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1. Introduction

It is a classical result in the theory of dynamical systems that homoclinic tangles
give rise to hyperbolic horseshoes and thus positive topological entropy. The history
of chaotic dynamics started with the discovery by Poincaré [24] that the stable and
unstable manifolds of a saddle periodic orbit may have a transverse intersection along
a homoclinic orbit. For a sufficiently small neighbourhood of the union of a hyperbolic
periodic orbit and its transverse homoclinic, the invariant set that consists of all orbits
that stay entirely in this neighbourhood is uniformly hyperbolic and admits a symbolic
representation by a full shift on two symbols [28,31]. This result, the Shilnikov-Smale
theorem, provides the most fundamental criterion for chaos in a dynamical system.

The fact that the Poincaré’s homoclinic tangle implies positive topological entropy
holds true also in the original Hamiltonian setting. A subtle point here is that the
Hamiltonian function is a first integral, and saddle periodic orbits of a Hamiltonian sys-
tem arise in families, parameterised by the value of the Hamiltonian. Such family is a
normally-hyperbolic invariant manifold; the homoclinic tangle corresponds to an inter-
section of its stable and unstable manifolds. Formally speaking, each periodic orbit in
the family is not hyperbolic. However, inside any dynamically invariant level set of the
Hamiltonian, the saddle periodic orbit is isolated and hyperbolic with a transverse ho-
moclinic, so the Shilnikov-Smale theorem is applied and the positivity of the topological
entropy follows.

Normally-hyperbolic one-parameter families of periodic orbits with transversely in-
tersecting stable and unstable manifolds also naturally arise in reversible systems [18].
Despite the substantial interest in reversible dynamical systems [1,2,5,9,11-15,17,18,20,
21,25,27], a concise characterisation of a reversible homoclinic tangle, which we believe
deserves to be central to the theory of chaotic dynamics in reversible systems, has been
lacking.

The core issue here is that reversible systems do not need to be Hamiltonian and,
typically, there exists no first integral. For example, if a perturbation of a reversible
Hamiltonian system preserves the reversibility but breaks the Hamiltonian structure,
then a given family of symmetric periodic orbits and their symmetric homoclinics survives
the perturbation. However, the dynamically invariant foliation by energy levels gets,
typically, destroyed, as the energy is no longer conserved. This provides the possibility
that many orbits leave a neighbourhood of the homoclinic tangle due to the drift in
energy, which makes the dynamics near a reversible homoclinic tangle very much different
from those in the Hamiltonian setting.

The a priori non-controllable drift along the central direction means that one should
go beyond the standard hyperbolicity techniques to resolve even the most basic question
— whether the dynamics near the reversible tangle are chaotic? In this paper, we give
an affirmative answer by proving that the set of orbits that remain in any given neigh-
bourhood of the reversible homoclinic tangle (satisfying transversality conditions) has
positive topological entropy (see Theorem 1).
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Let us describe the setting in detail. We consider the flow of a smooth vector field

&= f(z)

on R2", n > 2, which is reversible with respect to a smooth involution R : R?"* — R?"
with an n-dimensional manifold of fixed points. So

and Fix R = {u € R?" ; Ru = u} is n-dimensional.

Recall that a periodic orbit v is symmetric if Ry = v as a set. A symmetric periodic
orbit ~y intersects Fix R transversely in two points. Consider a symmetric (2n — 1)-
dimensional cross-section S = RS through one of the two points of v N Fix R. Since S =
RS, the intersection S N Fix R is n-dimensional, so its image under the first-return map
to S is also n-dimensional. The dimension count shows that transverse intersections of
this image with SNFix R occur along one-dimensional curves, hence symmetric periodic
orbits generically arise in one-parameter families [9].

Thus, we consider a one-parameter family of symmetric periodic orbits v, = R,
which are of saddle type in the normal directions, parameterised by a real parameter a
that runs some interval (a_, a1 ) that contains zero. When we use the parameter a in our
notation, it is understood refer to such an interval. This family is a normally-hyperbolic
invariant manifold (a two-dimensional cylinder) for the flow of f. Let V*(v,) denote
the n-dimensional stable manifold of the periodic orbit v, and V*(v,) its n-dimensional
unstable manifold. By the reversibility, V*(y,) = RV*(7,). Assume that V¥(vy) has a
transverse intersection with Fix R at a point gg outside of vy. By symmetry, V*(vo) has a
transverse intersection with Fix R at the same point. The invariant manifolds V(7o) and
V*(~p) consist of the whole orbits of the system @ = f(z), so the tangents to V*(7o) and
V*(v9) at the point go both contain the vector f(gp). We assume, as a non-degeneracy
condition, that the intersection of the tangents contains no other directions.

The orbit 7y of g lies both in V*(vy) and V*(vq), so it tends to o both in forward
and backward time, i.e., it is homoclinic to vg. Since it is an orbit of a point in Fix R,
it is symmetric, i.e. 79 = Rnp. When the above transversality assumptions hold, we call
10 a strongly transverse symmetric homoclinic connection. Since compact parts of stable
and unstable manifolds of v, vary smoothly with a, we obtain a one-parameter family
of symmetric homoclinic connections 7, = Rng in V¥(vy,) N V*(7,), defined for all a in
some neighbourhood (a_,ay) of a = 0, constituting a symmetric homoclinic tangle. See
Fig. 1 for a sketch (in Section 2 we work with different local cross-sections containing
symmetric periodic points and symmetric homoclinic points).

Our main result is

Theorem 1. Consider the flow of a smooth reversible vector field on R?™ that is reversible
with respect to an involution with n-dimensional fized point manifold. Moreover, let there
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Fig. 1. Sketch of a homoclinic tangle, here depicted inside a three-dimensional cross-section S. The family
{~a} of symmetric periodic orbits, with a from some interval (a_, ay), intersects Fix R inside S, drawn as
a solid curve. Each symmetric periodic orbit 7, has stable and unstable manifolds V?°(v4), V*(v4). The
intersections of these stable and unstable manifolds for the family {4} with S form two-dimensional sheets:
a stable sheet V*({v4+a}) NS bounded by V*(y,_) NS and V*(y4,) N S, an unstable sheet V*({y4a})N S
bounded by V*(v,_)NS and V*(va,) N S. The sheets V*({va}), V*({7a}) intersect in Fix R inside S, not
only in the family of periodic orbits, but also in a family of symmetric homoclinic points {74} N S. There
are further intersections of the stable and unstable sheets outside Fix R, a few are represented by dashed
curves.

be a normally hyperbolic family of symmetric periodic orbits whose stable and unstable
manifolds intersect in a family of strongly transverse symmetric homoclinic orbits. Let
Yo be a symmetric periodic orbit from this family and ny the corresponding symmetric
homoclinic orbit to vg. Then the flow of f restricted to any neighbourhood of the union
of mo and o has positive topological entropy.

