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1. Introduction

It is a classical result in the theory of dynamical systems that homoclinic tangles 
give rise to hyperbolic horseshoes and thus positive topological entropy. The history 
of chaotic dynamics started with the discovery by Poincaré [24] that the stable and 
unstable manifolds of a saddle periodic orbit may have a transverse intersection along 
a homoclinic orbit. For a sufficiently small neighbourhood of the union of a hyperbolic 
periodic orbit and its transverse homoclinic, the invariant set that consists of all orbits 
that stay entirely in this neighbourhood is uniformly hyperbolic and admits a symbolic 
representation by a full shift on two symbols [28,31]. This result, the Shilnikov-Smale 
theorem, provides the most fundamental criterion for chaos in a dynamical system.

The fact that the Poincaré’s homoclinic tangle implies positive topological entropy 
holds true also in the original Hamiltonian setting. A subtle point here is that the 
Hamiltonian function is a first integral, and saddle periodic orbits of a Hamiltonian sys
tem arise in families, parameterised by the value of the Hamiltonian. Such family is a 
normally-hyperbolic invariant manifold; the homoclinic tangle corresponds to an inter
section of its stable and unstable manifolds. Formally speaking, each periodic orbit in 
the family is not hyperbolic. However, inside any dynamically invariant level set of the 
Hamiltonian, the saddle periodic orbit is isolated and hyperbolic with a transverse ho
moclinic, so the Shilnikov-Smale theorem is applied and the positivity of the topological 
entropy follows.

Normally-hyperbolic one-parameter families of periodic orbits with transversely in
tersecting stable and unstable manifolds also naturally arise in reversible systems [18]. 
Despite the substantial interest in reversible dynamical systems [1,2,5,9,11--15,17,18,20, 
21,25,27], a concise characterisation of a reversible homoclinic tangle, which we believe 
deserves to be central to the theory of chaotic dynamics in reversible systems, has been 
lacking.

The core issue here is that reversible systems do not need to be Hamiltonian and, 
typically, there exists no first integral. For example, if a perturbation of a reversible 
Hamiltonian system preserves the reversibility but breaks the Hamiltonian structure, 
then a given family of symmetric periodic orbits and their symmetric homoclinics survives 
the perturbation. However, the dynamically invariant foliation by energy levels gets, 
typically, destroyed, as the energy is no longer conserved. This provides the possibility 
that many orbits leave a neighbourhood of the homoclinic tangle due to the drift in 
energy, which makes the dynamics near a reversible homoclinic tangle very much different 
from those in the Hamiltonian setting.

The a priori non-controllable drift along the central direction means that one should 
go beyond the standard hyperbolicity techniques to resolve even the most basic question 
– whether the dynamics near the reversible tangle are chaotic? In this paper, we give 
an affirmative answer by proving that the set of orbits that remain in any given neigh
bourhood of the reversible homoclinic tangle (satisfying transversality conditions) has 
positive topological entropy (see Theorem 1).
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Let us describe the setting in detail. We consider the flow of a smooth vector field

ẋ = f(x)

on R2n, n ≥ 2, which is reversible with respect to a smooth involution R : R2n → R2n

with an n-dimensional manifold of fixed points. So

DxRf(x) = −f(Rx)

and FixR = {u ∈ R2n ; Ru = u} is n-dimensional.
Recall that a periodic orbit γ is symmetric if Rγ = γ as a set. A symmetric periodic 

orbit γ intersects FixR transversely in two points. Consider a symmetric (2n − 1)
dimensional cross-section S = RS through one of the two points of γ ∩FixR. Since S =
RS, the intersection S ∩FixR is n-dimensional, so its image under the first-return map 
to S is also n-dimensional. The dimension count shows that transverse intersections of 
this image with S∩FixR occur along one-dimensional curves, hence symmetric periodic 
orbits generically arise in one-parameter families [9].

Thus, we consider a one-parameter family of symmetric periodic orbits γa = Rγa
which are of saddle type in the normal directions, parameterised by a real parameter a
that runs some interval (a−, a+) that contains zero. When we use the parameter a in our 
notation, it is understood refer to such an interval. This family is a normally-hyperbolic 
invariant manifold (a two-dimensional cylinder) for the flow of f . Let V s(γa) denote 
the n-dimensional stable manifold of the periodic orbit γa and V u(γa) its n-dimensional 
unstable manifold. By the reversibility, V u(γa) = RV s(γa). Assume that V u(γ0) has a 
transverse intersection with FixR at a point q0 outside of γ0. By symmetry, V s(γ0) has a 
transverse intersection with FixR at the same point. The invariant manifolds V s(γ0) and 
V u(γ0) consist of the whole orbits of the system ẋ = f(x), so the tangents to V s(γ0) and 
V u(γ0) at the point q0 both contain the vector f(q0). We assume, as a non-degeneracy 
condition, that the intersection of the tangents contains no other directions.

The orbit η0 of q0 lies both in V s(γ0) and V u(γ0), so it tends to γ0 both in forward 
and backward time, i.e., it is homoclinic to γ0. Since it is an orbit of a point in FixR, 
it is symmetric, i.e. η0 = Rη0. When the above transversality assumptions hold, we call 
η0 a strongly transverse symmetric homoclinic connection. Since compact parts of stable 
and unstable manifolds of γa vary smoothly with a, we obtain a one-parameter family 
of symmetric homoclinic connections ηa = Rηa in V u(γa) ∩ V s(γa), dfined for all a in 
some neighbourhood (a−, a+) of a = 0, constituting a symmetric homoclinic tangle. See 
Fig. 1 for a sketch (in Section 2 we work with different local cross-sections containing 
symmetric periodic points and symmetric homoclinic points). 

Our main result is

Theorem 1. Consider the flow of a smooth reversible vector field on R2n that is reversible 
with respect to an involution with n-dimensional fixed point manifold. Moreover, let there 
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Fig. 1. Sketch of a homoclinic tangle, here depicted inside a three-dimensional cross-section S. The family 
{γa} of symmetric periodic orbits, with a from some interval (a−, a+), intersects FixR inside S, drawn as 
a solid curve. Each symmetric periodic orbit γa has stable and unstable manifolds V s(γa), V u(γa). The 
intersections of these stable and unstable manifolds for the family {γa} with S form two-dimensional sheets: 
a stable sheet V s({γ+a})∩S bounded by V s(γa− )∩S and V s(γa+ )∩S, an unstable sheet V u({γ+a})∩S
bounded by V u(γa− )∩S and V u(γa+ )∩S. The sheets V s({γa}), V u({γa}) intersect in FixR inside S, not 
only in the family of periodic orbits, but also in a family of symmetric homoclinic points {ηa} ∩ S. There 
are further intersections of the stable and unstable sheets outside FixR, a few are represented by dashed 
curves.

be a normally hyperbolic family of symmetric periodic orbits whose stable and unstable 
manifolds intersect in a family of strongly transverse symmetric homoclinic orbits. Let 
γ0 be a symmetric periodic orbit from this family and η0 the corresponding symmetric 
homoclinic orbit to γ0. Then the flow of f restricted to any neighbourhood of the union 
of η0 and γ0 has positive topological entropy.

