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Metabolic alteration in oxylipins

and endocannabinoids point to an
important role for soluble epoxide hydrolase
and inflammation in Alzheimer’s disease—
finding from Alzheimer’s Disease
Neuroimaging Initiative

Kamil Borkowski'", Chunyuan Yin?*", Alida Kindt?, Nuanyi Liang', Elizabeth de Lange®, Colette Blach®,
John W. Newman'®”, Rima Kaddurah-Daouk®, Thomas Hankemeier? and
the Alzheimer's Disease Neuroimaging Initiative

Abstract

Mounting evidence implicates inflammation as a key factor in Alzheimer’s disease (AD) development. We previously
identified pro-inflammatory soluble epoxide hydrolase (sEH) metabolites to be elevated in plasma and CSF of

AD participants and to be associated with lower cognition in non-AD subjects. Soluble epoxide hydrolase is a

key enzyme converting anti-inflammatory epoxy fatty acids to pro-inflammatory diols, reported to be elevated

in multiple cardiometabolic disorders. Here we analyzed over 700 fasting plasma samples from the baseline of
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2/GO study. We applied targeted mass spectrometry method

to provide absolute quantifications of over 150 metabolites from oxylipin and endocannabinoids pathway,
interrogating the role for inflammation/immune dysregulation and the key enzyme soluble epoxide hydrolase in
AD. We provide further insights into the regulation of this pathway in different disease stages, APOE genotypes and
between sexes. Additionally, we investigated in mild cognitive impaired (MCl) participants, metabolic signatures
that inform about resilience to progression and conversion to AD. Key findings include 1) confirmed disruption in
this key central pathway of inflammation and pointed to dysregulation of sEH in AD with sex and disease stage
differences; Il) identified markers of disease progression and cognitive resilience using sex and ApoE genotype
stratified analysis highlighting an important role for bile acids, lipid peroxidation and stress response hormone
cortisol. In conclusion, we provide molecular insights into a central pathway of inflammation and links to cognitive
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dysfunction, suggesting novel therapeutic approaches that are based on targeting inflammation tailored for
subgroups of individuals based on their sex, APOE genotype and their metabolic profile.

Keywords Metabolomics, Lipidomics, Inflammation; mild cognitive impairment, Alzheimer’s Disease, Oxylipins,

Endocannabinoids,soluble epoxide hydrolase

Introduction

Inflammation is recognized as an important contribu-
tor to Alzheimer’s disease (AD) pathology and cognitive
decline and as a crucial risk factor for AD development
that exacerbates disease progression [1, 2].Oxylipin and
endocannabinoid (OxyL-EC) pathways are key regula-
tors of inflammation, with changes in their levels being
a hallmark of inflammation-related disorders [3-13].
The oxylipins including fatty acid alcohols, diols, epox-
ides, ketones, and prostanoids are derived from mul-
tiple polyunsaturated fatty acids (PUFA) by the action
of cyclooxygenases (COX), lipoxygenases (LOX), cyto-
chrome P450 (CYP), soluble epoxide hydrolase (sEH) or
reactive oxygen species (ROS) and various downstream
enzymatic processes [14]. Circulating endocannabinoids
are produced either by acylation and release of acyl etha-
nolamides from phosphatidylethanolamine and further
degraded by fatty acid amide hydrolase (FAAH), or as a
product of glycerol-lipid metabolism like monoacylglyc-
erols (MAGL) [15].

Increasing evidence has demonstrated OxyL-EC dys-
regulation in AD participants. Disturbances at the pro-
tein expression and metabolome level of these pathways
are observed in both the periphery [16, 17] and central
nervous system [18—20] in humans. In rodent models of
AD, AD-related pathologies can be altered by manipulat-
ing OxyL-EC related enzymes, including 5-LOX [21, 22],
12/15-LOX [23-25], COX [26, 27], sEH [28, 29], CYP [30,
31], FAAH [32], MAGL [33], and their combination [34].
Moreover, genetic polymorphisms in many of these path-
ways have been linked to AD risk, supporting causative
effects from these pathways [35-37].

The Alzheimer’s Disease Metabolomics Consortium
(ADMC) has shown that peripheral metabolic changes
informed about cognitive changes, brain imaging
changes, and amyloid plaques, tau tangles, and neurode-
generation (ATN) markers for disease [38—41]. We have
recently generated a comprehensive profile of OxyL-EC
pathways in subsets of well-characterized AD cohorts,
including the Religious Orders Study and the Rush Mem-
ory and Aging Project (ROS-MAP) [42] and the Emory
cohort (the Emory Healthy Brain Study, Cognitive Neu-
rology Research, and Memory) [43]. We have used a
state-of-the-art validated, quantitative, targeted mass
spectrometry platform, providing absolute quantification
of ~ 150 OxyL-EC, covering multiple metabolic pathways
and possible substrates [44, 45]. This pioneer work iden-
tified metabolites of CYP/sEH and acyl ethanolamides

in plasma and cerebrospinal fluid (CSF) to be associated
with AD pathology, and plasma sEH metabolites to be
associated with perceptual speed in cognitively normal
and mild cognitively impaired subjects. Furthermore, uti-
lizing the metabolomic-proteomic integration approach,
we have shown association of the sEH pathway with CSF
proteins related to glycolysis, vascular inflammation and
neuronal outgrowth [46], with changes in CSF levels of
those proteins being reflective of AD-related changes in
the brain [47].