The proof of this result entails the study of skew product systems of interval diffeo-
morphisms over a horseshoe. We reduce to a study of the recurrent set of a return map.
This set is contained [18] in a lamination homeomorphic to A x J for a horseshoe A
and an interval J = (—1,1). The dynamics on the lamination is topologically conjugate
to a skew product map F(z,y) = (f(x),g.(y)) of interval diffeomorphisms g, over a
horseshoe map f (in restriction to A, the map f acts as the shift operator on the space
of 2-symbol sequences). The reversibility of the system translates to the existence of an
involution R of the 2-space such that R(A) = A, foR = Rof~' and g,(y) = gR(z)(y)_l.
For a Hamiltonian system the derived skew-product system would be (z,y) — (f(z),y)
and the recurrent set a one-parameter family of horseshoes. For reversible systems, the
fibre maps of the skew product system need not be the identity map. In trivial examples
of skew product maps such as (z,y) — (z,y+e¢) all orbits would drift outside of A x J and
the recurrent set would be empty. However, such example cannot be reversible: we show
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that reversibility implies that enough orbits always stay inside A x J to yield positive
topological entropy.

Note that we do not establish the existence of finite-type shift dynamics (i.e., a topo-
logical conjugacy or semi-conjugacy to a non-trivial Markov chain on an invariant subset
of A x J) which are often associated with positive topological entropy. The emergence of
shift dynamics after a C'*-small perturbation was established in [18]. However, finite-type
shift dynamics does not always exist here in spite of the positivity of topological entropy.
In particular, it is easy to construct an example of a C*°-smooth reversible skew-product
map F(z,y) = (f(z), g(y)) such that for every periodic fibre whose orbit by F' is not
I%—symmetric there is a non-zero drift in y. This means no non-symmetric periodic orbits
in A x J, which implies no semi-conjugacy to a non-trivial Markov chain in such example.

We prove Theorem 1 by showing that if A x J does not contain an invariant subset
where the skew-product map F' generated by a sufficiently smooth reversible flow is
semi-conjugate to a Markov chain with positive topological entropy, then there always
exists a periodic fibre for which the drift in y is positive with a margin of safety, and,
by reversibility, a periodic fibre for which the drift in y is negative. In the spirit of [32]
(where the positivity of space-time entropy for a class of PDEs was proven) we show
that the latter case also corresponds to positive entropy.

As an example of an application of Theorem 1, we mention that symmetric homoclinic
tangles of the type we consider may arise locally near homoclinic loops to symmetric
equilibria. This includes homoclinic bellows [17] and a homoclinic loop to a saddle-
focus [1,14] — in both cases there exists a symmetric homoclinic tangle, so Theorem 1
implies the positivity of the topological entropy. Note that for the Poincaré map of a
reversible flow near a symmetric homoclinic loop to a saddle-focus, the positivity of the
topological entropy (and a semi-conjugacy to shift dynamics) is proven in [1]. However,
the return time is not bounded for this Poincaré map, so proving the positive topological
entropy for the flow itself requires Theorem 1 in this situation.

Non-Hamiltonian reversible vector fields with symmetric homoclinic tangles arise in
the study of pattern formation in certain classes of partial differential equations [5,26].
For example, for the partial differential equations of the reaction-diffusion type

Uy = Atge + N(u), € R, u e U,

where U is an appropriate Banach space of functions u depending on & € R, a stationary
solution satisfies the ODE

u’(z) = —A7 N (u).

This equation is invariant under the transformation x — —uz, i.e., it is reversible. The
involution R acts as u' — —u/; its set of fixed points is {u/ = 0} and is half of the
dimension of the phase space of the ODE (the space of pairs (u,u’)). Thus, Theorem 1 is
applicable. It provides a characterisation of the complexity of the set of solutions near a



[ A.J. Homburg et al. / Advances in Mathematics 464 (2025) 110131

family of reflection-symmetric solutions that are asymptotically spatially periodic with
a localized “defect”: the number of different patterns that materialise in a finite spatial
window grows exponentially with the window’s size.

Another natural setting of non-Hamiltonian reversible dynamical systems where The-
orem 1 may be applied, is that of mechanical systems with non-holonomic constraints. If
the system is defined by a Lagrangian L(q, q) with a single constraint a(q)-q = 0, then
the equations of motion derived from the d’Alembert principle are

d oL 0L
o4 oq n(t)a(a),

where the factor p is such that the equations are consistent with the constraint at
each moment of time. This system preserves the energy £ = L — g—é-q, but it is not
Hamiltonian in general (e.g., the phase volume does not need to be preserved). However,
when the Lagrangian L is an even function of the velocity vector ¢, the imposition of
the constraint keeps the reversibility in tact. If the space of coordinates q is (n + 1)-
dimensional, then we have (n + 1) coordinates and (n + 1) velocity components subject
to 2 constraints — the velocity constraint and the energy constraint. Thus, the dimension
of the phase space for the system at a fixed energy level is 2n. The set of the fixed
points of the involution R : ¢ — —q is given by the equation {q = 0, L(q,0) = E}
and has dimension n (i.e., half of the dimension of the phase space) if the energy is in
the range of values of L(q,0). One concludes that generic reversible Lagrangian systems
with one velocity constraint fall in the class we consider in this paper. An example where
Theorem 1 may be applicable is given by a Chaplygin sleigh [4,6] moving on a generic
surface.

If a non-holonomic mechanical system is symmetric with respect to a continuous group
acting on the configuration space, the symmetry reduction decreases the dimension of the
configuration space and, hence, the dimension of Fix (R), as one can see in the examples
of rolling spheres [15] and rattlebacks [11]. Adding more velocity constraints increases
the dimension of Fix (R) relative to the dimension of the phase space. Thus, one obtains
examples of mechanical systems where dim Fix (R) is strictly less or greater than half the
phase space dimension. In the latter case, the symmetric periodic orbits go in families
that depend on more than one parameter. The question of whether symmetric homoclinic
tangles involving such families of periodic orbits always yield positive topological entropy
remains open.