The proof of this result entails the study of skew product systems of interval diffeo
morphisms over a horseshoe. We reduce to a study of the recurrent set of a return map. 
This set is contained [18] in a lamination homeomorphic to Λ × J for a horseshoe Λ
and an interval J = (−1, 1). The dynamics on the lamination is topologically conjugate 
to a skew product map F (x, y) = (f(x), gx(y)) of interval diffeomorphisms gx over a 
horseshoe map f (in restriction to Λ, the map f acts as the shift operator on the space 
of 2-symbol sequences). The reversibility of the system translates to the existence of an 
involution R̂ of the x-space such that R̂(Λ) = Λ, f ◦R̂ = R̂◦f−1 and gx(y) = gR̂(x)(y)−1. 
For a Hamiltonian system the derived skew-product system would be (x, y) �→ (f(x), y)
and the recurrent set a one-parameter family of horseshoes. For reversible systems, the 
fibre maps of the skew product system need not be the identity map. In trivial examples 
of skew product maps such as (x, y) �→ (x, y+ε) all orbits would drift outside of Λ×J and 
the recurrent set would be empty. However, such example cannot be reversible: we show 
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that reversibility implies that enough orbits always stay inside Λ × J to yield positive 
topological entropy.

Note that we do not establish the existence of finite-type shift dynamics (i.e., a topo
logical conjugacy or semi-conjugacy to a non-trivial Markov chain on an invariant subset 
of Λ×J) which are often associated with positive topological entropy. The emergence of 
shift dynamics after a C1-small perturbation was established in [18]. However, finite-type 
shift dynamics does not always exist here in spite of the positivity of topological entropy. 
In particular, it is easy to construct an example of a C∞-smooth reversible skew-product 
map F (x, y) = (f(x), gx(y)) such that for every periodic fibre whose orbit by F is not 
R̂-symmetric there is a non-zero drift in y. This means no non-symmetric periodic orbits 
in Λ×J , which implies no semi-conjugacy to a non-trivial Markov chain in such example.

We prove Theorem 1 by showing that if Λ × J does not contain an invariant subset 
where the skew-product map F generated by a sufficiently smooth reversible flow is 
semi-conjugate to a Markov chain with positive topological entropy, then there always 
exists a periodic fibre for which the drift in y is positive with a margin of safety, and, 
by reversibility, a periodic fibre for which the drift in y is negative. In the spirit of [32] 
(where the positivity of space-time entropy for a class of PDEs was proven) we show 
that the latter case also corresponds to positive entropy.

As an example of an application of Theorem 1, we mention that symmetric homoclinic 
tangles of the type we consider may arise locally near homoclinic loops to symmetric 
equilibria. This includes homoclinic bellows [17] and a homoclinic loop to a saddle
focus [1,14] -- in both cases there exists a symmetric homoclinic tangle, so Theorem 1
implies the positivity of the topological entropy. Note that for the Poincaré map of a 
reversible flow near a symmetric homoclinic loop to a saddle-focus, the positivity of the 
topological entropy (and a semi-conjugacy to shift dynamics) is proven in [1]. However, 
the return time is not bounded for this Poincaré map, so proving the positive topological 
entropy for the flow itself requires Theorem 1 in this situation.

Non-Hamiltonian reversible vector fields with symmetric homoclinic tangles arise in 
the study of pattern formation in certain classes of partial differential equations [5,26]. 
For example, for the partial differential equations of the reaction-diffusion type

ut = Auxx + N(u), x ∈ R, u ∈ U,

where U is an appropriate Banach space of functions u depending on x ∈ R, a stationary 
solution satifies the ODE

u′′(x) = −A−1N(u).

This equation is invariant under the transformation x �→ −x, i.e., it is reversible. The 
involution R acts as u′ → −u′; its set of fixed points is {u′ = 0} and is half of the 
dimension of the phase space of the ODE (the space of pairs (u, u′)). Thus, Theorem 1 is 
applicable. It provides a characterisation of the complexity of the set of solutions near a 
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family of reflection-symmetric solutions that are asymptotically spatially periodic with 
a localized ``defect'': the number of different patterns that materialise in a finite spatial 
window grows exponentially with the window’s size.

Another natural setting of non-Hamiltonian reversible dynamical systems where The
orem 1 may be applied, is that of mechanical systems with non-holonomic constraints. If 
the system is dfined by a Lagrangian L(q, q̇) with a single constraint a(q)·q̇ = 0, then 
the equations of motion derived from the d’Alembert principle are

d 
dt

∂L

∂q̇ − ∂L

∂q = μ(t)a(q),

where the factor μ is such that the equations are consistent with the constraint at 
each moment of time. This system preserves the energy E = L − ∂L

∂q̇ ·q̇, but it is not 
Hamiltonian in general (e.g., the phase volume does not need to be preserved). However, 
when the Lagrangian L is an even function of the velocity vector q̇, the imposition of 
the constraint keeps the reversibility in tact. If the space of coordinates q is (n + 1)
dimensional, then we have (n + 1) coordinates and (n + 1) velocity components subject 
to 2 constraints -- the velocity constraint and the energy constraint. Thus, the dimension 
of the phase space for the system at a fixed energy level is 2n. The set of the fixed 
points of the involution R : q̇ → −q̇ is given by the equation {q̇ = 0, L(q, 0) = E}
and has dimension n (i.e., half of the dimension of the phase space) if the energy is in 
the range of values of L(q, 0). One concludes that generic reversible Lagrangian systems 
with one velocity constraint fall in the class we consider in this paper. An example where 
Theorem 1 may be applicable is given by a Chaplygin sleigh [4,6] moving on a generic 
surface.

If a non-holonomic mechanical system is symmetric with respect to a continuous group 
acting on the cofiguration space, the symmetry reduction decreases the dimension of the 
cofiguration space and, hence, the dimension of Fix (R), as one can see in the examples 
of rolling spheres [15] and rattlebacks [11]. Adding more velocity constraints increases 
the dimension of Fix (R) relative to the dimension of the phase space. Thus, one obtains 
examples of mechanical systems where dimFix (R) is strictly less or greater than half the 
phase space dimension. In the latter case, the symmetric periodic orbits go in families 
that depend on more than one parameter. The question of whether symmetric homoclinic 
tangles involving such families of periodic orbits always yield positive topological entropy 
remains open.

2. Positive topological entropy

The proof of Theorem 1 involves the study of dynamics of a return map on a cross 
section. It relies on technical results about invariant laminations, reductions to skew 
product dynamics and estimates on the dynamics in fibres of the skew product system. 
In this section we prove Theorem 1, with reference to auxiliary technical results in later 
sections.
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Consider a symmetric point p0 in γ0 ∩ FixR and a symmetric cross section S0 =
RS0 containing p0. The family of symmetric periodic solutions {γa} forms a sheet that 
intersects S0 in a curve of points pa.

Let U be a small neighbourhood of γ0∪η0. We only consider orbits inside U . Consider 
a second symmetric local cross section S1 = RS1 through the point q0 which is the 
intersection of η0 with FixR. Write qa = ηa ∩ FixR in S1 and let S = S0 ∪ S1. A first 
return map Π : S → S is dfined as Π(x) = ϕt(x) with t > 0 the smallest positive 
number for which ϕt(x) ∈ S such that ϕs(x) ∈ U for all 0 ≤ s ≤ t.