In the current manuscript we seek to confirm and
expand on our previous findings of the dysregulation in
OxyL-EC pathways in AD, utilizing 763 subjects from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2/
GO cohort. The ADNI cohort enables us to further inves-
tigate the dysregulation of OxyL-EC pathways at differ-
ent disease stages, ranging from cognitively normal (CN),
mild cognitively impaired (MCI) to AD, and the asso-
ciation of baseline OxyL-EC levels with future cognitive
decline. Additionally, to uncover disease heterogeneity,
we investigate the influence of sex and APOE genotype
on the OxyL-EC interaction with AD-related outcomes.

Methods

Study participants

The Alzheimer's Disease Neuroimaging Initiative (ADNI)
study recruited 763 individuals over the age of 70 years
into longitudinal study. At baseline (the time when par-
ticipants enrolled in the project), this comprised 178
cognitively normal controls (CN), 445 with mild cogni-
tive impairment (MCI; 290 early-stage and 155 late-stage
MCI) and 136 with Alzheimer’s Disease (AD). The diag-
nostic evaluation criteria of ADNI participants, including
CN, early/late-MCI and AD were detailed in the ADNI
documentation website (https://adni.loni.usc.edu/data
-samples/adni-data/study-cohort-information/). In brief,
the criteria taking into account evaluation of Mini-Men-
tal State Exam (MMSE) scores, Clinical Dementia Rating
scale (CDR), the presence of memory complaint, the pres-
ence of cognition and functional performance impair-
ment (measured via the education-adjusted Wechsler
Memory Scale-Revised Logical Memory II subscale), and
whether the participants met the National Institute of
Neurological and Communicative Disorders and Stroke/
the Alzheimer’s Disease and Related Disorders Associa-
tion criteria for probable AD. Additional exclusion crite-
ria, such as the presence of major depression and other
neurological disease, also applied and detailed in the
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Table 1 Demographics and clinical data of studied ADNI Table 2 Diagnoses for subjects with available CSF
subjects at baseline measurements in each visit
Group Stable CN Stable MClI AD Baseline CN Baseline MCl Baseline AD
Mmcl converter Baseline 178 CN 429 MCI 133 AD
Sample number (n) 158 313 81 133 2 years 137CN, 13 MCL, 2 19CN, 266 MCl,60 1 MCl, 28
Male:Females 48%:52%  54%:46%  55%:45%  59%:41% AD, 26 NA AD, 84 NA AD, 104 NA
Age, mean+SD 723+608 713+747 718+7.12 7374813 4 years 94 CN, 11 MCl, 2 27 CN, 156 MCl, 48 133 NA
BMI, mean =SD 2734462 278+511 274+543 264+550 AD, 71 NA AD, 198 NA
Education'y, 1684250 160+265 160+266 158+273 Abbreviations: AD Alzheimer’s disease, CN Cognitive Normal, MC/ Mild Cognitive
mean+SD Impairment, NA cognitive test result not available
APOE genotype %
APOE4 (e4 pos/ed  28%:72%  41%:59%  74%:26%  65%:35% experienced diagnostic change, i.e., progression from
neg) CN to MCI or AD, or from MCI to AD within 1, 2 or
E2E2 (n=3) 0.6% 0.3% 0 0.8% 4 years after baseline. “Stable CN” comprises CN baseline
E2E3 (n=60) 12.3% 83% 3.7% 3.8% samples that did not convert to either MCI or AD within
E3E3 (n=334) 58% 50.5% 222% 30.1% 4 years follow up, and “stable MCI” comprises MCI
E2E4 (n=12) 0.6% 1.9% 2.5% 1.5% baseline participants that did not convert to AD within
E3E4 (n=254) 24.7% 304% 50.6% 43.6% 2 years follow up. Participants whose diagnosis reverted,
E4E4 (n=77) 3.8% 8.6% 21% 20.2% i.e., changed from AD to MCI or CN, or from MCI to
Cognitive biomarkers CN were excluded (7 =39). See Table 1 and Table 2 for
MOCA, mean£SD  258+238 236+3.14 215+£265 173+455 more details. Some key biometrics stratified by sex are
ADNIMEM, 112060 05066 -02+054 -09+053 presented in the Supplemental Table S1. The differences
mean +SD ip . . .
ADNI £ D 104084 041084 008085 095004 between cognitive groups in the levels of key biometrics
+ 0+0. 4+0. -0.08+0.85 -0.9+0. . .

omeans presented in Table 1 were assessed using ANOVA. All
ADNI LAN, 09+0.71 04=+0.75 -0.06+£0.69 -08+0.97 ”, . . .
mean+SD cognitive measures were different in each group with
ADNIVS, mean=SD 03+056 004070 024078 -0.6+095 the following dlstrlbutlon:‘stable CN > Stable MCI>MCI
ADAST3 mean+SD 874456 1384610 2114630 3104851 converter > AD. For CSF biomarkers, the Ttau/AB42 was
MMSE, mean+SD 2914122 2824166 27.1+167 2314203 different in each group (CN<Stable MCI<MCI con-
CSF biomarkers verter <AD). PTAul81 showed the following distribu-
Ttau/AB42 021£0.16 03+023 0564029 063+032  tion: CN<Stable MCI<(MCI converter = AD).
pTau (181) 21.1+£89 243+126 353+£159 369+159

