm)

| Exchanges                                  | Amount   | Unit          |
|--------------------------------------------|----------|---------------|
| <b>Economic flows</b>                      |          |               |
| container ship production, battery, size1* | 1.78E-10 | unit          |
| market for maintenance, container ship     | 3.56E-11 | unit          |
| market group for electricity, low voltage  | 9.51E-02 | kilowatt hour |

Table S4.32. Life cycle inventory of container ship production, battery, size1 (unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 8.31E-02 | unit |
| propulsion system, battery, size1*               | 1        | unit |

Table S4.33. Life cycle inventory of propulsion system, battery, size1 (unit)

| Exchanges                                                                       | Amount   | Unit     |
|---------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                           |          |          |
| market for converter, for electric passenger car                                | 437.85   | kilogram |
| market for inverter, 500kW                                                      | 12.40    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 52814.04 | kilogram |
| motor drive*                                                                    | 8.28     | MW       |
| market for marine electric motor                                                | 21.68    | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 178.88   | unit     |
| electric boiler, 100kW                                                          | 2.50     | unit     |

Table S4.34. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size1 (t-nm)

| Exchanges             | Amount | Unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| container ship production, liquid H <sub>2</sub> -DFICE, size1*                                               | 1.12E-10 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 4.84E-08 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                                                                        | 9.46E-06 | kilogram |
| market for maintenance, container ship                                                                        | 2.25E-11 | unit     |
| liquid hydrogen production*                                                                                   | 3.06E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 4.52E-04 | kilogram |
| urea solution, 40 wt%                                                                                         | 1.60E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.12E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 8.31E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.90E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.56E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.51E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.08E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.23E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.31E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.43E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.51E-06 | kilogram |

Table S4.35. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size1 (unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 8.31E-02 | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE, size1* | 1        | unit |

Table S4.36. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size1 (unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 7.95   | MW   |
| market for generator, 200kW electrical                                          | 5      | unit |
| marine engine, CI, ICE*                                                         | 1      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 18     | unit |
| SCR*                                                                            | 7.95   | MW   |
| electric boiler, 100kW*                                                         | 2.5    | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 2.82   | unit |

Table S4.37. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size1 (t-nm)

| Exchanges                                                        | Amount   | Unit     |
|------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                            |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size1* | 1.13E-10 | unit     |
| fuel tank, heavy fuel oil*                                       | 5.08E-08 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                            | 3.07E-06 | kilogram |
| market for maintenance, container ship                           | 2.26E-11 | unit     |
| ammonia production, liquid*                                      | 2.07E-02 | kilogram |
| marine gas oil, very low-sulphur*                                | 4.75E-04 | kilogram |
| <b>Environmental flows</b>                                       |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)      | 2.22E-08 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 8.73E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.50E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.70E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 6.94E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.90E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.29E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.38E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.65E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.58E-06 | kilogram |

Table S4.38. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size1 (unit)

| Exchanges                                                | Amount   | Unit |
|----------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                    |          |      |
| hull production, container ship, for DWT 103800*         | 8.31E-02 | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size1* | 1        | unit |

Table S4.39. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size1 (unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 7.95   | MW   |
| market for generator, 200kW electrical                                          | 5      | unit |
| marine engine, CI, ICE*                                                         | 1      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 18     | unit |
| SCR*                                                                            | 8.95   | MW   |
| electric boiler, 100kW*                                                         | 2.5    | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 1.88   | unit |

Table S4.40. Life cycle inventory of transport, container ship, MeOH-DFICE, size1 (t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, MeOH-DFICE, size1*                                                                 | 1.12E-10 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 4.85E-08 | kilogram |
| fuel tank, methanol*                                                                                          | 2.28E-06 | kilogram |
| market for maintenance, container ship                                                                        | 2.25E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                                                                | 1.83E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 4.53E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.67E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.12E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.14E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.76E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.69E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.52E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.24E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.10E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 5.53E-07 | kilogram |

|                                                                    |          |          |
|--------------------------------------------------------------------|----------|----------|
| Sulfur dioxide (to air, non-urban air or from high stacks)         | 4.44E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)           | 9.92E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks) | 6.36E-06 | kilogram |

Table S4.41. Life cycle inventory of container ship production, MeOH-DFICE, size1 (unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 8.31E-02 | unit |
| propulsion system, MeOH-DFICE, size1*            | 1        | unit |

Table S4.42. Life cycle inventory of propulsion system, MeOH-DFICE, size1 (unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 7.95   | MW   |
| market for generator, 200kW electrical                                          | 5      | unit |
| marine engine, CI, ICE*                                                         | 1      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 18     | unit |
| SCR*                                                                            | 8.95   | MW   |
| electric boiler, 100kW*                                                         | 2.5    | unit |

Table S4.43. Life cycle inventory of fuel tank, methanol (kg)

| Exchanges                                 | Amount    | Unit          |
|-------------------------------------------|-----------|---------------|
| <b>Economic flows</b>                     |           |               |
| market for steel, unalloyed               | 1.16      | kilogram      |
| market for sheet rolling, steel           | 1.16      | kilogram      |
| market for scrap steel                    | -2.78E-01 | kilogram      |
| market for epoxy resin, liquid            | 1.18E-01  | kilogram      |
| market group for electricity, low voltage | 4.70E-01  | kilowatt hour |

Data source: Dlamini et al.<sup>234</sup> and CGH<sup>278</sup>

Table S4.44. Life cycle inventory of methanol production, CO<sub>2</sub> from DAC (kg)

| Exchanges                                         | Amount   | Unit          |
|---------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                             |          |               |
| CO <sub>2</sub> from DAC*                         | 1.51     | kilogram      |
| market for hydrogen, gaseous, 25-30 bar           | 2.08E-01 | kilogram      |
| market group for electricity, high voltage        | 2.72E-01 | kilowatt hour |
| market for steel, chromium steel 18/8             | 1.53E-04 | kilogram      |
| market for aluminium oxide, non-metallurgical     | 1.20E-05 | kilogram      |
| market for copper oxide                           | 6.20E-05 | kilogram      |
| market for zinc oxide                             | 2.90E-05 | kilogram      |
| market for heat, from steam, in chemical industry | 4.40E-01 | megajoule     |
| market for wastewater, average                    | 5.71E-04 | cubic meter   |
| <b>Environmental flows</b>                        |          |               |
| Carbon dioxide, fossil (to air)                   | 7.70E-02 | kilogram      |
| Methanol (to air)                                 | 1.00E-02 | kilogram      |
| Nitrogen oxides (to air)                          | 1.78E-06 | kilogram      |

Data source: González-Garay et al.<sup>177</sup>

Table S4.45. Life cycle inventory of CO<sub>2</sub> from DAC (kg)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                       |        |               |
|---------------------------------------------|--------|---------------|
| market group for electricity, high voltage  | 0.366  | kilowatt hour |
| market group for tap water                  | 3.105  | kilogram      |
| market group for natural gas, high pressure | 0.1895 | cubic meter   |
| market for calcium carbonate, precipitated  | 0.02   | kilogram      |
| <b>Environmental flows</b>                  |        |               |
| Carbon dioxide, in air                      | 1      | kilogram      |

Data source: Keith et al.<sup>178</sup>

Table S4.46. Life cycle inventory of transport, container ship, LNG-DFICE, size1 (unit)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LNG-DFICE, size1*                                                                  | 1.11E-10 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 9.23E-09 | kilogram |
| fuel tank, LNG*                                                                                               | 2.91E-06 | kilogram |
| market for maintenance, container ship                                                                        | 2.23E-11 | unit     |
| natural gas, liquid*                                                                                          | 7.44E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 8.62E-05 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.59E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.23E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 5.88E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.04E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.55E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.07E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.06E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 2.28E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.56E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 8.44E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.80E-06 | kilogram |

Table S4.47. Life cycle inventory of container ship production, LNG-DFICE, size1 (unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 8.31E-02 | unit |
| propulsion system, LNG-DFICE, size1*             | 1        | unit |

Table S4.48. Life cycle inventory of propulsion system, LNG-DFICE, size1 (unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 7.95   | MW   |
| market for generator, 200kW electrical                                          | 5      | unit |
| marine engine, CI, ICE*                                                         | 1      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 18     | unit |
| SCR*                                                                            | 7.95   | MW   |
| market for gas boiler                                                           | 25     | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 2.24   | unit |

Table S4.49. Life cycle inventory of natural gas, liquid (kg)

| Exchanges                         | Amount | Unit        |
|-----------------------------------|--------|-------------|
| <b>Economic flows</b>             |        |             |
| market for natural gas, liquefied | 1.26   | cubic meter |

Table S4.50. Life cycle inventory of fuel tank, LNG (kg)

| Exchanges                             | Amount    | Unit     |
|---------------------------------------|-----------|----------|
| <b>Economic flows</b>                 |           |          |
| market for steel, chromium steel 18/8 | 5.53E-01  | kilogram |
| market for steel, low-alloyed         | 5.58E-01  | kilogram |
| market for sheet rolling, steel       | 1.11      | kilogram |
| market for scrap steel                | -1.11E-01 | kilogram |

Data source: Ryste<sup>237</sup>

Table S4.51. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size1 (t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, LNG-DFICE, size1*                                                                   | 1.11E-10 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 9.23E-09 | kilogram |
| fuel tank, LNG*                                                                                                | 2.91E-06 | kilogram |
| market for maintenance, container ship                                                                         | 2.23E-11 | unit     |
| natural gas, liquid, woody biomass*                                                                            | 7.44E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 8.62E-05 | kilogram |
| urea solution, 40 wt%*                                                                                         | 1.59E-03 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 2.23E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 5.88E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 2.04E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 1.55E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 7.07E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 1.06E-06 | kilogram |
| NM VOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 2.28E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 1.56E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 8.44E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 1.80E-06 | kilogram |

Table S4.52. Life cycle inventory of natural gas, liquid, woody biomass (kg)

| Exchanges                                                                           | Amount   | Unit          |
|-------------------------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                               |          |               |
| biomethane production, high pressure from synthetic gas, wood, fluidised technology | 1.33     | cubic meter   |
| market group for electricity, low voltage                                           | 1.33E-02 | kilowatt hour |

Data source: Gustafsson et al.<sup>267</sup>

Table S4.53. Life cycle inventory of transport, container ship, LOHC-SOFC, size1 (1 t-nm)

| Exchanges                                    | Amount   | Unit |
|----------------------------------------------|----------|------|
| <b>Economic flows</b>                        |          |      |
| container ship production, LOHC-SOFC, size1* | 1.23E-10 | unit |

|                                                                               |          |               |
|-------------------------------------------------------------------------------|----------|---------------|
| fuel tank, heavy fuel oil                                                     | 4.43E-06 | kilogram      |
| market for maintenance, container ship                                        | 2.48E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 2.82E-03 | kilogram      |
| market group for electricity, low voltage                                     | 2.43E-04 | kilowatt hour |

Table S4.54. Life cycle inventory of container ship production, LOHC-SOFC, size1 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 8.31E-02 | unit |
| propulsion system, LOHC-SOFC, size1*             | 1        | unit |

Table S4.55. Life cycle inventory of propulsion system, LOHC-SOFC, size1 (1 unit)

| Exchanges                                                                       | Amount  | Unit              |
|---------------------------------------------------------------------------------|---------|-------------------|
| <b>Economic flows</b>                                                           |         |                   |
| SOFC*                                                                           | 48.65   | MW                |
| market for converter, for electric passenger car                                | 506.25  | kilogram          |
| market for inverter, 500kW                                                      | 12.4    | unit              |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 194.043 | kilogram          |
| motor drive*                                                                    | 8.28    | MW                |
| market for marine electric motor                                                | 21.681  | unit              |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 178.875 | unit              |
| LOHC reactor*                                                                   | 6.49    | MW H <sub>2</sub> |
| electric boiler, 100kW*                                                         | 2.5     | unit              |

Table S4.56. Life cycle inventory of LOHC reactor (1 MW H<sub>2</sub>)

| Exchanges                                 | Amount    | Unit     |
|-------------------------------------------|-----------|----------|
| <b>Economic flows</b>                     |           |          |
| market for aluminium oxide, metallurgical | 257.576   | kilogram |
| market for copper oxide                   | 1030.303  | kilogram |
| market for zinc oxide                     | 429.293   | kilogram |
| market for steel, chromium steel 18/8     | 15282.828 | kilogram |

Data source: Adapted from the ammonia cracker in Kanchiralla et al.<sup>25</sup>

Table S4.57. Life cycle inventory of dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen (1 kg)

| Exchanges                                                       | Amount   | Unit     |
|-----------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                           |          |          |
| hydrogenation of dibenzyltoluene (H0-DBT) for storing hydrogen* | 1        | kilogram |
| market for platinum                                             | 1.61E-07 | kilogram |
| market for aluminium oxide, non-metallurgical                   | 3.21E-05 | kilogram |

Data source: Wulf et al.<sup>23</sup>

Table S4.58. Life cycle inventory of hydrogenation of dibenzyltoluene (H0-DBT) for storing hydrogen (1 kg)

| Exchanges                                     | Amount   | Unit     |
|-----------------------------------------------|----------|----------|
| <b>Economic flows</b>                         |          |          |
| dibenzyltoluene (H0-DBT) production*          | 1.51E-02 | kilogram |
| market for hydrogen, gaseous, 25-30 bar*      | 1.01     | kilogram |
| market for platinum                           | 1.61E-07 | kilogram |
| market for aluminium oxide, non-metallurgical | 3.21E-05 | kilogram |
| market for chemical factory                   | 3.20E-04 | kilogram |

|                                           |       |               |
|-------------------------------------------|-------|---------------|
| market group for electricity, low voltage | 0.666 | kilowatt hour |
| <b>Environmental flows</b>                |       |               |
| Hydrogen (to air)                         | 0.01  | kilogram      |
| Heat, waste (to air)                      | 2.42  | megajoule     |

Data source: Wulf et al.<sup>323</sup>

Table S4.59. Life cycle inventory of dibenzyltoluene (H0-DBT) production (1 kg)

| Exchanges                                                                | Amount   | Unit          |
|--------------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                    |          |               |
| market for water, decarbonised                                           | 1.20     | kilogram      |
| market for toluene, liquid                                               | 1.03     | kilogram      |
| market for chlorine, gaseous                                             | 0.26     | kilogram      |
| market for iron(III) chloride, without water, in 14% iron solution state | 2.00E-06 | kilogram      |
| market group for electricity, low voltage                                | 42.1     | kilowatt hour |
| market for heat, from steam, in chemical industry                        | 2.70     | megajoule     |
| market for transport, freight, lorry >32 metric ton, EURO6               | 0.20     | ton kilometer |

Data source: Wulf et al.<sup>323</sup>

Table S4.60. Life cycle inventory of transport, container ship, LOHC-DFICE, size1 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LOHC-DFICE, size1*                                                                 | 1.20E-10 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 5.17E-08 | kilogram |
| fuel tank, heavy fuel oil*                                                                                    | 5.13E-06 | kilogram |
| market for maintenance, container ship                                                                        | 2.40E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen*                                 | 3.27E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 4.83E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.72E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.26E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 8.88E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.03E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.67E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 8.02E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.15E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.32E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.40E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.73E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.61E-06 | kilogram |

Table S4.61. Life cycle inventory of container ship production, LOHC-DFICE, size1 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 8.31E-02 | unit |
| propulsion system, LOHC-DFICE, size1*            | 1        | unit |

Table S4.62. Life cycle inventory of propulsion system, LOHC-DFICE, size1 (1 unit)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                                                           |      |                   |
|---------------------------------------------------------------------------------|------|-------------------|
| marine engine, CI, ICE*                                                         | 7.95 | MW                |
| market for generator, 200kW electrical                                          | 5    | unit              |
| marine engine, CI, ICE*                                                         | 1    | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 18   | unit              |
| LOHC reactor*                                                                   | 8.14 | MW H <sub>2</sub> |
| SCR*                                                                            | 7.95 | MW                |
| electric boiler, 100kW*                                                         | 2.5  | unit              |

Table S4.63. Life cycle inventory of transport, container ship, HFO-ICE, size2 (t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE, size2*                                                                    | 4.86E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.72E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.33E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 8.51E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.56E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 4.09E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.43E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.77E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.51E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 1.36E-06 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.23E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 2.01E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 2.40E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 8.53E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 2.76E-05 | kilogram |

Table S4.64. Life cycle inventory of container ship production, HFO-ICE, size2 (1 t-nm)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 1.99E-01 | unit |
| propulsion system, HFO-ICE, size2*               | 1        | unit |

Table S4.65. Life cycle inventory of propulsion system, HFO-ICE, size2 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 16.52  | MW   |
| market for generator, 200kW electrical                                          | 17.72  | unit |
| marine engine, CI, ICE*                                                         | 3.54   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 63.94  | unit |
| SCR*                                                                            | 20.06  | MW   |
| market for oil boiler, 100kW                                                    | 3.4    | unit |

Table S4.66. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size2 (1 t-nm)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                                           |          |               |
|-----------------------------------------------------------------|----------|---------------|
| container ship production, liquid H <sub>2</sub> -PEMFC, size2* | 4.71E-11 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 2.61E-05 | kilogram      |
| market for maintenance, container ship                          | 2.26E-11 | unit          |
| liquid hydrogen production*                                     | 2.74E-03 | kilogram      |
| market group for electricity, low voltage                       | 2.22E-05 | kilowatt hour |

Table S4.67. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size2 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 1.99E-01 | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size2* | 1        | unit |

Table S4.68. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size2 (1 unit)

| Exchanges                                                                       | Amount  | Unit     |
|---------------------------------------------------------------------------------|---------|----------|
| <b>Economic flows</b>                                                           |         |          |
| PEMFC                                                                           | 107.5   | MW       |
| market for converter, for electric passenger car                                | 1017.9  | kilogram |
| market for inverter, 500kW                                                      | 38.2    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 142.98  | kilogram |
| motor drive                                                                     | 17.2    | MW       |
| market for marine electric motor                                                | 45.036  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 394.875 | unit     |
| electric boiler, 100kW                                                          | 3.4     | unit     |
| Reliquefaction plant, 1 kg/h capacity                                           | 18.42   | unit     |

Table S4.69. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size2 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size2* | 5.06E-11 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 6.76E-06 | kilogram      |
| market for maintenance, container ship                          | 2.43E-11 | unit          |
| ammonia production, liquid*                                     | 1.48E-02 | kilogram      |
| market group for electricity, low voltage                       | 7.14E-05 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks)     | 1.42E-07 | kilogram      |

Table S4.70. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size2 (1 unit)

| Exchanges                                              | Amount   | Unit |
|--------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                  |          |      |
| hull production, container ship, for DWT 103800        | 1.99E-01 | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size2 | 1        | unit |

Table S4.71. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size2 (1 unit)

| Exchanges                                        | Amount | Unit     |
|--------------------------------------------------|--------|----------|
| <b>Economic flows</b>                            |        |          |
| SOFC*                                            | 107.5  | MW       |
| market for converter, for electric passenger car | 1118.7 | kilogram |

|                                                                                 |         |          |
|---------------------------------------------------------------------------------|---------|----------|
| market for inverter, 500kW                                                      | 38.2    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 428.94  | kilogram |
| motor drive*                                                                    | 17.2    | MW       |
| market for marine electric motor                                                | 45.036  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 394.875 | unit     |
| electric boiler, 100kW*                                                         | 3.4     | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 9.21    | unit     |

Table S4.72. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size2 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE, size2*                                               | 4.85E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.38E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                                                                        | 2.70E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.33E-11 | unit     |
| liquid hydrogen production*                                                                                   | 2.84E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 4.19E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.30E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.96E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 7.70E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.70E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.31E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 6.96E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.74E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.14E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.22E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.10E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.40E-06 | kilogram |

Table S4.73. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE, size2 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 1.99E-01 | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE, size2* | 1        | unit |

Table S4.74. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size2 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 16.52  | MW   |
| market for generator, 200kW electrical                                          | 17.75  | unit |
| marine engine, CI, ICE*                                                         | 3.55   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 63.94  | unit |
| SCR*                                                                            | 16.52  | MW   |
| electric boiler, 100kW*                                                         | 3.4    | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 18.47  | unit |

Table S4.75. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size2 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size2*                                              | 4.95E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.47E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                         | 8.86E-06 | kilogram |
| market for maintenance, container ship                                                                        | 2.37E-11 | unit     |
| ammonia production, liquid*                                                                                   | 1.94E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 4.45E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.08E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 8.17E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.40E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.54E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 6.50E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.78E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.21E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.29E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.35E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.48E-06 | kilogram |

Table S4.76. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size2 (1 unit)

| Exchanges                                                | Amount   | Unit |
|----------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                    |          |      |
| hull production, container ship, for DWT 103800*         | 1.99E-01 | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size2* | 1        | unit |

Table S4.77. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size2 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 16.52  | MW   |
| market for generator, 200kW electrical                                          | 17.75  | unit |
| marine engine, CI, ICE                                                          | 3.55   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 63.94  | unit |
| SCR*                                                                            | 20.06  | MW   |
| electric boiler, 100kW*                                                         | 3.4    | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 12.35  | unit |

Table S4.78. Life cycle inventory of transport, container ship, MeOH-DFICE, size2 (1 t-nm)

| Exchanges                                      | Amount   | Unit     |
|------------------------------------------------|----------|----------|
| <b>Economic flows</b>                          |          |          |
| container ship production, MeOH-DFICE, size2*  | 4.90E-11 | unit     |
| fuel tank, heavy fuel oil*                     | 1.39E-07 | kilogram |
| fuel tank, methanol*                           | 6.53E-06 | kilogram |
| market for maintenance, container ship         | 2.35E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC* | 1.70E-02 | kilogram |
| marine gas oil, very low-sulphur*              | 4.21E-04 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| urea solution, 40 wt%*                                                                                        | 1.42E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.97E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.99E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.56E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.53E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.00E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.15E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.02E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 5.14E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.13E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 9.22E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 5.91E-06 | kilogram |

Table S4.79. Life cycle inventory of container ship production, MeOH-DFICE, size2 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 1.99E-01 | unit |
| propulsion system, MeOH-DFICE, size2*            | 1        | unit |

Table S4.80. Life cycle inventory of propulsion system, MeOH-DFICE, size2 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| propulsion system, MeOH-DFICE, size2*                                           | 1      | unit |
| marine engine, CI, ICE*                                                         | 16.52  | MW   |
| market for generator, 200kW electrical                                          | 17.75  | unit |
| marine engine, CI, ICE*                                                         | 3.55   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 63.94  | unit |
| SCR*                                                                            | 20.06  | MW   |
| electric boiler, 100kW*                                                         | 3.4    | unit |

Table S4.81. Life cycle inventory of transport, container ship, LNG-DFICE, size2 (1 t-nm)

| Exchanges                                                           | Amount   | Unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, LNG-DFICE, size2                         | 4.77E-11 | unit     |
| fuel tank, heavy fuel oil                                           | 2.60E-08 | kilogram |
| fuel tank, LNG                                                      | 8.19E-06 | kilogram |
| market for maintenance, container ship                              | 2.29E-11 | unit     |
| natural gas, liquid                                                 | 6.79E-03 | kilogram |
| marine gas oil, very low-sulphur                                    | 7.88E-05 | kilogram |
| urea solution, 40 wt%                                               | 1.28E-03 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 2.04E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 5.37E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)  | 1.86E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)         | 1.28E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)     | 6.46E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                 | 8.54E-07 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 2.08E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.43E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 7.71E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.64E-06 | kilogram |

Table S4.82. Life cycle inventory of container ship production, LNG-DFICE, size2 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 1.99E-01 | unit |
| propulsion system, LNG-DFICE, size2*             | 1        | unit |

Table S4.83. Life cycle inventory of propulsion system, LNG-DFICE, size2 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 16.52   | MW   |
| market for generator, 200kW electrical                                          | 17.75   | unit |
| marine engine, CI, ICE*                                                         | 3.55    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 63.9375 | unit |
| SCR*                                                                            | 16.52   | MW   |
| market for gas boiler                                                           | 34      | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 14.7    | unit |

Table S4.84. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size2 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LNG-DFICE, size2*                                                                  | 4.77E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 2.60E-08 | kilogram |
| fuel tank, LNG*                                                                                               | 8.19E-06 | kilogram |
| market for maintenance, container ship                                                                        | 2.29E-11 | unit     |
| natural gas, liquid, woody biomass*                                                                           | 6.79E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 7.88E-05 | kilogram |
| urea solution, 40 wt%                                                                                         | 1.28E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.04E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 5.37E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.86E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.28E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 6.46E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.54E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 2.08E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.43E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 7.71E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.64E-06 | kilogram |

Table S4.85. Life cycle inventory of transport, container ship, LOHC-SOFC, size2 (1 t-nm)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                                                         |          |               |
|-------------------------------------------------------------------------------|----------|---------------|
| container ship production, LOHC-SOFC, size2*                                  | 5.62E-11 | unit          |
| fuel tank, heavy fuel oil*                                                    | 1.23E-05 | kilogram      |
| market for maintenance, container ship                                        | 2.69E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 2.54E-03 | kilogram      |
| market group for electricity, low voltage*                                    | 7.92E-05 | kilowatt hour |

Table S4.86. Life cycle inventory of container ship production, LOHC-SOFC, size2 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 1.99E-01 | unit |
| propulsion system, LOHC-SOFC, size2*             | 1        | unit |

Table S4.87. Life cycle inventory of propulsion system, LOHC-SOFC, size2 (1 unit)

| Exchanges                                                                       | Amount      | Unit              |
|---------------------------------------------------------------------------------|-------------|-------------------|
| <b>Economic flows</b>                                                           |             |                   |
| SOFC*                                                                           | 107.45      | MW                |
| market for converter, for electric passenger car                                | 1118.25     | kilogram          |
| market for inverter, 500kW                                                      | 38.2        | unit              |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 428.9361702 | kilogram          |
| motor drive*                                                                    | 17.2        | MW                |
| market for marine electric motor                                                | 45.036      | unit              |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 394.875     | unit              |
| LOHC reactor*                                                                   | 11.97       | MW H <sub>2</sub> |
| electric boiler, 100kW*                                                         | 3.4         | unit              |

Table S4.88. Life cycle inventory of transport, container ship, LOHC-DFICE, size2 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, LOHC-DFICE, size2*                                                                  | 5.64E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 1.60E-07 | kilogram |
| fuel tank, heavy fuel oil*                                                                                     | 1.58E-05 | kilogram |
| market for maintenance, container ship                                                                         | 2.71E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen*                                  | 3.28E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 4.85E-04 | kilogram |
| urea solution, 40 wt%*                                                                                         | 1.52E-03 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 2.27E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 8.91E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 1.97E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 1.52E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 8.05E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 1.02E-06 | kilogram |
| NMVOCS, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.32E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 1.41E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 4.75E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0.00E+00 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 1.62E-06 | kilogram |

Table S4.89. Life cycle inventory of container ship production, LOHC-DFICE, size2 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 1.99E-01 | unit |
| propulsion system, LOHC-DFICE, size2*            | 1        | unit |

Table S4.90. Life cycle inventory of propulsion system, LOHC-DFICE, size2 (1 unit)

| Exchanges                                                                       | Amount  | Unit              |
|---------------------------------------------------------------------------------|---------|-------------------|
| <b>Economic flows</b>                                                           |         |                   |
| marine engine, CI, ICE*                                                         | 16.52   | MW                |
| market for generator, 200kW electrical                                          | 17.75   | unit              |
| marine engine, CI, ICE*                                                         | 3.55    | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 63.9375 | unit              |
| LOHC reactor*                                                                   | 16.18   | MW H <sub>2</sub> |
| SCR*                                                                            | 16.52   | MW                |
| electric boiler, 100kW*                                                         | 3.4     | unit              |

Table S4.91. Life cycle inventory of transport, container ship, HFO-ICE, size3 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, HFO-ICE, size3*                                                                     | 2.69E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 1.55E-05 | kilogram |
| market for maintenance, container ship                                                                         | 2.17E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                              | 7.55E-03 | kilogram |
| urea solution, 40 wt%*                                                                                         | 1.36E-03 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 3.63E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 3.93E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 2.46E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 1.32E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 1.21E-06 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 1.09E-06 | kilogram |
| NM VOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.79E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 2.13E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 7.57E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 2.45E-05 | kilogram |

Table S4.92. Life cycle inventory of container ship production, HFO-ICE, size3 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 3.34E-01 | unit |
| propulsion system, HFO-ICE, size3*               | 1        | unit |

Table S4.93. Life cycle inventory of propulsion system, HFO-ICE, size3 (1 unit)

| Exchanges                              | Amount | Unit |
|----------------------------------------|--------|------|
| <b>Economic flows</b>                  |        |      |
| marine engine, CI, ICE*                | 21.56  | MW   |
| market for generator, 200kW electrical | 33.6   | unit |

|                                                                                 |          |      |
|---------------------------------------------------------------------------------|----------|------|
| marine engine, CI, ICE*                                                         | 6.72     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 120.9375 | unit |
| SCR*                                                                            | 28.28    | MW   |
| market for oil boiler, 100kW                                                    | 4.6      | unit |

Table S4.94. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size3 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC, size3* | 2.66E-11 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 4.08E-05 | kilogram      |
| market for maintenance, container ship                          | 2.15E-11 | unit          |
| liquid hydrogen production*                                     | 2.46E-03 | kilogram      |
| market group for electricity, low voltage                       | 1.01E-05 | kilowatt hour |