We write Π : S → S even though Π is dfined only on an open subset of S that 
has components in both S0 and S1. Restricting the flow to a small neighbourhood U of 
γ0 ∪ η0 also means that we consider the families {pa} and {qa} for values of a from a 
small neighbourhood of 0.

We restate Theorem 1 in terms of the return map Π : S → S.

Theorem 2. The first return map Π : S → S has positive topological entropy.

As the return time is bounded, this result implies the positivity of the topological 
entropy for the flow, hence Theorem 1. The remainder of this section is concerned with 
the proof of Theorem 2, in several steps.

2.1. Invariant laminations

The geometry of the invariant set of Π in S is clarfied by the existence of an invariant 
lamination Fc: the lamination consists of leaves that are diffeomorphic to intervals. There 
are leaves in S0 close to {pa} and in S1 close to {qa}. These leaves are invariant under 
the application of an iterate of Π. We let Fc

x denote the leaf containing the point x. The 
invariant lamination provides a reduction to a skew product of interval maps over a shift. 
Proposition 2.1 contains the key result that makes this precise. Its proof is deferred to 
Section 4. Before stating this, we first, introduce some notation. See Fig. 2 for a sketch 
of the invariant lamination Fc. 

Let Σ = {0, 1}Z be endowed with the product topology and σ be the left shift operator 
on Σ: (σω)i = ωi+1 with ω = (ωi)i∈Z. We write [η0 · · · ηj ] for the cylinder {ω ∈ Σ ; ωi =
ηi, 0 ≤ i ≤ j}. Let J ⊂ R be the interval (−1, 1) and C1(Σ×J) denote the space of skew 
product maps F : Σ × J → Σ ×R, with shift dynamics in the base Σ, so that

F (ω, u) = (σω, fω(u)),

with C1 fibre maps fω. We dfine I ∈ C1(Σ× J) as the skew product map with identity 
on the fibre:

I(ω, u) := (σω, u).

We furthermore dfine
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Fig. 2. Sketch of the lamination Fc near the leaves {pa} and {qa}, that is invariant under an iterate Ψ of Π.

F i(ω, u) := (σiω, f i
ω(u)),

where f i
ω(u) := fσi−1ω ◦ · · · ◦ fσω ◦ fω(u).

Let d1(f, g) denote the C1 distance between interval maps f, g on J ,

d1(f, g) := sup 
u∈J

{|f(u) − g(u)|, |f ′(u) − g′(u)|} .

For two skew product maps F,G ∈ C1(Σ×J) with F (ω, u) = (σω, fω(u)) and G(ω, u) =
(σω, gω(u)), we dfine the norm

|F −G|1 := sup 
ω∈Σ

d1(fω, gω).

We consider C1(Σ × J) equipped with this norm.

Proposition 2.1. There is a sequence of decreasing neighbourhoods Vk of {pa}∪{qa} with 
the following properties:

(i) There exists a centre lamination Fc inside Vk with one dimensional leaves, con
taining the curves of fixed points Fc

p0
= {pa} and of homoclinic points Fc

q0 = {qa}. 
The leaves Fc

v are continuously differentiable and the bundle of tangent lines TvFc
v

depends continuously on v ∈ Vk.
(ii) There is K(k) with limk→∞ K(k) = ∞ and a coding W c : Σ → Fc such that for 

Ψ := ΠK(k) we have

Ψ(W c(ω)) ∩ Vk ⊂ W c(σω).
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Moreover, Ψ restricted to Fc is topologically conjugate to a skew product map Fk :
Σ × J → Σ ×R,

Fk(ω, u) = (σω, fω(u)),

where the fibre maps fω are continuously differentiable and depend, along with their 
derivatives, continuously on ω. As k → ∞, Fk converges to I in C1(Σ × J).

In Proposition 2.1, the leaves of Fc are coded by symbol sequences in Σ. The symbols 
0 and 1 stand for S0 and S1, so that the leaf W c(ω) lies in Sω0 and W c(σkω) ⊂ Sωk

. 
Reversibility of the system is rflected in the dynamics of the centre leaves W c(ω). We 
dfine an involution R on Σ by

(Rω)k := ω−k.

Then, by reversibility,

RW c(ω) = W c(Rω).

A symbolic sequence ω is called symmetric if there exists s ∈ Z such that

Rω = σsω.

For a periodic symbolic sequence ω ∈ Σ, the leaf W c(ω) is taken to itself by an 
iteration of Ψ, so we call it a periodic leaf. We speak of symmetric and nonsymmetric 
periodic leaves. A symbolic sequence ω ∈ Σ is called homoclinic if ωi = 0 for |i| ≥ N

for some N . For a homoclinic symbolic sequence ω ∈ Σ, the leaf W c(ω) is called a 
homoclinic leaf. We distinguish symmetric and nonsymmetric homoclinic leaves. We call 
the homoclinic leaf W c(ω) N -homoclinic if |{i ∈ Z ; ωi = 1}| = N .

For the dynamics generated by the skew product map Fk from Proposition 2.1, iterates 
of points may drift along fibres. The central issue is to identify those points whose iterates 
do not drift away from Vk. The interval diffeomorphisms fω that make up Fk are close 
to the identity map, meaning there is at most a small drift in the fibres. Thus for each 
N ∈ N there is a neighbourhood Vk so that for each finite itinerary η0 . . . ηN and each 
ω ∈ [η0 . . . ηN ], there is an interval of points u ∈ J for which f i

ω is dfined for 0 ≤ i ≤ N . 
However statement only concerns finitely many iterates and does not help to determine 
the maximal invariant set

Λ =
⋂
i∈Z

F i
k(Σ × J).

In particular, the intersection of Λ with fibres {ω} × J may be empty. Note that this 
may be the case even for points in symmetric periodic leaves of high period.

The following lemma identfies cases where large numbers of iterates stay close.
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Fig. 3. Sketch of nonsymmetric homoclinic leaves {ra} and {Rra} and relevant maps between them. 

Lemma 2.2. For each ε > 0 there is k ∈ N so that the following holds for Fk. Suppose 
ω, χ ∈ Σ and j > 0 are so that ωi = χi for 0 ≤ i ≤ j. Then

|f j
χ(u) − f j

ω(u)| < ε.

Proof. Points v in the centre lamination have local strong stable manifolds Fs
v and 

local strong unstable manifolds Fu
v , see Proposition 4.3. The strong stable and strong 

unstable laminations are arbitrarily close to a˙ine laminations if k is large enough. By 
the assumptions, W c(σiω) and W c(σiχ) are in the same cross section Sωi

for 0 ≤ i ≤ j. 
Each Fs

p , p ∈ W c(σiω), intersects a leaf Fu
q for a unique q ∈ W c(σiχ), 0 ≤ i ≤ j. As the 

local strong stable and local strong unstable manifolds are invariant, this connects the 
orbits of such points p and q. The result follows.