2. Positive topological entropy

The proof of Theorem 1 involves the study of dynamics of a return map on a cross
section. It relies on technical results about invariant laminations, reductions to skew
product dynamics and estimates on the dynamics in fibres of the skew product system.
In this section we prove Theorem 1, with reference to auxiliary technical results in later
sections.
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Consider a symmetric point py in v9 N Fix R and a symmetric cross section Sy =
RSy containing py. The family of symmetric periodic solutions {7,} forms a sheet that
intersects Sp in a curve of points p,.

Let U be a small neighbourhood of vy Umng. We only consider orbits inside /. Consider
a second symmetric local cross section S7 = RS through the point gy which is the
intersection of 7y with Fix R. Write ¢, = 1, N Fix R in S; and let S = Sy U S1. A first
return map II : S — S is defined as I(x) = ¢i(z) with ¢ > 0 the smallest positive
number for which ¢;(x) € S such that ¢,(x) € U for all 0 < s < 1.

We write IT : S — S even though II is defined only on an open subset of S that
has components in both Sy and S;. Restricting the flow to a small neighbourhood U of
Yo U no also means that we consider the families {p,} and {q,} for values of a from a
small neighbourhood of 0.

We restate Theorem 1 in terms of the return map IT1: S — S.

Theorem 2. The first return map Il : S — S has positive topological entropy.

As the return time is bounded, this result implies the positivity of the topological
entropy for the flow, hence Theorem 1. The remainder of this section is concerned with
the proof of Theorem 2, in several steps.

2.1. Invariant laminations

The geometry of the invariant set of II in S is clarified by the existence of an invariant
lamination F¢: the lamination consists of leaves that are diffeomorphic to intervals. There
are leaves in Sy close to {p,} and in Sy close to {q,}. These leaves are invariant under
the application of an iterate of II. We let ¢ denote the leaf containing the point x. The
invariant lamination provides a reduction to a skew product of interval maps over a shift.
Proposition 2.1 contains the key result that makes this precise. Its proof is deferred to
Section 4. Before stating this, we first, introduce some notation. See Fig. 2 for a sketch
of the invariant lamination JF°.

Let 3 = {0, 1}Z be endowed with the product topology and o be the left shift operator
on X: (ow); = wit1 with w = (w;);ez. We write [no - - - n;] for the cylinder {w € ¥ ; w; =
7i,0 <i < j}. Let J C R be the interval (—1,1) and C*(X x J) denote the space of skew
product maps F : ¥ x J — X X R, with shift dynamics in the base X, so that

F(w7u) = (Uwrfw(u))’

with C* fibre maps f.,. We define I € C*(3 x J) as the skew product map with identity
on the fibre:

IHw,u) = (ow,u).

We furthermore define
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Fig. 2. Sketch of the lamination F° near the leaves {p,} and {q,}, that is invariant under an iterate ¥ of II.

Fi(w,u) = (0w, f1(u)),

where fi(u) = faiflw ©---0 fow © fw(u)
Let di(f, g) denote the C* distance between interval maps f,g on J,

di(f,9) = ilél;{lf(U) =g, [f'(u) = g ()]}

For two skew product maps F,G € C1(X x J) with F(w,u) = (ow, f,(u)) and G(w,u) =
(ow, gw(u)), we define the norm

|[F' = Gl1 = sup di(fuw, gu)-
weD

We consider C}(¥ x J) equipped with this norm.

Proposition 2.1. There is a sequence of decreasing neighbourhoods Vi, of {pa}U{q.} with
the following properties:

(i) There exists a centre lamination F¢ inside Vi, with one dimensional leaves, con-
taining the curves of fized points Fy = {pa} and of homoclinic points Fy = {qa}.
The leaves F¢ are continuously differentiable and the bundle of tangent lines T, F;
depends continuously on v € V.

(ii) There is K (k) with limg_, o K(k) = 0o and a coding W€ : ¥ — F° such that for
U = IT55) we have

U(Wew)) NV C W(ow).
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Moreover, ¥ restricted to F€ is topologically conjugate to a skew product map Fy, :
YxJ—=>Y xR,

Fk(wvu) = (O—Wa fw(u))v

where the fibre maps f,, are continuously differentiable and depend, along with their
derivatives, continuously on w. As k — oo, F}, converges to I in C1(X x J).

In Proposition 2.1, the leaves of F¢ are coded by symbol sequences in Y. The symbols
0 and 1 stand for Sy and Si, so that the leaf W¢(w) lies in S, and W¢(o*w) C S,,.
Reversibility of the system is reflected in the dynamics of the centre leaves W¢(w). We
define an involution R on 3 by

(Rw), = w—p.
Then, by reversibility,
RW¢(w) = W¢(Rw).
A symbolic sequence w is called symmetric if there exists s € Z such that
Rw = o’w.

For a periodic symbolic sequence w € X, the leaf W¢(w) is taken to itself by an
iteration of ¥, so we call it a periodic leaf. We speak of symmetric and nonsymmetric
periodic leaves. A symbolic sequence w € ¥ is called homoclinic if w; = 0 for |i| > N
for some N. For a homoclinic symbolic sequence w € X, the leaf W¢(w) is called a
homoclinic leaf. We distinguish symmetric and nonsymmetric homoclinic leaves. We call
the homoclinic leaf W¢(w) N-homoclinic if |[{i € Z ; w; = 1}| = N.

For the dynamics generated by the skew product map F}, from Proposition 2.1, iterates
of points may drift along fibres. The central issue is to identify those points whose iterates
do not drift away from V. The interval diffeomorphisms f,, that make up F} are close
to the identity map, meaning there is at most a small drift in the fibres. Thus for each
N € N there is a neighbourhood Vj so that for each finite itinerary 7 ...7ny and each
w € [no - ..nn], there is an interval of points u € J for which f? is defined for 0 <4 < N.
However statement only concerns finitely many iterates and does not help to determine
the maximal invariant set

A=) Fi(ZxJ).
1€EZ

In particular, the intersection of A with fibres {w} x J may be empty. Note that this
may be the case even for points in symmetric periodic leaves of high period.
The following lemma identifies cases where large numbers of iterates stay close.



10 A.J. Homburg et al. / Advances in Mathematics 464 (2025) 110131

- { ) (o35

b2

Rr, r
i} (b} fra}

Fig. 3. Sketch of nonsymmetric homoclinic leaves {r,} and {Rr,} and relevant maps between them.

Lemma 2.2. For each € > 0 there is k € N so that the following holds for Fy,. Suppose
w,x € 3 and j > 0 are so that w; = x; for 0 <i < j. Then

() = fi(u)] <e.