Abbreviations: CN Cognitive Normal, MC/ Mild Cognitive Impairment, SD
Standard Deviation, MOCA Montreal Cognitive Assessment, ADNI Alzheimer’s
Disease Neuroimaging Initiative, MEM Memory, EF Executive Functioning, LAN
Language, VS Visuospatial Functioning, ADAS13 Alzheimer’s Disease Assessment
Scale 13, MMSE Mini-Mental State Examination. Stable CN represents a subset of
CN group that does not change cognitive status over 4 years follow up

abovementioned ADNI documentation website. Origi-
nally in ADNI 2/GO, early/late-MCI was differentiated
by the cut-offs values of education-adjusted Wechsler
Memory Scale-Revised Logical Memory II subscale, but
these 2 groups are no longer differentiated here following
the new ADNI 3 guidelines and therefore the 2 groups
are combined. Baseline clinical diagnoses (CN, MCI, AD)
were assigned using standardized neuropsychological
assessments and clinical consensus; fluid (CSF/plasma)
or PET biomarkers were not used to establish these diag-
noses. The early-stage and late-stage MCI participants
were grouped together as the distinction between these
two groups is minimal. Follow-up cognition tests were
performed at 1, 2 and 4 years after baseline. We ana-
lyzed 763 plasma samples from baseline, from which 23
non-fasting participants were excluded. The non-fasting
participants were present in each diagnosis group. Addi-
tional participant group classification was based on the

Metabolomics profiling

All baseline plasma samples (n=763) were assessed
using a targeted ultra-high pressure liquid chromatog-
raphy (UHPLC)-MS/MS lipidomic profiling strategy as
previously described [44]. Briefly, liquid-liquid extrac-
tion with 1:1 methyl tertbutyl ether/n-butanol was per-
formed on plasma samples after including isotopically
labeled internal standards and targets were measured
using reversed-phase liquid chromatography-mass spec-
trometry (RPLC-MS/MS) under high and low pH con-
ditions after solvent exchange. Specific UHPLC systems
and columns were employed for optimal separation and
detection and data preprocessing was performed with
vendor-specific software to ensure accurate peak integra-
tion and internal standard matching. Briefly, for the high
pH measurements a SCIEX 6500+ QTRAP mass spec-
trometer was used with a Kinetex EVO column by Phe-
nomenex followed by analyst data acquisition software
(Version V1.7.2, AB Sciex). The triple quadrupole mass
spectrometer operated in polarity switching mode and
all analytes were monitored in dynamic Multiple Reac-
tion Monitoring (AMRM) mode. While for the low pH
analysis, a Sciex 7500 QTRAP mass spectrometer was
used with an Acquity UPLC BEH C18 column (Waters)
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followed by Sciex OS Software V2.0.0.45330 (AB Sciex).
This platform enables analyses of 260 metabolites cov-
ering oxylipins and their free fatty acid precursors, lyso-
phospholipids, sphingoid bases, endocannabinoids and
bile acids. All samples were processed with rigorous qual-
ity control measures including case/control randomiza-
tion over all batches, inclusion of solvent blanks, pooled
sample quality control aliquots, and National Institute of
Standards and Technology (NIST) Standard Reference
Material 1950 — Metabolites in Human Plasma (Merck,
Darmstadt, Germany). These batches were re-random-
ized for measurements where method blanks, reference
and solvent calibration samples were included at regular
intervals. The majority of analytes were quantified against
analytical standards, where area counts were recorded,
adjusted for deuterated surrogate responses and then cal-
culated into nanomolar concentrations using solvent cali-
bration lines from which the lowest calibration point was
subtracted from other calibration points. Next, the cali-
bration lines were checked for outliers which were identi-
fied using an outlier test, where only calibration points at
the ends were allowed to be removed. A calibration point
within the calibration line was removed if the ratio was
lower than its previous (lower) calibration point. After
these corrections, the model was recalculated. Reported
monoacylglycerols (MAGs) are the sum of 1- and 2-acyl
isomers and 10-Nitrooleate is the sum of 9-Nitrooleate
and 10-Nitrooleate, due to isomerization during sample
processing. Fatty acids, arachidonyl ethanolamide (AEA)
and 12-HHTTE were reported as ratios of their peak area
to the peak area of corresponding surrogate.

Amyloid and Tau measurement in CSF: The levels
of Amyloid beta 1-42 (AP42) peptide and tau proteins
in CSF samples were quantified using a Roche Elecsys
immunoassay. The measurement processes were fully
automated and the sample preparation procedure involv-
ing 2 incubation steps were detailed in previous publica-
tions [48, 49]. The cut-off value of Tau/AP42 ratio of 0.24
was derived from previous studies using Gaussian mix-
ture modeling to define asymptomatic AD with the pres-
ence of AD-related biomarkers [50, 51].

Data preprocessing

After peak integration an in-house quality assessment
tool was used to perform correction of target com-
pounds with internal standards to obtain relative ratios,
batch correction, and filtering of targets with low signal
to noise ratios. To obtain absolute concentrations, linear
regression models were calculated per batch between
known concentrations and relative ratios for each tar-
get. The ratio of the lowest calibration point (CALO)
was subtracted from all ratios in the calibration line.
Baseline data with detectable coverage of over 70% were
further analyzed. All data were log2-transformed. The

Page 4 of 15

following data pre-processing procedure was performed
in JMP*® Pro 17.2.0 (SAS Institute Inc, Cary NC): outliers
were detected and removed using the Robust Fit Outli-
ers method and missing values were imputed with the
Multivariate Normal Imputation method [52]. Ratios of
metabolites were calculated based on the base-2 expo-
nential-transformed data after imputation, followed by
log2-transformation before further analysis. Non-fasted
participants (7 =23) and participants of Significant Mem-
ory Concern (SMC) were excluded from further analysis.
Medication adjustments were made based on the step-
wise AIC-backward method previously described [53,
54].