Each Fs
p , p ∈ W c(ω), intersects a leaf Fu

q for a unique q ∈ W c(χ). As the local strong 
stable and local strong unstable manifolds are invariant, this connects the orbits of such 
points p and q. That is, Fs

Ψi(p) intersects Fu
Ψi(q). The result follows since the strong stable 

and strong unstable laminations are close to a˙ine for large k. �
2.2. Nonsymmetric homoclinic orbits

A key role in the argument is played by nonsymmetric homoclinic leaves in Fc. Let 
W c(ω) = {ra} be a nonsymmetric homoclinic leaf. We dfine maps φij , 0 ≤ i, j ≤ 1, by

φ00 : {pa} → {pa}; φ00(pa) = pa,

φ01 : {pa} → {ra}; φ01(pa) = Wu(pa) ∩ {ra},
φ10 : {ra} → {pa}; φ10(ra) = Wu(ra) ∩ {pa},
φ11 : {ra} → {ra}; φ11(ra) = φ01 ◦ φ10(ra),

see Fig. 3. Note that

φ11(ra) = Wu(Wu(ra) ∩ {pa}) ∩ {ra}.
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The definition of the maps φij , 0 ≤ i, j ≤ 1 for the homoclinic leaf {ra} can be 
extended to the symmetric image {Rra}. We introduce a symbol 2 and have maps φij, 
i, j ∈ {0, 2} obtained from φij , 0 ≤ i, j ≤ 1 by composing with R:

φ02 : {pa} → {Rra}; φ02 = Rφ01,

φ20 : {Rra} → {pa}; φ20 = φ10 ◦R,

φ22 : {Rra} → {Rra}; φ22 = Rφ11 ◦R.

We finally let φ12 = φ02◦φ10 and φ21 = φ01◦φ20. By reversibility we have φ02 = Rφ−1
10 ◦R

and φ20 = Rφ−1
01 ◦ R. Upon identifying u ∈ {ra} with Ru ∈ {Rra} we have φ11 = φ−1

22 . 
Further, φ01 = φ−1

20 , φ10 = φ−1
02 and id = φ00 = φ12 = φ21.

One may consider dynamics restricted to small neighbourhoods of {pa} and the 
nonsymmetric homoclinic leaves {ra} and {Rra} and obtain results analogous to Propo
sition 2.1 for dynamics near {pa} and the symmetric homoclinic leaf {qa}.

Let Ω = {0, 1, 2}Z be endowed with the product topology and dfine the skew product 
system L : Ω × J → Ω ×R by

L(ν, u) := (σν, φν(u)), (1)

where we write φν for φν0ν1 . Recall that C1(Ω × J) denotes the space of skew product 
systems on Ω×J over the shift as base dynamics, with C1 fibre maps and endowed with 
the norm

|F −G|1 := sup 
ν∈Ω

d1(fν , gν).

Proposition 2.3. There are decreasing neighbourhoods W	 of {pa} ∪ {ra} ∪ {Rra} with 
the following properties:

(i) There exists a lamination Gc ⊂ Fc inside W	 and an iterate Φ = ΠL(	) so that Φ
restricted to Gc is topologically conjugate to a skew product map G	 : Ω×J → Ω×R,

G	(ν, u) = (σν, gν(u)).

(ii) The maps gν are continuously differentiable and, along with their derivatives, de
pend continuously on ν. As � → ∞, G	 converges to L in C1(Ω × J).

The symbolic code is derived from νi = 0, 1, 2 if Φi(x) is near {pa}, {ra} or {Rra}
respectively. The proof of Proposition 2.3 is left to the reader as it only concerns a slight 
variation of the arguments in the proof of Proposition 2.1, that is presented in Section 4.
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2.3. Scattering maps

The following definition is inspired by [7,8]. Assume the above setup with W c(ω) =
{ra} a nonsymmetric homoclinic leaf and φ11(ra) = Wu(Wu(ra) ∩ {pa}) ∩ {ra}, cf. also 
Fig. 3.

Definition 2.4. The map ψω = φ11 : {ra} → {ra} is the scattering map for {ra}.

Take k large and consider Ψ = ΠK(k) on Σ × J as in Proposition 2.1. Let 0 < t < 1
and consider the following assumption:

Assumption There exists ζ ∈ Σ with |fh
ζ (0)| > t for some h ∈ N.

Under this assumption we find a nonsymmetric homoclinic leaf with nonidentity scat
tering map (Lemma 2.5) and use Proposition 2.3 to study nearby dynamics.

Take ε much smaller than t. Given ε we can take k large enough as in Lemma 2.2.

Lemma 2.5. Given δ > 0, when choosing k large enough there is a homoclinic leaf {ra}
whose scattering map ψ satifies ψ �= id and d1(ψ, id) < δ.

Proof. Let ω ∈ Σ be given by ωi = ζi for 0 ≤ i ≤ h and ωi = 0 otherwise. So ω is 
a homoclinic symbolic sequence. By Lemma 2.2 fh

ω (0) is close to fh
ζ (0). By the above 

assumption, it follows that the scattering map ψω is not the identity map. Necessarily ω
is a nonsymmetric symbolic sequence.

Knowing that there are homoclinic symbolic sequences with nonidentity scattering 
map, we can take m minimal so that ω is a homoclinic itinerary with nonidentity scat
tering map, ω0 = 1, ωm = 1, and ωi = 0 for i < 0 and i > m. This yields a scattering 
map that is close to the identity map, as follows. As ω is nonsymmetric, there exists a 
largest integer r, 0 < r < m, with ωr �= 0. Let η ∈ Σ be obtained by ηi = ωi for i �= m

and ηm = 0. By the choice of m, the scattering map ψη of the homoclinic leaf W c(η)
is the identity map. From ηj = 0 for j > r we find f i

σr+1η = id for all i ≥ 0. Compare 
f i
σr+1ω and f i

σr+1η for i ≥ 0. As ωj for j > r is the symbol 0 except for ωm which is 
1, we find that f i

σr+1ω is C1-close to the identity for k large. This follows by combining 
Proposition 2.1 (establishing that fibre maps fω converge to the identity map if k → ∞) 
and Lemma 3.2 (asserting that compositions of fibre maps f j

0···0 converge to the identity 
map if k → ∞). We conclude that the scattering maps of W c(η) and W c(ω) are arbitrary 
close for sufficiently large k. �
2.4. Iterated function systems

Consider the homoclinic leaf {ra} from Lemma 2.5. Let L be the corresponding skew 
product system as in (1). Let σ > 0. Proposition 2.3 assures the existence of � > 0 and 
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Fig. 4. The scattering maps ψ, ψ−1 define an iterated function system on an interval. 

a neighbourhood W	 of {pa} ∪ {ra} ∪ {Rra} so that an iterate ΠL(	) is topologically 
conjugate to a skew product map G	 : Ω × J → Ω × J with |G	 − L|1 < σ. The fibre 
maps that make up L are the scattering map ψ, its inverse ψ−1, and the identity map. 
We first consider the iterated function system on J generated by the maps ψ, ψ−1.

Lemma 2.6. Assume d1(ψ, id) as in Lemma 2.5 is small. Then, possibly after interchang
ing the maps ψ and ψ−1, there are intervals (a, b), (b, c), (c, d) inside J with ψ,ψ−1

dfined on an interval containing [a, d] and

(1) ψ2 maps [a, b] into (b, c);
(2) ψ−1 maps [b, c] into (a, c);
(3) ψ−2 maps [c, d] into (b, c);
(4) ψ maps [b, c] into (b, d).