Proof. Points v in the centre lamination have local strong stable manifolds F,;; and

local strong unstable manifolds F,', see Proposition 4.3. The strong stable and strong
unstable laminations are arbitrarily close to affine laminations if k is large enough. By
the assumptions, W¢(o'w) and W¢(o'y) are in the same cross section S,,, for 0 < i < j.
Each Fp, p € W¢(o'w), intersects a leaf Jy for a unique g € We(o'x), 0 <i < j. As the
local strong stable and local strong unstable manifolds are invariant, this connects the
orbits of such points p and ¢. The result follows.

Each 7, p € W¢(w), intersects a leaf 7! for a unique ¢ € W¢(x). As the local strong
stable and local strong unstable manifolds are invariant, this connects the orbits of such
points p and ¢. That is, Fj i(p) intersects .Fff,i( )" The result follows since the strong stable

and strong unstable laminations are close to affine for large k. 0O
2.2. Nonsymmetric homoclinic orbits

A key role in the argument is played by nonsymmetric homoclinic leaves in F¢. Let
We(w) = {rq} be a nonsymmetric homoclinic leaf. We define maps ¢;;, 0 <4,j <1, by

$00 : {Pa} = {Pa}; ¢00(Pa) = Pa;

bo1 i {pa} = {ra};  d01(pa) = W (pa) N {ra},
¢10 : {ra} - {pa}; ¢10(Ta) =w (Ta) N {pa}
b1 :4{ra} = {ra};  P11(ra) = P01 © P10(7a),

see Fig. 3. Note that

P11(ra) = W(W*(ra) N {pa}) N {ra}.
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The definition of the maps ¢;;, 0 < 7,5 < 1 for the homoclinic leaf {r,} can be
extended to the symmetric image {Rr,}. We introduce a symbol 2 and have maps ¢;;,
i,7 € {0,2} obtained from ¢;;, 0 <4,j <1 by composing with R:

¢02 : {Pa} = {Rra}; $o2 = Roo1,
¢20 : {Rra} —= {pa}; $20 = ¢10 0 R,
G2 : {Rrq} = {Rra};  ¢220 = Rpr110R.

We finally let ¢19 = ¢g20¢10 and ¢o1 = @1 0¢20. By reversibility we have ¢go = R(bfol oR
and ¢o90 = Rey,' o R. Upon identifying u € {r,} with Ru € {Rr,} we have ¢1; = ¢35
Further, o1 = ¢39, ¢10 = dpp and id = goo = P12 = Pa1.

One may consider dynamics restricted to small neighbourhoods of {p,} and the
nonsymmetric homoclinic leaves {r,} and {Rr,} and obtain results analogous to Propo-
sition 2.1 for dynamics near {p,} and the symmetric homoclinic leaf {q,}.

Let Q = {0,1, 2}Z be endowed with the product topology and define the skew product
system L : Q2 x J — Q xR by

L(v,u) = (ov; ¢ (u)), (1)

where we write ¢, for ¢,,,,. Recall that C1(€2 x J) denotes the space of skew product
systems on Q x J over the shift as base dynamics, with C'* fibre maps and endowed with
the norm

|F — G|y == supdi(fo,g0)-
veQ

Proposition 2.3. There are decreasing neighbourhoods Wy of {pa} U {r.} U {Rr,} with
the following properties:

(i) There exists a lamination G¢ C F¢ inside Wy and an iterate & = TT*) so that ®
restricted to G° is topologically conjugate to a skew product map Gy : QAxJ — QXR,

Ge(v,u) = (ov, gy (u)).

(ii) The maps g, are continuously differentiable and, along with their derivatives, de-
pend continuously on v. As £ — oo, Gy converges to L in C*(Q x J).

The symbolic code is derived from v; = 0,1,2 if ®(x) is near {p,}, {ro} or {Rry,}
respectively. The proof of Proposition 2.3 is left to the reader as it only concerns a slight
variation of the arguments in the proof of Proposition 2.1, that is presented in Section 4.
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2.3. Scattering maps

The following definition is inspired by [7,8]. Assume the above setup with W¢(w) =
{rs} a nonsymmetric homoclinic leaf and ¢11(r,) = W*(W¥(rq) N{pa}) N {ra.}, cf. also
Fig. 3.

Definition 2.4. The map ¥, = ¢11 : {ra} — {ra} is the scattering map for {r,}.

Take k large and consider U = IT¥(®) on ¥ x .J as in Proposition 2.1. Let 0 < ¢t < 1
and consider the following assumption:

Assumption There exists ( € X with |fé’ (0)| > t for some h € N.

Under this assumption we find a nonsymmetric homoclinic leaf with nonidentity scat-
tering map (Lemma 2.5) and use Proposition 2.3 to study nearby dynamics.
Take £ much smaller than ¢t. Given € we can take k large enough as in Lemma 2.2.

Lemma 2.5. Given § > 0, when choosing k large enough there is a homoclinic leaf {r,}
whose scattering map v satisfies 1 # id and di (), id) < 0.

Proof. Let w € ¥ be given by w; = (; for 0 < i < h and w; = 0 otherwise. So w is
a homoclinic symbolic sequence. By Lemma 2.2 f"(0) is close to fg(O) By the above
assumption, it follows that the scattering map 1, is not the identity map. Necessarily w
is a nonsymmetric symbolic sequence.

Knowing that there are homoclinic symbolic sequences with nonidentity scattering
map, we can take m minimal so that w is a homoclinic itinerary with nonidentity scat-
tering map, wp = 1, wy,, = 1, and w; = 0 for ¢ < 0 and ¢ > m. This yields a scattering
map that is close to the identity map, as follows. As w is nonsymmetric, there exists a
largest integer v, 0 < r < m, with w, # 0. Let n € X be obtained by 7; = w; for i # m
and 7, = 0. By the choice of m, the scattering map 1, of the homoclinic leaf W¢(n)
is the identity map. From n; = 0 for j > r we find f;rﬂn = id for all 4 > 0. Compare
firs1, and f;rﬂn for i > 0. As w; for j > r is the symbol 0 except for wy,, which is
1, we find that f!,,,  is C'-close to the identity for k large. This follows by combining
Proposition 2.1 (establishing that fibre maps f,, converge to the identity map if & — 00)
and Lemma 3.2 (asserting that compositions of fibre maps fg.»-o converge to the identity
map if k — 00). We conclude that the scattering maps of W¢(n) and W¢(w) are arbitrary
close for sufficiently large k. O

2.4. Iterated function systems

Consider the homoclinic leaf {r,} from Lemma 2.5. Let L be the corresponding skew
product system as in (1). Let ¢ > 0. Proposition 2.3 assures the existence of £ > 0 and
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Fig. 4. The scattering maps 1, ¥~ ' define an iterated function system on an interval.

a neighbourhood W of {p,} U {r,} U {Rr,} so that an iterate TT*() is topologically
conjugate to a skew product map Gy : Q x J = Q x J with |Gy — L|; < o. The fibre
maps that make up L are the scattering map 1), its inverse ¢!, and the identity map.
We first consider the iterated function system on J generated by the maps v, 1.