Statistical analysis

Data reduction

To reduce the dimensionality and collinearity of the data,
gain additional information about associations among
variables and to facilitate result interpretation variables
showing significant associations with the outcomes
(Determined by the analysis of variance (ANOVA)) were
converted into cluster components. Variables were clus-
tered using the Jmp Pro implementation of the VARCLUS
Procedure, a principal components analysis for variable
grouping and cluster component (the linear combination
of all variables in each cluster) calculation. This is a data-
driven approach where the algorithm defines the optimal
number of clusters, with resulting clusters composed of
highly correlated variables. Those correlations in terms of
metabolomic data mostly align with biological pathways,
further confirming integrity of the data.

Comparison of lipid mediator levels between diagnosis
groups

For lipid mediator levels, ANOVA followed by Dun-
nett’s post hoc test was performed to compare means
between CN and other diagnosis groups, stratified by
sex. Lipid mediators exhibiting significant differences
between groups were grouped into clusters as described
above. Cluster components were used in ANOVA analy-
sis with Dunnett post-test, comparing the difference in
lipid mediator levels between CN and other diagnosis
groups. Supplemental Table S2 and Supplemental Table
S3 describe cluster members as well as their correlations
within the cluster, least square means (standard error
range) and ANOVA p-values. ANOVA p-values for indi-
vidual metabolites are presented in the Supplemental
Table S4. Presence of the APOE 4 allele, sex, body mass
index (BMI), age and years of education were included
as covariates in all analyses. This analysis was performed
in R studio software (Version 4.3.1). Figures were created
in R, cytoscape 3.10.2. Multiple comparison control was
accomplished with the false discovery rate (FDR) correc-
tion method of Benjamini and Hochberg [55].
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MClI conversion and memory (ADNI MEM) predictive minimal
models

Using JMP 17.0 pro (JMP, SAS institute, Cary, NC), we
applied a combination of bootstrap forest and stepwise
linear (for ADNI MEM) and logistic (for MCI convert-
ers vs stable MCI) regression modeling, with Bayesian
Information Criterion (BIC) cutoff. Variable selection
by bootstrap forest minimized outlier effects. Variables
most frequently appearing in the models were identified
by bootstrap forest (logistic or regression, respectively):
trees in forest=100; terms sampled per split=>5; boot-
strap sample rate=1. A variable contribution scree plot
was generated using variable rank and the likelihood ratio
of chi-square (for categorical fasted/non-fasted predic-
tion) or sum of squares (for continues cognitive scores).
The scree plot was used to determine a likelihood ratio
of chi-square or sum of squares cutoff value for variables
contributing to the model. Selected variables were then
subjected to forward stepwise logistic or linear regres-
sion modelling. Stepwise regression was used to highlight
independent predictors of outcomes, to create the mini-
mal model.

Results

In the current study we have analyzed plasma from the
763 participants from the ADNI 2/GO, providing abso-
lute quantification of 45 eicosanoids, 5 endocannabi-
noids, 49 lysophospholipids, 13 monounsaturated and
polyunsaturated fatty acid (MUFA&PUFA), 4 sphin-
golipids, and 1 steroids lipids (Fig. 1 and Supplemental
Table S3). In addition, our data included 18 bile acids
(Supplemental Figure S1). The bile acid levels in ADNI
cohort were previously reported [40] and are used in the
current analysis only to show their interaction with lipid
mediators.
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Sex-specific differences in sEH metabolites along disease
trajectories

To assess the changes in oxylipin metabolism along dis-
ease trajectory, we compared the differences in their lev-
els between diagnosis groups, in the analysis stratified by
sex. The following groups were used: cognitively normal
(CN), mild cognitively impaired (MCI) and dementia
(AD). We excluded subjects who were cognitively normal
at baseline who change their status at the 4-year follow-
up. The differences between the groups were compared
using ANOVA with significant metabolites further con-
verted into cluster components (Fig. 2). Factorial analy-
sis with sex x group interaction was applied to identify
metabolites affected differently by diagnosis group
between males and females. Out of 224 metabolites and
informative ratios and summations, 21 showed differ-
ences between groups. The 21 significant variables were
condensed into 6 cluster components by variable cluster-
ing and reanalyzed by ANOVA with a Dunnett post-test
against CN in a sex-stratified analysis (Fig. 2). Individual
cluster members, their contribution to the cluster and
their mean differences between groups are described in
the Supplemental Table S2 and Supplemental Table S3.
The main differences were observed in fatty acid vicinal
diols (products of sEH metabolism, Clusters 1 for eicosa-
pentanoic acid (EPA) and docosahexanoic acid (DHA)
and Cluster 2 for the arachidonic acid (AA) derivatives)
with sex differences. In Females, both omega-3 (EPA and
DHA) and omega-6 (AA) derivatives were higher in AD
when compared to the CN. However, the MCI was not
different from the CN. Additionally, differences were
observed in the levels of DHA-derived LOX metabolites
(HDoHESs) and LPAs (Clusters 3 and 4) with MCI show-
ing higher levels than CN and cortisol with AD showing
higher levels than CN.
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Fig. 1 Quantified oxylipins, endocannabinoids and polyunsaturated fatty acids in plasma samples of ADNI 2/GO participants, projected onto their meta-
bolic pathway. Nod size indicates the average concentration observed across the samples, with chemical classes indicated by node color
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Fig. 2 Soluble epoxide hydrolase metabolites are elevated along AD trajectory in a sex specific manner. Differences in means of lipid mediators between
diagnosis groups, stratified by sex. To reduce data dimensionality and to facilitate interpretation and presentation, lipid mediators manifesting significant
diagnosis group differences were converted into cluster components. Individual cluster members are defined in the cluster description, with the more
detailed description of individual contribution to the cluster and differences in means between the treatment groups provided in the Supplemental Table
S2 and Supplemental Table S3. Colors indicate diagnosis group: green — cognitively normal (CN; 83 females, 75 males) defined as healthy subjects who

remind healthy after 4 years follow up; yellow—mild cognitively impaired (MCJ;