Proof. If ψ(u) > u on J we can iterate a point in (−1,−1
2 ) ⊂ J many times before it 

enters (1
2 , 1) ⊂ J . We can thus take a < b < c < d as in the statement of the lemma, as 

illustrated in Fig. 4. If ψ(u) < u on J we exchange ψ,ψ−1 to get the result. 
If the graph of ψ does intersect the diagonal, there is a point ψ(s) = s and an interval 

(s, v) on which ψ(u) > u (possibly interchanging ψ,ψ−1). Inside (s, v) one finds an 
interval (a, d) as above. See Fig. 5. �

The iterated function system generated by ψ, ψ−1 leads to the skew product system

O(ω, u) =
{

(σω, ψ(u)), ω0 = 0,
(σω, ψ−1(u)), ω0 = 1,
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Fig. 5. The scattering maps ψ, ψ−1 dfine an iterated function system on an interval, here in an example 
where it is necessary to restrict to a subinterval on which ψ(u) �= u.

on Σ×J . Assuming the conclusion of Lemma 2.6, we claim that this skew product system 
on its maximal invariant set has positive topological entropy.

Projecting the maximal invariant set Λ of O to Σ by the natural coordinate projection 
we obtain a closed invariant set for the left shift operator on Σ. It suffices to demonstrate 
the latter’s positive topological entropy, since it is a factor. By [22, Chapter 4 and 
Section 6.3] this topological entropy h is given by

h = lim
i→∞

1
i 

ln |Bi|

holds, where Bi is the set of blocks of length i and |Bi| is its cardinality. Outside [b, c]
applying either ψ2 or ψ−2 maps back into [b, c]. On [b, c] both ψ and ψ−1 are well dfined 
and map into [a, d]: on [b, c] both maps can be applied. Starting at some point in [b, c], 
every three iterates there are at least two possible compositions available that map back 
into [b, c]. We therefore obtain h > 0.

2.5. Conclusion

Take k large and consider Ψ = ΠK(k) on Σ × J as in Proposition 2.1. Let 0 < t < 1. 
We distinguish two possible cases, where the second case is the earlier used assumption.

(1) For each ω ∈ Σ, |f i
ω(0)| ≤ t for all i ∈ N;

(2) there is ζ ∈ Σ with |fh
ζ (0)| > t for some h ∈ N.

Case (1): The condition implies that for every ω ∈ Σ there is a point in W c(ω) with 
itinerary ω. There is thus an invariant set for Ψ that projects to Σ. The topological 
entropy of Ψ, and hence Π, is therefore positive. 

Case (2): Let {ra} be a nonsymmetric homoclinic orbit provided by Lemma 2.5, with 
d1(ψ, id) < δ small. Consider the skew product system G	 : Ω× J → Ω×R provided by 
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Proposition 2.3. Let � be large and Ω′ ⊂ Ω be the space of symbolic sequences in Ω in 
which 0 does not occur and 121 and 212 also do not occur. The shift on Ω′ is a subshift 
of finite type. Restricting G	 to Ω′ × J , the skew product map (ν, u) �→ G	(ν, u) has 
fibre maps gν which, for � large enough, are arbitrarily close to id, ψ, or ψ−1. Moreover, 
since 121 and 212 are forbidden subsequences, there is at most one identity map in a 
row. If we compose any fibre map close to the identity map with the subsequent map 
(which is either ψ or ψ−1), we obtain a composition of maps that are arbitrarily close 
to ψ or ψ−1, for large enough �. The argument to prove positive topological entropy 
for the iterated function system generated by ψ, ψ−1, given above, applies to show that 
the skew product map G	 has positive topological entropy on its maximal invariant set. 
Indeed, although the fibre maps are not exactly ψ or ψ−1, they are C1 close so that the 
properties (1)-(4) listed in Lemma 2.6 still hold for ψ, ψ−1 replaced by the nearby fibre 
maps.

We proceed to call a cylinder Ω = [ω−m · · ·ωn] good if for any ifinite ω ∈ Ω we have 
giω(0) ∈ (a, d) for −m ≤ i ≤ n. Write for instance Ω 2 for the cylinder [ω−m · · ·ωn2]. 
By construction, if Ω is good, then both Ω 1 and Ω 2 are also good if gnω(0) ∈ (b, c). 
Otherwise, if gnω(0) > c, then Ω̃ = Ω 22 is good, and if gnω(0) < b, then Ω̃ = Ω 11 is good, 
and gn+2

ω̃ (0) ∈ (b, c) in both these cases, so both Ω̃ 1 and Ω̃ 2 are good. The same is 
true for the expansion of Ω to the left. Thus, one constructs the growing set of cylinders 
such that in the limit we obtain the set of codes corresponding to fibres which contain 
a bounded orbit. As the number of good cylinders grows exponentially with length, the 
topological entropy is positive. This concludes the proof of Theorem 2.

3. Local normal forms

The final two sections of this paper develop some important technical results, in par
ticular expansions for the local transition map and existence and regularity of invariant 
centre laminations. We first develop expansions of the return map on S0 close to p0. Let 
U0 be a small tubular neighbourhood of γ0. Consider the first return map Π0 : S0 → S0
considering orbits in U0. Note that Π0 is dfined on an open neighbourhood of p0 in 
S0, nonetheless we write Π0 : S0 → S0. Local stable and unstable manifolds of pa are 
denoted by W s

loc(pa) and Wu
loc(pa); they are intersection with S0 of local stable and 

unstable manifolds V s
loc(γa) and V u

loc(γa) of the periodic orbit γa for the flow.

Lemma 3.1. There exist smooth coordinates (x, y, z) from an open set in Rn−1 × R ×
Rn−1 on S0 such that pa = (0, 0, a) and (x1, y1, z1) = Π0(x0, y0, z0) has the following 
expression:

x1 = A(z0)x0 + e(x0, y0, z0),

y1 = A−1(z0)y0 + f(x0, y0, z0),

z1 = z0 + g(x0, y, z0), (2)
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where the matrix A ∈ Rn−1×n−1 depends smoothly on z0 and satifies ‖A(0)x‖ < λ‖x‖
for some 0 < λ < 1. Further, e, f, g are smooth functions satisfying

e(x0, y0, z0) = O(x2
0) + O(x0y0),

f(x0, y0, z0) = O(y2
0) + O(x0y0),

g(x0, y0, z0) = O(x0y0). (3)

Proof. Take local coordinates (x, y, z) near p0 for which pa = (0, 0, a) and

Wu
loc(pa) = {x = 0, z = a},

W s
loc(pa) = {y = 0, z = a}.

Note that Wu
loc(pa) and W s

loc(pa) are invariant for every a, from which expressions (2) 
and estimates (3) follow. By the reversibility, the restriction of the map on W s

loc(pa) is 
conjugate to the restriction of the inverse map on Wu

loc(pa), therefore the linearization 
matrices, at pa, of the map on W s

loc(pa) and the map on Wu
loc(pa) are, indeed, inverse to 

each other. �
The curve {pa} of fixed points has a local centre stable manifold W sc

loc({pa}), which is 
a union of local stable manifolds W s

loc(pa) of individual fixed points. Similarly the local 
unstable manifold W cu

loc({pa}) is foliated by local unstable manifolds Wu
loc(pa).