Lemma 2.6. Assume di(, id) as in Lemma 2.5 is small. Then, possibly after interchang-
ing the maps ¢ and =1, there are intervals (a,b), (b,c),(c,d) inside J with 1,1
defined on an interval containing [a,d] and

(1) ¥ maps [a,b] into (b,c);
(2) =t maps [b,c| into (a,c);
(3) =2 maps [c,d] into (b,c);
(4) ¥ maps [b,c] into (b,d).

Proof. If ¢)(u) > u on J we can iterate a point in (—1,—3) C J many times before it
enters (%, 1) € J. We can thus take a < b < ¢ < d as in the statement of the lemma, as
illustrated in Fig. 4. If 1(u) < u on J we exchange 1,1 ~! to get the result.

If the graph of ¢ does intersect the diagonal, there is a point ¢(s) = s and an interval
(s,v) on which 9(u) > u (possibly interchanging 1,%~!). Inside (s,v) one finds an
interval (a,d) as above. See Fig. 5. O

The iterated function system generated by 1, ¥~' leads to the skew product system

O(w,u) = {

—~

ow,P(u)),  wo =0,
ow, v (u)), wo=1,

—~
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Fig. 5. The scattering maps 1,4 ! define an iterated function system on an interval, here in an example
where it is necessary to restrict to a subinterval on which ¥ (u) # u.

on ¥ x J. Assuming the conclusion of Lemma 2.6, we claim that this skew product system
on its maximal invariant set has positive topological entropy.

Projecting the maximal invariant set A of O to X by the natural coordinate projection
we obtain a closed invariant set for the left shift operator on X. It suffices to demonstrate
the latter’s positive topological entropy, since it is a factor. By [22, Chapter 4 and
Section 6.3] this topological entropy h is given by

h = lim l,ln|Bi|
1—00 1
holds, where B; is the set of blocks of length ¢ and |B;| is its cardinality. Outside [b, c|
applying either /2 or 9y~2 maps back into [b, ¢]. On [b, ¢] both v and =1 are well defined
and map into [a,d]: on [b, ¢] both maps can be applied. Starting at some point in [b, ¢],
every three iterates there are at least two possible compositions available that map back
into [b, ¢]. We therefore obtain i > 0.

2.5. Conclusion

Take k large and consider ¥ = IT¥(%) on ¥ x J as in Proposition 2.1. Let 0 < ¢ < 1.
We distinguish two possible cases, where the second case is the earlier used assumption.

(1) For each w € 3, | f£(0)| <t for all i € N;
(2) there is ¢ € ¥ with |f<h(0)| > ¢t for some h € N.

Case (1): The condition implies that for every w € ¥ there is a point in W¢(w) with
itinerary w. There is thus an invariant set for ¥ that projects to X. The topological
entropy of ¥, and hence II, is therefore positive.

Case (2): Let {r,} be a nonsymmetric homoclinic orbit provided by Lemma 2.5, with
dy(1,1id) < ¢ small. Consider the skew product system Gy : Q x J — Q x R provided by
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Proposition 2.3. Let £ be large and Q' C Q be the space of symbolic sequences in § in
which 0 does not occur and 121 and 212 also do not occur. The shift on ' is a subshift
of finite type. Restricting Gy to ' x J, the skew product map (v,u) — G¢(v,u) has
fibre maps g, which, for £ large enough, are arbitrarily close to id, 1/, or ¥»~!. Moreover,
since 121 and 212 are forbidden subsequences, there is at most one identity map in a
row. If we compose any fibre map close to the identity map with the subsequent map
(which is either ¢ or ¢~1), we obtain a composition of maps that are arbitrarily close
to 1 or 1!, for large enough ¢. The argument to prove positive topological entropy
for the iterated function system generated by 1, ¥~ !, given above, applies to show that
the skew product map Gy has positive topological entropy on its maximal invariant set.
Indeed, although the fibre maps are not exactly 1 or 1 ~1, they are C' close so that the
properties (1)-(4) listed in Lemma 2.6 still hold for 1, 9)~! replaced by the nearby fibre
maps.

We proceed to call a cylinder Q = [w_, - - - wy] good if for any infinite w € 2 we have
g.,(0) € (a,d) for —m < i < n. Write for instance Q2 for the cylinder [w_,, - - -w,2].
By construction, if © is good, then both 21 and Q2 are also good if g"*(0) € (b,c).
Otherwise, if g”(0) > ¢, then Q = Q22 is good, and if g”(0) < b, then Q = Q11 is good,
and g2*2(0) € (b,c) in both these cases, so both Q1 and Q2 are good. The same is
true for the expansion of € to the left. Thus, one constructs the growing set of cylinders
such that in the limit we obtain the set of codes corresponding to fibres which contain
a bounded orbit. As the number of good cylinders grows exponentially with length, the
topological entropy is positive. This concludes the proof of Theorem 2.

3. Local normal forms

The final two sections of this paper develop some important technical results, in par-
ticular expansions for the local transition map and existence and regularity of invariant
centre laminations. We first develop expansions of the return map on Sy close to pg. Let
Uy be a small tubular neighbourhood of 7g. Consider the first return map Il : Sg — Sp
considering orbits in Uy. Note that Iy is defined on an open neighbourhood of py in
So, nonetheless we write Iy : Sg — Sp. Local stable and unstable manifolds of p, are
denoted by W (p.) and W% (p,); they are intersection with Sy of local stable and
unstable manifolds Vi3 (v,) and V{%.(~,) of the periodic orbit 7, for the flow.