179 females, 215 males); red — Alzheimer’s disease (AD; 53 females, 79

males). P values are derived from ANOVA with Dunnett post-test and indicate the differences from the CN

In males, omega-3 diols differences did not reach sig-
nificance (e.g., AD vs stable CN p=0.07). On the other
hand, AA diols were higher in MCI and AD, compared
to CN. This diagnosis group effect for both omega-3 and
omega-6 vicinal diols was different from the one observed
in females, with the diagnosis group x sex interaction
p=0.078 (for cluster 1, omega-3 diols) and p=0.022 (for
cluster 2, omega-6 diols) in the diagnosis group and sex
factorial analysis. Additionally, 10-Nitrooleate was lower
in MCI than CN and cortisol was higher in AD then CN.

AD-impacted individual oxylipins projected onto their
metabolic pathways are presented in Supplemental Fig-
ure S2.

Lipid mediators and APOE4 discriminate between stable
MCI and MCI converters

Metabolic signatures associated with AD resilience, i.e.,
remaining MCI in comparison to MCI that progresses
further (within 2 years) into AD, are poorly understood.
Utilizing ADNI longitudinal information about patient
diagnosis status, we defined the minimal number of fac-
tors (both clinical outcomes and lipid mediators, includ-
ing bile acids) that can describe the difference between
converters and non-converters in a sex-stratified analysis
(Fig. 3). In both sexes, combining APOE4 status with the

plasma lipid mediator levels yielded the best discrimina-
tory model: only APOE4 AUC=64 for females and 62
for males; only lipid mediators AUC =80 for females and
73 for males; APOE4 and lipid mediators AUC =285 for
females and 78 for males.

In females, the likelihood of remaining MCI without
converting to AD (AD resilience) was defined by the lack
of an APOE4 allele, lower glycine conjugation of cheno-
deoxycholic acid (define as GCDCA/CDCA ratio) and
lower levels of EPA-derived 8iso-prostaglanding F3 alpha
(8-iso PGF3a). In males, AD resilience was defined by the
lack of APOE4 allele, lower cortisol and hyodeoxycholic
acid (HDCA) and higher levels of lysophosphatidylinosti-
tol palmitate (i.e., LPI16.0). Further factorial analysis with
group x sex interaction (model adjusted by APOE, age
and BMI) confirm sex-specific effect for GCDCA/CDCA
(pinteraction =0.04), 8iso_PGF3a (pinteraction =0.003) and cor-
tisol (Pinteraction = 0-04). The interaction terms for HDCA
and LPI16:0 were not significant.

The derived minimal models had similar statisti-
cal power to discriminate converter vs non-converters
whether the model was applied for the 1, 2 or 4 years fol-
low up conversion criteria.

Additionally, we did not include CSF biomarkers of
amyloid or AD-related pathology in the current model
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Fig. 3 Lipid mediators and APOE genotype define AD resilient phenotype. Minimal model discriminating between stable MCl and MCI-AD converters
(within 2 years), generated using stepwise logistic regression, stratified by sex. Biometrics (BMI, age,), presence of APOE4 allele and lipid mediators, includ-
ing oxylipins, endocannabinoids and bile acids were used. The Receiver operation characteristics (ROC) curve is shown for the best model consisting of
APOE4 information together with lipid mediators (red line) as well as for APOE4 alone (yellow line) and lipid mediators alone (orange line). The estimate
and p values for each factor in the model are displayed in the ROC graph. The number of subjects: stable MCl= 153 females and 182 males; MCl convert-

ers=32 females and 41 males

and acknowledge that it is the main determinant of the
following transition to AD [56]. After addition of CSF
Tau/AB42 into the model: 1) in males, the minimal
model would include Tau/AB42 (est=-2.78, p<0.0001)
and 14,15- dihydroxy eicosatrienoic acid (DiHETrE)/AA
(est=-1>, p=0.01) resulting with the ROC of 0.79; in
females Tau/AB42 is the only component of the models
(est=-2.8, p<0.0001) with the ROC of 0.81. It is impor-
tant to notice that among stable MCI group, the bimodal
distribution of the CSF Tau/AB42 was observed, however
we do not have sufficient number of participants to per-
form additional stratification by CSF Tau/AB42 in addi-
tion to sex.