Table S4.95. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size3 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 3.34E-01 | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size3* | 1        | unit |

Table S4.96. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size3 (1 unit)

| Exchanges                                                                       | Amount  | Unit     |
|---------------------------------------------------------------------------------|---------|----------|
| <b>Economic flows</b>                                                           |         |          |
| PEMFC*                                                                          | 150.8   | MW       |
| market for converter, for electric passenger car                                | 1427.85 | kilogram |
| market for inverter, 500kW                                                      | 70.5    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 200.43  | kilogram |
| motor drive*                                                                    | 22.45   | MW       |
| market for marine electric motor                                                | 58.81   | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 554.06  | unit     |
| electric boiler, 100kW*                                                         | 4.6     | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 50.82   | unit     |

Table S4.97. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size3 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size3* | 2.88E-11 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 1.20E-05 | kilogram      |
| market for maintenance, container ship                          | 2.32E-11 | unit          |
| ammonia production, liquid*                                     | 1.50E-02 | kilogram      |
| market group for electricity, low voltage                       | 3.28E-05 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |
| Nitrogen oxides                                                 | 1.44E-07 | kilogram      |

Table S4.98. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size3 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 3.34E-01 | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size3* | 1        | unit |

Table S4.99. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size3 (1 unit)

| Exchanges                                                                       | Amount  | Unit     |
|---------------------------------------------------------------------------------|---------|----------|
| <b>Economic flows</b>                                                           |         |          |
| SOFC*                                                                           | 150.8   | MW       |
| market for converter, for electric passenger car                                | 1569.15 | kilogram |
| market for inverter, 500kW                                                      | 70.5    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 601.28  | kilogram |
| motor drive*                                                                    | 22.45   | MW       |
| market for marine electric motor                                                | 58.81   | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 554.06  | unit     |
| electric boiler, 100kW*                                                         | 4.6     | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 28.59   | unit     |

Table S4.100. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size3 (1 t-nm)

| Exchanges                                                                                                    | Amount   | Unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE, size3*                                              | 2.75E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                   | 2.19E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                                                                       | 4.27E-05 | kilogram |
| market for maintenance, container ship                                                                       | 2.21E-11 | unit     |
| liquid hydrogen production*                                                                                  | 2.58E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                            | 3.81E-04 | kilogram |
| urea solution, 40 wt%*                                                                                       | 1.09E-03 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 1.79E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 7.01E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 1.52E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 1.12E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 6.33E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 7.33E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.04E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 1.11E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 3.73E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 1.27E-06 | kilogram |

Table S4.101. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE, size3 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 3.34E-01 | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE, size3* | 1        | unit |

Table S4.102. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size3 (1 unit)

| Exchanges                              | Amount | Unit |
|----------------------------------------|--------|------|
| <b>Economic flows</b>                  |        |      |
| marine engine, CI, ICE*                | 21.56  | MW   |
| market for generator, 200kW electrical | 33.6   | unit |

|                                                                                 |        |      |
|---------------------------------------------------------------------------------|--------|------|
| marine engine, CI, ICE*                                                         | 6.72   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 120.94 | unit |
| SCR*                                                                            | 21.56  | MW   |
| electric boiler, 100kW*                                                         | 4.6    | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 51.5   | unit |

Table S4.103. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size3 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size3*                                               | 2.85E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 2.35E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                          | 1.42E-05 | kilogram |
| market for maintenance, container ship                                                                         | 2.30E-11 | unit     |
| ammonia production, liquid*                                                                                    | 1.79E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 4.09E-04 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 1.92E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 7.53E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 1.29E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 1.40E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 5.98E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 1.64E-06 | kilogram |
| NM VOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.12E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 1.19E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 4.01E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 1.37E-06 | kilogram |

Table S4.104. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size3 (1 unit)

| Exchanges                                                | Amount   | Unit |
|----------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                    |          |      |
| hull production, container ship, for DWT 103800*         | 3.34E-01 | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size3* | 1        | unit |

Table S4.105. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size3 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 21.56  | MW   |
| market for generator, 200kW electrical                                          | 33.6   | unit |
| marine engine, CI, ICE*                                                         | 6.72   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 120.94 | unit |
| SCR*                                                                            | 28.28  | MW   |
| electric boiler, 100kW*                                                         | 4.6    | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 34.44  | unit |

Table S4.106. Life cycle inventory of transport, container ship, MeOH-DFICE, size3 (1 t-nm)

| Exchanges             | Amount | Unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| container ship production, MeOH-DFICE, size3*                                                                 | 2.80E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 2.21E-07 | kilogram |
| fuel tank, methanol*                                                                                          | 1.04E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.25E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                                                                | 1.55E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 3.85E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.23E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.80E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.82E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.34E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.37E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 6.39E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.04E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 9.33E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 4.69E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.77E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 8.41E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 5.39E-06 | kilogram |

Table S4.107. Life cycle inventory of container ship production, MeOH-DFICE, size3 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 3.34E-01 | unit |
| propulsion system, MeOH-DFICE, size3*            | 1        | unit |

Table S4.108. Life cycle inventory of propulsion system, MeOH-DFICE, size3 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 21.56    | MW   |
| market for generator, 200kW electrical                                          | 33.6     | unit |
| marine engine, CI, ICE*                                                         | 6.72     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 120.9375 | unit |
| SCR*                                                                            | 28.28    | MW   |
| electric boiler, 100kW*                                                         | 4.6      | unit |

Table S4.109. Life cycle inventory of transport, container ship, LNG-DFICE, size3 (1 t-nm)

| Exchanges                                                   | Amount   | Unit     |
|-------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                       |          |          |
| container ship production, LNG-DFICE, size3*                | 2.66E-11 | unit     |
| fuel tank, heavy fuel oil*                                  | 4.04E-08 | kilogram |
| fuel tank, LNG*                                             | 1.28E-05 | kilogram |
| market for maintenance, container ship                      | 2.14E-11 | unit     |
| natural gas, liquid*                                        | 6.07E-03 | kilogram |
| marine gas oil, very low-sulphur*                           | 7.04E-05 | kilogram |
| urea solution, 40 wt%*                                      | 1.06E-03 | kilogram |
| <b>Environmental flows</b>                                  |          |          |
| Methane, fossil (to air, non-urban air or from high stacks) | 1.82E-04 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.80E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.66E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.08E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.77E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 7.05E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.86E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.28E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 6.89E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.47E-06 | kilogram |

Table S4.110. Life cycle inventory of container ship production, LNG-DFICE, size3 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 3.34E-01 | unit |
| propulsion system, LNG-DFICE, size3*             | 1        | unit |

Table S4.111. Life cycle inventory of propulsion system, LNG-DFICE, size3 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 21.56    | MW   |
| market for generator, 200kW electrical                                          | 33.6     | unit |
| marine engine, CI, ICE*                                                         | 6.72     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 120.9375 | unit |
| SCR*                                                                            | 21.56    | MW   |
| market for gas boiler                                                           | 46       | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 40.98    | unit |

Table S4.112. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size3 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LNG-DFICE, size3*                                                                  | 2.66E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 4.04E-08 | kilogram |
| fuel tank, LNG*                                                                                               | 1.28E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.14E-11 | unit     |
| natural gas, liquid, woody biomass*                                                                           | 6.07E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 7.04E-05 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.06E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.82E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.80E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.66E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.08E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.77E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 7.05E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.86E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.28E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 6.89E-07 | kilogram |

|                                                                    |          |          |
|--------------------------------------------------------------------|----------|----------|
| Formaldehyde (to air, non-urban air or from high stacks)           | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks) | 1.47E-06 | kilogram |

Table S4.113. Life cycle inventory of transport, container ship, LOHC-SOFC, size3 (1 t-nm)

| Exchanges                                                                     | Amount   | Unit          |
|-------------------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                         |          |               |
| container ship production, LOHC-SOFC, size3*                                  | 3.55E-11 | unit          |
| fuel tank, heavy fuel oil*                                                    | 2.41E-05 | kilogram      |
| market for maintenance, container ship                                        | 2.86E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 2.86E-03 | kilogram      |
| market group for electricity, low voltage                                     | 4.03E-05 | kilowatt hour |

Table S4.114. Life cycle inventory of container ship production, LOHC-SOFC, size3 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 3.34E-01 | unit |
| propulsion system, LOHC-SOFC, size3*             | 1        | unit |

Table S4.115. Life cycle inventory of propulsion system, LOHC-SOFC, size3 (1 unit)

| Exchanges                                                                       | Amount   | Unit              |
|---------------------------------------------------------------------------------|----------|-------------------|
| <b>Economic flows</b>                                                           |          |                   |
| SOFC*                                                                           | 150.8    | MW                |
| market for converter, for electric passenger car                                | 1569.15  | kilogram          |
| market for inverter, 500kW                                                      | 70.5     | unit              |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 601.277  | kilogram          |
| motor drive*                                                                    | 22.45    | MW                |
| market for marine electric motor                                                | 58.806   | unit              |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 554.0625 | unit              |
| LOHC reactor*                                                                   | 20.37    | MW H <sub>2</sub> |
| electric boiler, 100kW*                                                         | 4.6      | unit              |

Table S4.116. Life cycle inventory of transport, container ship, LOHC-DFICE, size3 (1 t-nm)

| Exchanges                                                                       | Amount   | Unit     |
|---------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                           |          |          |
| container ship production, LOHC-DFICE, size3*                                   | 3.59E-11 | unit     |
| fuel tank, heavy fuel oil*                                                      | 2.84E-07 | kilogram |
| fuel tank, heavy fuel oil*                                                      | 2.81E-05 | kilogram |
| market for maintenance, container ship                                          | 2.90E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen*   | 3.34E-03 | kilogram |
| marine gas oil, very low-sulphur*                                               | 4.95E-04 | kilogram |
| urea solution, 40 wt%*                                                          | 1.43E-03 | kilogram |
| <b>Environmental flows</b>                                                      |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                     | 2.32E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)             | 9.09E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)              | 1.98E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                     | 1.46E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                 | 8.21E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                             | 9.59E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non- | 1.35E-06 | kilogram |

|                                                                                |          |          |
|--------------------------------------------------------------------------------|----------|----------|
| urban air or from high stacks)                                                 |          |          |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks) | 1.43E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                     | 4.84E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                       | 0.00E+00 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)             | 1.65E-06 | kilogram |

Table S4.117. Life cycle inventory of container ship production, LOHC-DFICE, size3 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 3.34E-01 | unit |
| propulsion system, LOHC-DFICE, size3*            | 1        | unit |

Table S4.118. Life cycle inventory of propulsion system, LOHC-DFICE, size3 (1 unit)

| Exchanges                                                                       | Amount   | Unit              |
|---------------------------------------------------------------------------------|----------|-------------------|
| <b>Economic flows</b>                                                           |          |                   |
| marine engine, CI, ICE*                                                         | 21.56    | MW                |
| market for generator, 200kW electrical                                          | 33.6     | unit              |
| marine engine, CI, ICE*                                                         | 6.72     | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 120.9375 | unit              |
| LOHC reactor*                                                                   | 24.73    | MW H <sub>2</sub> |
| SCR*                                                                            | 21.56    | MW                |
| electric boiler, 100kW*                                                         | 4.6      | unit              |

Table S4.119. Life cycle inventory of transport, container ship, HFO-ICE, size4 (1 t-nm)

| Exchanges                                                                                                    | Amount   | Unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, HFO-ICE, size4*                                                                   | 1.51E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                   | 1.54E-05 | kilogram |
| market for maintenance, container ship                                                                       | 1.81E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                            | 6.97E-03 | kilogram |
| urea solution, 40 wt%*                                                                                       | 1.27E-03 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 3.35E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 3.63E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 2.27E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 1.23E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 1.12E-06 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 1.01E-06 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.65E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 1.97E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 6.98E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 2.26E-05 | kilogram |

Table S4.120. Life cycle inventory of container ship production, HFO-ICE, size4 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 4.97E-01 | unit |

|                                    |   |      |
|------------------------------------|---|------|
| propulsion system, HFO-ICE, size4* | 1 | unit |
|------------------------------------|---|------|

Table S4.121. Life cycle inventory of propulsion system, HFO-ICE, size4 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 31.64    | MW   |
| market for generator, 200kW electrical                                          | 42       | unit |
| marine engine, CI, ICE*                                                         | 8.4      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 151.3125 | unit |
| SCR*                                                                            | 40.04    | MW   |
| market for oil boiler, 100kW                                                    | 4.8      | unit |

Table S4.122. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size4 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC, size4* | 1.50E-11 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 4.20E-05 | kilogram      |
| market for maintenance, container ship                          | 1.80E-11 | unit          |
| liquid hydrogen production*                                     | 2.28E-03 | kilogram      |
| market group for electricity, low voltage                       | 7.21E-06 | kilowatt hour |

Table S4.123. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size4 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 4.97E-01 | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size4* | 1        | unit |

Table S4.124. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size4 (1 unit)

| Exchanges                                                                       | Amount  | Unit     |
|---------------------------------------------------------------------------------|---------|----------|
| <b>Economic flows</b>                                                           |         |          |
| PEMFC*                                                                          | 212.95  | MW       |
| market for converter, for electric passenger car                                | 2016.45 | kilogram |
| market for inverter, 500kW                                                      | 87.1    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 283.40  | kilogram |
| motor drive*                                                                    | 32.95   | MW       |
| market for marine electric motor                                                | 86.292  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 782.625 | unit     |
| electric boiler, 100kW*                                                         | 4.8     | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 92.68   | unit     |

Table S4.125. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size4 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size4* | 1.60E-11 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 1.11E-05 | kilogram      |
| market for maintenance, container ship                          | 1.92E-11 | unit          |
| ammonia production, liquid*                                     | 1.25E-02 | kilogram      |
| market group for electricity, low voltage                       | 2.31E-05 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |

|                                                                                                                    |          |          |
|--------------------------------------------------------------------------------------------------------------------|----------|----------|
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                        | 1.21E-07 | kilogram |
| <i>Table S4.126. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size4 (1 unit)</i> |          |          |
| Exchanges                                                                                                          | Amount   | Unit     |
| <b>Economic flows</b>                                                                                              |          |          |
| hull production, container ship, for DWT 103800*                                                                   | 4.97E-01 | unit     |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size4*                                                            | 1        | unit     |
| <i>Table S4.127. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size4 (1 unit)</i>         |          |          |
| Exchanges                                                                                                          | Amount   | Unit     |
| <b>Economic flows</b>                                                                                              |          |          |
| SOFC*                                                                                                              | 212.95   | MW       |
| market for converter, for electric passenger car                                                                   | 2215.8   | kilogram |
| market for inverter, 500kW                                                                                         | 87.1     | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                                                        | 848.94   | kilogram |
| motor drive*                                                                                                       | 32.95    | MW       |
| market for marine electric motor                                                                                   | 86.292   | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical                                    | 782.625  | unit     |
| electric boiler, 100kW*                                                                                            | 4.8      | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                                                             | 47.88    | unit     |
| <i>Table S4.128. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size4 (1 t-nm)</i> |          |          |
| Exchanges                                                                                                          | Amount   | Unit     |
| <b>Economic flows</b>                                                                                              |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE, size4*                                                    | 1.55E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                         | 2.26E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                                                                             | 4.42E-05 | kilogram |
| market for maintenance, container ship                                                                             | 1.85E-11 | unit     |
| liquid hydrogen production*                                                                                        | 2.40E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                                  | 3.55E-04 | kilogram |
| urea solution, 40 wt%*                                                                                             | 1.08E-03 | kilogram |
| <b>Environmental flows</b>                                                                                         |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                        | 1.66E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                                | 6.51E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                                 | 1.43E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                        | 1.09E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                    | 5.89E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                                | 7.23E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks)       | 9.66E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                     | 1.03E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                         | 3.47E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                           | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                                 | 1.18E-06 | kilogram |
| <i>Table S4.129. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE, size4 (1 unit)</i> |          |          |
| Exchanges                                                                                                          | Amount   | Unit     |
| <b>Economic flows</b>                                                                                              |          |          |
| hull production, container ship, for DWT 103800*                                                                   | 4.97E-01 | unit     |

|                                                         |   |      |
|---------------------------------------------------------|---|------|
| propulsion system, liquid H <sub>2</sub> -DFICE, size4* | 1 | unit |
|---------------------------------------------------------|---|------|

Table S4.130. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size4 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 31.64    | MW   |
| market for generator, 200kW electrical                                          | 42       | unit |
| marine engine, CI, ICE*                                                         | 8.4      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 151.3125 | unit |
| SCR*                                                                            | 31.64    | MW   |
| electric boiler, 100kW*                                                         | 4.8      | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 94.55    | unit |

Table S4.131. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size4 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size4*                                               | 1.61E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 2.45E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                          | 1.48E-05 | kilogram |
| market for maintenance, container ship                                                                         | 1.94E-11 | unit     |
| ammonia production, liquid*                                                                                    | 1.67E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 3.83E-04 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 1.79E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 7.03E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 1.20E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 1.32E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 5.59E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 1.53E-06 | kilogram |
| NM VOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.04E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 1.11E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 3.75E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 1.28E-06 | kilogram |

Table S4.132. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size4 (1 unit)

| Exchanges                                                | Amount   | Unit |
|----------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                    |          |      |
| hull production, container ship, for DWT 103800*         | 4.97E-01 | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size4* | 1        | unit |

Table S4.133. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size4 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 31.64    | MW   |
| market for generator, 200kW electrical                                          | 42       | unit |
| marine engine, CI, ICE*                                                         | 8.4      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 151.3125 | unit |

|                                        |       |      |
|----------------------------------------|-------|------|
| SCR*                                   | 40.04 | MW   |
| electric boiler, 100kW*                | 4.8   | unit |
| Reliquefaction plant, 1 kg/h capacity* | 63.21 | unit |

Table S4.134. Life cycle inventory of transport, container ship, MeOH-DFICE, size4 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, MeOH-DFICE, size4*                                                                 | 1.58E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 2.29E-07 | kilogram |
| fuel tank, methanol*                                                                                          | 1.08E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.89E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                                                                | 1.45E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 3.58E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.19E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.68E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.69E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.18E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.29E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.94E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 9.73E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 8.69E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 4.36E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.50E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 7.83E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 5.02E-06 | kilogram |

Table S4.135. Life cycle inventory of container ship production, MeOH-DFICE, size4 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 4.97E-01 | unit |
| propulsion system, MeOH-DFICE, size4*            | 1        | unit |

Table S4.136. Life cycle inventory of propulsion system, MeOH-DFICE, size4 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 31.64    | MW   |
| market for generator, 200kW electrical                                          | 42       | unit |
| marine engine, CI, ICE*                                                         | 8.4      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 151.3125 | unit |
| SCR*                                                                            | 40.04    | MW   |
| electric boiler, 100kW*                                                         | 4.8      | unit |

Table S4.137. Life cycle inventory of transport, container ship, LNG-DFICE, size4 (1 t-nm)

| Exchanges                                   | Amount   | Unit     |
|---------------------------------------------|----------|----------|
| <b>Economic flows</b>                       |          |          |
| container ship production, LNG-DFICE, size4 | 1.49E-11 | unit     |
| fuel tank, heavy fuel oil                   | 4.15E-08 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| fuel tank, LNG                                                                                                | 1.31E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.78E-11 | unit     |
| natural gas, liquid                                                                                           | 5.60E-03 | kilogram |
| marine gas oil, very low-sulphur                                                                              | 6.49E-05 | kilogram |
| urea solution, 40 wt%                                                                                         | 1.04E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.68E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.43E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.53E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.04E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.32E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.91E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.72E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.18E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 6.35E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.35E-06 | kilogram |

Table S4.138. Life cycle inventory of container ship production, LNG-DFICE, size4 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 4.97E-01 | unit |
| propulsion system, LNG-DFICE, size4*             | 1        | unit |

Table S4.139. Life cycle inventory of propulsion system, LNG-DFICE, size4 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 31.64    | MW   |
| market for generator, 200kW electrical                                          | 42       | unit |
| marine engine, CI, ICE*                                                         | 8.4      | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 151.3125 | unit |
| SCR*                                                                            | 31.64    | MW   |
| market for gas boiler                                                           | 48       | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 75.24    | unit |

Table S4.140. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size4 (1 t-nm)

| Exchanges                                                           | Amount   | Unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, LNG-DFICE, size4*                        | 1.49E-11 | unit     |
| fuel tank, heavy fuel oil*                                          | 4.15E-08 | kilogram |
| fuel tank, LNG*                                                     | 1.31E-05 | kilogram |
| market for maintenance, container ship                              | 1.78E-11 | unit     |
| natural gas, liquid, woody biomass*                                 | 5.60E-03 | kilogram |
| marine gas oil, very low-sulphur*                                   | 6.49E-05 | kilogram |
| urea solution, 40 wt%*                                              | 1.04E-03 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 1.68E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 4.43E-05 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.53E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.04E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.32E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.91E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.72E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.18E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 6.35E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.35E-06 | kilogram |

Table S4.141. Life cycle inventory of transport, container ship, LOHC-SOFC, size4 (1 t-nm)

| Exchanges                                                                     | Amount   | Unit          |
|-------------------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                         |          |               |
| container ship production, LOHC-SOFC, size4*                                  | 2.00E-11 | unit          |
| fuel tank, heavy fuel oil*                                                    | 2.27E-05 | kilogram      |
| market for maintenance, container ship                                        | 2.40E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 2.43E-03 | kilogram      |
| market group for electricity, low voltage                                     | 2.88E-05 | kilowatt hour |

Table S4.142. Life cycle inventory of container ship production, LOHC-SOFC, size4 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 4.97E-01 | unit |
| propulsion system, LOHC-SOFC, size4*             | 1        | unit |

Table S4.143. Life cycle inventory of propulsion system, LOHC-SOFC, size4 (1 unit)

| Exchanges                                                                       | Amount  | Unit     |
|---------------------------------------------------------------------------------|---------|----------|
| <b>Economic flows</b>                                                           |         |          |
| SOFC*                                                                           | 212.95  | MW       |
| market for converter, for electric passenger car                                | 2215.8  | kilogram |
| market for inverter, 500kW                                                      | 87.1    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 848.936 | kilogram |
| motor drive*                                                                    | 32.95   | MW       |
| market for marine electric motor                                                | 86.292  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 782.625 | unit     |
| LOHC reactor*                                                                   | 27.39   | MW H2    |
| electric boiler, 100kW*                                                         | 4.8     | unit     |

Table S4.144. Life cycle inventory of transport, container ship, LOHC-DFICE, size4 (1 t-nm)

| Exchanges                                                                     | Amount   | Unit     |
|-------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                         |          |          |
| container ship production, LOHC-DFICE, size4*                                 | 2.14E-11 | unit     |
| fuel tank, heavy fuel oil*                                                    | 3.11E-07 | kilogram |
| fuel tank, heavy fuel oil*                                                    | 3.08E-05 | kilogram |
| market for maintenance, container ship                                        | 2.57E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 3.29E-03 | kilogram |
| marine gas oil, very low-sulphur*                                             | 4.86E-04 | kilogram |
| urea solution, 40 wt%*                                                        | 1.50E-03 | kilogram |

| <b>Environmental flows</b>                                                                                    |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.28E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 8.94E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.97E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.50E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 8.08E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.00E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.33E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.41E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.76E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0.00E+00 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.62E-06 | kilogram |

Table S4.145. Life cycle inventory of container ship production, LOHC-DFICE, size4 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 4.97E-01 | unit |
| propulsion system, LOHC-DFICE, size4*            | 1        | unit |

Table S4.146. Life cycle inventory of propulsion system, LOHC-DFICE, size4 (1 unit)

| Exchanges                                                                       | Amount   | Unit              |
|---------------------------------------------------------------------------------|----------|-------------------|
| <b>Economic flows</b>                                                           |          |                   |
| marine engine, CI, ICE*                                                         | 31.64    | MW                |
| market for generator, 200kW electrical                                          | 42       | unit              |
| marine engine, CI, ICE*                                                         | 8.4      | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 151.3125 | unit              |
| LOHC reactor*                                                                   | 36.46    | MW H <sub>2</sub> |
| SCR*                                                                            | 31.64    | MW                |
| electric boiler, 100kW*                                                         | 4.8      | unit              |

Table S4.147. Life cycle inventory of transport, container ship, HFO-ICE, size5 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE, size5*                                                                    | 8.42E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 1.17E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.54E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 6.32E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.17E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 3.04E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.29E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 2.06E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.13E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 1.01E-06 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 9.15E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.49E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.78E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 6.33E-05 | kilogram |

|                                                                    |          |          |
|--------------------------------------------------------------------|----------|----------|
| Formaldehyde (to air, non-urban air or from high stacks)           | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks) | 2.05E-05 | kilogram |

Table S4.148. Life cycle inventory of container ship production, HFO-ICE, size5 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 7.58E-01 | unit |
| propulsion system, HFO-ICE, size5*               | 1        | unit |

Table S4.149. Life cycle inventory of propulsion system, HFO-ICE, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 54.9     | MW   |
| market for generator, 200kW electrical                                          | 58       | unit |
| marine engine, CI, ICE*                                                         | 11.6     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 208.6875 | unit |
| SCR*                                                                            | 66.5     | MW   |
| market for oil boiler, 100kW                                                    | 5.9      | unit |

Table S4.150. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size5 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC, size5* | 8.41E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 3.80E-05 | kilogram      |
| market for maintenance, container ship                          | 1.54E-11 | unit          |
| liquid hydrogen production*                                     | 2.07E-03 | kilogram      |
| market group for electricity, low voltage                       | 6.75E-06 | kilowatt hour |

Table S4.151. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size5 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 7.58E-01 | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size5* | 1        | unit |

Table S4.152. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit     |
|---------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                           |          |          |
| PEMFC*                                                                          | 353.35   | MW       |
| market for converter, for electric passenger car                                | 3346.2   | kilogram |
| market for inverter, 500kW                                                      | 119.4    | unit     |
| motor drive*                                                                    | 57.17    | MW       |
| market for marine electric motor                                                | 149.742  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1298.625 | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 471.06   | kilogram |
| electric boiler, 100kW*                                                         | 5.9      | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 149.31   | unit     |

Table S4.153. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size5 (1 t-nm)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|           |        |      |

|                                                                 |          |               |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size5* | 9.16E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 1.13E-05 | kilogram      |
| market for maintenance, container ship                          | 1.68E-11 | unit          |
| ammonia production, liquid*                                     | 1.28E-02 | kilogram      |
| market group for electricity, low voltage                       | 2.20E-05 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks)     | 1.23E-07 | kilogram      |

Table S4.154. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size5 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 7.58E-01 | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size5* | 1        | unit |

Table S4.155. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit     |
|---------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                           |          |          |
| SOFC*                                                                           | 353.35   | MW       |
| market for converter, for electric passenger car                                | 3676.95  | kilogram |
| market for inverter, 500kW                                                      | 119.4    | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 1409.36  | kilogram |
| motor drive*                                                                    | 57.17    | MW       |
| market for marine electric motor                                                | 149.742  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1298.625 | unit     |
| electric boiler, 100kW*                                                         | 5.9      | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 84.9     | unit     |

Table S4.156. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size5 (1 t-nm)

| Exchanges                                                                                                                  | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                                      |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE, size5*                                                            | 8.70E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                                 | 2.06E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                                                                                     | 4.02E-05 | kilogram |
| market for maintenance, container ship                                                                                     | 1.59E-11 | unit     |
| liquid hydrogen production*                                                                                                | 2.19E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                                          | 3.24E-04 | kilogram |
| urea solution, 40 wt%*                                                                                                     | 1.02E-03 | kilogram |
| <b>Environmental flows</b>                                                                                                 |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                                | 1.52E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                                        | 5.95E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                                         | 1.32E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                                | 1.02E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                            | 5.38E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                                        | 6.84E-07 | kilogram |
| NMVO <sub>C</sub> , non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 8.83E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                             | 9.39E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                                 | 3.17E-06 | kilogram |

|                                                                    |          |          |
|--------------------------------------------------------------------|----------|----------|
| Formaldehyde (to air, non-urban air or from high stacks)           | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks) | 1.08E-06 | kilogram |

Table S4.157. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE, size5 (1 unit)

| Exchanges                                               | Amount   | Unit |
|---------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                   |          |      |
| hull production, container ship, for DWT 103800*        | 7.58E-01 | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE, size5* | 1        | unit |

Table S4.158. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 54.9     | MW   |
| market for generator, 200kW electrical                                          | 58       | unit |
| marine engine, CI, ICE*                                                         | 11.6     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 208.6875 | unit |
| SCR*                                                                            | 54.9     | MW   |
| electric boiler, 100kW*                                                         | 5.9      | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 152.77   | unit |

Table S4.159. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size5 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size5*                                               | 9.11E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 2.23E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                          | 1.35E-05 | kilogram |
| market for maintenance, container ship                                                                         | 1.67E-11 | unit     |
| ammonia production, liquid*                                                                                    | 1.53E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 3.50E-04 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 1.64E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 6.44E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 1.10E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 1.22E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 5.12E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 1.40E-06 | kilogram |
| NM VOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 9.54E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 1.02E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 3.43E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 1.17E-06 | kilogram |

Table S4.160. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size5 (1 unit)

| Exchanges                                                | Amount   | Unit |
|----------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                    |          |      |
| hull production, container ship, for DWT 103800*         | 7.58E-01 | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size5* | 1        | unit |