Lemma 3.1. There exist smooth coordinates (x,y,z) from an open set in R"~! x R x
R™=1 on Sy such that p, = (0,0,a) and (x1,y1,21) = Ho(wo,%0,20) has the following
expression:

T = A(ZO)$0 + e($07y0a ZO))
Y1 = A_l(ZO)yO + f(x07y07 ZO)?
21 = 20 + g(0,Y, 20), (2)
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where the matriz A € R"1*"=1 depends smoothly on zy and satisfies | A(0)z| < Al|z||
for some 0 < X\ < 1. Further, e, f,g are smooth functions satisfying

e(z0, 0, 20) = O(x3) + O(zoyo),
f(zo, 90, 20) = O(y3) + Olzoyo),
9(0, Yo, 20) = O(xoyo)- (3)

Proof. Take local coordinates (x,y, z) near po for which p, = (0,0, a) and

Wige(pa) = {x = 0,2 = a},
Wite(pa) ={y =0,z = a}.

Note that W% (p.) and Wy _(p.) are invariant for every a, from which expressions (2)
and estimates (3) follow. By the reversibility, the restriction of the map on W} _(p,) is
conjugate to the restriction of the inverse map on W% (p,), therefore the linearization
matrices, at p,, of the map on W} (p,) and the map on W% (p,) are, indeed, inverse to
each other. O

The curve {p,} of fixed points has a local centre stable manifold W} ({p,}), which is
a union of local stable manifolds W _.(p,) of individual fixed points. Similarly the local
unstable manifold W% ({pa}) is foliated by local unstable manifolds W} _(pa)-

We may take the coordinates in Lemma 3.1 such that the action of R is locally linear
[3] and given by R(zx,y,2) = (y,, z). Indeed, RW}%_(ps) = W} .(pa). Therefore, writing
R(z,y,2) = (R1(z,y, 2), Ra(z,y, 2), R3(x,y, 2)), we have

Ry(z,0,2) =0, R5(0,y,2) =0, R3(0,z,2) = R3(x,0,2) = z.

It also follows that the derivative of R at zero is R'(0) : (z,y,2) — (y,,z). These
formulas imply that the coordinate transformation

(5,9,2)" = 5[(0,9,2) + R(O)R(z,,2)]

linearizes the involution R while maintaining the validity of the expressions (2) and
estimates (3).
Fix A with ||A(0)|| < A < 1 and take € > 0 so that for |z| < ¢,

A < A.

We further assume that the neighbourhood Uy of the periodic orbit under consideration
is chosen small enough so that Uy NSy is contained in {|z| < €}.

The following lemma yields estimates for iterates near pg in cross coordinates. See
[29,30] for an introduction to the theory and use of cross coordinates in dynamics. Note
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that the estimates improve for orbits with higher number of iterates that stay closer to
the local stable and unstable manifolds of p,.

Lemma 3.2. Assume (xi,yi,2;) = I5(wo,y0,20) € So for all 0 < i < k. Then
(Tk, Yk, 21) = & (20, Y0, 20) can be solved for (xy,yo,2x) as function of (xo, Yk, z0), with
the following expression:

r1, = Ry (20, Yk, 20),
Yo = Ry(x0, Yk, 20),

2 = 20 + Rz (20, Yk, 20)-

For some C > 0, independent of k,

| R (20, Y 20) |, ID R (20, Yk, 20)| < CA¥,
|Ry(m0ayk720>|a |DRy(anyk720)| S C)\ka
‘Rz(moﬁylﬁzoﬂa |DRZ($anksz)| < O)‘k/2

Proof. This follows from [10, Lemma 1]. O

As g, € W3°({ps}) we can also define the local centre stable manifold W;¢({q,}) of

oc

the curve {q,} of homoclinic points as the connected component of W*¢({p,})N.S; that

contains {q, }. It is foliated by local stable manifolds W .(g,). Similarly, the local centre

unstable manifold W< ({q.}) is foliated by local unstable manifolds W} _(g,). Observe
that

{pa} = Wlii({pa}) N Wli;é({pa})v
{aa} = Wise({aa}) N Wige({ga})-

Throughout, we assume smooth coordinates (x,y, z) on Sy in which

Wige({4a}) = {y = 0},
Wige({¢a}) = {z = 0},

and also
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4. Centre laminations

The existence of a locally invariant centre lamination F¢ of one dimensional leaves is
key to Proposition 2.1. This centre lamination extends the curves of fixed points {p,} and
homoclinic points {q, }. Its existence and stated regularity properties, together with the
normal form expansions in cross coordinates obtained in the previous section, establish
Proposition 2.1. For discussions on the existence of centre laminations in similar contexts,
see also [17,18].

Our proof of the next proposition is related to the cross coordinates from Lemma 3.1
and Lemma 3.2. We let FS represent the leaf of ¢ through a point w.

Proposition 4.1. There is a sequence of decreasing neighbourhoods Vi, of {pa}U{qs} with
iterates U = IIX(*) 50 that:

(i) There exists a centre lamination F€ inside Vi with one dimensional leaves, con-
taining the curves of fized points F5 = {pa} and of homoclinic points F5 = {qa}-
The leaves F¢ are continuously differentiable and the bundle of tangent lines T, F;

depends continuously on v € V.
(i) There is a homeomorphism W€ : ¥ — F¢ with

T(We(w)) € W(ow).

Proof. Consider local coordinates (r,y,z) € R"™! x R x R"~! near pg as in Lemma 3.1.
We can find arbitrary large integers k and sets V7, V5 that are small neighbourhoods of
Wlsocc(po)v chc;é(po)v with

Vy = 11F (1)
and

Vi {lz| < 1,]y] < OAF,|2] < ¢},
Vo C {|z] < ON,Jy| < 1|2 < ¢}

for uniform constants C' > 0, ¢ > 0. This is similar to the construction for (planar)
diffeomorphisms in [23], with an additional z-direction included, see Fig. 6.

There exists [ > 0 so that g¢o € '+ (V) and I_ > 0 so that II'-(gp) € V4. The
numbers Iy,l_ do not depend on k. (By taking Sy and S; small we may in fact assume
I_ =1, = 1.) Note that II'=+*+l+ maps II=!- (1) to II'+ (V3). Adjusting the sets Vi, Vs
we may assume that qq is in the interior of II'+(V5) and of 1=~ (V;). For k large we find
that IT'-T*+l+ maps TI7!- (V1) to a set that has an intersection with II=!=(V}) near pg
and near go. Write Q; = IT%(qo).

The map ¥ = II'-++++ on TI7!-(V}) consists of maps ¥og : Sy — So, o1 : Sp —
Sy, g 0 S1 — Sp and ¥yy @ S; — S (the domains are open sets contained in the
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Fig. 6. Sketch of the main elements in the construction of a horseshoe near a homoclinic tangle as employed
in the proof of Proposition 4.1, omitting the additional centre coordinate and under the assumption of a
single cross section.

indicated cross sections). The maps have the form Wgg = II!-tF++ Wy = G o ITI-+F,
Vg =IIF+ o H, Uy, = GollFo H. Here G = IT'+ is a local diffeomorphism that maps a
neighbourhood of Q_;, to a neighbourhood of o and H = II'- is a local diffeomorphism
that maps a neighbourhood of gy to a neighbourhood of @Q;_.