Markers of cognitive resilience among differential Tau and

amyloid pathology, mediated by APOE genotypes

Next, we sought to define peripheral markers of mem-
ory function, measured by ADNI composite memory
score[52] within the cohort. We are particularly inter-
ested in those markers in subjects manifesting high
Tau and amyloid pathology, as indicators of cognitive

resilience (understood as preserving cognitive functions
despite AD pathological signatures). AD related pathol-
ogies are measured by the ratio of total Tau to AB42 in
CSE. In the ADNI GO/2 population, the Tau/AB42 ratio
in CSF is influenced by APOE genotype, with e2 allele
manifesting the least and e4 allele manifesting the high-
est level (Supplemental Figure S3). Each genotype mani-
fested a range of memory scores, although e2e2 and e2e4
genotypes did not have sufficient number of participants
for further analysis (n=3 and=14, respectively). To
define the relationship between peripheral metabolism,
Tau and amyloid pathology and memory, we applied
stratification strategies for correlation analysis between
plasma lipid mediators and the memory score. For cor-
relation analysis, we applied a combination of random
forest for features selection and stepwise linear regres-
sion to define a minimal model that explains the relation
between memory and plasma lipid mediators and clinical
outcomes including age, sex, BMI, APOE4 status, years of
education (see materials and methods).
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We identified APOE genotype stratification to yield
significant models for associations of plasma metabolites
and memory scores (Fig. 4) in comparison to stratifica-
tion by CSF Tau/AB42 (using previously published cut-
off value [57]), which did not produce significant models.
In addition to the Tau/AB42, we applied pTaul81 (pos/
neg) stratification to reflect other markers for amyloid
pathology (Cutoff values for pTaul8l was provided by
ADNI with value of 19.2 pg/mL). For pTaul81 negative
subjects, the memory was mostly predicted by age, sex
and education (the three factors gave Rsq value of 0.15).
The final minimal model did include 17-HDoHE increas-
ing the Rsq to 0.17. For pTaul8l positive subjects, the
minimal model included 7 factors and gave Rsq of 0.22.
The model included presence of ApoE4 allele, the ratio
of 19_20_DiHDPA/19_20_EpDPE, age, sex, education,
14_15_DiHETrE and LPI 20.4.

Each APOE genotype manifested unique sets of vari-
ables contributing to the model. Memory in APOE 2/3
was mainly defined by the age (negative association,
p=0.0004) and 10-Nitrooleate (positive association,
p=0.0005), in addition to lesser contribution of the ratio
of glycochenodeoxycholic acid (GCDCA) to glycolitho-
cholic acid (GLCA) (positive association, p=0.018) and
LPG16:1 (negative association, p=0.015). Those 4 vari-
ables generated a memory model with the RSq=0.49
with the n=71. Memory in APOE3/3 genotype subjects
was defined by age, the ratio of 19,20-DiHDPA/19,20-
EpDPE (DiHDPA - dihydroxy docosapentaenoic aicd;

EpDPE - epoxy docosapentaenoic acid), LPE22:5 (LPE
— lysophosphatidylethanolamine. Negative association,
p=0.0001, 0.0079, 0.0028 respectively) and the years
of education, LPI20:4 (LPI - lysophosphatidylinositol)
and the ratio of 5-HETE/AA (HETE - hydroxy eicosa-
trienoic acid; AA — arachidonic acid. Positive associa-
tion, p=0.0001, 0.0013 and 0.015 respectively). Those 6
variables generated a memory model with the RSq=0.18
with the »=387. Memory in APOE3/4 genotype sub-
jects was defined by age, 19,20-DiHDPA and LPE16:0
(negative association, p <0.0001, 0.005, and 0.019 respec-
tively). Those 3 variables generated a memory model with
the RSq=0.16 with the n=283. Memory in APOE4/4
genotype subjects was defined by an unknown (uniden-
tified) oxylipin, LPI16:1, 8HDoHE (HDoHE - hydroxy-
docosahexaenoic acid. Positive association, p=0.0004,
0.0075 and 0.0096 respectively) and cortisol, leukotri-
ene E4 (LTE4) and glycodeoxycholic acid GDCA (nega-
tive association, p=0.0015, 0.0021, 0.0027 respectively).
Those 6 variables generated a memory model with the
RSq=0.46 with the n=78. The unknown (unidentified)
oxylipin manifested mass transition of Resolvin E2 (m/z
333—>m/z 115, the 115 fragment is for carboxyl group
until 4’ carbon, as it breaks by 5" hydroxyl group), but
the chromatography retention time was different from
the analytical standard. Additional correlative analysis
shows a high correlation of this unknown oxylipin with
EPA- derived vicinal diols (data not shown). Consider-
ing the importance of this metabolite in our predictive



Borkowski et al. Alzheimer's Research & Therapy (2026) 18:21

model and poor understanding of Resolvin biology, the
full identification of this compound is of interest and is
underway.

To further demonstrate the APOE genotype specific-
ity of those associations, we applied a factorial analysis
for the key factors identified in the stepwise model (age,
education, 10-Nitrooleate, 19,20-DiHDPA, unknown
oxylipin, LTE4 and cortisol) to test the memory score
interaction with APOE genotype. Following pi,teractions
were achieved with other key factors used as covariates
in the model: age p;ieraction=0.06 for eded vs e3ed4; 0.35
for eded vs e3e3 and 0.09 for eded vs e2e3; education
Pinteraction = 0-67 for e3e3 vs e3ed; 0.45 for e3e3 vs eded
and 0.8 for e3e3 vs e2e3; 10-Nitrooleate p;,eraction=0-037
for e2e3 vs e3e3; 0.098 for e2e3 vs e3e4 and 0.74 for e2e3
vs eded; 19,20-DiHDPA p;eraction = 0-04 for e3ed vs eded;
0.015 for e3e4 vs e3e3 and 0.05 for e3e4 vs e2e3; unknown
oxylipin pj eraction = 0-12 for eded vs e3ed; 0.07 for eded vs
e3e3 and 0.28 for ede4 vs e2e3; LTE4 pi, eraction = 0-05 for
eded vs e3ed; 0.0052 for eded vs e3e3 and 0.0043 for eded
vs e2e3; cortisol P eraction =0-11 for eded vs e3ed; 0.062
for eded vs e3e3 and 0.17 for eded vs e2e3;