Table S4.161. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 54.9     | MW   |
| market for generator, 200kW electrical                                          | 58       | unit |
| marine engine, CI, ICE*                                                         | 11.6     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 208.6875 | unit |
| SCR*                                                                            | 66.5     | MW   |
| electric boiler, 100kW*                                                         | 5.9      | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 102.13   | unit |

Table S4.162. Life cycle inventory of transport, container ship, MeOH-DFICE, size5 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, MeOH-DFICE, size5                                                                  | 8.89E-12 | unit     |
| fuel tank, heavy fuel oil                                                                                     | 2.08E-07 | kilogram |
| fuel tank, methanol                                                                                           | 9.79E-06 | kilogram |
| market for maintenance, container ship                                                                        | 1.63E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC                                                                 | 1.32E-02 | kilogram |
| marine gas oil, very low-sulphur                                                                              | 3.27E-04 | kilogram |
| urea solution, 40 wt%                                                                                         | 1.12E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.53E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.55E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.99E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.19E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.43E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.90E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.94E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 3.99E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.20E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 7.16E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 4.59E-06 | kilogram |

Table S4.163. Life cycle inventory of container ship production, MeOH-DFICE, size5 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 7.58E-01 | unit |
| propulsion system, MeOH-DFICE, size5*            | 1        | unit |

Table S4.164. Life cycle inventory of propulsion system, MeOH-DFICE, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 54.9     | MW   |
| market for generator, 200kW electrical                                          | 58       | unit |
| marine engine, CI, ICE*                                                         | 11.6     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 208.6875 | unit |
| SCR*                                                                            | 66.5     | MW   |
| electric boiler, 100kW*                                                         | 5.9      | unit |

Table S4.165. Life cycle inventory of transport, container ship, LNG-DFICE, size5 (1 t-nm)

| Exchanges                                                                                                    | Amount   | Unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, LNG-DFICE, size5*                                                                 | 8.34E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                   | 3.76E-08 | kilogram |
| fuel tank, LNG*                                                                                              | 1.19E-05 | kilogram |
| market for maintenance, container ship                                                                       | 1.53E-11 | unit     |
| natural gas, liquid*                                                                                         | 5.10E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                            | 5.91E-05 | kilogram |
| urea solution, 40 wt%*                                                                                       | 9.78E-04 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 1.53E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 4.04E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 1.40E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 9.76E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 4.85E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 6.52E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.57E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 1.07E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 5.79E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 1.23E-06 | kilogram |

Table S4.166. Life cycle inventory of container ship production, LNG-DFICE, size5 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 7.58E-01 | unit |
| propulsion system, LNG-DFICE, size5*             | 1        | unit |

Table S4.167. Life cycle inventory of propulsion system, LNG-DFICE, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit |
|---------------------------------------------------------------------------------|----------|------|
| <b>Economic flows</b>                                                           |          |      |
| marine engine, CI, ICE*                                                         | 54.9     | MW   |
| market for generator, 200kW electrical                                          | 58       | unit |
| marine engine, CI, ICE*                                                         | 11.6     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 208.6875 | unit |
| SCR*                                                                            | 54.9     | MW   |
| market for gas boiler                                                           | 59       | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 121.57   | unit |

Table S4.168. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size5 (1 t-nm)

| Exchanges                                    | Amount   | Unit     |
|----------------------------------------------|----------|----------|
| <b>Economic flows</b>                        |          |          |
| container ship production, LNG-DFICE, size5* | 8.34E-12 | unit     |
| fuel tank, heavy fuel oil*                   | 3.76E-08 | kilogram |
| fuel tank, LNG*                              | 1.19E-05 | kilogram |
| market for maintenance, container ship       | 1.53E-11 | unit     |
| natural gas, liquid, woody biomass*          | 5.10E-03 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| marine gas oil, very low-sulphur*                                                                             | 5.91E-05 | kilogram |
| urea solution, 40 wt%*                                                                                        | 9.78E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.53E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.04E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.40E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 9.76E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.85E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.52E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.57E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.07E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 5.79E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.23E-06 | kilogram |

Table S4.169. Life cycle inventory of transport, container ship, LOHC-SOFC, size5 (1 t-nm)

| Exchanges                                                                     | Amount   | Unit          |
|-------------------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                         |          |               |
| container ship production, LOHC-SOFC, size5*                                  | 1.19E-11 | unit          |
| fuel tank, heavy fuel oil*                                                    | 2.41E-05 | kilogram      |
| market for maintenance, container ship                                        | 2.18E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 2.58E-03 | kilogram      |
| market group for electricity, low voltage                                     | 2.87E-05 | kilowatt hour |

Table S4.170. Life cycle inventory of container ship production, LOHC-SOFC, size5 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 7.58E-01 | unit |
| propulsion system, LOHC-SOFC, size5*             | 1        | unit |

Table S4.171. Life cycle inventory of propulsion system, LOHC-SOFC, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit              |
|---------------------------------------------------------------------------------|----------|-------------------|
| <b>Economic flows</b>                                                           |          |                   |
| SOFC*                                                                           | 353.35   | MW                |
| market for converter, for electric passenger car                                | 3676.95  | kilogram          |
| market for inverter, 500kW                                                      | 119.4    | unit              |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 1409.362 | kilogram          |
| motor drive*                                                                    | 57.17    | MW                |
| market for marine electric motor                                                | 149.742  | unit              |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1298.625 | unit              |
| LOHC reactor*                                                                   | 46.5     | MW H <sub>2</sub> |
| electric boiler, 100kW*                                                         | 5.9      | unit              |

Table S4.172. Life cycle inventory of transport, container ship, LOHC-DFICE, size5 (1 t-nm)

| Exchanges                                     | Amount   | Unit     |
|-----------------------------------------------|----------|----------|
| <b>Economic flows</b>                         |          |          |
| container ship production, LOHC-DFICE, size5* | 1.23E-11 | unit     |
| fuel tank, heavy fuel oil*                    | 2.89E-07 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| fuel tank, heavy fuel oil*                                                                                    | 2.86E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.25E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen*                                 | 3.06E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 4.53E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.44E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 2.12E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 8.32E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.85E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.44E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.52E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 9.67E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.23E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.31E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.44E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0.00E+00 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.51E-06 | kilogram |

Table S4.173. Life cycle inventory of container ship production, LOHC-DFICE, size5 (1 unit)

| Exchanges                                        | Amount   | Unit |
|--------------------------------------------------|----------|------|
| <b>Economic flows</b>                            |          |      |
| hull production, container ship, for DWT 103800* | 7.58E-01 | unit |
| propulsion system, LOHC-DFICE, size5*            | 1        | unit |

Table S4.174. Life cycle inventory of propulsion system, LOHC-DFICE, size5 (1 unit)

| Exchanges                                                                       | Amount   | Unit              |
|---------------------------------------------------------------------------------|----------|-------------------|
| <b>Economic flows</b>                                                           |          |                   |
| marine engine, CI, ICE*                                                         | 54.9     | MW                |
| market for generator, 200kW electrical                                          | 58       | unit              |
| marine engine, CI, ICE*                                                         | 11.6     | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 208.6875 | unit              |
| LOHC reactor*                                                                   | 56.41    | MW H <sub>2</sub> |
| SCR*                                                                            | 54.9     | MW                |
| electric boiler, 100kW*                                                         | 5.9      | unit              |

Table S4.175. Life cycle inventory of transport, container ship, HFO-ICE, size6 (1 t-nm)

| Exchanges                                                           | Amount   | Unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, HFO-ICE, size6*                          | 5.93E-12 | unit     |
| fuel tank, heavy fuel oil*                                          | 9.25E-06 | kilogram |
| market for maintenance, container ship                              | 1.59E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                   | 4.75E-03 | kilogram |
| urea solution, 40 wt%*                                              | 8.64E-04 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 2.29E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 2.48E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)  | 1.55E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)         | 8.38E-05 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 7.62E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.87E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.12E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.34E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 4.76E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.54E-05 | kilogram |

Table S4.176. Life cycle inventory of container ship production, HFO-ICE, size6 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.11   | unit |
| propulsion system, HFO-ICE, size6*               | 1      | unit |

Table S4.177. Life cycle inventory of propulsion system, HFO-ICE, size6 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 58.1    | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 72.7    | MW   |
| market for oil boiler, 100kW                                                    | 6.2     | unit |

Table S4.178. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size6 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC, size6* | 6.11E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 5.30E-05 | kilogram      |
| market for maintenance, container ship                          | 1.64E-11 | unit          |
| liquid hydrogen production*                                     | 1.61E-03 | kilogram      |
| market group for electricity, low voltage                       | 2.98E-06 | kilowatt hour |

Table S4.179. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size6 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.11   | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size6* | 1      | unit |

Table S4.180. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size6 (1 unit)

| Exchanges                                                   | Amount | Unit     |
|-------------------------------------------------------------|--------|----------|
| <b>Economic flows</b>                                       |        |          |
| PEMFC*                                                      | 385.6  | MW       |
| market for converter, for electric passenger car            | 3651.3 | kilogram |
| market for inverter, 500kW                                  | 149.1  | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic | 513.19 | kilogram |
| motor drive*                                                | 60.51  | MW       |
| market for marine electric motor                            | 158.46 | unit     |

|                                                                                                         |         |      |
|---------------------------------------------------------------------------------------------------------|---------|------|
| market for control cabinet, heat and power co-generation unit, 160kW electrical electric boiler, 100kW* | 1416.94 | unit |
|                                                                                                         | 6.2     | unit |
| Reliquefaction plant, 1 kg/h capacity*                                                                  | 284.6   | unit |

Table S4.181. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size6 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size6* | 6.61E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 1.57E-05 | kilogram      |
| market for maintenance, container ship                          | 1.77E-11 | unit          |
| ammonia production, liquid*                                     | 9.89E-03 | kilogram      |
| market group for electricity, low voltage                       | 9.65E-06 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |
| Nitrogen oxides                                                 | 9.52E-08 | kilogram      |

Table S4.182. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size6 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.11   | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size6* | 1      | unit |

Table S4.183. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size6 (1 unit)

| Exchanges                                                                                               | Amount  | Unit     |
|---------------------------------------------------------------------------------------------------------|---------|----------|
| <b>Economic flows</b>                                                                                   |         |          |
| SOFC*                                                                                                   | 385.6   | MW       |
| market for converter, for electric passenger car                                                        | 4012.65 | kilogram |
| market for inverter, 500kW                                                                              | 149.1   | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                                             | 1538.30 | kilogram |
| motor drive*                                                                                            | 60.51   | MW       |
| market for marine electric motor                                                                        | 158.46  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical electric boiler, 100kW* | 1416.94 | unit     |
| urea solution, 40 wt%                                                                                   | 6.2     | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                                                  | 163.46  | unit     |

Table S4.184. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size6 (1 t-nm)

| Exchanges                                                           | Amount   | Unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE, size6      | 6.30E-12 | unit     |
| fuel tank, heavy fuel oil                                           | 2.88E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen                               | 5.62E-05 | kilogram |
| market for maintenance, container ship                              | 1.69E-11 | unit     |
| liquid hydrogen production                                          | 1.71E-03 | kilogram |
| marine gas oil, very low-sulphur                                    | 2.53E-04 | kilogram |
| urea solution, 40 wt%                                               | 7.45E-04 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 1.18E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 4.65E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)  | 1.02E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)         | 7.58E-05 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.20E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 5.00E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.89E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 7.33E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.48E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 8.43E-07 | kilogram |

Table S4.185. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE, size6 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.11   | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE, size6* | 1      | unit |

Table S4.186. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size6 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 58.1    | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 58.1    | MW   |
| electric boiler, 100kW*                                                         | 6.2     | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 292.48  | unit |

Table S4.187. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size6 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size6*                                              | 6.70E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 3.14E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                                                                         | 1.90E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.79E-11 | unit     |
| ammonia production, liquid*                                                                                   | 1.20E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.75E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.29E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 5.06E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 8.66E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 9.47E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.02E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 1.10E-06 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.49E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 7.98E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.69E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 9.17E-07 | kilogram |

Table S4.188. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size6 (1 unit)

| Exchanges                                                | Amount | Unit |
|----------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                    |        |      |
| hull production, container ship, for DWT 103800*         | 1.11   | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size6* | 1      | unit |

Table S4.189. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size6 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 58.1    | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 72.7    | MW   |
| electric boiler, 100kW*                                                         | 6.2     | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 195.54  | unit |

Table S4.190. Life cycle inventory of transport, container ship, MeOH-DFICE, size6 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, MeOH-DFICE, size6*                                                                 | 6.48E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 2.91E-07 | kilogram |
| fuel tank, methanol*                                                                                          | 1.37E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.73E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                                                                | 1.03E-02 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.55E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 8.35E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.19E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.20E-04 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.55E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 9.16E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.23E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.92E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.18E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 3.11E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.49E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 5.57E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 3.57E-06 | kilogram |

Table S4.191. Life cycle inventory of container ship production, MeOH-DFICE, size6 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.11   | unit |
| propulsion system, MeOH-DFICE, size6*            | 1      | unit |

Table S4.192. Life cycle inventory of propulsion system, MeOH-DFICE, size6 (1 unit)

| Exchanges             | Amount | Unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                                                                                 |         |      |
|---------------------------------------------------------------------------------|---------|------|
| marine engine, CI, ICE*                                                         | 58.1    | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 72.7    | MW   |
| electric boiler, 100kW*                                                         | 6.2     | unit |

Table S4.193. Life cycle inventory of transport, container ship, LNG-DFICE, size6 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, LNG-DFICE, size6*                                                                   | 5.95E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 5.16E-08 | kilogram |
| fuel tank, LNG*                                                                                                | 1.63E-05 | kilogram |
| market for maintenance, container ship                                                                         | 1.59E-11 | unit     |
| natural gas, liquid*                                                                                           | 3.90E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 4.52E-05 | kilogram |
| urea solution, 40 wt%*                                                                                         | 7.04E-04 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 1.17E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 3.08E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 1.07E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 7.13E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 3.71E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 4.70E-07 | kilogram |
| NMVOCS, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.20E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 8.20E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 4.42E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 9.43E-07 | kilogram |

Table S4.194. Life cycle inventory of container ship production, LNG-DFICE, size6 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.11   | unit |
| propulsion system, LNG-DFICE, size6*             | 1      | unit |

Table S4.195. Life cycle inventory of propulsion system, LNG-DFICE, size6 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 58.1    | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 58.1    | MW   |
| market for gas boiler*                                                          | 62      | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 232.74  | unit |

Table S4.196. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size6 (1 t-nm)

| Exchanges                                                                                                    | Amount   | Unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, LNG-DFICE, size6                                                                  | 5.95E-12 | unit     |
| fuel tank, heavy fuel oil                                                                                    | 5.16E-08 | kilogram |
| fuel tank, LNG                                                                                               | 1.63E-05 | kilogram |
| market for maintenance, container ship                                                                       | 1.59E-11 | unit     |
| natural gas, liquid, woody biomass                                                                           | 3.90E-03 | kilogram |
| marine gas oil, very low-sulphur                                                                             | 4.52E-05 | kilogram |
| urea solution, 40 wt%                                                                                        | 7.04E-04 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 1.17E-04 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 3.08E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 1.07E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 7.13E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 3.71E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 4.70E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.20E-05 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 8.20E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 4.42E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 9.43E-07 | kilogram |

Table S4.197. Life cycle inventory of transport, container ship, LOHC-SOFC, size6 (1 t-nm)

| Exchanges                                                                     | Amount   | Unit          |
|-------------------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                         |          |               |
| container ship production, LOHC-SOFC, size6*                                  | 9.46E-12 | unit          |
| fuel tank, heavy fuel oil*                                                    | 3.67E-05 | kilogram      |
| market for maintenance, container ship                                        | 2.53E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 2.19E-03 | kilogram      |
| market group for electricity, low voltage                                     | 1.38E-05 | kilowatt hour |

Table S4.198. Life cycle inventory of container ship production, LOHC-SOFC, size6 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.11   | unit |
| propulsion system, LOHC-SOFC, size6*             | 1      | unit |

Table S4.199. Life cycle inventory of propulsion system, LOHC-SOFC, size6 (1 unit)

| Exchanges                                                                       | Amount    | Unit              |
|---------------------------------------------------------------------------------|-----------|-------------------|
| <b>Economic flows</b>                                                           |           |                   |
| SOFC*                                                                           | 385.6     | MW                |
| market for converter, for electric passenger car                                | 4012.65   | kilogram          |
| market for inverter, 500kW                                                      | 149.1     | unit              |
| market for battery, Li-ion, NMC111, rechargeable, prismatic motor drive*        | 1538.298  | kilogram          |
| market for marine electric motor                                                | 60.51     | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1416.9375 | unit              |
| LOHC reactor*                                                                   | 49.36     | MW H <sub>2</sub> |

|                         |     |      |
|-------------------------|-----|------|
| electric boiler, 100kW* | 6.2 | unit |
|-------------------------|-----|------|

Table S4.200. Life cycle inventory of transport, container ship, LOHC-DFICE, size6 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LOHC-DFICE, size6*                                                                 | 1.02E-11 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 4.56E-07 | kilogram |
| fuel tank, heavy fuel oil*                                                                                    | 4.52E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.72E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen*                                 | 2.70E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 3.99E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 1.20E-03 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.87E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 7.34E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.61E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 1.22E-04 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 6.63E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.05E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 1.09E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.16E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.91E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0.00E+00 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.33E-06 | kilogram |

Table S4.201. Life cycle inventory of container ship production, LOHC-DFICE, size6 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.11   | unit |
| propulsion system, LOHC-DFICE, size6*            | 1      | unit |

Table S4.202. Life cycle inventory of propulsion system, LOHC-DFICE, size6 (1 unit)

| Exchanges                                                                       | Amount  | Unit              |
|---------------------------------------------------------------------------------|---------|-------------------|
| <b>Economic flows</b>                                                           |         |                   |
| marine engine, CI, ICE*                                                         | 58.1    | MW                |
| market for generator, 200kW electrical                                          | 73      | unit              |
| marine engine, CI, ICE*                                                         | 14.6    | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit              |
| LOHC reactor*                                                                   | 59.54   | MW H <sub>2</sub> |
| SCR*                                                                            | 58.1    | MW                |
| electric boiler, 100kW*                                                         | 6.2     | unit              |

Table S4.203. Life cycle inventory of transport, container ship, HFO-ICE, size7 (1 t-nm)

| Exchanges                                  | Amount   | Unit     |
|--------------------------------------------|----------|----------|
| <b>Economic flows</b>                      |          |          |
| container ship production, HFO-ICE, size7* | 5.00E-12 | unit     |
| fuel tank, heavy fuel oil*                 | 7.56E-06 | kilogram |
| market for maintenance, container ship     | 1.71E-11 | unit     |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| heavy fuel oil, very low-sulphur*                                                                             | 3.65E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 6.60E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.75E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.90E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.19E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 6.41E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.84E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 5.27E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 8.62E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.03E-06 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.65E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.18E-05 | kilogram |

Table S4.204. Life cycle inventory of container ship production, HFO-ICE, size7 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.42   | unit |
| propulsion system, HFO-ICE, size7*               | 1      | unit |

Table S4.205. Life cycle inventory of propulsion system, HFO-ICE, size7 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 59.78   | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 74.38   | MW   |
| market for oil boiler, 100kW                                                    | 6.3     | unit |

Table S4.206. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size7 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC, size7* | 5.14E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 4.94E-05 | kilogram      |
| market for maintenance, container ship                          | 1.76E-11 | unit          |
| liquid hydrogen production*                                     | 1.24E-03 | kilogram      |
| market group for electricity, low voltage                       | 2.11E-06 | kilowatt hour |

Table S4.207. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size7 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.42   | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size7* | 1      | unit |

Table S4.208. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size7 (1 unit)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                                                           |           |          |
|---------------------------------------------------------------------------------|-----------|----------|
| PEMFC*                                                                          | 394.55    | MW       |
| market for converter, for electric passenger car                                | 3736.35   | kilogram |
| market for inverter, 500kW                                                      | 149.2     | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 525.96    | kilogram |
| motor drive*                                                                    | 62.26     | MW       |
| market for marine electric motor                                                | 163.053   | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1449.9375 | unit     |
| electric boiler, 100kW*                                                         | 6.3       | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 314.92    | unit     |

Table S4.209. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size7 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size7* | 5.42E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 1.36E-05 | kilogram      |
| market for maintenance, container ship                          | 1.86E-11 | unit          |
| ammonia production, liquid*                                     | 7.07E-03 | kilogram      |
| market group for electricity, low voltage                       | 6.68E-06 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks)     | 6.81E-08 | kilogram      |

Table S4.210. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size7 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.42   | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size7* | 1      | unit |

Table S4.211. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size7 (1 unit)

| Exchanges                                                                       | Amount    | Unit     |
|---------------------------------------------------------------------------------|-----------|----------|
| <b>Economic flows</b>                                                           |           |          |
| SOFC                                                                            | 394.55    | MW       |
| market for converter, for electric passenger car                                | 4105.8    | kilogram |
| market for inverter, 500kW                                                      | 149.2     | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 1574.04   | kilogram |
| motor drive*                                                                    | 62.26     | MW       |
| market for marine electric motor                                                | 163.053   | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1449.9375 | unit     |
| electric boiler, 100kW*                                                         | 6.3       | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 172.97    | unit     |

Table S4.212. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size7 (1 t-nm)

| Exchanges                                                      | Amount   | Unit     |
|----------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                          |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE, size7 | 5.26E-12 | unit     |
| fuel tank, heavy fuel oil                                      | 2.67E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen                          | 5.21E-05 | kilogram |
| market for maintenance, container ship                         | 1.81E-11 | unit     |
| heavy fuel oil, very low-sulphur                               | 0        | kilogram |

|                                                                                                               |          |               |
|---------------------------------------------------------------------------------------------------------------|----------|---------------|
| liquid hydrogen production                                                                                    | 1.31E-03 | kilogram      |
| marine gas oil, very low-sulphur                                                                              | 1.93E-04 | kilogram      |
| market group for electricity, low voltage                                                                     | 0        | kilowatt hour |
| urea solution, 40 wt%                                                                                         | 5.60E-04 | kilogram      |
| <b>Environmental flows</b>                                                                                    |          |               |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 9.04E-09 | kilogram      |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.55E-06 | kilogram      |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 7.72E-04 | kilogram      |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 5.71E-05 | kilogram      |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.20E-08 | kilogram      |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 3.75E-07 | kilogram      |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 5.26E-07 | kilogram      |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 5.59E-08 | kilogram      |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 1.89E-06 | kilogram      |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram      |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 6.43E-07 | kilogram      |

Table S4.213. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE, size7 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.42   | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE, size7* | 1      | unit |

Table S4.214. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size7 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 59.78   | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 59.78   | MW   |
| electric boiler, 100kW                                                          | 6.3     | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 323.6   | unit |

Table S4.215. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size7 (1 t-nm)

| Exchanges                                                           | Amount   | Unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size7*    | 5.53E-12 | unit     |
| fuel tank, heavy fuel oil*                                          | 2.87E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                               | 1.74E-05 | kilogram |
| market for maintenance, container ship                              | 1.90E-11 | unit     |
| ammonia production, liquid*                                         | 9.02E-03 | kilogram |
| marine gas oil, very low-sulphur*                                   | 2.07E-04 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 9.69E-09 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 3.80E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)  | 6.52E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)         | 7.10E-05 | kilogram |

|                                                                                                               |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.02E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 8.27E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 5.64E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 6.00E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.03E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 6.90E-07 | kilogram |

Table S4.216. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size7 (1 unit)

| Exchanges                                                | Amount | Unit |
|----------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                    |        |      |
| hull production, container ship, for DWT 103800*         | 1.42   | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size7* | 1      | unit |

Table S4.217. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size7 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 59.78   | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 74.38   | MW   |
| electric boiler, 100kW*                                                         | 6.3     | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 216.35  | unit |

Table S4.218. Life cycle inventory of transport, container ship, MeOH-DFICE, size7 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, MeOH-DFICE, size7*                                                                 | 5.39E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 2.67E-07 | kilogram |
| fuel tank, methanol*                                                                                          | 1.26E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.85E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                                                                | 7.78E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 1.93E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 6.26E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 9.02E-09 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 9.10E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.17E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 6.91E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.20E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 5.23E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 4.68E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 2.35E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 1.89E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 4.22E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 2.70E-06 | kilogram |

Table S4.219. Life cycle inventory of container ship production, MeOH-DFICE, size7 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.42   | unit |
| propulsion system, MeOH-DFICE, size7*            | 1      | unit |

Table S4.220. Life cycle inventory of propulsion system, MeOH-DFICE, size7 (1 unit)

| Exchanges                                                                       | Amount  | Unit |
|---------------------------------------------------------------------------------|---------|------|
| <b>Economic flows</b>                                                           |         |      |
| marine engine, CI, ICE*                                                         | 59.78   | MW   |
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 74.38   | MW   |
| electric boiler, 100kW*                                                         | 6.3     | unit |

Table S4.221. Life cycle inventory of transport, container ship, LNG-DFICE, size7 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LNG-DFICE, size7                                                                   | 5.02E-12 | unit     |
| fuel tank, heavy fuel oil                                                                                     | 4.82E-08 | kilogram |
| fuel tank, LNG                                                                                                | 1.52E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.72E-11 | unit     |
| natural gas, liquid                                                                                           | 3.00E-03 | kilogram |
| marine gas oil, very low-sulphur                                                                              | 3.48E-05 | kilogram |
| urea solution, 40 wt%                                                                                         | 5.34E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 9.00E-05 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.37E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 8.21E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 5.43E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 2.85E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 3.56E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 9.20E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 6.31E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.40E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 7.25E-07 | kilogram |

Table S4.222. Life cycle inventory of container ship production, LNG-DFICE, size7 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.42   | unit |
| propulsion system, LNG-DFICE, size7*             | 1      | unit |

Table S4.223. Life cycle inventory of propulsion system, LNG-DFICE, size7 (1 unit)

| Exchanges               | Amount | Unit |
|-------------------------|--------|------|
| <b>Economic flows</b>   |        |      |
| marine engine, CI, ICE* | 59.78  | MW   |

|                                                                                 |         |      |
|---------------------------------------------------------------------------------|---------|------|
| market for generator, 200kW electrical                                          | 73      | unit |
| marine engine, CI, ICE*                                                         | 14.6    | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit |
| SCR*                                                                            | 59.78   | MW   |
| market for gas boiler                                                           | 63      | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 257.49  | unit |

Table S4.224. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size7 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, LNG-DFICE, size7*                                                                   | 5.02E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 4.82E-08 | kilogram |
| fuel tank, LNG*                                                                                                | 1.52E-05 | kilogram |
| market for maintenance, container ship                                                                         | 1.72E-11 | unit     |
| natural gas, liquid, woody biomass*                                                                            | 3.00E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 3.48E-05 | kilogram |
| urea solution, 40 wt%*                                                                                         | 5.34E-04 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 9.00E-05 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 2.37E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 8.21E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 5.43E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 2.85E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 3.56E-07 | kilogram |
| NMVOCS, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 9.20E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 6.31E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 3.40E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 7.25E-07 | kilogram |

Table S4.225. Life cycle inventory of transport, container ship, LOHC-SOFC, size7 (1 t-nm)

| Exchanges                                                                     | Amount   | Unit          |
|-------------------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                         |          |               |
| container ship production, LOHC-SOFC, size7*                                  | 7.05E-12 | unit          |
| fuel tank, heavy fuel oil*                                                    | 2.90E-05 | kilogram      |
| market for maintenance, container ship                                        | 2.42E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 1.42E-03 | kilogram      |
| market group for electricity, low voltage                                     | 8.68E-06 | kilowatt hour |

Table S4.226. Life cycle inventory of container ship production, LOHC-SOFC, size7 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.42   | unit |
| propulsion system, LOHC-SOFC, size7*             | 1      | unit |

Table S4.227. Life cycle inventory of propulsion system, LOHC-SOFC, size7 (1 unit)

| Exchanges             | Amount | Unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                                                                                 |           |                   |
|---------------------------------------------------------------------------------|-----------|-------------------|
| SOFC*                                                                           | 394.55    | MW                |
| market for converter, for electric passenger car                                | 4105.8    | kilogram          |
| market for inverter, 500kW                                                      | 149.2     | unit              |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 1574.043  | kilogram          |
| motor drive*                                                                    | 62.26     | MW                |
| market for marine electric motor                                                | 163.053   | unit              |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1449.9375 | unit              |
| LOHC reactor*                                                                   | 45.61     | MW H <sub>2</sub> |
| electric boiler, 100kW*                                                         | 6.3       | unit              |

Table S4.228. Life cycle inventory of transport, container ship, LOHC-DFICE, size7 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, LOHC-DFICE, size7*                                                                  | 7.62E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 3.78E-07 | kilogram |
| fuel tank, heavy fuel oil*                                                                                     | 3.75E-05 | kilogram |
| market for maintenance, container ship                                                                         | 2.61E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen*                                  | 1.84E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 2.73E-04 | kilogram |
| urea solution, 40 wt%*                                                                                         | 8.10E-04 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 1.28E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 5.01E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 1.10E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 8.22E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 4.53E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 5.43E-07 | kilogram |
| NMVOCS, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.43E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 7.91E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 2.67E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0.00E+00 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 9.09E-07 | kilogram |

Table S4.229. Life cycle inventory of container ship production, LOHC-DFICE, size7 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.42   | unit |
| propulsion system, LOHC-DFICE, size7*            | 1      | unit |