Near ¢o in S; we take coordinates (z,y, z) satisfying (4). We write all four maps ¥,;,
0 <i4,5 <1, in cross coordinates, as in Lemma 3.2. This defines maps @jj :R?” - R”
with

(20,91, 20) = (21,90, £1)
if
Wij (%0, 9o, 20) = (21,91, 21),

and (£1,91,%1) = (xk, YKk, 2k ) for K =1_ + k + ;. Recall that by Lemma 3.2 we have
for 4,5 = 0,0,

S00,2(Z0, 91, 20)
o (£o0, 91, %0) = 500,y (Z0, 91, 20)
20 + S00,2(Z0, 91, 20)

Bounds for the terms on the right-hand side are given in Lemma 3.2.
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Similar estimates hold for other pairs 4, j. Consider for instance for ®J;. Note that G
maps W (pa) to W.(¢a), thus G maps {z = 0,z = a} to {x = 0,z = a}. As further
G(Q-i,) = (0,0,0), we have

anz + O(x)O0(||(z,y, ||
G((,y,2) — Q1) = | a21x + agey + azzz + O(||z, y, z|?)
z+ O0(x)O(|[(z, y, 2[))

By the implicit function theorem,

So1,z(Zo, 91, 20)
D, (2o, 01, %0) = So1,y(Zo, 91, 20)
20 + So1,2(Zo, 1, 20)

with for some C > 0 independent of k,

1So01,2(Z0, §1, 20)|, | DSo1,2 (%0, 91, 20)| < CAF,
1S01,4(Z0, U1, 20)|, | DSo1,4 (Z0, §1, 20)| < CAF,
1So01.2 (%0, 91, 20)|, | DSo1.= (F0, 91, Z0)| < CAF/2.

Such estimates exist also for @}, and ®7;.

Let # : R?»~! — R be a nonnegative test function, with § = 1 near the origin and
6 = 0 outside a neighbourhood of the origin. For € > 0, let 6.(z) = 6(z/e). Replace II
on Sp by 611+ (1 — 6.)DII(0,0,0). By rescaling we may assume II that is unaltered on
{lz| < 1,]y] < 1,]z] < 1} and linear outside {|z| < 2,]y| < 2,|z|] < 2}. We can now
consider Wog on a uniform neighbourhood {|z| < 3, |y| < 3} x R of the z-axis in R?"~!,
Likewise, we extend the local diffeomorphisms G and H to have all maps ¥;; defined on
a uniform neighbourhood {|z| < 3,|y| < 3} x R of the z-axis in R?"~!. Moreover, we
may assume that U;; is affine and acts as the identity map on the z-coordinate, outside
{lz] <2,y < 2,]2[ <2}

As a result we find @fj, 0 <4,j <1, which we will consider on {|z| < 3,|y| <3,z <
3}, with

Sij,z (%0, 91, 20)
(I);;(ibyglaQO) = Sijw(fo,@l,éo) (5)
20 + Sij.= (%0, 91, 20)

and for some C > 0 independent of k,

1Si.0(20, 915 20)|, | DSij e (Z0, 1, 20)| < CNF|do],
|Si5.5(£0, 91, 20) |, [DSis (R0, 91, 20)| < CA¥ |,
|Si5.2 (%0, 91, 20)|, | DSij.2 (20, 01, 20)| < CAF/2. (6)

<
I3

1
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In the same way, we define maps ®;;, also considered on {|z| < 3,|y| < 3, 2| < 3},
with
®;; (20,91, 21) = (21,90, 20)
(so the central z-coordinate is treated differently) if
Wi (2o, Yo, 20) = (%1, 91, 21)-
This can be viewed as cross coordinates for the inverse map ¥ ~'. Asymptotic expansions

for <I>;j are like those for CIJZFJ»:

Tije(Zo, U1, 21)
q);j(‘%[)aglvél) = Tij,y(i‘O,Zjl,él) (7)
21 4 Ty, (%o, 91, £1)

with

|T‘ij,1‘(‘%07 gh 21)|7 |DT‘ZJ,JE(£07 gh 21)| S Cf)\k|j70|7
T, (Z05 91, 21) | | DT3j.4 (0, 91, 21)] < CANF| ],
|Tij,z(£%07g17 21)|7 |Dﬂj,z(‘%07g17 21)| S O)\k/Qﬂ (8)
for some C' > 0 independent of k.
Now fix w € ¥. Denote by C(Z, R?*~1) the space of bounded sequences ¢ : Z — R?7~1

endowed with the supnorm. Consider its subset C(Z, {|z] < 3, |y| < 3, |z] < 3}) consisting
of the sequences & : Z — {|z| < 3, |y| < 3,|z| < 3}. Abbreviate

C=CZAlz| <3|yl <3,|2[ < 3}).
For fixed zg with |2p| < 3, define
H:C— C(Z,R*™ 1)
as follows: if v; = (z;, yi, 2;) and H(v) = n with n; = (u;, v;, w;), then

(Wit1, Vi, Wit1) = Py, (Ti Yit1, 2i41), i1 >0,
(ui+1,viawi) = (DIiwi+1(xi7yi+1azi)v ifi < 0, (9)
for i € Z, and wg = zp.
Orbits of IT are fixed points of H. By (5), (7), the estimates (6), (8), and the fact that
H acts as the identity map on the z-coordinate outside {|z| < 2,|y| < 2,|2] < 2}, we
find that H maps C into itself:



22 A.J. Homburg et al. / Advances in Mathematics 464 (2025) 110131

H(C) C C.