We may take the coordinates in Lemma 3.1 such that the action of R is locally linear 
[3] and given by R(x, y, z) = (y, x, z). Indeed, RWu

loc(pa) = W s
loc(pa). Therefore, writing 

R(x, y, z) = (R1(x, y, z), R2(x, y, z), R3(x, y, z)), we have

R1(x, 0, z) = 0, R2(0, y, z) = 0, R3(0, x, z) = R3(x, 0, z) = z.

It also follows that the derivative of R at zero is R′(0) : (x, y, z) �→ (y, x, z). These 
formulas imply that the coordinate transformation

(x, y, z)new = 1
2[(x, y, z) + R′(0)R(x, y, z)]

linearizes the involution R while maintaining the validity of the expressions (2) and 
estimates (3).

Fix λ with ‖A(0)‖ < λ < 1 and take ε > 0 so that for |z| < ε,

‖A(z)‖ < λ.

We further assume that the neighbourhood U0 of the periodic orbit under consideration 
is chosen small enough so that U0 ∩ S0 is contained in {|z| < ε}.

The following lemma yields estimates for iterates near p0 in cross coordinates. See 
[29,30] for an introduction to the theory and use of cross coordinates in dynamics. Note 
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that the estimates improve for orbits with higher number of iterates that stay closer to 
the local stable and unstable manifolds of pa.

Lemma 3.2. Assume (xi, yi, zi) = Πi
0(x0, y0, z0) ∈ S0 for all 0 ≤ i ≤ k. Then 

(xk, yk, zk) = Πk
0(x0, y0, z0) can be solved for (xk, y0, zk) as function of (x0, yk, z0), with 

the following expression:

xk = Rx(x0, yk, z0),

y0 = Ry(x0, yk, z0),

zk = z0 + Rz(x0, yk, z0).

For some C > 0, independent of k,

|Rx(x0, yk, z0)|, |DRx(x0, yk, z0)| ≤ Cλk,

|Ry(x0, yk, z0)|, |DRy(x0, yk, z0)| ≤ Cλk,

|Rz(x0, yk, z0)|, |DRz(x0, yk, z0)| ≤ Cλk/2.

Proof. This follows from [10, Lemma 1]. �
As qa ∈ W sc({pa}) we can also dfine the local centre stable manifold W sc

loc({qa}) of 
the curve {qa} of homoclinic points as the connected component of W sc({pa})∩S1 that 
contains {qa}. It is foliated by local stable manifolds W s

loc(qa). Similarly, the local centre 
unstable manifold W sc

loc({qa}) is foliated by local unstable manifolds Wu
loc(qa). Observe 

that

{pa} = W sc
loc({pa}) ∩W cu

loc({pa}),

{qa} = W sc
loc({qa}) ∩W cu

loc({qa}).

Throughout, we assume smooth coordinates (x, y, z) on S1 in which

W sc
loc({qa}) = {y = 0},

W cu
loc({qa}) = {x = 0},

and also

W s
loc(qa) = {y = 0, z = a},

Wu
loc(qa) = {x = 0, z = a}. (4)
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4. Centre laminations

The existence of a locally invariant centre lamination Fc of one dimensional leaves is 
key to Proposition 2.1. This centre lamination extends the curves of fixed points {pa} and 
homoclinic points {qa}. Its existence and stated regularity properties, together with the 
normal form expansions in cross coordinates obtained in the previous section, establish 
Proposition 2.1. For discussions on the existence of centre laminations in similar contexts, 
see also [17,18].

Our proof of the next proposition is related to the cross coordinates from Lemma 3.1
and Lemma 3.2. We let Fc

u represent the leaf of Fc through a point u.

Proposition 4.1. There is a sequence of decreasing neighbourhoods Vk of {pa}∪{qa} with 
iterates Ψ = ΠK(k) so that:

(i) There exists a centre lamination Fc inside Vk with one dimensional leaves, con
taining the curves of fixed points Fc

p0
= {pa} and of homoclinic points Fc

q0 = {qa}. 
The leaves Fc

v are continuously differentiable and the bundle of tangent lines TvFc
v

depends continuously on v ∈ Vk.
(ii) There is a homeomorphism W c : Σ → Fc with

Ψ(W c(ω)) ⊂ W c(σω).

Proof. Consider local coordinates (x, y, z) ∈ Rn−1 ×R×Rn−1 near p0 as in Lemma 3.1. 
We can find arbitrary large integers k and sets V1, V2 that are small neighbourhoods of 
W sc

loc(p0), W cu
loc(p0), with

V2 = Πk(V1)

and

V1 ⊂ {|x| ≤ 1, |y| ≤ Cλk, |z| ≤ c},
V2 ⊂ {|x| ≤ Cλk, |y| ≤ 1, |z| ≤ c}

for uniform constants C > 0, c > 0. This is similar to the construction for (planar) 
diffeomorphisms in [23], with an additional z-direction included, see Fig. 6. 

There exists l+ > 0 so that q0 ∈ Πl+(V2) and l− > 0 so that Πl−(q0) ∈ V1. The 
numbers l+, l− do not depend on k. (By taking S0 and S1 small we may in fact assume 
l− = l+ = 1.) Note that Πl−+k+l+ maps Π−l−(V1) to Πl+(V2). Adjusting the sets V1, V2
we may assume that q0 is in the interior of Πl+(V2) and of Π−l−(V1). For k large we find 
that Πl−+k+l+ maps Π−l−(V1) to a set that has an intersection with Π−l−(V1) near p0
and near q0. Write Qi = Πi(q0).

The map Ψ = Πl−+k+l+ on Π−l−(V1) consists of maps Ψ00 : S0 → S0, Ψ01 : S0 →
S1, Ψ10 : S1 → S0 and Ψ11 : S1 → S1 (the domains are open sets contained in the 
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Fig. 6. Sketch of the main elements in the construction of a horseshoe near a homoclinic tangle as employed 
in the proof of Proposition 4.1, omitting the additional centre coordinate and under the assumption of a 
single cross section.

indicated cross sections). The maps have the form Ψ00 = Πl−+k+l+ , Ψ01 = G ◦ Πl−+k, 
Ψ10 = Πk+l+ ◦H, Ψ11 = G◦Πk ◦H. Here G = Πl+ is a local diffeomorphism that maps a 
neighbourhood of Q−l+ to a neighbourhood of q0 and H = Πl− is a local diffeomorphism 
that maps a neighbourhood of q0 to a neighbourhood of Ql− .

Near q0 in S1 we take coordinates (x, y, z) satisfying (4). We write all four maps Ψij , 
0 ≤ i, j ≤ 1, in cross coordinates, as in Lemma 3.2. This dfines maps Φ+

ij : Rn → Rn

with

Φ+
ij(x̂0, ŷ1, ẑ0) = (x̂1, ŷ0, ẑ1)

if

Ψij(x̂0, ŷ0, ẑ0) = (x̂1, ŷ1, ẑ1),

and (x̂1, ŷ1, ẑ1) = (xK , yK , zK) for K = l− + k + l+. Recall that by Lemma 3.2 we have 
for i, j = 0, 0,

Φ+
00(x̂0, ŷ1, ẑ0) =

⎛
⎜⎝ S00,x(x̂0, ŷ1, ẑ0)

S00,y(x̂0, ŷ1, ẑ0)
ẑ0 + S00,z(x̂0, ŷ1, ẑ0)

⎞
⎟⎠ .