Table S4.230. Life cycle inventory of propulsion system, LOHC-DFICE, size7 (1 unit)

| Exchanges                                                                       | Amount  | Unit              |
|---------------------------------------------------------------------------------|---------|-------------------|
| <b>Economic flows</b>                                                           |         |                   |
| marine engine, CI, ICE*                                                         | 59.78   | MW                |
| market for generator, 200kW electrical                                          | 73      | unit              |
| marine engine, CI, ICE*                                                         | 14.6    | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 262.875 | unit              |
| LOHC reactor*                                                                   | 57.52   | MW H <sub>2</sub> |
| SCR*                                                                            | 59.78   | MW                |

|                         |     |      |
|-------------------------|-----|------|
| electric boiler, 100kW* | 6.3 | unit |
|-------------------------|-----|------|

Table S4.231. Life cycle inventory of transport, container ship, HFO-ICE, size8 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE, size8                                                                     | 3.48E-12 | unit     |
| fuel tank, heavy fuel oil                                                                                     | 6.69E-06 | kilogram |
| market for maintenance, container ship                                                                        | 1.51E-11 | unit     |
| heavy fuel oil, very low-sulphur                                                                              | 3.14E-03 | kilogram |
| urea solution, 40 wt%                                                                                         | 5.69E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.51E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.64E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 1.02E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 5.52E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 5.04E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 4.54E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.43E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 8.87E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 3.15E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 1.02E-05 | kilogram |

Table S4.232. Life cycle inventory of container ship production, HFO-ICE, size8 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.80   | unit |
| propulsion system, HFO-ICE, size8*               | 1      | unit |

Table S4.233. Life cycle inventory of propulsion system, HFO-ICE, size8 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.78  | MW   |
| market for generator, 200kW electrical                                          | 90     | unit |
| marine engine, CI, ICE*                                                         | 18     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 324    | unit |
| SCR*                                                                            | 77.78  | MW   |
| market for oil boiler, 100kW                                                    | 6.3    | unit |

Table S4.234. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size8 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid H <sub>2</sub> -PEMFC, size8* | 3.58E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 4.23E-05 | kilogram      |
| market for maintenance, container ship                          | 1.55E-11 | unit          |
| liquid hydrogen production*                                     | 1.06E-03 | kilogram      |
| market group for electricity, low voltage                       | 1.54E-06 | kilowatt hour |

Table S4.235. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size8 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.80   | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size8* | 1      | unit |

Table S4.236. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size8 (1 unit)

| Exchanges                                                                       | Amount    | Unit     |
|---------------------------------------------------------------------------------|-----------|----------|
| <b>Economic flows</b>                                                           |           |          |
| PEMFC*                                                                          | 411.55    | MW       |
| market for converter, for electric passenger car                                | 3897.45   | kilogram |
| market for inverter, 500kW                                                      | 182.5     | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 548.94    | kilogram |
| motor drive*                                                                    | 62.26     | MW       |
| market for marine electric motor                                                | 163.053   | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1512.5625 | unit     |
| electric boiler, 100kW*                                                         | 6.3       | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 387.83    | unit     |

Table S4.237. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size8 (1 t-nm)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size8* | 3.76E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 1.19E-05 | kilogram      |
| market for maintenance, container ship                          | 1.63E-11 | unit          |
| ammonia production, liquid*                                     | 6.22E-03 | kilogram      |
| market group for electricity, low voltage                       | 4.83E-06 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |
| Nitrogen oxides um (to air, non-urban air or from high stacks)  | 5.99E-08 | kilogram      |

Table S4.238. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size8 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.80   | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size8* | 1      | unit |

Table S4.239. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size8 (1 unit)

| Exchanges                                                                       | Amount    | Unit     |
|---------------------------------------------------------------------------------|-----------|----------|
| <b>Economic flows</b>                                                           |           |          |
| SOFC*                                                                           | 411.55    | MW       |
| market for converter, for electric passenger car                                | 4282.65   | kilogram |
| market for inverter, 500kW                                                      | 182.5     | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 1641.70   | kilogram |
| motor drive*                                                                    | 62.26     | MW       |
| market for marine electric motor                                                | 163.053   | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1512.5625 | unit     |
| electric boiler, 100kW*                                                         | 6.3       | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 219.22    | unit     |

Table S4.240. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size8 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE, size8                                                | 3.65E-12 | unit     |
| fuel tank, heavy fuel oil                                                                                     | 2.29E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen                                                                         | 4.47E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.59E-11 | unit     |
| liquid hydrogen production                                                                                    | 1.12E-03 | kilogram |
| marine gas oil, very low-sulphur                                                                              | 1.66E-04 | kilogram |
| urea solution, 40 wt%                                                                                         | 4.79E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 7.77E-09 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.05E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 6.63E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 4.90E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 2.76E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 3.21E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 4.52E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 4.81E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 1.62E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 5.53E-07 | kilogram |

Table S4.241. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE, size8 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.80   | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE, size8* | 1      | unit |

Table S4.242. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size8 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.78  | MW   |
| market for generator, 200kW electrical                                          | 90     | unit |
| marine engine, CI, ICE*                                                         | 18     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 324    | unit |
| SCR*                                                                            | 59.78  | MW   |
| electric boiler, 100kW*                                                         | 6.3    | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 400.26 | unit |

Table S4.243. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size8 (1 t-nm)

| Exchanges                                                        | Amount   | Unit     |
|------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                            |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size8* | 3.83E-12 | unit     |
| fuel tank, heavy fuel oil*                                       | 2.46E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia*                            | 1.49E-05 | kilogram |
| market for maintenance, container ship                           | 1.66E-11 | unit     |
| ammonia production, liquid*                                      | 7.74E-03 | kilogram |
| marine gas oil, very low-sulphur*                                | 1.77E-04 | kilogram |

| <b>Environmental flows</b>                                                                                    |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 8.30E-09 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.26E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 5.59E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 6.09E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 2.59E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 7.09E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 4.83E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 5.14E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 1.74E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 5.92E-07 | kilogram |

Table S4.244. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size8 (1 unit)

| Exchanges                                                | Amount | Unit |
|----------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                    |        |      |
| hull production, container ship, for DWT 103800*         | 1.80   | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size8* | 1      | unit |

Table S4.245. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size8 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.78  | MW   |
| market for generator, 200kW electrical                                          | 90     | unit |
| marine engine, CI, ICE*                                                         | 18     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 324    | unit |
| SCR*                                                                            | 77.78  | MW   |
| electric boiler, 100kW*                                                         | 6.3    | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 267.61 | unit |

Table S4.246. Life cycle inventory of transport, container ship, MeOH-DFICE, size8 (1 t-nm)

| Exchanges                                                           | Amount   | Unit     |
|---------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                               |          |          |
| container ship production, MeOH-DFICE, size8*                       | 3.73E-12 | unit     |
| fuel tank, heavy fuel oil*                                          | 2.29E-07 | kilogram |
| fuel tank, methanol*                                                | 1.08E-05 | kilogram |
| market for maintenance, container ship                              | 1.62E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC*                      | 6.68E-03 | kilogram |
| marine gas oil, very low-sulphur*                                   | 1.65E-04 | kilogram |
| urea solution, 40 wt%*                                              | 5.36E-04 | kilogram |
| <b>Environmental flows</b>                                          |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)         | 7.75E-09 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks) | 7.81E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)  | 1.01E-02 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)         | 5.93E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)     | 2.75E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                 | 4.49E-07 | kilogram |

|                                                                                                                |          |          |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| NMVOCS, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 4.01E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 2.02E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 1.62E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 3.62E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 2.32E-06 | kilogram |

Table S4.247. Life cycle inventory of container ship production, MeOH-DFICE, size8 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.80   | unit |
| propulsion system, MeOH-DFICE, size8*            | 1      | unit |

Table S4.248. Life cycle inventory of propulsion system, MeOH-DFICE, size8 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.78  | MW   |
| market for generator, 200kW electrical                                          | 90     | unit |
| marine engine, CI, ICE*                                                         | 18     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 324    | unit |
| SCR*                                                                            | 77.78  | MW   |
| electric boiler, 100kW*                                                         | 6.3    | unit |

Table S4.249. Life cycle inventory of transport, container ship, LNG-DFICE, size8 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, LNG-DFICE, size8*                                                                   | 3.49E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 4.14E-08 | kilogram |
| fuel tank, LNG*                                                                                                | 1.31E-05 | kilogram |
| market for maintenance, container ship                                                                         | 1.52E-11 | unit     |
| natural gas, liquid*                                                                                           | 2.58E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 2.99E-05 | kilogram |
| urea solution, 40 wt%*                                                                                         | 4.58E-04 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 7.76E-05 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 2.04E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 7.07E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 4.66E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 2.46E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 3.06E-07 | kilogram |
| NMVOCS, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.93E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 5.43E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 2.93E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 6.25E-07 | kilogram |

Table S4.250. Life cycle inventory of container ship production, LNG-DFICE, size8 (1 unit)

| Exchanges             | Amount | Unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                                                  |      |      |
|--------------------------------------------------|------|------|
| hull production, container ship, for DWT 103800* | 1.80 | unit |
| propulsion system, LNG-DFICE, size8*             | 1    | unit |

Table S4.251. Life cycle inventory of propulsion system, LNG-DFICE, size8 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.78  | MW   |
| market for generator, 200kW electrical                                          | 90     | unit |
| marine engine, CI, ICE*                                                         | 18     | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 324    | unit |
| SCR*                                                                            | 59.78  | MW   |
| market for gas boiler                                                           | 63     | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 318.5  | unit |

Table S4.252. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size8 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LNG-DFICE, size8*                                                                  | 3.49E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 4.14E-08 | kilogram |
| fuel tank, LNG*                                                                                               | 1.31E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.52E-11 | unit     |
| natural gas, liquid, woody biomass*                                                                           | 2.58E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.99E-05 | kilogram |
| urea solution, 40 wt%*                                                                                        | 4.58E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 7.76E-05 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 2.04E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 7.07E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 4.66E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 2.46E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 3.06E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.93E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 5.43E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.93E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 6.25E-07 | kilogram |

Table S4.253. Life cycle inventory of transport, container ship, LOHC-SOFC, size8 (1 t-nm)

| Exchanges                                                                     | Amount   | Unit          |
|-------------------------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                                         |          |               |
| container ship production, LOHC-SOFC, size8*                                  | 4.85E-12 | unit          |
| fuel tank, heavy fuel oil*                                                    | 2.52E-05 | kilogram      |
| market for maintenance, container ship*                                       | 2.10E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 1.24E-03 | kilogram      |
| market group for electricity, low voltage                                     | 6.23E-06 | kilowatt hour |

Table S4.254. Life cycle inventory of container ship production, LOHC-SOFC, size8 (1 unit)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                            |      |      |
|--------------------------------------------------|------|------|
| hull production, container ship, for DWT 103800* | 1.80 | unit |
| propulsion system, LOHC-SOFC, size8*             | 1    | unit |

Table S4.255. Life cycle inventory of propulsion system, LOHC-SOFC, size8 (1 unit)

| Exchanges                                                                       | Amount    | Unit              |
|---------------------------------------------------------------------------------|-----------|-------------------|
| <b>Economic flows</b>                                                           |           |                   |
| SOFC*                                                                           | 411.55    | MW                |
| market for converter, for electric passenger car                                | 4282.65   | kilogram          |
| market for inverter, 500kW                                                      | 182.5     | unit              |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 1641.702  | kilogram          |
| motor drive*                                                                    | 62.26     | MW                |
| market for marine electric motor                                                | 163.053   | unit              |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1512.5625 | unit              |
| LOHC reactor*                                                                   | 57        | MW H <sub>2</sub> |
| electric boiler, 100kW*                                                         | 6.3       | unit              |

Table S4.256. Life cycle inventory of transport, container ship, LOHC-DFICE, size8 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LOHC-DFICE, size8*                                                                 | 5.17E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 3.18E-07 | kilogram |
| fuel tank, heavy fuel oil*                                                                                    | 3.15E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.25E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen*                                 | 1.55E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.29E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 6.78E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.07E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 4.22E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 9.22E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 6.89E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.81E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 4.55E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.25E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 6.65E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.25E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0.00E+00 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 7.65E-07 | kilogram |

Table S4.257. Life cycle inventory of propulsion system, LOHC-DFICE, size8 (1 t-nm)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.80   | unit |
| propulsion system, LOHC-DFICE, size8*            | 1      | unit |

Table S4.258. Life cycle inventory of propulsion system, LOHC-DFICE, size8 (1 t-nm)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                                                           |       |                   |
|---------------------------------------------------------------------------------|-------|-------------------|
| marine engine, CI, ICE*                                                         | 59.78 | MW                |
| market for generator, 200kW electrical                                          | 90    | unit              |
| marine engine, CI, ICE*                                                         | 18    | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 324   | unit              |
| LOHC reactor*                                                                   | 70.15 | MW H <sub>2</sub> |
| SCR*                                                                            | 59.78 | MW                |
| electric boiler, 100kW*                                                         | 6.3   | unit              |

Table S4.259. Life cycle inventory of transport, container ship, HFO-ICE, size9 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, HFO-ICE, size9*                                                                    | 3.90E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 8.69E-06 | kilogram |
| market for maintenance, container ship                                                                        | 1.81E-11 | unit     |
| heavy fuel oil, very low-sulphur*                                                                             | 2.93E-03 | kilogram |
| urea solution, 40 wt%*                                                                                        | 5.26E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.41E-07 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.53E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 9.56E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 5.13E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 4.71E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 4.24E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 6.94E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 8.28E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.94E-05 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 9.52E-06 | kilogram |

Table S4.260. Life cycle inventory of container ship production, HFO-ICE, size9 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.92   | unit |
| propulsion system, HFO-ICE, size9*               | 1      | unit |

Table S4.261. Life cycle inventory of propulsion system, HFO-ICE, size9 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.3   | MW   |
| market for generator, 200kW electrical                                          | 96     | unit |
| marine engine, CI, ICE*                                                         | 19.2   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 345.75 | unit |
| SCR*                                                                            | 78.51  | MW   |
| market for oil boiler, 100kW                                                    | 7      | unit |

Table S4.262. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-PEMFC, size9 (1 t-nm)

| Exchanges | Amount | Unit |
|-----------|--------|------|
|-----------|--------|------|

| <b>Economic flows</b>                                           |          |               |
|-----------------------------------------------------------------|----------|---------------|
| container ship production, liquid H <sub>2</sub> -PEMFC, size9* | 4.01E-12 | unit          |
| fuel tank, cryogenic, liquid hydrogen*                          | 5.07E-05 | kilogram      |
| market for maintenance, container ship                          | 1.86E-11 | unit          |
| liquid hydrogen production*                                     | 9.94E-04 | kilogram      |
| market group for electricity, low voltage                       | 1.36E-06 | kilowatt hour |

Table S4.263. Life cycle inventory of container ship production, liquid H<sub>2</sub>-PEMFC, size9 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.92   | unit |
| propulsion system, liquid H <sub>2</sub> -PEMFC, size9* | 1      | unit |

Table S4.264. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-PEMFC, size9 (1 unit)

| Exchanges                                                                       | Amount   | Unit     |
|---------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                           |          |          |
| PEMFC*                                                                          | 415.4    | MW       |
| market for converter, for electric passenger car                                | 3933.9   | kilogram |
| market for inverter, 500kW                                                      | 195      | unit     |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 554.04   | kilogram |
| motor drive*                                                                    | 61.76    | MW       |
| market for marine electric motor                                                | 161.757  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1526.625 | unit     |
| electric boiler, 100kW*                                                         | 7        | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                          | 413.87   | unit     |

Table S4.265. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-SOFC, size9 (1 unit)

| Exchanges                                                       | Amount   | Unit          |
|-----------------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                           |          |               |
| container ship production, liquid NH <sub>3</sub> -SOFC, size9* | 4.18E-12 | unit          |
| fuel tank, cryogenic, liquid ammonia*                           | 1.36E-05 | kilogram      |
| market for maintenance, container ship                          | 1.94E-11 | unit          |
| ammonia production, liquid*                                     | 5.52E-03 | kilogram      |
| market group for electricity, low voltage                       | 4.24E-06 | kilowatt hour |
| <b>Environmental flows</b>                                      |          |               |
| Nitrogen oxides (to air, non-urban air or from high stacks)     | 5.31E-08 | kilogram      |

Table S4.266. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-SOFC, size9 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.92   | unit |
| propulsion system, liquid NH <sub>3</sub> -SOFC, size9* | 1      | unit |

Table S4.267. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-SOFC, size9 (1 unit)

| Exchanges                                        | Amount | Unit     |
|--------------------------------------------------|--------|----------|
| <b>Economic flows</b>                            |        |          |
| SOFC*                                            | 415.4  | MW       |
| market for converter, for electric passenger car | 4322.7 | kilogram |
| market for inverter, 500kW                       | 195    | unit     |

|                                                                                                         |          |          |
|---------------------------------------------------------------------------------------------------------|----------|----------|
| market for battery, Li-ion, NMC111, rechargeable, prismatic motor drive*                                | 1657.02  | kilogram |
|                                                                                                         | 61.76    | MW       |
| market for marine electric motor                                                                        | 161.757  | unit     |
| market for control cabinet, heat and power co-generation unit, 160kW electrical electric boiler, 100kW* | 1526.625 | unit     |
|                                                                                                         | 7        | unit     |
| Reliquefaction plant, 1 kg/h capacity*                                                                  | 223.63   | unit     |

Table S4.268. Life cycle inventory of transport, container ship, liquid H<sub>2</sub>-DFICE, size9 (1 t-nm)

| Exchanges                                                                                                      | Amount   | Unit     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                          |          |          |
| container ship production, liquid H <sub>2</sub> -DFICE, size9                                                 | 4.09E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                     | 2.74E-07 | kilogram |
| fuel tank, cryogenic, liquid hydrogen*                                                                         | 5.36E-05 | kilogram |
| market for maintenance, container ship                                                                         | 1.90E-11 | unit     |
| liquid hydrogen production*                                                                                    | 1.05E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                              | 1.55E-04 | kilogram |
| urea solution, 40 wt%*                                                                                         | 4.34E-04 | kilogram |
| <b>Environmental flows</b>                                                                                     |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                    | 7.27E-09 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                            | 2.85E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                             | 6.17E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                    | 4.48E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                                | 2.58E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                            | 2.91E-07 | kilogram |
| NMVOCS, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 4.23E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                 | 4.50E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                     | 1.52E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                             | 5.18E-07 | kilogram |

Table S4.269. Life cycle inventory of container ship production, liquid H<sub>2</sub>-DFICE, size9 (1 unit)

| Exchanges                                               | Amount | Unit |
|---------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                   |        |      |
| hull production, container ship, for DWT 103800*        | 1.92   | unit |
| propulsion system, liquid H <sub>2</sub> -DFICE, size9* | 1      | unit |

Table S4.270. Life cycle inventory of propulsion system, liquid H<sub>2</sub>-DFICE, size9 (1 unit)

| Exchanges                                                                                               | Amount | Unit |
|---------------------------------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                                                   |        |      |
| marine engine, CI, ICE*                                                                                 | 59.3   | MW   |
| market for generator, 200kW electrical                                                                  | 96.05  | unit |
| marine engine, CI, ICE*                                                                                 | 19.21  | MW   |
| SCR*                                                                                                    | 59.3   | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical electric boiler, 100kW* | 345.75 | unit |
|                                                                                                         | 7      | unit |
| Reliquefaction plant, 1 kg/h capacity*                                                                  | 427.09 | unit |

Table S4.271. Life cycle inventory of transport, container ship, liquid NH<sub>3</sub>-DFICE, size9 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, liquid NH <sub>3</sub> -DFICE, size9                                               | 4.29E-12 | unit     |
| fuel tank, heavy fuel oil                                                                                     | 2.94E-07 | kilogram |
| fuel tank, cryogenic, liquid ammonia                                                                          | 1.78E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.99E-11 | unit     |
| ammonia production, liquid                                                                                    | 7.23E-03 | kilogram |
| marine gas oil, very low-sulphur                                                                              | 1.66E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 7.77E-09 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.05E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 5.22E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 5.66E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 2.42E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 6.63E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 4.52E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 4.81E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 1.62E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 5.53E-07 | kilogram |

Table S4.272. Life cycle inventory of container ship production, liquid NH<sub>3</sub>-DFICE, size9 (1 unit)

| Exchanges                                                | Amount | Unit |
|----------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                    |        |      |
| hull production, container ship, for DWT 103800*         | 1.92   | unit |
| propulsion system, liquid NH <sub>3</sub> -DFICE, size9* | 1      | unit |

Table S4.273. Life cycle inventory of propulsion system, liquid NH<sub>3</sub>-DFICE, size9 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.3   | MW   |
| market for generator, 200kW electrical                                          | 96.05  | unit |
| marine engine, CI, ICE*                                                         | 19.21  | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 345.75 | unit |
| SCR*                                                                            | 78.51  | MW   |
| electric boiler, 100kW*                                                         | 7      | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 285.56 | unit |

Table S4.274. Life cycle inventory of transport, container ship, MeOH-DFICE, size9 (1 t-nm)

| Exchanges                                      | Amount   | Unit     |
|------------------------------------------------|----------|----------|
| <b>Economic flows</b>                          |          |          |
| container ship production, MeOH-DFICE, size9*  | 4.18E-12 | unit     |
| fuel tank, heavy fuel oil*                     | 2.74E-07 | kilogram |
| fuel tank, methanol*                           | 1.29E-05 | kilogram |
| market for maintenance, container ship         | 1.94E-11 | unit     |
| methanol production, CO <sub>2</sub> from DAC* | 6.24E-03 | kilogram |
| marine gas oil, very low-sulphur*              | 1.55E-04 | kilogram |
| urea solution, 40 wt%*                         | 4.91E-04 | kilogram |

| <b>Environmental flows</b>                                                                                    |          |          |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 7.24E-09 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 7.30E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 9.39E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 5.51E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 2.57E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 4.19E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 3.75E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 1.88E-07 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 1.51E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 3.38E-06 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 2.17E-06 | kilogram |

Table S4.275. Life cycle inventory of container ship production, MeOH-DFICE, size9 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.92   | unit |
| propulsion system, MeOH-DFICE, size9*            | 1      | unit |

Table S4.276. Life cycle inventory of propulsion system, MeOH-DFICE, size9 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.3   | MW   |
| market for generator, 200kW electrical                                          | 96.05  | unit |
| marine engine, CI, ICE*                                                         | 19.21  | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 345.75 | unit |
| SCR*                                                                            | 78.51  | MW   |
| electric boiler, 100kW*                                                         | 7      | unit |

Table S4.277. Life cycle inventory of transport, container ship, LNG-DFICE, size9 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LNG-DFICE, size9*                                                                  | 3.91E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 4.95E-08 | kilogram |
| fuel tank, LNG*                                                                                               | 1.56E-05 | kilogram |
| market for maintenance, container ship                                                                        | 1.82E-11 | unit     |
| natural gas, liquid*                                                                                          | 2.41E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.79E-05 | kilogram |
| urea solution, 40 wt%*                                                                                        | 4.15E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 7.24E-05 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 1.91E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 6.59E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 4.25E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 2.29E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 2.77E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.40E-06 | kilogram |

|                                                                                |          |          |
|--------------------------------------------------------------------------------|----------|----------|
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks) | 5.07E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                     | 2.74E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                       | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)             | 5.83E-07 | kilogram |

Table S4.278. Life cycle inventory of container ship production, LNG-DFICE, size9 (1 unit)

| Exchanges                                       | Amount | Unit |
|-------------------------------------------------|--------|------|
| <b>Economic flows</b>                           |        |      |
| hull production, container ship, for DWT 103800 | 1.92   | unit |
| propulsion system, LNG-DFICE, size9             | 1      | unit |

Table S4.279. Life cycle inventory of propulsion system, LNG-DFICE, size9 (1 unit)

| Exchanges                                                                       | Amount | Unit |
|---------------------------------------------------------------------------------|--------|------|
| <b>Economic flows</b>                                                           |        |      |
| marine engine, CI, ICE*                                                         | 59.3   | MW   |
| market for generator, 200kW electrical                                          | 96.05  | unit |
| marine engine, CI, ICE*                                                         | 19.21  | MW   |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 345.75 | unit |
| SCR*                                                                            | 59.3   | MW   |
| market for gas boiler                                                           | 70     | unit |
| Reliquefaction plant, 1 kg/h capacity*                                          | 339.84 | unit |

Table S4.280. Life cycle inventory of transport, container ship, BIO-LNG-DFICE, size9 (1 t-nm)

| Exchanges                                                                                                    | Amount   | Unit     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                        |          |          |
| container ship production, LNG-DFICE, size9*                                                                 | 3.91E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                   | 4.95E-08 | kilogram |
| fuel tank, LNG*                                                                                              | 1.56E-05 | kilogram |
| market for maintenance, container ship                                                                       | 1.82E-11 | unit     |
| natural gas, liquid, woody biomass*                                                                          | 2.41E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                            | 2.79E-05 | kilogram |
| urea solution, 40 wt%*                                                                                       | 4.15E-04 | kilogram |
| <b>Environmental flows</b>                                                                                   |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                  | 7.24E-05 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                          | 1.91E-05 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                           | 6.59E-03 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                  | 4.25E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                              | 2.29E-07 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                          | 2.77E-07 | kilogram |
| NMVO, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 7.40E-06 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                               | 5.07E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                   | 2.74E-07 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                     | 0        | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                           | 5.83E-07 | kilogram |

Table S4.281. Life cycle inventory of transport, container ship, LOHC-SOFC, size9 (1 t-nm)

| Exchanges             | Amount | Unit |
|-----------------------|--------|------|
| <b>Economic flows</b> |        |      |

|                                                                               |          |               |
|-------------------------------------------------------------------------------|----------|---------------|
| container ship production, LOHC-SOFC, size9*                                  | 5.35E-12 | unit          |
| fuel tank, heavy fuel oil*                                                    | 2.84E-05 | kilogram      |
| market for maintenance, container ship                                        | 2.48E-11 | unit          |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen* | 1.09E-03 | kilogram      |
| market group for electricity, low voltage                                     | 5.42E-06 | kilowatt hour |

Table S4.282. Life cycle inventory of container ship production, LOHC-SOFC, size9 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.92   | unit |
| propulsion system, LOHC-SOFC, size9*             | 1      | unit |

Table S4.283. Life cycle inventory of propulsion system, LOHC-SOFC, size9 (1 unit)

| Exchanges                                                                       | Amount    | Unit              |
|---------------------------------------------------------------------------------|-----------|-------------------|
| <b>Economic flows</b>                                                           |           |                   |
| SOFC*                                                                           | 415.4     | MW                |
| market for converter, for electric passenger car                                | 4322.7    | kilogram          |
| market for inverter, 500kW                                                      | 195       | unit              |
| market for battery, Li-ion, NMC111, rechargeable, prismatic                     | 1657.0213 | kilogram          |
| motor drive*                                                                    | 61.76     | MW                |
| market for marine electric motor                                                | 161.757   | unit              |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 1526.625  | unit              |
| LOHC reactor*                                                                   | 54.04     | MW H <sub>2</sub> |
| electric boiler, 100kW*                                                         | 7         | unit              |

Table S4.284. Life cycle inventory of transport, container ship, LOHC-DFICE, size9 (1 t-nm)

| Exchanges                                                                                                     | Amount   | Unit     |
|---------------------------------------------------------------------------------------------------------------|----------|----------|
| <b>Economic flows</b>                                                                                         |          |          |
| container ship production, LOHC-DFICE, size9*                                                                 | 5.85E-12 | unit     |
| fuel tank, heavy fuel oil*                                                                                    | 3.83E-07 | kilogram |
| fuel tank, heavy fuel oil*                                                                                    | 3.80E-05 | kilogram |
| market for maintenance, container ship                                                                        | 2.72E-11 | unit     |
| dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) for releasing hydrogen*                                 | 1.46E-03 | kilogram |
| marine gas oil, very low-sulphur*                                                                             | 2.16E-04 | kilogram |
| urea solution, 40 wt%*                                                                                        | 6.21E-04 | kilogram |
| <b>Environmental flows</b>                                                                                    |          |          |
| Methane, fossil (to air, non-urban air or from high stacks)                                                   | 1.01E-08 | kilogram |
| Carbon monoxide, fossil (to air, non-urban air or from high stacks)                                           | 3.97E-06 | kilogram |
| Carbon dioxide, fossil (to air, non-urban air or from high stacks)                                            | 8.63E-04 | kilogram |
| Nitrogen oxides (to air, non-urban air or from high stacks)                                                   | 6.35E-05 | kilogram |
| Dinitrogen monoxide (to air, non-urban air or from high stacks)                                               | 3.59E-08 | kilogram |
| Ammonia (to air, non-urban air or from high stacks)                                                           | 4.16E-07 | kilogram |
| NMVOC, non-methane volatile organic compounds, unspecified origin (to air, non-urban air or from high stacks) | 5.89E-07 | kilogram |
| Particulates, > 2.5 um, and < 10um (to air, non-urban air or from high stacks)                                | 6.27E-08 | kilogram |
| Sulfur dioxide (to air, non-urban air or from high stacks)                                                    | 2.12E-06 | kilogram |
| Formaldehyde (to air, non-urban air or from high stacks)                                                      | 0.00E+00 | kilogram |
| Particulates, < 2.5 um (to air, non-urban air or from high stacks)                                            | 7.21E-07 | kilogram |