The map H is, however, not a contraction on C, due to the existence of a central direction.
To remedy this, we find a contraction by using scaled Banach spaces as in [33]. Write
Co(Z,R?"71) for the set of sequences Z — R2"~! with sup;cz o Il||y(i)|| < oo and
equipped with the norm

Vla = sup ™y (3)].
€L

The set Co(Z,{|z| < 3,]y| < 3,]2] < 3}) consist of those sequences v € Cyo(Z,R*"1)
with v; € {|z| <3, |y| <3,|z| < 3}. Abbreviate

Co = Cal(Z:{lz] <3, [yl < 3,[2] <3}).
Let oo > 1 be fixed and close to 1 and consider H on C,. From (9) we find, for ¢ > 0,

Ui = Swi_ 1w (Tim1, Yi, Zim1),
vy = qujw,;+1 (mi,yi+1a Zi),

Wi = Wi—1 + Sw,_yw, (Tim1,Yis 2io1)-
For i < 0 there are similar expressions of the form

Uy = Twi—lwq, (‘Ti—lﬂ Yis Zi)v
Vi = Twz‘wz‘+1 (xia Yi+1, Zi+1)7

Wi = Wit1 + Ty (Tis Yi15 Zig1)-

One easily checks from this, using o > 1 and (5), (6), (7), (8), that H is a contraction on
Cq- The map H therefore possesses a unique fixed point ¢; ((¢) is an orbit for U. Write
w(zp) = ¢(0). This gives w : {|z| <3} —= {|z| < 3,]y| < 3}. It follows from the reasoning
in [33] that w is continuously differentiable. (Apart from the nonessential difference that
the expression of the contraction is not the same, the additional structure consists of a
dependence on w € ¥. We do not have a single map but a finite number of maps q)fj
coded by w and that appear in the expressions, but the reasoning in [33] can be followed.)
Define

Wew) = |J w(z0);

z0€R

W€(w) is the sought for centre manifold. By construction, W¢(w) (intersected with S)
is contained in S, and satisfies

T(We(w)) C Wé(ow).
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Note that a~I"!||y,|| = 0 as |n| — oo, for v € C,. Therefore H : C,, — C,, depends
continuously on w € X. It follows that w depends continuously on w. The contraction
H : Co — Cq is not continuously differentiable, but it is continuously differentiable when
considering H : Cor — Cq for o/ < a. See [33], also to see that this implies that w is
continuously differentiable. As the derivatives of ‘H : C,» — C, depend continuously on
w, the derivative of w depends continuously on w. O

Remark 4.2. A simplified version of the above proof in which the centre direction is ig-
nored, gives an analytical proof based on cross coordinates of the existence of a horseshoe
near homoclinic tangles of general systems. The usual proof, as in [19], deploys invariant
cone fields.

Proof of Proposition 2.1. The proof of Proposition 4.1 introduces sets Vi, Vo = IT¥(17)
near po. Together with iterates II7(V;), —I_ < j < —1 and II7(V), 1 < j < I, this
defines a small neighbourhood V' of the closure of the orbit under IT of ¢q.

With K = [_+k+1, as in the proof of Proposition 4.1 we observe that V;, = VNII* (V)
is a small neighbourhood of py U qo. The iterate ¥ = II* possesses an invariant centre
lamination inside V N II¥ (V) with leaves W¢(w), w € X.

Consider the fibre map from W¢(w) to W¢(ow). To fix thoughts, assume wy = wy = 0,
so that the fibre map is obtained by iterating the local map II on Sy. The other possible
cases are treated similarly. Lemma 3.2 provides expressions for points u = (zg, 4o, 20) €
We(w) and TTX (u) = (zx, Yk, 2x) € W¢(ow). Now u € W€(w) gives zg,yo as function
of zg and II¥ (u) € W¢(ow) gives 2k, yx as function of zx. By the implicit function
theorem we solve

2k = 20 + R.(z0(20), yx (2K ), 20)

from Lemma 3.2 for zg as differentiable function of zy. For the derivative we have

dex |, OR.dwg  OR.dyx dsc | OR.
dz Oxg dzy  Oyr dzgx dzg Oz’

with R, calculated in (zo(20), yx (2K ), 20). The tangent lines of the centre leaves go to
zero as k — o0o. The estimates in Lemma 3.2 imply that also R, and its derivatives
converge to zero as k — oo, and thus show that zx converges to the identity in C! as
k — oo.

Next, we proceed to rescale the z-coordinate so that it becomes defined on J, and
fibre maps f,, converge to the identity map on J as k — oco. As the tangent lines of the
centre leaves vary continuously with the base point, the convergence is uniform in w € X.
We conclude that Fj, converges to I in C}(X x J) as k — co. O

We note that as k in Proposition 2.1 increases (and the neighbourhood Vi decreases),
the number of iterates K goes to infinity. Lemma 3.2 shows that this only facilitates the
estimates for the return map and leads to the convergence of Fj, to I as k — oo.
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The following result implies that the centre foliation is normally hyperbolic.

Proposition 4.3. For sufficiently small neighbourhoods Vi, of {pa} U {qs} as above, there
exists a centre stable lamination F°¢ inside Vi with n —1 dimensional leaves, containing
the local centre stable manifolds WS ({pa}) and Wit ({qa}), so that
(i) centre stable leaves are foliated by local strong stable manifolds,
(ii) the strong stable lamination F° formed by the union of the strong stable manifolds
1s locally invariant,
(iii) the tangent spaces of the strong stable lamination depend continuously on the point.

Corresponding statements also hold for a strong unstable lamination F*.

Proof. We note first that a strong stable lamination is constructed by the same method-
ology used in the proof of Proposition 4.1 to construct a centre lamination. In fact it
suffices to replace H defined in (9) by

HY:C — C(N,R*" 1)

given by the identity: if v; = (24,9, 2;) and H*(y) = n with n; = (u;, v;, w;), then

(Uit1, v wi1) = Py (T Yig1s 2ig1),

for i € N, and ug = zy € R* !, wy = z9 € R. The centre unstable lamination is
constructed similarly, and the centre lamination is in fact the intersection of the centre
stable lamination and the centre unstable lamination.

We continue with the strong unstable manifolds. One constructs a bundle of tangent
spaces of strong unstable leaves and shows that these integrate to form a strong unstable
foliation of centre unstable leaves. Denote by G"~!(R?"~1) the Grassmannian manifold
of (n — 1) dimensional planes in R?"~!. A strong unstable foliation is determined by
its tangent bundle, hence by a section F°* — G™~1(R?*~1). Extend ¥ to ¥()) on the
bundle R?"~! x G"~1(R?"~1!) of (n — 1) dimensional planes in R*"~! over R?"~! by

D (z,a) = (U(z), DU(z)a).

The bundle E* of unstable directions over {p,} and over {q,} is fixed under ¥(1).
Proposition 4.1 provides a strong unstable lamination F°* on {|z| < 2,]y| < 2,|z| <

2}. A direct computation (compare [16]) shows that ¥(1) is stable within the fibres

G"~Y(R?*"~1). Therefore iteration by W of a suitable trial foliation on F¢* converges to

an invariant unstable lamination. O
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