Stepwise regression model identifies a minimal number
of factors for predicted values and eliminates collinear
variables. For example, 19,20-DiHDPA is highly corre-
lated with other omega-3 diols, like EPA derived dihy-
droxy eicosatetraenoic acid (DiHETE)s, and replacing
19,20-DiHDPA with closely correlated DiHETEs would
yield similar predictive power. To illustrate the collinear
relationship between measured lipid mediators and to
facilitate minimal model interpretation, metabolite par-
tial correlation network is presented in Figure S3.

Following on those findings we investigated whether
GlycA, a marker of systemic inflammation, is differen-
tially associated with cognition among ApoE genotypes.
The interaction analysis indeed identified significant GlyC
ApoE genotype interaction for the ApoE3/3 and ApoE4/4
genotypes (p=0.02). The strength of the association
between GlycA and cognition was increasing as the num-
ber of ApoE4 copies increased (i.e. ApoE2/3 est=-0.001,
p=1; ApoE3/3 est=-0.42, p=0.007; ApoE3/4 est=-0.51,
p=0.01; ApoE4/4 est=-1.1, p=0.0004).

Of note, the small N prevented us from investigat-
ing the impact of sex on those interactions in all geno-
types. However, we were able to analyze the sex x MEM
interaction for metabolites selected in the e3e3 and e3e4
genotypes. We found significant interaction for 5-HETE
in e3e3 group (the est for males was 0.06 and for females
-0.7). In the e3e4 group two interactions were found,
for LPE22.5 (the est for males was —0.12 and for females
-0.0002) and for LPI20.4 (the est for males was 0.09 and
for females —0.05).
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Discussion

Increased inflammatory responses have been reported in
previous AD investigations but how these systems change
over the progression of this disease have not been clearly
delineated. Here we show a dysregulation of lipid media-
tors throughout AD progression and uncover disease
heterogeneity influenced by sex and APOE genotype. We
confirmed and extended our previous findings, from two
independent cohorts, of increased soluble epoxide hydro-
lase activity during AD development. We also provide
evidence implicating the APOE4 allele, bile acid metabo-
lism, lipid peroxidation and stress response as sex-spe-
cific factors influencing the resistance of MCI subjects to
progress to ADAPOE. Additionally, we showed APOE4/4
genotype-specific associations between plasma inflam-
matory markers and memory, identifying populations for
precision medicine approach for potential therapeutic
treatment.

Growing evidence points towards the sEH as a novel
therapeutic target for AD [28, 58]. Furthermore, plasma
sEH metabolites (derived from AA, EPA and DHA)
increase with AD pathology [57] and these metabolites
are associated with cognition (i.e. perceptual speed) in
healthy and MCI individuals [42]. A strong connection
of sEH-associated biochemistry with AD-affected vascu-
lar inflammation and energy metabolism in the central
nervous system was also observed [59]. Increased sEH
expression in the AD-afflicted brain at both the tran-
script and protein levels are also seen [60]. In rodent
models of AD, AD-related pathologies can be altered by
manipulating both sEH [28, 29] and CYP [30, 31] metab-
olism. Moreover, several genetic polymorphisms in the
CYP/sEH pathway have consistently pointed towards
reduced CYP-dependent epoxy fatty acid production and
increased sEH activity or expression to be a risk for AD
and increase AD-related pathologies [61-64], supporting
causative effects of this critical inflammatory switch in
the progression of this disease.

The current work provides additional evidence from a
third independent AD cohort to support the dysregula-
tion of sEH-dependent metabolism during AD develop-
ment. Furthermore, the current study provides additional
granularity (level of complexity) regarding sex, APOE
genotype and pre-AD stages. In particular, we saw an
increase in EPA, DHA and AA-derived sEH products
in females with AD, but not with MCI, compared to
CN participants. In contrast, in males, we only saw an
increase in AA-derived sEH metabolites, but they were
present in subjects with MCI, suggesting that dysregula-
tion of sEH in males may appear earlier in disease pro-
gression than in females. Similarly, differences in sEH
metabolism have been reported to contribute to the sex
difference in the vulnerability to other dementia risk fac-
tors, such as ischemic brain injury [65, 66], high glycemic
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diet [67-70] and high-fat diet [71, 72]. At the molecular
level, the possible involvement of sEH in sex-specific AD
development includes a wide range fatty acid diol cel-
lular functions (or depletion of fatty acids epoxide), e.g.,
ferroptosis-mediated neurodegeneration [73], exciting
neurons [74], immune regulation [75, 76], and regulat-
ing mitochondrial respiration [77]. For the epoxy fatty
acids, their action is beneficial or detrimental depending
on factors such as precursor fatty acids, concentration,
targeting cells, and biological processes [75, 78]. Sex-spe-
cific regulation of sEH, especially in response to sex hor-
mones is broadly in the following review [79]. Together,
this evidence suggests that reducing sEH activity may be
a promising therapeutic approach in participants with
both MCI and AD. These may include the use of sEH
inhibitors currently under development [80, 81], but also
include current therapies such as estrogen replacement
therapy which can both down regulate sEH [82] and
reduce AD risk in post-menopausal women [83].