Table S4.285. Life cycle inventory of container ship production, LOHC-DFICE, size9 (1 unit)

| Exchanges                                        | Amount | Unit |
|--------------------------------------------------|--------|------|
| <b>Economic flows</b>                            |        |      |
| hull production, container ship, for DWT 103800* | 1.92   | unit |
| propulsion system, LOHC-DFICE, size9*            | 1      | unit |

Table S4.286. Life cycle inventory of propulsion system, LOHC-DFICE, size9 (1 unit)

| Exchanges                                                                       | Amount | Unit              |
|---------------------------------------------------------------------------------|--------|-------------------|
| <b>Economic flows</b>                                                           |        |                   |
| marine engine, CI, ICE*                                                         | 59.3   | MW                |
| market for generator, 200kW electrical                                          | 96.05  | unit              |
| marine engine, CI, ICE*                                                         | 19.21  | MW                |
| market for control cabinet, heat and power co-generation unit, 160kW electrical | 345.75 | unit              |
| LOHC reactor*                                                                   | 69.57  | MW H <sub>2</sub> |
| SCR*                                                                            | 59.3   | MW                |
| electric boiler, 100kW*                                                         | 7      | unit              |

Table S4.287. Life cycle inventory of liquid hydrogen production, onshore wind PEM (1 kg)

| Exchanges                                                | Amount   | Unit          |
|----------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                    |          |               |
| hydrogen production, gaseous, 30 bar, wind onshore, pem* | 1.0162   | kilogram      |
| hydrogen liquefaction plant construction*                | 3.43E-09 | unit          |
| electricity production, wind, 1-3MW turbine, onshore     | 10.5     | kilowatt hour |
| <b>Environmental flows</b>                               |          |               |
| Hydrogen (to air)                                        | 0.0162   | kilogram      |

Data source: Al Ghafri et al.<sup>176</sup> and Wulf and Zapp<sup>175</sup>

Table S4.288. Life cycle inventory of ammonia production, liquid, onshore wind PEM (1 kg)

| Exchanges                                                            | Amount    | Unit          |
|----------------------------------------------------------------------|-----------|---------------|
| <b>Economic flows</b>                                                |           |               |
| hydrogen production, gaseous, 30 bar, wind onshore, pem*             | 1.76E-01  | kilogram      |
| nitrogen, gaseous, from cryogenic distillation, without compression* | 8.15E-01  | kilogram      |
| ammonia synthesis catalyst*                                          | 5.15E-05  | kilogram      |
| market for chemical factory, organics                                | 3.29E-10  | unit          |
| electricity production, wind, 1-3MW turbine, onshore                 | 1.44      | kilowatt hour |
| treatment of inert waste, inert material landfill                    | -5.15E-05 | kilogram      |
| <b>Environmental flows</b>                                           |           |               |
| Water, cooling, unspecified natural origin (from natural resource)   | 1.49E-01  | cubic meter   |
| Hydrogen (to air)                                                    | 7.67E-04  | kilogram      |
| Ammonia(to air)                                                      | 1.63E-03  | kilogram      |
| Nitrogen oxides(to air)                                              | 1.00E-03  | kilogram      |
| Water(to air)                                                        | 4.76E-02  | cubic meter   |
| Water(to water)                                                      | 1.01E-01  | cubic meter   |

Data source: D'Angelo et al.<sup>54</sup>

Table S4.289. Life cycle inventory of methanol production, CO<sub>2</sub> from DAC, onshore wind PEM (1 kg)

| Exchanges                               | Amount | Unit     |
|-----------------------------------------|--------|----------|
| <b>Economic flows</b>                   |        |          |
| CO <sub>2</sub> from DAC, onshore wind* | 1.51   | kilogram |

|                                                          |           |               |
|----------------------------------------------------------|-----------|---------------|
| hydrogen production, gaseous, 30 bar, wind onshore, pem* | 2.08E-01  | kilogram      |
| electricity production, wind, 1-3MW turbine, onshore     | 2.72E-01  | kilowatt hour |
| market for steel, chromium steel 18/8                    | 1.53E-04  | kilogram      |
| market for aluminium oxide, non-metallurgical            | 1.20E-05  | kilogram      |
| market for copper oxide                                  | 6.20E-05  | kilogram      |
| market for zinc oxide                                    | 2.90E-05  | kilogram      |
| market for heat, from steam, in chemical industry        | -4.40E-01 | megajoule     |
| market for wastewater, average                           | -5.71E-04 | cubic meter   |
| <b>Environmental flows</b>                               |           |               |
| Carbon dioxide, fossil (air)                             | 7.70E-02  | kilogram      |
| Methanol (air)                                           | 1.00E-02  | kilogram      |
| Nitrogen oxides (air)                                    | 1.78E-06  | kilogram      |

Data source: González-Garay et al.<sup>177</sup>

Table S4.290. Life cycle inventory of CO<sub>2</sub> from DAC, onshore wind (1 kg)

| Exchanges                                            | Amount | Unit          |
|------------------------------------------------------|--------|---------------|
| <b>Economic flows</b>                                |        |               |
| electricity production, wind, 1-3MW turbine, onshore | 0.366  | kilowatt hour |
| market group for tap water                           | 3.105  | kilogram      |
| market group for natural gas, high pressure          | 0.1895 | cubic meter   |
| market for calcium carbonate, precipitated           | 0.02   | kilogram      |
| <b>Environmental flows</b>                           |        |               |
| Carbon dioxide, in air                               | 1      | kilogram      |

Data source: Keith et al.<sup>178</sup>

Table S4.291. Life cycle inventory of hydrogen production, gaseous, 30 bar, wind onshore, pem (1 kg)

| Exchanges                                            | Amount   | Unit          |
|------------------------------------------------------|----------|---------------|
| <b>Economic flows</b>                                |          |               |
| electrolyzer, PEM, Balance of Plant                  | 3.45E-07 | unit          |
| electrolyzer, PEM, Stack                             | 1.04E-06 | unit          |
| electricity production, wind, 1-3MW turbine, onshore | 57.47    | kilowatt hour |
| market for water, deionised                          | 12       | kilogram      |
| <b>Environmental flows</b>                           |          |               |
| Oxygen                                               | 8        | kilogram      |
| Water, cooling, unspecified natural origin           | 0.0881   | cubic meter   |

Data source: Wei et al.<sup>53</sup>

## Background data

Table S4.292. The electricity mixes<sup>66</sup> used for H<sub>2</sub>-based fuel production under different scenarios and their GHG emissions in 2020 and 2050. In this table, CHP=Combined heat and power plant, IGCC=Integrated gasification combined cycle, PC=Conventional coal power plant, CCS=Carbon capture and storage, OC=Gas turbine, CC=Natural gas combined cycle, ST=Diesel oil turbine, CSP=Concentrating solar power and PV=photovoltaic.

|                        | Less Ambitious |      | Ambitious |      | Very Ambitious |      |
|------------------------|----------------|------|-----------|------|----------------|------|
|                        | 2020           | 2050 | 2020      | 2050 | 2020           | 2050 |
| <b>Electricity mix</b> |                |      |           |      |                |      |
| Biomass CHP (%)        | 0.57           | 0.25 | 0.63      | 0.22 |                |      |
| Biomass IGCC CCS (%)   | 0              | 0.02 | 0         | 1.00 |                |      |
| Biomass IGCC (%)       | 1.78           | 0.54 | 1.73      | 0.51 |                |      |
| Coal PC (%)            | 31.66          | 0    | 29.33     | 0    |                |      |
| Coal IGCC (%)          | 0.01           | 0.01 | 0.07      | 0    |                |      |

|                                                                        |             |             |             |              |              |             |
|------------------------------------------------------------------------|-------------|-------------|-------------|--------------|--------------|-------------|
| Coal PC CCS (%)                                                        | 0           | 0           | 0           | 0            |              |             |
| Coal IGCC CCS (%)                                                      | 0           | 0           | 0           | 0            |              |             |
| Coal CHP (%)                                                           | 5.12        | 0.16        | 4.22        | 0            |              |             |
| Gas OC (%)                                                             | 0.99        | 0.72        | 0.71        | 0.21         |              |             |
| Gas CC (%)                                                             | 16.98       | 1.91        | 20.40       | 0            |              |             |
| Gas CHP (%)                                                            | 1.99        | 0.20        | 3.32        | 0            |              |             |
| Gas CC CCS (%)                                                         | 0           | 0           | 0           | 0            |              |             |
| Geothermal (%)                                                         | 0.95        | 0.54        | 1.07        | 0.70         |              |             |
| Hydro (%)                                                              | 17.70       | 9.05        | 17.26       | 11.50        |              |             |
| Nuclear (%)                                                            | 10.85       | 3.75        | 9.49        | 4.85         |              |             |
| Oil ST (%)                                                             | 2.16        | 0           | 1.80        | 0            |              |             |
| Solar CSP (%)                                                          | 0.09        | 0.44        | 0.08        | 0.37         |              |             |
| Solar PV Centralized (%)                                               | 3.40        | 51.52       | 3.62        | 49.99        |              |             |
| Wind Onshore (%)                                                       | 5.53        | 25.02       | 5.94        | 24.64        | 100          | 100         |
| Wind Offshore (%)                                                      | 0.22        | 5.87        | 0.34        | 6.00         |              |             |
| <b>GHG emissions of the electricity mix (kg CO<sub>2</sub>-eq/kWh)</b> | <b>0.65</b> | <b>0.03</b> | <b>0.63</b> | <b>0.005</b> | <b>0.014</b> | <b>0.01</b> |

## S4.2 Future transport work demand

The contribution of different ship sizes to global containerized transport demand over time is shown in Figure S4.2. These ratios are the same across different scenarios.

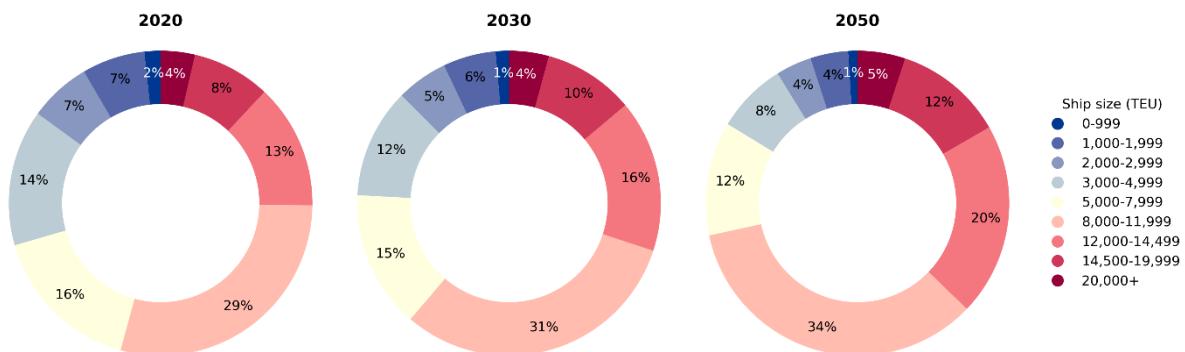



Figure S4.2. Contribution of different ship sizes to global containerized transport demand in 2020, 2030, and 2050. Ship size categories in this figure are measured in twenty-foot equivalent units (TEU).

The future containerized transport work by propulsion system for each ship size, as estimated by the logistic model (upper bound) and the gravity model (lower bound), is shown in Figure S4.3 and Figure S4.4, respectively.

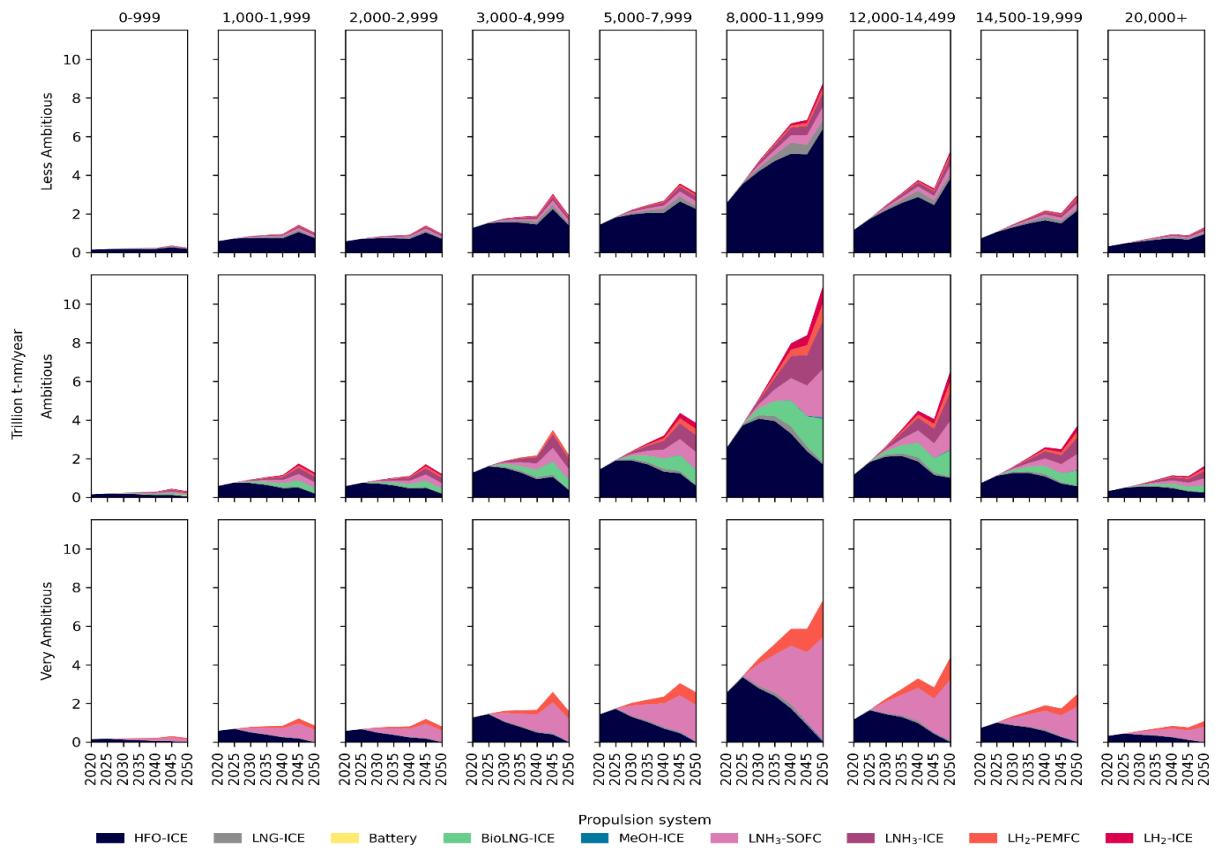



Figure S4.3. Global containerized transport demand by propulsion system for each ship size, based on logistic model. Ship size categories in this figure are measured in twenty-foot equivalent units (TEU).

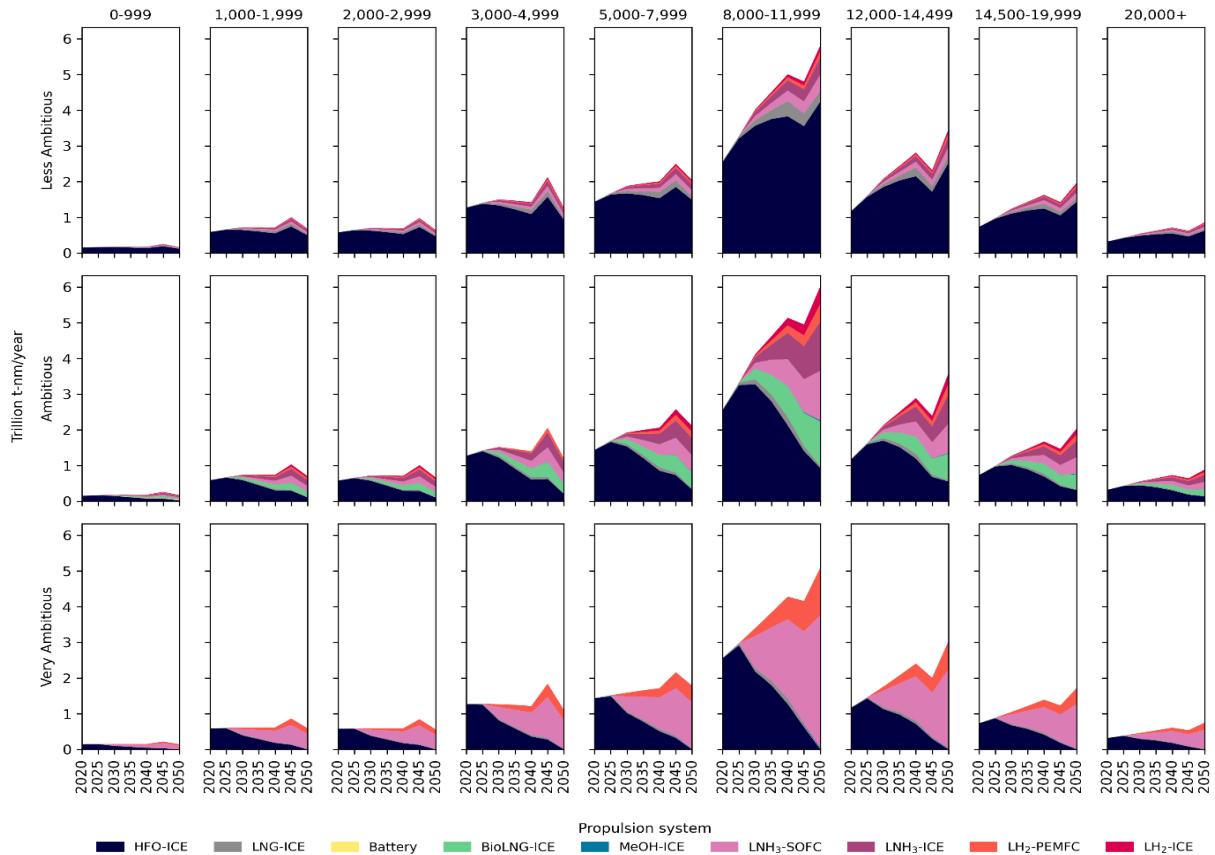



Figure S4.4. Global containerized transport demand by propulsion system for each ship size, based on gravity model. Ship size categories in this figure are measured in twenty-foot equivalent units (TEU).

## S4.3 Supplementary results

### Model validation

To validate the model of energy demand for ship operation, the direct CO<sub>2</sub> emissions of HFO ships representing different ship sizes calculated in this study were compared with the monitoring results reported under the EU Monitoring, Reporting and Verification (EU-MRV) Maritime Regulation<sup>273</sup> and with calculated results from the IMO report.<sup>7</sup> In EU-MRV results, CO<sub>2</sub> emissions were recorded for 1,859 container ships in 2020,<sup>273</sup> which account for about one third of the global container ship fleet at that time. The above CO<sub>2</sub> emission records were classified by ship size to obtain the emission range for each ship size. In the IMO report, the CO<sub>2</sub> emissions for the global container ship fleet in 2018 were reported by ship size category. As shown in Figure S4.5, our results are generally in good agreement with both sets of measured data. The higher CO<sub>2</sub> emissions for ships of 0–999 TEU in the EU-MRV data can possibly be attributed to the low payload utilization rate of these ships. The monitored feeder ships primarily operate near the shore within the EU, and the limited coverage of the monitoring data does not include ships operating in other regions. Overall, this discrepancy does not compromise the general validity of the model used in this study.

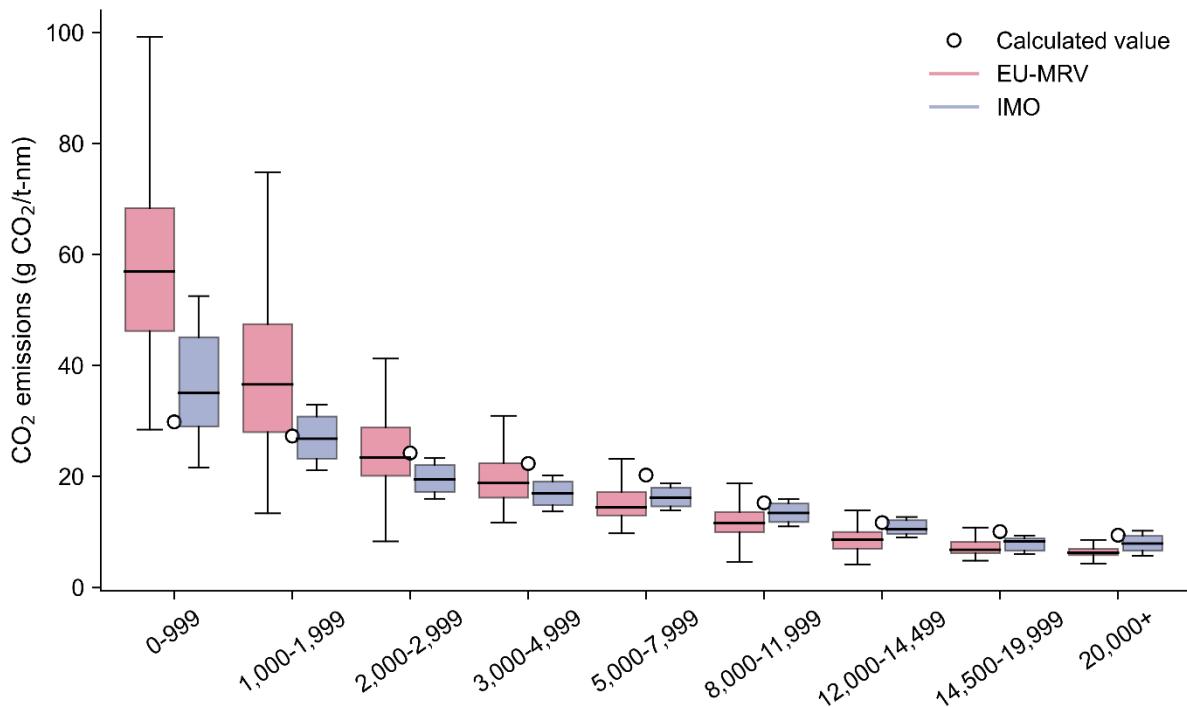



Figure S4.5. Comparison of calculated CO<sub>2</sub> emissions of representative HFO ships with EU-MRV and IMO results by ship size (TEU).

### Sensitivity analysis

In this sensitivity analysis, four parameters, namely main engine efficiency, propulsion system mass, ship speed, and voyage length, that can potentially affect the energy consumption per transport work are considered. Each parameter is modeled with a ±5% variation to examine its effect on the GHG emissions per t-nm for different propulsion

systems. As shown in Figure S4.6, ship speed is the most influential factor determining the results and can cause a more pronounced percentage change in GHG emissions for feeder ships than the  $\pm 5\%$  variation applied to the input, because the load factor of the main engine, which determines its energy consumption, is correlated with the cube of the ratio between the ship's operating speed and its maximum speed. For Ultra Large Container Vessels (ULCVs), the effect of main engine efficiency on energy consumption can be comparable to that of ship operating speed, because ULCVs require a higher power increase to account for adverse weather conditions (weather correction factor of 0.867, resulting in a 15% power increase) than feeder ships (weather correction factor of 0.909, resulting in a 10% power increase),<sup>7</sup> which reduces the relative influence of operating speed on the load factor and energy consumption of the main engine. In the Very Ambitious scenario, the GHG emissions of liquid H<sub>2</sub>-PEMFC and liquid NH<sub>3</sub>-SOFC ships are primarily determined by ship production, with the effects of ship speed and main engine efficiency remaining similar over time. Changes in voyage length and propulsion system mass have little impact across all scenarios.

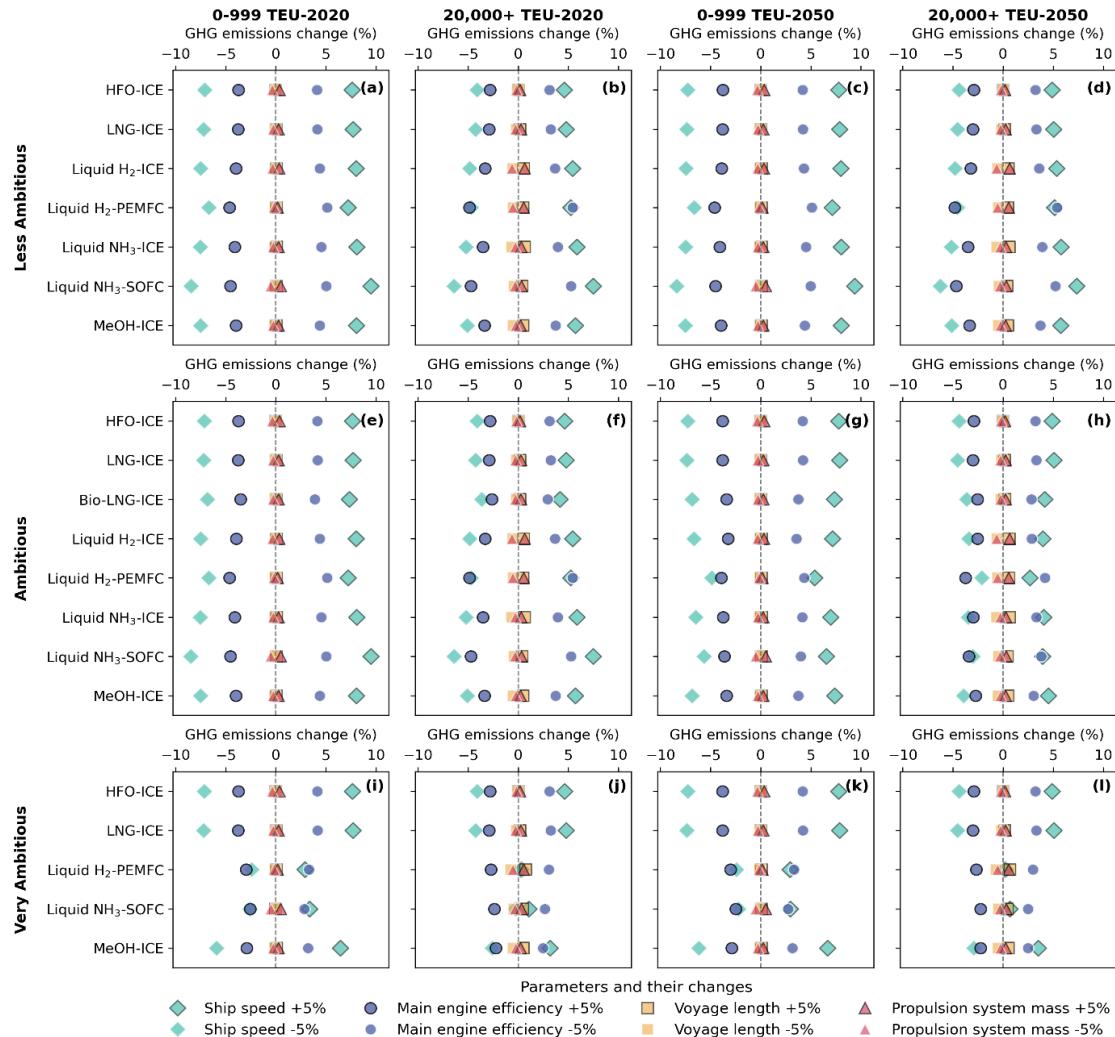



Figure S4.6. Sensitivity analysis of the effects of main parameter changes on GHG emissions per t-nm for different propulsion systems by ship size and time under different scenarios. (a)-(d), (e)-(h) and (i)-(l) show the results for the Less Ambitious, Ambitious and Very Ambitious scenarios, respectively. In the Ambitious scenario, the battery system is not included in this sensitivity analysis as the decisive factor is its gravimetric energy density.