Bounds for the terms on the right-hand side are given in Lemma 3.2.
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Similar estimates hold for other pairs i, j. Consider for instance for Φ+
01. Note that G

maps Wu
loc(pa) to Wu

loc(qa), thus G maps {x = 0, z = a} to {x = 0, z = a}. As further 
G(Q−l+) = (0, 0, 0), we have

G((x, y, z) −Q−l+) =

⎛
⎜⎝ a11x + O(x)O(‖(x, y, z‖)

a21x + a22y + a23z + O(‖x, y, z‖2)
z + O(x)O(‖(x, y, z‖)

⎞
⎟⎠

By the implicit function theorem,

Φ+
01(x̂0, ŷ1, ẑ0) =

⎛
⎜⎝ S01,x(x̂0, ŷ1, ẑ0)

S01,y(x̂0, ŷ1, ẑ0)
ẑ0 + S01,z(x̂0, ŷ1, ẑ0)

⎞
⎟⎠

with for some C > 0 independent of k,

|S01,x(x̂0, ŷ1, ẑ0)|, |DS01,x(x̂0, ŷ1, ẑ0)| ≤ Cλk,

|S01,y(x̂0, ŷ1, ẑ0)|, |DS01,y(x̂0, ŷ1, ẑ0)| ≤ Cλk,

|S01,z(x̂0, ŷ1, ẑ0)|, |DS01,z(x̂0, ŷ1, ẑ0)| ≤ Cλk/2.

Such estimates exist also for Φ+
10 and Φ+

11.
Let θ : R2n−1 → R be a nonnegative test function, with θ ≡ 1 near the origin and 

θ ≡ 0 outside a neighbourhood of the origin. For ε > 0, let θε(x) = θ(x/ε). Replace Π
on S0 by θεΠ + (1 − θε)DΠ(0, 0, 0). By rescaling we may assume Π that is unaltered on 
{|x| ≤ 1, |y| ≤ 1, |z| ≤ 1} and linear outside {|x| ≤ 2, |y| ≤ 2, |z| ≤ 2}. We can now 
consider Ψ00 on a uniform neighbourhood {|x| ≤ 3, |y| ≤ 3} ×R of the z-axis in R2n−1. 
Likewise, we extend the local diffeomorphisms G and H to have all maps Ψij dfined on 
a uniform neighbourhood {|x| ≤ 3, |y| ≤ 3} × R of the z-axis in R2n−1. Moreover, we 
may assume that Ψij is a˙ine and acts as the identity map on the z-coordinate, outside 
{|x| ≤ 2, |y| ≤ 2, |z| ≤ 2}.

As a result we find Φ+
ij, 0 ≤ i, j ≤ 1, which we will consider on {|x| ≤ 3, |y| ≤ 3, |z| ≤

3}, with

Φ+
ij(x̂0, ŷ1, ẑ0) =

⎛
⎜⎝ Sij,x(x̂0, ŷ1, ẑ0)

Sij,y(x̂0, ŷ1, ẑ0)
ẑ0 + Sij,z(x̂0, ŷ1, ẑ0)

⎞
⎟⎠ (5)

and for some C > 0 independent of k,

|Sij,x(x̂0, ŷ1, ẑ0)|, |DSij,x(x̂0, ŷ1, ẑ0)| ≤ Cλk|x̂0|,
|Sij,y(x̂0, ŷ1, ẑ0)|, |DSij,y(x̂0, ŷ1, ẑ0)| ≤ Cλk|ŷ1|,
|Sij,z(x̂0, ŷ1, ẑ0)|, |DSij,z(x̂0, ŷ1, ẑ0)| ≤ Cλk/2. (6)
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In the same way, we dfine maps Φ−
ij, also considered on {|x| ≤ 3, |y| ≤ 3, |z| ≤ 3}, 

with

Φ−
ij(x̂0, ŷ1, ẑ1) = (x̂1, ŷ0, ẑ0)

(so the central z-coordinate is treated differently) if

Ψij(x̂0, ŷ0, ẑ0) = (x̂1, ŷ1, ẑ1).

This can be viewed as cross coordinates for the inverse map Ψ−1. Asymptotic expansions 
for Φ−

ij are like those for Φ+
ij :

Φ−
ij(x̂0, ŷ1, ẑ1) =

⎛
⎜⎝ Tij,x(x̂0, ŷ1, ẑ1)

Tij,y(x̂0, ŷ1, ẑ1)
ẑ1 + Tij,z(x̂0, ŷ1, ẑ1)

⎞
⎟⎠ (7)

with

|Tij,x(x̂0, ŷ1, ẑ1)|, |DTij,x(x̂0, ŷ1, ẑ1)| ≤ Cλk|x̂0|,
|Tij,y(x̂0, ŷ1, ẑ1)|, |DTij,y(x̂0, ŷ1, ẑ1)| ≤ Cλk|ŷ1|,
|Tij,z(x̂0, ŷ1, ẑ1)|, |DTij,z(x̂0, ŷ1, ẑ1)| ≤ Cλk/2, (8)

for some C > 0 independent of k.
Now fix ω ∈ Σ. Denote by C(Z,R2n−1) the space of bounded sequences ξ : Z → R2n−1

endowed with the supnorm. Consider its subset C(Z, {|x| ≤ 3, |y| ≤ 3, |z| ≤ 3}) consisting 
of the sequences ξ : Z → {|x| ≤ 3, |y| ≤ 3, |z| ≤ 3}. Abbreviate

C = C(Z, {|x| ≤ 3, |y| ≤ 3, |z| ≤ 3}).

For fixed z0 with |z0| ≤ 3, dfine

H : C → C(Z,R2n−1)

as follows: if γi = (xi, yi, zi) and H(γ) = η with ηi = (ui, vi, wi), then

(ui+1, vi, wi+1) = Φ−
ωiωi+1

(xi, yi+1, zi+1), if i ≥ 0,

(ui+1, vi, wi) = Φ+
ωiωi+1

(xi, yi+1, zi), if i < 0, (9)

for i ∈ Z, and w0 = z0.
Orbits of Π are fixed points of H. By (5), (7), the estimates (6), (8), and the fact that 

H acts as the identity map on the z-coordinate outside {|x| ≤ 2, |y| ≤ 2, |z| ≤ 2}, we 
find that H maps C into itself:
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H(C) ⊂ C.

The map H is, however, not a contraction on C, due to the existence of a central direction. 
To remedy this, we find a contraction by using scaled Banach spaces as in [33]. Write 
Cα(Z,R2n−1) for the set of sequences Z → R2n−1 with supi∈Z α−|i|‖γ(i)‖ < ∞ and 
equipped with the norm

‖γ‖α = sup
i∈Z 

α−|i|‖γ(i)‖.

The set Cα(Z, {|x| ≤ 3, |y| ≤ 3, |z| ≤ 3}) consist of those sequences γ ∈ Cα(Z,R2n−1)
with γi ∈ {|x| ≤ 3, |y| ≤ 3, |z| ≤ 3}. Abbreviate

Cα = Cα(Z, {|x| ≤ 3, |y| ≤ 3, |z| ≤ 3}).