Our results also support a sex-specific dysregulation
of cortisol metabolism in AD, as seen by others [84, 85].
Particularly we observed, increased cortisol concentra-
tions in AD subjects when compared to CN in both sexes;
increased levels in males MCI subjects that further con-
vert to AD within 2 years, when compared to stable MCI
phenotype; and negative association with memory in
APOQOE 4/4 carriers. Cortisol is a stress response hormone
that facilitates glucose dependent energy metabolism.
This hormone crosses blood brain barrier via P-glyco-
protein transporter [86] consistent with the strong cor-
relation between plasma and CSF cortisol levels [57].
Cortisol was previously implicated in neurodegenera-
tion [87] and cognition [88] via regulation of the Hypo-
thalamic—Pituitary—Adrenal (HPA) axis [89, 90] and
was suggested by others as potential therapeutic target
for AD [91]. Sex-related differences were also reported,
with plasma cortisol associations with brain volumes
and memory performance being more pronounced in
females than in males [92]. We also show greater differ-
ence between CN and AD in females then in males. Our
analysis here also adds to those findings by extending
our understanding of cortisol and stress involvement in
cognition and AD in specific subpopulations. In partic-
ular, we noted that males with MCI have elevated corti-
sol prior to conversion to AD, an effect not observed in
females. This appears to contradict the previous findings
suggesting a greater importance of this stress hormone
in females with AD. Additionally in subjects with APOE
4/4 genotype, we show evidence that cortisol may impact
memory performance, together with immune cells
regulators. Our finding adds granularity to the known
associations of stress hormones, cognition and AD devel-
opment, identifying subpopulations for further potential
therapeutic targeting of cortisol pathway in AD.
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The current work also indicates the differential rela-
tionship between markers of immune cells activation and
memory performance among various APOE genotype
carriers. Notably in the presence of the APOE 4/4 geno-
type, memory was negatively associated with the pro-
inflammatory cysteinyl leukotriene metabolism reported
by LTE4, generated via 5-LOX-dependent metabolism.
LTE4 is a monocyte activator with vasoactive properties,
activating vascular permeability and edema [93], and its
levels were associated with cardiovascular disorders [94,
95]. Previously, 5-LOX expression was found to be upreg-
ulated in the peripheral blood mononuclear cells from
AD participants [96, 97]. Furthermore, a gain of func-
tion 5-LOX polymorphism was also associated with risk
of AD [98], indicating a potential causative relationship
of the dysregulation of this pathway to AD. Meanwhile in
rodent models of AD upregulation of hippocampal and
cortex 5-LOX expression was associated with elevated
y-secretase activity and AP peptide formation [97, 99—
102]. APOE genotypes-specific oxylipin profile in post-
mortem human dorsolateral prefrontal cortex found that
5-LOX-derived EPA oxylipins LXA5 and LXB5 in brain
were negatively associated with cognitive performance,
and the association was stronger among APOE4 carri-
ers compared to APOE3 carriers [103]. This research
also found that the levels of a 5-LOX product, LXA4 was
negatively associated with sEH activity. On the basis of
this, our results here further indicate that the dynamics
between APOE genotypes, 5-LOX, sEH, fatty acid pre-
cursors and cognition can be captured in the blood lipi-
dome, which can be monitored less invasively and more
routinely for longitudinal cohorts.

The functional interaction between APOE, 5-LOX and
sEH can be supported by various mechanisms: for exam-
ple, the higher level of APOE4 carriers in activation of
Ca?* influx and thus Ca**-dependent cPLA2 and 5-LOX
compared to APOE2 or E3 [103, 104]; for another, the
presence of prone-to-aggregation lipid-poor APOE4 pro-
tein can affect the lipid efflux functions of ABCA1[105]
and change the lipid composition of cells [106], which
serve as substrates to release free fatty acids subject to
5-LOX and sEH metabolism [107, 108]. A possibility also
remains that APOE4 leads to the altered ability of traf-
ficking inflammation-regulating lipid mediators between
lipoprotein and lipoprotein-metabolizing cells, which
includes microglia, a critical player in AD pathogen-
esis [107]. This could be supported by a strong associa-
tion of memory and GlycA in ApoE4/4 carriers, and less
pronounced associations among other genotypes. Fur-
ther investigation is therefore warranted to clarify if the
combination of altering 5-LOX metabolism and fatty acid
composition together can be a specific modifiable target
for APOE4 carriers to improve cognition. Lipid media-
tors affected during AD development, projected onto the
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metabolic pathway are presented in the Supplemental
Figure S2.

Limitations

This study is not big enough to explore APOE genotypes
and sex combined stratification. In particular, APOE x
sex stratification resulted in very small subgroups with
insufficient numbers to yield reliable results, and there-
fore these analyses were not performed. ADNI 1 and
GO/2 cohorts do not represent full demographics of US
and world population. This shortcoming is addressed in
ADNI 3 cohort. Longitudinal data are needed to further
connect dysregulation in lipid mediators, sEH among
others and disease progression, define subgroups to
identify population for targeted interventions. Further,
the analysis of converters vs non-converters has a small
n and should be validated in the larger cohort. Limited
availability of CSF pTaul8l and amyloid-PET in this
cohort further constrained amyloid-based stratifications.
Future studies with larger or pooled longitudinal cohorts
will be necessary to enable adequately powered amyloid-
defined subgroup analyses alongside clinical diagnoses.
Finally, the diols and the ratio of epoxides to diols are our
best attempt to approximate sEH activity and the results
should be understood as suggestive.
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