## GHG emissions of different propulsion systems

Table S4.293. GHG emissions of different propulsion systems by ship size from 2020 to 2050 in the Less Ambitious scenario (g CO<sub>2</sub>-eq/t-nm).

| Ship size (TEU) | Propulsion system            | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-----------------|------------------------------|------|------|------|------|------|------|------|
| 0-999           | HFO-ICE                      | 38   | 37   | 37   | 37   | 37   | 37   | 37   |
|                 | LNG-ICE                      | 36   | 36   | 36   | 36   | 35   | 35   | 35   |
|                 | Liquid H <sub>2</sub> -ICE   | 69   | 63   | 57   | 53   | 48   | 45   | 44   |
|                 | Liquid H <sub>2</sub> -PEMFC | 66   | 60   | 54   | 50   | 46   | 42   | 41   |
|                 | Liquid NH <sub>3</sub> -ICE  | 74   | 68   | 63   | 58   | 54   | 51   | 49   |
|                 | Liquid NH <sub>3</sub> -SOFC | 62   | 57   | 53   | 49   | 45   | 42   | 41   |
|                 | MeOH-ICE                     | 68   | 66   | 63   | 60   | 57   | 54   | 53   |
| 1,000-1,999     | HFO-ICE                      | 35   | 34   | 34   | 34   | 34   | 34   | 34   |
|                 | LNG-ICE                      | 33   | 33   | 33   | 33   | 32   | 32   | 32   |
|                 | Liquid H <sub>2</sub> -ICE   | 64   | 58   | 53   | 49   | 45   | 42   | 40   |
|                 | Liquid H <sub>2</sub> -PEMFC | 60   | 54   | 49   | 45   | 41   | 38   | 37   |
|                 | Liquid NH <sub>3</sub> -ICE  | 69   | 64   | 59   | 55   | 51   | 48   | 46   |
|                 | Liquid NH <sub>3</sub> -SOFC | 54   | 49   | 45   | 42   | 39   | 36   | 35   |
|                 | MeOH-ICE                     | 63   | 61   | 59   | 56   | 53   | 51   | 49   |
| 2,000-2,999     | HFO-ICE                      | 31   | 30   | 30   | 30   | 30   | 30   | 30   |
|                 | LNG-ICE                      | 30   | 29   | 29   | 29   | 29   | 29   | 29   |
|                 | Liquid H <sub>2</sub> -ICE   | 58   | 53   | 48   | 45   | 41   | 38   | 37   |
|                 | Liquid H <sub>2</sub> -PEMFC | 54   | 49   | 44   | 41   | 37   | 35   | 33   |
|                 | Liquid NH <sub>3</sub> -ICE  | 64   | 59   | 55   | 51   | 47   | 44   | 42   |
|                 | Liquid NH <sub>3</sub> -SOFC | 54   | 50   | 46   | 42   | 39   | 37   | 35   |
|                 | MeOH-ICE                     | 58   | 56   | 54   | 51   | 48   | 46   | 45   |
| 3,000-4,999     | HFO-ICE                      | 28   | 28   | 28   | 28   | 27   | 27   | 27   |
|                 | LNG-ICE                      | 27   | 27   | 27   | 27   | 27   | 27   | 27   |
|                 | Liquid H <sub>2</sub> -ICE   | 54   | 49   | 45   | 41   | 38   | 36   | 34   |
|                 | Liquid H <sub>2</sub> -PEMFC | 50   | 45   | 41   | 37   | 34   | 32   | 30   |
|                 | Liquid NH <sub>3</sub> -ICE  | 60   | 55   | 51   | 47   | 44   | 41   | 39   |
|                 | Liquid NH <sub>3</sub> -SOFC | 45   | 41   | 38   | 35   | 33   | 31   | 29   |
|                 | MeOH-ICE                     | 54   | 52   | 50   | 48   | 45   | 43   | 42   |
| 5,000-7,999     | HFO-ICE                      | 26   | 25   | 25   | 25   | 25   | 25   | 25   |
|                 | LNG-ICE                      | 25   | 25   | 24   | 24   | 24   | 24   | 24   |
|                 | Liquid H <sub>2</sub> -ICE   | 49   | 45   | 41   | 38   | 35   | 32   | 31   |
|                 | Liquid H <sub>2</sub> -PEMFC | 45   | 41   | 37   | 34   | 31   | 29   | 28   |
|                 | Liquid NH <sub>3</sub> -ICE  | 54   | 50   | 46   | 43   | 40   | 37   | 36   |
|                 | Liquid NH <sub>3</sub> -SOFC | 45   | 42   | 39   | 36   | 33   | 31   | 30   |
|                 | MeOH-ICE                     | 49   | 47   | 46   | 43   | 41   | 39   | 38   |
| 8,000-11,999    | HFO-ICE                      | 26   | 25   | 25   | 25   | 25   | 25   | 25   |
|                 | LNG-ICE                      | 25   | 25   | 24   | 24   | 24   | 24   | 24   |
|                 | Liquid H <sub>2</sub> -ICE   | 49   | 45   | 41   | 38   | 35   | 32   | 31   |
|                 | Liquid H <sub>2</sub> -PEMFC | 45   | 41   | 37   | 34   | 31   | 29   | 28   |
|                 | Liquid NH <sub>3</sub> -ICE  | 54   | 50   | 46   | 43   | 40   | 37   | 36   |
|                 | Liquid NH <sub>3</sub> -SOFC | 45   | 42   | 39   | 36   | 33   | 31   | 30   |
|                 | MeOH-ICE                     | 49   | 47   | 46   | 43   | 41   | 39   | 38   |
| 12,000-14,499   | HFO-ICE                      | 15   | 15   | 15   | 15   | 15   | 15   | 15   |

|               |                              |    |    |    |    |    |    |    |
|---------------|------------------------------|----|----|----|----|----|----|----|
|               | LNG-ICE                      | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
|               | Liquid H <sub>2</sub> -ICE   | 30 | 27 | 25 | 23 | 21 | 20 | 19 |
|               | Liquid H <sub>2</sub> -PEMFC | 28 | 25 | 23 | 21 | 19 | 18 | 17 |
|               | Liquid NH <sub>3</sub> -ICE  | 33 | 30 | 28 | 26 | 24 | 23 | 22 |
|               | Liquid NH <sub>3</sub> -SOFC | 26 | 24 | 22 | 20 | 19 | 18 | 17 |
|               | MeOH-ICE                     | 30 | 29 | 27 | 26 | 25 | 24 | 23 |
| 14,500-19,999 | HFO-ICE                      | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
|               | LNG-ICE                      | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
|               | Liquid H <sub>2</sub> -ICE   | 26 | 24 | 22 | 20 | 18 | 17 | 16 |
|               | Liquid H <sub>2</sub> -PEMFC | 24 | 21 | 20 | 18 | 16 | 15 | 15 |
|               | Liquid NH <sub>3</sub> -ICE  | 28 | 26 | 24 | 22 | 21 | 19 | 19 |
|               | Liquid NH <sub>3</sub> -SOFC | 23 | 21 | 19 | 18 | 17 | 16 | 15 |
|               | MeOH-ICE                     | 25 | 25 | 24 | 22 | 21 | 20 | 20 |
| 20,000+       | HFO-ICE                      | 13 | 12 | 12 | 12 | 12 | 12 | 12 |
|               | LNG-ICE                      | 13 | 12 | 12 | 12 | 12 | 12 | 12 |
|               | Liquid H <sub>2</sub> -ICE   | 25 | 22 | 20 | 19 | 17 | 16 | 16 |
|               | Liquid H <sub>2</sub> -PEMFC | 23 | 20 | 19 | 17 | 16 | 15 | 14 |
|               | Liquid NH <sub>3</sub> -ICE  | 27 | 25 | 23 | 21 | 20 | 18 | 18 |
|               | Liquid NH <sub>3</sub> -SOFC | 21 | 19 | 18 | 16 | 15 | 14 | 14 |
|               | MeOH-ICE                     | 24 | 23 | 22 | 21 | 20 | 19 | 19 |

Table S4. 294. GHG emissions of different propulsion systems by ship size from 2020 to 2050 in the Ambitious scenario (g CO<sub>2</sub>-eq/t-nm).

| Ship size (TEU) | Propulsion system            | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-----------------|------------------------------|------|------|------|------|------|------|------|
| 0-999           | HFO-ICE                      | 38   | 37   | 37   | 37   | 37   | 37   | 37   |
|                 | LNG-ICE                      | 36   | 36   | 36   | 35   | 35   | 35   | 35   |
|                 | Battery                      | 63   | 47   | 20   | 7    | 4    | 3    | 3    |
|                 | Bio-LNG-ICE                  | 22   | 20   | 17   | 16   | 15   | 15   | 15   |
|                 | Liquid H <sub>2</sub> -ICE   | 68   | 66   | 40   | 23   | 16   | 14   | 12   |
|                 | Liquid H <sub>2</sub> -PEMFC | 66   | 63   | 38   | 20   | 14   | 11   | 10   |
|                 | Liquid NH <sub>3</sub> -ICE  | 73   | 72   | 44   | 24   | 17   | 14   | 12   |
|                 | Liquid NH <sub>3</sub> -SOFC | 62   | 61   | 37   | 20   | 14   | 11   | 10   |
|                 | MeOH-ICE                     | 68   | 70   | 45   | 27   | 20   | 17   | 15   |
| 1,000-1,999     | HFO-ICE                      | 35   | 34   | 34   | 34   | 34   | 34   | 34   |
|                 | LNG-ICE                      | 33   | 33   | 33   | 32   | 32   | 32   | 32   |
|                 | Bio-LNG-ICE                  | 20   | 18   | 16   | 14   | 14   | 14   | 14   |
|                 | Liquid H <sub>2</sub> -ICE   | 63   | 61   | 37   | 21   | 15   | 13   | 12   |
|                 | Liquid H <sub>2</sub> -PEMFC | 59   | 57   | 34   | 18   | 12   | 10   | 9    |
|                 | Liquid NH <sub>3</sub> -ICE  | 69   | 68   | 41   | 23   | 16   | 13   | 12   |
|                 | Liquid NH <sub>3</sub> -SOFC | 53   | 52   | 32   | 18   | 12   | 10   | 9    |
|                 | MeOH-ICE                     | 63   | 65   | 42   | 25   | 18   | 16   | 14   |
|                 |                              |      |      |      |      |      |      |      |
| 2,000-2,999     | HFO-ICE                      | 31   | 30   | 30   | 30   | 30   | 30   | 30   |
|                 | LNG-ICE                      | 30   | 29   | 29   | 29   | 29   | 29   | 29   |
|                 | Bio-LNG-ICE                  | 18   | 16   | 14   | 13   | 13   | 12   | 12   |
|                 | Liquid H <sub>2</sub> -ICE   | 58   | 56   | 34   | 19   | 14   | 12   | 11   |
|                 | Liquid H <sub>2</sub> -PEMFC | 53   | 52   | 31   | 17   | 11   | 9    | 8    |
|                 | Liquid NH <sub>3</sub> -ICE  | 63   | 62   | 38   | 21   | 15   | 12   | 11   |
|                 | Liquid NH <sub>3</sub> -SOFC | 54   | 53   | 32   | 18   | 12   | 10   | 9    |

|               |                              |    |    |    |    |    |    |    |
|---------------|------------------------------|----|----|----|----|----|----|----|
|               | MeOH-ICE                     | 58 | 59 | 38 | 23 | 17 | 14 | 13 |
| 3,000-4,999   | HFO-ICE                      | 28 | 28 | 28 | 27 | 27 | 27 | 27 |
|               | LNG-ICE                      | 27 | 27 | 27 | 27 | 27 | 27 | 27 |
|               | Bio-LNG-ICE                  | 16 | 15 | 13 | 12 | 12 | 11 | 11 |
|               | Liquid H <sub>2</sub> -ICE   | 54 | 52 | 32 | 18 | 13 | 11 | 10 |
|               | Liquid H <sub>2</sub> -PEMFC | 49 | 47 | 28 | 15 | 10 | 8  | 7  |
|               | Liquid NH <sub>3</sub> -ICE  | 59 | 58 | 35 | 20 | 14 | 11 | 10 |
|               | Liquid NH <sub>3</sub> -SOFC | 45 | 44 | 27 | 15 | 10 | 8  | 7  |
| 5,000-7,999   | MeOH-ICE                     | 54 | 55 | 35 | 21 | 16 | 13 | 12 |
|               | HFO-ICE                      | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
|               | LNG-ICE                      | 25 | 25 | 24 | 24 | 24 | 24 | 24 |
|               | Bio-LNG-ICE                  | 15 | 14 | 12 | 11 | 10 | 10 | 10 |
|               | Liquid H <sub>2</sub> -ICE   | 49 | 47 | 29 | 16 | 12 | 10 | 9  |
|               | Liquid H <sub>2</sub> -PEMFC | 45 | 43 | 26 | 14 | 9  | 7  | 7  |
|               | Liquid NH <sub>3</sub> -ICE  | 54 | 53 | 32 | 18 | 13 | 10 | 9  |
| 8,000-11,999  | Liquid NH <sub>3</sub> -SOFC | 45 | 44 | 27 | 15 | 10 | 8  | 7  |
|               | MeOH-ICE                     | 49 | 50 | 32 | 19 | 14 | 12 | 11 |
|               | HFO-ICE                      | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
|               | LNG-ICE                      | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
|               | Bio-LNG-ICE                  | 12 | 11 | 9  | 8  | 8  | 8  | 8  |
|               | Liquid H <sub>2</sub> -ICE   | 39 | 37 | 23 | 13 | 9  | 8  | 7  |
|               | Liquid H <sub>2</sub> -PEMFC | 35 | 34 | 20 | 11 | 8  | 6  | 5  |
| 12,000-14,499 | Liquid NH <sub>3</sub> -ICE  | 43 | 42 | 26 | 14 | 10 | 8  | 8  |
|               | Liquid NH <sub>3</sub> -SOFC | 35 | 35 | 21 | 12 | 8  | 7  | 6  |
|               | MeOH-ICE                     | 38 | 39 | 25 | 15 | 11 | 10 | 9  |
|               | HFO-ICE                      | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
|               | LNG-ICE                      | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
|               | Bio-LNG-ICE                  | 9  | 9  | 7  | 7  | 7  | 7  | 7  |
|               | Liquid H <sub>2</sub> -ICE   | 30 | 29 | 18 | 10 | 7  | 6  | 6  |
| 14,500-19,999 | Liquid H <sub>2</sub> -PEMFC | 27 | 27 | 16 | 9  | 6  | 5  | 5  |
|               | Liquid NH <sub>3</sub> -ICE  | 33 | 32 | 20 | 11 | 8  | 7  | 6  |
|               | Liquid NH <sub>3</sub> -SOFC | 26 | 25 | 15 | 9  | 6  | 5  | 5  |
|               | MeOH-ICE                     | 29 | 30 | 20 | 12 | 9  | 8  | 7  |
|               | HFO-ICE                      | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
|               | LNG-ICE                      | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
|               | Bio-LNG-ICE                  | 8  | 7  | 6  | 6  | 6  | 6  | 6  |
| 20,000+       | Liquid H <sub>2</sub> -ICE   | 26 | 25 | 15 | 9  | 6  | 5  | 5  |
|               | Liquid H <sub>2</sub> -PEMFC | 24 | 23 | 14 | 8  | 5  | 4  | 4  |
|               | Liquid NH <sub>3</sub> -ICE  | 28 | 28 | 17 | 10 | 7  | 6  | 5  |
|               | Liquid NH <sub>3</sub> -SOFC | 23 | 22 | 14 | 8  | 5  | 4  | 4  |
|               | MeOH-ICE                     | 25 | 26 | 17 | 10 | 8  | 7  | 6  |
|               | HFO-ICE                      | 13 | 12 | 12 | 12 | 12 | 12 | 12 |
|               | LNG-ICE                      | 13 | 12 | 12 | 12 | 12 | 12 | 12 |

|                 | MeOH-ICE                     | 24   | 25   | 16   | 10   | 7    | 6    | 6    |
|-----------------|------------------------------|------|------|------|------|------|------|------|
| Ship size (TEU) | Propulsion system            | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
| 0-999           | HFO-ICE                      | 38   | 37   | 37   | 37   | 37   | 37   | 37   |
|                 | LNG-ICE                      | 36   | 36   | 36   | 35   | 35   | 35   | 35   |
|                 | Liquid H <sub>2</sub> -PEMFC | 7    | 6    | 5    | 5    | 5    | 5    | 5    |
|                 | Liquid NH <sub>3</sub> -SOFC | 8    | 7    | 6    | 5    | 5    | 5    | 5    |
|                 | MeOH-ICE                     | 11   | 11   | 10   | 9    | 9    | 9    | 9    |
| 1,000-1,999     | HFO-ICE                      | 35   | 34   | 34   | 34   | 34   | 34   | 34   |
|                 | LNG-ICE                      | 33   | 33   | 33   | 32   | 32   | 32   | 32   |
|                 | Liquid H <sub>2</sub> -PEMFC | 6    | 6    | 5    | 5    | 5    | 4    | 4    |
|                 | Liquid NH <sub>3</sub> -SOFC | 7    | 7    | 6    | 5    | 5    | 5    | 5    |
|                 | MeOH-ICE                     | 11   | 10   | 9    | 9    | 9    | 8    | 8    |
| 2,000-2,999     | HFO-ICE                      | 31   | 30   | 30   | 30   | 30   | 30   | 30   |
|                 | LNG-ICE                      | 30   | 29   | 29   | 29   | 29   | 29   | 29   |
|                 | Liquid H <sub>2</sub> -PEMFC | 6    | 5    | 5    | 4    | 4    | 4    | 4    |
|                 | Liquid NH <sub>3</sub> -SOFC | 7    | 6    | 5    | 5    | 5    | 5    | 5    |
|                 | MeOH-ICE                     | 10   | 9    | 8    | 8    | 8    | 8    | 8    |
| 3,000-4,999     | HFO-ICE                      | 28   | 28   | 28   | 27   | 27   | 27   | 27   |
|                 | LNG-ICE                      | 27   | 27   | 27   | 27   | 27   | 27   | 27   |
|                 | Liquid H <sub>2</sub> -PEMFC | 5    | 5    | 4    | 4    | 4    | 4    | 4    |
|                 | Liquid NH <sub>3</sub> -SOFC | 6    | 5    | 4    | 4    | 4    | 4    | 4    |
|                 | MeOH-ICE                     | 9    | 8    | 8    | 7    | 7    | 7    | 7    |
| 5,000-7,999     | HFO-ICE                      | 25   | 25   | 25   | 25   | 25   | 25   | 25   |
|                 | LNG-ICE                      | 25   | 25   | 24   | 24   | 24   | 24   | 24   |
|                 | Liquid H <sub>2</sub> -PEMFC | 5    | 4    | 4    | 3    | 3    | 3    | 3    |
|                 | Liquid NH <sub>3</sub> -SOFC | 5    | 5    | 4    | 4    | 4    | 4    | 4    |
|                 | MeOH-ICE                     | 8    | 8    | 7    | 7    | 7    | 6    | 6    |
| 8,000-11,999    | HFO-ICE                      | 19   | 19   | 19   | 19   | 19   | 19   | 19   |
|                 | LNG-ICE                      | 19   | 19   | 19   | 19   | 19   | 19   | 19   |
|                 | Liquid H <sub>2</sub> -PEMFC | 4    | 4    | 3    | 3    | 3    | 3    | 3    |
|                 | Liquid NH <sub>3</sub> -SOFC | 5    | 4    | 4    | 3    | 3    | 3    | 3    |
|                 | MeOH-ICE                     | 7    | 6    | 6    | 5    | 5    | 5    | 5    |
| 12,000-14,499   | HFO-ICE                      | 15   | 15   | 15   | 15   | 15   | 15   | 15   |
|                 | LNG-ICE                      | 15   | 15   | 15   | 15   | 15   | 15   | 15   |
|                 | Liquid H <sub>2</sub> -PEMFC | 4    | 3    | 3    | 3    | 3    | 3    | 3    |
|                 | Liquid NH <sub>3</sub> -SOFC | 4    | 3    | 3    | 3    | 3    | 3    | 3    |
|                 | MeOH-ICE                     | 5    | 5    | 5    | 4    | 4    | 4    | 4    |
| 14,500-19,999   | HFO-ICE                      | 13   | 13   | 13   | 13   | 13   | 13   | 13   |
|                 | LNG-ICE                      | 13   | 13   | 13   | 13   | 13   | 13   | 13   |
|                 | Liquid H <sub>2</sub> -PEMFC | 3    | 3    | 2    | 2    | 2    | 2    | 2    |
|                 | Liquid NH <sub>3</sub> -SOFC | 3    | 3    | 3    | 2    | 2    | 2    | 2    |
|                 | MeOH-ICE                     | 5    | 4    | 4    | 4    | 4    | 4    | 4    |
| 20,000+         | HFO-ICE                      | 13   | 12   | 12   | 12   | 12   | 12   | 12   |
|                 | LNG-ICE                      | 13   | 12   | 12   | 12   | 12   | 12   | 12   |
|                 | Liquid H <sub>2</sub> -PEMFC | 3    | 3    | 3    | 2    | 2    | 2    | 2    |

|                              |   |   |   |   |   |   |
|------------------------------|---|---|---|---|---|---|
| Liquid NH <sub>3</sub> -SOFC | 3 | 3 | 3 | 2 | 2 | 2 |
| MeOH-ICE                     | 5 | 4 | 4 | 4 | 4 | 4 |

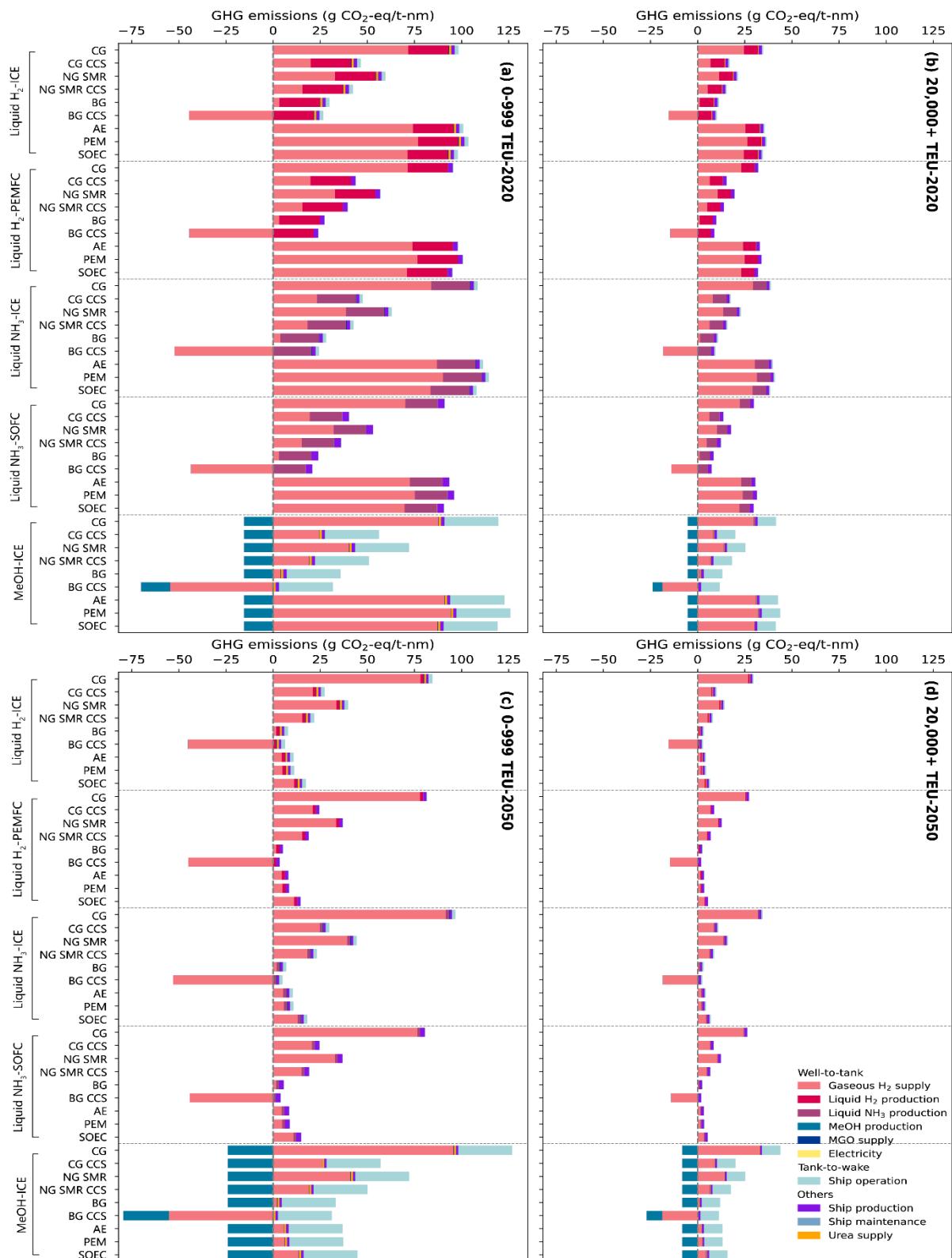



Figure S4.7. Prospective GHG emissions from H<sub>2</sub>-based propulsion systems for container ships in 2020 and 2050 by H<sub>2</sub> source in the Less Ambitious scenario.

### Comparison between liquid organic H<sub>2</sub> carrier and liquid NH<sub>3</sub> systems

Liquid organic hydrogen carrier (LOHC) systems can provide gaseous H<sub>2</sub> through catalytic exothermic hydrogenation and endothermic dehydrogenation reactions of a liquid organic compound. Compared with liquid NH<sub>3</sub>, LOHCs can be handled under ambient conditions in a manner similar to diesel and exhibit low toxicity.<sup>175, 293</sup> LOHC systems are currently in the demonstration phase (TRL 7–8) and are expected to be fully commercialized by the late 2030s.<sup>256</sup> In this study, we further model the LOHC systems to enable a comparison with liquid NH<sub>3</sub> systems. Two LOHC-based propulsion systems are considered: LOHC–ICE and LOHC–SOFC. It is assumed that the waste heat on board can be utilized to sustain the dehydrogenation process without the need for additional fuel combustion.<sup>324</sup> Dibenzyltoluene (DBT), a widely studied LOHC with a H<sub>2</sub> storage capacity of 6.2 wt%,<sup>57, 323</sup> is selected for this study. During the hydrogenation process, 1% of the H<sub>2</sub> and 0.1% LOHC are lost.<sup>323</sup> The LOHC is assumed to withstand 1000 hydrogenation–dehydrogenation cycles.<sup>323</sup> A ten-chamber tank system, with one chamber kept empty at the start of the trip, is used to handle both loaded and unloaded LOHC.<sup>324</sup> The workflow charts of the LOHC systems and the LCI are provided in Section S4.1.

Figure S4.8 shows the GHG emissions of ships powered by liquid NH<sub>3</sub> systems and LOHC systems under different scenarios. Due to the lower gravimetric energy density of LOHC compared with liquid NH<sub>3</sub> (1.9 MWh/t vs. 5.2 MWh/t for the fuel carrier/fuel itself, and 1.66 MWh/t vs. 4.2 MWh/t for the fuel carrier/fuel plus tank),<sup>233, 324, 325</sup> the ships powered by LOHC systems always experience greater cargo weight loss (see Table S2) and higher energy consumption per t-nm. For feeder ships, these adverse impacts on GHG emissions are not significant, and LOHC systems exhibit lower GHG emissions primarily because the GHG emissions from gaseous H<sub>2</sub> supply via the LOHC cycle are currently lower than those from liquid NH<sub>3</sub> production. By 2050, the GHG emissions of ships powered by LOHC systems are slightly lower than those of ships powered by liquid NH<sub>3</sub> systems in the Less Ambitious scenario and comparable in the Ambitious scenario. For Ultra Large Container Vessels (ULCVs), the higher energy demand per t-nm leads to greater gaseous H<sub>2</sub> demand in LOHC systems than in liquid NH<sub>3</sub> systems. Because liquid NH<sub>3</sub> production involves higher electricity use, ships powered by liquid NH<sub>3</sub> systems still show slightly higher GHG emissions than those powered by LOHC systems at present. However, as electricity becomes decarbonized, LOHC ships are expected to exhibit higher GHG emissions than liquid NH<sub>3</sub> ships. In the Very Ambitious scenario, where both liquid NH<sub>3</sub> and gaseous H<sub>2</sub> supplied via the LOHC cycle are fully sourced from renewables, the GHG emissions of LOHC–SOFC ships remain similar to those of liquid NH<sub>3</sub>–SOFC ships for feeder ships, but are slightly higher for ULCVs from now to 2050.

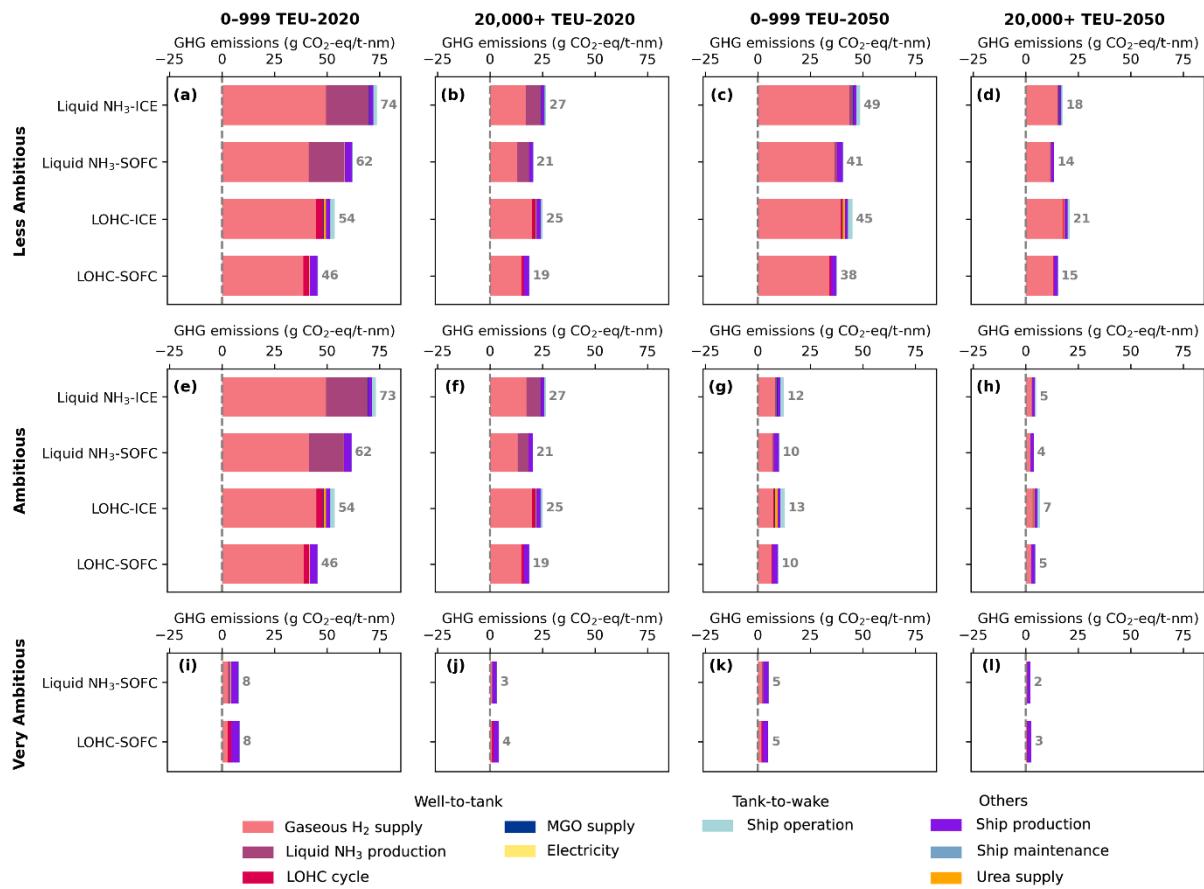



Figure S4.8. Prospective GHG emissions of liquid NH<sub>3</sub> and liquid organic H<sub>2</sub> carrier (LOHC) systems across various scenarios, by ship size and time. (a)-(d), (e)-(h) and (i)-(l) show the results for the Less Ambitious, Ambitious and Very Ambitious scenarios, respectively. The LOHC cycle consists of hydrogenation and dehydrogenation processes.