Let α > 1 be fixed and close to 1 and consider H on Cα. From (9) we find, for i ≥ 0,

ui = Sωi−1ωi
(xi−1, yi, zi−1),

vi = Sωiωi+1(xi, yi+1, zi),

wi = wi−1 + Sωi−1ωi
(xi−1, yi, zi−1).

For i < 0 there are similar expressions of the form

ui = Tωi−1ωi
(xi−1, yi, zi),

vi = Tωiωi+1(xi, yi+1, zi+1),

wi = wi+1 + Tωiωi+1(xi, yi+1, zi+1).

One easily checks from this, using α > 1 and (5), (6), (7), (8), that H is a contraction on 
Cα. The map H therefore possesses a unique fixed point ζ; ζ(i) is an orbit for Ψ. Write 
w(z0) = ζ(0). This gives w : {|z| ≤ 3} → {|x| ≤ 3, |y| ≤ 3}. It follows from the reasoning 
in [33] that w is continuously differentiable. (Apart from the nonessential difference that 
the expression of the contraction is not the same, the additional structure consists of a 
dependence on ω ∈ Σ. We do not have a single map but a finite number of maps Φ±

ij

coded by ω and that appear in the expressions, but the reasoning in [33] can be followed.) 
Dfine

W c(ω) =
⋃

z0∈R
w(z0);

W c(ω) is the sought for centre manifold. By construction, W c(ω) (intersected with S) 
is contained in Sω0 and satifies

Ψ(W c(ω)) ⊂ W c(σω).
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Note that α−|n|‖γn‖ → 0 as |n| → ∞, for γ ∈ Cα. Therefore H : Cα → Cα depends 
continuously on ω ∈ Σ. It follows that w depends continuously on ω. The contraction 
H : Cα → Cα is not continuously differentiable, but it is continuously differentiable when 
considering H : Cα′ → Cα for α′ < α. See [33], also to see that this implies that w is 
continuously differentiable. As the derivatives of H : Cα′ → Cα depend continuously on 
ω, the derivative of w depends continuously on ω. �
Remark 4.2. A simplfied version of the above proof in which the centre direction is ig
nored, gives an analytical proof based on cross coordinates of the existence of a horseshoe 
near homoclinic tangles of general systems. The usual proof, as in [19], deploys invariant 
cone fields.

Proof of Proposition 2.1. The proof of Proposition 4.1 introduces sets V1, V2 = Πk(V1)
near p0. Together with iterates Πj(V1), −l− ≤ j ≤ −1 and Πj(V2), 1 ≤ j ≤ l+, this 
dfines a small neighbourhood V of the closure of the orbit under Π of q0.

With K = l−+k+l+ as in the proof of Proposition 4.1 we observe that Vk = V ∩ΠK(V )
is a small neighbourhood of p0 ∪ q0. The iterate Ψ = ΠK possesses an invariant centre 
lamination inside V ∩ ΠK(V ) with leaves W c(ω), ω ∈ Σ.

Consider the fibre map from W c(ω) to W c(σω). To fix thoughts, assume ω0 = ω1 = 0, 
so that the fibre map is obtained by iterating the local map Π on S0. The other possible 
cases are treated similarly. Lemma 3.2 provides expressions for points u = (x0, y0, z0) ∈
W c(ω) and ΠK(u) = (xK , yK , zK) ∈ W c(σω). Now u ∈ W c(ω) gives x0, y0 as function 
of z0 and ΠK(u) ∈ W c(σω) gives xK , yK as function of zK . By the implicit function 
theorem we solve

zK = z0 + Rz(x0(z0), yK(zK), z0)

from Lemma 3.2 for zK as differentiable function of z0. For the derivative we have

dzK
dz0

= 1 + ∂Rz

∂x0

dx0

dz0
+ ∂Rz

∂yK

dyK
dzK

dzK
dz0

+ ∂Rz

∂z0
,

with Rz calculated in (x0(z0), yK(zK), z0). The tangent lines of the centre leaves go to 
zero as k → ∞. The estimates in Lemma 3.2 imply that also Rz and its derivatives 
converge to zero as k → ∞, and thus show that zK converges to the identity in C1 as 
k → ∞.

Next, we proceed to rescale the z-coordinate so that it becomes dfined on J , and 
fibre maps fω converge to the identity map on J as k → ∞. As the tangent lines of the 
centre leaves vary continuously with the base point, the convergence is uniform in ω ∈ Σ. 
We conclude that Fk converges to I in C1(Σ × J) as k → ∞. �

We note that as k in Proposition 2.1 increases (and the neighbourhood Vk decreases), 
the number of iterates K goes to ifinity. Lemma 3.2 shows that this only facilitates the 
estimates for the return map and leads to the convergence of Fk to I as k → ∞.
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The following result implies that the centre foliation is normally hyperbolic.

Proposition 4.3. For sufficiently small neighbourhoods Vk of {pa} ∪ {qa} as above, there 
exists a centre stable lamination Fsc inside Vk with n−1 dimensional leaves, containing 
the local centre stable manifolds W sc

loc({pa}) and W sc
loc({qa}), so that

(i) centre stable leaves are foliated by local strong stable manifolds,
(ii) the strong stable lamination Fs formed by the union of the strong stable manifolds 

is locally invariant,
(iii) the tangent spaces of the strong stable lamination depend continuously on the point.

Corresponding statements also hold for a strong unstable lamination Fu.

Proof. We note first that a strong stable lamination is constructed by the same method
ology used in the proof of Proposition 4.1 to construct a centre lamination. In fact it 
suffices to replace H dfined in (9) by

H+ : C → C(N,R2n−1)

given by the identity: if γi = (xi, yi, zi) and H+(γ) = η with ηi = (ui, vi, wi), then

(ui+1, vi, wi+1) = Φ−
ωiωi+1

(xi, yi+1, zi+1),

for i ∈ N, and u0 = x0 ∈ Rn−1, w0 = z0 ∈ R. The centre unstable lamination is 
constructed similarly, and the centre lamination is in fact the intersection of the centre 
stable lamination and the centre unstable lamination.

We continue with the strong unstable manifolds. One constructs a bundle of tangent 
spaces of strong unstable leaves and shows that these integrate to form a strong unstable 
foliation of centre unstable leaves. Denote by Gn−1(R2n−1) the Grassmannian manifold 
of (n − 1) dimensional planes in R2n−1. A strong unstable foliation is determined by 
its tangent bundle, hence by a section Fcu → Gn−1(R2n−1). Extend Ψ to Ψ(1) on the 
bundle R2n−1 ×Gn−1(R2n−1) of (n− 1) dimensional planes in R2n−1 over R2n−1 by

Ψ(1)(x, α) = (Ψ(x), DΨ(x)α).

The bundle Es of unstable directions over {pa} and over {qa} is fixed under Ψ(1).
Proposition 4.1 provides a strong unstable lamination Fcu on {|x| ≤ 2, |y| ≤ 2, |z| ≤

2}. A direct computation (compare [16]) shows that Ψ(1) is stable within the fibres 
Gn−1(R2n−1). Therefore iteration by Ψ of a suitable trial foliation on Fcu converges to 
an invariant unstable lamination. �
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