We further examined the impacts of adopting LOHC systems instead of liquid NH<sub>3</sub> systems at a large scale on the cumulative GHG emissions from global container shipping. As shown in Figure S4.9, replacing liquid NH<sub>3</sub> systems with LOHC systems can lead to a slight increase in cumulative GHG emissions between 2020 and 2050, by 1.7–1.8%, 2.8–3.3% and 2.2–2.5% in the Less Ambitious, Ambitious and Very Ambitious scenarios, respectively.

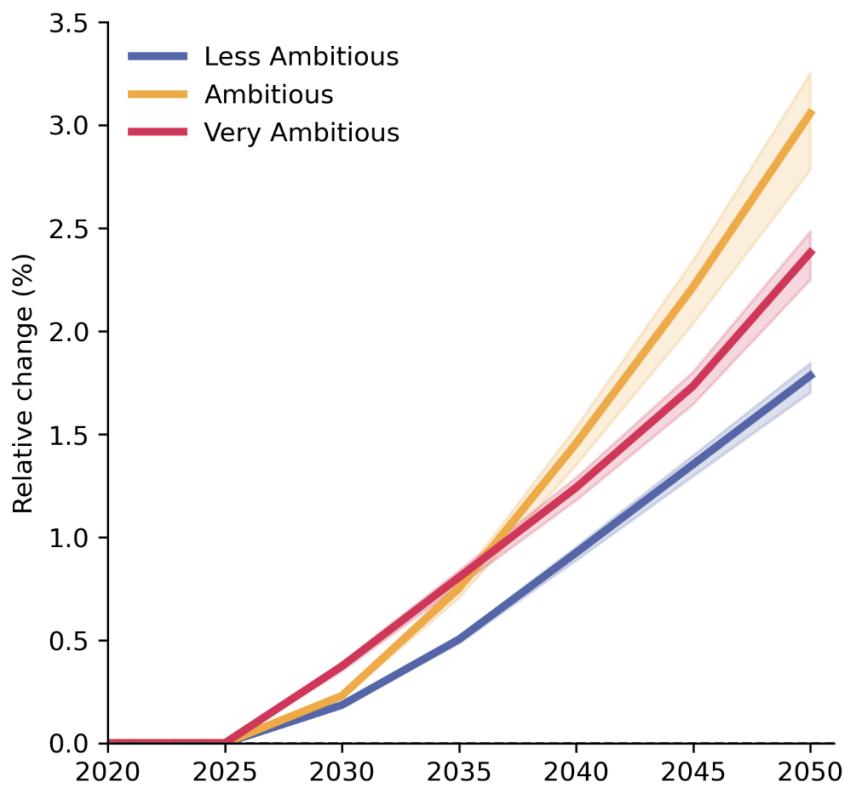



Figure S4.9. The relative change in cumulative GHG emissions under different scenarios when replacing liquid  $NH_3$  systems with LOHC systems.

#### CO<sub>2</sub> demand from DAC for container shipping

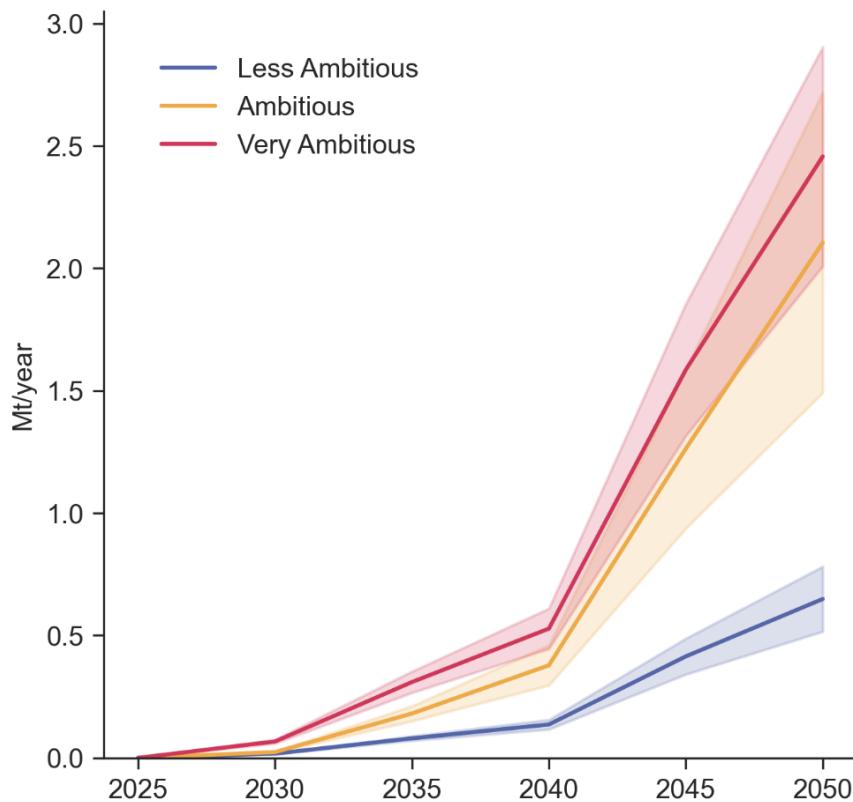



Figure S4.10. CO<sub>2</sub> demand from DAC for container shipping in different scenarios.

## References

1. IPCC, *Climate Change 2023 Synthesis Report*, Intergovernmental Panel on Climate Change, Geneva, 2023.
2. IPCC, *Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty*, Report 9781009157957, Intergovernmental Panel on Climate Change, Cambridge, 2018.
3. S. J. Davis, N. S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I. L. Azevedo, S. M. Benson, T. Bradley, J. Brouwer, Y.-M. Chiang, C. T. M. Clack, A. Cohen, S. Doig, J. Edmonds, P. Fennell, C. B. Field, B. Hannegan, B.-M. Hodge, M. I. Hoffert, E. Ingersoll, P. Jaramillo, K. S. Lackner, K. J. Mach, M. Mastrandrea, J. Ogden, P. F. Peterson, D. L. Sanchez, D. Sperling, J. Stagner, J. E. Trancik, C.-J. Yang and K. Caldeira, *Science*, 2018, **360**, eaas9793.
4. X. Yang, C. P. Nielsen, S. Song and M. B. McElroy, *Nature Energy*, 2022, **7**, 955-965.
5. UNCTAD, *Review of Maritime Transport 2023*, United Nations Conference on Trade and Development, Geneva, 2023.
6. C. European Commission: Joint Research, M. Crippa, D. Guizzardi, E. Schaaf, F. Monforti-Ferrario, R. Quadrelli, A. Risquez Martin, S. Rossi, E. Vignati, M. Muntean, J. Brandao De Melo, D. Oom, F. Pagani, M. Banja, P. Taghavi-Moharamli, J. Köykkä, G. Grassi, A. Branco and J. San-Miguel, *GHG emissions of all world countries – 2023*, Publications Office of the European Union, 2023.
7. IMO, *Fourth Greenhouse Gas Study 2020*, International Maritime Organization, London, 2021.
8. S. Lagouvardou, B. Lagemann, H. N. Psaraftis, E. Lindstad and S. O. Erikstad, *Nature Energy*, 2023, **8**, 1209-1220.
9. J. Kersey, N. D. Popovich and A. A. Phadke, *Nature Energy*, 2022, **7**, 664-674.
10. B. Stoltz, M. Held, G. Georges and K. Boulouchos, *Nature Energy*, 2022, **7**, 203-212.
11. IRENA, *A pathway to decarbonise the shipping sector by 2050*, International Renewable Energy Agency, Abu Dhabi, 2021.
12. IMO, *Study on the readiness and availability of low- and zero-carbon ship technology and marine fuels*, International Maritime Organization, Didcot, 2023.
13. IEA, *Net Zero by 2050-A Roadmap for the Global Energy Sector*, International Energy Agency, Paris, 2021.
14. EC, Fit for 55, <https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55/>, (accessed 29th, September, 2024).
15. K. de Kleijne, M. A. J. Huijbregts, F. Knobloch, R. van Zelm, J. P. Hilbers, H. de Coninck and S. V. Hanssen, *Nature Energy*, 2024, **9**, 1139-1152.
16. R. Bhandari, C. A. Trudewind and P. Zapp, *Journal of Cleaner Production*, 2014, **85**, 151-163.
17. O. Siddiqui and I. Dincer, *International Journal of Hydrogen Energy*, 2019, **44**, 5773-5786.
18. G. Palmer, A. Roberts, A. Hoadley, R. Dargaville and D. Honnery, *Energy & Environmental Science*, 2021, **14**, 5113-5131.
19. C. Bauer, K. Treyer, C. Antonini, J. Bergerson, M. Gazzani, E. Gencer, J. Gibbins, M. Mazzotti, S. T. McCoy, R. McKenna, R. Pietzcker, A. P. Ravikumar, M. C. Romano, F.

Ueckerdt, J. Vente and M. van der Spek, *Sustainable Energy & Fuels*, 2022, **6**, 66-75.

20. A. Valente, D. Iribarren and J. Dufour, *The International Journal of Life Cycle Assessment*, 2017, **22**, 346-363.
21. M. Delpierre, J. Quist, J. Mertens, A. Prieur-Vernat and S. Cucurachi, *Journal of Cleaner Production*, 2021, **299**, 126866.
22. P. Lamers, T. Ghosh, S. Upasani, R. Sacchi and V. Daioglou, *Environmental Science & Technology*, 2023, **57**, 2464-2473.
23. IEA, *The Future of Hydrogen - Seizing today's opportunities*, International Energy Agency, 2019.
24. Y. Bicer and I. Dincer, *International Journal of Hydrogen Energy*, 2018, **43**, 4583-4596.
25. F. M. Kanchiralla, S. Brynolf, E. Malmgren, J. Hansson and M. Grahn, *Environmental Science & Technology*, 2022, **56**, 12517-12531.
26. F. M. Kanchiralla, S. Brynolf, T. Olsson, J. Ellis, J. Hansson and M. Grahn, *Applied Energy*, 2023, **350**, 121773.
27. G. Finnveden, M. Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D. Pennington and S. Suh, *Journal of Environmental Management*, 2009, **91**, 1-21.
28. J. B. Guinée, R. Heijungs, G. Huppes, A. Zamagni, P. Masoni, R. Buonomici, T. Ekvall and T. Rydberg, *Environmental Science & Technology*, 2011, **45**, 90-96.
29. R. Arvidsson, A.-M. Tillman, B. A. Sandén, M. Janssen, A. Nordelöf, D. Kushnir and S. Molander, *Journal of Industrial Ecology*, 2018, **22**, 1286-1294.
30. N. Thonemann, A. Schulte and D. Maga, *Sustainability*, 2020, **12**, 1192.
31. M. Caduff, M. A. J. Huijbregts, H.-J. Althaus, A. Koehler and S. Hellweg, *Environmental Science & Technology*, 2012, **46**, 4725-4733.
32. T. Gibon, R. Wood, A. Arvesen, J. D. Bergesen, S. Suh and E. G. Hertwich, *Environmental Science & Technology*, 2015, **49**, 11218-11226.
33. R. Kothari, D. Buddhi and R. L. Sawhney, *Renewable and Sustainable Energy Reviews*, 2008, **12**, 553-563.
34. B. Parkinson, M. Tabatabaei, D. C. Upham, B. Ballinger, C. Greig, S. Smart and E. McFarland, *International Journal of Hydrogen Energy*, 2018, **43**, 2540-2555.
35. F. Mueller-Langer, E. Tzimas, M. Kaltschmitt and S. Petevs, *International Journal of Hydrogen Energy*, 2007, **32**, 3797-3810.
36. IPCC, *Carbon Dioxide Capture and Storage*, Intergovernmental Panel on Climate Change, New York, 2005.
37. K. Volkart, C. Bauer and C. Boulet, *International Journal of Greenhouse Gas Control*, 2013, **16**, 91-106.
38. C. Antonini, K. Treyer, A. Streb, M. van der Spek, C. Bauer and M. Mazzotti, *Sustainable Energy & Fuels*, 2020, **4**, 2967-2986.
39. C. Antonini, K. Treyer, E. Moioli, C. Bauer, T. J. Schildhauer and M. Mazzotti, *Sustainable Energy & Fuels*, 2021, **5**, 2602-2621.
40. N. Gerloff, *Journal of Energy Storage*, 2021, **43**, 102759.
41. K. Bareiß, C. de la Rua, M. Möckl and T. Hamacher, *Applied Energy*, 2019, **237**, 862-872.
42. F. M. Kanchiralla, S. Brynolf and A. Mjelde, *Energy & Environmental Science*, 2024, **17**, 6393-6418.

43. H. Lindstad, B. E. Asbjørnslett and A. H. Strømman, *Energy Policy*, 2011, **39**, 3456-3464.

44. R. T. Poulsen, M. Viktorelius, H. Varvne, H. B. Rasmussen and H. von Knorring, *Transportation Research Part D: Transport and Environment*, 2022, **102**, 103120.

45. V. Zhaka and B. Samuelsson, *Energy Reports*, 2024, **12**, 5249-5267.

46. J. Cui and M. Aziz, *International Journal of Hydrogen Energy*, 2023, **48**, 15737-15747.

47. C. J. McKinlay, S. R. Turnock and D. A. Hudson, *International Journal of Hydrogen Energy*, 2021, **46**, 28282-28297.

48. OECD, *CO<sub>2</sub> emissions from global shipping – a new experimental database*, Organisation for Economic Co-operation and Development, Paris, 2023.

49. E. Müller-Casseres, F. Leblanc, M. van den Berg, P. Fragkos, O. Dessens, H. Naghash, R. Draeger, T. Le Gallic, I. S. Tagomori, I. Tsipropoulos, J. Emmerling, L. B. Baptista, D. P. van Vuuren, A. Giannousakis, L. Drouet, J. Portugal-Pereira, H.-S. de Boer, N. Tsanakas, P. R. R. Rochedo, A. Szklo and R. Schaeffer, *Nature Climate Change*, 2024, **14**, 600-607.

50. G. Lee, J. Kim, K. Jung, H. Park, H. Jang, C. Lee and J. Lee, *Journal of Marine Science and Engineering*, 2022, **10**, 755.

51. S. Hwang, S. Gil, G. Lee, J. Lee, H. Park, K. Jung and S. Suh, *Journal of Marine Science and Engineering*, 2020, **8**, 660.

52. M. Perčić, N. Vladimir, I. Jovanović and M. Koričan, *Applied Energy*, 2022, **309**, 118463.

53. S. Wei, R. Sacchi, A. Tukker, S. Suh and B. Steubing, *Energy & Environmental Science*, 2024, **17**, 2157-2172.

54. S. C. D'Angelo, S. Cobo, V. Tulus, A. Nabera, A. J. Martín, J. Pérez-Ramírez and G. Guillén-Gosálbez, *ACS Sustainable Chemistry & Engineering*, 2021, **9**, 9740-9749.

55. Á. Galán-Martín, V. Tulus, I. Díaz, C. Pozo, J. Pérez-Ramírez and G. Guillén-Gosálbez, *One Earth*, 2021, **4**, 565-583.

56. IEA, *Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach*, International Energy Agency, Paris, 2023.

57. L. Van Hoecke, L. Laffineur, R. Campe, P. Perreault, S. W. Verbruggen and S. Lenaerts, *Energy & Environmental Science*, 2021, **14**, 815-843.

58. M. Perčić, N. Vladimir and A. Fan, *Applied Energy*, 2020, **279**, 115848.

59. IEA, *Net Zero by 2050*, International Energy Agency, 2021.

60. I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah and K. R. Ward, *Energy & Environmental Science*, 2019, **12**, 463-491.

61. IEA, *Global Hydrogen Review 2021*, International Energy Agency, Paris, 2021.

62. A. Odenweller, F. Ueckerdt, G. F. Nemet, M. Jensterle and G. Luderer, *Nature Energy*, 2022, **7**, 854-865.

63. C. F. Blanco, S. Cucurachi, J. B. Guinée, M. G. Vijver, W. J. G. M. Peijnenburg, R. Trattnig and R. Heijungs, *Journal of Cleaner Production*, 2020, **259**, 120968.

64. T. Weidner, V. Tulus and G. Guillén-Gosálbez, *International Journal of Hydrogen Energy*, 2023, **48**, 8310-8327.

65. R. Sacchi, T. Terlouw, K. Siala, A. Dirnaichner, C. Bauer, B. Cox, C. Mutel, V. Daioglou and G. Luderer, *Renewable and Sustainable Energy Reviews*, 2022, **160**, 112311.

66. L. Baumstark, N. Bauer, F. Benke, C. Bertram, S. Bi, C. C. Gong, J. P. Dietrich, A. Dirnaichner, A. Giannousakis, J. Hilaire, D. Klein, J. Koch, M. Leimbach, A.

Levesque, S. Madeddu, A. Malik, A. Merfort, L. Merfort, A. Odenweller, M. Pehl, R. C. Pietzcker, F. Piontek, S. Rauner, R. Rodrigues, M. Rottoli, F. Schreyer, A. Schultes, B. Soergel, D. Soergel, J. Strefler, F. Ueckerdt, E. Kriegler and G. Luderer, *Geosci. Model Dev.*, 2021, **14**, 6571-6603.

67. IEA, *World Energy Outlook 2022*, International Energy Agency, Paris, 2022.

68. IEA, *Hydrogen in Latin America: From near-term opportunities to large-scale deployment*, International Energy Agency, Paris, 2021.

69. IEA, *Hydrogen Production Projects Database*, International Energy Agency, Paris, 2022.

70. NREL, Current Hydrogen from Coal without CO<sub>2</sub> Capture and Sequestration, <https://www.nrel.gov/hydrogen/assets/docs/current-central-coal-without-co2-sequestration-v2-1-1.xls>, (accessed 4th May, 2022).

71. A. Wokaun and E. Wilhelm, *Transition to Hydrogen: Pathways toward Clean Transportation*, Cambridge University Press, Cambridge, 2011.

72. IEA, *The Future of Hydrogen*, International Energy Agency, Paris, 2019.

73. NREL, Current Central Hydrogen from Coal with CO<sub>2</sub> Capture and Sequestration, <https://www.nrel.gov/hydrogen/h2a-production-models.html>, (accessed 4th May, 2022).

74. DEA, *Technology Data for Renewable Fuels*, Danish Energy Agency, 2022.

75. J. Alcalde, S. Flude, M. Wilkinson, G. Johnson, K. Edlmann, C. E. Bond, V. Scott, S. M. V. Gilfillan, X. Ogaya and R. S. Haszeldine, *Nature Communications*, 2018, **9**, 2201.

76. R. Heijungs, K. Allacker, E. Benetto, M. Brandão, J. Guinée, S. Schaubroeck, T. Schaubroeck and A. Zamagni, *Frontiers in Sustainability*, 2021, **2**.

77. B. Singh, A. H. Strømmen and E. G. Hertwich, *International Journal of Greenhouse Gas Control*, 2011, **5**, 911-921.

78. DEA, *Technology Data for Carbon Capture, Transport and Storage* Danish Energy Agency, Copenhagen, 2021.

79. A. Aspelund and K. Jordal, *International Journal of Greenhouse Gas Control*, 2007, **1**, 343-354.

80. F. Donda, V. Volpi, S. Persoglia and D. Parushev, *International Journal of Greenhouse Gas Control*, 2011, **5**, 327-335.

81. IEAGHG, *The Costs of CO<sub>2</sub> Storage - Post-demonstration CCS in the EU*, Brussels, 2019.

82. V. Vishal, *Fuel*, 2017, **192**, 201-207.

83. IEAGHG, *Techno-Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS*, The IEA Greenhouse Gas R&D Programme, 2017.

84. P. Nikolaidis and A. Poullikkas, *Renewable and Sustainable Energy Reviews*, 2017, **67**, 597-611.

85. D. Hospital-Benito, I. Díaz and J. Palomar, *Sustainable Production and Consumption*, 2023, **38**, 283-294.

86. S. Fuss, J. G. Canadell, G. P. Peters, M. Tavoni, R. M. Andrew, P. Ciais, R. B. Jackson, C. D. Jones, F. Kraxner, N. Nakicenovic, C. Le Quéré, M. R. Raupach, A. Sharifi, P. Smith and Y. Yamagata, *Nature Climate Change*, 2014, **4**, 850-853.

87. Y. X. Chen, A. Lavacchi, H. A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang and F. Vizza, *Nature Communications*, 2014, **5**, 4036.

88. G. Zhao, M. R. Kraglund, H. L. Frandsen, A. C. Wulff, S. H. Jensen, M. Chen and C. R. Graves, *International Journal of Hydrogen Energy*, 2020, **45**, 23765-23781.

89. K. E. Ayers, C. Capuano and E. B. Anderson, *ECS Transactions*, 2012, **41**, 15.

90. A. H. Reksten, M. S. Thomassen, S. Møller-Holst and K. Sundseth, *International Journal of Hydrogen Energy*, 2022, **47**, 38106-38113.

91. R. J. Ouimet, J. R. Glenn, D. De Porcellinis, A. R. Motz, M. Carmo and K. E. Ayers, *ACS Catalysis*, 2022, **12**, 6159-6171.

92. M. A. Laguna-Bercero, *Journal of Power Sources*, 2012, **203**, 4-16.

93. G. Lo Basso, A. Mojtahe, L. M. Pastore and L. De Santoli, *International Journal of Hydrogen Energy*, 2023, DOI: <https://doi.org/10.1016/j.ijhydene.2023.04.231>.

94. E. R. Morgan, J. F. Manwell and J. G. McGowan, *International Journal of Hydrogen Energy*, 2013, **38**, 15903-15909.

95. M. H. Ali Khan, R. Daiyan, Z. Han, M. Hablitzel, N. Haque, R. Amal and I. MacGill, *iScience*, 2021, **24**, 102539.

96. A. Simons and C. Bauer, *Applied Energy*, 2015, **157**, 884-896.

97. IRENA, *Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal*, International Renewable Energy Agency, Abu Dhabi, 2020.

98. FCE, *FuelCell Energy Announces Solid Oxide Electrolysis and Fuel Cell Platform to Improve Control and Flexibility of Energy Investments*, FuelCell Energy, Inc., 2022.

99. R. E. Lester, D. Gunasekera, W. Timms and D. Downie, *Water requirements for use in hydrogen production in Australia: Potential public policy and industry-related issues*, Deakin University, 2022.

100. GCCSI, *Replacing 10% of NSW Natural Gas Supply with Clean Hydrogen: Comparison of Hydrogen Production Options*, Global CCS Institute, Melbourne, 2020.

101. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson and S. Few, *International Journal of Hydrogen Energy*, 2017, **42**, 30470-30492.

102. NREL, H2A: Hydrogen Analysis Production Models, <https://www.nrel.gov/hydrogen/h2a-production-models.html>, (accessed 10 th, December, 2023).

103. IEA, *Global Energy and Climate Model* International Energy Agency, 2022.

104. IEA, *Global Hydrogen Review 2022*, International Energy Agency, Paris, 2022.

105. A. Mendoza Beltran, B. Cox, C. Mutel, D. P. van Vuuren, D. Font Vivanco, S. Deetman, O. Y. Edelenbosch, J. Guinée and A. Tukker, *Journal of Industrial Ecology*, 2020, **24**, 64-79.

106. K. Riahi, D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O'Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, S. Kc, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenöder, L. A. Da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau and M. Tavoni, *Global Environmental Change*, 2017, **42**, 153-168.

107. O. Fricko, P. Havlik, J. Rogelj, Z. Klimont, M. Gusti, N. Johnson, P. Kolp, M. Strubegger, H. Valin, M. Amann, T. Ermolieva, N. Forsell, M. Herrero, C. Heyes, G. Kindermann, V. Krey, D. L. McCollum, M. Obersteiner, S. Pachauri, S. Rao, E.

Schmid, W. Schoepp and K. Riahi, *Global Environmental Change*, 2017, **42**, 251-267.

108. J. Rogelj, A. Popp, K. V. Calvin, G. Luderer, J. Emmerling, D. Gernaat, S. Fujimori, J. Strefler, T. Hasegawa, G. Marangoni, V. Krey, E. Kriegler, K. Riahi, D. P. van Vuuren, J. Doelman, L. Drouet, J. Edmonds, O. Fricko, M. Harmsen, P. Havlík, F. Humpenöder, E. Stehfest and M. Tavoni, *Nature Climate Change*, 2018, **8**, 325-332.

109. G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz and B. Weidema, *The International Journal of Life Cycle Assessment*, 2016, **21**, 1218-1230.

110. IPCC, *Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, Report 9781107057999, Intergovernmental Panel on Climate, Change, Cambridge, 2013.

111. N. Warwick, P. Griffiths, J. Keeble, A. Archibald, J. Pyle and K. Shine, *Atmospheric implications of increased Hydrogen use*, Department for Business, Energy and Industrial Strategy, 2022.

112. S. Fazio, F. Biganzoli, V. De Laurentiis, L. Zampori and S. D. Sala, E., *Supporting information to the characterisation factors of recommended EF Life Cycle Impact Assessment methods, Version 2, from ILCD to EF 3.0*, European Commission, Ispra, 2018.

113. B. Steubing, D. de Koning, A. Haas and C. L. Mutel, *Software Impacts*, 2020, **3**, 100012.

114. B. Steubing and D. de Koning, *The International Journal of Life Cycle Assessment*, 2021, **26**, 2248-2262.

115. R. W. Howarth and M. Z. Jacobson, *Energy Science & Engineering*, 2021, **9**, 1676-1687.

116. T. Lepage, M. Kammoun, Q. Schmetz and A. Richel, *Biomass and Bioenergy*, 2021, **144**, 105920.

117. EBA, *Decarbonising Europe's hydrogen production with biohydrogen*, European Biogas Association, Brussels, 2023.

118. J. P. W. Scharlemann and W. F. Laurance, *Science*, 2008, **319**, 43-44.

119. R. Birdsey, P. Duffy, C. Smyth, W. A. Kurz, A. J. Dugan and R. Houghton, *Environmental Research Letters*, 2018, **13**, 050201.

120. K. Navare, W. Arts, G. Faraca, G. V. d. Bossche, B. Sels and K. V. Acker, *Resources, Conservation and Recycling*, 2022, **186**, 106588.

121. M. van der Spek, C. Banet, C. Bauer, P. Gabrielli, W. Goldthorpe, M. Mazzotti, S. T. Munkejord, N. A. Røkke, N. Shah, N. Sunny, D. Sutter, J. M. Trusler and M. Gazzani, *Energy & Environmental Science*, 2022, **15**, 1034-1077.

122. J. B. Hansen, *Topsoe's Road Map to All Electric Ammonia Plants*, Pittsburgh, 2018.

123. B. Atilgan and A. Azapagic, *Journal of Cleaner Production*, 2015, **106**, 555-564.

124. M. Tammaro, A. Salluzzo, J. Rimauro, S. Schiavo and S. Manzo, *Journal of Hazardous Materials*, 2016, **306**, 395-405.

125. K. Treyer, C. Bauer and A. Simons, *Energy Policy*, 2014, **74**, S31-S44.

126. J. Nijnens, P. Behrens, O. Kraan, B. Sprecher and R. Kleijn, *Joule*, 2023, DOI: 10.1016/j.joule.2023.10.005.

127. G. Luderer, M. Pehl, A. Arvesen, T. Gibon, B. L. Bodirsky, H. S. de Boer, O. Fricko, M. Hejazi, F. Humpenöder, G. Iyer, S. Mima, I. Mouratiadou, R. C. Pietzcker, A. Popp,

M. van den Berg, D. van Vuuren and E. G. Hertwich, *Nature Communications*, 2019, **10**, 5229.

128. C. Minke, M. Suermann, B. Bensmann and R. Hanke-Rauschenbach, *International Journal of Hydrogen Energy*, 2021, **46**, 23581-23590.

129. K. D. Rasmussen, H. Wenzel, C. Bangs, E. Petavratzi and G. Liu, *Environmental Science & Technology*, 2019, **53**, 11541-11551.

130. A. Månberger and B. Johansson, *Energy Strategy Reviews*, 2019, **26**, 100394.

131. R. Fu, K. Peng, P. Wang, H. Zhong, B. Chen, P. Zhang, Y. Zhang, D. Chen, X. Liu, K. Feng and J. Li, *Nature Communications*, 2023, **14**, 3703.

132. R. R. Beswick, A. M. Oliveira and Y. Yan, *ACS Energy Letters*, 2021, **6**, 3167-3169.

133. FAO, AQUASTAT, United Nations Food and Agriculture Organization, 2024.

134. IEA, *Clean energy can help to ease the water crisis*, International Energy Agency, Paris, 2023.

135. WaterSMART, *Water for the Hydrogen Economy*, Calgary, 2020.

136. K. T. Solutions, Hydrogen Production & Distribution, (accessed 16th December, 2023).

137. C. E. Raptis, J. M. Boucher and S. Pfister, *Science of The Total Environment*, 2017, **580**, 1014-1026.

138. H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan, W. Jiang, L. Zhu, Y. Wang, D. Yang and Z. Shao, *Nature*, 2022, **612**, 673-678.

139. M. N. Dods, E. J. Kim, J. R. Long and S. C. Weston, *Environmental Science & Technology*, 2021, **55**, 8524-8534.

140. P. Brandl, M. Bui, J. P. Hallett and N. Mac Dowell, *International Journal of Greenhouse Gas Control*, 2021, **105**, 103239.

141. H. D. Matthews, K. Zickfeld, R. Knutti and M. R. Allen, *Environmental Research Letters*, 2018, **13**, 010201.

142. IPCC, *Climate Change 2022: Mitigation of Climate Change*, Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA, 2022.

143. C. Delft, *Additionality of renewable electricity for green hydrogen production in the EU*, CE Delft, Delft, 2022.

144. M. A. Giovanniello, A. N. Cybulsky, T. Schittekatte and D. S. Mallapragada, *Nature Energy*, 2024, DOI: 10.1038/s41560-023-01435-0.

145. US-DOE, Biden-Harris Administration Announces \$7 Billion For America's First Clean Hydrogen Hubs, Driving Clean Manufacturing and Delivering New Economic Opportunities Nationwide, <https://www.energy.gov/articles/biden-harris-administration-announces-7-billion-americas-first-clean-hydrogen-hubs-driving>, (accessed 11th December, 2023).

146. P. J. Vergragt, N. Markusson and H. Karlsson, *Global Environmental Change*, 2011, **21**, 282-292.

147. E. Martin-Roberts, V. Scott, S. Flude, G. Johnson, R. S. Haszeldine and S. Gilfillan, *One Earth*, 2021, **4**, 1569-1584.

148. D. Tonelli, L. Rosa, P. Gabrielli, K. Caldeira, A. Parente and F. Contino, *Nature Communications*, 2023, **14**, 5532.

149. G. Wang, J. Xu, L. Ran, R. Zhu, B. Ling, X. Liang, S. Kang, Y. Wang, J. Wei, L. Ma, Y. Zhuang, J. Zhu and H. He, *Nature Sustainability*, 2023, **6**, 81-92.

150. S. H. Farjana, N. Huda, M. A. Parvez Mahmud and R. Saidur, *Journal of Cleaner Production*, 2019, **231**, 1200-1217.

151. S. Guo, X. Li, J. Li and B. Wei, *Nature Communications*, 2021, **12**, 1343.
152. M. Z. Rahman and J. Gascon, *Chem Catalysis*, 2023, **3**, 100536.
153. IRENA, *A pathway to decarbonise the shipping sector by 2050*, International Renewable Energy Agency, Abu Dhabi, 2021.
154. IMO, *Fourth IMO GHG Study 2020*, International Maritime Organization, London, 2021.
155. IMO, *2023 IMO Strategy on Reduction of GHG Emissions from Ships*, International Maritime Organization, 2023.
156. P. Balcombe, J. Brierley, C. Lewis, L. Skatvedt, J. Speirs, A. Hawkes and I. Staffell, *Energy Conversion and Management*, 2019, **182**, 72-88.
157. L. Bilgili, *Renewable and Sustainable Energy Reviews*, 2021, **144**, 110985.
158. A. D. Korberg, S. Brynolf, M. Grahn and I. R. Skov, *Renewable and Sustainable Energy Reviews*, 2021, **142**, 110861.
159. K. Kim, G. Roh, W. Kim and K. Chun, *Journal*, 2020, **8**.
160. IRENA, *Innovation Outlook: Renewable Methanol*, International Renewable Energy Agency, 2021.
161. J. Fuhrman, A. Clarens, K. Calvin, S. C. Doney, J. A. Edmonds, P. O'Rourke, P. Patel, S. Pradhan, W. Shobe and H. McJeon, *Environmental Research Letters*, 2021, **16**, 114012.
162. T. Terlouw, K. Treyer, C. Bauer and M. Mazzotti, *Environmental Science & Technology*, 2021, **55**, 11397-11411.
163. GMH, *Efficiency Evaluation of Global 20 Major Container Ports*, Global Maritime Hub, 2019.
164. ICCT, *Refueling assessment of a zero-emission container corridor between China and the United States: Could hydrogen replace fossil fuels?*, International Council on Clean Transportation, Washington, DC, 2020.
165. J. J. Minnehan and J. W. Pratt, *Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels*, Sandia National Laboratories, United States, 2017.
166. MI, *What is The Speed of a Ship at Sea?*, Marine Insight, 2019.
167. K. P. Jain, J. F. J. Pruyne and J. J. Hopman, *Resources, Conservation and Recycling*, 2016, **107**, 1-9.
168. P. J. Notten, H.-J. Althaus, M. Burke and A. Läderach, *Life cycle inventories of global shipping - Global*, ecoinvent Association, Zürich, 2018.
169. SRI, *Life cycle inventories of global shipping - Global*, Sustainable Recycling Industries, Cape Town, 2018.
170. E. C. Tupper, in *Introduction to Naval Architecture (Fifth Edition)*, ed. E. C. Tupper, Butterworth-Heinemann, Oxford, 2013, DOI: <https://doi.org/10.1016/B978-0-08-098237-3.00002-3>, pp. 9-32.
171. Scheepvaartwest, Colombo Express - IMO 9295244, <https://www.scheepvaartwest.be/CMS/index.php/containerships/9641-colombo-express-imo-9295244>, (accessed 5th, February, 2023).
172. A. Papanikolaou, *Ship Design - Methodologies of Preliminary Design*, 2014.
173. IMO, *The 2020 global sulphur limit*, International Maritime Organization, 2021.
174. M. Silva, Master, Norwegian University of Science and Technology, 2017.
175. C. Wulf and P. Zapp, *International Journal of Hydrogen Energy*, 2018, **43**, 11884-11895.

176. S. Z. S. Al Ghafri, S. Munro, U. Cardella, T. Funke, W. Notardonato, J. P. M. Trusler, J. Leachman, R. Span, S. Kamiya, G. Pearce, A. Swanger, E. D. Rodriguez, P. Bajada, F. Jiao, K. Peng, A. Siahvashi, M. L. Johns and E. F. May, *Energy & Environmental Science*, 2022, **15**, 2690-2731.

177. A. González-Garay, M. S. Frei, A. Al-Qahtani, C. Mondelli, G. Guillén-Gosálbez and J. Pérez-Ramírez, *Energy & Environmental Science*, 2019, **12**, 3425-3436.

178. D. W. Keith, G. Holmes, D. St. Angelo and K. Heidel, *Joule*, 2018, **2**, 1573-1594.

179. J. Gao, S. Xing, G. Tian, C. Ma, M. Zhao and P. Jenner, *Fuel*, 2021, **285**, 119210.

180. EMSA, *Possible Technical Modifications on Pre-2000 Marine Diesel Engines for NO<sub>x</sub> Reductions*, European Maritime Safety Agency, 2008.

181. Z. Liang, X. Ma, H. Lin and Y. Tang, *Applied Energy*, 2011, **88**, 1120-1129.

182. E. Westberg, Independent thesis Advanced level (degree of Master (Two Years)) Student thesis, 2020.

183. ABB, *ACS 6000 Medium Voltage AC drive for speed and torque control for power of 3 MW to 27 MW motors*, ABB, Zurich, 2003.

184. MAN, *Propulsion trends in container vessels*, MAN Energy Solutions, Copenhagen, 2024.

185. H. Lee, Y. Shao, S. Lee, G. Roh, K. Chun and H. Kang, *International Journal of Hydrogen Energy*, 2019, **44**, 15056-15071.

186. J. Lee, Y. Choi and J. Choi, *Journal*, 2022, **10**.

187. Q. Song, R. R. Tinoco, H. Yang, Q. Yang, H. Jiang, Y. Chen and H. Chen, *Carbon Capture Science & Technology*, 2022, **4**, 100056.

188. ABS, *Setting the Course to Low Carbon Shipping: View of the Value Chain*, American Bureau of Shipping, Texas, 2021.

189. IEA-AMF, *Alternative Fuels for Marine Applications*, International Energy Agency-Advanced Motor Fuels, Wieselburg, 2013.

190. IEA, *The Role of E-fuels in Decarbonising Transport*, International Energy Agency, Paris, 2024.

191. S. V. Hanssen, V. Daioglou, Z. J. N. Steinmann, J. C. Doelman, D. P. Van Vuuren and M. A. J. Huijbregts, *Nature Climate Change*, 2020, **10**, 1023-1029.

192. S. Fujimori, W. Wu, J. Doelman, S. Frank, J. Hristov, P. Kyle, R. Sands, W.-J. van Zeist, P. Havlik, I. P. Domínguez, A. Sahoo, E. Stehfest, A. Tabeau, H. Valin, H. van Meijl, T. Hasegawa and K. Takahashi, *Nature Food*, 2022, **3**, 110-121.

193. A. Pozzer, M. G. Schultz and D. Helmig, *Environmental Science & Technology*, 2020, **54**, 12423-12433.

194. Y. Chen, Y. Fan, Y. Huang, X. Liao, W. Xu and T. Zhang, *Ecotoxicology and Environmental Safety*, 2024, **269**, 115905.

195. B. Gu, L. Zhang, R. Van Dingenen, M. Vieno, H. J. M. Van Grinsven, X. Zhang, S. Zhang, Y. Chen, S. Wang, C. Ren, S. Rao, M. Holland, W. Winiwarter, D. Chen, J. Xu and M. A. Sutton, *Science*, 2021, **374**, 758-762.

196. UNCAD, *Review of maritime transport 2021*, United Nations Conference on Trade and Development, Geneva, 2021.

197. IEA, *Tracking Clean Energy Progress 2023*, International Energy Agency, Paris, 2023.

198. A. Monteiro, M. Russo, C. Gama and C. Borrego, *Environmental Pollution*, 2018, **242**, 565-575.

199. H. Liu, Z.-H. Meng, Z.-F. Lv, X.-T. Wang, F.-Y. Deng, Y. Liu, Y.-N. Zhang, M.-S. Shi, Q. Zhang and K.-B. He, *Nature Sustainability*, 2019, **2**, 1027-1033.

200. J. Fernández-González, M. Rumayor, A. Domínguez-Ramos, A. Irabien and I. Ortiz, *JACS Au*, 2023, **3**, 2631-2639.

201. B. A. Wender, R. W. Foley, V. Prado-Lopez, D. Ravikumar, D. A. Eisenberg, T. A. Hottle, J. Sadowski, W. P. Flanagan, A. Fisher, L. Laurin, M. E. Bates, I. Linkov, T. P. Seager, M. P. Fraser and D. H. Guston, *Environmental Science & Technology*, 2014, **48**, 10531-10538.

202. Z. Wang, B. Dong, Y. Wang, M. Li, H. Liu and F. Han, *Energy Conversion and Management: X*, 2024, **21**, 100482.

203. Z. Fu, L. Lu, C. Zhang, Q. Xu, X. Zhang, Z. Gao and J. Li, *Sustainable Energy Technologies and Assessments*, 2023, **57**, 103181.

204. ISO, *Journal*, 2006.

205. J. Eyres David, *Journal*, 2007.

206. U.S.DOE, *Comparison of Fuel Cell Technologies*, U.S. Department of Energy, Washington, DC, 2016.

207. MAN-SE, *Marine engine programme-2nd edition 2023*, MAN Energy Solutions, Augsburg, 2023.

208. MANES, *Basic principles of ship propulsion*, MAN Energy Solutions, Copenhagen, 2018.

209. C. Guellec, C. Doudard, B. Levieil, L. Jian, A. Ezanno and S. Calloch, *Marine Structures*, 2023, **87**, 103325.

210. Y. Zhao, Y. Fan, K. Fagerholt and J. Zhou, *Transportation Research Part D: Transport and Environment*, 2021, **90**, 102641.

211. S. Shih-Tung, Master's Thesis, University of Rostock, 2013.

212. PowerCell, *Fuel Cells - PowerCell AB*, Göteborg, 2019.

213. L. Usai, C. R. Hung, F. Vásquez, M. Windsheimer, O. S. Burheim and A. H. Strømman, *Journal of Cleaner Production*, 2021, **280**, 125086.

214. F. IISB, *High Power SiC DC/DC Converters*, Fraunhofer Institute for Integrated Systems and Device Technology, Erlangen, 2014.

215. PPS, Railway and Industry 2000W DC/DC Converter, <https://premiumpsu.com/product/crs-2000-industrial-railway-2000w-dc-dc-converter/>, (accessed 15th, March, 2024).

216. ABB, *Solar Inverters—ABB Medium Voltage Compact Skid (PVS-175-MVCS)*, ABB, Zurich, 2019.

217. GEPC, *MV6 Medium Voltage Drive-Leading next generation technology*, GE Power Conversion, Paris, 2017.

218. RA, *PowerFlex 7000 Medium Voltage AC VFD—Air-Cooled*, Rockwell Automation, Milwaukee, 2024.

219. ABB, *Medium Voltage AC Drive ACS 5000, 1.5 MW–36 MW, 6.0–6.9 kV*, ABB, Zurich, 2013.

220. S. Grzesiak, *New Trends in Production Engineering*, 2018, **1**, 399-407.

221. HE, *Induction Motors Medium & High Voltage*, Hyundai Electric, Seongnam-si, 2019.

222. E. Tazelaar, PhD, Technische Universiteit Eindhoven, 2013.

223. GPhilos, FUEL CELL INVERTER, [http://gphilos.co.kr/en/sub/product/fuel\\_cell\\_inverter\\_building.php#anc01](http://gphilos.co.kr/en/sub/product/fuel_cell_inverter_building.php#anc01), (accessed 10th, March, 2024).

224. ABB, *Central Inverters—PVS800, 100 to 1000 kW*, ABB, Zurich, 2014.

225. L. A.-W. Ellingsen, G. Majeau-Bettez, B. Singh, A. K. Srivastava, L. O. Valøen and A. H. Strømman, *Journal of Industrial Ecology*, 2014, **18**, 113-124.

226. MANSE, *Diesel-electric Propulsion Plants: A brief guideline how to engineer a diesel-electric propulsion system*, MAN Energy Solutions, Munich, 2012.

227. EPD, Switchboard Maintenance: Safeguarding Your Electrical System's Longevity, <https://www.electronicpowerdesign.com/news/switchboard-maintenance/>, (accessed 12th, March, 2024).

228. SIEMENS, *Air-Insulated Medium-Voltage Switchgear NXAirS, up to 12 kV*, Shanghai, 2020.

229. S. SARCO, Boiler Efficiency and Combustion, [https://www.spiraxsarco.com/learn-about-steam/the-boiler-house/boiler-efficiency-and-combustion?sc\\_lang=en-GB](https://www.spiraxsarco.com/learn-about-steam/the-boiler-house/boiler-efficiency-and-combustion?sc_lang=en-GB), (accessed 11th, February, 2025).

230. PARAT, *Marine Boilers*, Flekkefjord, 2024.

231. BOSCH, Electric steam boiler ELSB, <https://www.bosch-industrial.com/global/en/ocs/commercial-industrial/electric-steam-boiler-elsb-19175285-p/>, (accessed 5th, February, 2025).

232. A. M. A. Abbas, Master, An-Najah National University, 2015.

233. TNO, *E-fuels: Towards a more sustainable future for truck transport, shipping and aviation*, Netherlands Organisation for Applied Scientific Research, Delft, 2020.

234. N. G. Dlamini, K. Fujimura, E. Yamasue, H. Okumura and K. N. Ishihara, *The International Journal of Life Cycle Assessment*, 2011, **16**, 410-419.

235. E. W. M. Abbas, Master, Chalmers University of Technology, 2022.

236. EMSA, *Potential of Ammonia as Fuel in Shipping*, European Maritime Safety Agency, Lisbon, 2022.

237. J. M. Ryste, Master, Norwegian University of Science and Technology, 2012.

238. Cryocan, Ammonia Storage Tank, <https://cryocan.com/en/chemical/ammonia-storage-tanks/>, (accessed 19th, December, 2024).

239. E. C. D. Tan, T. R. Hawkins, U. Lee, L. Tao, P. A. Meyer, M. Wang and T. Thompson, *Environmental Science & Technology*, 2021, **55**, 7561-7570.

240. K. Andersson and H. Winnes, *Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment*, 2011, **225**, 33-42.

241. EGCSA, NOx Reduction by Exhaust Gas Recirculation – MAN explains, <https://www.egcsa.com/exhaust-gas-recirculation-explained/>, (accessed 11th, June, 2024).

242. IMO, *Fourth IMO GHG Study 2020*, International Maritime Organization, London, 2020.

243. S. S. Hwang, S. J. Gil, G. N. Lee, J. W. Lee, H. Park, K. H. Jung and S. B. Suh, *Journal of Marine Science and Engineering*, 2020, **8**.

244. DNV, *IMO Net-Zero Framework*, Det Norske Veritas, 2025.

245. DNV, *FuelEU Maritime*, Det Norske Veritas, 2025.

246. OceanScore, *FuelEU Maritime Compliance: Why Pooling Is Infinitely Better Than Paying the Penalty*, 2025.

247. ICAP, *EU Emissions Trading System (EU ETS)*, International Carbon Action Partnership Berlin, 2025.

248. EC, *Reducing emissions from the shipping sector*, European Commission, 2025.

249. DNV, *EU ETS – Emissions Trading System*, Det Norske Veritas, 2025.

250. EC, *Commission launches first European Hydrogen Bank auction with €800 million of subsidies for renewable hydrogen production*, European Commission, 2023.

251. X. Jin, P. Behrens, J. W. Erisman and J. M. Mogollón, *Scientific Data*, 2025, **12**, 1493.

252. H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi and K. Domen, *Nature*, 2021, **598**, 304-307.

253. P. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun and Z. Mi, *Nature*, 2023, **613**, 66-70.

254. A. L. Moghaddam, S. Hejazi, M. Fattah, M. G. Kibria, M. J. Thomson, R. AlEisa and M. A. Khan, *Energy & Environmental Science*, 2025, **18**, 2747-2790.

255. IMO, *Revised GHG reduction strategy for global shipping adopted*, International Maritime Organization, London, 2023.

256. DNV, *Study on the readiness and availability of low- and zero-carbon ship technology and marine fuels*, Det Norske Veritas, Oxfordshire, 2023.

257. AEA, Testing underway for 100 kW, direct ammonia SOFC, <https://ammoniaenergy.org/articles/testing-underway-for-100-kw-direct-ammonia-sofc/#:~:text=A%20202%20MW%20version%20of,a%20role%20onboard%20the%20vessel.>, (accessed 5th, September, 2025).

258. SCHEEPVAARTWEST, <https://www.scheepvaartwest.be/CMS/index.php>, 2024).

259. myShipTracking, <https://www.myshiptracking.com/>, 2024).

260. ICCT, *The climate implications of using LNG as a marine fuel*, International Council on Clean Transportation, Washington, DC, 2020.

261. GR, *Review of Methane Slip from LNG Engines*, Green Ray, Espoo, 2023.

262. S. Brynolf, M. Magnusson, E. Fridell and K. Andersson, *Transportation Research Part D: Transport and Environment*, 2014, **28**, 6-18.

263. MANES, *Marine engine programme-2nd edition 2023*, Man Energy Solutions, Augsburg, 2023.

264. K. Kim, G. Roh, W. Kim and K. Chun, *Journal of Marine Science and Engineering*, 2020, **8**, 183.

265. E. Westberg, Master, Linköping University, 2020.

266. IMO, *Ships face lower sulphur fuel requirements in emission control areas from 1 January 2015*, International Maritime Organization, 2015.

267. M. Gustafsson, I. Cruz, N. Svensson and M. Karlsson, *Journal of Cleaner Production*, 2020, **256**, 120473.

268. M. D. B. Watanabe, F. Cherubini and O. Cavalett, *Journal of Cleaner Production*, 2022, **364**, 132662.

269. I. Bioenergy, *The Role of Renewable Transport Fuels in Decarbonizing Road Transport: Production Technologies and Costs*, IEA Bioenergy Technology Collaboration Programme, Paris, 2020.

270. IEA, *Direct Air Capture-A key technology for net zero*, International Energy Agency, Paris, 2022.

271. F. Bisotti, K. A. Hoff, A. Mathisen and J. Hovland, *Chemical Engineering Science*, 2024, **283**, 119416.

272. MAN-ES, SNG: Synthetic gas for the maritime transition, <https://www.manes.com/marine/strategic-expertise/future-fuels/sng-biogas>, (accessed 5th September, 2025).

273. EMSA, 2020-v207-23082025-EU MRV Publication of information, European Maritime Safety Agency 2025.

274. NCEMCT, *Life cycle assessment of maritime propulsion systems*, NCE Maritime CleanTech, Trondheim, 2020.

275. T. Park, S. So, B. Jeong, P. Zhou and J.-u. Lee, *Journal of Cleaner Production*, 2021, **285**, 124832.

276. Wärtsilä, *Compact Reliq-Revolutionary Product Based on Proven Technology*, 2019.

277. MONJASA, *Heavy Fuel Oil*, Fredericia, 2017.

278. CGH, Methanol tanks, <https://cgh-rsa.co.za/tanks-for-the-industry/methanol-tanks>, (accessed 19th, December, 2024).

279. E. Malmgren, S. Brynolf, E. Fridell, M. Grahn and K. Andersson, *Sustainable Energy & Fuels*, 2021, **5**, 2753-2770.

280. G. Kallis, J. Hickel, D. W. O'Neill, T. Jackson, P. A. Victor, K. Raworth, J. B. Schor, J. K. Steinberger and D. Ürge-Vorsatz, *The Lancet Planetary Health*, 2025, **9**, e62-e78.

281. UNCTAD, *Review of Maritime Transport 2022*, United Nations Conference on Trade and Development Geneva, 2022.

282. HE, *How Hydrogen Can Help Decarbonise the Maritime Sector*, Hydrogen Europe, Brussels, 2021.

283. E. Kato and Y. Yamagata, *Earth's Future*, 2014, **2**, 421-439.

284. O. Y. Edelenbosch, A. F. Hof, M. van den Berg, H. S. de Boer, H.-H. Chen, V. Daioglou, M. M. Dekker, J. C. Doelman, M. G. J. den Elzen, M. Harmsen, S. Mikropoulos, M. A. E. van Sluisveld, E. Stehfest, I. S. Tagomori, W.-J. van Zeist and D. P. van Vuuren, *Nature Climate Change*, 2024, **14**, 715-722.

285. F. Creutzig, C. Breyer, J. Hilaire, J. Minx, G. P. Peters and R. Socolow, *Energy & Environmental Science*, 2019, **12**, 1805-1817.

286. T. Hasegawa, S. Fujimori, S. Frank, F. Humpenöder, C. Bertram, J. Després, L. Drouet, J. Emmerling, M. Gusti, M. Harmsen, K. Keramidas, Y. Ochi, K. Oshiro, P. Rochedo, B. van Ruijen, A.-M. Cabardos, A. Deppermann, F. Fosse, P. Havlik, V. Krey, A. Popp, R. Schaeffer, D. van Vuuren and K. Riahi, *Nature Sustainability*, 2021, **4**, 1052-1059.

287. V. Heck, D. Gerten, W. Lucht and A. Popp, *Nature Climate Change*, 2018, **8**, 151-155.

288. D. P. van Vuuren, E. Stehfest, D. E. H. J. Gernaat, M. van den Berg, D. L. Bijl, H. S. de Boer, V. Daioglou, J. C. Doelman, O. Y. Edelenbosch, M. Harmsen, A. F. Hof and M. A. E. van Sluisveld, *Nature Climate Change*, 2018, **8**, 391-397.

289. B. Bell, Ageing Fleet To Be Replaced By Massive Container Ship Orderbook, <https://www.brookesbell.com/news-and-knowledge/article/ageing-fleet-to-be-replaced-by-massive-container-ship-orderbook-159256>, (accessed 20th September, 2025).

290. UNCTAD, *Review of maritime transport 2024*, UN Trade and Development, Geneva, 2024.

291. OECD, New estimates provide insights on CO<sub>2</sub> emissions from global shipping, <https://oecdstatistics.blog/2023/06/15/new-estimates-provide-insights-on-co2-emissions-from-global-shipping/>, (accessed 12th, December, 2024).

292. ISPT, *Clean Ammonia Roadmap*, Institute for Sustainable Process Technology, Amersfoort, 2024.

293. A. Peacock, B. Hull-Bailey, A. Hastings, A. Martinez-Felipe and L. B. Wilcox, *International Journal of Hydrogen Energy*, 2024, **94**, 971-983.

294. G. Eliseev, *The Ammonia Market Today and a Bridge to the Future*, S&P Global Commodity Insights, New Orleans, 2024.

295. IRENA, *Innovation Outlook: Renewable Ammonia*, International Renewable Energy Agency, Abu Dhabi, 2022.

296. IEA, Direct Air Capture, <https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/direct-air-capture>, (accessed 15th, September, 2025).

297. IEA, *Global Hydrogen Review 2024*, International Energy Agency, Paris, 2024.

298. A. Odenweller and F. Ueckerdt, *Nature Energy*, 2025, **10**, 110-123.

299. IEA, *World Energy Outlook 2024*, International Energy Agency, Paris, 2024.

300. ProBas, Umweltbundesamt, Umweltaspekte von Iridium, (accessed 13th, March, 2022).

301. I. Staffell, A. Ingram and K. Kendall, *International Journal of Hydrogen Energy*, 2012, **37**, 2509-2523.

302. T. Smolinka, M. Günther, J. Garche, F.-I. f. S. Energiesysteme, F. Cell and B. C.-. FCBAT, *Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien: NOW-Studie : Kurzfassung des Abschlussberichts*, Fraunhofer ISE, 2011.

303. X. Zhang, C. Bauer, C. L. Mutel and K. Volkart, *Applied Energy*, 2017, **190**, 326-338.

304. BEIS, *KEW H<sub>2</sub>: ZERO-CARBON BULK SUPPLY*, Department for Business, Energy & Industrial Strategy, 2019.

305. H. C. S. GmbH, Indoor Electrolyser HydroCab 5kg H<sub>2</sub>/Day, <https://hyfindr.com/marketplace/systems/electrolysers/aem-electrolysers/indoor-electrolyser-hydrocab-5kg-h2-day/>, (accessed 5th, June, 2023).

306. Enapter, Technical Presentation - The AEM Electrolyser, (accessed 5th, June, 2023).

307. elogen, *Elogen\_Product\_sheet-Elyte260*, 2023.

308. H. Titanium, PEM Electrolyzer, <https://heletitanium.com/titanium-anode/pe-m-electrolyzer/>, (accessed 8th, June, 2023).

309. S. Häfele, M. Hauck and J. Dailly, *International Journal of Hydrogen Energy*, 2016, **41**, 13786-13796.

310. F. Petipas, A. Brisse and C. Bouallou, *Journal of Power Sources*, 2013, **239**, 584-595.

311. J. Sanz-Bermejo, J. Muñoz-Antón, J. Gonzalez-Aguilar and M. Romero, *International Journal of Hydrogen Energy*, 2015, **40**, 8291-8303.

312. P. Colombo, A. Saeedmanesh, M. Santarelli and J. Brouwer, *Energy Conversion and Management*, 2020, **204**, 112322.

313. ISPT, *Next Level Solid Oxide Electrolysis: Upscaling potential and technoeconomical evaluation for 3 industrial use cases*, Institute for Sustainable Process Technology, 2023.

314. IEA, *Africa Energy Outlook 2022*, International Energy Agency, Paris, 2022.

315. Advisian, *Australian hydrogen market study*, Brisbane, 2021.

316. AE, Hydrogen calculation, [https://atomicexpert.com/vodorod\\_po\\_raschetu](https://atomicexpert.com/vodorod_po_raschetu), (accessed 11th October, 2022).

317. GEA, Kuzbass in Siberia launches hydrogen production, <https://globalenergyprize.org/en/2021/09/22/kuzbass-in-siberia-launches-hydrogen-production/>, (accessed 11th November, 2022).

318. I. Dincer, *Comprehensive energy systems*, Elsevier, 2018.

319. TATSA, *LPG and anhydrous ammonia storage tanks*, Mexico City, 2021.

320. T. Uekert, H. M. Wikoff and A. Badgett, *Advanced Sustainable Systems*, 2024, **8**, 2300449.

321. *Fuel Cells Bulletin*, 2019, **2019**, 14-14.

322. M. Shafique, A. Akbar, M. Rafiq, A. Azam and X. Luo, *Waste Management & Research*, 2022, **41**, 376-388.

323. C. Wulf, M. Reuß, T. Grube, P. Zapp, M. Robinius, J.-F. Hake and D. Stolten, *Journal of Cleaner Production*, 2018, **199**, 431-443.

324. G. Pawelec, *System-Based Solutions for H<sub>2</sub>-Fuelled Water Transport in North-West Europe - Comparative report on alternative fuels for ship propulsion*, Lille, 2020.

325. P. T. Aakko-Saksa, C. Cook, J. Kiviahon and T. Repo, *Journal of Power Sources*, 2018, **396**, 803-823.